
.

GR712RC

Dual-Core LEON3FT SPARC V8 Processor.

2020 User's Manual

The most important thing we build is trust

Quick Start Guide for GR712RC-BOARD

GR712RC-QSG 1 www.cobhamaes.com/gaisler
October 2020, Version 1.3

GR712RC-QSG
October 2020, Version 1.3

2 www.cobhamaes.com/gaisler

Table of Contents
1. Introduction .. 4

1.1. Overview ... 4
1.2. References .. 4

2. Board Configuration ... 5
2.1. Overview ... 5
2.2. Clock Sources ... 5
2.3. I/O Switch Matrix ... 6
2.4. UART ... 7
2.5. PROM ... 7

3. Software Development Environment ... 8
3.1. Overview ... 8
3.2. Boot Loaders .. 8
3.3. Software Drivers ... 9

4. GRMON hardware debugger .. 10
4.1. Overview .. 10
4.2. Debug-link alternatives ... 10

4.2.1. Connecting via the FTDI USB/JTAG interface ... 10
4.2.2. Connecting via SpaceWire RMAP interface ... 10

4.3. First steps ... 10
4.4. Connecting to the board .. 11

5. TSIM LEON simulator .. 18
5.1. Overview .. 18
5.2. Startup ... 18

6. Toolchains .. 21
6.1. Bare C Cross-Compiler System .. 21

6.1.1. Overview ... 21
6.1.2. Compiling with BCC ... 21
6.1.3. Running and debugging with GRMON .. 21
6.1.4. Running and debugging with TSIM .. 22

6.2. RTEMS Real Time Operating System ... 23
6.2.1. Overview ... 23
6.2.2. Installing RCC .. 23
6.2.3. Building an RTEMS sample application .. 23
6.2.4. Running and debugging with GRMON .. 24

6.3. VxWorks .. 25
6.3.1. Overview ... 25

6.4. MKPROM2 .. 25
6.4.1. Overview ... 25
6.4.2. Usage of MKPROM2 ... 25

7. Frequently Asked Questions / Common Mistakes / Know Issues ... 27
7.1. GR712RC ... 27

7.1.1. Clock gating ... 27
7.1.2. GRMON issues ... 27
7.1.3. GPIO controller does not remember interrupt requests .. 27
7.1.4. Multiprocessor & legacy support .. 27
7.1.5. Inter-processor interrupts .. 27
7.1.6. Interrupt considerations .. 27
7.1.7. GRMON Debug Link Limitations .. 28
7.1.8. MIL-1553 .. 28
7.1.9. CAN multiplexing ... 28
7.1.10. Concurrent CAN and Ethernet ... 29
7.1.11. Hardware behavior at CPU reset and power management 29

7.2. GR712RC-BOARD .. 30
7.2.1. Clock problems ... 30
7.2.2. Switch Matrix Configuration Problems .. 30

GR712RC-QSG
October 2020, Version 1.3

3 www.cobhamaes.com/gaisler

7.2.3. GPIO used as configuration at reset .. 30
7.2.4. SDRAM configuration ... 30

8. Support ... 31

GR712RC-QSG
October 2020, Version 1.3

4 www.cobhamaes.com/gaisler

1. Introduction

1.1. Overview

This document is a quick start guide for the GR712RC Development Board.

The purpose of this document is to get users quickly started using the board.

For a complete description of the board please refer to the GR712RC Development Board User Manual.

The GR712RC system-on-chip is described in the GR712RC User Manual.

This quick start guide does not contain as many technical details and is instead how-to oriented. However, to make
the most of the guide the user should have glanced through the aforementioned documents and should ideally also
be familiar with the GRMON debug monitor.

1.2. References

Table 1.1. References

RD-1 GR712RC Development Board User Manual

RD-2 GR712RC User Manual [https://gaisler.com/doc/gr712rc-usermanual.pdf]

RD-3 GR712RC Data Sheet [https://www.gaisler.com/doc/gr712rc-datasheet.pdf]

RD-4 GRMON User's Manual [https://www.gaisler.com/doc/grmon3.pdf]

RD-5 TSIM User's Manual [https://gaisler.com/index.php/products/simulators]

RD-6 RTEMS homepage [https://www.rtems.org]

RD-7 LEON/ERC32 RTEMS Cross Compilation System (RCC) [https://www.gaisler.com/
index.php/products/operating-systems/rtems]

RD-8 RCC User's manual [https://gaisler.com/anonftp/rcc/doc]

RD-9 Cobham Gaisler RTEMS driver documentation [https://gaisler.com/anonftp/rcc/doc]

RD-10 Bare C Cross-Compilation System [https://www.gaisler.com/index.php/products/operat-
ing-systems/bcc]

RD-11 BCC User's Manual [https://www.gaisler.com/doc/bcc2.pdf]

RD-12 VxWorks 7 SPARC architectural port and BSP [https://www.gaisler.com/index.php/prod-
ucts/operating-systems/vxworks-7]

RD-13 MKPROM2 User Manual [https://gaisler.com/doc/mkprom.pdf]

The referenced documents can be downloaded from https://www.gaisler.com.

https://gaisler.com/doc/gr712rc-usermanual.pdf
https://gaisler.com/doc/gr712rc-usermanual.pdf
https://www.gaisler.com/doc/gr712rc-datasheet.pdf
https://www.gaisler.com/doc/gr712rc-datasheet.pdf
https://www.gaisler.com/doc/grmon3.pdf
https://www.gaisler.com/doc/grmon3.pdf
https://gaisler.com/index.php/products/simulators
https://gaisler.com/index.php/products/simulators
https://www.rtems.org
https://www.rtems.org
https://www.gaisler.com/index.php/products/operating-systems/rtems
https://www.gaisler.com/index.php/products/operating-systems/rtems
https://www.gaisler.com/index.php/products/operating-systems/rtems
https://gaisler.com/anonftp/rcc/doc
https://gaisler.com/anonftp/rcc/doc
https://gaisler.com/anonftp/rcc/doc
https://gaisler.com/anonftp/rcc/doc
https://www.gaisler.com/index.php/products/operating-systems/bcc
https://www.gaisler.com/index.php/products/operating-systems/bcc
https://www.gaisler.com/index.php/products/operating-systems/bcc
https://www.gaisler.com/doc/bcc2.pdf
https://www.gaisler.com/doc/bcc2.pdf
https://www.gaisler.com/index.php/products/operating-systems/vxworks-7
https://www.gaisler.com/index.php/products/operating-systems/vxworks-7
https://www.gaisler.com/index.php/products/operating-systems/vxworks-7
https://gaisler.com/doc/mkprom.pdf
https://gaisler.com/doc/mkprom.pdf
https://www.gaisler.com

GR712RC-QSG
October 2020, Version 1.3

5 www.cobhamaes.com/gaisler

2. Board Configuration

2.1. Overview

The primary source of information for board configuration is the GR712RC Development Board User Manual.
The board requires some hardware configuration to fit with the customer requirements. In particular, the number of
the GR712RC-BOARD's processor I/O pins limits the simultaneously available connections to external interfaces.
To overcome this limitation, the SoC features an internal switch matrix, and a set of jumpers must be configured
accordingly to route the signals to the appropriate headers on the board. The internal switch matrix is configured
by enabling the respective interfaces via software. Additionally, clock selection might need to be configured by
a set of jumpers and possibly the insertion of custom oscillators.

Figure 2.1. GR712RC-BOARD default configuration as delivired

2.2. Clock Sources

The minimum requirement in order for the board to work and to be able to connect to it, is that the clock sources
are properly configured. The 80 MHz oscillator in socket X2 provided by default with the board is connected to

GR712RC-QSG
October 2020, Version 1.3

6 www.cobhamaes.com/gaisler

the system clock input through the JP84 jumper in the default configuration 2-3. The on-board soldered 48 MHz
oscillator can be used instead by positioning the JP84 jumper on pins 1-2. Alternatively a custom oscillator can
be installed in X2.

The SpaceWire clock is, by default, driven by an on board additional 100 MHz oscillator. If the user wants to use
the system clock configured in the paragraph above as the source of the SpaceWire clock, then jumper JP88 must
be inserted and the oscillator in socket X5 must be removed.

Refer to Section 2.14 of [RD-1] for further information about oscillators and clock inputs and more information
about the system and SpaceWire clock.

Once the external clock sources are selected, further clock configuration can be done in software. The SpaceWire
external clock source can be used as 1X, 2X or 4X, or the external system clock can be used in its place. This
selection is done by configuring the SoC's General Purpose Register (GPREG). At reset the 1X SpaceWire clock
received from the board is used internally.

For in depth information about configuring the SpaceWire and MIL-STD-1553 clocks through the GPREG, please
refer to Chapter 3 and Chapter 13 of [RD-2].

2.3. I/O Switch Matrix

To overcome the limitation on the number of SoC pins, an internal switch matrix selects the input/output signals
to connect to the pad. Additionally the chip I/O pins are connected to the board's I/O ports through an array of
jumpers. One UART and two SpaceWire interfaces are routed independently of the internal switch matrix and the
jumpers JP3 through JP66. In the default position A of jumpers JP3 through JP66, all multiplexed switch matrix
signals are connected to the board's GPIO pins.

Six basic example configurations are provided to respond to typical use cases, as seen in Table 2.1. To use one of
these configurations, the user has to insert jumpers JP3 through JP66 in the position described in the table. Refer
to [RD-1] and GR712RC Development Board Schematic for more information on signal and GPIO configuration.

Table 2.1. Typical configurations

Cfg. description I/O enabled
Jumper
position

CPU for GEO applications

UART0, UART1, UART2, UART3, UART4, UART5
SpaceWire-0, SpaceWire-1, SpaceWire-2, SpaceWire-3,
 SpaceWire-4, SpaceWire-5
Mil-Std-1553-A, Mil-Std-1553-B
SPI
I2C

B

CPU for TMTC applications UART0, UART1, UART2, UART3
SpaceWire-0, SpaceWire-1, SpaceWire-2, SpaceWire-3
SDRAM with optional Reed-Solomon
CCSDS/ECSS TC & TM

C

CPU for LEO applications UART0, UART1, UART2, UART3, UART4, UART5
SpaceWire-0, SpaceWire-1
SDRAM with optional Reed-Solomon
ASCS16
CAN-A, CAN-B
SLINK
I2C

D

Instrument Controller, type A UART0, UART1, UART2, UART3, UART4, UART5
SpaceWire-0, SpaceWire-1
SDRAM with optional Reed-Solomon
CAN-A, CAN-B
SLINK
I2C

E

GR712RC-QSG
October 2020, Version 1.3

7 www.cobhamaes.com/gaisler

Cfg. description I/O enabled
Jumper
position

Instrument Controller, type B UART0, UART1, UART2, UART3, UART4, UART5
SpaceWire-0, SpaceWire-1, SpaceWire-2, SpaceWire-3
SDRAM with optional Reed-Solomon
Ethernet
SPI
I2C

F

Once the board's jumpers are properly connected, the internal switch matrix must be driven by a set of enabling
conditions. It is important to note that to obtain a proper functioning system, the I/O interfaces of the required
configurations have to be enabled or clock ungated by software. See Chapter 2 and Table 9 of [RD-2] for further
details on the switch matrix.

The I/O matrix is not limited to these pre-defined configurations. Jumpers can be custom configured according to
the user requirements. See Section 2.4 of [RD-1] for further details.

2.4. UART

Jumpers JP1 and JP2 are used to select the output standard of the UART0 and UART1 interfaces between RS232
and RS422, and to route the signals to the J1 and J16 connectors respectively. In the default configuration the
interfaces are connected to the J1 connectors UART-0 and UART-1 using the RS232 standard. While UART0 is
not affected by the internal switch matrix, UART1 Rx is multiplexed and JP3 must be set to 3-4 in order to use
it. Refer to the GR712RC Development Board Schematic for more information on how to configure UART0 and
UART1 to use the RS422 standard.

2.5. PROM

The PROM width and PROM EDAC conditions are set by the state of the GPIO[3] and GPIO[1] pins at power up
of the Processor. These pins are provided with pull-down resistors to set the default mode to 8 bit with no EDAC.
If EDAC operation of the Flash PROM is desired, then jumper JP85 should be installed, to pull-up GPIO[1].

GR712RC-QSG
October 2020, Version 1.3

8 www.cobhamaes.com/gaisler

3. Software Development Environment

3.1. Overview

Cobham Gaisler provides a comprehensive set of software tools to run several different operating systems. The
GR712RC platform supports the following:

BCC the Bare C Cross-Compiler System is a toolchain to compile bare C or C++ applications di-
rectly on top of the processor without the services provided by an operating system

RTEMS a hard Real Time Operating System. Cobham Gaisler provides RCC, a toolchain to develop
and compile RTEMS applications specifically for the LEON

Linux the open source operating system. Board Support Packages and tools to ease the compilation
and deployment of the kernel are provided

VxWorks an embedded real-time operating system developed by WindRiver. Cobham Gaisler provides
a LEON architectural port (HAL) and a Board Support Package (BSP) in full source code

Cobham Gaisler also provides a set of debug tools. The GR712RC platform is supported by the following:

GRMON Used to run and debug applications on GR712RC-BOARD hardware. See (Chapter 4).

TSIM Used to run and debug applications on a simulated GR712RC-BOARD. See (Chapter 5).

TSIM is mainly used when no hardware is available. However, TSIM also provides faster than realtime simulation
and can be integrated into larger simulation networks to simulate, for example, entire satellite systems. TSIM
provides precise code coverage capture and large instruction/bus trace buffers.

Developer tools are generally provided for both Linux and Windows host operating systems. Cobham Gaisler
also provides an integrated, easy-to-use solution to help programmers with the task of developing for the LEON.
The LEON Integrated Development Environment for Eclipse (LIDE) is an Eclipse plug-in integrating compilers,
software and hardware debuggers in a graphical user interface. The plugin makes it possible to cross-compile C
and C++ application for LEON, and to debug them on either simulator and target hardware (TSIM or GRMON).

The recommended method to load software onto a LEON board is by connecting to a debug interface of the board
through the GRMON hardware debugger (Chapter 4). Execution of programs by a PROM-loaded boot loader is
also possible.

3.2. Boot Loaders

Cobham Gaisler provides three boot loaders for the ERC32, LEON2, LEON3 and LEON4 processors listed below
for more information. The boot loaders covers different use cases and requirements on software quality level. The
boot loaders are all capable of booting all the supported Operating Systems provided by Cobham Gaisler.

MKPROM2 MKPROM2 is a free open-source boot loader supporting a minimal system initialization,
extraction of a single ROM application image into main memory and booting it. No system
self-tests are performed by MKPROM2.

GR712RC Boot SW The GR712RC Boot SW was specifically developed for the ESA JUICE satellite and will
be used in several of its GR712RC based payloads on board following the requirements
of ESA's Flight Computer Initialisation Sequence requirement document.

It supports initialization, self-tests, a SpaceWire remote terminal as Standby Mode and
CRC checking application loader handing over a boot report. The software was devel-
oped according to ESA's software engineering standards ECSS-E-ST-40C and ECSS-Q-
ST-80C, software criticality category B, reviewed successfully by ESA and third party
(ISV&V).

GRBOOT The GRBOOT boot loader software is based on the GR712RC Boot SW using the same
ECSS software engineering standards previously used to guarantee a high reliability for
flight. By isolating mission and device specific parts into BSPs and generalizing the im-
plementation, GRBOOT provides similar a reusable feature set for systems based on
LEON3/4FT processor devices acting as either payload or OBC.

GR712RC-QSG
October 2020, Version 1.3

9 www.cobhamaes.com/gaisler

One or more application images can be located in parallel flash or SPI flash. Multiproces-
sor application booting is supported.

GRBOOT is available for GR712RC and GR740 based systems together with the appro-
priate quality proofs, documentation and test suites. A version without references to the
ESA requirements documents is also available.

u-boot Currently u-boot for the GR712RC Development Board is not provided by Cobham
Gaisler.

Table 3.1. Boot Loader feature table

Feature MKPROM2 GR712RC Boot SW GRBOOT

Supported processors • Most LEON • GR712RC • GR712RC
• GR740

Additional system sup-
port in progress.

Processor self-tests No Yes Yes

Memory self-tests No Yes Yes

Application storage memory • PROM
• FLASH
• MRAM

MRAM • PROM
• FLASH
• MRAM
• SPI flash

Number of application images 1 2 Unlimited

Standby Mode No Yes

PUS over SpaceWire

Prepared for user exten-
sions.

PUS over SpaceWire in
development.

Validation and unit test suite No Yes Yes

Documentation covering SW re-
quirements, design and quality

No Yes Yes

Compatible standards None TEC-SWS/10-373,
ECSS-E-70-41A

SAVOIR-GS-002

3.3. Software Drivers

The operating system environments include software drivers for most I/O units of the GR712RC. Cobham Gaisler
license low-level software drivers listed below together with the infrastructure for qualification on GR712RC-
BOARD. The drivers have been qualified for the JUICE GR712-DPU board. For more information please contact
sales@gaisler.com.

• SpaceWire controller with DMA
• UART
• SPI master controller
• GPIO
• Timer
• AHB Status Register
• Clock Gating Unit

GR712RC-QSG
October 2020, Version 1.3

10 www.cobhamaes.com/gaisler

4. GRMON hardware debugger

4.1. Overview

GRMON is a debug monitor used to develop and debug GRLIB/LEON systems. The target system, including
the processor and peripherals, is accessed on the AHB bus through a debug-link connected to the host computer.
GRMON has GDB support which makes C/C++ level debugging possible by connecting GDB to the GRMON's
GDB socket. With GRMON one can for example:

• Inspect LEON and peripheral registers
• Upload applications to RAM with the load command.
• Program the FLASH with the flash command.
• Control execution flow by starting applications (run), continue execution (cont), single-stepping (step), in-

serting breakpoints/watchpoints (bp) etc.
• Inspect the current CPU state listing the back-trace, instruction trace and disassemble machine code.

The first step is to set up a debug link in order to connect to the board. The following section outlines which
debug interfaces are available and how to use them on the GR712RC Development Board. After that, a basic first
inspection of the board is exemplified.

Several of the SoC's peripherals may be clock gated off. GRMON will enable all clocks if started with the flag -
cginit. Within GRMON, the command grcg enable all will have the same effect.

GRMON is described on the homepage [https://www.gaisler.com/index.php/products/debug-tools] and in detail
in [RD-4].

GR712RC can be used with GRMON version 2 or later. It is recommended to use version GRMON 3 or later
with GR712RC.

4.2. Debug-link alternatives

4.2.1. Connecting via the FTDI USB/JTAG interface

Please see GRMON User's Manual for how to set up the required FTDI driver software. Then connect the PC
and the board using a standard USB cable into the USB-mini J12 USB-JTAG connector and issue the following
command:

grmon -ftdi

4.2.2. Connecting via SpaceWire RMAP interface

GRMON has support for connecting to boards with SpaceWire interfaces as long as the SpaceWire has RMAP
and automatic link start. An Ethernet to SpaceWire bridge (GRESB) is required to tunnel SpaceWire packets from
the Ethernet network over to SpaceWire.

Please see the [RD-4] for information about connecting through a GRESB and optional parameters. Connect
the GRESB SpW0 connector and the GR712RC-BOARD's J3 (SPW-0) or J4 (SPW-1) connector, then issue the
following command:

grmon -gresb

4.3. First steps

The previous sections have described which debug-links are available and how to start using them with GRMON.
The subsections below assume that GRMON, the host computer and the GR712RC-BOARD board have been set
up so that GRMON can connect to the board.

When connecting to the board for the first time it is recommended to get to know the system by inspecting the
current configuration and hardware present using GRMON. With the info sys command more details about the
system is printed and with info reg the register contents of the I/O registers can be inspected. Below is a list of
items of particular interest:

• AMBA system frequency is printed out at connect, if the frequency is wrong then it might be due to noise in
auto detection (small error). See -freq flag in the GRMON User's Manual [RD-4].

https://www.gaisler.com/index.php/products/debug-tools
https://www.gaisler.com/index.php/products/debug-tools

GR712RC-QSG
October 2020, Version 1.3

11 www.cobhamaes.com/gaisler

• Memory location and size configuration is found from the info sys output. If the board has both SRAM
and SDRAM interfaces, SDRAM can be mapped at the SRAM base address using the -nosram option of
GRMON. See the GRMON User's Manual [RD-4] for further details.

• The GR712RC has a clock-gating unit which is able to disable/enable clocking and control reset signals.
Clocks must be enabled for all cores that LEON software or GRMON will be using. The grcg command is
described in the GRMON User's Manual [RD-4].

4.4. Connecting to the board

In the following example the FTDI debug-link is used to connect to the board. The auto-detected frequency,
memory parameters and stack pointer are verified by looking at the GRMON terminal output below.

daniel@daniel:~$ grmon -ftdi

 GRMON2 LEON debug monitor v2.0.35 professional version

 Copyright (C) 2012 Aeroflex Gaisler - All rights reserved.
 For latest updates, go to http://www.gaisler.com/
 Comments or bug-reports to support@gaisler.com

Parsing -ftdi

Commands missing help:
 debug
 datacache

 JTAG chain (1): GR712RC
 Detected system: GR712RC
 Detected frequency: 80 MHz

 Component Vendor
 LEON3-FT SPARC V8 Processor Aeroflex Gaisler
 LEON3-FT SPARC V8 Processor Aeroflex Gaisler
 JTAG Debug Link Aeroflex Gaisler
 GR Ethernet MAC Aeroflex Gaisler
 SatCAN controller Aeroflex Gaisler
 GRSPW2 SpaceWire Serial Link Aeroflex Gaisler
 GRSPW2 SpaceWire Serial Link Aeroflex Gaisler
 GRSPW2 SpaceWire Serial Link Aeroflex Gaisler
 GRSPW2 SpaceWire Serial Link Aeroflex Gaisler
 GRSPW2 SpaceWire Serial Link Aeroflex Gaisler
 GRSPW2 SpaceWire Serial Link Aeroflex Gaisler
 AMBA Wrapper for Core1553BRM Aeroflex Gaisler
 CCSDS Telecommand Decoder Aeroflex Gaisler
 CCSDS Telemetry Encoder Aeroflex Gaisler
 SLINK Master Aeroflex Gaisler
 Memory controller with EDAC Aeroflex Gaisler
 AHB/APB Bridge Aeroflex Gaisler
 LEON3 Debug Support Unit Aeroflex Gaisler
 AHB/APB Bridge Aeroflex Gaisler
 OC CAN AHB interface Aeroflex Gaisler
 Generic FT AHB SRAM module Aeroflex Gaisler
 Generic UART Aeroflex Gaisler
 Multi-processor Interrupt Ctrl. Aeroflex Gaisler
 Modular Timer Unit Aeroflex Gaisler
 SPI Controller Aeroflex Gaisler
 CAN Bus multiplexer Aeroflex Gaisler
 General Purpose Register Aeroflex Gaisler
 ASCS Master Aeroflex Gaisler
 General Purpose I/O port Aeroflex Gaisler
 General Purpose I/O port Aeroflex Gaisler
 AMBA Wrapper for OC I2C-master Aeroflex Gaisler
 Clock gating unit Aeroflex Gaisler
 AHB Status Register Aeroflex Gaisler
 Generic UART Aeroflex Gaisler
 Generic UART Aeroflex Gaisler
 Generic UART Aeroflex Gaisler
 Generic UART Aeroflex Gaisler
 Generic UART Aeroflex Gaisler
 Timer Unit with Latches Aeroflex Gaisler

 Use command 'info sys' to print a detailed report of attached cores

grmon2> info sys
 cpu0 Aeroflex Gaisler LEON3-FT SPARC V8 Processor
 AHB Master 0
 cpu1 Aeroflex Gaisler LEON3-FT SPARC V8 Processor
 AHB Master 1

GR712RC-QSG
October 2020, Version 1.3

12 www.cobhamaes.com/gaisler

 ahbjtag0 Aeroflex Gaisler JTAG Debug Link
 AHB Master 2
 greth0 Aeroflex Gaisler GR Ethernet MAC
 AHB Master 3
 APB: 80000E00 - 80000F00
 IRQ: 14
 satcan0 Aeroflex Gaisler SatCAN controller
 AHB Master 4
 AHB: FFF20000 - FFF20100
 IRQ: 14
 grspw0 Aeroflex Gaisler GRSPW2 SpaceWire Serial Link
 AHB Master 5
 APB: 80100800 - 80100900
 IRQ: 22
 Number of ports: 1
 grspw1 Aeroflex Gaisler GRSPW2 SpaceWire Serial Link
 AHB Master 6
 APB: 80100900 - 80100A00
 IRQ: 23
 Number of ports: 1
 grspw2 Aeroflex Gaisler GRSPW2 SpaceWire Serial Link
 AHB Master 7
 APB: 80100A00 - 80100B00
 IRQ: 24
 Number of ports: 1
 grspw3 Aeroflex Gaisler GRSPW2 SpaceWire Serial Link
 AHB Master 8
 APB: 80100B00 - 80100C00
 IRQ: 25
 Number of ports: 1
 grspw4 Aeroflex Gaisler GRSPW2 SpaceWire Serial Link
 AHB Master 9
 APB: 80100C00 - 80100D00
 IRQ: 26
 Number of ports: 1
 grspw5 Aeroflex Gaisler GRSPW2 SpaceWire Serial Link
 AHB Master 10
 APB: 80100D00 - 80100E00
 IRQ: 27
 Number of ports: 1
 b1553brm0 Aeroflex Gaisler AMBA Wrapper for Core1553BRM
 AHB Master 11
 AHB: FFF00000 - FFF01000
 IRQ: 14
 grtc0 Aeroflex Gaisler CCSDS Telecommand Decoder
 AHB Master 12
 AHB: FFF10000 - FFF10100
 IRQ: 14
 grtm0 Aeroflex Gaisler CCSDS Telemetry Encoder
 AHB Master 13
 APB: 80000B00 - 80000C00
 IRQ: 29
 adev14 Aeroflex Gaisler SLINK Master
 AHB Master 14
 APB: 80000800 - 80000900
 IRQ: 13
 mctrl0 Aeroflex Gaisler Memory controller with EDAC
 AHB: 00000000 - 20000000
 AHB: 20000000 - 40000000
 AHB: 40000000 - 80000000
 APB: 80000000 - 80000100
 8-bit prom @ 0x00000000
 32-bit static ram: 1 * 8192 kbyte @ 0x40000000
 32-bit sdram: 2 * 128 Mbyte @ 0x60000000
 col 10, cas 2, ref 7.8 us
 apbmst0 Aeroflex Gaisler AHB/APB Bridge
 AHB: 80000000 - 80100000
 dsu0 Aeroflex Gaisler LEON3 Debug Support Unit
 AHB: 90000000 - A0000000
 AHB trace: 256 lines, 32-bit bus
 CPU0: win 8, hwbp 2, itrace 256, V8 mul/div, srmmu, lddel 1, GRFPU
 stack pointer 0x407ffff0
 icache 4 * 4 kB, 32 B/line lru
 dcache 4 * 4 kB, 16 B/line lru
 CPU1: win 8, hwbp 2, itrace 256, V8 mul/div, srmmu, lddel 1, GRFPU
 stack pointer 0x407ffff0
 icache 4 * 4 kB, 32 B/line lru
 dcache 4 * 4 kB, 16 B/line lru
 apbmst1 Aeroflex Gaisler AHB/APB Bridge
 AHB: 80100000 - 80200000
 occan0 Aeroflex Gaisler OC CAN AHB interface
 AHB: FFF30000 - FFF31000
 IRQ: 5

GR712RC-QSG
October 2020, Version 1.3

13 www.cobhamaes.com/gaisler

 cores: 2
 ahbram0 Aeroflex Gaisler Generic FT AHB SRAM module
 AHB: A0000000 - A0100000
 APB: 80100000 - 80100100
 32-bit static ram: 256 kB @ 0xa0000000
 uart0 Aeroflex Gaisler Generic UART
 APB: 80000100 - 80000200
 IRQ: 2
 Baudrate 38461
 irqmp0 Aeroflex Gaisler Multi-processor Interrupt Ctrl.
 APB: 80000200 - 80000300
 EIRQ: 12
 gptimer0 Aeroflex Gaisler Modular Timer Unit
 APB: 80000300 - 80000400
 IRQ: 8
 16-bit scalar, 4 * 32-bit timers, divisor 48
 spi0 Aeroflex Gaisler SPI Controller
 APB: 80000400 - 80000500
 IRQ: 13
 FIFO depth: 16, no slave select lines
 Maximum word length: 32 bits
 Controller index for use in GRMON: 0
 adev25 Aeroflex Gaisler CAN Bus multiplexer
 APB: 80000500 - 80000600
 grgpreg0 Aeroflex Gaisler General Purpose Register
 APB: 80000600 - 80000700
 adev27 Aeroflex Gaisler ASCS Master
 APB: 80000700 - 80000800
 IRQ: 16
 gpio0 Aeroflex Gaisler General Purpose I/O port
 APB: 80000900 - 80000A00
 gpio1 Aeroflex Gaisler General Purpose I/O port
 APB: 80000A00 - 80000B00
 i2cmst0 Aeroflex Gaisler AMBA Wrapper for OC I2C-master
 APB: 80000C00 - 80000D00
 IRQ: 28
 grcg0 Aeroflex Gaisler Clock gating unit
 APB: 80000D00 - 80000E00
 GRMON did NOT enable clocks during initialization
 ahbstat0 Aeroflex Gaisler AHB Status Register
 APB: 80000F00 - 80001000
 IRQ: 1
 uart1 Aeroflex Gaisler Generic UART
 APB: 80100100 - 80100200
 IRQ: 17
 Baudrate 38461
 uart2 Aeroflex Gaisler Generic UART
 APB: 80100200 - 80100300
 IRQ: 18
 Baudrate 38461
 uart3 Aeroflex Gaisler Generic UART
 APB: 80100300 - 80100400
 IRQ: 19
 Baudrate 38461
 uart4 Aeroflex Gaisler Generic UART
 APB: 80100400 - 80100500
 IRQ: 20
 Baudrate 38461
 uart5 Aeroflex Gaisler Generic UART
 APB: 80100500 - 80100600
 IRQ: 21
 Baudrate 38461
 grtimer0 Aeroflex Gaisler Timer Unit with Latches
 APB: 80100600 - 80100700
 IRQ: 7
 8-bit scalar, 2 * 32-bit timers, divisor 48

grmon2> info reg
 GR Ethernet MAC
 0x80000e00 Control register 0x04000080
 0x80000e04 Status register 0x0000000a
 0x80000e08 MAC address MSB 0x00000412
 0x80000e0c MAC address LSB 0x10884440
 0x80000e10 MDIO register 0x7849084a
 0x80000e14 Tx descriptor register 0x10004000
 0x80000e18 Rx descriptor register 0xc8000000
 0x80000e1c EDCL IP register 0x00000000
 GRSPW2 SpaceWire Serial Link
 0x80100800 Control register 0xa0010002
 0x80100804 Status/Interrupt-source 0x00600000
 0x80100808 Node address 0x000000fe
 0x8010080c Clock divisor 0x00000000
 0x80100810 Destination key 0x00000000

GR712RC-QSG
October 2020, Version 1.3

14 www.cobhamaes.com/gaisler

 0x80100814 Time 0x00000000
 0x80100818 Timer and Disconnect 0x00000000
 0x80100820 DMA Channel 0 control/status 0x00000000
 0x80100824 DMA Channel 0 rx maximum length 0x00431000
 0x80100828 DMA Channel 0 tx desc. table address 0x40004000
 0x8010082c DMA Channel 0 rx desc. table address 0x00000000
 GRSPW2 SpaceWire Serial Link
 0x80100900 Control register 0xa0010002
 0x80100904 Status/Interrupt-source 0x00200000
 0x80100908 Node address 0x000000fe
 0x8010090c Clock divisor 0x00000000
 0x80100910 Destination key 0x00000000
 0x80100914 Time 0x00000000
 0x80100918 Timer and Disconnect 0x00000000
 0x80100920 DMA Channel 0 control/status 0x00000010
 0x80100924 DMA Channel 0 rx maximum length 0x00820000
 0x80100928 DMA Channel 0 tx desc. table address 0x00000000
 0x8010092c DMA Channel 0 rx desc. table address 0x02000000
 GRSPW2 SpaceWire Serial Link
 0x80100a00 Control register 0x20000100
 0x80100a04 Status/Interrupt-source 0x00800000
 0x80100a08 Node address 0x000000fe
 0x80100a0c Clock divisor 0x00000000
 0x80100a10 Destination key 0x00000000
 0x80100a14 Time 0x00000000
 0x80100a18 Timer and Disconnect 0x00000000
 0x80100a20 DMA Channel 0 control/status 0x00000000
 0x80100a24 DMA Channel 0 rx maximum length 0x00100040
 0x80100a28 DMA Channel 0 tx desc. table address 0x15000000
 0x80100a2c DMA Channel 0 rx desc. table address 0x80000000
 GRSPW2 SpaceWire Serial Link
 0x80100b00 Control register 0x20000000
 0x80100b04 Status/Interrupt-source 0x00a00000
 0x80100b08 Node address 0x000000fe
 0x80100b0c Clock divisor 0x00000000
 0x80100b10 Destination key 0x00000000
 0x80100b14 Time 0x00000000
 0x80100b18 Timer and Disconnect 0x00000000
 0x80100b20 DMA Channel 0 control/status 0x00000014
 0x80100b24 DMA Channel 0 rx maximum length 0x00323084
 0x80100b28 DMA Channel 0 tx desc. table address 0x5c406400
 0x80100b2c DMA Channel 0 rx desc. table address 0xa701b800
 GRSPW2 SpaceWire Serial Link
 0x80100c00 Control register 0x20000000
 0x80100c04 Status/Interrupt-source 0x00a00000
 0x80100c08 Node address 0x000000fe
 0x80100c0c Clock divisor 0x00000000
 0x80100c10 Destination key 0x00000000
 0x80100c14 Time 0x00000000
 0x80100c18 Timer and Disconnect 0x00000000
 0x80100c20 DMA Channel 0 control/status 0x00000000
 0x80100c24 DMA Channel 0 rx maximum length 0x01410104
 0x80100c28 DMA Channel 0 tx desc. table address 0x488b0800
 0x80100c2c DMA Channel 0 rx desc. table address 0x20aaf800
 GRSPW2 SpaceWire Serial Link
 0x80100d00 Control register 0x20000200
 0x80100d04 Status/Interrupt-source 0x00a00000
 0x80100d08 Node address 0x000000fe
 0x80100d0c Clock divisor 0x00000000
 0x80100d10 Destination key 0x00000000
 0x80100d14 Time 0x00000000
 0x80100d18 Timer and Disconnect 0x00000000
 0x80100d20 DMA Channel 0 control/status 0x00000004
 0x80100d24 DMA Channel 0 rx maximum length 0x0040032c
 0x80100d28 DMA Channel 0 tx desc. table address 0x01800000
 0x80100d2c DMA Channel 0 rx desc. table address 0x06002000
 AMBA Wrapper for Core1553BRM
 0xfff00100 B1553BRM status/control register 0xc5040001
 0xfff00104 B1553BRM interrupt settings 0xc5040001
 0xfff00108 AHB page address register 0xc5040001
 CCSDS Telecommand Decoder
 0xfff10000 Global reset register 0x00000000
 0xfff10004 Global control register 0x00000000
 0xfff1000c Spacecraft Identifier Register 0x00000000
 0xfff10010 Frame acceptance report register 0x00000000
 0xfff10014 CLCW register 1 0x00000000
 0xfff10018 CLCW register 2 0x00000000
 0xfff1001c Physical Interface Register 0x00000000
 0xfff10020 Control Register 0x00000000
 0xfff10024 Status Register 0x00000000
 0xfff10028 Address Space Register 0x00000000
 0xfff1002c Receive Read Pointer Register 0x00000000
 0xfff10030 Receive Write Pointer Register 0x00000000

GR712RC-QSG
October 2020, Version 1.3

15 www.cobhamaes.com/gaisler

 CCSDS Telemetry Encoder
 0x80000b00 DMA control register 0x00000004
 0x80000b04 DMA status register 0x00000000
 0x80000b08 DMA length register 0x00400002
 0x80000b0c DMA descriptor pointer register 0x00000000
 0x80000b14 DMA revision register 0x00010001
 0x80000b80 Control register 0x00000000
 0x80000b84 Status register 0x00000000
 0x80000b88 Configuration register 0x001affdf
 0x80000b90 Physical layer register 0x00000000
 0x80000b94 Coding sub-layer register 0x00000000
 0x80000b98 Attached Synchronization Marker 0x352ef853
 0x80000ba0 All frames generation register 0x00000000
 0x80000ba4 Master frame generation register 0x00000000
 0x80000ba8 Idle frame generation register 0x00000000
 0x80000bd0 OCF register 0x00000000
 Memory controller with EDAC
 0x80000000 Memory config register 1 0x0003c0ff
 0x80000004 Memory config register 2 0x8ac05460
 0x80000008 Memory config register 3 0x08174000
 LEON3 Debug Support Unit
 0x90000024 Debug mode mask register 0x00000003
 0x90000000 CPU 0 Control register 0x000000ef
 0x90400020 CPU 0 Trap register 0x000000b0
 0x90100000 CPU 1 Control register 0x6911d034
 0x90500020 CPU 1 Trap register 0x6911d034
 Generic FT AHB SRAM module
 0x80100000 Configuration Register 0x00200000
 Generic UART
 0x80000104 UART Status register 0x00000086
 0x80000108 UART Control register 0x80000003
 0x8000010c UART Scaler register 0x0000009b
 Multi-processor Interrupt Ctrl.
 0x80000200 Interrupt level register 0x00000000
 0x80000204 Interrupt pending register 0x00000000
 0x80000210 Interrupt status register 0x180c0002
 0x80000240 Interrupt mask register 0 0x00000000
 0x80000244 Interrupt mask register 1 0x00000000
 0x80000280 Interrupt force register 0 0x00000000
 0x80000284 Interrupt force register 1 0x00000000
 Modular Timer Unit
 0x80000300 Scalar value register 0x0000002f
 0x80000304 Scalar reload value register 0x0000002f
 0x80000308 Configuration register 0x00000144
 0x80000310 Timer 0 Value register 0xffffffff
 0x80000314 Timer 0 Reload value register 0xffffffff
 0x80000318 Timer 0 Control register 0x00000043
 0x80000320 Timer 1 Value register 0x00000000
 0x80000324 Timer 1 Reload value register 0x00000000
 0x80000328 Timer 1 Control register 0x00000040
 0x80000330 Timer 2 Value register 0x00000000
 0x80000334 Timer 2 Reload value register 0x00000000
 0x80000338 Timer 2 Control register 0x00000040
 0x80000340 Timer 3 Value register 0xfa16f3e8
 0x80000344 Timer 3 Reload value register 0xfffffffe
 0x80000348 Timer 3 Control register 0x00000040
 SPI Controller
 0x80000400 Capability register 0x01001002
 0x80000420 Mode register 0x00000000
 0x80000424 Event register 0x00000000
 0x80000428 Mask register 0x00000000
 0x8000042c Command register 0x00000000
 0x80000430 Transmit register 0x00000000
 0x80000434 Receive register 0x20880021
 General Purpose Register
 0x80000600 GR712RC general purpose register 0x00000000
 General Purpose I/O port
 0x80000900 I/O port data register 0x419ff955
 0x80000904 I/O port output register 0x00000000
 0x80000908 I/O port direction register 0x00000000
 0x8000090c I/O interrupt mask register 0x00000000
 0x80000910 I/O interrupt polarity register 0x00000058
 0x80000914 I/O interrupt edge register 0x00001100
 0x80000918 I/O bypass register 0x00000000
 General Purpose I/O port
 0x80000a00 I/O port data register 0xfff19ad9
 0x80000a04 I/O port output register 0x00000000
 0x80000a08 I/O port direction register 0x00000000
 0x80000a0c I/O interrupt mask register 0x00000000
 0x80000a10 I/O interrupt polarity register 0x00000001
 0x80000a14 I/O interrupt edge register 0x0000e00c
 0x80000a18 I/O bypass register 0x00000000
 AMBA Wrapper for OC I2C-master

GR712RC-QSG
October 2020, Version 1.3

16 www.cobhamaes.com/gaisler

 0x80000c00 Clock prescale register 0x0000005f
 0x80000c04 Control register 0x00000000
 0x80000c08 Receive register 0x00000000
 0x80000c0c Status register 0x00000000
 Clock gating unit
 0x80000d00 Unlock register 0x00000000
 0x80000d04 Clock enable register 0x00000007
 0x80000d08 Reset register 0x00000ff8
 AHB Status Register
 0x80000f00 Status register 0x00000012
 0x80000f04 Failing address register 0x80000f04
 Generic UART
 0x80100104 UART Status register 0x00000086
 0x80100108 UART Control register 0x80000003
 0x8010010c UART Scaler register 0x0000009b
 Generic UART
 0x80100204 UART Status register 0x00000086
 0x80100208 UART Control register 0x80000003
 0x8010020c UART Scaler register 0x0000009b
 Generic UART
 0x80100304 UART Status register 0x00000086
 0x80100308 UART Control register 0x80000003
 0x8010030c UART Scaler register 0x0000009b
 Generic UART
 0x80100404 UART Status register 0x00000086
 0x80100408 UART Control register 0x80000003
 0x8010040c UART Scaler register 0x0000009b
 Generic UART
 0x80100504 UART Status register 0x00000086
 0x80100508 UART Control register 0x80000003
 0x8010050c UART Scaler register 0x0000009b
 Timer Unit with Latches
 0x80100600 Scalar value register 0x0000002f
 0x80100604 Scalar reload value register 0x0000002f
 0x80100608 Configuration register 0x0000003a
 0x8010060c Latch configuration register 0x00000000
 0x80100610 Timer 0 Value register 0xffffffff
 0x80100614 Timer 0 Reload value register 0xffffffff
 0x80100618 Timer 0 Control register 0x00000043
 0x8010061c Timer 0 Latch register 0x00000000
 0x80100620 Timer 1 Value register 0xa0080048
 0x80100624 Timer 1 Reload value register 0xa0080048
 0x80100628 Timer 1 Control register 0x00000040
 0x8010062c Timer 1 Latch register 0x00000000

One can limit the output to certain cores by specifying the core(s) name(s) to the info sys and info reg commands.
As seen below the memory parameters, first UART and first Timer core information is listed.

grmon2> info sys mctrl0
 mctrl0 Aeroflex Gaisler Memory controller with EDAC
 AHB: 00000000 - 20000000
 AHB: 20000000 - 40000000
 AHB: 40000000 - 80000000
 APB: 80000000 - 80000100
 8-bit prom @ 0x00000000
 32-bit static ram: 1 * 8192 kbyte @ 0x40000000
 32-bit sdram: 2 * 128 Mbyte @ 0x60000000
 col 10, cas 2, ref 7.8 us

grmon2> info sys uart0 gptimer0
 uart0 Aeroflex Gaisler Generic UART
 APB: 80000100 - 80000200
 IRQ: 2
 Baudrate 38461
 gptimer0 Aeroflex Gaisler Modular Timer Unit
 APB: 80000300 - 80000400
 IRQ: 8
 16-bit scalar, 4 * 32-bit timers, divisor 80

The GR712RC has a clock-gating unit which can disable and enable clock gating and generate reset signals of
certain cores in the SOC. With the GRMON grcg command the current setting of the clock-gating unit can be
inspected and changed, the command line switch -cginit also affects the clock-gating unit. See [RD-4] for
more information. Below is an example where the GRETH Ethernet core's clocks are turned on (not gated).

grmon2> grcg
 GRCLKGATE GR712RC info:
 Unlock register: 0x00000000
 Clock enable register: 0x00000006
 Reset register: 0x00000ff9

 GR712RC decode of values:

GR712RC-QSG
October 2020, Version 1.3

17 www.cobhamaes.com/gaisler

 +------+----------+----------------------------+----------+---------+-------+
 | Gate | Core(s) | Description | Unlocked | Enabled | Reset |
 +------+----------+----------------------------+----------+---------+-------+
0	GRETH	10/100 Ethernet MAC	0	0	1
1	GRSPW	Spacewire link 0	0	1	0
2	GRSPW	Spacewire link 1	0	1	0
3	GRSPW	Spacewire link 2	0	0	1
4	GRSPW	Spacewire link 3	0	0	1
5	GRSPW	Spacewire link 4	0	0	1
6	GRSPW	Spacewire link 5	0	0	1
7	CAN	CAN core 1 & 2	0	0	1
8	SatCAN	SatCAN controller	0	0	1
9	GRTM	Telemetry Encoder	0	0	1
10	GRTC	Telecommand Decoder	0	0	1
11	B1553BRM	MIL-STD-1553 BRM	0	0	1
 +------+----------+----------------------------+----------+---------+-------+

grmon2> grcg enable 0

grmon2> grcg
 GRCLKGATE GR712RC info:
 Unlock register: 0x00000000
 Clock enable register: 0x00000007
 Reset register: 0x00000ff8

 GR712RC decode of values:
 +------+----------+----------------------------+----------+---------+-------+
 | Gate | Core(s) | Description | Unlocked | Enabled | Reset |
 +------+----------+----------------------------+----------+---------+-------+
0	GRETH	10/100 Ethernet MAC	0	1	0
1	GRSPW	Spacewire link 0	0	1	0
2	GRSPW	Spacewire link 1	0	1	0
3	GRSPW	Spacewire link 2	0	0	1
4	GRSPW	Spacewire link 3	0	0	1
5	GRSPW	Spacewire link 4	0	0	1
6	GRSPW	Spacewire link 5	0	0	1
7	CAN	CAN core 1 & 2	0	0	1
8	SatCAN	SatCAN controller	0	0	1
9	GRTM	Telemetry Encoder	0	0	1
10	GRTC	Telecommand Decoder	0	0	1
11	B1553BRM	MIL-STD-1553 BRM	0	0	1
 +------+----------+----------------------------+----------+---------+-------+

GR712RC-QSG
October 2020, Version 1.3

18 www.cobhamaes.com/gaisler

5. TSIM LEON simulator

5.1. Overview

TSIM is a simulator that can emulate a single-processor LEON computer system. It can be extended to emulate
custom I/O functions through loadable modules. TSIM has GDB support which makes C/C++ level debugging
possible by connecting GDB to the TSIM's GDB socket. With TSIM one can for example:

• Inspect LEON and simulated peripheral registers
• Load applications with the load command.
• Control execution flow by starting applications (run), continue execution (cont), single-stepping (step), in-

serting breakpoints/watchpoints (bp) etc.
• Inspect the current CPU state listing the back-trace, instruction trace and disassemble machine code.

The following section outlines how to use TSIM to emulate the GR712RC Development Board.

TSIM is described on the homepage [https://www.gaisler.com/index.php/products/simulators] and in detail in
[RD-5].

5.2. Startup

To start TSIM, use the command:

tsim-leon3 -gr712rc -ahbm gr712.so

To emulate custom I/O functions it is possible to use loadable modules. To load a module start TSIM with the -
designinput ... -designinputend option.

tsim-leon3 -gr712rc -ahbm gr712.so -designinput module.so -designinputend

See [RD-5] for further information about loadable modules.

After TSIM has been started all simulated peripherals can be listed by using the leon command. To inspect the
status of a core use one of the listed status commands. All TSIM commands can be listed with the help command.

tsim> leon

 Address Description Status command
 ---------- -------------------- -----
 0x80000000 Memory configurations mctrl_status
 0x80000200 Irqmp irqmp_status
 0x80000300 GPTIMER0 gptimer0_status
 0x80100600 GRTIMER0 grtimer0_status
 0x80000100 APBUART0 uart0_status
 0x80100100 APBUART1 uart1_status
 0x80100200 APBUART2 uart2_status
 0x80100300 APBUART3 uart3_status
 0x80100400 APBUART4 uart4_status
 0x80100500 APBUART5 uart5_status
 0x80000f00 AHBSTATUS0 ahbstatus0_status
 0x80100800 GRSPW controller 0 grspw0_status
 0x80100900 GRSPW controller 1 grspw1_status
 0x80100a00 GRSPW controller 2 grspw2_status
 0x80100b00 GRSPW controller 3 grspw3_status
 0x80100c00 GRSPW controller 4 grspw4_status
 0x80100d00 GRSPW controller 5 grspw5_status
 0x80000400 SPI controller 0 spi0_status
 0x80000900 GPIO controller 0 gpio0_status
 0x80000a00 GPIO controller 1 gpio1_status

 Register Register description Value
 -------- -------------------- -----
 CCTRL Cache control register 0x00020000
 ICCFG Icache config register 0x13230008
 DCCFG Dcache config register 0x1b220008
 ASR16 LEONFT register file prot. reg 0x00000000
 ASR17 Processor config register 0x00000507

tsim> uart0_status

 Address Register description Value
 ---------- -------------------- -----
 0x80000104 UART 0 status register 0x00000086
 0x80000108 UART 0 control register 0x80000000

https://www.gaisler.com/index.php/products/simulators
https://www.gaisler.com/index.php/products/simulators

GR712RC-QSG
October 2020, Version 1.3

19 www.cobhamaes.com/gaisler

 0x8000010c UART 0 scaler reload register 0x00000000
tsim> help

 Command summary:
 ahb len <length> Set amba bus trace buffer length
 ahb [length] Show amba bus trace history
 batch <file> Execute a batch file of TSIM commands
 bload <file> [addr] Load a binary file
 bp [addr] [cpuX]... Print all breakpoints or add a breakpoint at [addr]
 bopt Enable idle-loop optimisation.
 del <num> Delete breakpoint <num>
 bt [cpuX]... Print backtrace
 cont [cnt|time] Continue execution for [cnt] instructions or [time] time
 coverage <args...> Coverage control, see manual for details
 cp List CPU info.
 cpu <X> Switch active CPU to be X
 debug <level> Set debug level
 dbgon <flag> Toggle debug <flag> for all cores, see manual for details
 dcache Show contents of data cache
 disassemble [addr][count] Disassemble [count] instructions at address [addr]
 dump [file][addr][length] Dumps memory at [addr] to [file].
 ep [address|clear] Show, set or clear entry point
 event Show event queue
 exit [val] Exit the simulator with exit value [val] or 0.
 flush [args] Flush cache or caches, see manual for details
 float [-v] Print the FPU registers
 gdb Start gdb server listening for gdb connection
 go [addr] [cnt/time] Restart, reset and start execution
 hist [trace_length] Show combined inst/ahb trace history
 icache Show contents of instruction cache
 inst len <length> Set instruction trace buffer length
 inst [length] Show instruction trace history
 leon Display LEON peripherals registers
 load <file> Load a file into simulator memory
 mcfgX [val] Set or show user defined memory controller settings, X=1,2,3
 mem <addr> [count] Display memory at <addr> for [count] bytes
 vmem <addr> [count] Display virtual memory at <addr> for [count] bytes
 mmu [args] Show/set MMU registers and show TLB
 nolog <cmd> Suppress log output of a command.
 perf [reset] Show/reset performance statistics
 prof [0|1] [period] Show/enable/disable profiling
 quit Exit the simulator
 reg [reg] [val] Show/set CPU registers (or windows, eg 'reg w2')
 reset Reset simulator
 restore <file> Temporarily disabled: Restore simulator state from file
 run [addr] [cnt/time] Restart, reset, initialize and start execution
 save <file> Temporarily disabled: Save simulator state to file
 shell <cmd> Execute shell command
 silent <cmd> Suppress stdout of a command.
 stack [address|clear] Show, set or clear initial stack pointer
 step Single step
 symbols [file] Load symbols from [file]
 symbols list Show symbols.
 symbols lookup [symbol] Lookup [symbol]
 trace [cnt/time] Trace instructions for [cnt] instructions or [time] time
 thread [info/bt] Print thread info or backtrace
 version Print the TSIM version and build date
 vwmem <addr> <val>... Write word(s) to virtual address <addr> (and onwards)
 walk <addr> Print a MMU table walk
 watch <addr> Add a watchpoint at <addr>
 wmem <addr> <val>... Write word(s) to address <addr> (and onwards)
 wmemh <addr> <val>... Write half-word(s) to address <addr> (and onwards)
 wmemb <addr> <val>... Write byte(s) to address <addr> (and onwards)
 xwmem <asi> <addr> <val> Write word <val> to <addr> in address space <asi>

 Type Ctrl-C to interrupt execution

 See manual for details and additional command arguments.
 For native TCL commands use "tcl_help"

 IP cores and User modules:
 mctrl_status Print Memory configurations
 irqmp_status Print irqmp status
 gptimer0_status Print GPTIMER0 status
 grtimer0_status Print GRTIMER0 status
 uart0_status Print APBUART0 status
 uart1_status Print APBUART1 status
 uart2_status Print APBUART2 status
 uart3_status Print APBUART3 status
 uart4_status Print APBUART4 status
 uart5_status Print APBUART5 status
 ahbstatus0_status Print AHBSTATUS0 status
 grspw0_dbg Activate dbg output, "grspw0_dbg [<flags>|clean|list|help]" for info

GR712RC-QSG
October 2020, Version 1.3

20 www.cobhamaes.com/gaisler

 grspw0_connect <ip> connect GRSPW2 core to packet server at <ip>
 grspw0_server <port> start packet server for GRSPW2 core on port <port>
 grspw0_status [1|2|4] print GRSPW2 register status. flags:1=output verbose,2=dont compr...
 grspw1_dbg Activate dbg output, "grspw1_dbg [<flags>|clean|list|help]" for info
 grspw1_connect <ip> connect GRSPW2 core to packet server at <ip>
 grspw1_server <port> start packet server for GRSPW2 core on port <port>
 grspw1_status [1|2|4] print GRSPW2 register status. flags:1=output verbose,2=dont compr...
 grspw2_dbg Activate dbg output, "grspw2_dbg [<flags>|clean|list|help]" for info
 grspw2_connect <ip> connect GRSPW2 core to packet server at <ip>
 grspw2_server <port> start packet server for GRSPW2 core on port <port>
 grspw2_status [1|2|4] print GRSPW2 register status. flags:1=output verbose,2=dont compr...
 grspw3_dbg Activate dbg output, "grspw3_dbg [<flags>|clean|list|help]" for info
 grspw3_connect <ip> connect GRSPW2 core to packet server at <ip>
 grspw3_server <port> start packet server for GRSPW2 core on port <port>
 grspw3_status [1|2|4] print GRSPW2 register status. flags:1=output verbose,2=dont compr...
 grspw4_dbg Activate dbg output, "grspw4_dbg [<flags>|clean|list|help]" for info
 grspw4_connect <ip> connect GRSPW2 core to packet server at <ip>
 grspw4_server <port> start packet server for GRSPW2 core on port <port>
 grspw4_status [1|2|4] print GRSPW2 register status. flags:1=output verbose,2=dont compr...
 grspw5_dbg Activate dbg output, "grspw5_dbg [<flags>|clean|list|help]" for info
 grspw5_connect <ip> connect GRSPW2 core to packet server at <ip>
 grspw5_server <port> start packet server for GRSPW2 core on port <port>
 grspw5_status [1|2|4] print GRSPW2 register status. flags:1=output verbose,2=dont compr...
 spi0_status print spi core 0 status information
 spi0_dbg activate dbg output, "spi0_dbg [<flag>|list|help|clean]" for info
 gpio0_status print gpio ctrl 0 status information
 gpio0_dbg activate dbg output, "gpio0_dbg [<flag>|list|help|clean]" for info
 gpio1_status print gpio ctrl 1 status information
 gpio1_dbg activate dbg output, "gpio1_dbg [<flag>|list|help|clean]" for info
 can_oc0_connect <ip> connect CAN_OC core 0 to packet server at <ip>
 can_oc0_server <port> start packet server for CAN_OC core 0 on port <port>
 can_oc0_status print CAN_OC core 0 status information
 can_oc0_dbg activate dbg output, "can_oc0_dbg [<flag>|list|help|clean]" for info
 can_oc1_connect <ip> connect CAN_OC core 1 to packet server at <ip>
 can_oc1_server <port> start packet server for CAN_OC core 1 on port <port>
 can_oc1_status print CAN_OC core 1 status information
 can_oc1_dbg activate dbg output, "can_oc1_dbg [<flag>|list|help|clean]" for info
 greth_status print GRETH register status
 greth_connect <ip> connect to packet server at <ip>.
 If <ip> is not specified the default is localhost
 greth_dump <file> Dump packets to Ethereal readable <file>. When <file>
 is not specified the current dumpfile will be closed
 greth_ping <ip> Simulate a ping. Packets will be generated by Tsim.
 If <ip> is not specified the default <ip> is 192.168.0.80
 gr712_dbgon Activate dbg output, "gr712_dbgon help" for info

GR712RC-QSG
October 2020, Version 1.3

21 www.cobhamaes.com/gaisler

6. Toolchains

6.1. Bare C Cross-Compiler System

6.1.1. Overview

The Bare C Cross-Compiler (BCC for short) is a GNU-based cross-compilation system for LEON processors. It
allows cross-compilation of C and C++ applications for LEON2, LEON3 and LEON4. This section gives the reader
a brief introduction on how to use BCC together with the GR712RC Development Board. It will be demonstrated
how to build an an example program and run it on the GR712RC-BOARD using GRMON.

The BCC toolchain includes the GNU C/C++ cross-compiler 7.2.0, GNU Binutils, Newlib embedded C library,
the Bare-C run-time system with LEON support and the GNU debugger (GDB). The toolchain can be downloaded
from [RD-10] and is available for both Linux and Windows. Further information about BCC can be found in
[RD-11].

The installation process of BCC is described in [RD-11]. The rest of this chapter assumes that sparc-gaisler-elf-
gcc is available in the PATH variable.

6.1.2. Compiling with BCC

The following command shows an example of how to compile a typical hello, world program with BCC.

 $ cat hello.c
 #include <stdio.h>

 int main(void)
 {
 printf("hello, world\n");
 return 0;
 }

 $ sparc-gaisler-elf-gcc -qbsp=gr712rc -mcpu=leon3 -mfix-gr712rc -O2 -g hello.c -o hello.elf

All GCC options are described in the gcc manual. Some of the most common options are:

Table 6.1. BCC's GCC compiler relevant options

-g generate debugging information - recommended for debugging with GDB

-msoft-float emulate floating-point - must be used if no FPU exists in the system

-O2 optimize for speed

-Os optimize for size

-Og optimize for debugging experience

-qsvt use the single-vector trap model

-mflat enable flat register window model. The compiler will not emit SAVE and RESTORE
instructions.

It is recommended to use the options

 -qbsp=gr712rc -mcpu=leon3 -mfix-gr712rc

with GR712RC. For more details, see [RD-10].

6.1.3. Running and debugging with GRMON

Once your application is compiled, connect to your GR712RC-BOARD with GRMON. The following log shows
how to load and run an application. Note that the console output is redirected to GRMON by the use of the -u
command line switch, so that the application standard output is forwarded to the GRMON console.

$ grmon -ftdi -u
 GRMON2 LEON debug monitor v2.0.42 professional version

GR712RC-QSG
October 2020, Version 1.3

22 www.cobhamaes.com/gaisler

 Copyright (C) 2013 Aeroflex Gaisler - All rights reserved.
 For latest updates, go to http://www.gaisler.com/
 Comments or bug-reports to support@gaisler.com
[...]

grmon2> load hello.elf
 40000000 .text 23.6kB / 23.6kB [===============>] 100%
 40005E70 .data 2.7kB / 2.7kB [===============>] 100%
 Total size: 26.29kB (803.58kbit/s)
 Entry point 0x40000000
 Image hello.elf loaded

grmon2> run
hello, world

 CPU 0: Program exited normally.
 CPU 1: Power down mode

To debug the compiled program you can insert breakpoints, step and continue execution directly from the GRMON
console. Compilation symbols are loaded automatically by GRMON once you load the application. An example
is provided below.

grmon3> load hello.elf
 40000000 .text 23.6kB / 23.6kB [===============>] 100%
 40005E70 .data 2.7kB / 2.7kB [===============>] 100%
 Total size: 26.29kB (806.59kbit/s)
 Entry point 0x40000000
 Image hello.elf loaded

grmon3> bp main
 Software breakpoint 1 at <main>

grmon3> run

 CPU 0: breakpoint 1 hit
 0x40001928: b0102000 mov 0, %i0 <main+4>
 CPU 1: Power down mode

grmon3> step
 0x40001928: b0102000 mov 0, %i0 <main+4>

grmon3> step
 0x4000192c: 11100017 sethi %hi(0x40005C00), %o0 <main+8>

grmon3> cont
hello, world

 CPU 0: Program exited normally.

Alternatively you can run GRMON with the -gdb command line option and then attach a GDB session to it. For
further information see Chapter 3 of [RD-11].

6.1.4. Running and debugging with TSIM

Once your application is compiled, start TSIM with the -gr712rc -ahbm gr712.so option. The following
log shows how to load and run an application.

$ tsim-leon3 -gr712rc -ahbm gr712.so
 TSIM/LEON3 SPARC simulator, version [...]

 Copyright (C) 2019, Cobham Gaisler - all rights reserved.
 For latest updates, go to http://www.gaisler.com/
 Comments or bug-reports to support@gaisler.com
[...]
tsim> load hello.elf
 section: .text, addr: 0x40000000, size 25824 bytes
 section: .rodata, addr: 0x400064e0, size 128 bytes
 section: .data, addr: 0x40006560, size 1184 bytes
 read 350 symbols
tsim> run
 starting at 0x40000000
hello, world

 Program exited normally.

GR712RC-QSG
October 2020, Version 1.3

23 www.cobhamaes.com/gaisler

To debug the compiled program you can insert breakpoints, step and continue execution directly from the TSIM
console. Compilation symbols are loaded automatically by TSIM once you load the application. An example is
provided below.

tsim> load hello.elf
 section: .text, addr: 0x40000000, size 25824 bytes
 section: .rodata, addr: 0x400064e0, size 128 bytes
 section: .data, addr: 0x40006560, size 1184 bytes
 read 350 symbols
tsim> bp main
 breakpoint 1 at 0x4000124c: main + 0x4
tsim> run
 starting at 0x40000000

 breakpoint 1 main + 0x4
tsim> step
 3846 4000124c b0102000 mov 0, %i0 [00000000]
tsim> step
 3847 40001250 11100019 sethi %hi(0x40006400), %o0 [40006400]
tsim> cont
hello, world

 Program exited normally.

Alternatively you can run TSIM with the -gdb command line option and then attach a GDB session to it. For
further information see Chapter 3 of [RD-11].

6.2. RTEMS Real Time Operating System

6.2.1. Overview

RTEMS is a real time operating system maintained at [RD-6] that supports the LEON CPU family. Cobham Gaisler
distributes a precompiled RTEMS toolchain for LEON called RCC [RD-7]. This section gives the reader a brief
introduction on how to use RTEMS together with the GR712RC Development Board. It will be demonstrated how
to install RCC and build an existing sample RTEMS project from RCC and run it on the board using GRMON.

The RCC toolchain includes a prebuilt toolchain with GNU BINUTILS, GCC, NewlibC and GDB for Linux and
Windows (mingw). It also contains prebuilt RTEMS kernels for the LEON2, LEON3/4 BSPs single-core and for
multi-core development, see [RD-8] for more information. The LEON BSP specific drivers are documented in
[RD-9].

Sample RTEMS projects are available within the toolchain package, installed into rtems-x.y/src/samples.

6.2.2. Installing RCC

The RCC toolchain is downloadable from the RCC homepage at [RD-7]. The full installation procedure is found
in the RCC manual [RD-8]. Windows users are recommended to install the UNIX-like environment MSYS before
proceeding.

The installation process of RCC is straight forward by first extracting the toolchain into C:\opt or /opt on Lin-
ux, then extracting the source distribution into the /opt/rtems-x.y/src/ directory. In order for the compiler
to be found one has to add the binary directory /opt/rtems-x.y/bin into the PATH variable as below:

 $ cd /opt
 $ tar -xf sparc-rtems-4.10-...-linux.tar.bz2
 $ cd rtems-4.10/src
 $ tar -xf rtems-4.10-...-src.tar.bz2
 $ export PATH=$PATH:/opt/rtems-4.10/bin

6.2.3. Building an RTEMS sample application

Once the toolchain is set up, you can compile and link a sample RTEMS application by doing:

sparc-rtems-gcc -g -O2 rtems-hello.c -o rtems-hello

GR712RC-QSG
October 2020, Version 1.3

24 www.cobhamaes.com/gaisler

RCC's gcc creates executables for LEON3/4 by default. The default load address is at the start of the RAM, i.e.
0x40000000. All compilation options are described in [RD-8], but some useful options are reported below:

Table 6.2. RCC's GCC compiler relevant options

-g generate debugging information - must be used for debugging with gdb

-msoft-float emulate floating-point - must be used if no FPU exists in the system

-mcpu=v8 generate SPARC V8 mul/div instructions - needs hardware multiply and divide

-O2 or -O3 optimize code maximum performance and minimal code size

-qleon3std generate LEON3/4 executable without driver manager startup initialization

-qleon3mp generate LEON3/4 Multiprocessor executable (AMP)

6.2.4. Running and debugging with GRMON

Once your executable is compiled, connect to your GR712RC-BOARD with GRMON. The following log shows
how to load and run an executable. Note that the console output is redirected to GRMON by the use of the -u
command line switch, so that printf output is shown directly in the GRMON console.

[andrea@localhost samples]$ grmon -ftdi -u

 GRMON2 LEON debug monitor v2.0.42 internal version

 Copyright (C) 2013 Aeroflex Gaisler - All rights reserved.
 For latest updates, go to http://www.gaisler.com/
 Comments or bug-reports to support@gaisler.com

Parsing -ftdi
Parsing -u

[...]

grmon2> load rtems-hello
 40000000 .text 136.4kB / 136.4kB [===============>] 100%
 400221A0 .data 4.4kB / 4.4kB [===============>] 100%
 40023350 .jcr 4B [===============>] 100%
 Total size: 140.83kB (780.05kbit/s)
 Entry point 0x40000000
 Image /home/andrea/Desktop/samples/rtems-hello loaded

grmon2> run
Hello World

 CPU 0: Program exited normally.
 CPU 1: Power down mode

To debug the compiled program you can insert break points, step and continue directly from the GRMON console.
Compilation symbols are loaded automatically by GRMON once you load the executable. An example is provided
below.

grmon2> load rtems-hello
 40000000 .text 136.4kB / 136.4kB [===============>] 100%
 400221A0 .data 4.4kB / 4.4kB [===============>] 100%
 40023350 .jcr 4B [===============>] 100%
 Total size: 140.83kB (781.11kbit/s)
 Entry point 0x40000000
 Image /home/andrea/Desktop/samples/rtems-hello loaded

grmon2> bp Init
 Software breakpoint 1 at <Init>

grmon2> run

 CPU 0: breakpoint 1 hit
 0x400011f8: 1110007f sethi %hi(0x4001FC00), %o0 <Init+4>
 CPU 1: Power down mode

grmon2> step
 0x400011f8: 1110007f sethi %hi(0x4001FC00), %o0 <Init+4>

grmon2> step
 0x400011fc: 4000003b call 0x400012E8 <Init+8>

grmon2> cont

GR712RC-QSG
October 2020, Version 1.3

25 www.cobhamaes.com/gaisler

Hello World

 CPU 0: Program exited normally.
 CPU 1: Power down mode

grmon2> Exiting GRMON

Alternatively you can run GRMON with the -gdb command line option and then attach a gdb session to it. For
further information see Chapter 3 of [RD-8].

6.3. VxWorks

6.3.1. Overview

VxWorks is an embedded real-time operating system developed by WindRiver. Cobham Gaisler provides a LEON
architectural port (HAL) and a Board Support Package (BSP) in full source code for VxWorks 7, described at
[RD-12].

The VxWorks package includes a quick start guide and technical support. Contact support@gaisler.com for more
information.

6.4. MKPROM2

6.4.1. Overview

To run application from the on-board PROM, it's necessary to create a bootable PROM image file. MKPROM2
is a utility program to create boot-images for programs compiled with the BCC or RTEMS cross-compiler. It
encapsulates the application in a loader suitable to be placed in a boot PROM. The application is compressed with
a modified LZSS algorithm, typically achieving a compression factor of 2.

The boot loader operates in the following steps:

• The register files of IU and FPU (if present) are initialized.
• The memory controller, UARTs and timer unit are initialized according to the specified options.
• The application is decompressed and copied into RAM.
• Finally, the application is started, setting the stack pointer to the top of RAM.

6.4.2. Usage of MKPROM2

The MKPROM2 tool can be downloaded from the Cobham Gaisler website [http://gaisler.com/index.php/down-
loads/compilers]. No installation is required, but the directory containing the executable must be included in
the system's PATH, together with a valid SPARC toolchain (sparc-gaisler-elf, sparc-elf, sparc-
rtems or sparc-linux).

To generate a boot PROM for a GR712RC Development Board and running your program from SRAM:

mkprom2 -leon3 -freq 80 -rmw -ramsize 8192 -romsize 8192 -baud 38400 -ramws 2 -o hello.prom hello.exe

This example command will work for a board in the default configuration at delivery, with a system clock fre-
quency of 80 MHz. The -ramsize and -romsize options are expressed in KiB. The former value is 8MiB,
the size of the SRAM. The latter value is 8 MiB as well, and represents the size of the on-board flash. Finally the
-ramws option sets the number of wait states during SRAM access to 2, needed when running the system at 80
MHz, but might be a lower value at lower frequencies.

To generate a boot PROM for a GR712RC Development Board and running your program from SDRAM:

mkprom2 -leon3 -freq 80 -rmw -nosram -sdram 128 -romsize 8192 -baud 38400 -o hello.prom hello.exe

This example command will, again, work for a board in the default configuration at delivery. The -nosram option
will disable the SRAM and the -sdram option sets the size of the available SDRAM. This value is 128 MiB,
which is the value for the SODIMM provided by default with the board.

When SRAM is disabled, the SDRAM address range is moved from 0x60000000 to 0x40000000, therefore not
requiring recompilation of executables. To run your program in SDRAM without disabling SRAM, you need to

http://gaisler.com/index.php/downloads/compilers
http://gaisler.com/index.php/downloads/compilers
http://gaisler.com/index.php/downloads/compilers

GR712RC-QSG
October 2020, Version 1.3

26 www.cobhamaes.com/gaisler

link your program to the 0x60000000 address at compilation time. See the manual of your toolchain for more
information.

It's required that the MKPROM2 command line parameters match your system configuration. For more informa-
tion about command line options, please refer to [RD-13].

If EDAC is enabled on the board's PROM, then the -bch8 flag must be included in the command line. The
generated PROM image that needs to be flashed on the device in this case would be hello.prom.bch8.

Once the PROM file is generated, it can be loaded onto the board with GRMON. Once GRMON is attached to
the board, run the following commands to program the PROM.

flash
flash erase all
flash load hello.prom
verify hello.prom

For further information about connecting to the board with GRMON, see Chapter 4.

GR712RC-QSG
October 2020, Version 1.3

27 www.cobhamaes.com/gaisler

7. Frequently Asked Questions / Common Mistakes / Know Issues

This section contains application information applicable to the GR712RC-BOARD and custom systems with the
GR712RC component.

7.1. GR712RC

7.1.1. Clock gating

Several of the design's peripherals may be clock gated off. GRMON will enable all clocks if started with the flag
-cginit. Within GRMON, the command grcg enable all will have the same effect.

Alternatively, if a boot loader is used instead of GRMON to load an executable, then clock gating must be setup
via the General Purpose register. Clock source/divider selection must also be setup for the MIL-1553, SpaceWire
and TM cores. See Chapter 13 of [RD-2].

7.1.2. GRMON issues

When connected to the board, the message "stack pointer not set" will be shown by the command info sys in case
GRMON doesn't find any memory.

7.1.3. GPIO controller does not remember interrupt requests

The GR712RC GPIO controller allows controlling interrupt mask/edge/polarity and generate interrupt requests
to the interrupt controller. It does not however store the history of interrupts it has generated, so if the interrupt
request number is shared with other interrupts, the interrupt handler must have some external way to determine if
the interrupt was actually generated by the GPIO or some of the other (shared) interrupts.

7.1.4. Multiprocessor & legacy support

Code compiled for the single core LEON3 will generally be able to run unmodified on the GR712RC. The second
core is inactivated after reset and unless it's activated (by writing a specific bit in the IRQ controller) it will remain
inactivated and the chip will behave as a single-CPU system.

7.1.5. Inter-processor interrupts

When using a multiprocessor OS like RTEMS-AMP, Linux or VxWorks the default IRQ for interprocessor cross-
calls, IRQ 14, clashes with the MIL-1553, Ethernet and Telecommand IP cores. The OS may need to be recon-
figured by changing the IRQ value, which is usually a define, in the source code of your operating system and
rebuilding it. This should not be an issue with single-core RTEMS.

7.1.6. Interrupt considerations

7.1.6.1. IRQMP ilevel functionality

IRQMP "ilevel (0 or 1)" functionality is not used by the operating systems supported by Cobham Gaisler. It
is just set to all 0.

The reason is that ilevel is of limited use. In particular, it does not really add anything to applications using
nested interrupts. Whatever the value of ilevel, it can not change the interrupt request level provided to the
CPU (CPUx.IRL[3:0]).

So for example when interrupt 13 is being processed with nesting, then the interrupt trap handler sets PSR.PIL=13
to allow interrupts 14 and higher. However, the interrupt 2 can never interrupt this until PSR.PIL is lowered again
by the trap handler.

One scenario where the ilevel functionality is useful is when nesting is not used. When nesting is not used,
then all interrupt trap handlers set PSR.PIL to 15. In this case, ilevel can be used to control which interrupt to
take when a previous interrupt trap handler exits (PSR.PIL restored to 0).

GR712RC-QSG
October 2020, Version 1.3

28 www.cobhamaes.com/gaisler

7.1.6.2. GR712RC interrupt assignments are static

There is no way to remap the interrupt request level for peripherals in the GR712RC. Later LEON components
have support for true interrupt remapping.

7.1.6.3. Extended interrupts always clears interrupt pending bit 12

When the CPU acknowledges interrupt 12 (including "extended") on GR712RC, the interrupt controller will al-
ways clear bit 12 in the IRQMP pending register, independent of what the cause was. This means that GPIO 12
interrupt can get lost if extended interrupts (16..31) is used in the application.

The recommendation is thus to not use GPIO 12 interrupt if the application also uses any of interrupt 16..31. If
GPIO 12 interrupt must be used, then it needs to be checked each time any of extended interrupt occurs. That is,
at the end of ISR for 16..31, call also the GPIO 12 ISR.

7.1.6.4. Downgrading a high prio interrupt

A high prio interrupt can be "downgraded" to a low prio interrupt with some software support: Install an ISR (or
direct trap handler) for the high prio intrrupt which just forces interrupt 1 and then returns. When the high prio
interrupt returns, the interrupt 1 will be taken. Interrupt 1..15 can be forced atomically with the IRQMP force
register.

7.1.7. GRMON Debug Link Limitations

The GR712RC does not support debugging over Ethernet. EDCL is not included in the Ethernet core design. Refer
to Chapter 4 for an introduction to the supported debug links.

7.1.8. MIL-1553

The 1553 IP core in the GR712RC is an Actel Core1553BRM with an AMBA adapter developed by Cobham
Gaisler. Actel's core is documented on Actel's website [http://www.actel.com/ipdocs/Core1553BRM_HB.pdf],
while the wrapper is documented in [RD-2].

The correct RTEMS driver to use for the MIL-1553 core is B1553BRM. This should not be confused with
GR1553B which is the driver for Cobham Gaisler's in-house developed core. To use the core, users need to set up
clock gating and clock selection with the general purpose register.

There are some restrictions on what clock frequencies can be used, see Section 3.3 of [RD-2].

Users also need to set a register inside the Core1553BRM to match the BRM frequency used. This is usually done
by the driver in the RTEMS/VxWorks case (default is 24 MHz). Below is provided an example routine for setting
up GR712RC clocking to external 24 MHz clock. This routine can be used, for instance, as mkprom2 bdinit. In
this case it needs to be compiled with -O2 to avoid using stack.

static void gr712_init(void)
{
 volatile unsigned long *p;
 /* Select external 1553 clk through GPREG */
 p = (volatile unsigned long *)0x80000600;
 *p |= 0x20;
 /* Ungate 1553 clock and reset */
 p = (volatile unsigned long *)0x80000D00;
 p[0] = (1<<11);
 p[2] = (1<<11);
 p[1] = (1<<11);
 p[2] = 0;
 p[0] = 0;
 /* Set Core1553BRM to 24 MHz operation */
 p = (volatile unsigned long *)0xFFF00000;
 p[32] |= 3;
}

7.1.9. CAN multiplexing

The CAN bus outputs are disabled at reset and should be enabled before use by programming the CAN multiplexer.
To enable OC-CAN1 on CAN bus A and OC-CAN2 on CAN bus B, the following GRMON command can be used:

http://www.actel.com/ipdocs/Core1553BRM_HB.pdf
http://www.actel.com/ipdocs/Core1553BRM_HB.pdf

GR712RC-QSG
October 2020, Version 1.3

29 www.cobhamaes.com/gaisler

wmem 0x80000500 3

There is also an RTEMS driver named canmux for the CAN bus multiplexor distributed with the RCC distribution.
The multiplexer is programmed by opening the file "/dev/canmux" and requestiong an IOCTL. An example of this
is provided in the RCC example src/samples/gr712/rtems-satcan.c.

7.1.10. Concurrent CAN and Ethernet

Ethernet and CAN pins are conflicting in the GR712RC switch matrix so the functions can not be used concur-
rently. It is possible to switch between the interfaces at run-time.

The conflict comes from a set of pins which are activated when the CAN interface is enabled. These pins are
described as "proprietary" in the rightmost column of [RD-2], table named I/O switch matrix pin description. The
"proprietary" interface is obsolete and not part of the public interface of the GR712RC but are still part of the
I/O switch matrix.

When the CAN interface is enabled, the pins 191, 190, 185, 184 and 172 are also driven with "random values"
unless these pins are assigned to an interface with higher I/O switch matrix priority, such as when the MIL-
STD-1553B interface is enabled. Of these pins, 191, 190 and 185 are shared with Ethernet (RMII) and there is
the conflict.

Ethernet has lower switch matrix priority than CAN. So when CAN is enabled, the pins 191, 190 and 185 are not
driven by the Ethernet controller.

GPIO bits 13...16 are unavailable when CAN or SPW-2 is enabled. GPIO pins always has lowest priority in the
switch matrix.

How a particular device is "enabled" with regard to the switch matrix is described in [RD-2], Table 9. Most devices
are I/O-enabled by the clock gating unit and some are enabled via device control registers.

7.1.11. Hardware behavior at CPU reset and power management

GR712RC has the following behavior with regard to how the power-down mode and program counter (PC) is
managed:

• At GR712RC power-on, and at system reset issued by asserting RESETN (including watchdog), the following
is done:
• CPU0 sets PC=0 and starts execution.
• CPU1 sets PC=0 and is powered down.

• A CPU enters power-down mode by writing to its own CPU local register %ASR19. The local PC is set to
the instruction following the %ASR19 write.

• A CPU can not power down another CPU.
• Any CPU can read the power-down status of any other CPU by reading the Multiprocessor status register

in the interrupt controller.
• Any CPU can resume execution on any other CPU by writing to the Multiprocessor status register in the

interrupt controller.
• When a CPU is being resumed (powered up) by a write to the Multiprocessor status register, it continues

executing at its current PC.
• If an (unmasked) interrupt occurs on a powered down CPU, then the target CPU resumes execution on the

current PC.

The above behavior has some implications with regard to how processors have to cooperate on software initiated
restart.

At power-on, the RESETN signal is engaged and thus the PC for CPU1 has a good known value. No specific
preparations on CPU1 has to be performed for power-on.

For a software-initiated restart of the system, all processors need to synchronize before issuing the restart. All
processors except for CPU0 should typically be powered down and the other processors should resume execution
in memory which is guaranteed to exist as soon as they are resumed. This is because the currently executed appli-

GR712RC-QSG
October 2020, Version 1.3

30 www.cobhamaes.com/gaisler

cation and its data (in RAM) will typically disappear when CPU0 performs low-level initialization initialization
of memory controller and clearing RAM.

To solve this for the secondary processors, a dedicated “parking routine” in ROM could be entered by secondary
processors before CPU0 performs the software-initiated restart.

7.2. GR712RC-BOARD

7.2.1. Clock problems

Ensure that the jumper JP84, selecting the clock source, is always present. A combination of its absence and the
presence of jumper JP88, can lead to unexpected processor behavior.

When jumper JP88 is present, the oscillator in socket X5, which is provided by default, must be disconnected or
it will short with the main clock source, leading to possible damage to the oscillators and unexpected behavior.

7.2.2. Switch Matrix Configuration Problems

Ensure that the jumper array is properly configured and that any I/O peripheral required is clock ungated or enabled.
The internal switch matrix routing is explained more in depth in Chapter 2 of GR712RC User Manual.

If an IP core behaves correctly, as seen from software, but does not receive/transmit any data from the outside,
first check that the jumper array is properly configured. The problem might also arise when conflicting cores are
enabled. Check Table 8 from [RD-2] for further information on conflicting cores.

7.2.3. GPIO used as configuration at reset

Some of the GPIOs have special meaning on power-up, GPIO[1] and GPIO[3] configure the PROM area of the
memory controller and GPIO[42], GPIO[40], GPIO[37] and GPIO[34] are used for the SPW clock divider reset
value.

These pins are provided with pull-down resistors by default. If measuring the state of these GPIO pins, please take
into account the effect of these pull-down resistors. Conversely, if an external signal is connected to the GPIO[3]
and GPIO[1] pins, this may override the expected state of the pin at power up.

See Section 2.3.2 and Section 2.6.2 of [RD-1] for more information.

7.2.4. SDRAM configuration

SDRAM is, by default, not configured on the board. Ensure that the switch matrix jumper configuration is correctly
set as to enable SDRAM. If in doubt, you can use a default configuration that supports SDRAM. See Section 2.3
for more details.

Only half of the installed SDRAM will be available in the system, as reported by GRMON's info sys command.
This limitation is due to the fact that the SODIMM provides 64 bit data paths, but in the standard LEON model
only 32 bits of the SDRAM are used, plus 16 additional data bits for the RS/EDAC memory bits.

GR712RC-QSG
October 2020, Version 1.3

31 www.cobhamaes.com/gaisler

8. Support

For support contact the Cobham Gaisler support team at support@gaisler.com.

When contacting support, please identify yourself in full, including company affiliation and site name and address.
Please identify exactly what product that is used, specifying if it is an IP core (with full name of the library
distribution archive file), component, software version, compiler version, operating system version, debug tool
version, simulator tool version, board version, etc.

The support service is only for paying customers with a support contract.

GR712RC-QSG
October 2020, Version 1.3

32 www.cobhamaes.com/gaisler

Cobham Gaisler AB
Kungsgatan 12
411 19 Gothenburg
Sweden
www.cobhamaes.com/gaisler
sales@gaisler.com
T: +46 31 7758650
F: +46 31 421407

Cobham Gaisler AB, reserves the right to make changes to any products and services described
herein at any time without notice. Consult Cobham or an authorized sales representative to verify that
the information in this document is current before using this product. Cobham does not assume any
responsibility or liability arising out of the application or use of any product or service described herein,
except as expressly agreed to in writing by Cobham; nor does the purchase, lease, or use of a product
or service from Cobham convey a license under any patent rights, copyrights, trademark rights, or any
other of the intellectual rights of Cobham or of third parties. All information is provided as is. There is no
warranty that it is correct or suitable for any purpose, neither implicit nor explicit.

Copyright © 2020 Cobham Gaisler AB

	
	Table of Contents
	1. Introduction
	1.1. Overview
	1.2. References

	2. Board Configuration
	2.1. Overview
	2.2. Clock Sources
	2.3. I/O Switch Matrix
	2.4. UART
	2.5. PROM

	3. Software Development Environment
	3.1. Overview
	3.2. Boot Loaders
	3.3. Software Drivers

	4. GRMON hardware debugger
	4.1. Overview
	4.2. Debug-link alternatives
	4.2.1. Connecting via the FTDI USB/JTAG interface
	4.2.2. Connecting via SpaceWire RMAP interface

	4.3. First steps
	4.4. Connecting to the board

	5. TSIM LEON simulator
	5.1. Overview
	5.2. Startup

	6. Toolchains
	6.1. Bare C Cross-Compiler System
	6.1.1. Overview
	6.1.2. Compiling with BCC
	6.1.3. Running and debugging with GRMON
	6.1.4. Running and debugging with TSIM

	6.2. RTEMS Real Time Operating System
	6.2.1. Overview
	6.2.2. Installing RCC
	6.2.3. Building an RTEMS sample application
	6.2.4. Running and debugging with GRMON

	6.3. VxWorks
	6.3.1. Overview

	6.4. MKPROM2
	6.4.1. Overview
	6.4.2. Usage of MKPROM2

	7. Frequently Asked Questions / Common Mistakes / Know Issues
	7.1. GR712RC
	7.1.1. Clock gating
	7.1.2. GRMON issues
	7.1.3. GPIO controller does not remember interrupt requests
	7.1.4. Multiprocessor & legacy support
	7.1.5. Inter-processor interrupts
	7.1.6. Interrupt considerations
	7.1.6.1. IRQMP ilevel functionality
	7.1.6.2. GR712RC interrupt assignments are static
	7.1.6.3. Extended interrupts always clears interrupt pending bit 12
	7.1.6.4. Downgrading a high prio interrupt

	7.1.7. GRMON Debug Link Limitations
	7.1.8. MIL-1553
	7.1.9. CAN multiplexing
	7.1.10. Concurrent CAN and Ethernet
	7.1.11. Hardware behavior at CPU reset and power management

	7.2. GR712RC-BOARD
	7.2.1. Clock problems
	7.2.2. Switch Matrix Configuration Problems
	7.2.3. GPIO used as configuration at reset
	7.2.4. SDRAM configuration

	8. Support

