TSIM2

A generic SPARC architecture simulator capable of
emulating ERC32- and LEON-based computer systems

2020 User's Manual

The most important thing we build is trust

TSIM2 Simulator User's Manual

TSIM2-UM 1 www.cobham.com/gaisler
May 2020, Version 2.0.66

Table of Contents

O [gL oo [0 1o o R PPTTRPPPPTR 7
N €1 ¢ 1= - PP TUPPPTRPPPPTN 7
1.2. Supported platforms and SyStem reqQUIreMENESuueierieneiiiii e 7
1.3. OBtaiNiNG TSIM oottt ettt et 7
O o= PP 7
1.5, EVAIUBLION VEISION ...ieitieieiiti ettt sttt sttt e ettt e et et e et e et e et e e b e e e nba e e ennans 7
1.6, PrODIEIM FEPOMS ...ttt ettt e e et e et e e e e e eaaa s 7

A 10 = = 1 o) o IO PTTTRPPPPPI 9
2.0 GENENAl i e 9
2.2, License INSTAIIAION ...coovniiiii e 9

221 FHOBLING KEYS ..ottt et e 9
2.2.2. LDK type lHCENSE KEYS ..ot e 9

RO o< ¢ o] E TSP PP PUPPPTPUUPPIN: 10
L. OVEIVIBIW ittt ettt ettt 10
3.2, SHAING TSIM oottt ettt naaas 10
3.3. Standalone MOTe COMMANASuuuiiiiii ettt ettt ettt et e e e e e eneans 14

3.3.1. Time specification for COMMEANASuuiiiimiiieiii e 17
3.4. Symbolic debug iNfOrMELTONuiiiii e 17
3.5. Breakpoints and WaLCHPOINTSuuuiiiiiie ettt ettt et e e e e e enanns 18
BB, PrOfTIING e e et 18
3.7, COUE COVEIBOR ...eevtieetiii ettt ettt ettt e ettt e e ettt e e et et e ettt e e et et e e et et e e e e nba s 18
3.8, CRECK-POINTING ... eeeetie ettt ettt ettt ettt ettt e et et e et et e e e e e e e enan s 20
3.9, PEITOIMMAINCE ...ttt et ettt 20
310, BACKITBCE ...ttt enaas 20
311, CONNECEING 1O GAD ...t ettt e et e et e e 20
N A I 0 1== o BT o] o o APPSR 21

3.12.1. TSIM thread COMMENGASuieieiriieiiiti ettt e et e e et e e e et e e ee e e eete e eeees 21

3.12.2. GDB thread COMMENGSccuuuiiiiiiieiieii ettt e e e e e e eeees 22
3.13. Synchronising TSIM time to external tiMeccooiiiiiiii e e 23

4. EMUIELION CRarGCLENISIICS ... iieitiieeeiii ettt ettt ettt e e ettt e ettt e ettt e e e e erbaeeeenanaeaees 25

4.1, CommMON BEhAVIOUN ... e e 25
e O I T 01 o PRSPPI 25
B U = I T TSP PP P PP PPPPTI 25
4.1.3. Floating point Unit (FPU)uuiiiiiiiee e 25
4.1.4. Delayed write t0 SPECial FEQISIEIS ...civvuei ittt 26
4.1.5. |dIe-100p OPtIMISALIONiiieeiiie et e e 26
4.1.6. Custom iNStruction @MUIALTONiiiiiiieiiii e e 26
4.1.7. Chip-SPECITIC BITAIA ...ieeuieiiiii ettt e e e e e e e b 27

4.2. ERC32 SPECITIC EMUIBLION ... iiiiiiee ettt e et e e e e e eenens 27
4.2.1. ProCesSor EMUIBIIONuiiiiti ettt et e et e et e e et e e e e e e ne s 27
4.2.2. MEC @MUIBLION ...ttt e e e e et e e e 27
4.2.3. INtErTUPt CONLIOITEN ..o 28
A28, WECNAOG ... eeeeteeeeeei ettt ettt e et ettt e e e et e e e e n e e e e e aee 28
4.2.5. POWEr-0OWN MOUE ...ttt ettt ettt e et e e e eba s 28
4.2.6. MEMOIY EMUIBLIONcieieiiieii ettt e e e 28
A.2.7. EDAC OPEIAION ..eeitiieeiiiie ettt ettt ettt e e et e et et e e et e e e e et e e eer e een 28
4.2.8. Extended RAM and [/O @€8Suuiiiiiiiiieiiii e e e 29
4.2.9. SYSAV SIONAl ooeiiiiiii et 29
4.2.10. EXTINTACK SIGNA .ouiiiiiiiieiiii ettt e e e e ettt e e e e nb e eenb e eees 29
4210, IWDE SIONA ..ottt 29

4.3. LEON2 SPECIfiC @MUIBLIONccoeviiiiiiii et 29
I T 001> o | PP 29
4.3.2. CaCNE MEMOITES ..eueiiiti ettt ettt ettt ettt e et e e et eeene s 29
4.3.3. LEON pefipheralS reQiStErSiiiiiiiieeieii ettt e 30
4.3.4. INtErrupt CONLIOIIEr ..o e 30

TSIM2-UM 2 www.cobham.com/gaisler

May 2020, Version 2.0.66

4.3.5. POWEr-dOWN MOAE . ..uuiiiiiiiiii e e e e e e e e e et e e e e e eeen 30
4.3.6. MemMOry eMUIGLIONcouiiiii i e e e e e 30
4.3.7. SPARC V8 MUL/DIV/MAC INSITUCLIONS ...civiviiieieiiiieeeeeise et e e 30
4.3.8. FPU EMUIBLION .ieeiiiiiiii ettt e e e e e et e e et e e e et e e e e b e 30
4.3.9. DSU and hardware breakpOintSceceuuiiiiiiiiiieiiieeeiii e e e e e e e et e e e eeanees 30

4.4, LEONS3 SPECITIC BMUIBIION ...iiiiiiii e e e e e e e e e e e e et e e e eeanas 30
AA.L GENEFAl oot e 30
A o (0 00=S o | S PP 30
G B O v L= 11 1= 1110 =TSR 31
4.4.4, POWEr-dOWN MO . ..vuiiiiiiiii e e e e e e e e e e e e et e e et e e e e aneeeen 31
4.4.5. LEON3 peripheralS registersociuuiiiiiiieiii e ee e e e e e e e e e e e eaes 31
4.4.6. INterrupt CONLrOIIEr ... e e e e aens 31
4.4.7. Memory eMUIGLIONciii i e e e 31
N T @ N VAN 1= 1 o o o P 31
4.4.9. SPARC V8 MUL/DIV/MAC INSITUCLIONS ...ivvviiieiiiiiieeeiiis e e et e e 31
O o = O = 0011 = (o o PP 31
4.4.11. DSU and hardware breakpointScccuiiiiiiiiiiiiiiir e e 32
I R N o | SR = UL =0 [[TP 32
4.4.13. GRTIMER @MUIBLIONiiiiiiiiieci et e e e et 32

4.5, LEON4 SPECITIC 6MUIBIIONivviiiii e e e e e e e e e et e e et e e e eeanns 32
A5, 1. GENEFAl oot 32
A o (000 o | S PP 32
4.5.3. L1 CaClhe MEMOIIES ...ovuiiiii i e e e e e e e e e aeaas 32
o A I O o g T 1= 00 Y 32
4.5.5. POWEr-dOWN MOAEvuiiiiiiii e e e e e e e e e e e e e e eeen 32
4.5.6. LEON4 peripheralS registersocvuiiiiiiieiii e e e e e e e e e e e e eaen 32
A5.7. Interrupt CONLrOIIEr ... e e aans 32
4.5.8. MeMOry @MUIGLIONciiiiiii i e e e e e e e e e e e e e e 33
SN e B O AN VAN 1= 1 U Tox o o P 33
4.5.10. SPARC V8 MUL/DIVIMAC INSITUCLIONS ...cecvvneeiiiiiieeiiiiieeee et e e e e e e 33
Y I o = B = 031 - 1o PP 33
4.5.12. DSU and hardware breakpointScccuiiiiiiiiiiiiiiin e 33
N RS A AN o | 2R = UL (=0 = (= T 33

L 0= o = o [1170 o U1 = PPN 34
5.1. TSIM /O emulation INTEITACEuiiiiiiiiiii e e e 34
TN = g T = o (U PPN 34
LTS o = 1 o (U 36
5.1.3. Structure to be provided by 1/O devIiCecovviiii i 36
5.1.4. Cygwin SPECIfiC 10 INIT() ..evvvniiiiiiiii i 37

5.2. LEON AHB emulation INTEIfaCecccuuiiiiiiiiiiciie e e e e e e 37
B.2.1. PrOCIHT SITUCIUIE ..uiiiiieii i ci e e e e e e e e e e e e e e e et s e e et e eaaneeeens 38
5.2.2. Structure to be provided by AHB modulecoooviiiiiiiiiii e 38
5.2.3. Big versus little endianessc.uoiiiiiiiiiii i 41

5.3. TSIM/LEON CO-processor @MUIALIONeeiuuieiiiiiiiiiieiii e eiie e e e e e e e e e e e e eeanaeees 41
I = = U (@ T 1 = o S 41
5.3.2. SITUCLUIE BlEMENTSiiiiiiii i eiie e e e e e e e e e e e e e e e e e e et e et e e et e e e eeen s 42
5.3.3. Attaching the FPU and CPiiiiiii e 42
5.3.4. Big versus little @nNdianessccouiiiiiiiiiii e 43
5.3.5. Additional TSIM COMMANAScceuuiiiiiiiiiiei e e e e e e e e e e 43
5.3.6. EXAMPIE FPU oo 43

5.4. Loadable modules distributed With TSIM ... e 43
5.4.1. General AHB module limitationSccovuiiiiiiiiiiiie e e 43

L IS 1] o= VA L =) T PP 45
L300 O T 11 oo [Tox ' o N 45
L 0 g Tox o) I 141 4 == 45
6.3. External 1/0 and AHB MOCUIESuiiiiniiii e e e e eaas 46
6.4. Builtin I/O module and/or AHB MOCUIEccuuiiiiiiiiii e e 46
LSS T 0 7 = I 1 7= 0o 1 o PSP 47
TSIM2-UM 3 www.cobham.com/gaisler

May 2020, Version 2.0.66

6.6. Linking @a TLIB @pPliCationccouuiiiiiiiiiii i e e e e e aeaas 47
L IR 1] = o] LS 47
7. Cobham UTB99 EMUIBEIONuuiiiiiiiieee ettt e e e e et e e et e e e et r e e e et r e e e et aeeeaean s 48
7.1. Overview of the UTB699 AHB MOTUIEcuuuiiiiiiiii et 48
7.2. Loading the MOAUIEcoir e e e 49
7.2.1. User input module iNtErfateoiiuiiiii e 49

G T 1= o8 o (o 1 0 PN 51
7.4. 10/100 Mbps Ethernet Media Access Controller interfacecooveviiiiiiiiiiii e 51
S v 1 U o T o] o 1 o N 51
A @ o 1110 7= 4o PSP 51
G T = o 10 o I = PN 51
T7.4.4. Ethernet PaCKEt SEIVEr ...oouiiiii i et e e e e e e e e e ee 52
7.4.5. Ethernet packet SErver ProtoColcociuiiiiiiiiiie e e e e e e e e ees 52

7.5. SpaceWire interface With RMAP SUPPOITiiiiiiii e e e e e 52
AT S v 1 U o T o] o 1 o S 53
7.5.2. COMIMANAS ...eutiieiiii ettt e e et e et e et e e ettt e e e ettt e e e et r e e e eaaaeeeeaenneeenenns 53
A T = o 10 o I = PN 53
7.5.4. SPACEWITE PACKEL SEIVETiiiiiiiiii et e e e e e e e e e e et e e et e et e e et e eaanees 53
7.5.5. SpaceWire packet SErver ProtOCOlcceuiiiiiiiiiii e 53

7.6. PCl initiator/target INtErfatec.uiiiiiiiii e e e e e e 55
7.6.1. Connecting a user PCl model with the UT699 modulecccovvviiiiiiiiiiiiiiiieeeis 55
7.6.2. COMIMANAS ..eeutiieiiii ettt e e et e e e et e e et e e ettt e e e ettt e e e et reeeesaneeesaenneeennnns 55
A T = o 18 o I = PPN 55
7.6.4. PCl BUS MOTEl APL .oeeiii et et et e et e aae 55

T A 1O 10 1= 1 1o S SPPTTRPN 56
7.7.1. Connecting a user GPIO model with the UT699 moduleccoveviiieiiiniiiiiiecieeeannn, 56
A © o 1111 7= 4o PSPPI 56
A A T 1= o 10 o I =0 PR 56
T.7.4, GPIO MOTE APl oo e e 56

A RO NI 01 = = oS SP 57
A= 1 U o T o] o 1 o S 57
7.8.2. COMIMANAS ...evtuieiiii ettt ettt e e e e et e e et e e e ettt e e e ettt e e e et r e e e et n e e e et e e eennnns 57
T B = o 10 o I =[PP 57
RS o (= A= < Y= PP 58
7.8.5. CAN packet Server ProtOCOlcc.uiiiiiieiiii e 58

8. Cobham UTB99E EMUIGLION ... ciieiiiiiiii et e e e e et e e e et e e e enen s 60
8.1. Overview of the UTB99E AHB MOTUIEiiiiiiiiieiiiii e 60
8.2. Loading the MOAUIE oo e e 61
8.2.1. User input module INtErfateoiiiiiiiii e 61

TG I 1= o 18 o (o 11 0T PN 63
8.4. 10/100 Mbps Ethernet Media Access Controller interfacecoooeviieiiiiiiii e 63
S S vz 1 U o T o] o 1 o N 63
8.4.2. COMIMANAS ..evtiieiiii ettt e et e e et e e et e e ettt e e e ettt e e e et e e e e eaa e e e e st neeennnns 63
G T B 1= o 10 o I =0 [P 63
8.4.4. Ethernet PaCKEt SEIVEriiiiiiii e e 64
8.4.5. Ethernet packet SErver ProtoColcoiiuieiiiiiiiiie i e e e e e 64

8.5. SpaceWire interface With RMAP SUPPOITiiiiiii e e e e e e 64
TN S = 1 U o T o] o1 o S 65
8.5.2. COMIMANAS ...eutiiiiiii ettt ettt e et e e e e et e e e et r e e e aaan e e e st e e eennnns 65
TG I B 1= o 10 o I =0 [N 65
8.5.4. SPACEWITE PACKEL SEIVETiiiiiiii i e e e e e e e e e e e e e et e e et e e aaneees 66
8.5.5. SpaceWire packet SErver ProtOCOlcccuiiiiiiiiiii i 66
R SIS T 0o L= 1Y/ oo 73

8.6. PCI initiator/target INtEIfaCEoiiiiiiiii e e e e e 74
8.6.1. Connecting a user PCl model with the UT699E moduleccoevviiiiiiiiiiiniiiieccies 74
8.6.2. COMIMANAS ...eutuiiiiii ettt e et e e et e et s e e ettt e e e et e e e et n e e e eaa s e e e et e eeannns 74
G I B 1= o 10 o I =0 [PPN 74
8.6.4. PCI bUS MOTEl APL .eeiiiii et e e aee 74
TSIM2-UM 4 www.cobham.com/gaisler

May 2020, Version 2.0.66

B.7. GPIO INLEITACE oiiviiieiiii et e et e e et e e et e et e e et aea 75
8.7.1. Connecting a user GPIO model with the UT699E modulecccoevvieiiiiiiiiiieiieen, 75

S 2 @ e 1410 7= [0 =PSRRI 75
G T B 1= o 10 o I =0 (PPN 75
8.7.4. GPIO MOTEl APl oo e 76

R R 07 (NI 01 = = o SR SPPP 76
8.8.1. SEAt UP OPLIONS ..uiiiiiiiiiieiii et e e e e e e e e e e e e e e e e et e e et e e et e e e e e aa e eaes 76
8.8.2. COMIMANAS ...evviiiiiii ettt et e et e e e e ettt e e e et e e e e et e e e e aaaneeennnns 76
TG I B 1= o 10 o I = [P 77
B.8.4. PACKEL SEIVEY ...uiiiiiiiii ittt aaaan 77
8.8.5. CAN packet Server ProtOCOlcc.uiiiiiiieiii i 77

9. Cobham UT700 @MUIBEION ...uuiiiiiii ettt e et e e et e e et e e e e e e r e e e et reeeeannneeeeean s 80
9.1. Overview of the UT700 AHB MOTUIEccuuniiiiiiiieeii et 80
9.2. Loading the MOAUIEcoiiii e e e 81
9.2.1. User input module iNtErfatecociuiiiii e e e 81

LS G I 1= o 18 o (o 11 0 PN 83
9.4. 10/100 Mbps Ethernet Media Access Controller interfacecoooeviieiiiiiiii e 83
S S = 1 U o T o] o1 o S 83
9.4.2. COMIMANAS ..eevtiieeiii ettt e et e e e et ettt e e e et e e e e et r e e e et reeeeaaneeesaen e eennnns 83
G I B 1= o 10 o I = [P 83
0.4.4. Ethernet PaCKEt SEIVEriiii it e e e e e e e 84
9.4.5. Ethernet packet SErver ProtoColccicuieiiiiiiii e e e e e e 84

9.5. SpaceWire interface With RMAP SUPPOITiiiiiiii e e e 84
LS TN S v 1 U o T o] o1 o S 85
9.5.2. COMIMANAS ...evtiieiiii ettt e et e e et e e et e e e et r e e e ettt e e e et n e e e eaan e e e et neeennnns 85
ST I B 1= o 10 o I = (PPN 86
9.5.4. SPaCEWITE PACKEL SEIVETiiiiiiii e e e e e e e e e e e e e e e e et e e et e eaaneees 86
9.5.5. SpaceWire packet SErver ProtOCOlccuiiiiiiiiiii e 86
S S T o] L= 1Y/ oo 93

9.6. PCI initiator/target INtEITaCEuiiiiiiiii e e e e e 94
9.6.1. Connecting a user PCl model with the UT700 moduleccovvviiiiiiiiiiiiniceeees 94
9.6.2. COMIMANAS ...evtiiiiiii ettt e et e ettt e et e e et e e et e e e e ettt e e e et neeeesa e e e eeaan e eeeannns 94
G I B 1= o 10 o I =0 [P 94
9.6.4. PCI bUS MOTEl APL oo e et e e aae 94

O.7. GPIO INEEITACE iiviii et e et e e e et e e e e et e e e e et e e e et e aae 95
9.7.1. Connecting a user GPIO model with the UT700 moduleccoveviiieiiniiiiiieiieeeannn, 95
9.7.2. COMIMANAS ...eettieeeii et e et e ettt e et e e e et e e e ettt e e e et s e e e eaaneeesaen e eennnns 95

S I I B 1= o 10 o I = (PPN 95
9.7.4. GPIO MOTEl APl oo e e 96

SR A O (NI 01 = = oS SPP 96
0.8.1. SEAt UP OPLIONS ..uiiiiiiiiiiieiie e e e e e e e e e e et e e e e et e e et e e et e e et e e et e e et e eaneeaes 96
9.8.2. COMIMANAS ...evttieiiii ettt e et e et e et e e et e e e e ettt e e e et r e e e et r e e e et a e e e et e eeannns 96
TG I B 1= o 10 o I =0 [P 97
0.8.4, PACKEL SEIVET ..uuiiiiiiiii ettt et et aanan 97
9.8.5. CAN packet Server ProtOCOlcc.uiiiiiieiii i 97

S S B 101 = o= PP 99
9.9.1. Connecting a user SPI model with the UT700 moduleccooveviiiiiiiiiiiiiieiceeeieee, 99
9.9.2. COMIMANAS ...evtuieiiii ettt e et e et e et e e et e e e e et r e e e ettt e e e et s e e e eaa e e e eeaen e eeennns 99
e G I B 1= o 10 o I = (PPN 99
9.9.4. SPI BUS MOEl AP .. oeen e e 99

10. Cobham Gaisler GR712RC @MUIGLHONiiiiiiiiieeiii e e e e e e e e e et e e e eatn e eeees 101
10.1. Overview of the GR712RC AHB MOTUIEuuniiiiiiiieiiiee e 101
10.2. Loading the MOAUIEeniiii e e e e e e e e 102
10.2.1. User input module iNtErfaceiiiiiiiiiii e e 102

O C T I 1= o 11 o (o 1 0o [PN 103
L0 07N (N BT 1= = ol P 104
00 B IS v 1 W o] o1 o 104
10.4.2. COMIMANGS ...iiiviieeiiiie ettt e e e e et e e et e e et et e e et et e e e e et e e e e et e eeeenanas 104
TSIM2-UM 5 www.cobham.com/gaisler

May 2020, Version 2.0.66

L0 R BT o 18 o I { o PP 104
O o (= A < V= PP 105
10.4.5. CAN packet Server protOCOlccuieiiiiiiiiiieiie e 105

10.5. 10/100 Mbps Ethernet Media Access Controller interfacecooevviiiiiiiiiiiiiiin e, 106
O3 IS v U o o] o1 o 106
10.5.2. COMIMANGS ...oiiviiieeiiiiie et e e et e et e e e et e e e et e e e et e e e e et e e eeenan s 107
10.5.3. DEDUG FlAgS oevvvnieiiiiiei ettt 107
10.5.4. Ethernet Packet SEIVEriiiiiiiii i e aaas 107
10.5.5. Ethernet packet Server ProtoColc.u.iiiiiiiiiieiiie e e e e e e e 107

10.6. SpaceWire interface With RMAP SUPPOITcvvniiiicii e e e e 108
O IS = 1 AU o] o 1 o 108
10.6.2. COMIMANGS ...oiiviiieeiiiie et e e e e e et e e et e e e et e e e e et e e e e et e e e e et e e eeenanas 109
LG RC A BT o 18 o I { o PP 109
10.6.4. SPacEWiIre PaCKEL SEIVENciueiiii e aneees 110
10.6.5. SpaceWire packet SErver ProtOCOlvveiiieiiiieiiii e e e e e e 110
10.6.6. SIMPIE MOUE ...ovniiii i e e e e e et e e et e eean s 117

O o BT 01 = = o= SRR 118
10.7.1. Connecting a user SPI model with the GR712RC modulecccoevvviieiiiiieiineennnn, 118
10.7.2. COMIMANGS ...iiitiieieiii et e e et e e et e e e e et e e e e et e e e e e bt e e e e et e e eeenanas 118
L0 R BT o 18 o I { o PP 118
10.7.4. SPI BuS MOEl APL .o 118

10.8. GPIO INLEITACE iieiiii ittt e et e e e et e e e e et e e e e aae s 119
10.8.1. Connecting a user GPIO model with the GR712RC moduleccooevviiiiiiieinnns 119
10.8.2. COMIMANGS ...oiiviiieiiiiiie et e e e e et e e et e e e et e e e e et e e e et e e e e et e e eeenan s 119
10.8.3. DEDUG FlagS evvvnieiiiiiei et 119
10.8.4. GPIO MOTEl APl oeeii et e e a e aae 119

10.9. Clock Gating Unit, CANMUX and GRGPREGcoiiiiiiiiiiiiiiiieeciiie et 120
11 AtMEl ATBI7 EMUIBLION ...iiiiiiee ettt e e e et s e e e et s e e e et e e e e eat e eeaerenaeaaes 121
11.1. Overview of the AT697 AHB MOQUIEccouuiiiiiiiiiiee e e 121
11.2. Loading the MOAUIEeeniiie e e e e e e 122
11.3. ATB7 INILIBEOT MOTE ..evvniiiiii ettt et e et e e et e e et r e e e aaa e e ennnnes 122
I N e A = 1 1= B 1 1o [122
ST I T T T USSP 122
11.5.1. PCl command taI€uiiiiiiiiiiiiii e 123

11.6. Read/write function installed by PCI modulecooouiiiiiiiiii e 123
11.7. Read/write function installed by ATE97 Modulecccovviiiiiiiiii e 123
G = T = =N 124
IS T B 7= o1 o f = o P 125
0 0 o T 1 o PP 125
12. TPS VXWOrKS 6.X AHB MOGUIE .. coeiiiiiiiiii ettt e et e et e e e 126
R @ = 4T PP 126
12.2. Loading the MOAUIEeeiiie e e e e s 126
22 T @0 o T 18 =) o N 126
G T 0] o] 1 PP 127
TSIM2-UM 6 www.cobham.com/gaisler

May 2020,

Version 2.0.66

COBHAM

1. Introduction

1.1. General

TSIM isageneric SPA RC! architecture simulator capable of emulating ERC32- and L EON-based computer sys-
tems.

TSIM provides several unique features:
« Emulation of ERC32 and LEON2/3/4 processors (in single processor systems)
 Superior performance: up to 60 MIPS on high-end PC (Intel i7-2600K @3.4GHz)
« Accelerated processor standby mode, allowing faster-than-realtime simulation speeds
« Standalone operation or remote connection to GNU debugger (gdb)
« Also provided as library to be included in larger simulator frameworks
e 64-hit time for practically unlimited simulation periods
* Instruction trace buffer
* EDAC emulation (ERC32)
¢ MMU emulation (LEON2/3/4)
¢ SRAM emulation and functiona emulation of SDRAM (with SRAM timing) (LEON2/3/4)
¢ Local scratch-pad RAM (LEON3/4)
* Loadable modules to include user-defined 1/O devices
« Non-intrusive execution time profiling
» Code coverage monitoring
* Instruction trace buffer
» Stack backtrace with symbolic information
« Check-pointing capability to save and restore complete simulator state
e Unlimited number of breakpoints and watchpoints
» Pre-defined functional simulation modules for GR712RC, UT699, UT700 and AT697

1.2. Supported platforms and system requirements

TSIM supports the following platforms: Solaris 2.8, Linux, Linux-x64, Windows XP/7, and Windows XP/7 with
Cygwin Unix emulation.

1.3. Obtaining TSIM

The primary site for TSIM is the Cobham Gaisler website [http://www.gaisler.com] where the latest version of
TSIM can be ordered and evaluation versions downl oaded.

1.4. License

TSIM2 ERC32, TSIM2 LEON2, TSIM2 LEON3 and TSIM2 LEONA4 are licensed separately as separate products.
Thelicense can befound inl i cense. t xt inthe top directory after installation. See Section 2.2 for details on
the license solution.

1.5. Evaluation version

An evaluation version of TSIM2 LEON3 isavailable from the Cobham Gaisler website [http://www.gaisler.com].
The evaluation version may only be used for evaluation and internal testing and only during a period of 21 days
without purchasing alicense. Seethel i cense. t xt filethat isincluded in the archive for details.

The evaluation version is limited to 32-bit time. It does not support check-pointing, loadable modules, library
interface, code coverage, configuration of caches, configuration of memory or chip flags such as- gr 712r c or
- ut 700.

1.6. Problem reports

Please send problem reports or comments to support@gaisier.com.

ISPARC is aregistered trademark of SPARC International

TSIM2-UM 7 www.cobham.com/gaisler
May 2020, Version 2.0.66

http://www.gaisler.com
http://www.gaisler.com
http://www.gaisler.com
http://www.gaisler.com

COBHAM

Customerswith avalid support agreement may send questions to support@gaisier.com. IncludeaTSIM log when
sending questions, please. A log can be obtained by starting TSIM with the command line switch - | ogfi |l e
fil ename. Try to include as much details as possible from commands such asr eg, hist/inst (enable history with
hist | en), bt and with relevant debug options turned on. See also Chapter 13.

TSIM2-UM 8 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

2. Installation
2.1. General
TSIM isdistributed as atar-file (e.g. tsim-erc32-2.0.66.tar.gz) with the following contents:;

Table 2.1. TS M content

Directory Description

coverage Source level coverage helper scripts
doc TSIM documentation

samples Sample programs

iomod Example loadable modules
tsim/cygwin TSIM binary for cygwin
tsim/linux TSIM binary for linux
tsim/linux-x64 TSIM binary for linux-x64
tsim/solaris TSIM binary for solaris
tsim/win32 TSIM binary for native Windows
tlib/cygwin TSIM library for cygwin
tlib/linux TSIM library for linux
tlib/linux-x64 TSIM library for linux-x64
tlib/solaris TSIM library for solaris
tlib/win32 TSIM library for native Windows

The tar-file can beinstalled at any location with the following command:

gunzip -c tsimerc32-2.0.66.tar.gz | tar xf -
2.2. License installation

TSIM islicensed using aHASP USB hardware key. Before use, the Sentinel HASP runtime must be installed. See
the simulator download page at the Cobham Gaisler website [http://www.gaisler.com] for download links.

2.2.1. Floating keys
Floating keys can be indentified by having ared housing (instead of blue/purple).

Floating license keysrequiresthat the runtimeisinstalled in both client and server. In addition the server also need
to have alicense manager installed. The license manager software can be also be downloaded from the simulator
download page. Note that this is a separate license manager from the license manager that is included with the
HASP runtime.

The Linux install script isoutdated and will fail on many modern distributions. The following workaround works
for Ubuntu 16.04 and 18.04:

$ sudo RUNLEVELDIR=/etc/rc2.d bash ./dinst .
The license manager can also be started manually by running the has pl mexecutable.

Note that a limitation of the floating keys normally used for TSIM2, is that only one such key can be used per
license server. If more than one floating key is needed for the same server, there is an option to switch to aLDK
type key option (that can be accommodated by the same HASP USB hardware key), see below.

2.2.2. LDK type license keys

Some situations warrants an LDK type license key. Note that these keys does not support running TSIM under
Cygwin, and does not support running TSIM versions prior to 2.0.66.

TSIM2-UM 9 www.cobham.com/gaisler

May 2020, Version 2.0.66

http://www.gaisler.com
http://www.gaisler.com

COBHAM

3. Operation

3.1. Overview

TSIM can operate in two modes: standalone and attached to gdb. In standalone mode, ERC32 or LEON appli-
cations can be loaded and simulated using a command line interface. A number of commands are available to
examine data, insert breakpoints and advance simulation. When attached to gdb, TSIM acts asaremote gdb target,
and applications are loaded and debugged through gdb (or a gdb front-end such as ddd).

3.2. Starting TSIM

TSIM is started as follows on a command line:
tsim-erc32 [opt i ons] [i nput _fil es]
tsim-leon [opt i ons] [i nput _fil es]
tsim-leon3 [opti ons] [i nput _fil es]
tsim-leon4 [opt i ons] [i nput _fil es]

The following command line options are supported by TSIM:

-ahbmahb_rnodul e
Use ahb_nodul e as loadable AHB module rather than the default ahb.so (LEON only). If multi-
ple -ahbm switches are specified, up to 16 AHB modules can be loaded. The environmental variable
TSIM_MODULE _PATH canbesettoa‘:’ separated (*;' in WIN32) list of search paths.
- ahbst at us
Adds AHB status register support.
-asi 1noal | ocat e
Makes ASl 1 reads not allocate cache lines (LEON3/4 only).
-at697e
Configure caches according to the Atmel AT697E device (LEONZ2 only). See Chapter 11 for details on
AT697 emulation.
- banks r am banks
Sets how many RAM banks the SRAM is divided on. Supported valuesare 1, 2 or 4. Default is 1. (LEON
only).
- bopt
Enables idle-loop optimisation (see Section 4.1.5).
- bp
Enables emulation of LEON3/4 branch prediction
- bz
Halt execution on al traps except privileged instruction, fpu disabled, window_overflow,
window_underflow, asynchronous_interrupt and trap_instruction (As GRMON does when not using the -
nb option). Thishalts at the pc and in the register window of the trapping instruction. Note that this does not
function asan ordinary break in execution; continuing from thishalt will re-execute the trapping instruction.
-cfile
Reads commandsfrom f i | e and executes them at startup.
-cfgfile
Reads extra configuration optionsfromf i | e.
-cfgreg_and and_nask, - cf greg_or or _nmask
LEON2 only: Patch the Leon Configuration Register (0x80000024). The new value will be: (reg &
and_mask) | or _nask.
-covtrans
Enable MMU tranglationsfor the coverage system. Needed when MMU is enabled and not mapping 1-to-1.
-cpmcp_nodul e
Use cp_nodul e as loadable co-processor module file name (LEON). The environmental variable
TSIM_MODULE _PATH canbesettoa‘:’ separated (*;' in WIN32) list of search paths.
-cas (-nocas)
When running a VXWORKS SMP image the SPARCV9 “casa’ instruction is used. The option - cas
enables this instruction (LEON3/4 only). The - nocas option can disable CAS support when otherwise
aready enabled.

TSIM2-UM 10 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

-dcsi ze si ze
Defines the set-size (KiB) of the LEON data cache. Allowed values are powers of two in therange 1 - 64
for LEON2 and 1-256 for LEON3/4. Default is 4 KiB.

-dl ock
Enable data cache line locking. Default is disabled. (LEON only).

-dl ramaddr si ze
Allocates si ze KiB of local dcache scratchpad memory at addressaddr . (LEON3/4)

-dl si ze si ze
Setsthe line size of the LEON data cache (in bytes). Allowed values are 16 or 32. Default is 16.

-drepl repl
Sets the replacement algorithm for the LEON data cache. Allowed values are r nd (default for LEON2)
for random replacement, | r u (default for LEON3/4) for the | east-recently-used replacement algorithm and
| rr for the least-recently-replaced replacement algorithm.

-dsetssets
Defines the number of setsin the LEON data cache. Allowed valuesare 1 - 4.

-eclipse
Enable some special handling of the GDB protocol when connecting with Eclipse.

-exc2b
I ssue Ox2b memory exception on memory write store error (LEONZ2 only)

-ext nr
Enable extended irq ctrl with extended irg number nr (LEON3/4 only)

-fast_uart
Run UARTSs at infinite speed, rather than with correct baud rate.

-f pmf p_nodul e
Use f p_nodul e as loadable FPU module rather than a built in FPU model or looking for the default
fp.so/dIl module (LEON only). The environmental variable TSIM_MODULE PATH canbesettoa‘:’
separated (“;" in WIN32) list of search paths.

-freqsystemclock
Sets the simulated system clock (MHZz). Will affect UART timing and performance statistics. Default is
14 for ERC32 and 50 for LEON.

-gdb
Listen for GDB connection directly at start-up.

-gdbuartfwd
Forward output from first UART to GDB.

-gr702rc
Set cache parameters to emulate the GR702RC device.

-gr712rc
Set parameters to emulate the GR712RC device (albeit as a single processor device). Must be used when
using the GR712RC AHB module. This also sets up TSIM to simulate 6 APBUART cores and the GR-
TIMER core. See Chapter 10 for details on GR712RC emulation.

-grfpu
Emulate the GRFPU floating point unit, rather then Meiko or GRFPU-lite (LEON only).

- hwbp
Use TSIM hardware breakpoints for gdb breakpoints.

-stack addr
Set initial stack pointer.

-
Forces bootloader-like initialization even when running from ROM. See the run and go commands for
details. Seealsothe - ni option.

-icsizesize
Defines the set-size (KiB) of the LEON instruction cache. Allowed values are powers of two in the range
1- 64 for LEON2 and 1-256 for LEON3/4. Default is 4 KiB.

-ift
Generate illegal instruction trap on IFLUSH. Emulates the IFT input on the ERC32 processor.
-ilock

Enable instruction cache line locking. Default is disabled.

TSIM2-UM 11 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

-il ramaddr si ze
Allocates si ze bytes of local icache scratchpad memory at address addr . (LEON3/4)

-ilsizesize
Sets the line size of the LEON instruction cache (in bytes). Allowed values are 16 or 32. Default is 16 for
LEON2/3 and 32 for LEONA4.

-iomio_nodul e
Use i o_nodul e as loadable I/O module rather than the default i0.so. The environmenta variable
TSIM_MODULE PATH canbesettoa‘:’ separated (*;' in WIN32) list of search paths.

-irepl repl
Sets the replacement algorithm for the LEON instruction cache. Allowed values are r nd (default for
LEONZ2) for random replacement, | r u (default for LEON3/4) for the least-recently-used replacement al-
gorithmand | r r for the least-recently-replaced replacement a gorithm.

-isetssets
Defines the number of setsin the LEON instruction cache. Allowed values are 1(default) - 4.

-iwde
Set the IWDE input to 1. Default is 0. (TSC695E only)

-1 2wsi ze si ze
Enable emulation of L2 cache (LEON4 only) with si ze KiB. Thesi ze must be binary aligned (e.g. 16,
32,64 ..).

-logfilefil enanme
Logsthe consoleoutput to f i | enane. If f i | enamne ispreceded by ‘+' output is append.

-ncf gXval ue
Set the reset value of memory configuration register X, where X can be 1, 2 or 3 (LEON only).

-nf ail ok
Do not fail on startup even if explicitly requested io/ahb modules failsto load.

-nfl at
This switch should be used when the appli cation software has been compiled with thegec - nf | at option,
and debugging with gdb is done.

- mu / - nommu
Enables or disables MMU support (LEON only). By default LEON2 and LEON3 does not have MMU
support, and LEON4 has MMU support. Chip options, e.g. - gr 712r ¢, enables MMU support when the
corresponding chip hasit.

-nb
Do not break on error exceptions when debugging through GDB. This also enables the - hwbp option.

-nfp
Disablesthe FPU to emulate system without FP hardware. Any FP instruction will generate an FP disabled
trap.

- ni
Prevents bootloader-like initialization even when not running from ROM. See the run and go commands
for details. See alsothe -i option. This option also affect restarting execution via GDB. See gdb reset
for details.

- nomac
Disable LEON MAC instruction. (LEON only).

-noeditline
Disable use of editline for history and tab completion.

-nosram
Disable SRAM on startup. SDRAM will appear at 0x40000000 (LEON only).

- not hr eads
Disable threads support.

-nouart
Disable emulation of UARTS. All access to UART registers will be routed to the I/0O module.

-nov8
Disable SPARC V8 MUL/DIV instructions (LEON only).

-nrtinersval
Adds support for more than 2 timers. Valueval can beintherange of 2 - 7 (LEON3/4 only). Default: 2.
Seeasothe -sanetinerirqg and -ti merirqgbase nunber switches.

TSIM2-UM 12 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

- numbp num
Sets the upper limit on number of possible breakpoints.
- numMVp num
Sets the upper limit on number of possible watchpoints.
-nwWinw n
Defines the number of register windowsin the processor. The default is 8. Only applicable to LEON3/4.
-port portnum
Use por t numfor gdb communication (port 1234 is default)
- pr
Enable profiling.
-ramramsize
Sets the amount of simulated RAM (KiB). Default is 4096.
-rest file_name
Restore saved state from file_name.tss. See Section 3.8.
-romrom si ze
Sets the amount of simulated ROM (KiB). Default is 2048.
-ronB,-ronl6
By default, the PROM area at reset time is considered to be 32-bit. Specifying - r on8 or - r o6 will
initialise the memory width field in the memory configuration register to 8- or 16-bits. The only visible
difference isin the instruction timing.
-rtens ver
Override autodetected RTEM S version for thread support. ver should be 46, 48, 48-edisoft or 410.
-sanmetinerirq
Force the irq number to be the same for al timers. Default: separate increasing irgs for each timer.
(LEON3/4 only). Seealsothe -nrtimersval and -tinerirqgbase nunber switches.
-sdramsdr am si ze
Sets the amount of simulated SDRAM (MiB). Default is 32. (LEON only)
- sdbanks <1| 2>
Sets the SDRAM banks. This parameter is used to calculate the used SDRAM in conjunction with the
mcfg2.sdramsize field. The actually used SDRAM at runtime is sdbanks* mcfg2.sdramsize. Default:1
(LEON only)
-symfile
Read symbolsfrom f i | e. Useful for self-extracting applications
-timer32
Use 32 hit timers instead of 24 bit. (LEON2 only)
-tinmerirqgbase nunber
Set theirg number of thefirst timer to interrupt number nunber (LEON3/4 only). Default: 8. See dso the
-nrtinmersval and -sanetinmerirqg switches.
-tsc691
Emulate the TSC691 device, rather than TSC695
-tsc695e
Obsolete. TSIM/ERC32 now always emulates the TSC695 device rather that the early ERC32 chip-set.
-uart Xdevi ce
This option connects the chosen UART to a seria device. Here, X can bein the range 1 up to the number
of uarts. By default, UART1 is connected to stdin/stdout and all others are disconnected.

On Linux, e.g. connecting thefirst uart to /dev/ttyUSBO0 can be done with “-uart1 /dev/ttyUSBO”. On Linux,
using the device /dev/ptmx will create a pseudo-terminal pair with the chosen uart at one end. TSIM prints
out the name of the other end of the pair to be opened by host software communi cating with the chosen uart.

On Windows use //./coml, //./lcom2 etc. to access the serial ports. The serial port settings can be adjusted
by opening the relevant entry under “Ports (COM and LPT)” entry in the Device Manager and chosing the
“Port Settings’ tab in the dialogue that pops up.

-uart _fs<1| 2| 4| 8| 16| 32>
UART FIFO depthin characters (LEON3/4 only). This setting affectsall APBUARTSsin the system. Valid
configurations are 1 (default), 2, 4, 8, 16 and 32 characters. If the FIFO depth is configured to 1 the UART
FIFO is not present instead only the holding register is present and FIFO level interrupts are not present.

TSIM2-UM 13 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

The FIFO interface is available for both fast and accurate mode, however the transmitter side in fast mode
never fills the FIFO since characters are always sent immediately.
-ut 699
Set parameters to emulate the UT699 device. Must be used when using the UT699 AHB module. Note that
when - ut 699 is given, snooping will be set as non-functional. This also sets up TSIM to simulate only
one APBUART core. See Chapter 7 for details on UT699 emulation.
-ut 699e
Set parameters to emulate the UTG99E device. Must be used when using the UT699E AHB module. This
also setsup TSIM to simulate only one APBUART core. See Chapter 8 for details on UT699E emulation.
-ut 700
Set parameters to emulate the UT700 device. Must be used when using the UT700 AHB module. Thisaso
setsup TSIM to simulate only one APBUART core. See Chapter 9 for details on UT700 emulation.
-wdfreqfreq
Specify the frequency of the watchdog clock. (ERC32 only)
input _files
Executablefilesto be loaded into memory. Theinput fileisloaded into the emulated memory according to
the entry point for each segment. Recognized formats are elf32, aout and srecords.

Command line options can also be specified in the file .tsimcfg in the home directory. This file will be read at
startup and the contents will be appended to the command line.

3.3. Standalone mode commands

If thefile.tsimrc existsinthe homedirectory, it will be used asabatch file and the commandsinit will be executed
at startup.

Below is a description of commands that are recognized by the simulator when used in standal one mode:
batchfil e
Execute a batch file of TSIM commands.
bloadfil e[startaddr]
Load the binary filef i | e into memory starting at st art addr . The default st ar t addr isthe start of
RAM memory.
+bp, break addr ess
Adds an breakpoint at addr ess.
bp, break
Prints all breakpoints and watchpoints.
-bp, del [nuM
Deletes breakpoint/watchpoint num If numis omitted, all breakpoints and watchpoints are deleted.
bt
Print backtrace.
cont [i nstructions |amount tineunit]
Continue execution at present position, optionally for a number of instructions or an amount of time. See
Section 3.3.1 for the syntax for specifying time.
coverage <enable | disable|save[fi | e_nane] |clear | print address [| en] >
Code coverage control. Coverage can be enabled, disabled, cleared, saved to afile or printed to the console.
dumpfil eaddress|ength
Dumps memory content to filef i | e, in whole aligned words. The addr ess argument can be a symbol.
dis[addr] [count]
Disassemble [count] instructions at address [addr]. Default values for count is 16 and addr is the
program counter address.
echostring
Print st r i ng to the simulator window.
edac [clear | cerr [merr addr ess]
Insert EDAC errors, or clear EDAC checksums (ERC32 only)
ep [clear|addr ess]
Show, clear or set entry point for execution. Setting the entry point overrides the default start of execution
address for run and go commands.

TSIM2-UM 14 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

event
Print events in the event queue. Only user-inserted events are printed.

flush [all | icache | dcache | addr]
Flush the LEON caches. Specifying all will flush both the icache and dcache. Specifying icache or dcache
will flush the respective cache. Specifying addr will flush the corresponding line in both caches.

float [-V]
Prints the FPU registers. With the optional -v argument, the fields of the fsr registers are listed and denor-
malized numbers are marked.

gdb
Listen for gdb connection.

gdb reset
Prepares TSIM for anew run via GDB. This is needed before |oading an image from GDB (or via GDB
e.g. from Eclipse). An exception to this need is when using the extended-remote target type with remote
exec-file and starting each new execution viathe GDB “run” command. Unlessthe - ni option is used,
bootloader-like initialisation is always performed.

go[address/ synbol |-t J[i nstructions |anount timeunit]
The go command will continue execution without restarting the simulation. If an addressor symbol isgiven,
execution starts from there. Otherwise, if an entry point has been set with the ep command, execution starts
from that entry point. Otherwise execution starts from the entry point of the last |loaded image.

If thesimulation timeisat O (e.g. dueto TSIM having just been started or due to the reset command) and
the address execution is being started from is not the reset address (i.e. address 0), TSIM sets up memory
controllers, timers and the like normally done by a bootloader in order to be able to run memory images
without a bootloader. Starting TSIM with the - i option forces such an initialization even when starting
from the reset address (but still only when the time is 0) and starting TSIM with the - ni option prevents
TSIM from doing such initialization in any case.

If an address or symbol is specified, or - t is used instead of an address or symbol, an optional number
of instructions or amount of time to stop after can also be specified. See Section 3.3.1 for the syntax for
specifying time.

help
Print asmall help menu for the TSIM commands.

hist[| engt h|-ffil e]
hist | engt h enables (or disables) the instruction trace buffer. Thel engt h last executed instructionswill
be placed in the trace buffer. Specifying a zero trace length will disable the trace buffer.

hist with no argumentswill display thetrace buffer. Seethe inst [| engt h] command for displaying only
apart of the instruction trace buffer.

hist -f f i | enamne will write the history trace to file.

icache, dcache
Dumps the contents of tag and data cache memories (LEON only).

inccycl es |amount ti meunit
Increment simulator time without executing instructions for a number of cycles or an amount of time. The
event queue is evaluated during the advancement of time. See Section 3.3.1 for the syntax for specifying
time.

inst [I engt h]
Display thelatest | engt h (default 30) instructionsin the instruction trace buffer. Seethe hist [I engt h|-
ffile] command for how to enable the instruction trace buffer.

leon
Display LEON peripherasregisters.

loadfiles
Loadf i | es into simulator memory.

|2cache
Display contents of L2 cache. (LEON4 only)

mcfgX [val ue]
Set or show the user defined reset value of memory configuration register X, where X can be 1, 2 or 3
(LEON only).

TSIM2-UM 15 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

mec
Display ERC32 MEC registers.

mem [addr] [count]
Display memory at addr for count bytes. Same default values as for dis. Unimplemented registers are
displayed as zero.

vmem [vaddr] [count]
Same as mem but doesaMMU tranglation on vaddr first (LEON only).

mmu
Display the MMU registers (LEON only).

quit
Exits the simulator.

perf [reset]
The perf command will display various execution statistics. A ‘ perf reset’ command will reset the statistics.
Thiscanbeused if statistics shall be calculated only over apart of the program. Therun and r eset command
also resets the statistic information.

prof [0]1] [sti ne]
Enable (‘prof 1') or disable (* prof 0") profiling.Without parameters, profilinginformationisprinted. Default
sampling period is 1000 clock cycles, but can be changed by specifying st i nme.

reg[reg_name [val ue]jwi ndowj
Prints and setsthe [U registersin the current register window, prints and setsindividual registers and prints
other register windows. reg without parameters prints the |U registers of the current register window. reg
r eg_nare showsthevalue of the corresponding register. Valid register namesare psr, thr, wim, y, pc, npc,
fsr, g1-g7, 00-07, 10-17, i0-i7, fO-f31. reg r eg_nane val ue sets the corresponding register to val ue.
To view acertain register window, use reg wn, where n is the index of the register window.

reset
Performs a power-on reset without starting any execution.

restorefile
Restore simulator state fromfi | e.

run [addr ess/ synbol |-t][i nstructions |anmount tineunit]
Resets the simulator and starts simulation from time 0. The event queue is emptied but any set breakpoints
remain. If an address or symbol is given, execution starts from there. Otherwise, if an entry point has been
set with the ep command, execution starts from that entry point. Otherwise execution starts from the reset
address (i.e. address 0) if abinary isloaded there or from the entry point from the last |oaded image if the
memory at the reset addressis zero.

If execution starts from the reset address, no bootloader-like initialization of the system is done. Otherwise
TSIM sets up memory controllers, timers and the like normally done by a bootloader in order to be able to
run memory images without a bootloader. Starting TSIM with the - i option forces such an initialization
even when starting from the reset address and starting TSIM with the - ni option prevents TSIM from
doing such initialization in any case.

If an address or symbol is specified, or -t is used instead of an address or symbol, an optional humber
of instructions or amount of time to stop after can also be specified. See Section 3.3.1 for the syntax for
specifying time.
savefile
Save simulator statetofi | e.
shell cnd
Execute the command crd in the host system shell.
stack [clear [addr ess]
Show, clear or set initia stack pointer. Setting the stack pointer will override the default stack pointer.
Clearing a set stack pointer will make TSIM go back to setting a default stack pointer.
step
Execute and disassemble one instruction. See also trace[i nst ructi ons |anount ti meunit].
sym[fil e]
Load symbol tablefromfi | e. If fi | e isomitted, prints current (.text) symbols.

TSIM2-UM 16 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

trace[i nstructi ons |anount ti nmeunit]
Executes and disassemblesinstruction(s). Equivalent to the cont but with each instruction disassembled as
it isexecuted. An optional number of instructions or amount of time to stop after can also be specified. See
Section 3.3.1 for the syntax for specifying time.

version
Prints the TSIM version and build date.

walk addr ess [iswrite|isid|issu]*
If the MMU is enabled printout a table walk for the given address. The flags iswrite, isid and issu are
specifying the context: iswrite for a write access (default read), isid for a icache access (default dcache),
issu for a supervisor access (default user).

watch addr ess
Adds awatchpoint at addr ess.

wmem, wmemh, wmemb addr ess val ue
Write aword, half-word or byte directly to simulated memory.

xwmem asi addr ess val ue
Write aword to simulated memory using ASI=asi . Applicable to LEON3/4.

Typing a‘Ctrl-C’ will interrupt a running simulator. Short forms of the commands are allowed, e.g ¢, co, or con,
are al interpreted as cont.

3.3.1. Time specification for commands
Commands such asrun, cont, go, trace and int supports simulating for a specified amount of time.

If an amount without a unit is specified, execution will stop after the specified number of instructions (except for
the inc command that will stop after that many cycles). If an amount and atime unit (with whitespace between) is
specified, the execution will continue until the given time has passed (relative to the current time). The following
time units are supported:

Table 3.1. Time units for commands that run simulation

Argument Unit

c cycles

us microseconds
ms milliseconds
S seconds

min minutes

h hours

d days

3.4. Symbolic debug information

TSIM will automatically extract (.text) symbol information from elf-files. The symbols can be used where an
addressis expected:

tsinm> break main
br eakpoi nt 3 at 0x020012f0: main
tsinmp dis strcnp 5

02002c04 84120009 or %0, %1, %2
02002c08 8088a003 andcc %92, 0x3, %0
02002c0Oc 3280001a bne, a 0x02002c74
02002c10 c64a0000 | dsb [%00], %3
02002c14 ¢6020000 |d [%00], %3

The sym command can be used to display al symbols, or to read in symbols from an aternate (elf) file:

tsinm> sym/opt/rtens/src/exanpl es/ sanpl es/ dhry
read 234 synbols
tsinme sym

TSIM2-UM 17 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

0x02000000 L _text_start
0x02000000 L _trap_table
0x02000000 L text_start
0x02000000 L start
0x0200102c L _wi ndow overflow
0x02001084 L _wi ndow_underfl| ow
0x020010dc L _fpdis

T

0x02001a4c Proc_3

Reading symbolsfrom alternate filesis necessary when debugging self-extracting applications, such asbootproms
created with mkprom or linux/uClinux.

3.5. Breakpoints and watchpoints

TSIM supports execution breakpoints and write data watchpoints. In standalone mode, hardware breakpoints are
always used and no instrumentation of memory is made. When using the gdb interface, the gdb ‘ break’ command
normally uses software breakpoints by overwriting the breakpoint address with a ‘ta 1’ instruction. Hardware
breakpoints can be inserted by using the gdb ‘hbreak’ command or by starting tsim with -hwbp, which will force
the use of hardware breakpoints also for the gdb ‘break’ command. Data write watchpoints are inserted using the
‘watch’ command. A watchpoint can only cover one word address, block watchpoints are not available.

3.6. Profiling

The profiling function cal cul ates the amount of execution time spent in each subroutine of the simulated program.
This is made without intervention or instrumentation of the code by periodically sample the execution point and
the associated call tree. Cycles in the call graph are properly handled, as well as sections of the code where no
stack is available (e.g. trap handlers). The profiling information is printed as a list sorted on highest execution
timeratio. Profiling is enabled through the prof 1 command. The sampling period is by default 1000 clockswhich
typically provides a good compromise between accuracy and performance. Other sampling periods can also be
set through the prof 1 n command. Profiling can be disabled through the prof 0 command. Below is an example
profiling the dhrystone benchmark:

bash$t si merc32 /opt/rtens/src/exanpl es/ sanpl es/ dhry
tsinme pro 1

profiling enabl ed, sanple period 1000

tsin> go

resum ng at 0x02000000

Execution starts, 200000 runs through Dhrystone

St opped at time 23375862 (1.670e+00 s)

tsin> pro

function sanpl es rati o(%
start 36144 100. 00
_start 36144 100. 00
mai n 36134 99. 97
Proc_1 10476 28.98
Func_2 9885 27.34
strcnp 8161 22.57
Proc_8 2641 7.30
.div 2097 5.80
Proc_6 1412 3.90
Proc_3 1321 3.65
Proc_2 1187 3.28
. unul 1092 3.02
Func_1 777 2.14
Proc_7 772 2.13
Proc_4 731 2.02
Proc_5 453 1.25
Func_3 227 0.62
printf 8 0.02
viprintf 8 0.02
_vfprintf_r 8 0.02
tsinm

3.7. Code coverage

To aid software verification, the professional version of TSIM includes support for code coverage. When enabled,
code coverage keeps arecord for each 32-bit word in the emulated memory and monitors whether the location has
been read, written or executed. The coverage function is controlled by the coverage command:

TSIM2-UM 18 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

cover age enable enable coverage

coverage disable disable coverage

cover age save [filename] write coverage data to file (file name optional)
coverage print address [len] print coverage data to console, starting at address
cover age clear reset coverage data

The coverage data for each 32-bit word of memory consists of a 5-bit field, with bitO (Isb) indicating that the word
has been executed, bit1 indicating that the word has been written, and bit2 that the word has been read. Bit3 and
bit4 indicates the presence of a branch instruction; if bit3 is set then the branch was taken while bit4 is set if the
branch was not taken.

As an example, a coverage data of 0x6 would indicate that the word has been read and written, while 0x1 would
indicate that the word has been executed. When the coverage data is printed to the console or save to afile, itis
presented for one block of 32 words (128 bytes) per line:

tsinmk cov print start

02000000 : 11110000000000000000111111110000
02000080 : 000 00000000000000000000000O00O00O00O0O0O0O
02000100 : 000 000000000000000000000000O00O00O0O0O0O
02000180 : 000 000000000000000000000000O00O00O0O0O0O

When the code coverage is saved to file, only blocks with at least one coverage field set are written to the file.
Block that have all the coverage fields set to zero are not saved in order to decrease the file size.

NOTE: Only the internally emulated memory (PROM, SRAM and SDRAM) are subject for code coverage. Any
memory emulated in the user's I/O module must be handled by a user-defined coverage function.

The address ranges that are monitored are based on TSIM's startup parameters. For instance, the range correspond-
ing to the SDRAM for LEON will begin at address 0x40000000 if TSIM was started with -nosram or -ram 0,
or will begin at 0x60000000 otherwise. Reconfiguration of the memory controller during execution will not be
taken into account for monitored address ranges. Coverage information on memory reads will be recorded even
for cache hits.

NOTE on MMU and coverage: The TSIM coverage system does no address translations by default, for perfor-
mance reasons. To get physical address coverage when the MMU is is enabled and not mapping 1-to-1, use the
- covt r ans option. The monitored address ranges are based on the physical addresses where TSIM emulates
ROM, SRAM or SDRAM. There is no support for getting virtual address coverage for virtual addresses that un-
translated would go outside these memory ranges.

When coverage is enabled, disassembly will include an extra column after the address, indicating the coverage
data. This makesit easier to analyse which instructions has not been executed:

tsine di start

02000000 1 a0100000 clr %0

02000004 1 29008004 set hi %i (0x2001000), % 4
02000008 1 81c52000 jnp % 4

0200000c 1 01000000 nop

02000010 0 91d02000 ta 0x0

02000014 0 01000000 nop

02000018 0 01000000 nop

The coverage datais not saved or restored during check-pointing operations. When enabled, the coverage function
reduces the simulation performance of about 30%. When disabled, the coverage function does not impact simula-
tion performance. Individual coverage fields can be read and written using the TSIM function interface using the
tsi m coverage() cal (see Section 6.2). Enabling and disabling the coverage functionality from the function
interface should be doneusingt si m cnd() .

Example scriptsfor annotating C code using saved coverage information from TSIM can be found in the coverage
sub-directory.

TSIM2-UM 19 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

3.8. Check-pointing

The professional version of TSIM can save and restore its complete state, allowing to resume simulation from
a saved check-point. Saving the state is done with the save command:

tsm>save fil e _nane
The stateissavedtofi | e_nane. t ss. To restore the state, use the r estor e command:

tsm>restore file_nane
The state will be restored from fi | e_nane. t ss. Restore directly at startup can be performed with the ‘-
rest fil e_nanme’ command line switch.

NOTE: TSIM command line options are not stored (such as aternate UART devices, €tc.).

NOTE: AT697, UT699, UT700 and GR712RC simulation modules do not support check-pointing.
3.9. Performance

TSIM is highly optimised, and capable of simulating ERC32 systems faster than realtime. On high-end Athlon
processors, TSIM achieves more than 1 MIPS / 100 MHz (CPU frequency of host). Enabling various debugging
features such as watchpoints, profiling and code coverage can however reduce the simulation performance.

3.10. Backtrace

The bt command will display the current call backtrace and associated stack pointer:

tsinm bt
%c %sp
#0 0x0200190c 0x023ffcc8 Proc_1 + 0xfO
#1 0x02001520 0x023ffd38 nmin + 0x230
#2 0x02001208 0x023ffe00 _start + Ox60
#3 0x02001014 0x023ffe40 start + 0x1014

3.11. Connecting to gdb

TSIM can act as a remote target for gdb, allowing symbolic debugging of target applications. To initiate gdb
communication, start the simulator with the - gdb switch or use the TSIM gdb command:

bash-2.04% ./tsim-gdb

TSI M LEON - renpte SPARC sinulator, build 2001.01.10 (denp version)
serial port A on stdin/stdout

al | ocated 4096 K RAM nenory

al | ocated 2048 K ROM nenory

gdb interface: using port 1234

Then, start gdb in a different window and connect to TSIM using the extended-remote protocol:

bash- 2. 04%$ sparc-rtens-gdb t4. exe

(gdb) target extended-renote |ocal host: 1234
Renot e debuggi ng using | ocal host: 1234

0x0 in ?? ()

(gdb)

To interrupt simulation, Ctrl-C can be typed in both gdb and TSIM windows. The program can be restarted using
the gdb run command but a monitor gdb reset and load has first to be executed to set up TSIM for a new run
and reload the program image into the simulator:

(gdb) nonitor gdb reset

(gdb) | oad

Loadi ng section .text, size 0x14e50 | na 0x40000000
Loadi ng section .data, size 0x640 | ma 0x40014e50
Start address 0x40000000 , |oad size 87184

Transfer rate: 697472 bits/sec, 278 bytes/wite.
(gdb) run

The program bei ng debugged has been started already.
Start it fromthe beginning? (y or n) y

Starting program /hone/jgais/src/gnc/t4. exe

TSIM2-UM 20 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

If gdb is detached using the detach command, the simulator returns to the command prompt, and the program can
be debugged using the standard TSIM commands. The simulator can also be re-attached to gdb by issuing the gdb
command to the simulator (and the target command to gdb). While attached, normal TSIM commands can be
executed using the gdb monitor command. Output from the TSIM commandsisthen displayed in the gdb console.

TSIM trandates SPARC traps into (Unix) signals which are properly communicated to gdb. If the application
encountersafatal trap, simulation will be stopped exactly on thefailing instruction. The target memory and regi ster
values can then be examined in gdb to determine the error cause. To disablethisand let execution continue through
the corresponding trap handler instead, use the - nb startup option.

Profiling an application executed from gdb is possible if the symbol table is loaded in TSIM before execution
is started. gdb does not download the symbol information to TSIM, so the symbol table should be loaded using
the monitor command:

(gdb) nonitor symt4. exe
read 158 synbol s

When an application that has been compiled using the gcc -mflat option is debugged through gdb, TSIM should
be started with -mflat in order to generate the correct stack frames to gdb.

3.12. Thread support

TSIM hasthread support for the RTEM S operating system. Additional OS support will be added to future versions.
The GDB interface of TSIM isalso thread aware and the related GDB commands are described later.

3.12.1. TSIM thread commands

thread info - lists all known threads. The currently running thread is marked with an asterisk. (The wide example
output below has been split into two parts.)

tsinm> thread info

Nane | Type | Id | Prio| Time (h:ms) | Entry point

Cint. | internal | 0x09010001 | 255 | 5:30.682722 | bsp_idie thread
U1 | classic | 0x0a010001 | 100 | 0.041217 | systeminit
ntwk | classic | 0x0a010002 | 100 | 0.251199 | soconnsieep
" ETHO | classic | 0x0a010003 | 100 | 0.000161 | soconnsieep
©TAL | classic | 0x0a010004 | 1| 0.034739 | prep_timer
A2 | classic | 0x0a010005 | 1| 0.025740 | prep_timer
A3 | classic | 0x0a010006 | 1| 0.021357 | prep_timer
TGP | classic | 0x0a010007 | 100 | 0.002914 | rtems_ttcp_min

| PC | State

| Ox400adbec _Thread Dispatch + Oxd3 | READY

| Ox400adbec _Thread Dispatch + Oxd3 | SUSP

| Ox400adbec _Thread Dispatch + Oxd3 | READY

| Ox400adbec _Thread Dispatch + Oxds | Wevnt

| 0x40006a28 printf + Ox4 | READY

| Ox400adbec _Thread Dispatch + 0xd3 | DELAY

| Ox400adbec _Thread Dispatch + 0xd3 | DELAY
TSIM2-UM 21 www.cobham.com/gaisler

May 2020, Version 2.0.66

COBHAM

| 0x40044bec _Thread_Di spatch + 0xd8 | Wevnt

thread bt i d prints a backtrace of athread.

tsinme thread bt 0x0a010007

Wpc
#0 0x40044bec _Thread_Di spatch + 0xd8
#1 0x400418f 8 rtens_event _receive + 0x74
#2 0x40031eb4 rtens_bsdnet _event_receive + 0x18
#3 0x40032050 soconnsl eep + 0x50
#4 0x40033d48 accept + 0x60
#5 0x4000366¢ rtems_ttcp_main + OxdaO

A backtrace of the current thread (equivalent to normal bt command):

tsime thread bt
%c %sp
#0 0x40006a28 0x4008d7d0 printf + 0xO
#1 0x40001c04 0x4008d838 Test_task + 0x178
#2 0x4005c88c 0x4008d8d0 _Thread_Handl er + Oxfc
#3 0x4005c78c 0x4008d930 _Thread_Eval uat e_node + 0x58

3.12.2. GDB thread commands

TSIM needs the symbolic information of the image that is being debugged to be able to check for thread infor-
mation. Therefore the symbols needs to be read from the image using the sym command before issuing the gdb
command. When a program running in GDB stops TSIM reports which thread it isin. The command info threads
can be used in GDB to list all known threads.

Program recei ved signal SIGNT, Interrupt
[Switching to Thread 167837703]
0x40001b5c in consol e_outbyte_polled (port=0, ch=113 'q’) at ../../[..[..[..[..[..[..[../rtems-

4.6.5/c/src/lib/libbsp/sparc/leon3/consol e/ debugputs.c: 38
38 while ((LEON3_Consol e_Uart[LEON3_Cpu_Il ndex+port]->status &anp; LEON_REG UART_STATUS_THE)

(gdb) info threads

8 Thread 167837702 (FTPD Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../..[../../rtems-
4.6.5/ cpuki t/score/src/threaddi spatch. c: 109

7 Thread 167837701 (FTPa Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../..[../../rtems-
4.6.5/ cpukit/score/src/threaddi spatch. c: 109

6 Thread 167837700 (DCtx Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../..[../../rtems-
4.6.5/ cpukit/score/src/threaddi spatch. c: 109

5 Thread 167837699 (DCrx Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../..[../../rtems-
4.6.5/ cpuki t/score/src/threaddi spatch. c: 109

4 Thread 167837698 (ntwk ready) 0x4002f760 in _Thread_Dispatch () at ../../../..[../../rtems-
4.6.5/ cpukit/score/src/threaddi spatch. c: 109

3 Thread 167837697 (U 1 ready) O0x4002f760 in _Thread_Dispatch () at ../../../..[..[../rtems-
4.6.5/ cpuki t/score/src/threaddi spatch. c: 109

2 Thread 151060481 (Int. ready) 0x4002f760 in _Thread_Dispatch () at ../../../..[../../rtems-
4.6.5/ cpukit/score/src/threaddi spatch. c: 109
* 1 Thread 167837703 (HTPD ready) 0x40001b5c in consol e_outbyte_polled (port=0, ch=113 'q’)

at ../ ... 0. 1.1l l..]..Irtems-4.6.5/c/src/lib/libbsp/sparc/leon3/consol e/ debugputs. c: 38

Using the thread command a specified thread can be selected:

(gdb) thread 8

[Switching to thread 8 (Thread 167837702)]#0 0x4002f760 in _Thread_Dispatch () at ../../../../
./..lrtens-4.6.5/ cpukit/score/src/threaddi spatch. c: 109
109 _Cont ext _Swi tch(&anp; executi ng->Regi sters, &anp; heir->Registers)

Then a backtrace of the selected thread can be printed using the bt command:

(gdb) bt

#0 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-4.6.5/cpukit/score/src/thread-
di spat ch. c: 109

#1 0x40013ee0 in rtens_event_receive (event_i n=33554432, option_set=0, ticks=0

event _out =0x43f ecc14)

TSIM2-UM 22 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

at ../../../../leon3/lib/include/rtenms/score/thread.inl:205
#2 0x4002782c in rtens_bsdnet_event_recei ve (event_i n=33554432, option_set=2, ticks=0
event _out =0x43f ecc14)

at ../../../../../../rtems-4.6.5/cpukit/libnetworking/rtems/rtenms_glue.c: 641
#3 0x40027548 in soconnsl eep (s0=0x43f0cd70) at ../../../../../../rtenms-4.6.5/cpukit/libnetwork-
ing/rtenms/rtens_gl ue. c: 465
#4 0x40029118 in accept (s=3, nane=0x43feccf0, nanel en=0x43feccec) at ../../../../../../rtems-
4.6.5/ cpukit/libnetworking/rtems/rtenms_syscall.c:215
#5 0x40004028 in daenon () at ../../../../..1../rtens-4.6.5/c/src/libnetworking/rtenms_servers/
ftpd.c:1925
#6 0x40053388 in _Thread_Handler () at ../../../../../../rtens-4.6.5/ cpukit/score/src/threadhan-
dler.c:123
#7 0x40053270 in __res_nkquery (op=0, dnane=0x0, class=0, type=0, data=0x0, datal en=0
new r _i n=0x0, buf=0x0, buflen=0)

at ../../../../../..]../rtems-4.6.5/ cpukit/libnetworking/libc/res_nkquery.c:199

It is possible to use the frame command to select a stack frame of interest and examine the registers using theinfo
registers command. Note that the info registers command only can see the following registers for an inactive
task: g0-g7, 10-17, i0-i7, 00-07, pc and psr. The other registers will be displayed as O:

(gdb) frame 5

#5 0x40004028 in daenmon () at ../../../../../../rtens-4.6.5/c/src/libnetworking/rtens_servers/
ftpd. c:1925

1925 ss = accept(s, (struct sockaddr *)&addr, &addrLen);

(gdb) info reg

g0 0x0 0

gl 0x0 0

g2 Oxffffffff -1

g3 0x0 0

g4 0x0 0

g5 0x0 0

g6 0x0 0

g7 0x0 0

o0 0x3 3

ol 0x43feccf0 1140772080
02 0x43f eccec 1140772076
03 0x0 0

04 0xf 34000e4 -213909276
o5 0x4007cc00 1074252800
sp 0x43f ecc88 0x43f ecc88
o7 0x40004020 1073758240
10 0x4007ce88 1074253448
11 0x4007ce88 1074253448
12 0x400048f ¢ 1073760508
13 0x43feccf0 1140772080
14 0x3 3

15 0x1 1

16 0x0 0

17 0x0 0

i0 0x0 0

il 0x40003f 94 1073758100
i2 0x0 0

i3 0x43ffafc8 1140830152
i4 0x0 0

i5 0x4007cd40 1074253120
fp 0x43f ecd08 0x43f ecd08
i7 0x40053380 1074082688
y 0x0 0

psr 0xf 34000e0 -213909280
w m 0x0 0

tbr 0x0 0

pc 0x40004028 0x40004028 <daenon+148>
npc 0x4000402c 0x4000402c <daenobn+152>
fsr 0x0 0

csr 0x0 0

It is not supported to set thread specific breakpoints. All breakpoints are global and stops the execution of all
threads. It is not possible to change the value of registers other than those of the current thread.

3.13. Synchronising TSIM time to external time
To maximise simulation performance, TSIM executes as fast as possible doing no synchronisation of the ssimula-

tion time with any external notion of time. Thisis especially apparent when the processor is in power-down mode
and simulation time isincreased by the eventsin the event queue alone.

TSIM2-UM 23 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

To synchronise the simulation time with an external notion of time, events that handles synchronisation needs to
be added to the event queue. Thewal | t i mesync example AHB module in thei onod directory provides an
exampl e that makes sure that TSIM does not execute faster than real time. This example can be used as atemplate
for synchronising to other notions of time. See Chapter 5 on how to use modules.

TSIM2-UM 24

www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

4. Emulation characteristics

4.1. Common behaviour
4.1.1. Timing

The simulator time is maintained and incremented according the IU and FPU instruction timing. The parallel ex-
ecution between the IU and FPU ismodelled, aswell as stalls due to operand dependencies. Instruction timing has
been modelled after the real devices. Integer instructions have a higher accuracy than floating-point instructions
due to the somewhat unpredictable operand-dependent timing of the ERC32 and LEON MEIKO FPU. Typical
usage patterns have higher accuracy than atypical ones, e.g. having vs. not having caches enabled on LEON sys-
tems. Tracing using theinst or hist command will display the current simulator time in the left column. Thistime
indicates when the instruction is fetched. Cache misses, waitstates or data dependencies will delay the following
fetch according to the incurred delay.

4.1.2. UARTs

The UART model can be operating in two modes, correct timing and fast mode. In the correct timing mode the
baud rate and frame length istaken into account but in fast mode the UARTs operate at infinite speed. In fast mode
the transmitter FIFO/holding register is always is empty and a transmitter empty interrupt is generated directly
after each write to the transmitter data register. The receivers can never overflow or generate errors. Fast mode
isenabled withthe- f ast _uart switch.

Note that with correct UART timing, it is possible that the last character of a program is not displayed on the
console. This can happen if the program forces the processor in error mode, thereby terminating the simulation,
before the last character has been shifted out from the transmitter shift register. To avoid this, an application
should poll the UART status register and not force the processor in error mode before the transmitter shift registers
are empty. The real hardware does not exhibit this problem since the UARTS continue to operate even when the
processor is halted.

4.1.2.1. APBUART model (LEON3/4 only)

The APBUART model used on LEON3 and LEONA4 systems has support for receiver and transmitter FIFO mode
also. In this mode the additional FIFO flags and level interrupts are also modelled like the APBUART IP. FIFO
mode is enabled by setting the FIFO depth to a larger value than 1 with the - uart _f s switch. FIFO mode is
supported with both accurate and fast mode. However in fast mode the transmitter operatesin infinite speed always
causing the FIFO to be empty.

Loopback mode is supported both in fast and accurate mode. In fast mode transmitted characters directly ends
up in the receiver. Similar to the hardware the CTSN/RTSN signals are connected together in loop back mode
making flow control possible regardiess of operating mode.

Flow control bit is supported but has a different effect compared to hardware when loopback mode is disabled.
TSIM UARTSs interfaces to user controlled devices (see - uar t X) which may/may not implement flow control
in different ways. When flow control is enabled APBUART receiver never overflows, however the transmitter
operates independently of the flow control setting as if CTSN is always 0 by pausing the simulator until the
character is transferred to the UART device.

4.1.2.2. UART model (ERC32/LEON2 only)

The UART model of ERC32/LEON2 automatically switch to fast mode when the scaler baud rate register is set
to zero. Thisis different from the APBUART model where only the - f ast _uart switch is used to determine
the mode.

4.1.3. Floating point unit (FPU)

The simulator maps floating-point operations on the hosts floating point capabilities. This means that accuracy
and generation of IEEE exceptions is sometimes host dependent and will not aways be identical to the actual
ERC32/LEON hardware. For GRFPU we have seen no discrepancies for any calculations or |IEEE exceptions on

TSIM2-UM 25 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

any host. On Windows and Linux hosts, the only known discrepancies for calculations or |IEEE exceptions for
the Meiko on LEON2 and GRFPU-lite are that NaN:s can differ in significand bits. No discrepancies has been
seen in the signalling/quiet bit.

Themodelsfor the ERC32 FPU, GRFPU-lite and GRFPU model s supportsparallel |U and FPU execution, deferred
floating point traps and the floating point deferred trap queue. The GRFPU model does not however simulate the
possibility of multiple outstanding floating point operations. The model for the Meiko FPU on LEON2 models
the FPU setup for AT697E and AT7913E with no parallel 1U and FPU execution, no floating point queue and
no deferred floating point traps.

The simulator implements (to some extent) data-dependent execution timing for the ERC32 FPU, the Meiko FPU
and GRFPU-lite. The complex timing of the GRFPU is not modelled in detail.

4.1.4. Delayed write to special registers

The SPARC architecture definesthat awrite to the special registers (Yopsr, %wim, %otbr, %fsr, %y) may have up to
3 delay cycles, meaning that up to 3 of the instructions following a special register write might not ‘ see’ the newly
written value due to pipeline effects. While ERC32 and LEON have between 2 and 3 delay cycles, TSIM has 0.
This does not affect simulation accuracy or timing as long as the SPARC ABI recommendations are followed that
each special register write must always befollowed by three NOP. If the three NOP are | eft out, the software might
fail on real hardware while still executing ‘ correctly’ on the simulator.

4.1.5. Idle-loop optimisation

Tominimise power consumption, LEON and ERC32 applicationswill typically placethe processor in power-down
mode when the idle task is scheduled in the operation system. In power-down mode, TSIM increments the event
gueue without executing any instructions, thereby significantly improving simulation performance. However,
some (poorly written) code might use a busy loop (BA 0) instead of triggering power-down mode. The - bopt
switch will enable a detection mechanism which will identify such behaviour and optimise the smulation as if
the power-down mode was entered.

4.1.6. Custom instruction emulation

TSIM/LEON allows the emulation of custom (non-SPARC) instructions. A handler for non-standard instruction
can beinstalled using the tsim_ext_ins() callback function (see Section 6.2). The function handler is called each
time an instruction is encountered that would cause an unimplemented instruction trap. The handler is passed the
opcode and all processor registersin a pointer, allowing it to decode and emulate a custom instruction, and update
the processor state.

The definition for the custom instruction handler is:

int nyhandl er (struct ins_interface *r);

The pointer *r is a structure containing the current instruction opcode and processor state:

struct ins_interface {

ui nt 32 psr; /* Processor status registers */
ui nt 32 thbr; /* Trap base register */

ui nt 32 wi m /* W ndow nmeks register */

ui nt 32 o[8]; /* dobal registers */

ui nt 32 r[128]; /* Wndowed register file */

ui nt 32 y; /* Y register */

ui nt 32 pc; /* Program counter *

ui nt 32 npc; /* Next program counter */

ui nt 32 inst; /* Current instruction */

ui nt 32 icnt; /* Cock cycles in curr inst */
ui nt 32 asr17;

ui nt 32 asr18;

I

SPARC usesan overlapping windowed register file, and accessing registers must be done using the current window
pointer (%psr[4:0]). To access registers %r8 - %r31 in the current window, use:

TSIM2-UM 26 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

cwp = r->psr & 7;
regval = r->r[((cwp << 4) + RS1) % (nwi ndows * 16)];

Note that global registers (%r0 - %r7) should always be accessed by r - >g[RS1] .

The return value of the custom handler indicates which trap the emulated instruction has generated, or 0 if no
trap was caused. If the handler could not decode the instruction, 2 should be returned to cause an unimplemented
instruction trap.

The number of clocks consumed by the instruction should be returned in r->icnt; Thisvalueis by default 1, which
corresponds to a fully pipelined instruction without data interlock. The handler should not increment the %pc or
%npc registers, asthisisdone by TSIM.

4.1.7. Chip-specific errata

Incorrect behavior described in errata documents for specific devices are not emulated by TSIM in general.

4.2. ERC32 specific emulation

4.2.1. Processor emulation

TSIM/ERC32 emulates the behaviour of the TSC695 processor from Atmel by default. The parallel execution
between the U and FPU is modelled, as well as stalls due to operand dependencies (IU & FPU). Starting TSIM
withthe-t sc691 will enable TSC691 emulation (3-chip ERC32).

4.2.2. MEC emulation

The following table outlines the implemented MEC registers:

Table 4.1. Implemented MEC registers

May 2020, Version 2.0.66

Register Address Status

MEC control register 0x01f80000 implemented
Software reset register 0x01f80004 implemented
Power-down register 0x01f80008 implemented
Memory configuration register 0x01f80010 partly implemented
1O configuration register 0x01f80014 implemented
Waitstate configuration register 0x01f80018 implemented
Access protection base register 1 0x01f80020 implemented
Access protection end register 1 0x01f80024 implemented
Access protection base register 2 0x01f80028 implemented
Access protection end register 2 0x01f8002c implemented
Interrupt shape register 0x01f80044 implemented
Interrupt pending register 0x01f80048 implemented
Interrupt mask register 0x01f8004c implemented
Interrupt clear register 0x01f80050 implemented
Interrupt force register 0x01f80054 implemented
Watchdog acknowledge register 0x01f80060 implemented
Watchdog trap door register 0x01f80064 implemented
RTC counter register 0x01f80080 implemented
RTC counter program register 0x01f80080 implemented
RTC scaler register 0x01f80084 implemented

TSIM2-UM 27 www.cobham.com/gaisler

COBHAM

Register Address Status

RTC scaler program register 0x01f80084 implemented

GPT counter register 0x01f80088 implemented

GPT counter program register 0x01f80088 implemented

GPT scaler register 0x01f8008c implemented

GPT scaler program register 0x01f8008c implemented

Timer control register 0x01f80098 implemented
System fault status register 0x01f800A0 implemented

First failing address register 0x01f800A4 implemented

GPI configuration register 0x01f800AS8 1/0 module callback
GPI data register 0x01f800AC 1/O module callback
Error and reset status register 0x01f800BO implemented

Test control register 0x01f800D0 implemented
UART A RX/TX register 0x01f800EQ implemented
UART B RX/TX register 0x01f800E4 implemented
UART status register 0x01f800E8 implemented

The MEC registers can be displayed with the mec command, or using mem (* mem 0x1f80000 256'). Theregisters
can also bewritten using wmem (e.g. ‘ wmem 0x1f80000 0x1234’). When written, care hasto be taken not to write
an unimplemented register bit with‘1’, or aMEC parity error will occur.

4.2.3. Interrupt controller

Internal interruptsare generated as defined inthe M EC specification. All 15 interrupts can betested viatheinterrupt
forceregister. External interrupts can be generated through |oadable modules.

4.2.4. Watchdog

The watchdog timer operate as defined in the MEC specification. The frequency of the watchdog clock can be
specified using the - wdf r eq switch. The frequency is specified in MHz.

4.2.5. Power-down mode

The power-down register (0x01f80008) is implemented asin the specification. A Ctrl-C in the simulator window
will exit the power-down mode. In power-down mode, the ssmulator skips time until the next event in the event
gueue, thereby significantly increasing the simulation speed.

4.2.6. Memory emulation

The amount of simulated memory is configured through the - r amand - r omswitches. The RAM size can be
between 256 KiB and 32 MiB, the ROM size between 128 KiB and 4 MiB. Access to unimplemented MEC
registers or non-existing memory will result in amemory exception trap.

The memory configuration register is used to decode the simulated memory. The fields RSIZ and PSIZ are used
to set RAM and ROM size, the remaining fields are not used.

NOTE: After reset, the MEC is set to decode 128 KiB of ROM and 256 KiB of RAM. The memory configuration
register hasto be updated to reflect the available memory. The waitstate configuration register is used to generate
walitstates. This register must also be updated with the correct configuration after reset.

4.2.7. EDAC operation

The EDAC operation of ERC32 is implemented on the smulated RAM area (0x2000000 - Ox2FFFFFF). The
ERC32 Test Control Register can be used to enable the EDAC test mode and insert EDAC errors to test the

TSIM2-UM 28
May 2020, Version 2.0.66

www.cobham.com/gaisler

COBHAM

operation of the EDAC. The edac command can be used to monitor the number of errorsin the memory, to insert
new errors, or clear all errors. To see the current memory status, use the edac command without parameters:

tsi n> edac

RAM error count : 2
0x20000000 : MERR
0x20000040 : CERR

TSIM keeps track of the number of errors currently present, and reports the total error count, the address of each
error, and its type. The errors can either be correctable (CERR) or non-correctable (MERR). To insert an error
using the edac command, do ‘edac cerr addr’ or ‘edac nerr addr’:

tsinm> edac cerr 0x2000000
correctable error at 0x02000000
tsinm edac

RAM error count : 1

0x20000000 : CERR

To remove al injected errors, do edac clear. When accessing a location with an EDAC error, the behaviour of
TSIM isidentical tothereal hardware. A correctable error will trigger interrupt 1, while un-correctable errors will
cause a memory exception. The operation of the FSFR and FAR registers are fully implemented.

NOTE: The EDAC operation affect simulator performance when there are inserted errors in the memory. To
obtain maximum simulation performance, any diagnostic software should remove all inserted errors after having
performed an EDAC test.

4.2.8. Extended RAM and 1/O areas

TSIM allows emulation of user defined 1/O devices through loadable modules. EDAC emulation of extended
RAM areasis not supported.

4.2.9. SYSAV signal

TSIM emulates changesin the SY SAV output by calling the command() callback in the I/O module with either
“sysav 0" or “sysav 1" on each changes of SYSAV.

4.2.10. EXTINTACK signal

TSIM emulates assertion of the EXTINTACK output by calling thecommand() callback inthe I/O modulewith
“extintack” on each assertion. Note that EXTINTACK isonly asserted for one external interrupt as programmed
in the MEC interrupt shape register.

4.2.11. IWDE signal

The TSC695E processor input signal can be controlled by the - i wde switch at start-up. If the switchisgiven, the
IWDE signal will be high, and the internal watchdog enabled. If -iwde is not given, IWDE will be low and the
internal watchdog will be disabled. Note that the simulator must started in TSC695E-mode using the - t sc695e
switch, for this option to take effect.

4.3. LEON2 specific emulation

4.3.1. Processor

The LEONZ2 version of TSIM emulates the behavior of the LEON2 VHDL model. The (optiona) MMU can be
emulated using the - mru switch.

4.3.2. Cache memories

TSIM/LEON2 can emulate any permissible cache configuration using the - i csi ze,-i | si ze,-dcsi ze and
- dl si ze options. Allowed sizesare 1 - 64 KiB with 16 - 32 bytes/line. The characteristics of the LEON multi-set
caches can be emulated using the- i sets,-dsets,-irepl,-drel p,-il ock and- dl ock options. Diag-

nostic cache reads/writes are implemented. The simulator commands icache and dcache can be used to display
cache contents. Starting TSIM with - at 697e will configure that caches according to the Atmel AT697E device.

TSIM2-UM 29 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

4.3.3. LEON peripherals registers

The LEON peripherals registers can be displayed with the leon command, or using mem (‘mem 0x80000000
256'). The registers can a so be written using wmem (e.g. ‘wmem 0x80000000 0x1234).

4.3.4. Interrupt controller

External interrupts are not implemented, so the I/O port interrupt register has no function. Internal interrupts are
generated as defined in the LEON specification. All 15 interrupts can also be generated from the user defined 1/
O moduleusingtheset i rq() callback.

4.3.5. Power-down mode

The power-down register 0x80000018) isimplemented as in the specification. A Ctrl-C in the simulator window
will exit the power-down mode. In power-down mode, the simulator skips time until the next event in the event
gueue, thereby significantly increasing the simulation speed.

4.3.6. Memory emulation

The memory configuration registers 1/2 are used to decode the ssimulated memory. The memory configuration
registershasto be programmed by softwareto reflect the available memory, and the number and size of the memory
banks. The waitstates fields must also be programmed with the correct configuration after reset. Both SRAM and
functionally modelled SDRAM (with SRAM timing) can be emulated.

Using the - banks option, it is possible to set over how many RAM banks the external SRAM isdivided in. For
mkprom encapsulated programs, it is essential that the same RAM size and bank number setting is used for both
mkprom and TSIM.

The memory EDAC of LEON2-FT is not implemented.
4.3.7. SPARC V8 MUL/DIV/IMAC instructions

TSIM/LEON optionally supports the SPARC V8 multiply, divide and MAC instruction. To correctly emulate
LEON systems which do not implement these instructions, use the - nonac to disable the MAC instruction and/
or - nov 8 to disable multiply and divide instructions.

4.3.8. FPU emulation

By default, TSIM/LEON emulatesthe Meiko FPU. The- gr f pu command line option enablesthe GRFPU mode!.
See Section 4.1.3 for details on the FPU models.

4.3.9. DSU and hardware breakpoints

The LEON debug support unit (DSU) and the hardware watchpoints (%asr24 - %asr31) are not emulated.
4.4. LEONS specific emulation

4.4.1. General

The LEON3 version of TSIM emulates the behavior of the LEON3MP template VHDL model distributed in
the GRLIB-1.0 IP library. The system includes the following modules: LEON3 processor, APB bridge, IRQMP
interrupt controller, LEON2 memory controller, GPTIMER timer unit with two 32-bit timers, two APBUART
uarts (unless a chip option changes this number). The AHB/APB plug& play information is provided at address
OxFFFFFO00 - OXFFFFFFFF (AHB) and 0x800FF000 - 0x800FFFFF (APB).

4.4.2. Processor

The instruction timing of the emulated LEON3 processor is modelled after LEON3 VHDL model in GRLIB IP
library. The processor can be configured with 2 - 32 register windows using the - nwi n switch. The MMU can be
emulated using the - mmu switch. Local scratch pad RAM can be added with the- i | r amand - dl r amswitches.

TSIM2-UM 30 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

4.4.3. Cache memories

The evaluation version of TSIM/LEON3 implements 2*4 KiB caches, with 16 bytes per line. The commercial
TSIM version can emulate any permissible cache configuration using the-i csi ze, -i | si ze, - dcsi ze and
- dl si ze options. Allowed sizesare 1 - 256 KiB with 16 - 32 byteg/line. The characteristics of the LEON mul-
ti-way caches can beemulated usingthe- i set s,-dsets,-irepl,-drel p,-il ock and-dl ock options.
Diagnostic cache reads/writes are implemented. The simulator commands icache and dcache can be used to dis-
play cache contents.

4.4.4. Power-down mode

The LEON3 power-down function isimplemented as in the specification. A Ctrl-C in the simulator window will
exit the power-down mode. In power-down mode, the simulator skipstime until the next event in the event queue,
thereby significantly increasing the simulation speed.

4.4.5. LEON3 peripherals registers

The LEONS peripherals registers can be displayed with the leon command, or using mem (‘ mem 0x80000000
256'). The registers can aso be written using wmem (e.g. ‘wmem 0x80000000 0x1234).

4.4.6. Interrupt controller

The IRQMP interrupt controller is fully emulated as described in the GRLIB IP Manual. The IRQMP registers
are mapped at address 0x80000200. All 15 interrupts can also be generated from the user-defined 1/O module
using theset _irq() calback. When having extended interrupts enabled, all 31 interrupts can be generated.
Extended interrupts can be enabled by the - ext option or a chip option for a chip that has extended interrupts
(eg.-gr712rc,-ut 700 and - ut 699e).

4.4.7. Memory emulation

The LEON2 memory controller is emulated in the LEON3 version of TSIM. The memory configuration registers
1/2 are used to decode the simulated memory. The memory configuration registers has to be programmed by
softwareto reflect the available memory, and the number and size of the memory banks. The waitstates fields must
also be programmed with the correct configuration after reset. Both SRAM and functionally modelled SDRAM
(with SRAM timing) can be emulated.

Using the - banks option, it is possible to set over how many RAM banks the external SRAM is divided in. For
mkprom encapsulated programs, it is essential that the same RAM size and bank number setting is used for both
mkprom and TSIM.

The memory EDAC of LEON3-FT is not implemented.

Options regarding memory characteristics are not available in the evaluation version of TSIM/LEONS3.

4.4.8. CASA instruction

The SPARCV9 “casa’ instruction is implemented if the - cas switch is given. The “casa’ instruction isused in
VXWORKS SMP multiprocessing to synchronize using alock free protocol.

4.4.9. SPARC V8 MUL/DIV/IMAC instructions

TSIM/LEON3 optionally supports the SPARC V8 multiply, divide and MAC instruction. To correctly emulate
LEON systems which do not implement these instructions, use the - nonac to disable the MAC instruction and/
or - nov 8 to disable multiply and divide instructions.

4.4.10. FPU emulation

By default, TSIM/LEON3 emul ates the GRFPU-lite FPU. The- gr f pu command line option enablesthe GRFPU
model. See Section 4.1.3 for details on the FPU models.

TSIM2-UM 31 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

4.4.11. DSU and hardware breakpoints
The LEON debug support unit (DSU) and the hardware watchpoints (%asr24 - %asr31) are not emulated.
4.4.12. AHB status registers

When using - ahbst at us or a chip option for a chip that has AHB status registers, AHB status registers are
enabled. As TSIM/LEON3 does not emulate FT, the CE bit will never be set. Furthermore, the HMASTER field
is set to 0 when the CPU caused the error and 1 when any other master caused the error.

4.4.13. GRTIMER emulation

When using - gr 712r ¢, the GRTIMER core is modelled (in addition to the regular GPTIMER core).
4.5. LEON4 specific emulation
4.5.1. General

The LEONA4 version of TSIM emulates the behavior of the LEON4MP template VHDL model distributed in the
GRLIB-1.0.x IP library. The system includes the following modules: LEON4 processor, APB bridge, IRQMP
interrupt controller, LEON2 memory controller, L2 cache, GPTIMER timer unit with two 32-hit timers, two AP-
BUART uarts. The AHB/APB plug& play information is provided at address OxFFFFFO00 - OxFFFFFFFF (AHB)
and 0x800FF000 - 0x800FFFFF (APB).

45.2. Processor

The instruction timing of the emulated LEON4 processor is modelled after LEON4 VHDL model in GRLIB IP
library. The processor can be configured with 2 - 32 register windows using the - nwi n switch. The MMU can be
emulated using the - mmu switch. Local scratch pad RAM can be added with the- i | r amand - dl r amswitches.

45.3. L1 Cache memories

TSIM/LEON4 can emulate any permissible cache configuration using the - i csi ze,-i | si ze,-dcsi ze and
- dl si ze options. Allowed sizesare 1 - 256 KiB with 16 - 32 byteg/line. The characteristics of the LEON mul-
ti-set caches can be emulated using the - i set s, -dsets,-irepl,-drel p,-ilock and-dl ock options.
Diagnostic cache reads/writes are implemented. The simulator commands icache and dcache can be used to dis-
play cache contents.

4.5.4. L2 Cache memory

The LEON4 L2 cacheis emulated, and placed between the memory controller and AHB bus. Both the PROM and
SRAM/SDRAM areas are cached in the L2. The size of the L2 cacheis default 64 KiB, but can be configured to
any (binary aligned) sizeusing the - | 2wsi ze switch at start-up. Setting the size to O will disable the L2 cache.
The L2 cache isimplemented with one way and 32 byteg/line. The contents of the L2 cache can be displayed with
the |2cache command.

455, Power-down mode

The LEON4 power-down function is implemented as in the specification. A Ctrl-C in the simulator window will
exit the power-down mode. In power-down mode, the simulator skips time until the next event in the event queue,
thereby significantly increasing the simulation speed.

4.5.6. LEON4 peripherals registers

The LEON4 peripherals registers can be displayed with the leon command, or using mem (‘ mem 0x80000000
256'). The registers can a so be written using wmem (e.g. ‘wmem 0x80000000 0x1234).

4.5.7. Interrupt controller

The IRQMP interrupt controller isfully emulated as described in the GRLIB IP Manual. The IRQMP registers are
mapped at address 0x80000200. All 15 interrupts can also be generated from the user-defined 1/0 module using

TSIM2-UM 32 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

theset _irq() callback. When having extended interrupts enabled, all 31 interrupts can be generated. Extended
interrupts can be enabled by the - ext option.

4.5.8. Memory emulation

The LEON2 memory controller is emulated in the LEON4 version of TSIM. The memory configuration registers
1/2 are used to decode the simulated memory. The memory configuration registers has to be programmed by
software to reflect the available memory, and the number and size of the memory banks. The waitstates fields must
also be programmed with the correct configuration after reset. Both SRAM and functionally modelled SDRAM
(with SRAM timing) can be emulated.

Using the - banks option, it is possible to set over how many RAM banks the external SRAM isdivided in. For
mkprom encapsulated programs, it is essential that the same RAM size and bank number setting is used for both
mkprom and TSIM.

The memory EDAC of LEONA4-FT is not implemented.
4.5.9. CASA instruction

The SPARCV9 “casa’ instruction is implemented if the - cas switch isgiven. The “casa’ instruction isused in
VXWORKS SMP multiprocessing to synchronize using alock free protocol.

4.5.10. SPARC V8 MUL/DIV/IMAC instructions

TSIM/LEON4 optionally supports the SPARC V8 multiply, divide and MAC instruction. To correctly emulate
LEON systems which do not implement these instructions, use the - nonac to disable the MAC instruction and/
or - nov 8 to disable multiply and divide instructions.

4.5.11. FPU emulation

By default, TSIM/LEON4 emulates the GRFPU FPU. See Section 4.1.3 for details on the FPU models.
4.5.12. DSU and hardware breakpoints

The LEON debug support unit (DSU) and the hardware watchpoints (%asr24 - %asr31) are not emulated.
4.,5.13. AHB status registers

When using - ahbst at us, AHB status registers are enabled. As TSIM/LEONA4 does not emulate FT, the CE bit
will never be set. Furthermore, the HMASTER field is set to O when the CPU caused the error and 1 when any
other master caused the error.

TSIM2-UM 33 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

5. Loadable modules

5.1. TSIM I/O emulation interface

User-defined I/O devices can beloaded into the simulator through the use of loadable modules. Asthereal proces-
sor, the simulator primarily interacts with the emulated device through read and write requests, while the emulated
device can optionally generate interrupts and DMA requests. This is implemented through the module interface
described below. The interface is made up of two parts; one that is exported by TSIM and defines TSIM functions
and data structures that can be used by the I/O device; and one that is exported by the |/O device and allows TSIM
to access the I/O device. Address decoding of the I/O devices is straight-forward: All access that do not map on
any AHB module (LEON only) or the internally emulated memory and control registers are forwarded to the 1/
O module.

TSIM exportstwo structures: simif and ioif. The simif structure defines functions and data structures belonging to
the simulator core, whileioif defines functions provided by system (ERC32/LEON) emulation. At startup, TSIM
searchesfor ‘i0.s0" inthe current directory, but the location of the modul e can be specified using the - i omswitch.
Note that the module must be compiled to be position-independent, i.e. with the - f PI C switch (gcc). The win32
version of TSIM loads io.dll instead of i0.s0. See the iomod directory in the TSIM distribution for an example
io.c and how to build the .so and .dll modules. The environmental variable TSIM_MODULE_PATH can be set
toa‘: separated (‘;’ in WIN32) list of search paths.

5.1.1. simif structure

The simif structure is defined in tsim.h:

struct simoptions {
ui nt 32 phys_ram
ui nt 32 phys_rom
float64 freq;
float 64 wdfreq;
ui nt 32 phys_sdram
I
struct siminterface {
struct simoptions *options; /* tsimcomuand-|ine options */
uint64 *sintine; /* current simulator tine */
void (*event)(void (*cfunc)(), uint32 arg, uint64 offset);
void (*stop_event)(void (*cfunc)());

int *irl; /* interrup request level */
void (*sys_reset)(); /* reset processor */

void (*simstop)(); /* stop simulation */

char *args; /* concaterated argv */

void (*stop_event_arg)(void (*cfunc)(),int arg,int op);

/* Restorable events */

unsi gned short (*reg_revent)(void (*cfunc) (unsigned long arg));

unsi gned short (*reg_revent_prearg)(void (*cfunc) (unsigned long arg),

unsi gned long arg);

int (*revent)(unsigned short index, unsigned long arg, uint64 offset);

int (*revent_prearg)(unsigned short index, uint64 offset);

void (*stop_revent) (unsigned short index);

int (*Iprintf)(const char *format, ...); /* logged formatted output */

int (*vliprintf)(const char *format, va_list ap); /* logged formatted output */
¥

struct siminterface simf; /* exported simulator functions */

The elementsin the structure has the following meaning:

struct simoptions *options;
Contains some tsim startup options. options.freq defines the clock frequency of the emulated processor and
can be used to correlate the simulator time to the real time.

ui nt 64 *sintime;
Contains the current simulator time. Time is counted in clock cycles since start of simulation. To calculate
the elapsed real time, divide simtime with options.freg.

void (*event)(void (*cfunc)(), int arg, uint64 offset);
TSIM maintains an event queue to emulate time-dependent functions. The event () function inserts an
event in the event queue. An event consists of afunction to be called when the event expires, an argument
with which the function is called, and an offset (relative the current time) defining when the event should
expire.

TSIM2-UM 34 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

NOTE: Theevent () function may NOT be called from asignal handler installed by the 1/O module, but
only from event callbacks or at start of simulation. The event queue can hold a maximum of 2048 events.

NOTE: For save and restore support, restorable events should be used instead.

void (*stop_event)(void (*cfunc)());
st op_event () will remove al events from the event queue which has the calling function equal to
cfunc().

NOTE: The st op_event () function may NOT be called from a signal handler installed by the 1/0
module.

int *irl;
Current |U interrupt level. Should not be used by /O functions unless they explicitly monitor theseslines.

void (*sys reset)();
Performs a system reset. Should only be used if the I/O device is capable of driving the reset input.

void (*simstop)();
Stops current simulation. Can be used for debugging purposes if manual intervention is needed after a
certain event.

char *args;
Arguments supplied when starting tsim. The arguments are concatenated as a single string.

void (*stop_event _arg)(void (*cfunc)(),int arg,int op);
Similarto st op_event () but differentiates between 2 events with same cf unc but with different ar g
given when inserted into the event queue via event () . Used when simulating multiple instances of an
entity. Parameter op should be 1 to enable the ar g check.

unsi gned short (*reg_revent)(void (*cfunc) (unsigned long arg));
Registers arestorable event that will usecf unc ascallback. The returned index should be used when call-
ingrevent (). The event argument is supplied when calling r event () . Thecall toreg_revent ()
should be done once at I/O or AHB module initialization.

unsi gned short (*reg_revent prearg)(void (*cfunc) (unsigned | ong arg), un-

signed long arg);
Registers a restorable event that will use cf unc as callback and ar g as argument. This can be used to
register an argument that is a pointer to a data structure. The returned index should be used when calling
revent prearg().Thecdltoreg_revent prearg() shouldbedoneonceat!/Oor AHB module
initialization.

int (*revent)(unsigned short index, unsigned long arg, uint64 offset);
This inserts an event registered by r eg_r event () into the event queue with the registered cf unc for
the given i ndex. Multiple events with the same i ndex can be in the event queue at the same time. The
ar g and of f set arguments are the same asfor theevent () function.

NOTE: See the description of event () for limitations on number of events and from which contexts
events can be added.

int (*revent prearg)(unsigned short index, uint64 offset);
This inserts an event registered by reg_r event _prear g() into the event queue with the registered
cfunc andar g for thegiveni ndex. Multiple events with the samei ndex can bein the event queue at
the sametime. The of f set argument isthe same asfor theevent () function.

NOTE: See the description of event () for limitations on number of events and from which contexts
events can be added.

void (*stop_revent) (unsigned short index);
Thisremovesall eventsfrom theevent queuethat hasbeenenteredby r event () orr event _prear g()
using the giveni ndex.

NOTE: Thest op_r event () function may not be called from asignal handler installed by the 1/0 mod-
ule.
int (*lprintf)(const char *format, ...)
Function for logged formatted output. The function interface works like for printf.
int (*vlprintf)(const char *format, va_list ap)
Function for logged formatted output. The function interface works like for vprintf.

TSIM2-UM 35 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

5.1.2. ioif structure
ioif is defined in tsim.h:

struct io_interface {
void (*set_irqg)(int irqg, int level);
int (*dnma_read)(uint32 addr, uint32 *data, int num;
int (*dnma_wite)(uint32 addr, uint32 *data, int num;
int (*dma_write_sub)(uint32 addr, uint32 *data, int sz);
b

extern struct io_interface ioif; /* exported processor interface */

The elements of the structure have the following meaning:
void (*set_irqg)(int irqg, int level);
ERC32 use: drive the external MEC interrupt signal. Valid interrupts are O - 5 (corresponding to MEC
external interrupt 0 - 4, and EWDINT) and valid levelsare 0 or 1. Notethat the MEC interrupt shape register
controls how and when processor interrupts are actually generated. When - nouar t has been used, MEC
interrupts 4, 5 and 7 can be generated by calling set _i rg() withirg 6, 7 and 9 (level is not used in
this case.

LEON use: set the interrupt pending bit for interrupt irg. Valid valuesonirgis 1 - 15 for systems without
extended interrupts and 1-31 for systemswith extended interrupts. Care should be taken not to set interrupts
used by the LEON emulated peripherals. Note that the LEON interrupt control register controls how and
when processor interrupts are actually generated. Note that the level parameter is not used for LEON.

int (*dma_read) (uint32 addr, uint32 *data, int nunj;

int (*dma_wite)(uint32 addr, uint32 *data, int nunj;
Performs DMA transactions to/from the emulated processor memory. Only 32-bit word transfers are al-
lowed, and the address must be word aligned. On bus error, 1 is returned, otherwise 0. For ERC32, the
DMA transfer uses the external DMA interface. For LEON, DMA takes place on the AMBA AHB bus.

int (*dnma_write_sub)(uint32 addr, uint32 *data, int sz);
Performs DMA transactions to/from the emulated processor memory on the AMBA AHB bus. Available
for LEON only. On buserror, 1 isreturned, otherwise 0. Write sizeisindicated by sz asfollows: 0 = byte,
1 = half-word, 2 = word, 3 = double-word.

5.1.3. Structure to be provided by I/O device

struct io_subsystem {
void (*io_init)(struct siminterface sif, struct io_interface iif); /* start-up */

void (*io_exit)(); /* called once on exit */
void (*io_reset)(); /* called on processor reset */
void (*io_restart)(); /* called on sinulator restart */

int (*io_read)(unsigned int addr, int *data, int *ws);

int (*io_wite)(unsigned int addr, int *data, int *ws, int size);
char *(*get_io_ptr)(unsigned int addr, int size);

void (*command) (char * cnd); /* 1/0O specific commands */

void (*sigio)();/* Not used */

void (*save)(char *fnane);/* save sinmulation state */

void (*restore)(char *fname); /* restore simulation state */

}:

extern struct io_subsystem *iosystem /* inported |I/O emulation functions */

The elements of the structure have the following meanings:

void (*io_init)(struct siminterface sif, struct io_interface iif);
Called once on simulator startup. Set to NULL if unused.

void (*io exit)();
Called once on simulator exit. Set to NULL if unused.

void (*io_reset)();
Called every time the processor is reset (i.e also startup). Set to NULL if unused.

void (*io_restart)();
Cdled every time the simulator is restarted (simtime set to zero). Set to NULL if unused.

int (*io_read)(unsigned int addr, int *data, int *ws);
Processor read call. The processor always reads one full 32-bit word from addr. The data should be returned
in *data, the number of waitstates should be returned in *ws. If the access would fail (illegal address etc.),
1 should be returned, on success 0.

TSIM2-UM 36 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

int (*fo_wite)(unsigned int addr, int *data, int *ws, int size);
Processor write call. The size of the written dataisindicated in size: O = byte, 1 = half-word, 2 =word, 3=
doubleword. The address is provided in addr, and is always aligned with respect to the size of the written
data. The number of waitstates should be returned in *ws. If the access would fail (illegal address etc.), 1
should be returned, on success 0.
char * (*get_io_ptr)(unsigned int addr, int size);
TSIM can access emul ated memory inthe l/O deviceintwo ways: either throughthei o_r ead/i o_write
functions or directly through a memory pointer. get _i o_ptr () is called with the target address and
transfer size (in bytes), and should return a character pointer to the emulated memory array if the address
and size is within the range of the emulated memory. If outside the range, -1 should be returned. Set to
NULL if not used.
int (*command) (char * cnd);
The 1/0 module can optionally receive command-line commands. A command isfirst sent to the AHB and
1/0 modules, and if not recognised, the to TSIM. comrand() is called with the full command string in
*cmd. Should return 1 if the command is recognized, otherwise 0. TSIM/ERC32 also calls this callback
whenthe SY SAV hit inthe ERSR register changes. The commands“sysav 0" and “sysav 1" are then issued.
When TSIM commands are issued through the gdb ‘ monitor’ command, areturn value of 0 or 1 will result
inan‘OK’ response to the gdb command. A return value > 1 will send the value itself as the gdb response.
A return value %lt; 1 will truncate the Isb 8 bits and send them back as a gdb error response: ‘Enn’.
d (*sigio)();
Not used as of tsim-1.2, kept for compatibility reasons.
d (*save)(char *fnane);
The save() function is called when save command is issued in the simulator. The I/O module should
save any required state which is needed to completely restore the state at alater stage. *fname pointsto the
base file name which is used by TSIM. TSIM savesitsinterna state to fname.tss. It is suggested that the
1/O module save its state to fname.ios. Note that any events placed in the event queue by the 1/0 module
will be saved (and restored) by TSIM.
d (*restore)(char *fnane);
Therestore() function is called when restore command is issued in the simulator. The 1/O module
should restore any required state to resume operation from a saved check-point. * f nane pointsto the base
file name which isused by TSIM. TSIM restoresitsinternal state from fname.tss.

VO

VO

VO

5.1.4. Cygwin specific io_init()

Due to problems of resolving cross-referenced symbols in the module loading when using Cygwin, the
i 0_init() routinein the /O module must initialise alocal copy of simif and ioif. This is done by providing
thefollowingi o_i ni t () routine

static void io_init(struct siminterface sif, struct io_interface iif)

{
#ifdef __ _CYGWN32__
/* Do not renove, needed when conpiling on Cygwin! */
simf = sif;
ioif =iif;
#endi f
/* additional init code goes here */

s

The same method is aso used in the AHB and FPU/CP modul es.
5.2. LEON AHB emulation interface

In addition to the above described I/O modules, TSIM also allows loading AHB modules that can add simulation
models, override built-in simulation models, and even emulating the LEON2/3/4 processor core with acompletely
user-defined memory and 1/O architecture. Thisis not applicable to ERC32. The emulated processor core com-
municates with an AHB module using an interface similar to the AHB master interface in the real LEON VHDL
model. A single AHB module have the possibility to emulate the complete AHB bus and all attached units, or to
just emulate some cores on the AHB or APB bus. An AHB module that emulates memory can disable the internal
memory emulation.

TSIM2-UM 37 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

TSIM supports up to 16 AHB modules, loaded using multiple - ahbmoptions on TSIM startup. The order they
are specified corresponds to the precedence order in which the modul es handles bus accesses. For each bus access,
one module at atime, in the same order as the - ahbmoptions, gets the chance to handle an access or to let it get
passed to the next module. If an access is unhandled by all AHB modules, core TSIM will handle the access, or
if applicable passit on to an 1/O module.

The AHB module interface is made up of two parts; one that is exported by TSIM and defines TSIM functions
and data structures that can be used by the AHB module; and one that is exported by the AHB module and allows
TSIM to access the emulated AHB devices.

At start-up, TSIM searches for ‘ahb.so’ in the current directory, but the location of the module can be speci-
fied using the - ahbmswitch. Note that the module must be compiled to be position-independent, i.e. with the
- f PI C switch (gcc). The win32 version of TSIM loads ahb.dll instead of ahb.so. See the iomod directory in
the TSIM distribution for an example ahb.c and how to build the .so /.dIl modules. The environmental variable
TSIM_MODULE_PATH canbesettoa‘:’ separated (*;" in WIN32) list of search paths.

5.2.1. procif structure

TSIM exports one structure for AHB emulation: procif. The procif structure defines afew functions giving access
to the processor emulation and cache behaviour. The procif structureis defined in tsim.h:

struct proc_interface {

void (*set_irl)(int level); /* generate external interrupt */

voi d (*cache_snoop) (ui nt32 addr);

void (*cctrl)(uint32 *data, uint32 read);

voi d (*power_down)();

void (*set_irqg_level)(int level, int set);

void (*set_irq)(uint32 irq, uint32 level); /* generate external interrupt */
¥

extern struct proc_interface procif;

The elements in the structure have the following meaning:

void (*set_irl)(int level);
Set the current interrupt level (iui.irl in VHDL model). Allowed valuesare 0 - 15, with O meaning no pending
interrupt. Once the interrupt level is set, it will remain until it is changed by anew call toset _irl ().
The modules interrupt callback routine should typically reset the interrupt level to avoid new interrupts.
d (*cache_snoop) (ui nt 32 addr);
Thecache_snoop() functioncanbeusedtoinvalidate datacachelines(regardlessof whether datacache
snooping is enabled or not). The tags to the given address will be checked, and if a match is detected the
corresponding cache lineswill be flushed (i.e. thetag will be cleared). If an MMU is present and is enabled
the argument should be a virtual address. See also the snoop functioninst ruct ahb_i nterface.
d (*cctrl)(uint32 *data, uint32 read);
Read and write the cache control register (CCR). The CCR isattached to the APB businthe LEON2 VHDL
model, and this function can be called by the AHB module to read and write the register. If read = 1, the
CCRvalueisreturned in * dat a, elsethe value of * dat a iswrittento the CCR. Thecctr| () function
isonly needed for LEON2 emulation, since LEON3/4 accesses the cache controller through a separate ASI
|oad/store instruction.
d (*power _down) ();
The LEON processor enters power down-mode when called.
d (*set_irqg_level)(int level, int set);
Callback set _i rq_I evel canbeusedtoemulatelevel triggered interrupts. Parameter set should be 1
to activate the interrupt level specified in parameter | evel or 0to reset it. Theinterrupt level will remain
active after it is set until it is reset again. Multiple calls can be made with different | evel parametersin
which case the highest level is used.
d (*set_irqg)(uint32 irqg, uint32 level);
Set theinterrupt pending bit for interrupt irg. Valid valuesoni r g is1 - 15. Care should be taken not to set
interrupts used by the LEON emulated peripherals. Note that the LEON interrupt control register controls
how and when processor interrupts are actually generated.

VO

VO

VO

VO

VO

5.2.2. Structure to be provided by AHB module

tsim.h defines the structure to be provided by the emulated AHB module:

TSIM2-UM 38 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

struct ahb_access {
ui nt 32 addr ess;
ui nt 32 *dat a;
ui nt 32 ws;
ui nt 32 rnum
ui nt 32 wsi ze;
uint 32 cache; /* No |onger used */

I

struct pp_anba {
int is_apb;
unsi gned int vendor, device, version, irq;
struct {
unsi gned int addr, p, c, nmask, type;
} bars[4];

struct ahb_subsystem {
void (*init)(struct proc_interface procif);/* called once on start-up */

void (*exit)(); /* called once on exit */
void (*reset)(); /* called on processor reset */
void (*restart)(); /* called on sinulator restart */

int (*read)(struct ahb_access *access);

int (*wite)(struct ahb_access *access);

char *(*get_io_ptr)(unsigned int addr, int size);

int (*command)(char * cnd); /* 1/0O specific commands */

int (*sigio)(); /* Not used */

void (*save)(char * fnane); /* save state */

void (*restore)(char * fnane); /* restore state */

int (*intack)(int level); /* interrupt acknow edge */

int (*plugandplay)(struct pp_anmba **); /* LEON3/4: get plug & play information */
void (*intpend)(unsigned int pend); /* LEON3/4 only: interrupt pending change */
int meminit; /* tell tsimweather to initialize nem?*/

struct siminterface *simf; /* initialized by tsim*/

unsi gned char *(*get_nemptr_ws)(); /* initialized if meminit was set */

void (*snoop) (unsigned int addr); /* initialized with cache snoop routine */
struct io_interface *io; /* initialized by tsim*/

void (*dprint)(char *p); /* initialized by tsim prints out a debug string */
struct proc_interface *proc; /* initialized by tsim access to proc_interface */
int (*cacheable)(uint32 addr, uint32 size); /* Cacheability of area */

int (*Iprintf)(const char *format, ...); /* initialized by tsim*/

int (*vlprintf)(const char *format, va_list ap); /* initialized by tsim?*/

void (*start)(void); /* Called each time sinulation starts (again) (run, go, cont) */
void (*stop)(void); /* Called each time sinulation stops, (Crl-C, breakpoints, etc.) */
void (*correctable_error)(uint32 addr, uint32 master, uint32 size, int wite);

I

extern struct ahb_subsystem *ahbsystem /* inported AHB enul ation functions */

The elements of the structure have the following meanings:

void (*init)(struct proc_interface procif);
Called once on simulator startup. Set to NULL if unused.

void (*exit)();
Called once on simulator exit. Set to NULL if unused.

void (*reset)();
Called every time the processor is reset (i.e. also startup). Set to NULL if unused.

void (*restart)();
Called every time the simulator is restarted (simtime set to zero). Set to NULL if unused.

void int (*read)(struct ahb_access *ahbacc);
Processor AHB read. The processor always reads one or more 32-bit words from the AHB bus. The fol-
lowing fields of ahbacc isused. The ahbacc.addr field contains the read address of the first word to read.
The ahbacc.datafield points to a buffer that the module can fill in. The module can also change the pointer
to point to a different buffer. The ahbacc.wsfield should be set by the module to the number of cycles for
the complete access. The ahbacc.rnum field contains the number of words to be read. The function should
return O for a successful access, 1 for failed access and -1 for an area not handled by the module. The
ahbacc.wsizefield is not used during read cycles. The ahbacc.cache field isno longer in use (use st r uct
ahb_subsyst em cacheabl e instead).

int (*wite)(struct ahb_access *ahbacc);
Processor AHB write. The processor canwrite 1, 2, 4 or 8 bytes per access. Thefollowing fieldsof ahbacc
is used. The ahbacc.addr field contains the address of the write. The ahbacc.data field points to the data
to write; either one word for byte, half word or word writes or two words for double-word writes. The

TSIM2-UM 39 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

ahbacc.wsize field defines write size as follows: 0 = byte, 1 = half-word, 2 = word, 3 = double-word. The
function should return O for a successful access, 1 for failed access and -1 for an area not handled by the
module. The ahbacc.rnum field is not used during write cycles. The ahbacc.cache field is no longer in use
(usestruct ahb_subsyst em cacheabl e instead).
char * (*get_io_ptr)(unsigned int addr, int size);
During file load operations and displaying of memory contents, TSIM will access emulated memory
through amemory pointer. get _i o_pt r () iscalled with the target address and transfer size (in bytes),
and should return a character pointer to the emulated memory array if the address and size is within the
range of the emulated memory. If outside the range, -1 should be returned. Set to NULL if not used.
int (*command) (char * cnd);
The AHB module can optionally receive command-line commands. A command is first sent to the AHB
and I/0 modules, and if not recognised, thento TSIM. conmmand() iscalled with the full command string
in*cnd. Should return 1 if the command is recognized, otherwise 0. When TSIM commands are issued
through the gdb ‘monitor’ command, a return value of 0 or 1 will result in an ‘OK’ response to the gdb
command. A return value > 1 will send the valueitself asthe gdb response. A return value < 1 will truncate
the Isb 8 bits and send them back as a gdb error response: ‘Enn’.
d (*save) (char *fnane);
Thesave() function is called when save command is issued in the simulator. The AHB module should
save any required state which is needed to completely restore the state at alater stage. * f nane pointsto
the base file name which is used by TSIM. TSIM save its internal state to fname.tss. It is suggested that
the AHB module save its state to fname.ahs. Note that any events placed in the event queue by the AHB
module will be saved (and restored) by TSIM.
d (*restore)(char * fname);
Ther est ore() function is caled when restore command is issued in the simulator. The AHB module
should restore any required state to resume operation from a saved check-point. *fhame points to the base
file name which isused by TSIM. TSIM restoresitsinternal state from fname.tss.
int (*intack)(int |evel);
i nt ack() iscalled when the processor takes an interrupt trap (tt = Ox11 - 0x1f). The level of the taken
interrupt ispassedin level. Thiscallback can be used toimplement interrupt controllers.i nt ack() should
return 1 if the interrupt acknowledgement was handled by the AHB module, otherwise O. If O is returned,
the default LEON interrupt controller will receive the intack instead.
int (*plugandpl ay) (struct pp_anba **p);
Leon3/4 only: The pl ugandpl ay() functioniscalled at startup. pl ugandpl ay() should returnin
p astatic pointer to an array with elementsof typest r uct pp_anba and return the number of entriesin
thearray. The callback pl ugandpl ay() isusedto add entriesin the AHB and APB configuration space.
Each st ruct pp_anba entry specifies an entry: If is apb is set to 1 the entry will appear in the APB
configuration space and only member barg[0] will be used. If is_apb is 0 then the entry will appear in the
AHB dave configuration space and barg0-3] will be used. If is_apb is 2 then the entry will appear in the
AHB master configuration space and bars[0-3] will be used. The members of the struct resemble thefields
in a configuration space entries. The entry is mapped to the first free slot. When using the - gr 712r ¢ or
- ut 700 option, if is_apb is 3 the entry will appear under a second ABPCTRL core.
d (*intpend)(unsigned int pend);
Leon3/4 only: Thei nt pend() function is called when the set of pending interrupts changes. The pend
argument is a bitmask with the bits of pending interrupts set to 1.
int nmemnit;
If al loaded AHB modules setsmeminitto 1, TSIM will initialize and emul ateinitialize and emulate SRAM/
SDRAM/PROM memory. Thus, the AHB module should initialize meni ni t with 1 if TSIM (or another
AHB module) should handle memory simulation. Callsto read and write should return -1 (undecoded area)
for the memory regions in which case TSIM (or possibly some other AHB module) will handle them. If
meni ni t isset to 0the AHB module itself should emulate the memory address regions.
struct siminterface *simf;
Entry si mi f isinitialized by tsim with the global st ruct si m_i nt er f ace structure.
unsi gned char *(*get_memptr_ws) (unsigned int addr, int size, int *wws,
int *rws)
If mem ni t wassettoltsmwill initializeget _nem pt r _ws with acallback that can be used to query
apointer to the host memory emulating the LEON’s memory, along with waitstate information. Note that
the host memory pointer returned is in the hosts byte order (normally little endian on a PC). The si ze

VO

VO

VO

TSIM2-UM 40 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

parameter should bethelength of theaccess (1 for byte, 2 for short, 4 for word and 8 for doubleword access).
Thewws andr ws parameterswill return the calculated write and read waitstates for a possible access. See
also snoop below for responsibilities when DMA writes are done via pointers from this function.

void (*snoop) (unsigned int addr)
The callback snoop is initialized by tsim. If data cache snooping is enabled (and functioning, i.e. not
ut699) it flushes (i.e. invalidates) data cache lines corresponding to physical address addr (on LEON3/4
even when MMU is enabled). If the AHB module is doing DMA writes directly to memory pointers, it is
the responsibility of the AHB module to call thisfor all changed words for snooping to work correctly.

struct io_interface *io;
Initialized with the 1/O interface structure pointer.

void (*dprint)(char *);
Initialized by tsim with acallback pointer to the debug output function. Output ends up inlog, whenlogging
is enabled and gets forwarded to gdb when running TSIM viagdb. Seel printf andvl pri ntf for the
formatted counterparts.

struct proc_interface *proc;
Initialized with the procif structure pointer.

int (*cacheabl e) (uint32 addr, uint32 size)
The cacheabl e callback is initialized by the module to NULL or a function returning cacheability
for a memory area. The function should return 1 if the range [addr,addr+size) is cacheable, O if it is un-
cacheable or -1 if the memory areait is not handled by the module. If all modules return -1 and/or lack the
cacheabl e callback, theareawill be considered cacheable for memory areas[0x00000000,0x20000000)
and [0x40000000-0x80000000) and non-cacheable for all other areas. NOTE: For any (correspondingly
aligned) areaaslarge asthe largest data cache or instruction cache line sizein the system, thecacheabl e
callback may not return different results for different wordsin the area.

int (*lprintf)(const char *format, ...)
Initialized by TSIM with a function for formatted loggable debug output. The function interface works
like for printf.

int (*vlprintf)(const char *format, va_list ap)
Initialized by TSIM with afunction for formatted loggabl e debug output. The function interface workslike
for vprintf.

void (*start)(void)
Called each time simulation starts, both when starting for thefirst time using go or run command and when
continuing using cont.

void (*stop)(void)
Called every time simulation stops, e.g. due to breakpoints, user pressing Ctrl-C, etc.

voi d correctable_error(uint32 addr, uint32 naster, uint32 size, int wite)
Can be called by an AHB moduleto signal acorrectableerror toan AHBSTAT core (if present) or aLEON2
memstat. It isintended to be called during handling of a successful read or write. The parametersto supply
corresponds to the register fields to the AHBSTAT registers or LEON2 FAILAR/FAILSR registers (the
rw field in LEON2 FAILSR corresponding to !write).

5.2.3. Big versus little endianess

SPARC conforms to the big endian byte ordering. This means that the most significant byte of a (half) word has
lowest address. To execute efficiently on little-endian hosts (such asntel x86 PCs), emulated memory is organised
on word basis with the bytes within a word arranged according the endianess of the host. Read cycles can then
be performed without any conversion since SPARC aways reads a full 32-bit word. During byte and half word
writes, care must be taken to insert the written data properly into the emulated memory. On abyte-write to address
0, the written byte should be inserted at address 3, since thisis the most significant byte according to little endian.
Similarly, on a half-word write to bytes 0/1, bytes 2/3 should be written. For a complete example, see the prom
emulation functioninio.c.

5.3. TSIM/LEON co-processor emulation

5.3.1. FPU/CP interface

The professional version of TSIM/LEON can emulate a user-defined floating-point unit (FPU) and co-processor
(CP). The FPU and CP are included into the simulator using loadable modules. To access the module, use the

TSIM2-UM 41 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

structure ‘cp_interface’ defined in tsim.h. The structure contains a number of functions and variables that must
be provided by the emulated FPU/CP:

/* structure of function to be provided by an external co-processor */
struct cp_interface {

void (*cp_init)(); /* called once on start-up */
void (*cp_exit)(); /* called once on exit */

void (*cp_reset)(); /* cal |l edon processor reset */
void (*cp_restart)(); /* called on sinulator restart */

uint32 (*cp_reg)(int reg, uint32 data, int read);
int (*cp_load)(int reg, uint32 data, int *hold);
int (*cp_store)(int reg, uint32 *data, int *hold);
int (*cp_exec)(uint32 pc, uint32 inst, int *hold);

int (*cp_cc)(int *cc, int *hold); /* get condition codes */
int *cp_status; /* unit status */
void (*cp_print)(); /* print registers */
int (*command) (char * cnd); /* CP specific commands */
int set_fsr(uint32 fsr); /* initialized by tsim*/
b
extern struct cp_interface *cp; /* inported co-processor enulation functions */

5.3.2. Structure elements

void (*cp_init)(struct siminterface sif, struct io_interface iif);
Called once on simulator startup. Set to NULL if not used.

void (*cp_exit)();
Called once on simulator exit. Set to NULL if not used.

void (*cp_reset)();
Called every time the processor is reset. Set to NULL if not used.

void (*cp_restart)();
Cdled every time the simulator is restarted. Set to NULL if not used.

uint32 (*cp_reg)(int reg, uint32 data, int read);
Used by the simulator to perform diagnostics read and write to the FPU/CP registers. Callingcp_r eg()
should not have any side-effects on the FPU/CP status. r eg indicates which register to access: 0-31 indi-
cates %f0-%f 31/%c0- %31, 34 indicates %fsr/%csr. r ead indicatesread or write access: read==0 indicates
write access, read!=0 indicates read access. Written data is passed in dat a, the return value contains the
read value on read accesses.

int (*cp_exec)(uint32 pc, uint32 inst, int *hold);
Execute FPU/CP instruction. The %pc is passed in pc and the instruction opcode ini nst . If data depen-
dency is emulated, the number of stall cycles should be return in * hol d. The return value should be zero
if no trap occurred or the trap number if atrap did occur (0x8 for the FPU, 0x28 for CP). A trap can occur
if the FPU/CP isin exception_pending mode when a new FPU/CP instruction is executed.

int (*cp_cc)(int *cc, int *hold); /* get condition codes */
Read condition codes. Used by FBCC/CBCC instructions. The condition codes (O - 3) should be returned
in*cc. If data dependency is emulated, the number of stall cycles should be returnin* hol d. Thereturn
value should bezeroif notrap occurred or thetrap number if atrap did occur (0x8 for the FPU, 0x28 for CP).
A trap can occur if the FPU/CPisin exception_pending mode when a FBCC/CBCC instruction is executed.

int *cp_status;/* unit status */
Should contain the FPU/CP execution status. O = execute mode, 1 = exception_pending, 2 =
exception_maode.

void (*cp_print)();/* print registers */
Should print the FPU/CP registers to stdio.

int (*command)(char * cnd); /* CP specific comuands */
User defined FPU/CP control commands. NOT YET IMPLEMENTED.

int (*set_fsr)(char * cnmd); /* initialized by tsim?*/
This callback isinitialized by tsim and can be called to set the FPU status register.

5.3.3. Attaching the FPU and CP
At startup the ssimulator tries to load two dynamic link libraries containing an external FPU or CP. The sim-

ulator looks for the file fp.so and cp.so in the current directory and in the search path defined by Idconfig.
The location of the modules can also be defined using - cpmand - f pmswitches. The environmental variable

TSIM2-UM 42 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

TSIM_MODULE_PATH canbesettoa“:’ separated (‘;" in WIN32) list of search paths. Each library is searched
for apointer ‘cp’ that pointsto acp_interface structure describing the co-processor. Below isan examplefrom fp.c:

struct cp_interface test_fpu = {

cp_init, /* cp_init */
NULL, /* cp_exit */
cp_init, /* cp_reset */
cp_init, /* cp_restart */
cp_reg, I* cp_reg */
cp_| oad, /* cp_load */
cp_store, /* cp_store */
f prei ko, /* cp_exec */
cp_cc, /* cp_cc */

& pregs. f pstate, /* cp_status */
cp_print, /* cp_print */

NULL cp_command */

}:

siruct cp_interface *cp = &est_fpu; /* Attach pointer!! */
5.3.4. Big versus little endianess

SPARC is conforms to the big-endian byte ordering. This means that the most significant byte of a (half) word
has lowest address. To execute efficiently on little-endian hosts (such as Intel x86 PCs), emulated register-file is
organised on word basis with the byteswithin aword arranged according the endianess of the host. Double words
are also in host order, and the read/write register functions must therefore invert the Isb of the register address
when performing word accesson little-endian hosts. Seethefilefp.cfor examples(cp_| oad(),cp_store()).

5.3.5. Additional TSIM commands

fl oat
Shows the registers of the FPU

cp
Shows the registers of the co-processor.

5.3.6. Example FPU

The file fp.c contains a complete SPARC FPU using the co-processor interface. It can be used as a template for
implementation of other co-processors. Note that data-dependency checking for correct timing is not implemented
inthisversion (it is however implemented in the built-in version of TSIM).

5.4. Loadable modules distributed with TSIM
The following table shows which loadable modules are distributed with which TSIM versions.

Table 5.1. Loadable modules distributed with TS M

Module For TSIM versions
Atmel AT697 emulation LEON2

Cobham UT699 emulation LEON3

Cobham UT700 emulation LEON3

Cobham Gaisler GR712RC emulation LEONS3
TPSVxWorks 6.x AHB Module LEON3/4

Example 1O module ERC32, LEON2/3/4
Example AHB module LEON2/3/4
Example FPU/coprocessor module LEON2/3/4

5.4.1. General AHB module limitations

The general AHB module interface allows for the possibility to support checkpointing and to support system reset
during simulation. However, the modules distributed with TSIM does not support these features unless otherwise

noted.

TSIM2-UM
May 2020, Version 2.0.66

43

www.cobham.com/gaisler

COBHAM

The socket baseinterfacesfor the simulation modelsfor coressuch as GRETH, GRSPW1, GRSPW2 and CAN_OC
does not support any signalling of restart of the smulation. To ensure a clean restart of simulation when using
these cores, restarting TSIM and reconnecting all such socket interfacesis advisable.

TSIM2-UM 44 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

6. TSIM library (TLIB)

6.1. Introduction

The professional version of TSIM is also available as alibrary, allowing the smulator to be integrated in alarger
simulation frame-work. The various TSIM commands and options are accessible through a simple function inter-
face. 1/0 functions can be added, and use a similar interface to the loadable I/O modul es described earlier.

6.2. Function interface

The following functions are provided to access TSIM features:

int

i nt

VO

VO

VO

VO

voi

voi

VO

VO

VOi

tsiminit (char *option);/* initialise tsimw th optional paranms. */
Initialize TSIM - must be called before any other TSIM function (exceptt si m set _di ag()) are used.
The options string can contain any valid TSIM startup option (as used for the standalone simulator), with
the exception that no filenames for files to be loaded into memory may be given. t si m.i ni t () may
only be called once, use the TSIM reset command to reset the simulator without exiting. t si m_i ni t ()
will return 1 on success or 0 on failure.

tsimcend (char *cnd);/* execute tsimcomand */
Execute TSIM command. Any valid TSIM command-line command may be given. The following return
values are defined:

SIGINT Simulation stopped due to interrupt

SIGHUP Simulation stopped normally

SIGTRAP Simulation stopped due to breakpoint hit
SIGSEGV Simulation stopped due to processor in error mode
SIGTERM Simulation stopped due to program termination

dtsimexit (int val);

Should be called to cleanup TSIM internal state before main program exits.

d tsimget regs (unsigned int *regs);

Get SPARC registers. r egs is a pointer to an array of integers, see tsim.h for how the various registers
areindexed.

d tsimset _regs (unsigned int *regs);

Set SPARC registers. *r egs isapointer to an array of integers, see tssim.h for how the various registers
areindexed.

d tsimdisas(unsigned int addr, int num;

Disassemble memory. addr indicateswhich addressto disassemble, numindicates how many instructions.
d tsimset _diag (void (*cfunc)(char *));

Set console output function. By default, TSIM writes all diagnostics and console messages on stdout.
tsi mset _di ag() canbeusedto direct all output to auser defined routine. The user functioniscalled
with a single string parameter containing the message to be written.

d tsimset _callback (void (*cfunc)(void));

Set the debug callback function. Callingt si m set _cal | back() with afunction pointer will cause
TSIM to call the callback function just before each executed instruction, when the history is enabled. At
this point the instruction to be executed can be seen as the last entry in the history. History can be enabled
with thet si m cnd() function.

d tsi mgdb (unsigned char (*inchar)(), void (*outchar) (unsigned char c));

Controls the simulator using the gdb ‘ extended-remote’ protocol. Thei nchar parameter isapointer to a
function that when called, returns next character from the gdb link. The out char parameter is a pointer
to afunction that sends one character to the gdb link.

d tsimread(unsigned int addr, unsigned int *data);

Performs aread from addr , returning the value in * dat a. Only for diagnostic use.

d tsimwite(unsigned int addr, unsigned int data);

Performs awrite to addr , with value dat a. Only for diagnostic use.

TSIM2-UM 45 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

void tsimstop_event(void (*cfunc)(), int arg, int op);
tsi m stop_event () canremove certain event depending on the setting of ar g and op. If op =0, al
instance of the callback function cf unc will be removed. If op = 1, events with the argument = arg will
be removed. If op = 2, only the first (earliest) of the events with the argument = arg will be removed.

NOTE: The stop_event() function may NOT be called from asignal handler installed by the I/0 module.

void tsiminc_tinme(uint64);
tsim.inc_time() will increment the smulator time without executing any instructions. The event
queue is evaluated during the advancement of time and the event callbacks are properly caled. Can not
be called from event handlers.

int tsimtrap(int (*trap)(int tt), void (*rett)());
tsimtrap() isusedtoinstal callback functions that are called every time the processor takes a trap
or returns from atrap (RETT instruction). Thet r ap() function is called with one argument (t t) that
contains the SPARC trap number. If t si m t rap() returnswith O, execution will continue. A non-zero
return value will stop simulation with the program counter pointing to the instruction that will cause the
trap. Ther et t () function is caled when the program counter points to the RETT instruction but before
theinstruction isexecuted. The callbacksareremoved by callingt si m t r ap() withaNULL arguments.

int tsimcov_get(int start, int end, char *ptr);
t si m_cov_get () will returnthecoveragedatafor theaddressrange>=st ar t and<end. Thecoverage
data will be written to a char array pointed to by * pt r, starting at ptr[0]. One character per 32-bit word
in the address range will be written. The user must assure that the char array is large enough to hold the
coverage data.

int tsimcov_set(int start, int end, char val);
t si m cov_set () will fill the coverage datain the addressrangelimited by st art and end (see above
for definition) with the value of val .

int tsimext_ins (int (*func) (struct ins_interface *r));
tsi m ext _i ns() installsahandler for custom instructions. func is apointer to an instruction emulation
function as described in Section 4.1.6. Callingt si m_ext _i ns() withaNULL pointer will remove the
handler.

int tsimlastbp (int *addr)
When simulation stopped due to breakpoint or watchpoint hit (SIGTRAP), this function will return the
address of the break/watchpoint in * addr . The function return value indicates the break cause; 0 = break-
point, 1 = watchpaint.

void tsimset _iosystem (struct io_subsystem *ioarg)
On win32 (excluding cygwin), thisinstalls an I/0 module that is built into the TLIB application. It must be
called before callingt si m_i ni t () . See aso Section 6.4 for more details.

void tsimset_ahbsystem (struct ahb_subsystem *ahbar g)
Onwin32 (excluding cygwin), thisinstalls an AHB module that is built into the TLIB application. It must
be called before callingt si m_i ni t () . Seeaso Section 6.4 for more details.

6.3. External I1/O and AHB modules

External 1/0 and AHB modules can be loaded when using TLIB, just as with standalone TSIM, by adding the -
i omnane and - ahbmnane switchestothet si m.i nit () argument string when starting. See Chapter 5 for
further information.

6.4. Builtin 1/0 module and/or AHB module

The TSIM library can use a builtin I/O module and or a builtin AHB module that is part of the TLIB application
that usesthe same 1/O interface and AHB interface as the standal one simulator. Instead of |oading a shared library
containing the module, the moduleislinked with the main program (for non-win32, including cygwin) or installed
using thet si m set _i osysten() and/ort si m set _ahbsysten() functions (for win32). The 1/0 and
AHB functions (and the main program) hasthe same accessto the exported simulator interface (si m f andi oi f)
as described in the loadable module interface.

For non-win32 (including cygwin) the TSIM library importsthe1/O structure pointer, st r uct i o_subsyst em
*j osyst em and AHB structure pointer st ruct ahb_subsyst em *ahbsyst em These pointers must
exist, but can be set to NULL if no builtin I/0 and/or AHB moduleis present.

TSIM2-UM 46 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

For win32 (but not cygwin) thet si m set i osystem() andtsi m set _ahbsysten() functionsisin-
stead used used to install a builtin 1/0 module and/or a builtin AHB module. If used, these functions must be
called beforecallingt si m i ni t () . Caling thesefunctionsisoptional (unlike the direct linking case where the
pointers must exist).

An example 1/0 module and an example AHB module, prepared to be builtin, are provided in si npl e_i 0. ¢
and si npl e_ahb. c. These modules provides a simpler interface to attach 1/0O functions and AHB functions.
The appl.c example shows how the builtin modules are connected for both the win32 case and for other hosts.
By default the builtin I/O module is the one that is actively used, but by defining USEI Oto O the builtin AHB
moduleisinstead the one that is actively used.

The following interfaceis provided by si npl e_i 0. c:
void sinple_io_set ioread (void (*cfunc)(int address, int *data, int *ws));
This function is used to pass a pointer to a user function which is to be called by TSIM when an I/O read
access ismade. The user function is called with the address of the access, a pointer to where the read data
should be returned, and a pointer to a waitstate variable that should be set to the number of waitstates that

the access took.
void sinple io _set iowite (void (*cfunc)(int address, int *data, int *ws,
int size));

Thisfunction is used to pass a pointer to a user function which isto be called by TSIM when an 1/0O write
accessismade. The user function is called with the address of the access, apointer to the datato be written,
apointer to awaitstate variable that should be set to the number of waitstates that the access took, and the
size of the access (0O=byte, 1=half-word, 2=word, 3=double-word).

Theinterfacein si npl e_ahb. ¢ follows the same principles asthe onein si npl e_i o. ¢, but uses the AHB
interface.

6.5. UART handling

By default, the library is using the same UART handling as the standalone simulator. This means that the UARTS
can be connected to the console, or any Unix device (pseudo-ttys, pipes, fifos). If the UARTSs are to be handled
by the user’s I/O emulation routines, t si m_i ni t () should be called with ‘- nouar t ’, which will disable all
internal UART emulation. Any accessto the UART register by an application will then be routed to the /O module
read/ writ e functions.

6.6. Linking a TLIB application

Three sample application are provided, one that uses the smplified 1/0 (or simplified AHB interface) interface
(appl.c), and two that uses the standard loadable module interface (app2 and app3). They are built by doing a
‘make al’ in the tlib directory. The win32 version of TSIM provides the library asa DLL, for all other platform
adtatic library is provided (.a). Support for dynamic libraries on Linux or Solarisis not available.

6.7. Limitations

On Windows/Cygwin hostsaTLIB applicationisnot capable of reading UART A/B from the console, only writing
is possible. If reading of UART A/B is necessary, the simulator should be started with -nouart, and emulation of
the UART s should be handled by the 1/0O module.

TSIM2-UM a7 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

7. Cobham UT699 emulation

To emulate the UT699 chip the - ut 699 option should be used. That sets up parametersfor core TSIM2 to match
UT699 and sets snooping as non-functional. In addition, the UT699 loadable AHB modul e implements emulation
models for additional cores of the UT699. Apart from an overview of what TSIM supports for UT699 emulation,
this chapter is mainly about the UT699 AHB module.

Thefollowing table lists which coresin the UT699 are modelled by TSIM or not. Some supported cores are mod-
elled by the core TSIM2 and somein the UT699 AHB module. The table contains some notes of some unsupported
features for otherwise supported cores, but is not necessarily exhaustive in this respect. See Chapter 4 for details
on the builtin simulation models and the rest of the chapter for the AHB module models.

Table 7.1. Smulation models for UT699

Core Status Notes

LEON3FT Supported by core TSIM2 Only one CPU is modelled. No FT features are modelled.
GRFPU Supported by core TSIM2

AHBSTAT Supported by core TSIM2

APBCTRL Supported by core TSIM2

APBUART Supported by core TSIM2

FTMCTRL Supported by core TSIM2 No FT features are modelled
GPTIMER Supported by core TSIM2

IRQMP Supported by core TSIM2

CAN_OC Supported by AHB module

GRETH Supported by AHB module

GRGPIO Supported by AHB module

GRPCI Supported by AHB module | Including DMA controller
GRSPW Supported by AHB module

CLKGATE Not supported

AHBJTAG Not supported Debug link

AHBUART Not supported Debug link

DSU3 Not supported Debug unit

TSIM supports running several AHB modules. User defined models for unsupported cores can be used in parallel
with the UT699 AHB module. User defined models can also override the simulation models in the UT699 AHB
module.

7.1. Overview of the UT699 AHB module

The UT699 AHB module is aloadable AHB module that implements UT699 peripherals in addition to what is
emulated by core TSIM aslisted in Table 7.1. Theinterfaces are modelled at packet/transaction/message level and
provides an easy way to connect the simulated UT699 to a larger simulation framework. See also Section 5.4.1
on some limitations of some features when using this module. The UT699 AHB module is only supported for
TSIM2 LEONS3.

The following files are delivered with the UT699 TSIM module:

Table 7.2. Files delivered with the UT699 TS M module

File Description
ut699/linux/ut699.s0 UT699 AHB module for Linux

TSIM2-UM 48
May 2020, Version 2.0.66

www.cobham.com/gaisler

COBHAM

File Description
ut699/win32/ut699.dl| UT699 AHB module for Windows
ut699/exampl es/input The input directory contains two examples of PCI user

modules

ut699/exampl es/input/README.txt

Description of the user module examples

ut699/exampl es/input/pci.c

PCI user module example that makes UT699 PCl initia-
tor accesses

ut699/examples/input/pci_target.c

PCI user module exampl e that makes UT699 PCI target
accesses

ut699/exampl es/input/gpio.c

GPIO user module example

ut699/exampl es/input/ut699inputprovider.h

Interface between the UT699 module and the user de-
fined PCI module

ut699/examples/input/pci_input.h

UT699 PCI input provider definitions

ut699/exampl es/input/input.h Generic input provider definitions

ut699/exampl es/input/tsim.h TSIM interface definitions

ut699/exampl es/input/end.h Defines the endian of the local machine

ut699/exampl es/test The test directory contains tests that can be executed in

TSIM

ut699/examples/test/README.txt

Description of the tests

ut699/exampl es/test/M akefile

Makefile for building the tests

ut699/exampl es/test/cansend.c CAN transmission test
ut699/exampl es/test/canrec.c CAN reception test
ut699/exampl es/test/pci.c PCI interface test
ut699/exampl es/test/pcitest.h Header file for PCI test

7.2. Loading the module

The module is loaded using the TSIM2 option - ahbm A user input module for SPI and PCI can optionally be
declared, between - desi gni nput and - desi gni nput end options. For example:

On Linux:

tsimleon3 -ut699 -ahbm ut 699/1i nux/ut699. so
-desi gninput ./input.so -designinputend

On Windows:

tsimleon3 -ut699 -ahbm ut 699/ wi n32/ ut 699.dl |
-desi gni nput input.dll -designinputend

The option - ut 699 needs to be given to TSIM to enable the UT699 processor configuration. The above line
loads the UT699 AHB module ut 699. so which in turn loads the user user input module . / i nput . so. The
user input module . / i nput . so communicates with ut 699. so using the user module interface described in
ut 699i nput pr ovi der . h, whileut 699. so communicates with TSIM viathe AHB interface.

Example user input modules can be found in ut 699/ exanpl es/ i nput /.
7.2.1. User input module interface
The SPI and PCI models in the UT699 module uses a user supplied user input module, in the form of a dynamic

loadablelibrary, that model s the outside world. This section describesthe general interface for hooking up the user
module to the UT699 module. The details on the interfaces to the particular cores, see their respective sections.

TSIM2-UM 49
May 2020, Version 2.0.66

www.cobham.com/gaisler

COBHAM

A user supplied dynamic library should expose a public symbol ut 699i nput syst em of type st ruct
ut 699 subsystem *.Thestruct ut 699 subsyst emisdefinedinut 699i nput provi der. h as:

struct ut699_subsystem {
void (*ut699_inp_setup) (int id,
struct ut699_inp_|l ayout * I,
char **argv, int argc);
void (*ut699_inp_restart) (int id,
struct ut699_inp_layout * 1);
struct siminterface *simf;

s

Thecallback ut 699 _i np_r est art will becalled every timethesimulator restarts. Atinitialization the callback
ut 699_i np_set up will be called once, supplied with a pointer to structurest ruct ut 699_i np_| ayout
defined inut 699i nput provi der. h.

struct ut699_inp_layout {
struct grpci_input grpci;
struct gpi o_i nput gpio;
}

The user module can accesstheglobal TSIM st ruct si m_i nt er f ace structurethroughthesi ni f member.
See Chapter 5 for more details.

The user supplied dynamic library should, initsut 699_i np_set up function, “claim” the input structs it uses
using thel NPUT_CLAI Mmacro. For example | NPUT_CLAI M | - >gpi 0) asin the example below.

A user supplied dynamic library that only sets up amodel for GPIO could look like this:

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#include "tsimh"

#i ncl ude "ut 699i nput provi der. h"

extern struct ut699_subsystem *ut 699i nput system
static struct ut699 inp_layout *lay = 0;

static void Change(struct gpio_input *ctrl) {

}

int gpioout(struct gpio_input *ctrl, unsigned int out) {
) -

static void ut699_inp_setup (int id,
struct ut699_inp_layout * I,
char **argv, int argc) {
lay = 1;
printf("User-dll: ut699 inp_setup:Caimng %\n", |->gpio._b.nane);
I NPUT_CLAI M | - >gpi 0) ;
| - >gpi 0. gpi oout = gpi oout;
ut 699i nput syst em >si m f - >event (Change, (unsi gned | ong) & - >gpi 0, 10000000) ;
}

static struct ut699_subsystem ut699_gpio = {
ut 699_inp_setup, 0,0
s

struct ut699_subsystem *ut 699i nput system = &ut 699_gpi o;

A Makefile that would build a user supplied dynamic library gpio.(dll|so) could look like this:
MDLL_FIX=$(if $(strip $(shell unanme|grep M NGAB2)),dl I, so)

MLIB=$(if $(strip $(shell unane|grep M NGMAB2)),-1ws2_32 -luser32 -lkernel 32 -1 w nnm)
all: gpio.$(MDLL_FIX)

gpi 0. (M DLL_FIX) : gpio.o
$(CC) -shared -g gpio.o -o gpio.$(MDLL_FI X) $(M.LIB)

gpi 0. 0: gpio.c
$(CC -fPIC-c -g -Q0 gpio.c -0 gpio.o

TSIM2-UM 50 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

cl ean:
-rm-f *.0 *.so

The user can then specify the user module to be loaded by the ut699.so AHB module using the - desi gni nput
and - desi gni nput end command line options. The first argument after - desi gni nput isthe user module.
Arguments after that are passed to the user input module in the call tout 699 i np_set up.

For example: - desi gni nput ut 699/ exanpl es/ i nput/ gpi 0. so -gpi over bose -desi gni n-
put end will specify that the example user input module gpi 0. so should be used and that it should receive
the argument - gpi over bose.

7.3. Debugging

To enable printout of debug information the - ut 699_dbgon f | ag switch can be used. Alternatively one can
issuetheut699_dbgon f | ag command onthe TSIM2 command lineto toggle the on/off state of aflag. The debug
flagsthat are available are described for each corein the following sectionsand can belisted by ut699_dbgon help.

Many cores also have their own debug commands on the format coreX_dbg that targets single cores instead of
all of one kind and that have support to set all or none of the debug flags options and list the current setting for
the debug flags. See the sections on the respective cores for details.

7.4.10/100 Mbps Ethernet Media Access Controller interface

The Ethernet core simulation model is designed to functionally model the 10/100 Ethernet MAC available in the
UT699. For core details and register specification please see the UT699 manual.

The following features are supported:

« Direct Memory Access
* |Interrupts

7.4.1. Start up options

Ethernet core start up options

-grethconnect host[:port]
Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.

7.4.2. Commands

Ethernet core TSM commands

greth_connect host[:port]

Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.
greth_status

Print Ethernet register status

7.4.3. Debug flags

The following debug flags are available for the Ethernet interface. Use the them in conjunction with the
ut699_dbgon command to enable different levels of debug information.

Table 7.3. Ethernet debug flags

Flag Trace
GAISLER_GRETH_ACC GRETH accesses
GAISLER_GRETH_L1 GRETH accesses verbose
GAISLER_GRETH_TX GRETH transmissions
GAISLER_GRETH_RX GRETH reception
GAISLER_GRETH_RXPACKET GRETH received packets
TSIM2-UM 51 www.cobham.com/gaisler

May 2020, Version 2.0.66

COBHAM

Flag Trace
GAISLER_GRETH_RXCTRL GRETH RX packet server protocol
GAISLER_GRETH_RXBDCTRL GRETH RX buffer descriptors DMA
GAISLER_GRETH_RXBDCTRL GRETH TX packet server protocol
GAISLER_GRETH_TXPACKET GRETH transmitted packets
GAISLER_GRETH_IRQ GRETH interrupts

7.4.4. Ethernet packet server

The simulation model relies on a packet server to receive and transmit the Ethernet packets. The packet server
should open a TCP socket which the module can connect to. The Ethernet core is connected to a packet server
using the - gr et hconnect start-up parameter or using the greth_connect command.

An example implementation of a packet server, named gret h_confi g, isincluded in TSIM distribution. It
uses the TUN/TAP interface in Linux, or the WinPcap library on Windows, to connect the GRETH core to a
physical Ethernet LAN. Thismakesit easy to connect the simulated GRETH coreto real hardware. It can providea
throughput in the order of magnitude of 500 to 1000 KiB/sec. Seeitsdistributed README for usage instructions.

7.4.5. Ethernet packet server protocol

Ethernet data packets have the following format. Note that each packet is prepended with a one word length field
indicating the length of the packet to come (including its header).

Packet length at offset Ox0:
31 0

LEN

31.0 LEN Length of rest of packet: 4 + number of data bytes

Header at offset Ox4:

31 16 15 8 7 5 4 0
R IPID | TYPE | R

31:16 R Reserved for future use. Must be set to O.

15:8 IPID IP core |D: 1 for Ethernet
75 TYPE Packet type: O for data packets
4.0 R Reserved for future use. Must be set to 0.

Offset 0x8: The rest of the packet is the encapsulated Ethernet packet
Figure 7.1. Ethernet data packet

7.5. SpaceWire interface with RMAP support

The UT699 AHB module contains 4 GRSPW cores which models the GRSPW cores available in the UT699. For
core details and register specification please see the UT699 manual.

The UT699E AHB module has GRSPW?2 coresinstead of GRSPW cores. So, for UT699E see Section 9.5 instead.

The following features are supported:
» Transmission and reception of SpaceWire packets
* |Interrupts
* RMAP

TSIM2-UM 52 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

7.5.1. Start up options

SoaceWire core start up options
- grspwX_connect host: port
Connect GRPSW core X to packet server at specified server and port.

- grspwX_server port

Open a packet server for core X on specified port.
-grspw_rxfreq freq

Set the RX frequency which is used to calculate receive performance.
-grspw_txfreq freq

Set the TX freguency which is used to calculate transmission performance.

X in the above options has the range 1-4.
7.5.2. Commands

FoaceWire core TS M commands

grspwX_connect host:port

Connect GRSPW core X to packet server at specified server and TCP port.
grspwX_server port

Open a packet server for core X on specified TCP port.
grspw_status

Print status for all GRSPW cores.

X in the above commands has the range 1-4.
7.5.3. Debug flags

The following debug flags are available for the SpaceWire interfaces. Use the them in conjunction with the
ut699_dbgon command to enable different levels of debug information.

Table 7.4. SpaceWire debug flags

Flag Trace
GAISLER_GRSPW_ACC GRSPW accesses
GAISLER_GRSPW_RXPACKET GRSPW received packets
GAISLER_GRSPW_RXCTRL GRSPW rx protocol
GAISLER_GRSPW_TXPACKET GRSPW transmitted packets
GAISLER_GRSPW_TXCTRL GRSPW tx protocol

7.5.4. SpaceWire packet server

Each SpaceWire core can be configured independently as a packet server or client using either -
gr spwX_server or-gr spwX_connect . TCP socketsare used for establishing the connections. When acting
as aserver the core can only accept a single connection.

For more flexibility, such as custom routing, an external packet server can be implemented using the protocol
specified in the following sections. Each core should then be connected to that server.

7.5.5. SpaceWire packet server protocol

The protocol used to communicate with the packet server is described below. Three different types of packets are
defined according to the table below.

Table 7.5. Packet types

Type Value

Data 0

Time code 1

TSIM2-UM 53 www.cobham.com/gaisler

May 2020, Version 2.0.66

COBHAM

Note that all packets are prepended by a one word length field which specified the length of the coming packet
including the header.

7.5.5.1. Data packet format
Packet length at offset Ox0:
31 0

LEN

310 LEN Length of rest of packet: 4 + number of data bytes

Header at offset Ox4:

31 16 15 8 7 5 4 10
R IPID | TYPE| R [EF

3116 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: O for SpaceWire

7.5 TYPE Packet type: O for data packets

4.1 R Reserved for future use. Must be set to 0.

0 EE Error End of Packet. Set when the packet is truncated and terminated by an EEP.

Offset 0x8: Therest of the packet is the encapsulated SpaceWire packet
Figure 7.2. SpaceWire data packet

7.5.5.2. Time code packet format

Packet length at offset OxO:

31 0

LEN

31.0 LEN Length of rest of packet: 8

Header at offset Ox4:

31 16 15 8 7 5 4 0
R IPID | TYPE | R

31116 R Reserved for future use. Must be set to O.

15:8 IPID IP core ID: O for SpaceWire
75 TYPE Packet type: 1 for time code packets

4.0 R Reserved for future use. Must be set to 0.

Payload at offset 0x8:

31 8 7 6 5 0
\ R \ CT | CN

31:8 R Reserved for future use. Must be set to 0.

7:6 CT Time control flags

5.0 CN Value of time counter

Figure 7.3. SpaceWire time code packet

TSIM2-UM 54 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

7.6. PCl initiator/target interface

The UT699 AHB module models the PCI core availablein the UT699 ASIC. For core details and register speci-
fication please see the UT699 manual .

7.6.1. Connecting a user PCI model with the UT699 module
See Section 7.2 for details on how to connect the user PClI model to the UT699 module.

7.6.2. Commands

PCI Commands

pci_status
Print status for the PCI core

7.6.3. Debug flags

The following debug flags are available for the PCI interface. Use them in conjunction with the ut699_dbgon
command to enable different levels of debug information.

Table 7.6. PCI interface debug flags

Flag Trace

GAISLER_GRPCI_ACC AHB accesses to/from PCI core
GAISLER_GRPCI_REGACC GRPCI APB register accesses
GAISLER_GRPCI_DMA_REGACC PCIDMA APB register accesses
GAISLER_GRPCI_DMA GRPCI DMA accesses on the AHB bus
GAISLER_GRPCI_TARGET_ACC GRPCI target accesses
GAISLER_GRPCI_INIT Print summary on startup

7.6.4. PCl bus model API

Thestructurest ruct grpci _i nput modelsthe PCI bus. It is defined as:

struct grpci_input {
struct input_inp _b;

int (*acc)(struct grpci_input *ctrl, int cmd, unsigned int addr,
unsigned int *data, unsigned int *abort, unsigned int *ws);
int (*target_acc)(struct grpci_input *ctrl, int cnd, unsigned int addr,

unsi gned int *data, unsigned int *mexc);

b
The acc callback should be set by the PCI user module at startup. It is called by the UT699 module whenever it
reads/writes as a PCl bus master.

Table 7.7. acc callback parameters

Parameter Description

cmd Command to execute, see Section 7.6.2 details.

addr PCI address.

data Data buffer. The user module should return the read datain * dat a for read
commands or write the datain * dat a for write commands.

wsize 0: 8-bit access 1: 16-hit access, 2; 32-hit access. Isalways 2 for read accesses.

ws Set * ws to the number of PCI clocksit takes to complete the transaction.

abort Set *abort to 1 to generate target abort, or 0 otherwise.

Thereturn value of acc determinesif the transaction terminates successfully (1, GRPCI_ACC_OK) or with master
abort (0, GRPCI_ACC_MASTER_ABORT).

TSIM2-UM 55 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

Thecallback target_accisinstalled by the UT699 AHB module. The PCI user dynamic library can call thisfunction
to initiate an access to the UT699 PCI target.

Table 7.8. target_acc parameters

Parameter Description

cmd Command to execute, see Section 7.6.2 for details. 1/0 cycles are not sup-
ported by the UT699 target.

addr PCI address. Should always be word aligned for read accesses.

data Data buffer. The read data is returned in * dat a for read commands or the
datain * dat a iswritten for write commands.

wsize 0: 8-hit access 1. 16-bit access, 2: 32-bit access. Should always be 2 for read
accesses.

mexc 0if accessis successful, 1 in case of target abort.

If the address matched MEMBARO, MEMBAR1 or CONFIG target_acc will return 1 otherwise 0.

Seetheut 699/ exanpl es/ i nput for example implementations.

7.7. GPIO interface

7.7.1. Connecting a user GPIO model with the UT699 module
See Section 7.2 for details on how to connect the user GPIO model to the UT699 module.

7.7.2. Commands

GPIO Commands

gpio0_status
Print status for the GPIO core.
gpio0_dbg [f | ag| subcomand]
Toggle, set, clear, list debug flags for the GPIO core.

7.7.3. Debug flags

The following debug flags and debug subcommands are available for GPIO interfaces. The GAI SLER_GPI O_*
flags can be used with the gpio0_dbg command to toggle individual flags for individual GPIO cores and with the
ut699_dbgon command to toggle individual flags for all GPIO cores. The subcommmands can be used with the
gpio0_dbg command to change and list the settings of all flags for individual GPIO cores.

Table 7.9. GPIO debug flags

Flag/subcommand Trace

GAISLER_GPIO_ACC GPIO register accesses

GAISLER_GPIO_IRQ GPIO interrupts

al Set all GPIO debug flags for the core

clean Set none of the GPIO debug flags for the core

list List the current setting of the debug flags for the core

7.7.4. GPIO model API

The structure st ruct gpi o_i nput modelsthe GPIO pins. It is defined as:

/* GPIOinput provider */
struct gpio_i nput {
struct input_inp _b;

int (*gpioout)(struct gpio_input *ctrl, unsigned int out);
int (*gpioin) (struct gpio_input *ctrl, unsigned int in);
b
TSIM2-UM 56 www.cobham.com/gaisler

May 2020, Version 2.0.66

COBHAM

The gpi oout callback should be set by the user module at startup. The gpi oi n callback is set by the UT699
AHB module. Thegpi oout calback iscalled by the UT699 module whenever a GPIO output pin changes. The
gpi oi n calback is called by the user module when the input pins should change. Typically the user module
would register an event handler at a certain time offset and call gpi oi n from within the event handler.

Table 7.10. gpioout callback parameters

Parameter Description

out The values of the output pins

Table 7.11. gpioin callback parameters

Parameter Description

in Theinput pin values

Thereturn value of gpi oi n/ gpi oout isignored.

Seetheut 699/ exanpl es/ i nput for an example implementation.
7.8. CAN interface

The UT699 AHB module contains 2 CAN_OC cores which models the CAN_OC cores available in the UT699.
For core details and register specification please see the UT699 manual.

7.8.1. Start up options

CAN core start up options

-can_ocX _connect host: port
Connect CAN_OC core X to packet server to specified server and TCP port.
-can_ocX _server port
Open a packet server for CAN_OC core X on specified TCP port.
-can_ocX ack [0] 1]
Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This option
must be put after - can_ocX_connect .

X inthe above optionsisin the range 1-2.
7.8.2. Commands

CAN core TSM commands

can_ocX_connect host:port

Connect CAN_OC core X to packet server to specified server and TCP port.
can_ocX_server port

Open a packet server for CAN_OC core X on specified TCP port.
can_ocX_ack <0|1>

Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This com-

mand should only beissued after a connection has been established.
can_ocX_status

Prints out status information for the CAN_OC core.
can_ocX_dbg

Toggle, set, clear, list debug flags for the CAN_OC core.

X in the above commandsisin the range 1-2.
7.8.3. Debug flags

Thefollowing debug flags and debug subcommands areavailablefor CAN interfaces. The GAl SLER_CAN _OC *
flags can be used with the can_ocX_dbg command to toggle individual flags for individual CAN_OC cores and

TSIM2-UM 57 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

with the ut699 _dbgon command to toggle individua flags for all CAN_OC cores. The subcommmands can be
used with the can_ocX_dbg command to change and list the settings of al flags for individual CAN_OC cores.

Table 7.12. CAN debug flags

Flag Trace

GAISLER_CAN_OC ACC CAN_OC register accesses
GAISLER_CAN_OC_RXPACKET CAN_OC received messages
GAISLER_CAN_OC_TXPACKET CAN_OC transmitted messages
GAISLER_CAN_OC_ACK CAN_OC acknowledgements
GAISLER_CAN_OC IRQ CAN_OC interrupts

al Set all debug flags for the core

clean Set none of the debug flags for the core

list List the current setting of the debug flags for the core

7.8.4. Packet server

Each CAN_OC core can be configured independently as a packet server or client using either -
can_ocX _server or-can_ocX connect . When acting as a server the core can only accept a single con-
nection.

7.8.5. CAN packet server protocol

The protocol used to communicate with the packet server is described below. Four different types of packets are
defined according to the table below.

Table 7.13. CAN packet types

Type Value
Message 0x00
Error counter OxFD
Acknowledge OxFE
Acknowledge config OXFF

7.8.5.1. CAN message packet format

Used to send and receive CAN messages.

31 0
0x0 LENGTH
31.0 LENGTH, specifiesthe length of the rest of the packet

CAN message
Byte# Description Bits (M SB-L SB)
7 6 [5 a4 3 2 |1 o

Protocol ID =0 Prot ID 7-0

Control FF \ RTR \ \ \ DLC (max 8 bytes)
6-9 ID (32 bit word in network byte|ID 10-0 (bits 31 - 11 ignored for standard frame format)

order) ID 28-0 (bits 31-29 ignored for extended frame format)
10-17 Databytel - DLC Databyten 7-0

Figure 7.4. CAN message packet format

TSIM2-UM 58 www.cobham.com/gaisler
May 2020, Version 2.0.66

7.8.5.2. Error counter packet format

Used to write the RX and TX error counter of the modelled CAN interface.

COBHAM

31 0
0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet

Error counter packet

Byte# Field Description
4 Packet type Type of packet, OXFD for error counter packets
5 Register 0 - RX error counter, 1 - TX error counter
6 Value Value to write to error counter

Figure 7.5. Error counter packet format

7.8.5.3. Acknowledge packet format

If the acknowledge function has been enabled through the start up option or command the CAN interface will wait
for an acknowledge packet each time it transmits a message. To enable the CAN receiver to send acknowledge
packets (either NAK or ACK) an acknowledge configuration packet must be sent. This is done automatically by
the CAN interface when can_ocX_ack isissued.

31 0
0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet
Acknowledge packet
Byte# Field Description
4 Packet type Type of packet, OXFE for acknowledge packets
5 Ack payload 0 - No acknowledge, 1 - Acknowledge

Figure 7.6. Acknowledge packet format

7.8.5.4. Acknowledge packet format

This packet is used for enabling/disabling the transmission of acknowledge packets and their payload (ACK
or NAK) by the CAN receiver. The CAN transmitter will always wait for an acknowledge if started with -
can_ocX_ack orif the can_ocX_ack command has been issued.

31 0

0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet

Acknowledge configuration packet

Byte# Field Description
4 Packet type Type of packet, OxFF for acknowledge configuration packets
5 Ack configuration bit 0 Unused
bit 1 Ack packet enable, 1 - enabled, O - disabled
bit 2 Set ack packet payload, 1 - ACK, 0- NAK

Figure 7.7. Acknowledge configuration packet format

TSIM2-UM 59 www.cobham.com/gaisler

May 2020, Version 2.0.66

COBHAM

8. Cobham UT699E emulation

To emulate the UT699E chip the - ut 699e option should be used. That sets up parameters for core TSIM2 to
match UTB699E. I n addition, the UT699E |oadable AHB modul e implements emulation model sfor additional cores
of the UT699E. Apart from an overview of what TSIM supports for UT699E emulation, this chapter is mainly
about the UT699E AHB module.

The following table lists which cores in the UT699E are modelled by TSIM or not. Some supported cores are
modelled by the core TSIM2 and some in the UT699E AHB module. The table contains some notes of some
unsupported featuresfor otherwise supported cores, but is not necessarily exhaustivein this respect. See Chapter 4
for details on the builtin simulation models and the rest of the chapter for the AHB module models.

Table 8.1. Smulation models for UT699E

Core Status Notes

LEON3FT Supported by core TSIM2 Only one CPU is modelled. No FT features are modelled.
GRFPU Supported by core TSIM2

AHBSTAT Supported by core TSIM2

APBCTRL Supported by core TSIM2

APBUART Supported by core TSIM2

FTMCTRL Supported by core TSIM2 No FT features are modelled
GPTIMER Supported by core TSIM2

IRQMP Supported by core TSIM2

CAN_OC Supported by AHB module

GRETH Supported by AHB module

GRGPIO Supported by AHB module

GRPCI Supported by AHB module | Including DMA controller
GRSPW2 Supported by AHB module

CLKGATE Not supported

AHBJTAG Not supported Debug link

AHBUART Not supported Debug link

DSU3 Not supported Debug unit

TSIM supports running several AHB modules. User defined models for unsupported cores can be used in parallel
with the UT699E AHB module. User defined models can also override the ssmulation models in the UT699E
AHB module.

8.1. Overview of the UT699E AHB module

The UT699E AHB moduleis aloadable AHB module that implements UT699E peripheralsin addition to what is
emulated by core TSIM aslisted in Table 8.1. Theinterfaces are modelled at packet/transaction/message level and
provides an easy way to connect the simulated UT699E to a larger simulation framework. See also Section 5.4.1
on some limitations of some features when using this module. The UT699E AHB module is only supported for
TSIM2 LEONS3.

The following files are delivered with the UT699E TSIM module:

Table 8.2. Files delivered with the UT699E TS M module

File Description
ut699/linux/ut699e.so UT699E AHB module for Linux

TSIM2-UM 60
May 2020, Version 2.0.66

www.cobham.com/gaisler

COBHAM

File Description
ut699/win32/ut699e.dl| UT699E AHB module for Windows
ut699/exampl es/input The input directory contains two examples of PCI user

modules

ut699/exampl es/input/README.txt

Description of the user module examples

ut699/exampl es/input/pci.c

PCI user module example that makes UT699E PCI ini-
tiator accesses

ut699/examples/input/pci_target.c

PCI user module example that makes UT699E PCI tar-
get accesses

ut699/exampl es/input/gpio.c

GPIO user module example

ut699/exampl es/input/ut699inputprovider.h

I nterface between the UT699E modul e and the user de-
fined PCI module

ut699/examples/input/pci_input.h

UTG699E PCI input provider definitions

ut699/exampl es/input/input.h Generic input provider definitions

ut699/exampl es/input/tsim.h TSIM interface definitions

ut699/exampl es/input/end.h Defines the endian of the local machine

ut699/exampl es/test The test directory contains tests that can be executed in

TSIM

ut699/examples/test/README.txt

Description of the tests

ut699/exampl es/test/M akefile

Makefile for building the tests

ut699/exampl es/test/cansend.c CAN transmission test
ut699/exampl es/test/canrec.c CAN reception test
ut699/exampl es/test/pci.c PCI interface test
ut699/exampl es/test/pcitest.h Header file for PCI test

8.2. Loading the module

The module is loaded using the TSIM2 option - ahbm A user input module for SPI and PCI can optionally be
declared, between - desi gni nput and - desi gni nput end options. For example:

On Linux:

tsimleon3 -ut699e -ahbm ut 699/ 1 i nux/ut 699e. so
-desi gninput ./input.so -designinputend

On Windows:

tsimleon3 -ut699e -ahbm ut 699/ w n32/ ut 699e. dl |
-desi gni nput input.dll -designinputend

The option - ut 699e needs to be given to TSIM to enable the UTE99E processor configuration. The above line
loads the UT699E AHB moduleut 699e. so whichin turnloadsthe user user input module. / i nput . so. The
user input module . / i nput . so communicates with ut 699e. so using the user module interface described in
ut 699i nput pr ovi der . h, whileut 699e. so communicates with TSIM viathe AHB interface.

Example user input modules can be found in ut 699/ exanpl es/ i nput /.
8.2.1. User input module interface
The SPI and PCI modelsin the UT699E modul e uses a user supplied user input module, in the form of adynamic

loadablelibrary, that model s the outside world. This section describesthe general interface for hooking up the user
module to the UT699E module. The details on the interfaces to the particular cores, see their respective sections.

TSIM2-UM 61
May 2020, Version 2.0.66

www.cobham.com/gaisler

COBHAM

A user supplied dynamic library should expose a public symbol ut 699i nput syst em of type st ruct
ut 699 subsystem *.Thestruct ut 699 subsyst emisdefinedinut 699i nput provi der. h as:

struct ut699_subsystem {
void (*ut699_inp_setup) (int id,
struct ut699_inp_|l ayout * I,
char **argv, int argc);
void (*ut699_inp_restart) (int id,
struct ut699_inp_layout * 1);
struct siminterface *simf;

¥
Thecallback ut 699 _i np_r est art will becalled every timethesimulator restarts. Atinitialization the callback

ut 699_i np_set up will be called once, supplied with a pointer to structurest ruct ut 699_i np_| ayout
defined inut 699i nput provi der. h.

The user module can accesstheglobal TSIM st ruct si m i nt er f ace structurethroughthesi mi f member.
See Chapter 5 for more details.

The user supplied dynamic library should, initsut 699 i np_set up function, “claim” the input structs it uses
using thel NPUT_CLAI Mmacro. For example | NPUT_CLAI M | - >gpi 0) asinthe example below.

A user supplied dynamic library that only sets up amodel for GPIO could look like this:

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#include "tsimh"

#i ncl ude "ut 699i nput provi der. h"

extern struct ut699 subsystem *ut 699i nput system
static struct ut699_inp_layout *lay = 0O;

static void Change(struct gpio_input *ctrl) {

}

int gpioout(struct gpio_input *ctrl, unsigned int out) {

}

static void ut699_inp_setup (int id,
struct ut699_inp_|layout * I,
char **argv, int argc) {
lay = 1;
printf("User-dll: ut699_inp_setup:daimng %\n", |->gpio._b.nane);
I NPUT_CLAI M| - >gpi 0) ;
| - >gpi 0. gpi oout = gpi oout ;
ut 699i nput syst em >si mi f - >event (Change, (unsi gned | ong) & - >gpi 0, 10000000) ;
}

static struct ut699 subsystem ut699_gpio =
ut 699_i np_setup, 0,0
b

struct ut699_subsystem *ut 699i nput system = &ut 699_gpi o;

I
~

A Makefile that would build a user supplied dynamic library gpio.(dll|so) could look like this:
MDLL_FI X=$(if $(strip $(shell unane|grep M NGW2)),dl I, so)

M LIB=$(if $(strip $(shell uname|grep M NGWB2)),-Iws2_32 -luser32 -lkernel 32 -1w nnm)
all: gpio.$(MDLL_FIX)

gpi 0. (M DLL_FIX) : gpio.o
$(CC) -shared -g gpio.o -o gpio.$(MDLL_FI X) $(M_LIB)

gpi 0. 0: gpio.c
$(CC -fPIC-c -g -Q0 gpio.c -0 gpio.o

cl ean:

-rm-f *.0 *.so

The user can then specify the user modul e to be loaded by the ut699e.so AHB module using the - desi gni nput
and - desi gni nput end command line options. The first argument after - desi gni nput isthe user module.
Arguments after that are passed to the user input module in the call tout 699_i np_set up.

TSIM2-UM 62 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

For example: - desi gni nput ut 699/ exanpl es/ i nput/ gpi 0. so -gpi over bose -desi gni n-
put end will specify that the example user input module gpi 0. so should be used and that it should receive
the argument - gpi over bose.

8.3. Debugging

To enable printout of debug information the - ut 699 _dbgon f | ag switch can be used. Alternatively one can
issuetheut699 _dbgon f | ag command onthe TSIM2 command lineto toggle the on/off state of aflag. The debug
flagsthat are available are described for each corein the following sectionsand can belisted by ut699 _dbgon help.

Many cores aso have their own debug commands on the format coreX_dbg that targets single cores instead of
all of one kind and that have support to set all or none of the debug flags options and list the current setting for
the debug flags. See the sections on the respective cores for details.

8.4. 10/100 Mbps Ethernet Media Access Controller interface

The Ethernet core simulation model is designed to functionally model the 10/100 Ethernet MAC availablein the
UT699E. For core details and register specification please see the UT699E manual .

The following features are supported:
« Direct Memory Access
* Interrupts

8.4.1. Start up options

Ethernet core start up options
-grethconnect host[: port]
Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.
8.4.2. Commands

Ethernet core TSM commands

greth_connect host[:port]

Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.
greth_status

Print Ethernet register status

8.4.3. Debug flags

The following debug flags are available for the Ethernet interface. Use the them in conjunction with the
ut699_dbgon command to enable different levels of debug information.

Table 8.3. Ethernet debug flags

Flag Trace
GAISLER_GRETH_ACC GRETH accesses
GAISLER_GRETH_L1 GRETH accesses verbose
GAISLER_GRETH_TX
GAISLER_GRETH_RX
GAISLER_GRETH_RXPACKET

GRETH transmissions
GRETH reception
GRETH received packets

GAISLER_GRETH_RXCTRL

GRETH RX packet server protocol

GAISLER_GRETH_RXBDCTRL

GRETH RX buffer descriptors DMA

GAISLER_GRETH_RXBDCTRL

GRETH TX packet server protocol

GAISLER_GRETH_TXPACKET

GRETH transmitted packets

GAISLER GRETH_IRQ

GRETH interrupts

TSIM2-UM
May 2020, Version 2.0.66

63 www.cobham.com/gaisler

COBHAM

8.4.4. Ethernet packet server

The simulation model relies on a packet server to receive and transmit the Ethernet packets. The packet server
should open a TCP socket which the module can connect to. The Ethernet core is connected to a packet server
using the- gr et hconnect start-up parameter or using the greth_connect command.

An example implementation of a packet server, named gr et h_confi g, isincluded in TSIM distribution. It
uses the TUN/TAP interface in Linux, or the WinPcap library on Windows, to connect the GRETH core to a
physical Ethernet LAN. Thismakesit easy to connect the simulated GRETH coreto real hardware. It can providea
throughput in the order of magnitude of 500 to 1000 KiB/sec. Seeits distributed README for usage instructions.

8.4.5. Ethernet packet server protocol

Ethernet data packets have the following format. Note that each packet is prepended with a one word length field
indicating the length of the packet to come (including its header).

Packet length at offset OxO:
31 0

LEN

310 LEN Length of rest of packet: 4 + number of data bytes

Header at offset Ox4:

31 16 15 8 7 5 4 0
R IPID ‘ TYPE ‘ R

3116 R Reserved for future use. Must be set to O.

15:8 IPID IP coreID: 1 for Ethernet
7.5 TYPE Packet type: O for data packets
4.0 R Reserved for future use. Must be set to 0.

Offset 0x8: The rest of the packet is the encapsulated Ethernet packet
Figure 8.1. Ethernet data packet

8.5. SpaceWire interface with RMAP support

The UT699E AHB modul e contains 4 GRSPW?2 cores which modelsthe GRSPW?2 cores availablein the UT699E.
For core details and register specification please see the UT699E manual.

Supported features include:
e Transmission and reception of SpaceWire packets
« Transmission and reception of Time codes
* RMAP
e Server side link state model
e Link errors
e Link error injection

All GRSPW?2 register fields with underlying functionality in the UT699E are supported except for:
e Thelink model isonly inerror reset stateorr un state.
* The RMAP buffer disable (RD) bit in the control register with underlying functionality is not modelled.
» The limitations of the No spill (NS) DMA control register bit as noted in the section on Flow control limi-
tations below.

TSIM2-UM 64 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

8.5.1. Start up options

SoaceWire core start up options

- gr spwX_connect host: port
Connect GRPSW core X to packet server at specified server and port.
- grspwX_server port
Open a packet server for core X on specified port.
-grspw_spwireqfreq
Sets the SpaceWire input clock frequency. Combined with the clock divisor register, this determines the
startup frquency and TX frequency.
- grspw_cl kdi v val ue
Sets the reset value for the clock divisor register for all GRSPW?2 cores.
-grspw_tx_max_part _lenlen
Sets up all GRSPW?2 cores to transmit any SpaceWire packet longer than | en in data part packets with
no morethatn | en bytes of data.
- grspw_endpacket val
Whenval is1, thelast data part packet of asimulated SpaceWire packet will always be adata part packet
with no data and an end marker. Thisisthe default unless simple modeis enabled. Whenval is0, thelast
data part packet can contain both data and an end marker. Thisisthe default when simple mode is enabled.
-grspw_sinple 1
Set all GRSPW?2 coresto “simple mode’. This can be used for backward compatibility with TSIM 2.0.44
and backwards. See the separate section on simple mode for details. Note the needed 1 argument.
-grspw_sinple_rxfreqfreq
Sets the RX frequency in MHz for all GRSPW2 coresto f r eq. This is only valid together with the -
grspw_si npl e 1 option.

X in the above options has the range 1-4.
8.5.2. Commands

SpaceWire core TS M commands

grspwX_connect host : port
Connect GRSPW?2 core X to packet server at specified server and TCP port.

grspwX_server port
Open a packet server for GRSPW2 core X on specified TCP port.

grspwX_status
Print status for GRSPW2 core X.

grspwX_dbg [ar gunent]
Sets, clears, lists, toggles debug options for individual GRSPW?2 cores. Using gr spwX_dbg without any
arguments will list all available options. The list argument will list current debug option settings. The all
argument will turn on all debug options. The clean argument will turn off al debug options. Using one of
the available debug options as argument will toggle that debug option. See the section below.

X in the above commands has the range 1-4.
8.5.3. Debug flags

The following debug flags and debug subcommands are available for SpaceWire interfaces. The
GAl SLER_GRSPW * flags can be used with the gr spwX_dbg command to toggle individual flags for individual
SpaceWire cores and with the ut699_dbgon command to toggle individual flags for al SpaceWire cores. The
subcommmands can be used with the gr spwX_dbg command to change and list the settings of al flags for indi-
vidual SpaceWire cores.

Table 8.4. SpaceWire debug flags

Flag Trace
GAISLER_GRSPW_ACC GRSPW accesses
GAISLER_GRSPW_RXPACKET GRSPW received packets
TSIM2-UM 65 www.cobham.com/gaisler

May 2020, Version 2.0.66

COBHAM

Flag Trace
GAISLER_GRSPW_RXCTRL GRSPW rx protocol
GAISLER_GRSPW_TXPACKET GRSPW transmitted packets
GAISLER_GRSPW_TXCTRL GRSPW tx protocol
GAISLER_GRSPW_RMAP GRSPW RMAP accesses
GAISLER_GRSPW_RMAPPACKET GRSPW RMAP packet dumps

GAISLER_GRSPW_RMAPPACKDE

GRSPW RMAP packet decoding

GAISLER_GRSPW_DMAERR

GRSPW DMA errors

GAISLER_GRSPW_LINK

Link changes

GAISLER_GRSPW_PART

TX/RX of GRSPW data part packets

al Set all debug flags for the core
clean Set none of the debug flags for the core
list List the current setting of the debug flags for the core

8.5.4. SpaceWire packet server

Each SpaceWire core can be configured independently as a packet server or client using either -
gr spwX_server or-gr spwx_connect . TCP socketsare used for establishing the connections. When acting
as aserver the core can only accept a single connection.

A connection should be set up before starting simulation for the first time, and must not be broken after that.
Restarting the simulation will not tear down the connection, nor emptying any socket buffers.

The server side contains a link model that gets control information from the models at each end of the link,
determines the link state and communi cates frequencies and link errorsto the two models at each ends of the link.
It also supports error injection via two error injection packet types that can be sent from a custom client. See the
the following sections for details.

For more flexibility, such as custom routing, an external packet server can be implemented using the protocol
specified in the following sections. Each core should then be connected to that server. That server would also
have to implement a link model that at least reacts to link control packets and sends out link state packets and
RX frequency packets.

8.5.5. SpaceWire packet server protocol

The protocol used to communicate with the packet server is described below. The different types of packets are
defined according to the table below.

Table 8.5. Packet types

Type Value |Direction Notes

Data part 0 Both Only when in run state

Time code 1 Both Only when in run state

Link state 2 Server to client

Link control 3 Client to server Must be sent for model to reach run state
RX frequency 4 Server to client

Error injection 5 Client to server Optional

Packet error request 6 Client to server Optional

All packets begin with a 32-bit big endian word length field which specifies the length of the rest of the packet,
including header and other fixed fields. For most packet types this length is fixed for the particular type. Apart
from the data part packet type, where data follows the header byte-wise, all fields are 32-hit big endian words if
not otherwise specified.

TSIM2-UM 66
May 2020, Version 2.0.66

www.cobham.com/gaisler

COBHAM

All packetsreceived by the GRSPW2 model are handled sequentially, and all packets sent by the GRSPW?2 model
and the server sidelink model are supposed to be handled sequentially by the client. SpaceWire packets can be split
into multiple data parts, transferred in data part packets. Between such parts other packets such as for time codes,
link state changes, link control changes, etc., can be handled. During the simulated time span for the reception of a
data part, the receiver will not/should not handle any other packet types. Usethe- gr spw_t x_nax_part | en
option to set up GRSPW2 model to split up SpaceWire packets into data parts in order for such eventsto be able
to happen during the data stream.

8.5.5.1. Flow control limitations

Flow control interms of credit is not modeled between two ends of alink. A transmitter gets no notice if the other
end cannot give more credit. If the no-spill bit in the GRSPW2 core is set and an enabled receiving DMA channel
has no enabled descriptors, the data part packet will be held on the receiving side until a descriptor is available.
Due to the sequential nature of the packet model a link error, time code, etc. will not be handled at all by the
GRSPW2 model during thistime.

8.5.5.2. Data part packet format

A SpaceWire packet is represented by one or more data parts. A data part packet represents one such a part. For
the data parts of a multi part SpaceWire packet, only the last data part should have an EOP or EEP end marker,
i.e. the END field set to O or 1. The other parts should have no end marker, i.e. the END field set to 2. Each data
part is delivered in its entirety or not at all. A link error occurring between data parts on the other hand cuts the
SpaceWire packet short and is considered the end of that SpaceWire packet.

A data part packet is sent at the beginning of transmission of the corresponding part of the SpaceWire packet, so
that the receiver can start reacting to it as soon as the transmission starts. The GRSPW2 model by default sends
a SpaceWire packet in the form of two data part packets. The first data part packet is sent at the beginning of
transmission and contains all data but has no end marker. The second data part packet is sent when transmission
is completed and has the appropriate end marker set but contains no data. If a user model is not waiting for the
end marker packet before responding, the response could arrive before transmission is considered done by the
GRSPW2 model. Generation of separate end marker packets can be turned off using the - gr spw_endpacket

option. Splitting up SpaceWire packets into several data containing data part packets can be enabled with the -

grspw_tx_max_part | en option.

Packet length at offset OxO:
31 0

LEN

310 LEN Length of rest of packet: 4 + number of data bytesin the part

Header at offset Ox4:

31 16 15 8 7 5 4 210
R IPID | TYPE | R |END|

316 R Reserved for future use. Must be set to O.

15.8 IPID IP core ID: O for SpaceWire

7.5 TYPE Packet type: O for data part packets

4:2 R Reserved for future use. Must be set to O.

1.0 END End marker: 0: Normal End of Packet, 1: Error End of Packet, 2: No end marker

Offset 0x8: The data bytes of the part starts here

Figure 8.2. SpaceWire data part packet

TSIM2-UM 67 www.cobham.com/gaisler
May 2020, Version 2.0.66

8.5.5.3. Time code packet format

Packet length at offset OxO:

COBHAM

31 0
LEN
310 LEN Length of rest of packet: 8
Header at offset Ox4:
31 16 15 8 7 5 4 0
R IPID | TYPE | R
3116 R Reserved for future use. Must be set to 0.
15.8 IPID IP core ID: O for SpaceWire
7.5 TYPE Packet type: 1 for time code packets
4.0 R Reserved for future use. Must be set to 0.
Payload at offset Ox8:
31 8 7 6 5 0
R | cr | CN
31:8 R Reserved for future use. Must be set to 0.

7.6 CT Time control flags
5.0 CN Vaue of time counter

Figure 8.3. SpaceWire time code packet

8.5.5.4. Link state packet format

Link state packets are sent out by the server side link model when the link state changes. The only states currently
simulated areEr r or Reset and Run. A link state packet with state Er r or Reset can have the ERRORfield
set to an error seen at the receiver. Other link state packets has only None in the ERRORfield.

TSIM2-UM 68
May 2020, Version 2.0.66

www.cobham.com/gaisler

COBHAM

Packet length at offset OxO:
31 0

LEN

31.0 LEN Length of rest of packet: 4

Header at offset Ox4:

31 1918 1615 87 5432 0
R ‘ERROR‘ IPID ‘TYPE‘ R \ LS \

31:19 R Reserved for future use. Must be set to O.

18:16 ERROR Link error: 0: None, 1. Disconnect, 2: Parity, 3: Escape, 4:Credit

15:8 IPID IP core ID: O for SpaceWire

7.5 TYPE Packet type: 2 for link state packets

4:3 R Reserved for future use. Must be set to 0.

2.0 LS Link State: O: Error reset, 1: Error wait, 2: Ready, 3: Started, 4: Connecting, 5: Run

Figure 8.4. SpaceWire link state packet
8.5.5.5. Link control packet format

A link control packet must be sent from a client to the server side link model to inform if that side of thelink is
in start mode, autostart mode, and/or hasthe link disabled. In addition, the control packet contains information on
the startup frequency and the TX frequency that will be used once run state is reached. A new link control packet
should be sent from a client any time any of these parameters change.

If the startup frequencies of the two ends differ by more than afactor 1.1/0.9, the link model will reach run state.
This limit is chosen based on the limits on timeout periods in the SpaceWire standard that must be within 10%
up or down from nominal frequency. So even though the startup frequency should be 10 MHz, run state can be
reached if startup frequencies are close enough.

TSIM2-UM 69 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

Packet length at offset OxO:
31 0

LEN

31.0 LEN Length of rest of packet: 12

Header at offset Ox4:

31 16 15 8 7 543210
R IPID | TYPE | R |ASLSLD

31116 R Reserved for future use. Must be set to O.

15:8 IPID IP core ID: O for SpaceWire
75 TYPE Packet type: 3 for link control packets

4:3 R Reserved for future use. Must be set to 0.
2 AS Link autostart.

1 LS Link start.

0 LD Link disable.

Startup frequency in MHz at offset 0x8:
31 0

SFREQ

31.0 SFREQ Startup frequency in MHz, big endian |EEE-754 32-bit float
TX frequency in MHz at offset Oxc:
31 0

TFREQ

31.0 TFREQ TX freguency in MHz, big endian in IEEE-754 32-hit float

Figure 8.5. SpaceWire link control packet
8.5.5.6. RX frequency packet format
The server side link model sends out this packet type to inform the client of with what frequency the other side

transmits with when in run state. A new packet of this type is sent any time the transmitter on the other side
changesits TX frequency.

TSIM2-UM 70 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

Packet length at offset OxO:
31 0

LEN

31.0 LEN Length of rest of packet: 8

Header at offset Ox4:

31 16 15 8 7 5 4 0
R IPID | TYPE | R

31116 R Reserved for future use. Must be set to O.

15:8 IPID IP core ID: O for SpaceWire
75 TYPE Packet type: 4 for rx frequency packets
4.0 R Reserved for future use. Must be set to 0.

RX freguency in MHz at offset Ox8:
31 0

\ RFREQ

31.0 RFREQ RX frequency in MHz, big endian IEEE-754 32-hit float

Figure 8.6. SpaceWire rx frequency packet
8.5.5.7. Link error injection packet format

A client can send a packet of this kind to the server side link model to request that a link error will occur. The
error specified isthelink error that is seen at the targeted end. The OE bit determines which end of the link isthe
targeted end, i.e. will seethe error.

If theOEbitissetto 1, theerror will be seen at the receiver of the simulation model on the other end. Thesimulation
model on the client side will see a disconnect error viaalink state packet. In order for this error to happen during
reception of a SpaceWire packet at the other end, the client can sent adata part packet with no end marker followed
by alink error injection packet.

If the OE bit is set to O, the error will be seen at the receiver on the client end. The simulation model at the client
end will seethe requested error viaalink state packet. The simulation model at the other end will see adisconnect
error. Note that due to the nature of the model, this cannot in general be relied upon to inject an error during the
reception of a SpaceWire packet, even if split up in multiple data parts. Thelink state packet will not be sent by the
server side link model until al previous packets have been handled, and the client should handle all other packets
gueued up before that link state packet can be handled. To inject alink error during the reception of a SpaceWire
packet at the client side, the packet error request packet should be used instead.

TSIM2-UM 71 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

Packet length at offset OxO:
31 0

LEN

31.0 LEN Length of rest of packet: 4

Header at offset Ox4:

31 21 20 19 18 16 15 8 7 5 4 0
R ‘OE‘ R \ ERROR \ IPID \ TYPE \ R

31:21 R Reserved for future use. Must be set to 0.

20 OE Other end: 1: other end gets the error, 0: my end gets error

19 R Reserved for future use. Must be set to 0.

18:16 ERROR Link error: 1: Disconnect, 2: Parity, 3: Escape, 4:Credit
15:8 IPID IP core ID: O for SpaceWire

75 TYPE Packet type: 5 for link error injection packets

4.0 R Reserved for future use. Must be set to 0.

Figure 8.7. SpaceWire link error injection packet
8.5.5.8. Packet error request packet format

A client can send a packet of this kind to the server side link model to request that alink error will occur during
reception of a certain data packet by the client. The error specified is the link error that is seen, viaalink state
packet, by the client asaresult. The other side will see adisconnect error. A 64-bit packet number, counting from
0, indicates during which SpaceWire packet sent from the other sideto the client thelink error should happen. Note
that this number is indexing SpaceWire packets, not individual data part packets, and does not take SpaceWire
packets sent from the client to the server side into account in the numbering. There can only be one outstanding
packet error request per targeted GRSPW2 core at atime.

The grspwX_status command can be issued for the targeted GRSPW?2 core to see how many SpaceWire packets
have currently been sent by that core. Thisincludes started but aborted SpaceWire packets, dueto link error, core
reset or active aborting using the Abort TX (AT) bit in the DMA control register of the GRSPW?2 core.

TSIM2-UM 72 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

Packet length at offset OxO:
31 0

LEN

31.0 LEN Length of rest of packet: 16

Header at offset Ox4:

31 19 18 16 15 8 7 5 4 0
R | ERROR | IPID | TYPE | R

31119 R Reserved for future use. Must be set to O.

18:16 ERROR Link error: 1: Disconnect, 2: Parity, 3: Escape, 4:Credit
15:8 IPID IP core ID: O for SpaceWire

7.5 TYPE Packet type: 6 for packet error request packets

4.0 R Reserved for future use. Must be set to 0.

Packet number to request error for, most significant word at offset 0x8:

31 0

MSW

31.0 MSW Bits 63:32 of unsigned 64-bit big endian integer
Packet number to request error for, least significant word at offset Oxc:

31 0

LSW

31.0 LSW Bits31:0 of unsigned 64-bit big endian integer
Reserved field at offset 0x10:

31 0

\ R

31.0 R Reserved for future use. Must be set to 0.

Figure 8.8. SpaceWire packet error request packet
8.5.6. Simple Mode

For backwards compatibility with TSIM 2.0.44 and older, the GRSPW?2 models can be set up in “simple mode”
withthe- gr spw_si npl e 1 option. This makesthefollowing changesto the simulation model for all GRSPW?2
cores:

¢ The only supported packet types are data part packets and time code packets. The model sends out no other
packet types and accepts no other packet types.

« In simple mode a SpaceWire packet is by default sent as a single data part packet with an end mark-
er. Generation of separate end packets can be enabled with the - gr spw_endpacket option. Simple
mode does support al kinds of data part packets. However, if one needs to be compatible with the old-
er protocol, each data part packet should contain a full SpaceWire packet with an end marker and the -
grspw_t x_max_part | en option should not be used.

e Thelink state that a GRSPW?2 core percievesis solely determined by its own link control setting. The other
end isassumed to try to start thelink. In other words, run state is achieved once the GRSPW2 is set to start or

TSIM2-UM 73 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

autostart without having link disable set. Moreover, startup frequencies are ignored and run stateis achieved
without any delay.

¢ TheRX frequency isdetermined primarily by the- gr spw_si npl e_r xf r eq option. If that isnot used, the
RX freguencty istaken by the- gr spw_spwf r eq option. If none of those options are set the CPU frequency
isused. No cases take any clock divisors info account. The TX frequency is determined in the usual way as
when not in simple mode, which includes taking the clock divisor register into account.

8.6. PCl initiator/target interface

The UT699E AHB module models the PCI core available in the UT699E ASIC. For core details and register
specification please see the UT699E manual.

8.6.1. Connecting a user PCl model with the UT699E module
See Section 8.2 for details on how to connect the user PCl model to the UT699E module.

8.6.2. Commands

PCI Commands

pci_status
Print status for the PCI core

8.6.3. Debug flags

The following debug flags are available for the PCI interface. Use them in conjunction with the ut699_dbgon
command to enable different levels of debug information.

Table 8.6. PCI interface debug flags

Flag Trace

GAISLER_GRPCI_ACC AHB accesses to/from PCI core
GAISLER_GRPCI_REGACC GRPCI APB register accesses
GAISLER_GRPCI_DMA_ REGACC PCIDMA APB register accesses
GAISLER_GRPCI_DMA GRPCI DMA accesses on the AHB bus
GAISLER_GRPCI_TARGET_ACC GRPCI target accesses
GAISLER_GRPCI_INIT Print summary on startup

8.6.4. PCl bus model API

Thestructure st ruct grpci _i nput modelsthe PCI bus. It is defined as:
struct grpci_input {
struct input_inp _b;

int (*acc)(struct grpci_input *ctrl, int cnd, unsigned int addr,
unsigned int *data, unsigned int *abort, unsigned int *ws);

int (*target_acc)(struct grpci_input *ctrl, int cmd, unsigned int addr,
unsi gned int *data, unsigned int *mexc);
s
The acc callback should be set by the PCI user module at startup. It is called by the UT699E module whenever
it reads/writes as a PCl bus master.

Table 8.7. acc callback parameters

Parameter Description

cmd Command to execute, see Section 8.6.2 details.

addr PCl address.
TSIM2-UM 74 www.cobham.com/gaisler

May 2020, Version 2.0.66

COBHAM

Parameter Description

data Data buffer. The user module should return the read datain * dat a for read
commands or write the datain * dat a for write commands.

wsize 0: 8-bit access 1: 16-hit access, 2; 32-hit access. |salways 2 for read accesses.

ws Set * ws to the number of PCI clocksit takes to complete the transaction.

abort Set *abort to 1 to generate target abort, or 0 otherwise.

Thereturn value of acc determinesif the transaction terminates successfully (1, GRPCI_ACC_OK) or with master
abort (0, GRPCI_ACC_MASTER_ABORT).

The callback target_acc is installed by the UT699E AHB module. The PCI user dynamic library can call this
function to initiate an access to the UT699E PCI target.

Table 8.8. target_acc parameters

Parameter Description

cmd Command to execute, see Section 8.6.2 for details. 1/0O cycles are not sup-
ported by the UTG99E target.

addr PCI address. Should always be word aligned for read accesses.

data Data buffer. The read data is returned in * dat a for read commands or the
datain * dat a iswritten for write commands.

wsize 0: 8-hit access 1: 16-bit access, 2: 32-bit access. Should always be 2 for read
accesses.

mexc 0if accessis successful, 1 in case of target abort.

If the address matched MEMBARO, MEMBAR1 or CONFIG target_acc will return 1 otherwise 0.

Seetheut 699/ exanpl es/ i nput for example implementations.

8.7. GPIO interface

8.7.1. Connecting a user GPIO model with the UT699E module
See Section 8.2 for details on how to connect the user GPIO model to the UT699E module.

8.7.2. Commands

GPIO Commands
gpio0_status

Print status for the GPIO core.

gpio0_dbg | f | ag| subcommand]
Toggle, set, clear, list debug flags for the GPIO core.

8.7.3. Debug flags

The following debug flags and debug subcommands are available for GPIO interfaces. The GAI SLER_GPI O _*

flags can be used with the gpio0_dbg command to toggle individual flags for individual GPIO cores and with the
ut699 _dbgon command to toggle individual flags for all GPIO cores. The subcommmands can be used with the
gpio0_dbg command to change and list the settings of all flags for individual GPIO cores.

Table 8.9. GPIO debug flags

Flag/subcommand

Trace

GAISLER GPIO_ACC

GPIO register accesses

GAISLER_GPIO_IRQ

GPIO interrupts

TSIM2-UM
May 2020, Version 2.0.66

75 www.cobham.com/gaisler

COBHAM

Flag/subcommand

Trace

al Set all GPIO debug flags for the core
clean Set none of the GPIO debug flags for the core
list List the current setting of the debug flags for the core

8.7.4. GPIO model API

The structure st ruct gpi o_i nput modelsthe GPIO pins. It is defined as:

/* GPIO input provider */

struct gpio_input {
struct input_inp _b;
int (*gpioout)(struct gpio_input *ctrl, unsigned int out);
int (*gpioin) (struct gpio_input *ctrl, unsigned int in);

3

Thegpi oout callback should be set by the user module at startup. The gpi oi n callback is set by the UT699E
AHB module. The gpi oout callback is called by the UT699E module whenever a GPIO output pin changes.
Thegpi oi n calback is called by the user module when the input pins should change. Typically the user module
would register an event handler at a certain time offset and call gpi oi n from within the event handler.

Table 8.10. gpioout callback parameters

Parameter Description

out The values of the output pins
Table 8.11. gpioin callback parameters

Parameter Description

in Theinput pin values

The return value of gpi oi n/ gpi oout isignored.

Seetheut 699/ exanpl es/ i nput for an example implementation.

8.8. CAN interface

The UT699E AHB module contains 2 CAN_OC coreswhich modelsthe CAN_OC coresavailableinthe UT699E.
For core details and register specification please see the UT699E manual.

8.8.1. Start up options

CAN core start up options

-can_ocX_connect host: port
Connect CAN_OC core X to packet server to specified server and TCP port.

-can_ocX _server port
Open a packet server for CAN_OC core X on specified TCP port.

-can_ocX ack [0] 1]
Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This option
must be put after - can_ocX_connect .

X in the above optionsisin the range 1-2.
8.8.2. Commands

CAN core TSM commands

can_ocX_connect host:port
Connect CAN_OC core X to packet server to specified server and TCP port.

TSIM2-UM 76
May 2020, Version 2.0.66

www.cobham.com/gaisler

COBHAM

can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.
can_ocX_ack <0[1>
Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This com-
mand should only beissued after a connection has been established.
can_ocX_status
Prints out status information for the CAN_OC core.
can_ocX_dbg
Toggle, set, clear, list debug flags for the CAN_OC core.

X in the above commandsisin the range 1-2.

8.8.3. Debug flags

Thefollowing debug flags and debug subcommands are availablefor CAN interfaces. The GAl SLER_CAN _OC *

flags can be used with the can_ocX _dbg command to toggle individual flags for individual CAN_OC cores and
with the ut699 dbgon command to toggle individua flags for all CAN_OC cores. The subcommmands can be
used with the can_ocX_dbg command to change and list the settings of al flags for individual CAN_OC cores.

Table 8.12. CAN debug flags

Flag Trace

GAISLER_CAN_OC_ACC CAN_OC register accesses
GAISLER_CAN_OC_RXPACKET CAN_OC received messages
GAISLER_CAN_OC_TXPACKET CAN_OC transmitted messages
GAISLER_CAN_OC_ACK CAN_OC acknowledgements
GAISLER_CAN_OC_IRQ CAN_OC interrupts

al Set all debug flags for the core

clean Set none of the debug flags for the core

list List the current setting of the debug flags for the core

8.8.4. Packet server

Each CAN_OC core can be configured independently as a packet server or client using either -
can_ocX_server or - can_ocX _connect . When acting as a server the core can only accept a single con-
nection.

8.8.5. CAN packet server protocol

The protocol used to communicate with the packet server is described below. Four different types of packets are
defined according to the table below.

Table 8.13. CAN packet types

Type Value
Message 0x00
Error counter OxFD
Acknowledge OxXFE
Acknowledge config OxFF

8.8.5.1. CAN message packet format

Used to send and receive CAN messages.

TSIM2-UM 77 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

31 0
0x0 LENGTH
31.0 LENGTH, specifiesthe length of the rest of the packet

CAN message
Byte# Description Bits (M SB-L SB)
7 6 |5 |4 [3]2 1 Jo

Protocol ID =0 Prot ID 7-0

Control FF ‘ RTR ‘ ‘ ‘ DLC (max 8 bytes)
6-9 ID (32 bit word in network byte|ID 10-0 (bits 31 - 11 ignored for standard frame format)

order) ID 28-0 (bits 31-29 ignored for extended frame format)
10-17 Databyte1 - DLC Databyten 7-0

Figure 8.9. CAN message packet format
8.8.5.2. Error counter packet format

Used to write the RX and TX error counter of the modelled CAN interface.

31 0

0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet

Error counter packet

Byte# Field Description

4 Packet type Type of packet, OXFD for error counter packets
5 Register 0 - RX error counter, 1 - TX error counter

6 Value Valueto write to error counter

Figure 8.10. Error counter packet format

8.8.5.3. Acknowledge packet format

If the acknowledge function has been enabled through the start up option or command the CAN interface will wait
for an acknowledge packet each time it transmits a message. To enable the CAN receiver to send acknowledge
packets (either NAK or ACK) an acknowledge configuration packet must be sent. This is done automatically by
the CAN interface when can_ocX_ack isissued.

31 0
0x0 LENGTH
310 LENGTH, specifiesthe length of the rest of the packet
Acknowledge packet
Byte# Field Description
4 Packet type Type of packet, OXFE for acknowledge packets
5 Ack payload 0 - No acknowledge, 1 - Acknowledge

Figure 8.11. Acknowledge packet format

TSIM2-UM 78 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

8.8.5.4. Acknowledge packet format

This packet is used for enabling/disabling the transmission of acknowledge packets and their payload (ACK
or NAK) by the CAN receiver. The CAN transmitter will always wait for an acknowledge if started with -
can_ocX_ack orif the can_ocX_ack command has been issued.

31 0

0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet

Acknowledge configuration packet

Byte# Field Description
4 Packet type Type of packet, OXFF for acknowledge configuration packets
5 Ack configuration bit 0 Unused

bit 1 Ack packet enable, 1 - enabled, O - disabled

bit 2 Set ack packet payload, 1 - ACK, 0 - NAK

Figure 8.12. Acknowledge configuration packet format

TSIM2-UM 79 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

9. Cobham UT700 emulation

To emulate the UT700 chip the - ut 700 option should be used. That sets up parametersfor core TSIM2 to match
UT700. In addition, the UT700 loadable AHB module implements emulation models for additional cores of the
UT700. Apart from an overview of what TSIM supports for UT700 emulation, this chapter is mainly about the
UT700 AHB module.

Thefollowing table lists which coresin the UT700 are modelled by TSIM or not. Some supported cores are mod-
elled by the core TSIM2 and somein the UT700 AHB module. Thetable contains some notes of some unsupported
features for otherwise supported cores, but is not necessarily exhaustive in this respect. See Chapter 4 for details
on the builtin simulation models and the rest of the chapter for the AHB module models.

Table 9.1. Smulation models for UT700

Core Status Notes

LEON3FT Supported by core TSIM2 Only one CPU ismodelled. No FT features are modelled.
GRFPU Supported by core TSIM2

AHBSTAT Supported by core TSIM2

APBCTRL Supported by core TSIM2

APBUART Supported by core TSIM2

FTMCTRL Supported by core TSIM2 No FT features are modelled
GPTIMER Supported by core TSIM2

IRQMP Supported by core TSIM2

CAN_OC Supported by AHB module

GRETH Supported by AHB module

GRGPIO Supported by AHB module

GRPCI Supported by AHB module | Including DMA controller
GRSPW Supported by AHB module

SPICTRL Supported by AHB module

CLKGATE Not supported

GR1553B Not supported

GRTC Not supported

GRTM Not supported

AHBJTAG Not supported Debug link

AHBUART Not supported Debug link

DSU3 Not supported Debug unit

TSIM supports running several AHB modules. User defined models for unsupported cores can be used in parallel
with the UT700 AHB module. User defined models can also override the simulation models in the UT700 AHB
module.

9.1. Overview of the UT700 AHB module

The UT700 AHB module is a loadable AHB module that implements UT700 peripherals in addition to what is
emulated by core TSIM aslisted in Table 9.1. Theinterfaces are modelled at packet/transaction/message level and
provides an easy way to connect the simulated UT700 to a larger simulation framework. See also Section 5.4.1
on some limitations of some features when using this module. The UT700 AHB module is only supported for
TSIM2 LEONS3.

The following files are delivered with the UT700 TSIM module:

TSIM2-UM 80
May 2020, Version 2.0.66

www.cobham.com/gaisler

COBHAM

Table 9.2. Files delivered with the UT700 TS M module

File Description

ut700/linux/ut700.s0 UT700 AHB module for Linux

ut700/win32/ut700.dll UT700 AHB module for Windows

ut700/exampl es/input The input directory contains two examples of PCI user
modules

ut700/examples/input/README.txt Description of the user module examples

ut700/exampl es/input/M akefile Makefile for building the user modules

ut700/examples/input/pci.c PCI user module example that makes UT700 PCI ini-
tiator accesses

ut700/examples/input/pci_target.c PCI user module example that makes UT700 PCI target
accesses

ut700/exampl es/input/ut700inputprovider.h Interface between the UT700 module and the user de-
fined PCI module

ut700/examples/input/pci_input.h UT700 PCI input provider definitions

ut700/exampl es/input/input.h Generic input provider definitions

ut700/examples/input/tsim.h TSIM interface definitions

ut700/exampl es/input/end.h Defines the endian of the local machine

ut700/exampl es/test Thetest directory contains tests that can be executed in
TSIM

ut700/exampl es/test/README .txt Description of the tests

ut700/exampl es/test/M akefile Makefile for building the tests

ut700/exampl es/test/cansend.c CAN transmission test

ut700/exampl es/test/canrec.c CAN reception test

ut700/exampl es/test/pci.c PCI interface test

ut700/exampl es/test/pcitest.h Header file for PCI test

9.2. Loading the module

The moduleisloaded using the TSIM2 option - ahbm A user input module for SPI, GPIO and PCI can optionally
be declared, between - desi gni nput and - desi gni nput end options. For example:

On Linux:

tsimleon3 -ut700 -ahbm ut 700/ i nux/ ut 700. so

-desi gninput ./input.so -designinputend
On Windows:
tsimleon3 -ut700 -ahbm ut 700/ wi n32/ ut 700. dI

-desi gninput input.dll -designinputend

The option - ut 700 needs to be given to TSIM to enable the UT700 processor configuration. The above line
loads the UT700 AHB module ut 700. so which in turn loads the user user input module . / i nput . so. The
user input module . / i nput . so communicates with ut 700. so using the user module interface described in
ut 700i nput pr ovi der . h, whileut 700. so communicates with TSIM viathe AHB interface.

Example user input modules can be found in ut 700/ exanpl es/ i nput /.
9.2.1. User input module interface

The SPI, GPIO and PCI models in the UT700 module uses a user supplied user input module, in the form of a
dynamic loadable library, that models the outside world. This section describes the general interface for hooking

TSIM2-UM 81 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

up the user modul e to the UT700 module. The details on the interfaces to the particular cores, see their respective
sections.

A user supplied dynamic library should expose a public symbol ut 700i nput syst em of type st ruct
ut 700_subsystem *. Thestruct ut 700_subsyst emisdefinedinut 700i nput provi der. h as:

struct ut700_subsystem {
void (*ut700_i np_setup) (int id,
struct ut700_inp_layout * |,
char **argv, int argc);
void (*ut700_inp_restart) (int id,
struct ut700_inp_layout * 1);
struct siminterface *simf;

}

Thecalbackut 700_i np_r est art will becalled every timethesimulator restarts. Atinitialization thecallback
ut 700_i np_set up will be called once, supplied with a pointer to structurest ruct ut 700_i np_| ayout
defined inut 700i nput provi der. h.

struct ut700_i np_| ayout {
struct grpci_input grpci;
struct gpio_i nput gpio;
struct spi_input spi;

}

The user module can accesstheglobal TSIM st ruct si m i nt er f ace structurethroughthesi mi f member.
See Chapter 5 for more details.

The user supplied dynamic library should, initsut 700_i np_set up function, “claim” the input structs it uses
using thel NPUT_CLAI Mmacro. For example | NPUT_CLAI M| - >gpi 0) asin the example below.

A user supplied dynamic library that only sets up amodel for GPIO could look like this:

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#include "tsimh"

#i ncl ude "ut 700i nput provi der. h"

extern struct ut700_subsystem *ut 700i nput system
static struct ut700_inp_|layout *lay = 0;

static void Change(struct gpio_input *ctrl) {

}

int gpioout(struct gpio_input *ctrl, unsigned int out) {
) C

static void ut700_inp_setup (int id,
struct ut700_i np_l ayout * |,
char **argv, int argc) {
lay = 1;
printf("User-dll: ut700_inp_setup:C aimng %\n", |->gpio._b.nane);
I NPUT_CLAI M| - >gpi 0) ;
| - >gpi 0. gpi oout = gpi oout;
ut 700i nput syst em >si mi f - >event (Change, (unsi gned | ong) & - >gpi 0, 10000000) ;
}

static struct ut700_subsystem ut700_gpi o
ut 700_i np_setup, 0,0
s

1]
-~

struct ut700_subsystem *ut 700i nput system = &ut 700_gpi o;

A Makefile that would build a user supplied dynamic library gpio.(dll|so) could look like this:

MDLL_FI X=$(i f $(strip $(shell unane|grep M NGWB2)),dll, so)
MLIB=$(if $(strip $(shell unane|grep M NGMAB2)),-1ws2_32 -luser32 -lkernel 32 -1w nmm)

all: gpio.$(MDLL_FI X)

TSIM2-UM 82 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

gpi 0. (M DLL_FIX) : gpio.o
$(CC) -shared -g gpio.o -o gpio.$(MDLL_FI X) $(M.LIB)

gpi 0. 0: gpio.c
$(CC) -fPIC-c -g -Q0 gpio.c -0 gpio.o

cl ean:
-rm-f *.0 *.so

The user can then specify the user module to be loaded by the ut700.so AHB module using the - desi gni nput
and - desi gni nput end command line options. The first argument after - desi gni nput isthe user module.
Arguments after that are passed to the user input module in the call tout 700_i np_set up.

For example: - desi gni nput ut 700/ exanpl es/ i nput/ gpi 0. so -gpi over bose -desi gni n-
put end will specify that the example user input module gpi 0. so should be used and that it should receive
the argument - gpi over bose.

9.3. Debugging

To enable printout of debug information the - ut 700_dbgon f | ag switch can be used. Alternatively one can
issuetheut700_dbgon f | ag command onthe TSIM2 command lineto toggle the on/off state of aflag. The debug
flagsthat are available are described for each corein the following sectionsand can belisted by ut700_dbgon help.

Many cores also have their own debug commands on the format coreX_dbg that targets single cores instead of
all of one kind and that have support to set all or none of the debug flags options and list the current setting for
the debug flags. See the sections on the respective cores for details.

9.4. 10/100 Mbps Ethernet Media Access Controller interface

The Ethernet core simulation model is designed to functionally model the 10/100 Ethernet MAC available in the
UT700. For core details and register specification please see the UT700 manual .

The following features are supported:

» Direct Memory Access
* |Interrupts

9.4.1. Start up options

Ethernet core start up options

-grethconnect host[:port]
Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.

9.4.2. Commands

Ethernet core TSM commands

greth_connect host[:port]

Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.
greth_status

Print Ethernet register status

9.4.3. Debug flags

The following debug flags are available for the Ethernet interface. Use the them in conjunction with the
ut700_dbgon command to enable different levels of debug information.

Table 9.3. Ethernet debug flags

Flag Trace
GAISLER_GRETH_ACC GRETH accesses
TSIM2-UM 83 www.cobham.com/gaisler

May 2020, Version 2.0.66

COBHAM

Flag

Trace

GAISLER_GRETH_L1

GRETH accesses verbose

GAISLER_GRETH_TX

GRETH transmissions

GAISLER GRETH_RX

GRETH reception

GAISLER_GRETH_RXPACKET

GRETH received packets

GAISLER_GRETH_RXCTRL

GRETH RX packet server protocol

GAISLER_GRETH_RXBDCTRL

GRETH RX buffer descriptors DMA

GAISLER_GRETH_RXBDCTRL

GRETH TX packet server protocol

GAISLER_GRETH_TXPACKET GRETH transmitted packets
GAISLER_GRETH_IRQ GRETH interrupts

9.4.4. Ethernet packet server

The simulation model relies on a packet server to receive and transmit the Ethernet packets. The packet server
should open a TCP socket which the module can connect to. The Ethernet core is connected to a packet server
using the- gr et hconnect start-up parameter or using the greth_connect command.

An example implementation of a packet server, named gr et h_confi g, isincluded in TSIM distribution. It
uses the TUN/TAP interface in Linux, or the WinPcap library on Windows, to connect the GRETH core to a
physical Ethernet LAN. Thismakesit easy to connect the simulated GRETH coreto real hardware. It can providea
throughput in the order of magnitude of 500 to 1000 KiB/sec. Seeits distributed README for usage instructions.

9.4.5. Ethernet packet server protocol
Ethernet data packets have the following format. Note that each packet is prepended with aone word length field
indicating the length of the packet to come (including its header).

Packet length at offset Ox0:
31 0

LEN

31.0 LEN Length of rest of packet: 4 + number of data bytes

Header at offset Ox4:

31 16 15 8 7 5 4 0
R IPID | TYPE | R

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core |D: 1 for Ethernet
75 TYPE Packet type: O for data packets
4.0 R Reserved for future use. Must be set to 0.

Offset 0x8: The rest of the packet is the encapsulated Ethernet packet
Figure 9.1. Ethernet data packet

9.5. SpaceWire interface with RMAP support

The UT700 AHB module contains 4 GRSPW?2 cores which models the GRSPW2 cores available in the UT700.
For core details and register specification please see the UT700 manual.

TSIM2-UM 84 www.cobham.com/gaisler

May 2020, Version 2.0.66

COBHAM

Supported features include:

e Transmission and reception of SpaceWire packets
e Transmission and reception of Time codes

* RMAP

* Server sidelink state model

e Link errors

e Link error injection

All GRSPW?2 register fields with underlying functionality in the UT700 are supported except for:
e Thelink model isonlyinerror reset stateorr un state.
* The RMAP buffer disable (RD) bit in the control register with underlying functionality is not modelled.
» The port loopback (Loop) bit in the control register with underlying functionality is not modelled.

» The limitations of the No spill (NS) DMA control register bit as noted in the section on Flow control limi-
tations below.

9.5.1. Start up options

SoaceWire core start up options

- gr spwX_connect host: port
Connect GRPSW core X to packet server at specified server and port.
- grspwX_server port
Open a packet server for core X on specified port.
-grspw_spwireqfreq
Sets the SpaceWire input clock frequency. Combined with the clock divisor register, this determines the
startup frquency and TX frequency.
- grspw_cl kdi v val ue
Sets the reset value for the clock divisor register for all GRSPW?2 cores.
-grspw_tx_max_part _lenlen
Sets up all GRSPW?2 cores to transmit any SpaceWire packet longer than | en in data part packets with
no morethatn | en bytes of data.
- gr spw_endpacket val
Whenval is1, thelast data part packet of asimulated SpaceWire packet will always be a data part packet
with no data and an end marker. Thisisthe default unless simple modeis enabled. Whenval is0, thelast
data part packet can contain both data and an end marker. Thisisthe default when simple mode is enabled.
-grspw_sinple 1
Set all GRSPW?2 coresto “simple mode’. This can be used for backward compatibility with TSIM 2.0.44
and backwards. See the separate section on simple mode for details. Note the needed 1 argument.
-grspw_sinple_rxfreqfreq
Sets the RX frequency in MHz for all GRSPW2 coresto f r eq. Thisis only valid together with the -
gr spw_si npl e 1 option.

Xin the above options has the range 1-4.
9.5.2. Commands

SoaceWire core TSM commands

grspwX_connect host : port
Connect GRSPW?2 core X to packet server at specified server and TCP port.
grspwX_server port
Open a packet server for GRSPW2 core X on specified TCP port.
grspwX_status
Print status for GRSPW2 core X.
grspwX_dbg [ar gunent]
Sets, clears, lists, toggles debug options for individual GRSPW?2 cores. Using gr spwX_dbg without any
arguments will list all available options. The list argument will list current debug option settings. The all

TSIM2-UM 85 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

argument will turn on all debug options. The clean argument will turn off al debug options. Using one of
the available debug options as argument will toggle that debug option. See the section below.

X in the above commands has the range 1-4.
9.5.3. Debug flags

The following debug flags and debug subcommands are available for SpaceWire interfaces. The
GAl SLER_GRSPW * flags can be used with the gr spwX_dbg command to toggle individual flagsfor individual
SpaceWire cores and with the ut700_dbgon command to toggle individual flags for al SpaceWire cores. The
subcommmands can be used with the gr spwX_dbg command to change and list the settings of all flags for indi-
vidual SpaceWire cores.

Table 9.4. SpaceWire debug flags

Flag Trace

GAISLER_GRSPW_ACC GRSPW accesses
GAISLER_GRSPW_RXPACKET GRSPW received packets
GAISLER_GRSPW_RXCTRL GRSPW rx protocol
GAISLER_GRSPW_TXPACKET GRSPW transmitted packets
GAISLER_GRSPW_TXCTRL GRSPW tx protocol
GAISLER_GRSPW_RMAP GRSPW RMAP accesses
GAISLER_GRSPW_RMAPPACKET GRSPW RMAP packet dumps
GAISLER_GRSPW_RMAPPACKDE GRSPW RMAP packet decoding
GAISLER_GRSPW_DMAERR GRSPW DMA errors
GAISLER_GRSPW_LINK Link changes
GAISLER_GRSPW_PART TX/RX of GRSPW data part packets
al Set all debug flags for the core

clean Set none of the debug flags for the core
list List the current setting of the debug flags for the core

9.5.4. SpaceWire packet server

Each SpaceWire core can be configured independently as a packet server or client using either -
gr spwX_server or-gr spwxX_connect . TCP socketsare used for establishing the connections. When acting
as aserver the core can only accept a single connection.

A connection should be set up before starting simulation for the first time, and must not be broken after that.
Restarting the simulation will not tear down the connection, nor emptying any socket buffers.

The server side contains a link model that gets control information from the models at each end of the link,
determines the link state and communicates frequencies and link errorsto the two models at each ends of the link.
It also supports error injection via two error injection packet types that can be sent from a custom client. See the
the following sections for details.

For more flexibility, such as custom routing, an external packet server can be implemented using the protocol
specified in the following sections. Each core should then be connected to that server. That server would also
have to implement a link model that at least reacts to link control packets and sends out link state packets and
RX frequency packets.

9.5.5. SpaceWire packet server protocol

The protocol used to communicate with the packet server is described below. The different types of packets are
defined according to the table below.

TSIM2-UM 86 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

Table 9.5. Packet types

Type Value |Direction Notes

Data part 0 Both Only when in run state

Time code 1 Both Only when in run state

Link state 2 Server to client

Link control 3 Client to server Must be sent for model to reach run state
RX freguency 4 Server to client

Error injection 5 Client to server Optional

Packet error request 6 Client to server Optional

All packets begin with a 32-bit big endian word length field which specifies the length of the rest of the packet,
including header and other fixed fields. For most packet types this length is fixed for the particular type. Apart
from the data part packet type, where data follows the header byte-wise, all fields are 32-bit big endian words if
not otherwise specified.

All packets received by the GRSPW2 model are handled sequentially, and all packets sent by the GRSPW?2 model
and the server sidelink model are supposed to be handled sequentially by the client. SpaceWire packets can be split
into multiple data parts, transferred in data part packets. Between such parts other packets such as for time codes,
link state changes, link control changes, etc., can be handled. During the simulated time span for the reception of a
data part, the receiver will not/should not handle any other packet types. Usethe- gr spw_t Xx_rmax_part _| en
option to set up GRSPW2 model to split up SpaceWire packets into data partsin order for such eventsto be able
to happen during the data stream.

9.5.5.1. Flow control limitations

Flow control in terms of credit is not modeled between two ends of alink. A transmitter gets no noticeif the other
end cannot give more credit. If the no-spill bit in the GRSPW2 core is set and an enabled receiving DMA channel
has no enabled descriptors, the data part packet will be held on the receiving side until a descriptor is available.
Due to the sequential nature of the packet model a link error, time code, etc. will not be handled at all by the
GRSPW2 model during thistime.

9.5.5.2. Data part packet format

A SpaceWire packet is represented by one or more data parts. A data part packet represents one such a part. For
the data parts of a multi part SpaceWire packet, only the last data part should have an EOP or EEP end marker,
i.e. the END field set to O or 1. The other parts should have no end marker, i.e. the END field set to 2. Each data
part is delivered in its entirety or not at al. A link error occurring between data parts on the other hand cuts the
SpaceWire packet short and is considered the end of that SpaceWire packet.

A data part packet is sent at the beginning of transmission of the corresponding part of the SpaceWire packet, so
that the receiver can start reacting to it as soon as the transmission starts. The GRSPW2 model by default sends
a SpaceWire packet in the form of two data part packets. The first data part packet is sent at the beginning of
transmission and contains all data but has no end marker. The second data part packet is sent when transmission
is completed and has the appropriate end marker set but contains no data. If a user model is not waiting for the
end marker packet before responding, the response could arrive before transmission is considered done by the
GRSPW2 model. Generation of separate end marker packets can be turned off using the - gr spw_endpacket

option. Splitting up SpaceWire packets into several data containing data part packets can be enabled with the -

grspw_t x_max_part _| en option.

TSIM2-UM 87 www.cobham.com/gaisler
May 2020, Version 2.0.66

Packet length at offset OxO:

31

COBHAM

LEN

31.0 LEN Length of rest of packet: 4 + number of data bytesin the part

Header at offset Ox4:

31 16 15 8 7 5 4 210
R IPID | TYPE | R |END|

31116 R Reserved for future use. Must be set to O.

15:8 IPID IP core ID: O for SpaceWire
75 TYPE Packet type: O for data part packets
4:2 R Reserved for future use. Must be set to O.

1:.0 END End marker: 0: Normal End of Packet, 1: Error End of Packet, 2: No end marker

Offset 0x8: The data bytes of the part starts here

Figure 9.2. SpaceWire data part packet

9.5.5.3. Time code packet format

Packet length at offset 0x0:

31 0
LEN
31.0 LEN Length of rest of packet: 8
Header at offset Ox4:
31 16 15 8 7 5 4 0
R IPID \ TYPE \ R
31:116 R Reserved for future use. Must be set to 0.
15:8 IPID IP core ID: O for SpaceWire
7.5 TYPE Packet type: 1 for time code packets
4.0 R Reserved for future use. Must be set to 0.
Payload at offset Ox8:
31 8 7 6 5 0
\ R \ CT | CN
31:8 R Reserved for future use. Must be set to 0.
7:6 CT Time control flags
5.0 CN Value of time counter

Figure 9.3. SpaceWire time code packet

TSIM2-UM 88
May 2020, Version 2.0.66

www.cobham.com/gaisler

COBHAM

9.5.5.4. Link state packet format

Link state packets are sent out by the server side link model when the link state changes. The only states currently
simulated are Er r or Reset and Run. A link state packet with state Er r or Reset can have the ERRORfield
set to an error seen at the receiver. Other link state packets has only None in the ERROR field.

Packet length at offset OxO:
31 0

LEN

310 LEN Length of rest of packet: 4

Header at offset Ox4:

31 19 18 16 15 8 7 54 3 2 0
R | ERROR | IPID | TYPE| R [LS |

31:119 R Reserved for future use. Must be set to 0.

18:16 ERROR Link error: 0: None, 1. Disconnect, 2: Parity, 3: Escape, 4:Credit

15:8 IPID IP core ID: O for SpaceWire

75 TYPE Packet type: 2 for link state packets

4:3 R Reserved for future use. Must be set to 0.

2.0 LS Link State: O: Error reset, 1: Error wait, 2: Ready, 3: Started, 4: Connecting, 5: Run

Figure 9.4. SpaceWire link state packet
9.5.5.5. Link control packet format

A link control packet must be sent from a client to the server side link model to inform if that side of thelink is
in start mode, autostart mode, and/or has the link disabled. In addition, the control packet containsinformation on
the startup frequency and the TX frequency that will be used once run state is reached. A new link control packet
should be sent from a client any time any of these parameters change.

If the startup frequencies of the two ends differ by more than afactor 1.1/0.9, the link model will reach run state.
This limit is chosen based on the limits on timeout periods in the SpaceWire standard that must be within 10%
up or down from nominal frequency. So even though the startup frequency should be 10 MHz, run state can be
reached if startup frequencies are close enough.

TSIM2-UM 89 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

Packet length at offset OxO:
31 0

LEN

31.0 LEN Length of rest of packet: 12

Header at offset Ox4:

31 16 15 8 7 543210
R IPID | TYPE | R |ASLSLD

31116 R Reserved for future use. Must be set to O.

15:8 IPID IP core ID: O for SpaceWire
75 TYPE Packet type: 3 for link control packets

4:3 R Reserved for future use. Must be set to 0.
2 AS Link autostart.

1 LS Link start.

0 LD Link disable.

Startup frequency in MHz at offset 0x8:
31 0

SFREQ

31.0 SFREQ Startup frequency in MHz, big endian |EEE-754 32-bit float
TX frequency in MHz at offset Oxc:
31 0

TFREQ

31.0 TFREQ TX freguency in MHz, big endian in IEEE-754 32-hit float

Figure 9.5. SpaceWire link control packet
9.5.5.6. RX frequency packet format
The server side link model sends out this packet type to inform the client of with what frequency the other side

transmits with when in run state. A new packet of this type is sent any time the transmitter on the other side
changesits TX frequency.

TSIM2-UM 90 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

Packet length at offset OxO:
31 0

LEN

31.0 LEN Length of rest of packet: 8

Header at offset Ox4:

31 16 15 8 7 5 4 0
R IPID | TYPE | R

31116 R Reserved for future use. Must be set to O.

15:8 IPID IP core ID: O for SpaceWire
75 TYPE Packet type: 4 for rx frequency packets
4.0 R Reserved for future use. Must be set to 0.

RX freguency in MHz at offset Ox8:
31 0

\ RFREQ

31.0 RFREQ RX frequency in MHz, big endian IEEE-754 32-hit float

Figure 9.6. SpaceWire rx frequency packet
9.5.5.7. Link error injection packet format

A client can send a packet of this kind to the server side link model to request that a link error will occur. The
error specified isthelink error that is seen at the targeted end. The OE bit determines which end of the link isthe
targeted end, i.e. will seethe error.

If theOEbitissetto 1, theerror will be seen at the receiver of the simulation model on the other end. Thesimulation
model on the client side will see a disconnect error viaalink state packet. In order for this error to happen during
reception of a SpaceWire packet at the other end, the client can sent adata part packet with no end marker followed
by alink error injection packet.

If the OE bit is set to O, the error will be seen at the receiver on the client end. The simulation model at the client
end will seethe requested error viaalink state packet. The simulation model at the other end will see adisconnect
error. Note that due to the nature of the model, this cannot in general be relied upon to inject an error during the
reception of a SpaceWire packet, even if split up in multiple data parts. Thelink state packet will not be sent by the
server side link model until al previous packets have been handled, and the client should handle all other packets
gueued up before that link state packet can be handled. To inject alink error during the reception of a SpaceWire
packet at the client side, the packet error request packet should be used instead.

TSIM2-UM 91 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

Packet length at offset OxO:
31 0

LEN

31.0 LEN Length of rest of packet: 4

Header at offset Ox4:

31 21 20 19 18 16 15 8 7 5 4 0
R ‘OE‘ R \ ERROR \ IPID \ TYPE \ R

31:21 R Reserved for future use. Must be set to 0.

20 OE Other end: 1: other end gets the error, 0: my end gets error

19 R Reserved for future use. Must be set to 0.

18:16 ERROR Link error: 1: Disconnect, 2: Parity, 3: Escape, 4:Credit
15:8 IPID IP core ID: O for SpaceWire

75 TYPE Packet type: 5 for link error injection packets

4.0 R Reserved for future use. Must be set to 0.

Figure 9.7. SpaceWire link error injection packet
9.5.5.8. Packet error request packet format

A client can send a packet of this kind to the server side link model to request that alink error will occur during
reception of a certain data packet by the client. The error specified is the link error that is seen, viaalink state
packet, by the client asaresult. The other side will see adisconnect error. A 64-bit packet number, counting from
0, indicates during which SpaceWire packet sent from the other sideto the client thelink error should happen. Note
that this number is indexing SpaceWire packets, not individual data part packets, and does not take SpaceWire
packets sent from the client to the server side into account in the numbering. There can only be one outstanding
packet error request per targeted GRSPW2 core at atime.

The grspwX_status command can be issued for the targeted GRSPW?2 core to see how many SpaceWire packets
have currently been sent by that core. Thisincludes started but aborted SpaceWire packets, dueto link error, core
reset or active aborting using the Abort TX (AT) bit in the DMA control register of the GRSPW?2 core.

TSIM2-UM 92 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

Packet length at offset OxO:
31 0

LEN

31.0 LEN Length of rest of packet: 16

Header at offset Ox4:

31 19 18 16 15 8 7 5 4 0
R | ERROR | IPID | TYPE | R

31119 R Reserved for future use. Must be set to O.

18:16 ERROR Link error: 1: Disconnect, 2: Parity, 3: Escape, 4:Credit
15:8 IPID IP core ID: O for SpaceWire

7.5 TYPE Packet type: 6 for packet error request packets

4.0 R Reserved for future use. Must be set to 0.

Packet number to request error for, most significant word at offset 0x8:

31 0

MSW

31.0 MSW Bits 63:32 of unsigned 64-bit big endian integer
Packet number to request error for, least significant word at offset Oxc:

31 0

LSW

31.0 LSW Bits31:0 of unsigned 64-bit big endian integer
Reserved field at offset 0x10:

31 0

\ R

31.0 R Reserved for future use. Must be set to 0.

Figure 9.8. SpaceWire packet error request packet
9.5.6. Simple Mode

For backwards compatibility with TSIM 2.0.44 and older, the GRSPW?2 models can be set up in “simple mode”
withthe- gr spw_si npl e 1 option. This makesthefollowing changesto the simulation model for all GRSPW?2
cores:

¢ The only supported packet types are data part packets and time code packets. The model sends out no other
packet types and accepts no other packet types.

« In simple mode a SpaceWire packet is by default sent as a single data part packet with an end mark-
er. Generation of separate end packets can be enabled with the - gr spw_endpacket option. Simple
mode does support al kinds of data part packets. However, if one needs to be compatible with the old-
er protocol, each data part packet should contain a full SpaceWire packet with an end marker and the -
grspw_t x_max_part | en option should not be used.

e Thelink state that a GRSPW?2 core percievesis solely determined by its own link control setting. The other
end isassumed to try to start thelink. In other words, run state is achieved once the GRSPW2 is set to start or

TSIM2-UM 93 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

autostart without having link disable set. Moreover, startup frequencies are ignored and run stateis achieved
without any delay.

¢ TheRX frequency isdetermined primarily by the- gr spw_si npl e_r xf r eq option. If that isnot used, the
RX freguencty istaken by the- gr spw_spwf r eq option. If none of those options are set the CPU frequency
isused. No cases take any clock divisors info account. The TX frequency is determined in the usual way as
when not in simple mode, which includes taking the clock divisor register into account.

9.6. PCl initiator/target interface

The UT700 AHB module models the PCI core available in the UT700 ASIC. For core details and register speci-
fication please see the UT700 manual.

9.6.1. Connecting a user PCI model with the UT700 module
See Section 9.2 for details on how to connect the user PCl model to the UT700 module.

9.6.2. Commands

PCI Commands

pci_status
Print status for the PCI core

9.6.3. Debug flags

The following debug flags are available for the PCI interface. Use them in conjunction with the ut700_dbgon
command to enable different levels of debug information.

Table 9.6. PCI interface debug flags

Flag Trace

GAISLER_GRPCI_ACC AHB accesses to/from PCI core
GAISLER_GRPCI_REGACC GRPCI APB register accesses
GAISLER_GRPCI_DMA_ REGACC PCIDMA APB register accesses
GAISLER_GRPCI_DMA GRPCI DMA accesses on the AHB bus
GAISLER_GRPCI_TARGET_ACC GRPCI target accesses
GAISLER_GRPCI_INIT Print summary on startup

9.6.4. PCl bus model API

Thestructure st ruct grpci _i nput modelsthe PCI bus. It is defined as:
struct grpci_input {
struct input_inp _b;

int (*acc)(struct grpci_input *ctrl, int cnd, unsigned int addr,
unsigned int *data, unsigned int *abort, unsigned int *ws);

int (*target_acc)(struct grpci_input *ctrl, int cmd, unsigned int addr,
unsi gned int *data, unsigned int *mexc);
s
The acc callback should be set by the PCI user module at startup. It is called by the UT700 module whenever it
reads/writes as a PCl bus master.

Table 9.7. acc callback parameters

Parameter Description

cmd Command to execute, see Section 9.6.2 details.

addr PCl address.
TSIM2-UM 94 www.cobham.com/gaisler

May 2020, Version 2.0.66

COBHAM

Parameter Description

data Data buffer. The user module should return the read datain * dat a for read
commands or write the datain * dat a for write commands.

wsize 0: 8-bit access 1: 16-hit access, 2; 32-hit access. |salways 2 for read accesses.

ws Set * ws to the number of PCI clocksit takes to complete the transaction.

abort Set *abort to 1 to generate target abort, or 0 otherwise.

Thereturn value of acc determinesif the transaction terminates successfully (1, GRPCI_ACC_OK) or with master
abort (0, GRPCI_ACC_MASTER_ABORT).

Thecallback target_accisinstalled by the UT700 AHB module. The PCI user dynamic library can call thisfunction
to initiate an access to the UT700 PCI target.

Table 9.8. target_acc parameters

Parameter Description

cmd Command to execute, see Section 9.6.2 for details. 1/0O cycles are not sup-
ported by the UT700 target.

addr PCI address. Should always be word aligned for read accesses.

data Data buffer. The read data is returned in * dat a for read commands or the
datain * dat a iswritten for write commands.

wsize 0: 8-hit access 1: 16-bit access, 2: 32-bit access. Should always be 2 for read
accesses.

mexc 0if accessis successful, 1 in case of target abort.

If the address matched MEMBARO, MEMBAR1 or CONFIG target_acc will return 1 otherwise 0.

Seetheut 700/ exanpl es/ i nput for example implementations.

9.7. GPIO interface

9.7.1. Connecting a user GPIO model with the UT700 module
See Section 9.2 for details on how to connect the user GPIO model to the UT700 module.

9.7.2. Commands

GPIO Commands
gpio0_status

Print status for the GPIO core.
gpio0_dbg | f | ag| subcommand]
Toggle, set, clear, list debug flags for the GPIO core.

9.7.3. Debug flags

The following debug flags and debug subcommands are available for GPIO interfaces. The GAI SLER_GPI O _*

flags can be used with the gpio0_dbg command to toggle individual flags for individual GPIO cores and with the
ut700_dbgon command to toggle individual flags for all GPIO cores. The subcommmands can be used with the
gpio0_dbg command to change and list the settings of all flags for individual GPIO cores.

Table 9.9. GPIO debug flags

Flag/subcommand

Trace

GAISLER GPIO_ACC

GPIO register accesses

GAISLER_GPIO_IRQ

GPIO interrupts

TSIM2-UM
May 2020, Version 2.0.66

95 www.cobham.com/gaisler

COBHAM

Flag/subcommand

Trace

al Set all GPIO debug flags for the core
clean Set none of the GPIO debug flags for the core
list List the current setting of the debug flags for the core

9.7.4. GPIO model API

The structure st ruct gpi o_i nput modelsthe GPIO pins. It is defined as:

/* GPIO input provider */

struct gpio_input {
struct input_inp _b;
int (*gpioout)(struct gpio_input *ctrl, unsigned int out);
int (*gpioin) (struct gpio_input *ctrl, unsigned int in);

3

The gpi oout callback should be set by the user module at startup. The gpi oi n callback is set by the UT700
AHB module. Thegpi oout callback iscalled by the UT700 module whenever a GPIO output pin changes. The
gpi oi n calback is called by the user module when the input pins should change. Typically the user module
would register an event handler at a certain time offset and call gpi oi n from within the event handler.

Table 9.10. gpioout callback parameters

Parameter Description

out The values of the output pins
Table 9.11. gpioin callback parameters

Parameter Description

in Theinput pin values

The return value of gpi oi n/ gpi oout isignored.

Seetheut 700/ exanpl es/ i nput for an example implementation.

9.8. CAN interface

The UT700 AHB module contains 2 CAN_OC cores which models the CAN_OC cores available in the UT700.
For core details and register specification please see the UT700 manual.

9.8.1. Start up options

CAN core start up options

-can_ocX_connect host: port
Connect CAN_OC core X to packet server to specified server and TCP port.

-can_ocX _server port
Open a packet server for CAN_OC core X on specified TCP port.

-can_ocX ack [0] 1]
Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This option
must be put after - can_ocX_connect .

X in the above optionsisin the range 1-2.
9.8.2. Commands

CAN core TSM commands

can_ocX_connect host:port
Connect CAN_OC core X to packet server to specified server and TCP port.

TSIM2-UM 96
May 2020, Version 2.0.66

www.cobham.com/gaisler

COBHAM

can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.
can_ocX_ack <0[1>
Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This com-
mand should only beissued after a connection has been established.
can_ocX_status
Prints out status information for the CAN_OC core.
can_ocX_dbg
Toggle, set, clear, list debug flags for the CAN_OC core.

X in the above commandsisin the range 1-2.

9.8.3. Debug flags

Thefollowing debug flags and debug subcommands are availablefor CAN interfaces. The GAl SLER_CAN _OC *

flags can be used with the can_ocX _dbg command to toggle individual flags for individual CAN_OC cores and
with the ut700_dbgon command to toggle individua flags for all CAN_OC cores. The subcommmands can be
used with the can_ocX_dbg command to change and list the settings of al flags for individual CAN_OC cores.

Table 9.12. CAN debug flags

Flag Trace

GAISLER_CAN_OC_ACC CAN_OC register accesses
GAISLER_CAN_OC_RXPACKET CAN_OC received messages
GAISLER_CAN_OC_TXPACKET CAN_OC transmitted messages
GAISLER_CAN_OC_ACK CAN_OC acknowledgements
GAISLER_CAN_OC_IRQ CAN_OC interrupts

al Set all debug flags for the core

clean Set none of the debug flags for the core

list List the current setting of the debug flags for the core

9.8.4. Packet server

Each CAN_OC core can be configured independently as a packet server or client using either -
can_ocX_server or - can_ocX _connect . When acting as a server the core can only accept a single con-
nection.

9.8.5. CAN packet server protocol

The protocol used to communicate with the packet server is described below. Four different types of packets are
defined according to the table below.

Table 9.13. CAN packet types

Type Value
Message 0x00
Error counter OxFD
Acknowledge OxXFE
Acknowledge config OxFF

9.8.5.1. CAN message packet format

Used to send and receive CAN messages.

TSIM2-UM 97 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

31 0
0x0 LENGTH
31.0 LENGTH, specifiesthe length of the rest of the packet

CAN message
Byte# Description Bits (M SB-L SB)
7 6 |5 |4 [3]2 1 Jo

Protocol ID =0 Prot ID 7-0

Control FF ‘ RTR ‘ ‘ ‘ DLC (max 8 bytes)
6-9 ID (32 bit word in network byte|ID 10-0 (bits 31 - 11 ignored for standard frame format)

order) ID 28-0 (bits 31-29 ignored for extended frame format)
10-17 Databyte1 - DLC Databyten 7-0

Figure 9.9. CAN message packet format
9.8.5.2. Error counter packet format

Used to write the RX and TX error counter of the modelled CAN interface.

31 0

0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet

Error counter packet

Byte# Field Description

4 Packet type Type of packet, OXFD for error counter packets
5 Register 0 - RX error counter, 1 - TX error counter

6 Value Valueto write to error counter

Figure 9.10. Error counter packet format

9.8.5.3. Acknowledge packet format

If the acknowledge function has been enabled through the start up option or command the CAN interface will wait
for an acknowledge packet each time it transmits a message. To enable the CAN receiver to send acknowledge
packets (either NAK or ACK) an acknowledge configuration packet must be sent. This is done automatically by
the CAN interface when can_ocX_ack isissued.

31 0
0x0 LENGTH
310 LENGTH, specifiesthe length of the rest of the packet
Acknowledge packet
Byte# Field Description
4 Packet type Type of packet, OXFE for acknowledge packets
5 Ack payload 0 - No acknowledge, 1 - Acknowledge

Figure 9.11. Acknowledge packet format

TSIM2-UM 98 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

9.8.5.4. Acknowledge packet format

This packet is used for enabling/disabling the transmission of acknowledge packets and their payload (ACK
or NAK) by the CAN receiver. The CAN transmitter will always wait for an acknowledge if started with -
can_ocX_ack orif the can_ocX_ack command has been issued.

31 0

0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet

Acknowledge configuration packet

Byte# Field Description
4 Packet type Type of packet, OXFF for acknowledge configuration packets
5 Ack configuration bit 0 Unused
bit 1 Ack packet enable, 1 - enabled, O - disabled
bit 2 Set ack packet payload, 1 - ACK, 0 - NAK

Figure 9.12. Acknowledge configuration packet format

9.9. SPl interface

9.9.1. Connecting a user SPI model with the UT700 module
See Section 9.2 for details on how to connect the user SPI model to the UT700 module.

9.9.2. Commands

SPI Commands
spi0_status
Print status for the SPI core.

spi0_dbg [f | ag| subcommand]
Toggle, set, clear, list debug flags for the SPI core.

9.9.3. Debug flags

The following debug flags and debug subcommands are available for SPI interfaces. The GAI SLER _SPI _*
flags can be used with the spi0_dbg command to toggle individual flags for individual SPI cores and with the
ut700_dbgon command to toggle individual flags for all SPI cores. The subcommmands can be used with the
spi0_dbg command to change and list the settings of all flags for individual SPI cores.

Table 9.14. SPI debug flags

Flag/subcommand Trace

GAISLER_SPI_ACC SPI register accesses

GAISLER_SPI_IRQ SPI interrupts

al Set al SPI debug flags for the core

clean Set none of the SPI debug flags for the core

list List the current setting of the debug flags for the core

9.9.4. SPI bus model API

Thestructure st ruct spi _i nput modelsthe SPI bus. It is defined as:

/* Spi input provider */

TSIM2-UM 99 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

struct spi_input {
struct input_inp _b;
int (*spishift)(struct spi_input *ctrl, uint32 select, uint32 bitcnt,
uint32 out, uint32 *in);

The spishift callback should be set by the SPI user module at startup. It is called by the UT700 module whenever
it shifts aword through the SPI bus.

Table 9.15. spishift callback parameters

Parameter Description

select Slave select bits

bitent Number of bits set in the MODE register, if bitcnt is-1 then the operation is not a shift
and the call isto indicate a select change, i.e. if the core is disabled.

out Shift out (tx) data

in Shift in (rx) data

The return value of spishift isignored.

Seetheut 700/ exanpl es/ i nput directory for an example implementation.

TSIM2-UM 100 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

10. Cobham Gaisler GR712RC emulation

To emulate the GR712RC chip the- gr 712r ¢ option should be used. That sets up parametersfor core TSIM2 to
match GR712RC. In addition, the GR712RC loadable AHB modul e implements emul ation models for additional
cores of the GR712RC. Apart from an overview of what TSIM supports for GR712RC emulation, this chapter is
mainly about the GR712RC AHB module.

The following table lists which cores in the GR712RC are modelled by TSIM or not. Some supported cores are
modelled by the core TSIM2 and some in the GR712RC AHB module. The table contains some notes of some
unsupported features for otherwise supported cores, but is not necessarily exhaustivein this respect. See Chapter 4
for details on the builtin simulation models and the rest of the chapter for the AHB module models.

Table 10.1. Smulation models for GR712RC

Core Status Notes

LEON3FT Supported by core TSIM2 Only one CPU ismodelled. No FT features are modelled.
GRFPU Supported by core TSIM2

AHBSTAT Supported by core TSIM2

APBCTRL Supported by core TSIM2

APBUART Supported by core TSIM2

FTMCTRL Supported by core TSIM2 No FT features are modelled
GPTIMER Supported by core TSIM2

GRTIMER Supported by core TSIM2

IRQMP Supported by core TSIM2

CAN_OC Supported by AHB module

FTAHBRAM Supported by AHB module | No FT features are modelled.
GRETH Supported by AHB module

GRGPIO Supported by AHB module

GRSPW2 Supported by AHB module

SPICTRL Supported by AHB module

CANMUX Dummy in AHB module Functionality-less registers only
CLKGATE Dummy in AHB module Functionality-less registers only
GRGPREG Dummy in AHB module Functionality-less registers only
B1553BRM Not supported

GRASCS Not supported

GRSLINK Not supported

GRTC Not supported

GRTM Not supported

I2CMST Not supported

AHBJTAG Not supported Debug link

DSU3 Not supported Debug unit

TSIM supports running several AHB modules. User defined models for unsupported cores can be used in parallel
with the GR712RC AHB module. User defined models can also override the simulation models (such as for
dummy models) in the GR712RC AHB module.

10.1. Overview of the GR712RC AHB module

The GR712RC AHB module is a loadable AHB module that implements GR712RC peripherals in addition to
what isemulated by core TSIM aslisted in Table 10.1. The interfaces are modelled at packet/transaction/message

TSIM2-UM 101
May 2020, Version 2.0.66

www.cobham.com/gaisler

COBHAM

level and provides an easy way to connect the simulated GR712RC to a larger simulation framework. See also
Section 5.4.1 on some limitations of some features when using this module. The GR712RC AHB moduleis only
supported for TSIM2 LEONS.

The following files are delivered with the GR712RC TSIM module:

Table 10.2. Files delivered with the GR712RC TS M module

File Description

gr712/linux/gr712.so GR712RC AHB module for Linux

gr712/win32/gr712.dll GR712RC AHB module for Windows

gr712/examples/input The input directory contains two examples of user modules
gr712/examples/input/README.txt Description of the user module examples
gr712/examples/input/Makefile Makefile for building the user modules
gr712/examples/input/spi.c SPI user module example emulating a Intel SPI flash
gr712/examples/input/gpio.c GPIO user module emulating GPIO bit toggle
gr712/examples/input/gr712inputprovider.h |Interface between the GR712RC module and the user module

10.2. Loading the module

The module is loaded using the TSIM2 option - ahbm A user input module for SPI and GPIO can optionaly be
declared, between - desi gni nput and - desi gni nput end options. For example:

On Linux:

tsimleon3 -gr712rc -ahbm gr712/1i nux/gr712. so
-desi gninput ./input.so -designinputend

On Windows:

tsimleon3 -gr712rc -ahbm gr712/w n32/gr712.dl |
-desi gni nput input.dll -designinputend

The option - gr 712r ¢ needs to be given to TSIM to enable the GR712RC processor configuration. The above
lineloadsthe GR712RC AHB modulegr 712. so whichin turnloadsthe user user input module. / i nput . so.
The user input module. / i nput . so communicateswith gr 712. so using the user module interface described
ingr 712i nput pr ovi der . h, whilegr 712. so communicates with TSIM viathe AHB interface.

Example user input modules can befoundingr 712/ exanpl es/ i nput /.
10.2.1. User input module interface

The SPI and GPIO models in the GR712RC module uses a user supplied user input module, in the form of a
dynamic loadablelibrary, that model sthe outside world. This section describesthe general interface for hooking up
the user module to the GR712RC module. The details on the interfaces to the particular cores, seetheir respective
sections.

A user supplied dynamic library should expose a public symbol gr 712i nput syst em of type st ruct
gr 712_subsystem *. Thestruct gr712 subsyst emisdefinedingr 712i nput provi der. h as;

struct gr712_subsystem {
void (*gr712_inp_setup) (int id,
struct gr712_inp_l ayout * I,
char **argv, int argc);
void (*gr712_inp_restart) (int id,
struct gr712_inp_layout * 1);
struct siminterface *simf;

}s

TSIM2-UM 102 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

Thecalbackgr 712_i np_r est art will becalled every timethesimulator restarts. Atinitialization thecallback
gr 712_i np_set up will be called once, supplied with a pointer to structurest ruct gr 712 i np_| ayout
definedingr 712i nput provi der . h.

The user module can accesstheglobal TSIM st ruct si m i nt er f ace structurethroughthesi mi f member.
See Chapter 5 for more details.

The user supplied dynamic library should, initsgr 712_i np_set up function, “claim” the input structs it uses
using thel NPUT _CLAI Mmacro. For example | NPUT_CLAI M| - >gpi o[0]) asin the example below.

A user supplied dynamic library that only sets up amodel for GPIO could look like this:

#include <stdio.h>

#i nclude <string. h>

#include "tsimh"

#i ncl ude "gr712i nput provi der. h"

extern struct gr712_subsystem *gr 712i nput system
static struct gr712_inp_layout *lay = 0;

static void Change(struct gpio_input *ctrl) {
}

int gpioout(struct gpio_input *ctrl, unsigned int out) {

}

static void gr712_inp_setup (int id,
struct gr712_inp_|l ayout * I,
char **argv, int argc) {
lay = 1;
printf("User-dll: gr712_inp_setup: daimng %\n", |->gpio[0]._b.nane);
I NPUT_CLAI M | - >gpi o[0]) ;
| - >gpi o[0] . gpi oout = gpi oout;
gr 712i nput syst em >si mi f - >event (Change, (unsi gned | ong) & - >gpi o[0], 10000000) ;
}

static struct gr712_subsystem gr712_gpio = {
gr712_inp_setup, 0,0
b

struct gr712_subsystem *gr712i nput system = &gr 712_gpi o;

A Makefile that would build a user supplied dynamic library gpio.(dll|so) could look like this:

MDLL_FI X=$(if $(strip $(shell unane|grep M NGW2)),dl I, so)
M LIB=$(if $(strip $(shell uname|grep M NGWB2)),-Iws2_32 -luser32 -lkernel 32 -1w nnm)

all: gpio.$(MDLL_FIX)

gpi 0. (M DLL_FIX) : gpio.o
$(CC) -shared -g gpio.o -o gpio.$(MDLL_FI X) $(M_LIB)

gpi 0. 0: gpio.c
$(CC -fPIC-c -g -Q0 gpio.c -0 gpio.o

cl ean:
-rm-f *.0 *.so

The user can then specify the user module to be loaded by the gr712.so AHB module using the - desi gni nput
and - desi gni nput end command line options. The first argument after - desi gni nput isthe user module.
Arguments after that are passed to the user input moduleinthecall togr 712_i np_set up.

For example: - desi gni nput gr 712/ exanpl es/ i nput/ gpi 0. so -gpi over bose -desi gni n-
put end will specify that the example user input module gpi 0. so should be used and that it should receive
the argument - gpi over bose.

10.3. Debugging

To enable printout of debug information the - gr 712_dbgon f | ag switch can be used. Alternatively one can
issuethegr712_dbgon f | ag command onthe TSIM 2 command lineto toggle the on/off state of aflag. Thedebug
flagsthat are availableare described for each corein thefollowing sectionsand can belisted by gr 712_dbgon help.

TSIM2-UM 103 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

Many cores also have their own debug commands on the format coreX_dbg that targets single cores instead of
all of one kind and that have support to set all or none of the debug flags options and list the current setting for
the debug flags. See the sections on the respective cores for details.

10.4. CAN interface

The GR712RC AHB module contains 2 CAN_OC cores which models the CAN_OC cores available in the
GR712RC. For core details and register specification please see the GR712RC manual .

10.4.1. Start up options

CAN core start up options

-can_ocX_connect host: port
Connect CAN_OC core X to packet server to specified server and TCP port.
-can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.
-can_ocX ack [0] 1]
Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This option
must be put after - can_ocX_connect .

X in the above optionsisin the range 0-1.
10.4.2. Commands

CAN core TSM commands

can_ocX_connect host:port

Connect CAN_OC core X to packet server to specified server and TCP port.
can_ocX_server port

Open a packet server for CAN_OC core X on specified TCP port.
can_ocX_ack <0[1>

Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This com-

mand should only beissued after a connection has been established.
can_ocX_status

Prints out status information for the CAN_OC core.
can_ocX_dbg

Toggle, set, clear, list debug flags for the CAN_OC core.

X in the above commandsis in the range 0-1.
10.4.3. Debug flags

Thefollowing debug flags and debug subcommands are availablefor CAN interfaces. The GAI SLER_CAN _OC *
flags can be used with the can_ocX_dbg command to toggle individual flags for individual CAN_OC cores and
with the gr712_dbgon command to toggle individual flags for all CAN_OC cores. The subcommmands can be
used with the can_ocX_dbg command to change and list the settings of al flags for individual CAN_OC cores.

Table 10.3. CAN debug flags

Flag Trace

GAISLER_CAN_OC _ACC CAN_OC register accesses

GAISLER_CAN_OC_RXPACKET CAN_OC received messages

GAISLER_CAN_OC_TXPACKET CAN_OC transmitted messages

GAISLER_CAN_OC_ACK CAN_OC acknowledgements

GAISLER_CAN_OC_IRQ CAN_OC interrupts

al Set all debug flags for the core

clean Set none of the debug flags for the core

list List the current setting of the debug flags for the core
TSIM2-UM 104 www.cobham.com/gaisler

May 2020, Version 2.0.66

COBHAM

10.4.4. Packet server

Each CAN_OC core can be configured independently as a packet server or client using either -
can_ocX server or-can_ocX connect . When acting as a server the core can only accept a single con-
nection.

10.4.5. CAN packet server protocol

The protocol used to communicate with the packet server is described below. Four different types of packets are
defined according to the table below.

Table 10.4. CAN packet types

Type Value
Message 0x00
Error counter OxFD
Acknowledge OXFE
Acknowledge config OxFF

10.4.5.1. CAN message packet format

Used to send and receive CAN messages.

31 0
0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet

CAN message
Byte# Description Bits (M SB-L SB)
7 6 |5 |4 [3]2 1 Jo

Protocol ID =0 Prot ID 7-0
5 Control FF ‘ RTR ‘ ‘ ‘ DLC (max 8 bytes)
6-9 ID (32 bit word in network byte|ID 10-0 (bits 31 - 11 ignored for standard frame format)

order) ID 28-0 (bits 31-29 ignored for extended frame format)
10-17 Databytel-DLC Databyten 7-0

Figure 10.1. CAN message packet format
10.4.5.2. Error counter packet format
Used to write the RX and TX error counter of the modelled CAN interface.

31 0

0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet

Error counter packet

Byte# Field Description

4 Packet type Type of packet, OXFD for error counter packets
5 Register 0 - RX error counter, 1 - TX error counter

6 Value Valueto write to error counter

Figure 10.2. Error counter packet format

TSIM2-UM 105 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

10.4.5.3. Acknowledge packet format

If the acknowledge function has been enabled through the start up option or command the CAN interface will wait
for an acknowledge packet each time it transmits a message. To enable the CAN receiver to send acknowledge
packets (either NAK or ACK) an acknowledge configuration packet must be sent. This is done automatically by
the CAN interface when can_ocX _ack isissued.

31 0
0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet
Acknowledge packet
Byte# Field Description
4 Packet type Type of packet, OXFE for acknowledge packets
5 Ack payload 0 - No acknowledge, 1 - Acknowledge

Figure 10.3. Acknowledge packet format

10.4.5.4. Acknowledge packet format

This packet is used for enabling/disabling the transmission of acknowledge packets and their payload (ACK
or NAK) by the CAN receiver. The CAN transmitter will always wait for an acknowledge if started with -
can_ocX_ack orif the can_ocX_ack command has been issued.

31 0

0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet

Acknowledge configuration packet

Byte# Field Description
4 Packet type Type of packet, OXFF for acknowledge configuration packets
5 Ack configuration bit 0 Unused
bit 1 Ack packet enable, 1 - enabled, O - disabled
bit 2 Set ack packet payload, 1 - ACK, 0 - NAK

Figure 10.4. Acknowledge configuration packet format
10.5. 10/100 Mbps Ethernet Media Access Controller interface

The Ethernet core simulation model is designed to functionally model the 10/100 Ethernet MAC available in the
GR712RC. For core details and register specification please see the GR712RC manual .

The following features are supported:
 Direct Memory Access
* |Interrupts

10.5.1. Start up options

Ethernet core start up options

-grethconnect host[:port]
Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.

TSIM2-UM 106 www.cobham.com/gaisler
May 2020, Version 2.0.66

10.5.2. Commands

Ethernet core T9SM commands

greth_connect host[:port]

COBHAM

Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.

greth_status
Print Ethernet register status

10.5.3. Debug flags

The following debug flags are available for the Ethernet interface. Use the them in conjunction with the
gr712_dbgon command to enable different levels of debug information.

Table 10.5. Ethernet debug flags

Flag

Trace

GAISLER_GRETH_ACC

GRETH accesses

GAISLER GRETH_L1

GRETH accesses verbose

GAISLER_GRETH_TX

GRETH transmissions

GAISLER_GRETH_RX

GRETH reception

GAISLER_GRETH_RXPACKET

GRETH received packets

GAISLER_GRETH_RXCTRL

GRETH RX packet server protocol

GAISLER_GRETH_RXBDCTRL

GRETH RX buffer descriptors DMA

GAISLER_GRETH_RXBDCTRL

GRETH TX packet server protocol

GAISLER_GRETH_TXPACKET

GRETH transmitted packets

GAISLER_GRETH_IRQ

GRETH interrupts

10.5.4. Ethernet packet server

The simulation model relies on a packet server to receive and transmit the Ethernet packets. The packet server
should open a TCP socket which the module can connect to. The Ethernet core is connected to a packet server
using the - gr et hconnect start-up parameter or using the greth_connect command.

An example implementation of a packet server, named gr et h_confi g, isincluded in TSIM distribution. It
uses the TUN/TAP interface in Linux, or the WinPcap library on Windows, to connect the GRETH core to a
physical Ethernet LAN. Thismakesit easy to connect the simulated GRETH coreto real hardware. It can providea
throughput in the order of magnitude of 500 to 1000 KiB/sec. Seeits distributed README for usage instructions.

10.5.5. Ethernet packet server protocol

Ethernet data packets have the following format. Note that each packet is prepended with aone word length field
indicating the length of the packet to come (including its header).

TSIM2-UM
May 2020, Version 2.0.66

107 www.cobham.com/gaisler

COBHAM

Packet length at offset OxO:
31 0

LEN

31.0 LEN Length of rest of packet: 4 + number of data bytes

Header at offset Ox4:

31 16 15 8 7 5 4 0
R IPID | TYPE | R

31116 R Reserved for future use. Must be set to O.

15:8 IPID IP core |D: 1 for Ethernet
75 TYPE Packet type: O for data packets
4.0 R Reserved for future use. Must be set to 0.

Offset 0x8: Therest of the packet is the encapsul ated Ethernet packet
Figure 10.5. Ethernet data packet

10.6. SpaceWire interface with RMAP support

The GR712RC AHB module contains 6 GRSPW?2 cores which models the GRSPW?2 cores available in the
GR712RC. For core details and register specification please see the GR712RC manual .

Supported features include:
e Transmission and reception of SpaceWire packets
e Transmission and reception of Time codes
* RMAP
* Server side link state model
e Link errors
e Link error injection

All GRSPW?2 register fields with underlying functionality in the GR712RC are supported except for:
e Thelink moddl isonlyinerror reset stateorr un state.
* The RMAP buffer disable (RD) bit in the control register with underlying functionality is not modelled.
¢ The limitations of the No spill (NS) DMA control register bit as noted in the section on Flow control limi-
tations below.

10.6.1. Start up options

SoaceWire core start up options

- gr spwX_connect host: port
Connect GRPSW core X to packet server at specified server and port.
- grspwX_server port
Open a packet server for core X on specified port.
-grspw_spwireqfreq
Sets the SpaceWire input clock frequency. Combined with the clock divisor register, this determines the
startup frquency and TX frequency.
- grspw_cl kdi v val ue
Sets the reset value for the clock divisor register for all GRSPW2 cores.
-grspw_tx_max_part_lenlen
Sets up all GRSPW?2 cores to transmit any SpaceWire packet longer than | en in data part packets with
no morethatn | en bytes of data.

TSIM2-UM 108 www.cobham.com/gaisler
May 2020, Version 2.0.66

- grspw_endpacket val

COBHAM

Whenval is1, thelast data part packet of asimulated SpaceWire packet will always be a data part packet
with no data and an end marker. Thisisthe default unless simple modeis enabled. When val isO, thelast
data part packet can contain both data and an end marker. Thisisthe default when simple mode is enabled.

-grspw_sinple 1

Set all GRSPW?2 coresto “simple mode”. This can be used for backward compatibility with TSIM 2.0.44
and backwards. See the separate section on simple mode for details. Note the needed 1 argument.

-grspw_sinple_rxfreqfreq

Sets the RX frequency in MHz for all GRSPW?2 coresto f r eq. Thisis only valid together with the -

grspw_si npl e 1 option.

X in the above options has the range 0-5.

10.6.2. Commands

SoaceWire core TS M commands

grspwX_connect host : port

Connect GRSPW?2 core X to packet server at specified server and TCP port.

grspwX_server port

Open a packet server for GRSPW2 core X on specified TCP port.

grspwX_status

Print status for GRSPW2 core X.

grspwX_dbg [ar gunment]

Sets, clears, lists, toggles debug options for individual GRSPW?2 cores. Using grspwX_dbg without any
arguments will list all available options. The list argument will list current debug option settings. The all
argument will turn on all debug options. The clean argument will turn off al debug options. Using one of
the available debug options as argument will toggle that debug option. See the section below.

X in the above commands has the range 0-5.

10.6.3. Debug flags

The following debug flags and debug subcommands are available for SpaceWire interfaces. The
GAl SLER_GRSPW * flags can be used with the gr spwX_dbg command to toggle individual flags for individual
SpaceWire cores and with the gr712_dbgon command to toggle individual flags for all SpaceWire cores. The
subcommmands can be used with the gr spwX_dbg command to change and list the settings of all flags for indi-

vidual SpaceWire cores.

Table 10.6. SpaceWire debug flags

Flag Trace
GAISLER_GRSPW_ACC GRSPW accesses
GAISLER_GRSPW_RXPACKET GRSPW received packets
GAISLER_GRSPW_RXCTRL GRSPW rx protocol
GAISLER_GRSPW_TXPACKET GRSPW transmitted packets
GAISLER_GRSPW_TXCTRL GRSPW tx protocol
GAISLER_GRSPW_RMAP GRSPW RMAP accesses
GAISLER_GRSPW_RMAPPACKET GRSPW RMAP packet dumps
GAISLER_GRSPW_RMAPPACKDE GRSPW RMAP packet decoding
GAISLER_GRSPW_DMAERR GRSPW DMA errors
GAISLER_GRSPW_LINK Link changes
GAISLER_GRSPW_PART TX/RX of GRSPW data part packets
al Set all debug flags for the core
TSIM2-UM 109 www.cobham.com/gaisler

May 2020, Version 2.0.66

COBHAM

Flag Trace
clean Set none of the debug flags for the core
list List the current setting of the debug flags for the core

10.6.4. SpaceWire packet server

Each SpaceWire core can be configured independently as a packet server or client using either -
gr spwX_server or- gr spwxX_connect . TCP socketsare used for establishing the connections. When acting
as aserver the core can only accept a single connection.

A connection should be set up before starting simulation for the first time, and must not be broken after that.
Restarting the simulation will not tear down the connection, nor emptying any socket buffers.

The server side contains a link model that gets control information from the models at each end of the link,
determines the link state and communicates frequencies and link errorsto the two models at each ends of the link.
It also supports error injection via two error injection packet types that can be sent from a custom client. See the
the following sections for details.

For more flexibility, such as custom routing, an external packet server can be implemented using the protocol
specified in the following sections. Each core should then be connected to that server. That server would also
have to implement a link model that at least reacts to link control packets and sends out link state packets and
RX frequency packets.

10.6.5. SpaceWire packet server protocol

The protocol used to communicate with the packet server is described below. The different types of packets are
defined according to the table below.

Table 10.7. Packet types

Type Value |Direction Notes

Data part 0 Both Only when in run state

Time code 1 Both Only when in run state

Link state 2 Server to client

Link control 3 Client to server Must be sent for model to reach run state
RX freguency 4 Server to client

Error injection 5 Client to server Optional

Packet error request 6 Client to server Optional

All packets begin with a 32-bit big endian word length field which specifies the length of the rest of the packet,
including header and other fixed fields. For most packet types this length is fixed for the particular type. Apart
from the data part packet type, where data follows the header byte-wise, all fields are 32-hit big endian words if
not otherwise specified.

All packets received by the GRSPW2 model are handled sequentially, and all packets sent by the GRSPW?2 model
and the server sidelink model are supposed to be handled sequentially by the client. SpaceWire packets can be split
into multiple data parts, transferred in data part packets. Between such parts other packets such as for time codes,
link state changes, link control changes, etc., can be handled. During the simulated time span for the reception of a
data part, the receiver will not/should not handle any other packet types. Usethe- gr spw_t x_nmax_part _| en
option to set up GRSPW?2 model to split up SpaceWire packets into data partsin order for such eventsto be able
to happen during the data stream.

10.6.5.1. Flow control limitations

Flow control interms of credit is not modeled between two ends of alink. A transmitter gets no notice if the other
end cannot give more credit. If the no-spill bit in the GRSPW2 core is set and an enabled receiving DMA channel

TSIM2-UM 110 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

has no enabled descriptors, the data part packet will be held on the receiving side until a descriptor is available.
Due to the sequential nature of the packet model a link error, time code, etc. will not be handled at all by the
GRSPW2 model during thistime.

10.6.5.2. Data part packet format

A SpaceWire packet is represented by one or more data parts. A data part packet represents one such a part. For
the data parts of a multi part SpaceWire packet, only the last data part should have an EOP or EEP end marker,
i.e. the END field set to O or 1. The other parts should have no end marker, i.e. the END field set to 2. Each data
part is delivered in its entirety or not at all. A link error occurring between data parts on the other hand cuts the
SpaceWire packet short and is considered the end of that SpaceWire packet.

A data part packet is sent at the beginning of transmission of the corresponding part of the SpaceWire packet, so
that the receiver can start reacting to it as soon as the transmission starts. The GRSPW2 model by default sends
a SpaceWire packet in the form of two data part packets. The first data part packet is sent at the beginning of
transmission and contains all data but has no end marker. The second data part packet is sent when transmission
is completed and has the appropriate end marker set but contains no data. If a user model is not waiting for the
end marker packet before responding, the response could arrive before transmission is considered done by the
GRSPW2 model. Generation of separate end marker packets can be turned off using the - gr spw_endpacket

option. Splitting up SpaceWire packets into several data containing data part packets can be enabled with the -

grspw_tx_max_part | en option.

Packet length at offset OxO:
31 0

LEN

310 LEN Length of rest of packet: 4 + number of data bytesin the part

Header at offset Ox4:

31 16 15 8 7 5 4 210
R IPID | TYPE | R |END|

3116 R Reserved for future use. Must be set to O.

15.8 IPID IP core ID: O for SpaceWire

7.5 TYPE Packet type: O for data part packets

4:2 R Reserved for future use. Must be set to O.

1.0 END End marker: 0: Normal End of Packet, 1: Error End of Packet, 2: No end marker

Offset 0x8: The data bytes of the part starts here

Figure 10.6. SpaceWire data part packet

TSIM2-UM 111 www.cobham.com/gaisler
May 2020, Version 2.0.66

10.6.5.3. Time code packet format

Packet length at offset OxO:

COBHAM

31 0
LEN
310 LEN Length of rest of packet: 8
Header at offset Ox4:
31 16 15 8 7 5 4 0
R IPID | TYPE | R
3116 R Reserved for future use. Must be set to 0.
15.8 IPID IP core ID: O for SpaceWire
7.5 TYPE Packet type: 1 for time code packets
4.0 R Reserved for future use. Must be set to 0.
Payload at offset Ox8:
31 8 7 6 5 0
R | cr | CN
31:8 R Reserved for future use. Must be set to 0.

7.6 CT Time control flags
5.0 CN Vaue of time counter

Figure 10.7. SpaceWire time code packet

10.6.5.4. Link state packet format

Link state packets are sent out by the server side link model when the link state changes. The only states currently
simulated areEr r or Reset and Run. A link state packet with state Er r or Reset can have the ERRORfield
set to an error seen at the receiver. Other link state packets has only None in the ERRORfield.

TSIM2-UM 112
May 2020, Version 2.0.66

www.cobham.com/gaisler

COBHAM

Packet length at offset OxO:
31 0

LEN

31.0 LEN Length of rest of packet: 4

Header at offset Ox4:

31 1918 1615 87 5432 0
R ‘ERROR‘ IPID ‘TYPE‘ R \ LS \

31:19 R Reserved for future use. Must be set to O.

18:16 ERROR Link error: 0: None, 1. Disconnect, 2: Parity, 3: Escape, 4:Credit

15:8 IPID IP core ID: O for SpaceWire

7.5 TYPE Packet type: 2 for link state packets

4:3 R Reserved for future use. Must be set to 0.

2.0 LS Link State: O: Error reset, 1: Error wait, 2: Ready, 3: Started, 4: Connecting, 5: Run

Figure 10.8. SpaceWire link state packet
10.6.5.5. Link control packet format

A link control packet must be sent from a client to the server side link model to inform if that side of thelink is
in start mode, autostart mode, and/or hasthe link disabled. In addition, the control packet contains information on
the startup frequency and the TX frequency that will be used once run state is reached. A new link control packet
should be sent from a client any time any of these parameters change.

If the startup frequencies of the two ends differ by more than afactor 1.1/0.9, the link model will reach run state.
This limit is chosen based on the limits on timeout periods in the SpaceWire standard that must be within 10%
up or down from nominal frequency. So even though the startup frequency should be 10 MHz, run state can be
reached if startup frequencies are close enough.

TSIM2-UM 113 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

Packet length at offset OxO:
31 0

LEN

31.0 LEN Length of rest of packet: 12

Header at offset Ox4:

31 16 15 8 7 543210
R IPID | TYPE | R |ASLSLD

31116 R Reserved for future use. Must be set to O.

15:8 IPID IP core ID: O for SpaceWire
75 TYPE Packet type: 3 for link control packets

4:3 R Reserved for future use. Must be set to 0.
2 AS Link autostart.

1 LS Link start.

0 LD Link disable.

Startup frequency in MHz at offset 0x8:
31 0

SFREQ

31.0 SFREQ Startup frequency in MHz, big endian |EEE-754 32-bit float
TX frequency in MHz at offset Oxc:
31 0

TFREQ

31.0 TFREQ TX freguency in MHz, big endian in IEEE-754 32-hit float

Figure 10.9. SpaceWire link control packet

10.6.5.6. RX frequency packet format

The server side link model sends out this packet type to inform the client of with what frequency the other side

transmits with when in run state. A new packet of this type is sent any time the transmitter on the other side
changesits TX frequency.

TSIM2-UM 114 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

Packet length at offset OxO:
31 0

LEN

31.0 LEN Length of rest of packet: 8

Header at offset Ox4:

31 16 15 8 7 5 4 0
R IPID | TYPE | R

31116 R Reserved for future use. Must be set to O.

15:8 IPID IP core ID: O for SpaceWire
75 TYPE Packet type: 4 for rx frequency packets
4.0 R Reserved for future use. Must be set to 0.

RX freguency in MHz at offset Ox8:
31 0

RFREQ

31.0 RFREQ RX frequency in MHz, big endian IEEE-754 32-hit float

Figure 10.10. SpaceWire rx frequency packet
10.6.5.7. Link error injection packet format

A client can send a packet of this kind to the server side link model to request that a link error will occur. The
error specified isthelink error that is seen at the targeted end. The OE bit determines which end of the link isthe
targeted end, i.e. will seethe error.

If theOEbitissetto 1, theerror will be seen at the receiver of the simulation model on the other end. Thesimulation
model on the client side will see a disconnect error viaalink state packet. In order for this error to happen during
reception of a SpaceWire packet at the other end, the client can sent adata part packet with no end marker followed
by alink error injection packet.

If the OE bit is set to O, the error will be seen at the receiver on the client end. The simulation model at the client
end will seethe requested error viaalink state packet. The simulation model at the other end will see adisconnect
error. Note that due to the nature of the model, this cannot in general be relied upon to inject an error during the
reception of a SpaceWire packet, even if split up in multiple data parts. Thelink state packet will not be sent by the
server side link model until al previous packets have been handled, and the client should handle all other packets
gueued up before that link state packet can be handled. To inject alink error during the reception of a SpaceWire
packet at the client side, the packet error request packet should be used instead.

TSIM2-UM 115 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

Packet length at offset OxO:
31 0

LEN

31.0 LEN Length of rest of packet: 4

Header at offset Ox4:

31 21 20 19 18 16 15 8 7 5 4 0
R ‘OE‘ R \ ERROR \ IPID \ TYPE \ R

31:21 R Reserved for future use. Must be set to 0.

20 OE Other end: 1: other end gets the error, 0: my end gets error

19 R Reserved for future use. Must be set to 0.

18:16 ERROR Link error: 1: Disconnect, 2: Parity, 3: Escape, 4:Credit
15:8 IPID IP core ID: O for SpaceWire

75 TYPE Packet type: 5 for link error injection packets

4.0 R Reserved for future use. Must be set to 0.

Figure 10.11. SpaceWirelink error injection packet
10.6.5.8. Packet error request packet format

A client can send a packet of this kind to the server side link model to request that alink error will occur during
reception of a certain data packet by the client. The error specified is the link error that is seen, viaalink state
packet, by the client asaresult. The other side will see adisconnect error. A 64-bit packet number, counting from
0, indicates during which SpaceWire packet sent from the other sideto the client thelink error should happen. Note
that this number is indexing SpaceWire packets, not individual data part packets, and does not take SpaceWire
packets sent from the client to the server side into account in the numbering. There can only be one outstanding
packet error request per targeted GRSPW2 core at atime.

The grspwX_status command can be issued for the targeted GRSPW?2 core to see how many SpaceWire packets
have currently been sent by that core. Thisincludes started but aborted SpaceWire packets, dueto link error, core
reset or active aborting using the Abort TX (AT) bit in the DMA control register of the GRSPW?2 core.

TSIM2-UM 116 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

Packet length at offset OxO:
31 0

LEN

31.0 LEN Length of rest of packet: 16

Header at offset Ox4:

31 19 18 16 15 8 7 5 4 0
R | ERROR | IPID | TYPE | R

31119 R Reserved for future use. Must be set to O.

18:16 ERROR Link error: 1: Disconnect, 2: Parity, 3: Escape, 4:Credit
15:8 IPID IP core ID: O for SpaceWire

7.5 TYPE Packet type: 6 for packet error request packets

4.0 R Reserved for future use. Must be set to 0.

Packet number to request error for, most significant word at offset 0x8:

31 0

MSW

31.0 MSW Bits 63:32 of unsigned 64-bit big endian integer
Packet number to request error for, least significant word at offset Oxc:

31 0

LSW

31.0 LSW Bits31:0 of unsigned 64-bit big endian integer
Reserved field at offset 0x10:

31 0

R

31.0 R Reserved for future use. Must be set to 0.

Figure 10.12. SpaceWire packet error regquest packet
10.6.6. Simple Mode

For backwards compatibility with TSIM 2.0.44 and older, the GRSPW?2 models can be set up in “simple mode”
withthe- gr spw_si npl e 1 option. This makesthefollowing changesto the simulation model for all GRSPW?2
cores:

¢ The only supported packet types are data part packets and time code packets. The model sends out no other
packet types and accepts no other packet types.

« In simple mode a SpaceWire packet is by default sent as a single data part packet with an end mark-
er. Generation of separate end packets can be enabled with the - gr spw_endpacket option. Simple
mode does support al kinds of data part packets. However, if one needs to be compatible with the old-
er protocol, each data part packet should contain a full SpaceWire packet with an end marker and the -
grspw_t x_max_part | en option should not be used.

e Thelink state that a GRSPW?2 core percievesis solely determined by its own link control setting. The other
end isassumed to try to start thelink. In other words, run state is achieved once the GRSPW2 is set to start or

TSIM2-UM 117 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

autostart without having link disable set. Moreover, startup frequencies are ignored and run stateis achieved
without any delay.

¢ TheRX frequency isdetermined primarily by the- gr spw_si npl e_r xf r eq option. If that isnot used, the
RX freguencty istaken by the- gr spw_spwf r eq option. If none of those options are set the CPU frequency
isused. No cases take any clock divisors info account. The TX frequency is determined in the usual way as
when not in simple mode, which includes taking the clock divisor register into account.

10.7. SPl interface

10.7.1. Connecting a user SPI model with the GR712RC module
See Section 10.2 for details on how to connect the user SPI model to the GR712RC module.

10.7.2. Commands

SPI Commands

spi0_status
Print status for the SPI core.
spi0_dbg [f | ag| subcommand]
Toggle, set, clear, list debug flags for the SPI core.

10.7.3. Debug flags

The following debug flags and debug subcommands are available for SPI interfaces. The GAI SLER _SPI _*
flags can be used with the spi0_dbg command to toggle individual flags for individual SPI cores and with the
gr712_dbgon command to toggle individua flags for al SPI cores. The subcommmands can be used with the
spi0_dbg command to change and list the settings of all flags for individual SPI cores.

Table 10.8. SPI debug flags

Flag/subcommand Trace

GAISLER_SPI_ACC SPI register accesses

GAISLER_SPI_IRQ SPl interrupts

al Set all SPI debug flags for the core

clean Set none of the SPI debug flags for the core

list List the current setting of the debug flags for the core

10.7.4. SPI bus model API

The structure st ruct spi _i nput modelsthe SPI bus. It is defined as:

/* Spi input provider */
struct spi_input {
struct input_inp _b;
int (*spishift)(struct spi_input *ctrl, uint32 select, uint32 bitcnt,
uint32 out, uint32 *in);

The spishift callback should be set by the SPI user module at startup. It iscalled by the GR712RC modulewhenever
it shifts aword through the SPI bus.

Table 10.9. spishift callback parameters

Par ameter Description

select Slave select bits

bitcnt Number of bits set in the MODE register, if bitcnt is -1 then the operation is not a shift
and the call isto indicate a select change, i.e. if the core is disabled.

TSIM2-UM 118 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

Parameter Description
out Shift out (tx) data
in Shift in (rx) data

The return value of spishift isignored.

Seethegr 712/ exanpl es/ i nput directory for an example implementation.

10.8. GPIO interface

10.8.1. Connecting a user GPIO model with the GR712RC module
See Section 10.2 for details on how to connect the user GPIO model to the GR712RC module.

10.8.2. Commands

GPIO Commands

gpioX_status
Print status for the GPIO core.
gpioX_dbg|[f | ag| subconmand]
Toggle, set, clear, list debug flags for the GPIO core.

10.8.3. Debug flags

The following debug flags and debug subcommands are available for GPIO interfaces. The GAI SLER_GPI O _*
flags can be used with the gpioX_dbg command to toggle individual flags for individual GPIO cores and with the
gr712_dbgon command to toggle individual flags for all GPIO cores. The subcommmands can be used with the
gpioX_dbg command to change and list the settings of all flags for individual GPIO cores.

Table 10.10. GPIO debug flags

Flag/subcommand Trace

GAISLER_GPIO_ACC GPIO register accesses

GAISLER_GPIO_IRQ GPIO interrupts

al Set all GPIO debug flags for the core

clean Set none of the GPIO debug flags for the core

list List the current setting of the debug flags for the core

10.8.4. GPIO model API

The structure st ruct gpi o_i nput modelsthe GPIO pins. It isdefined as:

/* GPIOinput provider */

struct gpio_input {
struct input_inp _b;
int (*gpioout)(struct gpio_input *ctrl, unsigned int out);
int (*gpioin) (struct gpio_input *ctrl, unsigned int in);

s

Thegpi oout callback should be set by the user module at startup. Thegpi oi n callback is set by the GR712RC
AHB module. The gpi oout callback is called by the GR712RC module whenever a GPIO output pin changes.
Thegpi oi n callback is called by the user module when the input pins should change. Typically the user module
would register an event handler at a certain time offset and call gpi oi n from within the event handler.

Table 10.11. gpioout callback parameters

Parameter Description
out The values of the output pins
TSIM2-UM 119 www.cobham.com/gaisler

May 2020, Version 2.0.66

COBHAM

Table 10.12. gpioin callback parameters

Parameter Description

in Theinput pin values

Thereturn value of gpi oi n/ gpi oout isignored.

Seethegr 712/ exanpl es/ i nput for an example implementation.

10.9. Clock Gating Unit, CANMUX and GRGPREG

The Clock Gate Unit, CANMUX and GRGPREG /O registers and AMBA Plug & Play area are present in the
GR712RC module. Some of the logic to control which bits are implemented, readable and writable etc. isimple-
mented. However the register bits has no functionality. The current register values can be used by custom 1/0
modules in SW validation. For example checking that accessing a specific address are has not been clock gate
disabled or that the SpW clock PLL match with the expect value after initialization.

TSIM2-UM 120 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

11. Atmel AT697 emulation

To emulate the AT697E chip the - at 697e option should be used. That sets up parameters for core TSIM2 to
match AT697E. In addition, the AT697 loadable AHB module implements emulation models for the PCI core of
the AT697E. Apart from an overview of what TSIM supports for AT697 emulation, this chapter is mainly about
the AT697 AHB module.

Thefollowing table lists which coresin the AT697 are modelled by TSIM or not. Some supported cores are mod-
elled by the core TSIM2 and someinthe AT697 AHB module. Thetable contains some notes of some unsupported
features for otherwise supported cores, but is not necessarily exhaustive in this respect. See Chapter 4 for details
on the builtin simulation models and the rest of the chapter for the AHB module models.

Table 11.1. Smulation models for AT697

Core Status Notes

LEON2FT Supported by core TSIM2 No FT features are modelled.
FPU Supported by core TSIM2

LEON2 system registers | Supported by core TSIM2

Interrupt controller Supported by core TSIM2

Memory controller Supported by core TSIM2 No FT features are modelled
UART Supported by core TSIM2

PCI Supported by AHB module

1/0 port Not supported Easily modelled in user module
JTAG Not supported Debug link

Debug UART Not supported Debug link

DSU Not supported Debug unit

TSIM supports running several AHB modules. User defined models for unsupported cores can be used in parallel
with the AT697 AHB module. User defined models can also override the simulation models in the AT697 AHB
module.

11.1. Overview of the AT697 AHB module

The PCI emulation is implemented as a AT697 AHB module that will process all accesses to memory region
0xa0000000 - 0xf0000000 (AHB slave mode) and the APB registers starting at 0x80000100. The AT697 AHB
module implements all registers of the PCI core. It will in turn load the PCI user modules that will implement the
devices. The AT697 AHB module is supposed to be the PCI host. Both PCI Initiator and PCI Target mode are
supported. Theinterface to the PCI user modules isimplemented on bus level. Two callbacks model the PCI bus.

See also Section 5.4.1 on some limitations of some features when using this module. The AT697 AHB module
isonly supported for TSIM2 LEONZ2.

The following files are delivered with the AT697 TSIM module:

Table 11.2. Files delivered with the AT697 TSM module

File Description

at697/linux/at697.s0 AT697 AHB module for Linux

at697/win32/at697.dll AT697 AHB module for Windows

Input Theinput directory contains two examples of PCI user modules

at697/examples/input/README.txt Description of the user module examples

at697/examplesinput/Makefile Makefile for building the user modules

at697/examples/input/pci.c PCI user module examplethat makes AT697 PCl initiator accesses
TSIM2-UM 121 www.cobham.com/gaisler

May 2020, Version 2.0.66

COBHAM

File Description

at697/examples/input/pci_target.c PCI user module example that makes AT697 PCI target accesses

at697/examples/input/at697inputprovider.h |Interface between the AT697 module and the user defined PCI
module

at697/examples/input/pci_input.h AT697 PCI input provider definitions

at697/examples/input/input.h Generic input provider definitions

at697/examples/input/tsim.h TSIM interface definitions

at697/examples/input/end.h Defines the endian of the local machine

11.2. Loading the module

Themoduleisloaded using the TSIM2 option - ahbm All core specific options described in the following sections
need to be surrounded by the options - desi gni nput and - desi gni nput end, e.g:

On Linux:

tsimleon -ahbm ./at697/1inux/at697.so
- desi gni nput ./at697/ exanpl es/input/pci.so -designinputend

On Windows:

tsimleon -ahbm ./at697/wi n32/ at697.dl |
- desi gni nput ./at 697/ exanpl es/input/pci.dll -designinputend

This loads the AT697 AHB module ./at697.s0 which in turn loads the PCI user module ./pci.so. The PCI user
module ./pci.so communicateswith ./at697.so using the PCI user moduleinterface, while ./at697.s0 communicates
with TSIM viathe AHB interface.

11.3. AT697 initiator mode

The PCI user module should supply the the callback function acc() . The AT697 AHB module will call this
functionto emulate AHB slave mode accesses or DM A accessesthat areforwarded viaacc () . Thecmd parameter
determines which command to use. Configuration cycles have to be handled by the PCI user module.

11.4. AT697 target mode

The AT697 AHB module supplies the callback t ar get _acc() to the PCI user modules to implement target
mode accesses from the PCI bus to the AHB bus. The PCI user module should trigger access events itself by
inserting itself into the event queue.

11.5. Definitions

#define ESA_PCI_SPACE | O 0
#define ESA_PCI_SPACE_MEM 1
#define ESA_PCI_SPACE CONFIG 2
#define ESA_PCI_SPACE_MEMLI NE 3

#define ESA_PCl _ACC K 0
#define ESA_PCI_ACC MASTER ABORT 1

struct esa_pci_i nput {
struct input_inp _b;

int (*acc)(struct esa_pci_input *ctrl,
int cnd,
unsi gned int addr,
unsi gned int wsize,
unsi gned int *data,
unsi gned int *abort,
unsi gned int *ws);

int (*target_acc)(struct esa_pci_input *ctrl,

TSIM2-UM 122 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

int cmd,

unsi gned int addr,
unsi gned int wsize,
unsi gned int *data,
unsi gned int *nexc);

I

11.5.1. PClI command table

0000: "1 RQ acknow edge”,
0001: " Speci al cycle",

0010: "1/ O Read",

0011: "I/O Wite",

0100: "Reserved",

0101: "Reserved",

0110: "Menmory Read",

0111: "Mermory Wite",

1000: "Reserved",

1001: "Reserved",

1010: "Configuration Read",
1011: "Configuration Wite",
1100: "Menory Read Miltiple",
1101: "Dual Address Cycle",
1110: "Menmory Read Line",
1111: "Menory Wite And Invalidate”

11.6. Read/write function installed by PCI module

This function should be set by the PCI user module;

int (*acc)(struct esa_pci_input *ctrl,
int crd,
unsi gned int addr,
unsi gned int wsize,
unsi gned int *data,
unsi gned int *abort,
unsi gned int *ws);

If set, thisfunction is called by the AT697 module whenever PCI bus master reads. Called for AHB-slave mapped
accesses as well as AHB-Master/APB DMA.

Table 11.3. acc callback parameters

Par ameter Description

cmd Command to execute, see Section 11.5.1.

addr PCl address

wsize 0: 8-hit access 1: 16-bit access, 2: 32-bit access. |salways 2 for read accesses.

data Data buffer. The user module should return the read datain * dat a for read
commands or write the datain * dat a for write commands.

ws Set * ws to the number of PCI clocksit takes to complete the transaction.

abort Set *abort to 1to generate target abort, or O otherwise.

The retun value of acc determines if the transaction terminates with master abort (1,
ESA_PCI_ACC_MASTER_ABORT), or not (0, ESA_PCI_ACC_OK).

11.7. Read/write function installed by AT697 module

The following function isinstalled by the AT697 AHB module:

int (*target_acc)(struct esa_pci_input *ctrl,
int cnd,
unsi gned int addr,
unsi gned int wsize,
unsigned int *data,
unsigned int *mexc);

TSIM2-UM 123 www.cobham.com/gaisler
May 2020, Version 2.0.66

Table 11.4. target_acc parameters

COBHAM

The PCI user module can call this function to emulate a PCl target mode read access to the AT697.

Parameter Description

cmd Command to execute, see Section 11.5.1. Configuration cycles are not sup-
ported, the AT697 module is supposed to be the host.

addr PCI address. Should always be word aligned for read accesses.

wsize 0: 8-bit access 1: 16-bit access, 2: 32-bit access. Should always be 2 for read
accesses.

data Data buffer. The read data is returned in * dat a for read commands or the
datain * dat a iswritten for write commands.

mexc The AT697 PCI models sets * mexc to O if access is successful, or to 1 in
case of target abort.

If a supported command hits MEMBARO, MEMBARL1 or IOBAR, target_acc() will return 1 otherwise it will

return O.

11.8. Registers

Table 11.5 contains alist of implemented and not implemented fields of the AT697F PCl Registers. Only register
fieldsthat are relevant for the emulated PCI module isimplemented.

Table 11.5. PCI register support

Register Implemented Not implemented
PCIID1 deviceid, vendor id
PCISC stat 13, stat 12, stat 11, stat 7, stat 6 stat 5, | stat15 statl4 statl0 9 stat8 coml10 com9 com8
stat 4, com2, com 1, coml com7 com6 com5 com4 com3
PCIID2 class code, revisionid
PCIBHDLC [bist, header type, latency timer, cache
size] config-space only
PCIMBAR1 base address, pref, type, msi
PCIMBAR2 base address, pref, type, msi
PCIIOBAR3 io base address, ms
PCISID subsystem id, svi
PCICP pointer
PCILI [max_lat min_gnt int_pin int_ling] con-
fig-space-only
PCIRT [retry trdy] config-space-only
PCICW ben
PCISA start address
PCIW ben
PCIDMA wdcnt, com b2b
PCIIS act, xff, xfe, rfe dmeas, ss
PCIIC mod, commsb dwr, dww, perr
PCITPA tpal, tpa2
PCITSC errmem, xff, xfe, rfe, tms
PCIITE dmaer,imier, tier cmfer, imper, tbeer, tper, syser
TSIM2-UM 124 www.cobham.com/gaisler

May 2020, Version 2.0.66

COBHAM

Register Implemented Not implemented
PCIITP dmaer,imier, tier cmfer, imper, tbeer, tper, syser
PCIITF dmaer,imier, tier, cmfer, imper, tbeer,
tper, syser
PCID dat
PCIBE dat
PCIDMAA addr
PCIA PO, p1, p2, p3

11.9. Debug flags

Theswitch- desi gndbgon flags can be used to enable debug output. The possiblevaluesfor flagsare asfollows:

Table 11.6. Debug flags

ESAPCI_REGACC

Trace accesses to the PCI registers

ESAPCI_ACC Trace accesses to the PCI AHB-slave address space
ESAPCI_DMA Trace DMA
ESAPCI_IRQ Trace PCI IRQ
11.10. Commands
pci
Displays al PCI registers.
TSIM2-UM 125 www.cobham.com/gaisler

May 2020, Version 2.0.66

COBHAM

12. TPS VxWorks 6.x AHB Module

12.1. Overview

The TPS VxWorks Module is aloadable module that simplifies communication between TSIM and the VxWorks
Workbench for VxWorks 6.7 and 6.9. It provides a virtual core that acts similar to a basic Ethernet controller,
but does not require a packet server.

The moduleis only useful in conjunction with VxWorks 6.7 and 6.9. See also Section 5.4.1 on some limitations
of some features when using this module.

Table 12.1. Files delivered with the TPS VxWorks TSM module

File Description
tpg/linux/tps-vxworks.so TPS VxWorks module for Linux
tpswin32/tps-vxworks.dll TPS VxWorks module for Windows

12.2. Loading the module

The module is loaded using the TSIM2 option - ahbm It can be used in conjunction with other modules, such
asthe UT699 and GR712RC modules.

On Linux (together with the UT699 design):

tsimleon3 -ut699 -ahbm ./tps/linux/tps-vxworks.so -ahbm ./ut699/1inux/ut699.so

On Windows (together with the GR712RC design):

tsimleon3 -gr712rc -ahbm ./tps/w n32/tps-vxworks.dl | -ahbm./gr712/w n32/gr712.dl I
12.3. Configuration

By default the module uses IRQ 5 and UDP port 0x4321. This can be changed by using the following command
line arguments:
-tps vxworks irqirq
UsesIRQi r q instead of the default.
-tps_vxworks_port port
Uses UDP port por t instead of the defaullt.

Use the following command line to make the TPS module use IRQ 10 and port 5000 on Linux together with the
UT699 design:

tsimleon3 -ut699 -ahbm ./tps/Ilinux/tps-vxworks.so -ahbm ./ut699/Ii nux/ut699.so
-t ps_vxworks_port 5000 -tps_vxworks_irqg 10

TSIM2-UM 126 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

13. Support
For support contact the Cobham Gaisler support team at support@gaisler.com.

When contacting support, pleaseidentify yourself in full, including company affiliation and site name and address.
Please identify exactly what product that is used, specifying if it is an IP core (with full name of the library
distribution archive file), component, software version, compiler version, operating system version, debug tool
version, simulator tool version, board version, etc.

The support service is only for paying customers with a support contract.

TSIM2-UM 127 www.cobham.com/gaisler
May 2020, Version 2.0.66

COBHAM

Cobham Gaisler AB
Kungsgatan 12

411 19 Gothenburg
Sweden
www.cobham.com/gaisler
sales@gaisler.com

T: +46 31 7758650

F: +46 31 421407

Cobham Gaisler AB, reserves the right to make changes to any products and services described
herein at any time without notice. Consult Cobham or an authorized sales representative to verify that
the information in this document is current before using this product. Cobham does not assume any
responsibility or liability arising out of the application or use of any product or service described herein,
except as expressly agreed to in writing by Cobham; nor does the purchase, lease, or use of a product
or service from Cobham convey a license under any patent rights, copyrights, trademark rights, or any
other of the intellectual rights of Cobham or of third parties. All information is provided as is. There is no
warranty that it is correct or suitable for any purpose, neither implicit nor explicit.

Copyright © 2018 Cobham Gaisler AB

TSIM2-UM 128 www.cobham.com/gaisler
May 2020, Version 2.0.66

	
	Table of Contents
	1. Introduction
	1.1. General
	1.2. Supported platforms and system requirements
	1.3. Obtaining TSIM
	1.4. License
	1.5. Evaluation version
	1.6. Problem reports

	2. Installation
	2.1. General
	2.2. License installation
	2.2.1. Floating keys
	2.2.2. LDK type license keys

	3. Operation
	3.1. Overview
	3.2. Starting TSIM
	3.3. Standalone mode commands
	3.3.1. Time specification for commands

	3.4. Symbolic debug information
	3.5. Breakpoints and watchpoints
	3.6. Profiling
	3.7. Code coverage
	3.8. Check-pointing
	3.9. Performance
	3.10. Backtrace
	3.11. Connecting to gdb
	3.12. Thread support
	3.12.1. TSIM thread commands
	3.12.2. GDB thread commands

	3.13. Synchronising TSIM time to external time

	4. Emulation characteristics
	4.1. Common behaviour
	4.1.1. Timing
	4.1.2. UARTs
	4.1.2.1. APBUART model (LEON3/4 only)
	4.1.2.2. UART model (ERC32/LEON2 only)

	4.1.3. Floating point unit (FPU)
	4.1.4. Delayed write to special registers
	4.1.5. Idle-loop optimisation
	4.1.6. Custom instruction emulation
	4.1.7. Chip-specific errata

	4.2. ERC32 specific emulation
	4.2.1. Processor emulation
	4.2.2. MEC emulation
	4.2.3. Interrupt controller
	4.2.4. Watchdog
	4.2.5. Power-down mode
	4.2.6. Memory emulation
	4.2.7. EDAC operation
	4.2.8. Extended RAM and I/O areas
	4.2.9. SYSAV signal
	4.2.10. EXTINTACK signal
	4.2.11. IWDE signal

	4.3. LEON2 specific emulation
	4.3.1. Processor
	4.3.2. Cache memories
	4.3.3. LEON peripherals registers
	4.3.4. Interrupt controller
	4.3.5. Power-down mode
	4.3.6. Memory emulation
	4.3.7. SPARC V8 MUL/DIV/MAC instructions
	4.3.8. FPU emulation
	4.3.9. DSU and hardware breakpoints

	4.4. LEON3 specific emulation
	4.4.1. General
	4.4.2. Processor
	4.4.3. Cache memories
	4.4.4. Power-down mode
	4.4.5. LEON3 peripherals registers
	4.4.6. Interrupt controller
	4.4.7. Memory emulation
	4.4.8. CASA instruction
	4.4.9. SPARC V8 MUL/DIV/MAC instructions
	4.4.10. FPU emulation
	4.4.11. DSU and hardware breakpoints
	4.4.12. AHB status registers
	4.4.13. GRTIMER emulation

	4.5. LEON4 specific emulation
	4.5.1. General
	4.5.2. Processor
	4.5.3. L1 Cache memories
	4.5.4. L2 Cache memory
	4.5.5. Power-down mode
	4.5.6. LEON4 peripherals registers
	4.5.7. Interrupt controller
	4.5.8. Memory emulation
	4.5.9. CASA instruction
	4.5.10. SPARC V8 MUL/DIV/MAC instructions
	4.5.11. FPU emulation
	4.5.12. DSU and hardware breakpoints
	4.5.13. AHB status registers

	5. Loadable modules
	5.1. TSIM I/O emulation interface
	5.1.1. simif structure
	5.1.2. ioif structure
	5.1.3. Structure to be provided by I/O device
	5.1.4. Cygwin specific io_init()

	5.2. LEON AHB emulation interface
	5.2.1. procif structure
	5.2.2. Structure to be provided by AHB module
	5.2.3. Big versus little endianess

	5.3. TSIM/LEON co-processor emulation
	5.3.1. FPU/CP interface
	5.3.2. Structure elements
	5.3.3. Attaching the FPU and CP
	5.3.4. Big versus little endianess
	5.3.5. Additional TSIM commands
	5.3.6. Example FPU

	5.4. Loadable modules distributed with TSIM
	5.4.1. General AHB module limitations

	6. TSIM library (TLIB)
	6.1. Introduction
	6.2. Function interface
	6.3. External I/O and AHB modules
	6.4. Builtin I/O module and/or AHB module
	6.5. UART handling
	6.6. Linking a TLIB application
	6.7. Limitations

	7. Cobham UT699 emulation
	7.1. Overview of the UT699 AHB module
	7.2. Loading the module
	7.2.1. User input module interface

	7.3. Debugging
	7.4. 10/100 Mbps Ethernet Media Access Controller interface
	7.4.1. Start up options
	7.4.2. Commands
	7.4.3. Debug flags
	7.4.4. Ethernet packet server
	7.4.5. Ethernet packet server protocol

	7.5. SpaceWire interface with RMAP support
	7.5.1. Start up options
	7.5.2. Commands
	7.5.3. Debug flags
	7.5.4. SpaceWire packet server
	7.5.5. SpaceWire packet server protocol
	7.5.5.1. Data packet format
	7.5.5.2. Time code packet format

	7.6. PCI initiator/target interface
	7.6.1. Connecting a user PCI model with the UT699 module
	7.6.2. Commands
	7.6.3. Debug flags
	7.6.4. PCI bus model API

	7.7. GPIO interface
	7.7.1. Connecting a user GPIO model with the UT699 module
	7.7.2. Commands
	7.7.3. Debug flags
	7.7.4. GPIO model API

	7.8. CAN interface
	7.8.1. Start up options
	7.8.2. Commands
	7.8.3. Debug flags
	7.8.4. Packet server
	7.8.5. CAN packet server protocol
	7.8.5.1. CAN message packet format
	7.8.5.2. Error counter packet format
	7.8.5.3. Acknowledge packet format
	7.8.5.4. Acknowledge packet format

	8. Cobham UT699E emulation
	8.1. Overview of the UT699E AHB module
	8.2. Loading the module
	8.2.1. User input module interface

	8.3. Debugging
	8.4. 10/100 Mbps Ethernet Media Access Controller interface
	8.4.1. Start up options
	8.4.2. Commands
	8.4.3. Debug flags
	8.4.4. Ethernet packet server
	8.4.5. Ethernet packet server protocol

	8.5. SpaceWire interface with RMAP support
	8.5.1. Start up options
	8.5.2. Commands
	8.5.3. Debug flags
	8.5.4. SpaceWire packet server
	8.5.5. SpaceWire packet server protocol
	8.5.5.1. Flow control limitations
	8.5.5.2. Data part packet format
	8.5.5.3. Time code packet format
	8.5.5.4. Link state packet format
	8.5.5.5. Link control packet format
	8.5.5.6. RX frequency packet format
	8.5.5.7. Link error injection packet format
	8.5.5.8. Packet error request packet format

	8.5.6. Simple Mode

	8.6. PCI initiator/target interface
	8.6.1. Connecting a user PCI model with the UT699E module
	8.6.2. Commands
	8.6.3. Debug flags
	8.6.4. PCI bus model API

	8.7. GPIO interface
	8.7.1. Connecting a user GPIO model with the UT699E module
	8.7.2. Commands
	8.7.3. Debug flags
	8.7.4. GPIO model API

	8.8. CAN interface
	8.8.1. Start up options
	8.8.2. Commands
	8.8.3. Debug flags
	8.8.4. Packet server
	8.8.5. CAN packet server protocol
	8.8.5.1. CAN message packet format
	8.8.5.2. Error counter packet format
	8.8.5.3. Acknowledge packet format
	8.8.5.4. Acknowledge packet format

	9. Cobham UT700 emulation
	9.1. Overview of the UT700 AHB module
	9.2. Loading the module
	9.2.1. User input module interface

	9.3. Debugging
	9.4. 10/100 Mbps Ethernet Media Access Controller interface
	9.4.1. Start up options
	9.4.2. Commands
	9.4.3. Debug flags
	9.4.4. Ethernet packet server
	9.4.5. Ethernet packet server protocol

	9.5. SpaceWire interface with RMAP support
	9.5.1. Start up options
	9.5.2. Commands
	9.5.3. Debug flags
	9.5.4. SpaceWire packet server
	9.5.5. SpaceWire packet server protocol
	9.5.5.1. Flow control limitations
	9.5.5.2. Data part packet format
	9.5.5.3. Time code packet format
	9.5.5.4. Link state packet format
	9.5.5.5. Link control packet format
	9.5.5.6. RX frequency packet format
	9.5.5.7. Link error injection packet format
	9.5.5.8. Packet error request packet format

	9.5.6. Simple Mode

	9.6. PCI initiator/target interface
	9.6.1. Connecting a user PCI model with the UT700 module
	9.6.2. Commands
	9.6.3. Debug flags
	9.6.4. PCI bus model API

	9.7. GPIO interface
	9.7.1. Connecting a user GPIO model with the UT700 module
	9.7.2. Commands
	9.7.3. Debug flags
	9.7.4. GPIO model API

	9.8. CAN interface
	9.8.1. Start up options
	9.8.2. Commands
	9.8.3. Debug flags
	9.8.4. Packet server
	9.8.5. CAN packet server protocol
	9.8.5.1. CAN message packet format
	9.8.5.2. Error counter packet format
	9.8.5.3. Acknowledge packet format
	9.8.5.4. Acknowledge packet format

	9.9. SPI interface
	9.9.1. Connecting a user SPI model with the UT700 module
	9.9.2. Commands
	9.9.3. Debug flags
	9.9.4. SPI bus model API

	10. Cobham Gaisler GR712RC emulation
	10.1. Overview of the GR712RC AHB module
	10.2. Loading the module
	10.2.1. User input module interface

	10.3. Debugging
	10.4. CAN interface
	10.4.1. Start up options
	10.4.2. Commands
	10.4.3. Debug flags
	10.4.4. Packet server
	10.4.5. CAN packet server protocol
	10.4.5.1. CAN message packet format
	10.4.5.2. Error counter packet format
	10.4.5.3. Acknowledge packet format
	10.4.5.4. Acknowledge packet format

	10.5. 10/100 Mbps Ethernet Media Access Controller interface
	10.5.1. Start up options
	10.5.2. Commands
	10.5.3. Debug flags
	10.5.4. Ethernet packet server
	10.5.5. Ethernet packet server protocol

	10.6. SpaceWire interface with RMAP support
	10.6.1. Start up options
	10.6.2. Commands
	10.6.3. Debug flags
	10.6.4. SpaceWire packet server
	10.6.5. SpaceWire packet server protocol
	10.6.5.1. Flow control limitations
	10.6.5.2. Data part packet format
	10.6.5.3. Time code packet format
	10.6.5.4. Link state packet format
	10.6.5.5. Link control packet format
	10.6.5.6. RX frequency packet format
	10.6.5.7. Link error injection packet format
	10.6.5.8. Packet error request packet format

	10.6.6. Simple Mode

	10.7. SPI interface
	10.7.1. Connecting a user SPI model with the GR712RC module
	10.7.2. Commands
	10.7.3. Debug flags
	10.7.4. SPI bus model API

	10.8. GPIO interface
	10.8.1. Connecting a user GPIO model with the GR712RC module
	10.8.2. Commands
	10.8.3. Debug flags
	10.8.4. GPIO model API

	10.9. Clock Gating Unit, CANMUX and GRGPREG

	11. Atmel AT697 emulation
	11.1. Overview of the AT697 AHB module
	11.2. Loading the module
	11.3. AT697 initiator mode
	11.4. AT697 target mode
	11.5. Definitions
	11.5.1. PCI command table

	11.6. Read/write function installed by PCI module
	11.7. Read/write function installed by AT697 module
	11.8. Registers
	11.9. Debug flags
	11.10. Commands

	12. TPS VxWorks 6.x AHB Module
	12.1. Overview
	12.2. Loading the module
	12.3. Configuration

	13. Support

