C
o
1
<
Q
S
c
sl

A generic SPARC architecture simulator capable of em- EﬂEE}.’,’,‘,’,’}.’i,%’E’B’G
ulating LEON-based computer systems Freeonies

TSIM3

TSIM3 Simulator User's Manual

\ g

ISIM

Instruction-level
simulator

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

Table of Contents

O 11 oo 1 o o 6
B0 7= 0T - | P 6

1.2, StAgEO FEIEASING oeeteieiiii ettt 6

1.3. Supported host platforms and System reqUIrEMENS viieeiiieieiiee e 6

1.4, ObtainNiNg TSIM Lo et 6

T o= PP 6

1.6, EVAIUBLION VEISION ..ottt e ettt e e ettt e e et et e e et et e e e eeba e eens 7

1.7, PrODIEM FEPOMS .ottt e et e ettt e e et et e e e ena e eeee 7

P22 1= | = 1 o o P 8
N B €= 1 1 - 8

2.2, License Key iNStallalion o..uuiiieii e 8
KO0 < ¢ o] H TP PUPPPTPRUPPIN: 9
TR0 I V= 4V PPN 9

3.2, SHAING TOIM oo e e et 9

3.3. Standalone MOde COMMANAS oevuiiiiii e et e e et e e et e e eea e eees 14
3.3.1. General COMMANAS ...oevuiiiiii ettt ettt e e e e e et eeeeaa s 14

3.3.2. Time specification for COMMENAS couuuiiiiiiiieii e 20

3.3.3. TCl COMMEANAS oottt e e e e et e e e e e aaan s 20

B34 TCl VaADIES oo 20

3.3.5. Core SPeCifiC COMMANAS couuiiiiiii et 20

3.4. Return values for SMUlation StOP FEASOMS vuuieiiiieeiiiii e eeet e ettt e e et e eeeat e e eni e eeees 22

3.5. Symbolic debug iNfOrMationooiiiiiii e e 22

3.6. Breakpoints and WaLChPOINIS uuiiiiii ettt e e e e e e e eeees 23

BT PIOfT NG e e 23
OIS . o0 7= = T PP 24
3.0, COUE COVEIBOR .oevtnieiiiti ettt ettt ettt ettt e et e e et e e et et e e et et e e et et e e e e enan s 24
3.10. ChECK-POINLING ..eeeetieeeeiit ettt ettt ettt e e e e et et e e et et e e e e aba e e e enan e eeees 26
TN T T o = o= PSR 26
3.12. ConNECLiNG t0 GDB ouiiiii e e 26

I A I 0= o I o] oo A ST SO PTTUPPPTRR 28
3.13.1. TSIM thread COMMENGS euniiiiiin et e et 28

3.13.2. GDB thread COMMENGAS ceiirtieieiiiiee et et e et e e e eees 29

3.14. Synchronising TSIM time to external imMe ... 30
3.15. Debugging particular device types and deVICES uuiiiiiiiieiii e 30

4. EMUIELiON CharaCLEiSICS ieeiiieieiii ettt ettt e et e e et e eeeba e 31
4.1, CommON BEhAVIOUN ..o e 31
e O T 01 o PP PP 31

AL 2. UA R T S ottt ettt e e e e e e e 31

4.1.3. Floating point Unit (FPU) ueiiee et 32

4.1.4. Delayed write 10 SPeCial FegISIErS ...oiiiii e 32

4.1.5. PeripheralS FEOISIEIS ..uuiiiiieii ettt 32

4.1.6. |dIe-100p OPtIMISALION uiiiiii ettt eeeeas 32

4.1.7. Custom inStruction @MUIALTION uiiiiii e 32

4.1.8. Chip-SPECITIC BITALA .eeeviieiiiii ettt et et e e 33

4.2. LEON2 SPeCIfiC @MUIBLION ciiiieiiiiii et eens 33
T o 0000 S PP UPRPRPTN 33

A O o < 111= 1110 =TT 33

4.2.3. INterrupt CONLIOIIEr .o e 33

4.2.4. POWEr-0OWN MOOE ..ottt ettt e et e e e et e e enb e eenes 33

4.2.5. MeMOrY @MUIBLION ...ooiieti i et e e e e e eeeen 33

4.2.6. SPARC V8 MUL/DIV and VBE MAC INSIIUCLIONS ccovvviieiiiiieeeeiiie e 34

Ny A U = 01101 = 4o o PP 34

4.2.8. DSU and hardware breakpointsoviiiiiiiie i 34

4.3. LEON3 SPECIfiC @MUIBLION ciiiiiieiiiii e et 34
I I I €1 - PP 34

A 3 2. PrOCESSOl it ettt e e e eaes 34

4.3.3. CaChE MEMOITES ..eeiieeii ettt et e e e et e eeenan s 34

4.3.4. POWEr-0OWN MOOE ..ottt et ettt e e e e e e et e e e et e eeees 34

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 2 Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

Ve ST g 11 o oo] = N 34

e G Y/ = 0 T VA= 1.4 U1 F= 1 o o 34

I B @7 S TN 1 1= i 1 o o) o 35

4.3.8. SPARC V8 MUL/DIV and V8E MAC iNStrUCLIONS evvviiiieieiieciieeiieeeiee e 35

4.3.9. FPU @MUIBLION ..eeeieeeii ettt e e e e 35

4.3.10. DSU and hardware breakpointSoceuiiiniiiiiii e 35

VG T AN o | S v (TS = o 1= £ 35

4.3.12. GPTIMER @MUIGION ...t e e 35

4.3.13. GRTIMER @MUIBLION ...ieeiiii ettt e e e e e 35

4.4, LEON4 SpeCifiCc @MUIALION ieeii et e e e e e e e e ens 35
g T (000 o | PP 35

N I R O o =11 1.0 1= P 36

e R I O o =311 1 10 Y/ 36

4.4.4. POWEr-AOWN MOOE ...oeiiiiii i e e e e e e e e e e e e e e e e aneeens 36

T g (= o oo) = N 36

G \V/ = 0 T VA= 1 4V F= 1 oo 36

AAT. TOMMU o e 37

S O S YN 1 1= 1o o) o 37

4.4.9. SPARC V8 MUL/DIV and V8E MAC iNStrUCLIONS uvveviiiiieieiiieeiineeie e 37

4.4.70. FPU @MUIAHTON ...ttt e e e e e e e 37

4.4.11. DSU and hardware breakpointSoceuiiiiiiiiii e 37

VA A AN o | S 1 (TS = o = £ 37

4.4.13. GPTIMER @MUIAION ...t e e e 37

5. L0adable MOUUIES oeiiei e e e e e e e 38
5.1. General module INEIfACE c..iieii e 38
5.1.1. Loading MOTUIES ieei e e e e e e e e e e e e ans 38

5.1.2. General ModUIE APl oo 38

5.1.3. Connecting SPeCific MOTUIEScouiiiiii e e 39

5.1.4. General module eXampPlES cconiiiiiiie e 39

5.2. TSIM exported emulation iNterfaCeS c.ooiiiiiii i e 39
B.2.1, SIMIT SITUCIUNE oo e e e e e e e e e e e e e e eanes 39

L0 o =1 1o (1= 41

Lo TR oo o = 1 o = N 41

5.3. LEON AHB emulation iNtErfaCec..oeiuiiiiii e e e e 42
5.3.1. Structure to be provided by AHB moduleoovniiiiii 43

5.3.2. Big versus little endianess ccuoviniiiiiii e 46

5.3.3. AHB MOdUle EXaMPIE .. cviiiie e 46

5.3.4. AHB module lIMItationNS ieniii i e 46

L L@ ¢ oo (0] =T 1= = o= 46

5.5. AddiNg StartUp OPLIONS ...oeeiie e e e 47

5.6. Adding USEr COMMEANGS ieeiiiii e e e e e e e e e e e e e et e e e e e e eaneeanns 47

5.7. Check-pointing MOCUIE SALE ovuiiiciiici e e e e e e e e e e e eaes 48

5.8. Loadable modules distributed With TSIM ... 48

6. TSIM IBrary (TLIB) eeuiiiiiitiii ettt et et et e et e e et e et e e et e e et e e et e eaneens 50
L300 O 1 11 oo T 1 o o It 50

6.2, FUNCLION INEEITACE ...ieeiiiii e e e e e e e e e e e aeees 50

6.3. Builtin and external modules and user MOdEISccoviiiiiii i 52

6.4. Linking @ TLIB @ppliCaliON ceuiiiiieiie e e e e e e e e e ans 52

6.5. FIlES and EXAMPIES ..o 52

7. GR712RC @MUIBLTON ...ttt ettt et e e e et e et e e et e e e et e e et e e et e e e eeen s 53
7.1. Clock Gating Unit, CANMUX and GRGPREGc..oiiiiiiiiiiii e 53

S I T A =0 11 o o 54
8.1. GR716 BOOL ROM ..ottt e e et e et et e e et e e e e e e e ean s 54

S 001001 =0 S 55

8.3, DA C e et a e anaa s 55

LS I 0 =0 T o o 56
LS DT 010 =0 S 56

10. UTB99 EIMUIBLION ..oeeiieeeie ettt e et et ettt ettt ettt e et e e et e ettt et et e e et e e et e e eba e eeaeennnns 57
12 UTBOE EMUIBLION ...ttt ettt ettt et e e et et e et e e et e e et e e et e e e eeenas 58
12, UTT700 @MUIBLION .oeeiiteeet ettt ettt e et et e et e e et et et e e et e e et e e et e e ebn e eeaeennnns 59

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 3 Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

N G A= 1118 i o PPN 60
I] L A PSP 61
I S = 1 o o o1 o 61

T4.2. COMMANGAS etniiin ettt ettt e e et et et et et e e et e ettt et et e e et e e et e e ean e e et e e eat e eeaneeeans 61

14.3. DEDUQG FlagS ooneiiiiiiei i 61

T4.4. CAN INEEITACE i ettt e e e et e e e e e e eees 61
14.4.1. Connecting a user CAN MOCEl ..o 61

14.4.2. CAN MOOEl APl oo e e 62

I T 4 o 1 1 o1 oL 64

T4.4.4. COMMANGS .etuneiitn ittt ettt et et et et et et e e e et e e et e e et r e e et e eat e aebnaeennaaees 64

1445, DEDUG SEAIUS ..uieiietiieeiiiii e e et e et e e ettt e e e ettt e e e et e e e e et s e e e eett s e e e eete e e e eatanaeaee 64

14.4.6. Current lIMITaLIONS iieeiei et e e e e e e e e e 64

T O N @ O T o1 =1 ol Pt 65
L S = T o oo 11 o1 65

15.2. COMMANGAS etiiii ettt ettt e et et et et e e et e ettt et et e e et e e et e e et e e et e e e et e eeaeeeens 65

15.3. DEDUQG FlagS ooniiniiiiei i 65

15,4, PACKEL SEIVEN ..iiiiiii ettt ettt e et e et e et e e e e et r e e e et e e e e et n e ettt et et e aa e eaannn 65

15.5. CAN packet Server ProtOCOl c..iieieiiiii e e e e e e 66
15.5.1. CAN message packet FOrmatcoooniiiiiiiiii e 66

15.5.2. Error counter packet fOrmal o.oiiiiiiiiii e 66

15.5.3. Acknowledge packet TOrmatcooveiiiiiiii 67

15.5.4. Acknowledge packet TOrmatccooviiiiiiii 67

16. 10/100 Mbps Ethernet Media Access Controller interfacecooovveviiiiiiiiii e, 68
I S = 1 o o o1 o 68

16.2. COMMANGAS etniiin et ettt ettt et e e et et etk e e et e ettt et et e e et e e et e e e b e e et e e e et e eeaneeeens 68

16.3. DEDUQG TlagS oouveniiiiii i 68

16.4. Ethernet PaCKet SErVEr coviieiii e e e e e e e e e 69

16.5. Ethernet packet Server ProtOCOl coeiiieiiiii e e e 69

17. GPIO INEEITACE ettt et et e et e e e e e eaa s 70
17.1. Connecting a user GPIO MOEl iiniii e 70

17.2. GPIO MOUEL APl e e 70

17.3. COMMANGAS etiiitee ettt ettt et et e e et e ettt e e et e e et e e et e e et e e et e e eat e eeaeeeans 70

17.4. DEDUQG TlagS .onieinieiiei i 70

18. GRPCI, PCI initiator/target iNtErfatecccviiiiiiiie e e e e e 72
18.1. COMMANGAS etuiitneett ettt ettt e et et et e et e e et e ettt et et e e et et et e e e an e e et e e eat e eeaeeeens 72

18.2. DEDUG TlagS .ouvrniiiiii it 72

18.3. PCl BUS MOUEL APl L.t e et e e et e e et e e aaans 72
18.3.1. PCI command tadl@iiii i e 73

S e 1 o] =P 74

19. GRSPW1, SpaceWire interface with RMAP SUPPOIT ... e 75
S I S = 1 o o o1 o1 75

19.2. COMMANGAS etiiitn ettt ettt e et et et et e e et e ettt e e et e e et e e et e e et e e et e e e et e eeaeeeens 75

19.3. DEDUG FlagS ooniiiiiiei i 75

19.4. SPACEWITE PACKEL SEIVEN ..ieeiii it e e e e e e 75

19.5. SpaceWire packet SErver ProtOCOl oeuuiiiiiii e e 76
19.5.1. Data packet FOrMaloouiiiii e e 76

19.5.2. Time code packet fOrmatcoouiiiiiiii e 77

20. GRSPW?2, SpaceWire interface with RMAP SUPPOIT eeiin i 78
0 I S = A U T o1 o 1 78

20.2. COMMEBNOS .e.eeteeee ettt ettt et ettt et e e et et et et et et et e e e b e e et e et et e e en e e et e eean e eennas 78

20 TR D 1= o = TN 79
20.4. SPaCEWITe PACKEL SEIVEr .ouiiiiii i e e e e e e e e e e e e 79

20.5. SpaceWire packet Server ProtOCOl coeiiiiiiiii e 80
20.5.1. Flow control lIMItaHIONS cietniiie i e e e eaans 80

20.5.2. Data part packel fOrMalcooviiiiii e 80

20.5.3. Time code packel fFOrMaLccouiiiniiiii e e e 8l

20.5.4. Link state packel FOrmMatcoooiiiiiiiiii e 81

20.5.5. Link control packet fTOrmatccoooveiiiiiiiiii e 82

20.5.6. RX frequency packet fOrmatc.cooviiiiiiiiii e 83

20.5.7. Link error injection packet formatcccovviiiiiiii i 84

Document: TSIM3-UM
December 2021, Version 3.1.4

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

20.5.8. Packet error request packet format ccoviiiiiiiiii i 85

20.6. SIMPIE MO ...oeiiii e e e e 86

A o I 10 1= g = o U PP PT PP UPPTRPPN 88

21.1. Connecting a user SPI MOGEL couiie e 88

21.2. SPI DUS MOTEl APl o et 88

21.3. COMMEBNOS .eeiiii ettt ettt et ettt et e e et ettt et et et et e e et e e et e et et e e ea e e et e e et e eennas 88

A O 1= o = TN 88

22, SPIM INEEITACE ..ttt ettt ettt ettt e e et e et e e et et et a e et e e e e e aae 90

22.1. Connecting a user SPIM model t0 TSIM ..o 90

22.2. SPIM MOOEl APl oottt e 0

23. ATBI7 PCl INEITACE .ot ettt et et e e et e e e e et e e e e ean s 92

23,1, COMMEBNAS ceeieieeee ettt et ettt e e e ettt et et et et et e e et e e e b r et et e e et e e et e e et e eeenas 92

23.2. DEDUQG Tla0S . eeeei i 92

B TR N = (= 92

23.4. ESAPCI bus MOOEl APl oottt 93

23.4.1. PCl command tahleeiii e 94

B TS T = 0] o = R 94

24. TPS VXWOrKS 6.X AHB MOOUIE . ..oeeiieii e e 95

2.0, OVEIVIBIW ettt ettt ettt et e et et e et e et et e et ah et e e et e e e eaa s 95

24.2. Loading the MOCUIE coeii e e e e 95

e T @Ce 1 To U1 {0 o 95

2 T T o] oo PP 96
Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 5 Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

1. Introduction

1.1. General
TSIM isageneric SPA RC! architecture simulator capable of emulating LEON-based computer systems.

TSIM provides:

« Emulation of LEON2/3/4 processors in general and tailored emulation of specific chips

» High precision multi core CPU models with bus contention and inter-processor effects modelled on a per
instruction level (LEON 3/4)

e FPU and MMU emulation

» Accelerated processor standby mode, allowing faster-than-realtime simulation speeds

« Standal one operation with scriptable Tcl command line

* Operation via remote connection from GNU debugger (GDB)

« Provided asalibrary to beincluded in larger simulator frameworks

e 64-hit time for practically unlimited simulation periods

» Detailed instruction traces and AMBA bus traces

* Memory emulation, including SRAM, SDRAM, PROM, SPI memories, local dataRAM and local instruction
RAM.

¢ L2 cache emulation with support for configurable replacement, cache way locking, as well as and protected
and uncached regions (currenly only supported for LEON4)

« Emulation of interrupt controllers, UARTS, timers, IOMMU, SpaceWire interfaces, CAN controllers, SPI
controllers, GPIOs, Ethernet interfaces, DAC, PCI

* Loadable modulesto include user-defined device models

» Non-intrusive execution time profiling

» Non-intrusive code coverage monitoring

» Stack backtrace with symbolic information

» Check-pointing capability to save and restore complete simulator state (to be released in afuture update)

¢ Unlimited number of breakpoints and watchpoints

* Predefined simulation models for GR740, GR712RC, GR716, UT699, UT700 and AT697

1.2. Staged releasing

Some general featuresthat are not yet availablein thisrelease, will be released in upcoming updates. Thisincludes
saving and restoring simulator state, and various features of the LEON4 L2 cache such as AMBA split response.
Thisis noted as such in the manual.

Additional simulation models for various I/O cores will be added in the future. Supported devices and interfaces
of modelled chips are listed in their respective chapters. There, details on limitations of some of the models are
also listed or pointed to.

Application program interfaces for user modules and user models are not yet finalised and thus subject to change.
They are functional in their current form, unless otherwise noted, and usage examples are included in the distri-
bution.

1.3. Supported host platforms and system requirements
TSIM supports the following host platforms: Linux and Windows 10.
1.4. Obtaining TSIM

The primary site for TSIM is https://www.gaisler.com where the latest version of TSIM can be ordered and eval-
uation versions downloaded.

1.5. License

TSIM3LEONZ2, TSIM3LEON3 and TSIM3 LEON4 arelicensed separately as separate products. Emulation of the
GR716 LEON3FT microcontroller is availablein TSIM3 LEON3, but can also be licensed separately as TSIM3
GR716 that simulates GR716 only.

IsPARC s aregistered trademark of SPARC International

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 6 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler
https://www.gaisler.com

PIONEERING
ADVANCED
ELECTRONICS

The license text can be found in | i cense. t xt in the top directory after installation. Please contact
sales@gaisler.com to acquire alicense.

1.6. Evaluation version

An evaluation version of TSIM3 LEONS3 is available from https://www.gaisler.com. The evaluation version may
only be used for evaluation and internal testing and only during a period of 21 days without purchasing alicense.
Seethel i cense. t xt filethat isincluded in the archive for details.

The evaluation version simulates a basic dua core LEON3 system, but can be made to simuate a single core
system using the - nuntpus option. The evaluation version is limited to 32-bit time. It does not support check-
pointing, loadable modules, library interface, code coverage, configuration of caches, diagnostic cache accesses,
configuration of memory or chip flagssuch as- gr 712r ¢ or - ut 700. The- hel p option can show options that
available in the evaluation version. There are also upper limits on number of simulations restarts, instruction and
bus trace lengths and number of frontend command executions.

1.7. Problem reports
Please send problem reports or comments to support@gaisler.com.

Customers with avalid support agreement may send questions to support@gaisier.com. IncludeaTSIM log when
sending questions, please. A log can be obtained by starting TSIM with the command line switch -1 og fi | e-
name. Try to include as much details as possible from commands such as reg, inst/ahb (enable history with inst
len| en or ahb len | en), bt and with relevant debug options turned on. See al'so Chapter 25.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 7 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler
https://www.gaisler.com

PIONEERING
ADVANCED
ELECTRONICS

2. Installation

2.1. General
TSIM isdistributed as atar-file (e.g. tsim-leon3-3.1.4.tar.gz) with the following contents:

Table 2.1. T9SM content

Directory Description

coverage Source level coverage helper scripts

doc TSIM documentation

examples/input Example loadable modules for interfaces
examples/test Example programs

examples/modules Example loadable modules

license.txt TSIM license text

share Tcl distribution

tsim/linux-x64 TSIM binary for Linux

tsim/win64 TSIM binary for Windows

On Linux, the tar-file can be installed at any location with the following command:

tar xf tsimleon3-3.1.4.tar.gz

On windows, the archive can be unpacked e.g. with the freely available 7-zip application.

TSIM must find the shar e directory to work properly. TSIM will try to automatically detect the location of the

folder. If TSIM fails to automatically detect the folder, then the environment variable TSI M_SHARE can be set
to point amoved shar e folder. If TSIM failsto find the shar e folder altogether it will fail to start up.

2.2. License key installation

TSIM islicensed using a Sentinel LDK USB hardware key and has support for node-locked and floating license
keys. The type of key can be identified by the colour of the USB dongle. The node-locked keys are purple and
the floating license keys are red.

1. Node-locked keys (purple USB key)

For node-locked keys, the Sentinel LDK Run-time for the key must be installed before the key can be used (see
below).

2. Floating keys (red USB key)

In the case of floating keys, the Sentinel LDK Run-time must be installed on the server and the client computer
(see below).

Sentinel LDK communicates via TCP and UDP on socket 1947. This socket is IANA-registered exclusively for
this purpose. By default the client will find the server by issuing a UDP broadcast to local subnets on port 1947.

If broadcasting is not working or unwanted, then advanced network settings can be setup viathe Sentinel Admin
Control Center. The Sentinedl Admin Control Center is accessed by opening the URL localhost:1947 in a web
browser. The network settings are reached by selecting "Configuration” in the menu and then sel ecting the " Access
to Remote License Managers' tab. Detailed information on how to setup the network settings can be found by
selecting "Help" in the menu.

3. Sentinel LDK Runtime

Thelatest runtime can befound at the TSIM download page [https://www.gai sler.com/index.php/downl oads/sim-
ulatorg]. Included in the downloaded Sentinel LDK runtime archive is a README file which contains detailed
installation instructions.

Administrator privilegesarerequired on Windows. On Linux it isrequired that the runtimeisinstalled asroot user.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 8 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler
https://www.gaisler.com/index.php/downloads/simulators
https://www.gaisler.com/index.php/downloads/simulators
https://www.gaisler.com/index.php/downloads/simulators

PIONEERING
ADVANCED
ELECTRONICS

3. Operation

3.1. Overview

TSIM can operate in tree modes: standalone, used as a library and attached to GDB. In standalone mode, LEON
applications can be loaded and simulated using a scriptable Tcl based command line interface. A number of com-
mands are available to drive, investigate and interact with the simulation. When TSIM isused isalibrary. TSIM
can be driven viaa C API (see Chapter 6). This APl makes standal one commands available as well as additional
functionality. When attached to GDB, TSIM acts as a remote GDB target (see Section 3.12). Applications are
loaded and debugged through GDB (or a GDB front-end such as DDD or Eclipse). It thismode it is also possible
to use the standal one commands through the “monitor” GDB command.

3.2. Starting TSIM

TSIM is started as follows on a command line:
tsim-leon2 [opt i ons] [i nput _fil es]
tsim-leon3[opti ons] [i nput _fil es]
tsim-leon4 [opt i ons] [i nput _fil es]

Please note that when starting TSIM with a chip option, e.g. - gr 712r ¢ or - gr 716, TSIM will configure chip
specific features. Thisincludes CPU configuration parameters like caches, MMU, FPU, aswell aswhat interfaces
are present and how they are configured. Thus, when using a chip option there is no need to manually configure
parameters that affects configuration internal to the chosen chip. If a parameter is set by both a chip option and
aoption directly, TSIM will always use the direct option.

When using a TSIM3 GR716 license, the - gr 716 option is implicitly declared and thus GR716 features are
already enabled. Some of the following options that are not supported by GR716 or is aready enabled by the -

gr 716 option have been disabled in the GR716 only release. Thisdoesnot apply to - gr 716 whenusingaTSIM
LEON3 license.

Many options can be used without an argument to enable or disable afeature but can also take an optional 1 or 0
as an argument. Many of these are documented as having the optional argument [0| 1] without any description
of the optional argument. For these cases, regardless of if the option enables or disables something a1 argument
is the same as no argument and will work as per the description of the option and a 0 argument will invert the
meaning of the option. This can be used to override something enabled or disabled by earlier options.

For standalone TSIM, command line options can also be specified in thefile . t si ncf g in the home directory.
Thisfile, if present, will be read at startup the contents will be prepended to the options given on the command
line. In other words, options from the command line will, when possible, override options specified in the config
file. Seethe - cf g option for how to turn this off or how to use a different file.

The following command line options are supported by TSIM:

-ahbstatus [0] 1]
Adds AHB status register support.
-asi lall ocate [0] 1]
Makes ASI 1 reads alocate cache lines (LEON3/4 only). Thisis enabled by default.
-at 697e
Set parameters according to the Atmel AT697E device (LEON2 only). See Chapter 13 for detailson AT697
emulation.
- banks <1| 2| 4>
Sets how many RAM banks the SRAM is divided on. Supported valuesare 1, 2 or 4. Default is 1.
-boot strap val
Sets the GR716 bootstrap register toval (GR716 only).
-bopt [0] 1]
Enables idle-loop optimisation (see Section 4.1.6).
-bp [0] 1]
Enables emulation of LEON3/4 branch prediction
-bz [0] 1]
Halt execution on all traps except privileged instruction, fpu_disabled, window_overflow,
window_underflow, asynchronous interrupt and trap_instruction (As GRMON does when not using
GRMON's -nb option). This halts at the pc and in the register window of the trapping instruction. Note

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 9 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

that this does not function as an ordinary break in execution; continuing from this halt will re-execute the
trapping instruction. This does not affect debugging through GDB. Useinstead the - nb [O] 1] option
to set up that behaviour.

-cfile
Evaluate the contentsin the filef i | e at startup. Thisis run through TSIM's Tcl interpreter and can thus
contain Tcl codein genera, including TSIM commands. Thisis aconvenient way for specifying additional
Tcl procedure definitions, for specifying simple sequences of TSIM commands as well as setting up more
elaborate Tcl scripting of TSIM. Seealso the - e option on how to specify commands on the command line.
Multiple - ¢ and/or - e options can be given and will be evaluated in order.

-cfgfilenone
Readsextraconfiguration optionsfromf i | e. If filenameis"none" it will prevent adefault (for standalone
TSIM) configurationfile. t si ncf g from the homedirectory from being read. Optionsfrom the command
line will override options specified in the config file.

-cf greg_and and_nask, - cf greg_or or_nask
LEON2 only: Patch the Leon Configuration Register (0x80000024). The new value will be: (reg &
and_mask) |or _mask.

-cas [0]1]
Enable emulation of the CASA instruction, or disable with a 0 argument. (LEON3/4 only). Enabled by
default. Chip options enables or disables CASA support according to the corresponding chip.

-dcsi ze si ze
Defines the set-size (KiB) of the LEON data cache. Allowed values are powers of two intherange 1 - 64
for LEON2 and 1-256 for LEON3/4. Default is 4 KiB.

-dlock [0] 1]
Enable data cache line locking. Default is disabled.

-dl ramaddr si ze
Allocates si ze KiB of local data RAM (ak.a. tightly coupled data memory and data scratch-pad RAM)
at addressaddr . (LEON3/4)

-dl si ze <16| 32>
Setsthe line size of the LEON data cache (in bytes). Allowed values are 16 or 32. Default is 16.

-drepl <rnd|lru|lrr>
Sets the replacement algorithm for the LEON data cache. Allowed values are r nd (default for LEON2)
for random replacement, | r u (default for LEON3/4) for the least-recently-used replacement algorithm and
| rr for the least-recently-replaced replacement algorithm.

-dsetssets
Defines the number of setsin the LEON data cache. Allowed values are 1 - 4. Defaults to 1 for LEON2
and 4 in general. Isset to 1 in the evaluation version.

-e comuand(s)
Executescommand(s) at simulator startup. Thisisrun through TSIM's Tcl interpreter and thus does not
not need to be a single command. For example, a string containing semicolon separated commands can
be specified and will then run in sequence. See aso the - ¢ option on how to specify commandsin afile.
Multiple - e and/or - ¢ options can be given and will be evaluated in order.

-eclipse [0] 1]
Enable some specia handling of the GDB protocol when connecting with Eclipse.

-ext nr
Enable extended IRQ in the interrupt controller with extended IRQ number nr (LEON3/4 only).

-fast_uart [0] 1]
Run UARTSs at infinite speed, rather than with correct baud rate.

-freqgsystem cl ock
Sets the simulated system clock in MHz. Default is 50.

-gdb [port]
Listen for GDB connection directly at start-up. If the port is not specified, the default port number 1234
isused. See also the - por t option that changes the default GDB server port number without starting the
server.

-gdbuartfwd [0] 1]
Forward UART output to GDB when being connected over GDB. Which UART if any is forwarded is
determinedby the - u[i ndex] option. Thedefault behaviour isfor GDB to not change UART forwarding
behaviour.

-gr712rc
Set parameters to emulate the GR712RC device. See Chapter 7 for details on GR721RC emulation.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 10 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

-gr716
Set parameters to emulate the GR716 device. See Chapter 8 for details on GR716 emulation.

-grfpu
Emulate the GRFPU floating point unit.

-grfpulite
Emulate the GRFPU-lite floating point unit (LEON3/4).

-hel p[option]
List short help on all available options or show specific help for a given option. Many options specific to
certain cores will only be available when a chip option, that instantiates models that adds more options, is
also given together with the - hel p option. Without an argument (i.e. it being the last option given), this
displays short help for al available options. When the name of another option is given as an argument to
- hel p, it will print, potentially more detailed, help about that option specifically.

-swbp [0] 1]
Enable use of software breakpoints for GDB breakpoints. By default TSIM uses hardware breakpoints for
GDB breakpoints. This does not affect standalone TSIM breakpoints.

-stack addr
Set initial stack pointer.

-icsizesize
Defines the set-size (KiB) of the LEON instruction cache. Allowed values are powers of two in the range
1- 64 for LEON2 and 1-256 for LEON3/4. Default is 4 KiB.

-ilock [0] 1]
Enable instruction cache line locking. Default is disabled.

-il ramaddr size
Allocates si ze KiB of local instruction RAM (a.k.a. tightly coupled instruction memory and instruction
scratch-pad RAM) at address addr . (LEON3/4)

-ilsize<16| 32>
Setsthe line size of the LEON instruction cache (in bytes). Allowed values are 16 or 32. Default is 16 for
LEON2/3 and 32 for LEONA4.

-irepl <rnd|lru|lrr>
Sets the replacement algorithm for the LEON instruction cache. Allowed values are r nd (default for
LEONZ2) for random replacement, | r u (default for LEON3/4) for the least-recently-used replacement al-
gorithmand | r r for the least-recently-replaced replacement algorithm.

-isetssets
Defines the number of sets in the LEON instruction cache. Allowed values are 1 - 4. Defaults to 1 for
LEON2 and 4 in general. Is set to 1 in the evaluation version.

-logfil enane
Logsthe console output tof i | enane. If fi | enane ispreceded by ‘+' output is appended.

-ncfgXval ue
Set the reset value of memory configuration register X, where X canbe 1, 2 or 3.

-nflat [0]1]
This switch should be used when the appli cation software has been compiled with thegcc - nf | at option,
and debugging with GDB is done.

-mu [0] 1]
Enable MMU support, or disable with a 0 argument. By default LEON3 and LEON4 has MMU support,
but LEONZ2 does not. Chip options enables or disables MM U support according to the corresponding chip.

-modfile
Loads an wuser gspecified | oadable nodule from file. The environment variable
TSIM_MODULE_PATH can be used as alist of search paths. See Section 5.1.1 for details.

-mul val ue
Set instruction cost of smul/umul to val ue.

-nb [0] 1]
Do not break on error exceptions when debugging through GDB. To affect standalone TSIM or TLIB
behaviour, seeinstead the - bz [0] 1] option.

-nof pu [O0O] 1]
Disables the FPU to emulate a system without FPU. Any floating-point instruction will generate an FP
disabled trap.
Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 11 Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

-ni [0] 1]
Prevents the GDB server from bootloader-like initialisation when using the gdb reset command and when
starting the GDB server before any simulation has been done. No other commands are affected.
-mac [0] 1]
Enable LEON MAC instructions.
-nosram [0] 1]
Disable SRAM on startup. When SRAM is disabled, SDRAM will appear at 0x40000000.
- not hr eads
Disable threads support.
- bnt hr eads
Force bare metal thread support, even when an OS is detected. Bare metal thread support consists of re-
porting each CPU as athread to GDB. Bare metal thread support is default if no OS is detected.
-nov8 [0] 1]
Disable SPARC V8 MUL/DIV instructions.
-nrtimersval
Adds support for more than 2 timers (in one timer unit). Valueval canbeintherangeof 2 -7 (LEON3/4
only). Default: 2. Seealsothe - sanetimerirqg [0 1] and -ti nmerirgbase nunber switches.
- nuncpus val ue
Set number of CPUs between 1 and 4. In the LEON3 evaluation version, the maximum number of CPUs
islimited to 2.
-nwWinw n
Defines the number of register windows in the processor. Valid range is between 2 and 32. The default is
8. Only applicable to LEON3/4.
-port port
Set the port number por t to be used for GDB communication. The default port number is 1234. The port
number can also be specified with the - gdb option or the gdb command.
-pr [0] 1]
Enable profiling automatically at startup.
-ramram si ze
Sets the amount of simulated RAM (KiB). Default is 8192 KiB.
-ramm dt h <8| 16| 32>
By default, the RAM area at reset time is considered to be 32-bit. Specifying 8, 16 or 32 will initialise the
memory width field in the memory configuration register to 8-, 16- or 32-hits. The only visible difference
isin the instruction timing.
-rfpart [O] 1]
Enable register window partitioning support.
-romrom si ze
Sets the amount of simulated ROM (KiB). Default is 8192 KiB.
-romm dt h <8| 16| 32>
By default, the PROM areaat reset timeis considered to be 32-bit. Specifying 8, 16 or 32 will initiaise the
memory width field in the memory configuration register to 8-, 16- or 32-bits. The only visible difference
isin theinstruction timing.
-rtens ver
Override auto-detected RTEM S version for thread support. ver should be 46, 48, 48-edisoft or 410.
-sanmetimerirq [0] 1]
Force the IRQ number to be the same for all timers (in one timer unit). Default: separate increasing IRQ
numbers for each timer. (LEON3/4 only). Seealsothe - nrti nersval and -ti nmerirqgbase num
ber switches.
-sdfreqfrequency
Set the frequency of the SDRAM in the SDCTRL in GR740. Default is 100 MHz.
- sdramwi dt h <32| 64>
Set the SDRAM bus width of the SDCTRL in GR740 to 32 or 64 bit. Default is 64-bit. The only visible
difference isin the instruction timing.
-sdramsdram si ze
Sets the amount of simulated SDRAM (MiB). Default is 128.
- sdbanks <1| 2>
Sets the number of SDRAM banks. Default is 1.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 12 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

-strict_reset [0] 1]
This enables strict reset behaviour for the memory controller. When this is not enabled, TSIM not only
resets the memory controller configuration registers, but also sets up fields that are not reset in hardware.
For example RAM banks sizes, RAM width are set up, and SDRAM is enabled if available and the RAM
areais disabled of the - nosr amoption is used. This default behaviour is for convenience when working
with RAM images. Enabling strict reset behaviour can be useful e.g. when testing boot loaders.

-symfile
Read symbolsfromf i | e. Thiscan be useful e.g. for self-extracting applications and applications that sets
up non one-to-one MMU mapping.

-timer32 [0] 1]
Use 32 hit timers instead of 24 bit. (LEON2 only)

-tinmerirqgbase nunber
Set the IRQ number of the first timer (in one timer unit) to interrupt number nuber (LEONS3/4 only).
Default: 8. Seeasothe -nrtimersval and -sanmetinmerirq [0] 1] switches.

-u[index]
Connect the UART with the given index to stdin and stdout and set up up terminal or console in raw mode.
If no index is given UARTO is chosen. By default this is enabled for UARTO. A negative index makes
sure that none of the UARTS are connected to stdin/stdout. See also - uout [i ndex] for connecting
a UART to stdout without configuring it. Maximum one UART can be connected to using the mutually
exlusive -u [index] and -uout [index] options Seeadso -uart Xdevi ce for connecting
UARTSsto seria devices.

-uout [index]
Connect the UART with the given index to stdout. If no index is given UARTO is chosen. This does not
connect stdin and does no terminal or console configuration. This can be useful when stdin is closed and
when stdin and/or stdout are redirected. A negative index makes sure that none of the UARTs are connected
to stdout. Seeaso - u [i ndex] for connecting a UART to both stdin and stdout. Maximum one UART
can be connected to using the mutually exlusive - u [i ndex] and - uout [i ndex] options. Seealso
-uart Xdevi ce for connecting UARTsto serial devices.

-uart Xdevi ce
This option connects the chosen UART to a seria device. Here, X can bein the range O up to the number
of UARTSs (exclusive). Seealso - u [i ndex] thatisused to connect a UART to stdin/stdout.

OnLinux, e.g. connecting thefirst uart to /dev/ttyUSBO0 can be done with “-uart0 /dev/ttyUSBO”. On Linux,
using the device /dev/ptmx will create a pseudo-terminal pair with the chosen uart at one end. TSIM prints
out the name of the other end of the pair to be opened by host software communi cating with the chosen uart.

On Windows use //./com1, //./lcom2 etc. to access the serial ports. The serial port settings can be adjusted
by opening the relevant entry under “Ports (COM and LPT)” entry in the Device Manager and choosing
the “Port Settings’ tab in the dialogue that pops up.

-uart_fs<1| 2| 4| 8] 16] 32>
Set UART FIFO depth in characters (LEON3/4 only). This setting affects all APBUARTSs in the system.
Valid configurations are 1, 2, 4, 8 (default), 16 and 32 characters. If the FIFO depth is configured to 1 the
UART FIFO is not present instead only the holding register is present and FIFO level interrupts are not
present. The FIFO interface is available for both fast and accurate mode, however the transmitter side in
fast mode never fills the FIFO since characters are always sent immediately.

-upcounter [0] 1]
Enables upcounter registers (ASR22/23). For LEON3/4 only.

-ut 699
Set parameters to emulate the UT699 device. Note that when - ut 699 is given, snooping will be set as
non-functional. This also sets up TSIM to simulate only one APBUART core. See Chapter 10 for details
on UT699 emulation.

- ut 699e
Set parameters to emulate the UT699E device. This also sets up TSIM to simulate only one APBUART
core. See Chapter 11 for details on UT699E emulation.

-ut 700
Set parametersto emulate the UT700 device. Thisalso setsup TSIM to simulate only one APBUART core.
See Chapter 12 for details on UT700 emulation.

-V
Turn on verbose output.
Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 13 Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

- VvV
Turn on very verbose output.

input_files
Executablefilesto beloaded into memory. Theinput files are loaded into the emulated memory according
to the entry point for each segment. Recognised formats are elf32, aout and srecords.

3.3. Standalone mode commands

The TSIM command line interface is a Tcl driven command line interface with a number of different type of
recognised commands. There are general TSIM commands that are always present, native Tcl commands (see
Section 3.3.3) that allowsfor Tcl scripting, aswell as core specific commands that are available if specific devices
arepresent inthe simulated hardware configuration. See Section 3.3.1, Section 3.3.3 and Section 3.3.5 respectively.
The help command can also be used to show alisting with short help for all commands, and to show more detailed
help about specific commands.

As long as there are no ambiguities, short forms of the commands are allowed. For example, dis, is interpreted
as disassemble, but re is reported as ambiguous. TSIM offers tab completion on things like commands names,
subcommand names, symbols, device names and debug flags. In addition tab completion on Tcl variables are
possible when after typinga“$”.

Commands that takes an address as an argument can in general also take a symbol as an argument in place of
an address, as well as tab complete on symbols. Some commands can take optional cpuX arguments to select a
specific CPU, or for some commands a set of CPUs. For such arguments X is in this case replaced with the CPU
id. In other wordsto select CPU 0, “cpu0” isused. Such cpuX arguments must be placed last in the command call.
For commands that does something in the context of a specific CPU, the current CPU is the one that is affected.
The cpu can be used to change which CPU that is the current CPU.

Typing a‘ Ctrl-C' will interrupt a running simulator. Note however that in order to abort user created Tcl loops,
the script should manually break out of theloop if the Tcl t si m @i nt er r upt variableis not zero.

If thefile .tsimrc existsin the homedirectory, it will be used for standalone TSIM asabatch file and the commands
in it will be evaluated as Tcl at startup. This can be used for commands to be executed as well as for defining
Tcl procedures for later use.

3.3.1. General commands

Below is a description of general commands
ahb [-ffile][l ength]

Display thelatest | engt h (default 30) entriesin the AMBA bustrace history. Using-f fi | ename will
write the AMBA bus trace to file rather than print it.

Note: CPU accesses to local instruction RAM and local data RAM do not in general go viathe AMBA
bus and thus do not show up in the AMBA bus trace history. The one exception is instruction fetch from
dual-port local data RAM on GR716.

ahblenl ength
Set the AMBA bus trace buffer length, clear the AMBA bus trace buffer and enable AMBA bus tracing.
Setting it to zero clears and disables AMBA bus tracing.

batchfil e [argunments. ..]
ExecuteaTcl script inthefilef i | e. During the script evaluation make argvO contain the script filename,
argv contain alist of al the arguments that appear after the filename and argc will be the length of argv.
See also the - ¢ option on how to specify commandsin afile that is evaluated at startup.

bloadfil e [startaddr]
Load the binary filef i | e into memory starting at st ar t addr . The default st ar t addr isthe start of
RAM memory. If an L2 cacheis present, it will be flushed and invalidated and the loaded content will be
placed uncached in the memory behind the L2 cache.

boot [addr ess/ synbol |-t][i nstructions |anpbunt timeunit]

Performs acold boot. In other words, resets the simulator and starts simulation from time 0 bootloader-like
initialisation. The event queue is emptied but memory contents and any set breakpoints remain. If an L2
cacheis present, it is flushed, invalidated and disabled. If an address or symbol is given, execution starts

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 14 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

from there. Otherwise, the starting point is determined according to the following priority. If an entry point
has been set with theep command, execution startsfrom that entry point (which can bedifferent for different
CPUs). If no addressis given and no entry point has been set, execution starts at the reset address. No entry
points of loaded images are taken into account, in contrast to the run command.

The boot command never performs bootloader-like initialisation of the system before starting the smula-
tion. Use the run command when such initialisation is desired.

If an address or symbol is specified, or -t is used instead of an address or symbol, an optional number
of instructions or amount of time to stop after can also be specified. See Section 3.3.2 for the syntax for
specifying time.

See Section 3.4 on Tcl return value.

bopt [0]1]
Enable (bopt 1), disable (bopt 0), or show the current status bopt of idle-loop optimisation (see Sec-
tion 4.1.6).

bp [cpuX. . .]
Prints all breakpoints and watchpoints. With optional cpuX arguments, breakpoints and watchpoints can
be shown for a subset of the available CPUs.

bp addr ess [cpuX. . .]
Adds an breakpoint at addr ess. With optional cpuX arguments, breakpoints can be set for a subset of
the available CPUs.

bp delete [nun
Deletes breakpoint/watchpoint num If numis omitted, all breakpoints and watchpoints are deleted.

bp watch addr ess [cpuX. ..]
Adds a watchpoint at addr ess. With optional ¢cpuX arguments, watchpoints can be set for a subset of
the available CPUs.

bt [cpuX. . .]
Print backtrace for the current or specified CPUs.

cont [i nstructi ons |amount tineunit]

Continue execution at present position, optionally for a number of instructions or an amount of time. See
Section 3.3.2 for the syntax for specifying time.

See Section 3.4 on Tcl return value.

coverage enable[ner ge| per cpu]
Enable coverage. Datawill be merged for all CPUsif mergeflag is specified, or recorded per CPU if percpu
flag is specified. If no flag is specified then default is to merge. Note that changing coverage mode will
reset the coverage data. See Section 3.9 for more details.

coverage disable
Disables coverage.

coveragesave[fil e_name] [cpuX. . .]
Merge and write coverage data for specified CPUs to file (file name and CPU is optional). The coverage
datawill be merged for all CPUsif no CPU is specified. See Section 3.9 for more details.

coveragelcov [fi |l e_nane] [cpuX. . .]
Merge and write coverage data for specified CPUs to file using the Icov output format (file name and CPU
is optional). The coverage data will be merged for all CPUs if no CPU is specified. See Section 3.9 for
more details.

cover age clear
Resets coverage data.

coverageprint address [len] [cpuX ..]
Print coverage data to console, starting at address. If no CPU is specified the data will be merged for all
CPUs. Else merged data for specified CPUs will be printed. See Section 3.9 for more details.

cpu [active X]
List CPUs or switch CPU X to be the active CPU.

dbgonfl ag
Togglef | ag debug for al applicable cores. Seethe cor e X_dbg commands for which flags are available
for different cores.

dcacheprint [cpuX. . .]
Print the data cache contents for the current or specified CPUs.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 15 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

dcacheflush [addr |sym] [cpuX. . .]
Flush the current or specified CPUs data cache, optionally for given address or symbol only.

dcache query <addr |syn® [cpuX. . .]
Print current or specified CPUs data cache status for given address or symbol.

dumpfil eaddress|ength
Dumps memory content to filef i | e, in whole aligned words. The addr ess argument can be a symbol.

disassemble[addr] [count] [cpuX. . .]
Disassemble[count] instructionsat address[addr] for the current CPU or for the specified CPUs. Default
value for count is 16 and for addr the current program counter.

ep [clear] [cpuX. . .]
Clear entry point for execution on all or given CPUs.

ep [addr ess] [cpuX. . .]
Show or set entry point for execution on all or given CPUs. When an entry point has not explicitly been set
for a CPU, the entry point printed and returned is the entry point that would be used by the run command.
Setting the entry point overrides the default start of execution addressfor the run and boot commands. The
Tcl return value for thiscommand isalist of all affected CPUs entry points. Thelist is sorted in ascending
CPU index order.

event
Print events in the event queue. Only user-inserted events are printed.

exit [val]
Exit the smulator with exit value val , when given, or zero.

float [-v] [cpuX. . .]
Printsthe FPU registersfor the current or given CPUs. With the optional -v argument, the fields of the FSR
registers are listed and denormalized numbers are marked.

gdb [port]
Start GDB server, listening for GDB connection, optionally on the given port. The default port is 1234,
unless changed by the - gdb or - por t option.

gdb reset
Prepares TSIM for anew runviaGDB. Thisisin some cases needed beforeloading an image from GDB (or
viaGDB e.g. from Eclipse). See Section 3.12 for details. This should only be used infvia GDB as“ monitor
gdb reset”.

gdb postload
Performs final preparations after loading an image from GDB (or via GDB e.g. from Eclipse). Thisisin
some cases needed when debugging multicore images. See Section 3.12 for details. This should only be
used infvia GDB as “monitor gdb postload”.

go addr ess/ synmbol [i nstructions |anount tinmeunit]

Continues simulation after having set the PC of the current CPU to the given address.

The go command never restarts simulation, resets the system or does any bootloader-like initialisation. Use
the run or boot command when that is desired.

An optional number of instructions or amount of time to stop after can be specified. See Section 3.3.2 for
the syntax for specifying time.

See Section 3.4 on Tcl return value.

help [command|t opi c]
Without an argument, print a help menu for TSIM commands. Using helpconmand, will show help for
command when available. The tcl topic will list help for native Tcl commands.

hist [-v] [-ffil e] [l engt h] [cpuX]

Displays the latest | engt h (default 30) entries from both the current or given CPUs instruction trace
buffersand AMBA bus trace buffers interleaved. Not that only one CPU can be specified at atime. Using
-f fil ename will write the trace to file rather than print it. Using - v enables verbose outpuit.
icache print [cpuX. . .]
Print the instruction cache contents for the current or specified CPUs.
icacheflush [addr [syn] [cpuX. . .]
Flush the current or specified CPUs instruction cache, optionally for given address or symbol only.
icache query <addr |[syme [cpuX. . .]
Print current or specified CPUs instruction cache status for given address or symbol.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 16 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

inforeg [-v] [devi cename| r egi st er name| addr]...

Shows system registers. If one or more device names are passed to the command, then only the registers
belonging them are printed. If one or more register names/addresses are passed, only those registers will
be printed. See Section 3.3.4 on how to address registers by name. Use the leon command to list the names
of the available devices in the system. If option - v is specified then TSIM will print the field names and
values of each register. Note that some registers are not implemented in TSIM and thus will not show up.
Note that for LEONZ2, in this release only the memory controller and PCI interface shows up in info reg.
On LEONZ2, the leon command is used to show the non-PCI device registers.

inst [-v] [-ffile][l ength][cpuX]

Display the latest | engt h (default 30) instructions in the instruction trace buffer, for the current or given
CPUs. Using - f fi | enane will write the instruction trace to file rather than print it. Using - v enables
verbose outpuit.

inst len [l engt h] [cpuX]
Set the instruction trace buffer length, clear the instruction trace buffer and enable instruction tracing, for
al or the given CPUs. Setting it to zero clears and disables instruction tracing.

iommu apv decode <base>
Decodes APV starting at base base.

iommu cache flush
Flushes the IOMMU cache.

iommu cache show <I i ne><count >
Shows the contents of the IOMMU cache. Shows count linesstarting at linel i ne.

iommu cachewrite<l i ne><dat a0. . . dat aN> <t ag>
Write full cache line including tag to cachelinel i ne , i.e. the number of data words depends on the size
of the cache line.

iommu pagetable lookup <base> <addr >
L ookup specified |O addressaddr in page table starting at base.

|2cache
Show L2 cache settings.

|2cache show data [way] [count] [st art]
Prints the data of count cache lines of way way starting at cachelinest art .

|2cache show tag [count] [st art]
Prints the tags of count cachelines, for all ways, starting at cachelinest art .

|2cache enable
Enable the cache.

|2cache disable
Disable the cache.

|2cache disable flushinvalidate
Disable the cache and all dirty cache lines are invalidated and written back to memory as an atomic oper-
ation.

|2cacheinvalidate
Invalidate all cache lines.

I2cache flush
Perform a cache flush to all cache lines.

|2cache lookup addr
Prints the data and status of acachelineif addr generates a cache hit.

|2cache flushinvalidate
Flush and invalidate al cache lines (copy-back).

leon
Display an overview of available peripheral sand display the current CPUs configuration registers. Registers
of individual peripherals can be displayed in detail with the info reg command. Note that for LEONZ2,
in this release only the memory controller and PCI interface shows up in info reg. On LEON2, the leon
command is used to show the non-PCl device registers.

loadfiles
Load fi | es into simulator memory. If an L2 cache is present, it will be flushed and invalidated and the
loaded content will be placed uncached in the memory behind the L2 cache.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 17 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

mcfgX [val ue]
Set or show the user defined value that is used to set the memory configuration register X when TSIM acts
as aboot loader (e.g on run, but not boot). These commands do not set the corresponding registers when
the commands themselves are evaluated. Here X can be 1, 2 or 3.

mem [opt i on] addr [count]

membh [opt i on] addr [count]

memb [opt i on] addr [count]
Display memory at addr for count bytes. The mem, memh and memb commands shows and returns
the result as words, half-words and bytes respectively. An unaligned addresses and lengths are rounded
down. Unimplemented address areas are displayed as zero. Possible options affecting the format of the Tcl
return value are;

-asci i If the-ascii flag has been given, then asingle ASCII string is returned instead of alist of values.

- cstr If the -cstr flag has been given, then asingle ASCII string, up to thefirst null character, isreturned
instead of alist of values.

- hex Give the -hex flag to make the Tcl return value be list hex strings, but without any Ox prefix. The
numbers are always 2, 4 or 8 characters wide strings regardless of the actual integer value.

- X Givethe-x flag to make the Tcl return value be alist of hex strings prefixed with Ox. The numbers after
Ox are always 2, 4 or 8 characters wide strings regardless of the actual integer value.
mmu [cpuX]
Display the MMU registers for the current or given CPUs.
mmu debug [val ue] [cpuX]
Set debug level for the MMU on current or given CPU.
mmu ctrl [val ue] [cpuX]
Display or set the value of the MMU control to val ue for the current or given CPUs.
mmu ctx [val ue] [cpuX]
Display or set the value of the MMU context register to val ue for the current or given CPUs.
mmu ctxptr [val ue] [cpuX]
Display or set the value of the MMU context pointer register to val ue for the current or given CPUs.
mmu tlb [cpuX]
Display the TLB for the current or given CPUs.

nolog cnd
Suppress the log output of a command.
perf [cpuX. . .]

The perf command will display various execution statistics. By default, the statistics information for all
CPUs that has been started are merged. With optional cpuX arguments, profiling can be shown for a
subset of the available CPUs. Restarting simulation (e.g. viarun, boot, or reset) also resets the statistic
information.
perf reset
Reset the performance statistics. This can be used if statistics shall be calculated only over a part of the
program. Restarting simulation (e.g. viarun, boot, or reset) also resets the statistic information.
profileenable[st i ne]
Enable profiling on all CPUs, clearing any previous profiling information. Default sampling period is 1000
clock cycles, but can be changed by specifying st i me asthe number of clock cycles between samples.
profiledisable
Disable profiling, but do not clear profiling information.
profile[num [cpuX. . .]
Show profiling information. By default all symbols with enough samplesto reach 0.01% is printed. With a
numargument the number of printed lines are limited to num By default, the profiling information for all
CPUs that has been started during the sampling (including being started but in power down) are merged.
With optional cpuX arguments, profiling can be shown for a subset of the available CPUs.
quit
Exits the simulator. Use the exit command to exit with a given exit value.
reg[reg_nane [val ue]wi ndow... [cpuX]
Prints and setsthe |U registersin the current register window, prints and setsindividual registers and prints
other register windows on the current or the given CPU. reg without parameters prints the IU registers
of the current register window. reg r eg_nare shows the value of the corresponding register. Valid reg-

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 18 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

ister names are asr(16,17,20,22,23), psr, thr, wim, y, pc, npc, fsr, gl-g7, o0-07, 10-17, i0-i7, fO-f31. reg
r eg_narme val ue setsthe corresponding register to val ue. To view acertain register window, usereg
wn, where n istheindex of the register window. To show or set asingle register from a specific window,
prepend wn to the register name, e.g. wli2.

reset
Restarts the simulation (simtime is set to zero) and resets the system. If an L2 cache is present, it will be
flushed, invalidated and disabled.

restorefile
Saving and restoring simulator state is not yet available, but will be released in a future update. Restore
simulator state fromf i | e. See Section 3.10 for details.

run [addr ess/ synbol |-t][i nstructions |anmount tineunit]

Resets the simulator and starts simulation from time 0. The event queue is emptied but memory contents
and any set breakpoints remain. If an address or symbol is given, execution starts from there. Otherwise,
the starting point is determined according to the following priority. If an entry point has been set with the ep
command, execution starts from that entry point (which can be different for different CPUs). Otherwise, if
an image has been loaded, execution starts from the entry point of that image. If no image has been loaded
either, execution starts at the reset address.

The run command always performs bootloader-like initialisation of the system before starting the smula-
tion. Use the boot command when no such initialisation is desired. If an L2 cache is present, it will be
flushed, invalidated and then enabled as part of the thisinitialisation.

If an address or symbol is specified, or - t is used instead of an address or symbol, an optional number
of instructions or amount of time to stop after can also be specified. See Section 3.3.2 for the syntax for
specifying time.

See Section 3.4 on Tcl return value.

savefil e
Saving and restoring simulator state is not yet available, but will be released in a future update. Save
simulator stateto f i | e. See Section 3.10 for details.

shell cnd
Execute the shell command cnd in the host system shell.

silent cnd
Suppress stdout of a command.

stack [clear|addr ess] [cpuX. . .]
Show, clear or set initial stack pointer for the current or given CPU. Setting the stack pointer will override
the default stack pointer. Clearing a set stack pointer will make TSIM go back to setting a default stack
pointer.

step [-v] [i nstructions [anpunt ti meunit]

Execute and disassemble one or moreinstructions or for acertain amount of time on the current CPU. Using
- v enables verbose output. Any other CPUs will execute as usual, silently, in the resulting timespan.

See Section 3.4 on Tcl return value.

symbolsfil e

Load symbol tablefromfi | e.
symbols clear

Clear al knowledge of symbols.
symbolslist

Prints alist of the loaded symbols.
symbolslookup synmbol

Look up the address of the given symbol. Prints and returns the result.
thread [i nf o |bt]

Prints thread info or thread backtrace. See also Section 3.13.1.
version

Printsthe TSIM version and build date.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 19 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

vmem [opt i on] addr [count]
vmemh [opt i on] addr [count]
vmemb [opt i on] addr [count]
Same as mem, memh and memh respectively, but does a MMU trandation on vaddr first whenever
MMU is present and enabled.
vwmem vaddr val ...
Write word with value val to virtual address vaddr . If MMU is not present or not enabled, no address
translation is done. If several values are given, they are written to consecutive virtual word addresses.
walk <addr ess| synbol >[cpuX]
If the MMU is enabled printout atable walk for the given address or symbol on the current or given CPUs.
wmem, wmemh, wmemb addr ess val ue...
Write aword, half-word or byte directly to simulated memory space. If several values are given, they are
written to the consecutive word, half-word or byte addresses respectively.
xwmem asi addr ess val ue
Write aword to simulated memory using ASI=asi .

3.3.2. Time specification for commands
Commands such asrun, boot, cont, go and step supports simulating for a specified amount of time.

If an amount without aunit is specified, execution will stop after the specified number of instructions. If an amount
and atime unit (with whitespace between) is specified, the execution will continue until the given time has passed
(relative to the current time). The following time units are supported:

Table 3.1. Time units for commands that run simulation

Argument Unit

c cycles

us microseconds
ms milliseconds
S seconds

min minutes

h hours

d days

3.3.3. Tcl commands

TSIM has built-in support for Tcl 8.6. All command lines entered through the command line interface as well
as via the GDB monitor command or executed from TLIB will pass through a Tcl-interpreter. This enables e.g.
loops, variables, procedures, scripts, and arithmetic calculations for the user. Commands like mem, reg, run, go,
cont and step gives useful Tcl return values that can be used for scripting.

Although thismanual doesnot list all supported native Tcl commands, the TSIM help tcl can beused list short help
for al supported native Tcl commands and help crmdnane can be used to list full help for agiven Tcl command.
The help for the native Tcl info command can be listed with help tclinfo.

3.3.4. Tcl variables

TSIM provides Tcl variablesfor commonly used values. Such ascoreregistersand fields. The notationfor registers
arecoreX: :regi ster andforfieldscoreX: : regi st er: : fi el d. Thisnotation can be used to both read
from a specific register and to set the value of it. Tab completion on these variables are supported.

3.3.5. Core specific commands

Many cores in the system has their own commands on the format cor e X_conmmandnane, where X is the index
(starting from 0) off the core within the set of cores of the same type. For example gpio0_status shows the status
of the first GPIO in the system. The availability of these commands depends upon what cores are present in the
simulated system. The available coresin the simulated hardware can be shown with the leon command.

For some cores in the system there isa cor eX_status command shows some additional status information. For
some cores it is possible to enable extra debug information with their cor eX_dbg command. This command

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 20 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

takes a debug flag or a subcommand as argument. The flags are specific for each core type and explained in the
respective chapter. Common for al cor eX_dbg commands are the subcommands all, clean and list which will
enable, disable or list al applicable debug flags respectively for the core in question.

gpioX_status
Print status for the GPIO core.

gpioX_dbg [f | aglall|clean|list]
Toggle specific flag, set all, clear dl, or list debug flags for the given GPIO core. See Section 17.4 for a
list of debug flags.

canbusX_status
Prints the status information on the given CAN bus. Note that thisis only used for systems with one or
more GRCAN devices, not for CAN_OC.

grcanX_dbg [f | ag|all|cleanllist]
Toggle specific flag, set all, clear al, or list debug flags for the given GRCAN core. See Section 14.3 for
alist of debug flags.

grspwX_connect host : [port]
Connect GRSPW/GRSPW?2 core X to packet server at specified server and TCP port.
grspwX_server port
Open a packet server for GRSPW/GRSPW?2 core X on specified TCP port.
grspwX_dbg [f | aglall|clean]list]
Toggle specific flag, set al, clear al, or list debug flags for the given GRSPW/GRSPW?2 core. See Sec-
tion 19.3 for alist of debug flags for GRSPW cores and Section 20.3 for GRSPW?2 cores.
grspwX_status
Print status for GRSPW2 core X.
grethX_dbg[f | aglall|clean|list]
Toggle specific flag, set al, clear al, or list debug flags for the given GRETH core. See Section 16.3 for
alist of debug flags.
grethX_status
Prints the status of greth core X.
grethX_connect [i p[: port]]
Connect to packet server at given IP address and optional port. Default port is 2224. If no IP address is
specified, the default is localhost.
grethX_pingi p
Simulate a ping. Packets will be generated by TSIM.
grethX_dumpfile
Dump packets to Ethereal readablefi | e.
grethX_reconnect <0| 1>
Turn GRETH autoreconnect on or off.

can_ocX_connect host : [port]

Connect CAN_OC core X to packet server to specified server and TCP port.
can_ocX_server port

Open a packet server for CAN_OC core X on specified TCP port.
can_ocX_ack <0| 1>

Specifies whether the CAN_OC core will wait for a acknowledgement packet on transmission. This com-

mand should only beissued after a connection has been established.
can_ocX_status

Prints out status information for the CAN_OC core.
can_ocX_dbg [f | ag|all|cleanllist]

Toggle, set, clear, list debug flags for the CAN_OC core.

grpciX_status
Print status for PCI core X

grpciX_dbg
Toggle specific flag, set al, clear all, or list debug flags for the given grpci core. See Section 18.2 for a
list of debug flags.

esapci0_dbg
Toggle specific flag, set al, clear al, or list debug flags for the given PCI core. See Section 23.2 for a
list of debug flags.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 21 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

spiX_dbg [f | aglall|clean]list]
Toggle specific flag, set al, clear dl, or list debug flags for the given SPI core. See Section 21.4 for alist
of debug flags.

bootstrap_status
Prints the bootstrap register.

print_dummies
List all dummy register areas, if any. For some configurations TSIM implements registers of some cores
as dummy registers. They can be read and written, but writes do not stick and reads will alwaysyield 0.

3.4. Return values for simulation stop reasons

Tcl commands such as run, boot, cont, go and step that starts smulation returns a Tcl result that indicates why
simulation was stopped. They return it as a list of stopping reasons, in form of a signal name, for each CPU
according to Table 3.2.

When SI G NT isthe returned reason, each CPU will have that initslist entry in the returned list. Otherwise, the
CPU that caused a stop will get the stop reason inits list entry and all other CPUs will have SI GSTOP in theirs.
If simulation stops for another reason than a CPU triggering some condition, all CPUswill be marked SI GSTOP.
This includes stopping due to a after a given number of instructions (even though it istied to a certain CPU).

Table 3.2. Returned reasons for simulation stopping

SIGINT Simulation stopped due to interruption, e.g. Ctrl-C. All CPUs marked thusly.
SIGSTOP Simulation stopped, not because of a condition of the CPU itself.

SIGTRAP Simulation stopped due to breakpoint hit

SIGSEGV Simulation stopped due to processor in error mode

SIGTERM Simulation stopped due to program termination

For example when CPU 1 inadual core system hits a breakpoint:

tsinm> set result [cont]

CPU 1 stopped at breakpoint 2: t_wovf
tsinme puts $result
S| GSTOP SI GTRAP

For TLIB, the returned stop reasons codes fromt si m cont andt si m get st opr eason arelogically the
same, but in adifferent format. Instead of alist of names, the returned information isin form of one stop reason
and one CPU ID for the CPU responsible for the stop. The stop reason is an integer matching macros with the
names asin Table 3.2. When the reason is SI G NT and SI GSTOP, - 1 will be returned as CPU ID, and for the
other reasons, the ID of the CPU causing the stop.

3.5. Symbolic debug information

TSIM will automatically extract (.text) symbol information from elf-files. The symbols can be used where an
addressis expected:

tsinm> bp main
breakpoint 1 at 0x310013b0: nmain + 0x4

tsime dis strcnp 5

31004198 82120009 or %0, %1, %l strcnp

3100419c 80886003 andcc %1, 0x3, %0 strcnmp + 0x4
310041a0 3280001e bne, a 0x31004218 strcnp + 0x8
310041a4 ¢24a0000 | dsb [%0], %1 strcnp + Oxc
310041a8 ¢2024000 Id [%1], %1 strcmp + 0x10

The symbols list command can be used to lookup and display all symbols. Symbols are automatically read from
files loaded with the load command. To to read in symbols from an alternate (elf) file use symbolsfi | e.

tsin> synbol s dhrystone.elf
read 476 synbols

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 22 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

tsinm> synbols | ookup strcnp
Found address 0x31004198
tsinme synbols |ist

0x31000000

L _ text_start
0x31000000 L __bcc_trap_table
0x31000000 L __bcc_entry_point
0x31001000 L __bcc_crtO
0x310010c8 L deregi ster_tmclones
0x31001108 L register_tmclones
0x3100115c L __do_gl obal _dtors_aux
0x31001200 L call ___do_gl obal _dtors_aux
0x3100120c L franme_dummy
0x3100123c L call _franme_dummy
0x31001248 L Proc_1
0x310012f0 L Proc_2
0x31001324 L Proc_3
0x31001360 L Proc_4
0x31001394 L Proc_5
0x310013ac L nain
0x31001868 L Proc_6
0x310018c4 L Proc_7
0x310018d8 L Proc_8
0x31001934 L Func_1
0x31001964 L Func_2

L

0x310019ac

Reading symbols from alternate files is necessary when debugging applications were the image does not con-
tain debugging symbols. This includes self-extracting applications and applications extracted by a bootrom, e.g.
bootrom created with mkprom, application software images unpacked by the GR716 boot ROM and Linux images.

3.6. Breakpoints and watchpoints

TSIM supports execution breakpoints and write data watchpoints. In standal one mode, hardware breakpoints are
always used and no instrumentation of memory or changes to memory are made. TSIM's hardware breakpoints
are entirely handled outside the simulation model. No DSU hardware breakpoints are emulated. Breakpoints and
watchpoints are set, displayed and deleted with the bp command.

When using the GDB interface, the GDB ‘break’ command requests TSIM to set breakpoints, which by default is
handled using TSIM'sinternal hard breskpoints. If - swbp isenabled, TSIM lets GDB handle software breakpoints
by itself overwriting the breakpoint addresswitha‘tal’ instruction. In addition, hardware breakpoints can always
beinserted by using the GDB ‘hbreak’ command. Datawrite watchpoints areinserted using the *watch’ command.
A watchpoint can only cover one word address, block watchpoints are currently not available.

3.7. Profiling

The profiling function cal cul ates the amount of execution time spent in and under each subroutine of the simulat-
ed program. The profiling is non-intrusive. The Profiling does not have any affect on the execution in terms of
simulated time and no changes needs to be done to the instrumented code. The profiling is made by periodically
sample the execution point and the associated call tree. In other words, the profiling is inclusive. At each sample
point al functionsin the call stack are considered to be be executing, e.g. time spent in afunction g called by a
functionf will tally up samplesfor bothf and g. Cyclesinthe call graph are properly handled, as well as sections
of the code where no stack is available (e.g. trap handlers).

The profiling information is printed as alist sorted on highest execution time ratio using profile. For a particular
symbol, the presented percentage number is the percentage of all samples that the symbol was found in the call
stack. By default all symbolswith enough samplesto reach 0.01% is printed. With anumeric argument the number
of printed linesare limited to the given number of lines. By default, the profiling information for all CPUsthat has
been started during the sampling (including being started but in power down) are merged. With optional cpuX
arguments, profiling can be shown for a subset of the available CPUs.

Profiling is enabled through the pr ofile enable command. The sampling period is by default 1000 clocks which
typically provides a good compromise between accuracy and performance. Other sampling periods can aso be
set through profile enable n where n is a the profile period in clock cycles. Profiling can be disabled through
the profile disable command.

Below is an example profiling the Dhrystone benchmark:

tsin> | oad dhrystone.elf

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 23 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

tsime profile enable

PIONEERING
ADVANCED
ELECTRONICS

Profiling enabled with sanple period 1000

tsin> run

tsime profile
Merged profile for all started CPUs:

function ratio(
__bcc_crto 99.
mai n 99.
Func_2 29.
strcnp 25.
nenctpy 17.
Proc_8 8.
Func_1 4.
Proc_7 4.
Proc_6 1
tsine

3.8. Performance

%

The perf command will display various execution statistics. A perf reset command will reset the statistics. This
can be used if statistics shall be calculated only over a part of the program. Restarting simulation (e.g. viarun,
boot, or reset) also resets the statistic information.

By default, the performance information for all CPUs that has been started are merged. With optional cpuX
arguments, performance can be shown for a subset of the available CPUs.

Below is an example of performance statistics

tsinm perf
Perf ormance statistics for CPU 0O
Cycles : 467054246
Instructions : 334033114
Overall CPI : 1.40

CPU performance (50.0 Miz) : 35.76
Sinul ated time : 9.34
Processor utilisation :100. 00

Per f ormance of the sinulator:

Real -ti me performance 1 123.93

Si nul ator performance T 44,32

Used tinme (sys + user) : 7.54
tsim

3.9. Code coverage

MOPS (35.76 MPS, 0.00 MFLOPS)

S

%

%
M PS

S

To aid software verification, TSIM includes support for code coverage. When enabled, code coverage keeps a
record for each 32-bit word in the emulated memory and monitors whether the location has been read, written or
executed. Coverage information can be recorded individually per CPU or merged for all CPUs. Coverage infor-
mation will be recorded also for cache hits. The coverage function is controlled by the coverage command:

cover age enable [mer ge|per cpu]

coverage disable
cover age save [filename] [cpuX...]

cover age Icov [filename] [cpuX...]

coverage print address[len] [cpuX...]

Document: TSIM3-UM
December 2021, Version 3.1.4

Enable coverage. Data will be merged for all CPUs if merge flag is
specified, or recorded per CPU if percpu flag is specified. If noflag is
specified then default is to merge. Note that changing coverage mode
will reset the coverage data.

Disable coverage

Merge and write coverage data for specified CPUs to file (file name
and CPU isoptional). The coverage datawill be merged for all CPUs
if no CPU is specified.

Merge and write coverage data for specified CPUs to file using the
Icov output format (file name and CPU isoptional). The coverage data
will be merged for all CPUs if no CPU is specified.

Print coverage datato console, starting at address. If no CPU is speci-
fied the datawill be merged for all CPUs. Else datafor specified CPUs
will be merged and printed.

Cobham Gaisler AB
24 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

cover age clear Reset coverage data

The coverage data for each 32-bit word of memory consists of a 5-hit field, with bitO (Ish) indicating that the word
has been executed, hitl indicating that the word has been written, and bit2 that the word has been read. Bit3 and
bit4 indicates the presence of a branch instruction; if bit3 is set then the branch was taken while bit4 is set if the
branch was not taken.

As an example, a coverage data of 0x6 would indicate that the word has been read and written, while Ox1 would
indicate that the word has been executed. When the coverage data is printed to the console or save to afile, it is
presented for one block of 32 words (128 bytes) per line;

tsine cov print strcnp
31004198 : 111
310041d8
31004218
31004258
31004298
310042d8
31004318
31004358
31004398
310043d8
31004418
31004458
31004498
310044d8
31004518
31004558

[N
el
i

[y
PRPPPOOOOOOOR ©ORFR ©F

[y

PPRPOPOOOOOOOOO VKRR

[y
PRPPOOOOOOOR OWVLPR

[y
PRPPOOOOOORRFPROOWORLPR

[
PRPRPPOOOORMNOOOORRER

[y
PRPPPOOOOOOORORRPRE

[y
PPPOOOOOOOROOR OO

=

=
OQCORPRPOOOOOROOROOO

PRPRPOMNOOOOORORRKL OFR
PRPROMOOMOORORRO

©COrROO0OO0OO0OO0OOR©OORRE
PRPRPOOOO0OO0OOWVOOORRE
PRPRRPOOOOOROORORER
PRPRRPOOOOOROORRERER
PRRPRPRPOOOOOOORRERELR
PRRPRPRPOOOOO0OOORRRELR

[
[y

When the code coverage is saved to file, only blocks with at least one coverage field set are written to the file.
Block that have al the coverage fields set to zero are not saved in order to decrease the file size.

Only internally emulated memory are currently subject for code coverage. Any memory emulated in the user
modules must be handled by a user-defined coverage function.

The memory controller address ranges that are monitored are based on the memory configuration at the moment
when coverage is enabled. When using TSIM's startup parameters to configure memory, coverage can be enabled
before starting simulation. For instance, the range corresponding to SDRAM, for an FTMCTRL memory controller
with the RAM area starting at 0x40000000, will begin at address 0x40000000 if TSIM was started with- nosr am
or -ram 0, or will begin at 0x60000000 otherwise. In case a bootloader or the application itself sets up the
memory controller configuration, coverage should be enabled after this setup has been compl eted.

NOTE on MMU and coverage: The TSIM coverage system does not do any address trandlations. The monitored
address ranges are based on the physical address ranges where TSIM emulates some kind of memory. There is
currently no support for getting virtual address coverage for virtual addresses that untranslated would go outside
these memory ranges.

When coverage is enabled, disassembly will include an extra column after the address, indicating the coverage
data. This makesit easier to analyse which instructions has not been executed:

tsine dis strcnp

31004198 1 82120009 or %0, %1, %l strcnp
3100419c 1 80886003 andcc %1, O0x3, %0 strcnp + Ox4
310041a0 11 3280001e bne, a 0x31004218 strcnp + 0x8
310041a4 0 c24a0000 | dsb [%0], %1 strcnp + Oxc
310041a8 1 c2024000 Id [Y%01], %1 strcnp + 0x10
310041ac 1 c4020000 Id [%0], %2 strcnp + 0x14
310041b0 1 80a04002 cnp %1, %2 strcnp + 0x18
310041b4 11 32800019 bne, a 0x31004218 strcnp + Oxlc
310041b8 0 c24a0000 | dsb [%0], %1 strcnp + 0x20
310041bc 1 093f bf bf set hi ohi (Oxfefefc00), %4 strcnp + 0x24
310041c0 1 07202020 sethi %i (0x80808000), %3 strcnp + 0x28
310041c4 1 881122ff or %94, Ox2ff, %4 strcnp + 0x2c
310041c8 1 8610e080 or %93, 0x80, %3 strcnp + 0x30
310041cc 1 84004004 add %1, %4, %92 strcnp + 0x34
310041d0 1 82288001 andn %2, %1, %1 strcnp + 0x38
310041d4 1 80884003 andcc %1, %3, %0 strcnp + 0x3c

The coverage data is not saved or restored during check-pointing operations. When enabled, the coverage func-
tion reduces the simulation performance of about 30%. When disabled, the coverage function does not impact
simulation performance.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 25 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

Example scriptsfor annotating C code using saved coverage information from TSIM can be found in the coverage
sub-directory.

Using the coverage Icov command the coverage information is stored in a format that can be easily processed
using the lcov utility. This allows coverage data from multiple runs to be combined, compared, or filtered. It can
also be used by the genhtml utility to create HTML pages with the coverage information in the form of annotated
source code.

3.10. Check-pointing

TSIM can save and restore its simulation state, allowing to resume simulation from a saved check-point. Saving
the state to fileis done with the savef i | e command. To restore the state, usethe restorefi | e command.

Restoring state can be done both in the same sessionin which it was saved, and in adifferent session. However, this
relies upon the session in which the restore is done to have been set up to simulate the same simulated hardware
as when the save was made. When applicable. TSIM shows discrepancies between startup options between the
session in which the save was made and the onein which the restore is done. It is up to the user to ensure that they
represent the same hardware. Restoring state from a different TSIM version is not supported

Some 1/O cores do not have check-pointing support at the moment. See the respective tables for each chip, listing
which coresthat does not support check-pointing right now. Such coreskeep their pre-restore state when restoring.
Using save -l from within TSIM can also list check-pointing support status for cores in the simulated system.

User modules can use save and restore callback functions to save and restore their state. When using events,
restoreable events should be used for the events to be saved and restored properly. See Section 5.7 for details.

$ tsimleon3

tsim> load hello
section: .text, addr: 0x40000000, size: 46768 bytes
section: .data, addr: 0x4000b6b0, size: 2936 bytes
read 392 synbol s

tsinme bp main

breakpoi nt 1 at 0x40001934: main + 0x4
tsime run

Initializing and starting from 0x40000000

CPU 0 stopped at breakpoint 1: main + 0x4
tsinmr save at-main.tss

State saved to at-main.tss
tsinme quit

$ tsimleon3

tsin restore at-nmmin.tss
Restored state fromat-min.tss

tsinme cont

Hel l o worl d!

Program exited nornmally on CPU 0.

3.11. Backtrace

The bt command will display the current call backtrace and associated stack pointer:

tsinm bt
%cC %sp
#0 0x31004198 0x3000fcf8 strcnp + 0xO
#1 0x31001980 0x3000fcf 8 Func_2 + Ox1c
#2 ~ 0x31001540 0x3000fd58 main + 0x194
#3 0x310010b0 0x3000fel0 __bcc_crt0 + Oxb0

3.12. Connecting to GDB

TSIM can act as aremote target for GDB, allowing symbolic debugging of target applications. GDB versions 6.8
and 8.2 are actively supported.

Toinitiate GDB communication, start the simulator with the - gdb switch or use the TSIM gdb command:

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 26 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

tsim> gdb
gdb interface: using port 1234
Starting GDB server. Use Ctrl-Cto stop waiting for connection.

Then, start GDB in adifferent window and connect to TSIM using the extended-remote protocol:

$ sparc-rtens-gdb exanpl e. exe

(gdb) target extended-renote |ocal host: 1234
Renot e debuggi ng using | ocal host: 1234

0x0 in ?? ()

(gdb)

Tointerrupt simulation, Ctrl-C can betyped in both GDB and TSIM windows. The program can be restarted using
the GDB run command but amonitor gdb reset and load hasfirst to be executed infvia GDB to set up TSIM for
anew run and reload the program image into the ssimulator. The monitor gdb reset command can be omitted if
the MMU is not in use when using extended-remote target type and using the GDB run to start new simulation.

(gdb) nonitor gdb reset

(gdb) | oad

Loadi ng section .text, size 0x14e50 | ma 0x40000000
Loadi ng section .data, size 0x640 | ma 0x40014e50
Start address 0x40000000 , |oad size 87184
Transfer rate: 697472 bits/sec, 278 bytes/wite.
(gdb) run

Themonitor gdb reset can aways be omitted when using the extended-remote target type, with remote exec-file
and starting each new execution viathe GDB run command.

(gdb) target extended-renpte :1234

Renot e debuggi ng using :1234

0x00000000 in ?? ()

(gdb) set renpote exec-file /full/path/to/exanple.exe
(gdb) run

The program bei ng debugged has been started al ready.
Start it fromthe beginning? (y or n) y

(gdb) run
The program bei ng debugged has been started al ready.
Start it fromthe beginning? (y or n) y

When using remote target type (as opposed to extended-remote, e.g. when running via GDB in Eclipse) or not
using run to start simulation, the monitor gdb reset should never be omitted before loading an image. In addition,
when debugging multicore images in this situation, monitor gdb postload needs to be issued after loading to
prepare all CPUs for a new run.

(gdb) target renmote :1234

(gdb) nonitor gdb reset

(gdb) | oad

Loadi ng section .text, size 0x14e50 | na 0x40000000
Loadi ng section .data, size 0x640 | ma 0x40014e50
Start address 0x40000000 , |oad size 87184
Transfer rate: 697472 bits/sec, 278 bytes/wite.
(gdb) nonitor gdb postl oad

(gdb) cont

If GDB is detached using the detach command, the simulator returns to the command prompt, and the program
can be debugged using the standard TSIM commands. The simulator can also be re-attached to GDB by issuing
the gdb command to the simulator (and the tar get command to GDB). While attached, normal TSIM commands
can be executed using the GDB monitor command. Output from the TSIM commands is then displayed in the
GDB console. UART output forwarded to stdout is forwarded to GDB when running the simulation from GDB
if TSIM is started with the - gdbuar t f wd option.

TSIM trandates SPARC trapsinto (Unix) signals which are communicated to GDB. If the application encounters
afatal trap, smulation will be stopped exactly on the failing instruction. The target memory and register values

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 27 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
CAES #%
ELECTRONICS
can then be examined in GDB to determine the error cause. To disable thisand let execution continue through the
corresponding trap handler instead, usethe - nb [0| 1] startup option.

Profiling an application executed from GDB is possible if the symbol table is loaded in TSIM before execution
is started. GDB does not download the symbol information to TSIM, so the symbol table should be loaded using
the monitor command:

(gdb) nonitor synmbol s exanpl e. exe
read 158 synbol s

When an application that has been compiled using the gcc -mflat option is debugged through GDB, TSIM should
be started with -mflat in order to generate the correct stack frames to GDB.

3.13. Thread support

TSIM has thread support for the RTEMS 4.8 and RTEM S 4.10 operating system. Additional OS support will be
added to future versions. The GDB interface of TSIM is aso thread aware and the related GDB commands are
described later.

3.13.1. TSIM thread commands

thread info - listsal known threads. The currently running thread is marked with an asterisk. (The wide example
output below has been split into two parts.)

tsine thread info

Name | Type | Id | Prio]| Time (h:ms) | Entry point

" Int. | internal | 0x08010001 | 255 | 5:30.682722 | bsp_idie thread
U1 | classic | 0x0a010001 | 100 | 0.041217 | systeminit
ntwk | classic | 0x0a010002 | 100 | 0.251199 | soconnsieep
" ETHO | classic | 0x0a010003 | 100 | 0.000161 | soconnsieep
AL | classic | 0x0a010004 | 1| 0.034739 | prep_timer
A2 | classic | 0x0a010005 | 1| 0.025740 | prep_timer
A3 | classic | 0x0a010006 | 1| 0021357 | prep_timer
TTCP | classic | 0x0a010007 | 100 | 0.002914 | rtems ttcpmin

| PC | State

| Ox4004dbec _Thread_Dispatch + Oxd8 | READY

| Ox4004dbec _Thread_Dispatch + Oxd8 | SUSP

| Ox4004dbec _Thread_Dispatch + Oxd8 | READY

| Ox4004dbec _Thread_Dispatch + Oxdg | Vevnt

| 0x40006a28 printf + ox4 | READY

| Ox4004dbec _Thread_Dispatch + Oxd8 | DELAY

| Ox4004dbec _Thread_Dispatch + Oxd8 | DELAY

| Ox4004dbec _Thread_Dispatch + Oxdg | Vevnt

thread bt i d prints a backtrace of athread.

tsin> thread bt 0x0a010007

%pc
#0 0x40044bec _Thread_Di spatch + 0xd8
#1 0x400418f 8 rtems_event _receive + 0x74
#2 0x40031eb4 rtems_bsdnet _event _receive + 0x18

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 28 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

#3 0x40032050 soconnsl eep + 0x50
#4 0x40033d48 accept + 0x60
#5 0x4000366¢ rtems_ttcp_main + OxdaO

A backtrace of the current thread (equivalent to normal bt command):

tsinme thread bt
%oc %sp
#0 0x40006a28 0x4008d7d0 printf + 0Ox0
#1 0x40001c04 0x4008d838 Test _task + 0x178
#2 0x4005c88c 0x4008d8d0 _Thread_Handl er + Oxfc
#3 0x4005c78c 0x4008d930 _Thread_Eval uate_node + 0x58

3.13.2. GDB thread commands

TSIM needs the symbolic information of the image that is being debugged to be able to check for thread informa-
tion. Therefore the symbols needs to be read from the image using the symbols command before issuing the gdb
command. When aprogram running in GDB stops TSIM reportswhich thread it isin. The command info threads
can be used in GDB to list all known threads.

Program recei ved signal SIG NT, Interrupt
[Switching to Thread 167837703]

0x40001b5c in consol e_outbyte_polled (port=0, ch=113 'q’) at ../../[..[..[..[..[..[..[../rtems-
4.6.5/c/src/lib/libbsp/sparc/leon3/consol e/ debugputs.c: 38

38 while ((LEON3_Consol e_Uart [LEON3_Cpu_I ndex+port]->status & LEON_REG UART_STATUS_THE)
==0);

(gdb) info threads

8 Thread 167837702 (FTPD Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/ cpukit/score/src/threaddi spatch. c: 109

7 Thread 167837701 (FTPa Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/ cpukit/score/src/threaddi spatch. c: 109

6 Thread 167837700 (DCtx Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../..[../../rtems-
4.6.5/ cpukit/score/src/threaddi spatch. c: 109

5 Thread 167837699 (DCrx Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../..[../../rtems-
4.6.5/ cpukit/score/src/threaddi spatch. c: 109

4 Thread 167837698 (ntwk ready) 0x4002f760 in _Thread_Dispatch () at ../../../../1../1../rtems-
4.6.5/ cpukit/score/src/threaddi spatch. c: 109

3 Thread 167837697 (U 1 ready) 0x4002f760 in _Thread_Dispatch () at ../../../..[..[../rtems-
4.6.5/ cpukit/score/src/threaddi spatch. c: 109

2 Thread 151060481 (Int. ready) 0x4002f760 in _Thread_Dispatch () at ../../../..[../../rtems-
4.6.5/ cpukit/score/src/threaddi spatch. c: 109
* 1 Thread 167837703 (HTPD ready) 0x40001b5c in consol e_outbyte_polled (port=0, ch=113 'q’)

at .. /.. /.. /... .. 1..l..]..Irtems-4.6.5/c/src/lib/libbsp/sparc/leon3/consol e/ debugputs. c: 38

Using the thread command a specified thread can be selected:

(gdb) thread 8

[Switching to thread 8 (Thread 167837702)]#0 0x4002f 760 in _Thread_Dispatch () at ../../../../
..l..lrtenms-4.6.5/ cpukit/score/src/threaddi spatch. c: 109
109 _Context_Switch(&executing->Registers, &heir->Registers)

Then a backtrace of the selected thread can be printed using the bt command:

(gdb) bt

#0 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-4.6.5/cpukit/score/src/thread-
di spatch. c: 109
#1 0x40013ee0 in rtens_event_receive (event_i n=33554432, option_set=0, ticks=0
event _out =0x43f ecc14)

at ../../../../leon3/lib/include/rtenms/score/thread.inl:205
#2 0x4002782c in rtens_bsdnet _event_receive (event_i n=33554432, option_set=2, ticks=0
event _out =0x43f ecc14)

at ../../../..1../../rtems-4.6.5/cpukit/libnetworking/rtens/rtens_glue.c: 641
#3 0x40027548 in soconnsl eep (so=0x43f0cd70) at ../../../../../../lrtems-4.6.5/cpukit/|ibnetwork-
ing/rtenms/ rtenms_gl ue. c: 465
#4 0x40029118 in accept (s=3, nane=0x43feccf0, nanel en=0x43feccec) at ../../../../1../../rtems-
4.6.5/ cpukit/libnetworking/rtenms/rtenms_syscall.c:215
#5 0x40004028 in daenon () at ../../../../..1../rtenms-4.6.5/c/src/libnetworking/rtenms_servers/
ftpd. c:1925
#6 0x40053388 in _Thread_Handler () at ../../../../../../rtens-4.6.5/cpukit/scorel/src/threadhan-
dler.c:123
#7 0x40053270 in __res_nkquery (op=0, dnane=0x0, class=0, type=0, data=0x0, datal en=0
new r _i n=0x0, buf=0x0, bufl en=0)

at ../.. /.. /.. 1../..1../rtems-4.6.5 cpukit/libnetworking/libc/res_nkquery.c: 199

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 29 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

Itis possible to use the frame command to select a stack frame of interest and examine the registers using theinfo
registers command. Note that the info registers command only can see the following registers for an inactive
task: g0-g7, 10-17, 10-i7, 00-07, pc and psr. The other registers will be displayed as 0:

(gdb) frame 5

#5 0x40004028 in daenon () at ../../../..1..1../rtens-4.6.5/c/src/libnetworking/rtens_servers/
ftpd.c: 1925

1925 ss = accept(s, (struct sockaddr *)&addr, &addrLen);

(gdb) info reg

g0 0x0 0

gl 0x0 0

g2 Oxffffffff -1

g3 0x0 0

g4 0x0 0

g5 0x0 0

g6 0x0 0

a7 0x0 0

o0 0x3 3

ol 0x43f eccf O 1140772080
02 0x43f eccec 1140772076
03 0x0 0

04 0xf 34000e4 -213909276
o5 0x4007cc00 1074252800
sp 0x43f ecc88 0x43fecc88
o7 0x40004020 1073758240
10 0x4007ce88 1074253448
11 0x4007ce88 1074253448
12 0x400048f ¢ 1073760508
13 0x43feccf0 1140772080
14 0x3 3

15 0x1 1

16 0x0 0

17 0x0 0

i0 0x0 0

il 0x40003f 94 1073758100
i2 0x0 0

i3 0x43ffafc8 1140830152
i4 0x0 0

i5 0x4007cd40 1074253120
fp 0x43f ecd08 0x43f ecd08
i7 0x40053380 1074082688
y 0x0 0

psr 0xf 34000e0 -213909280
W m 0x0 0

tbr 0x0 0

pc 0x40004028 0x40004028 <daenon+148>
npc 0x4000402c 0x4000402c¢ <daenon+152>
fsr 0x0 0

csr 0x0 0

It is not supported to set thread specific breakpoints. All breakpoints are global and stops the execution of all
threads. It is not possible to change the value of registers other than those of the current thread.

3.14. Synchronising TSIM time to external time

To maximise simulation performance, TSIM executes as fast as possible doing no synchronisation of the smula-
tion time with any external notion of time. Thisis especially apparent when the processor is in power-down mode
and simulation time isincreased by the eventsin the event queue alone.

To synchronise the simulation time with an external notion of time, events that handles synchronisation needs
to be added to the event queue. Thewal | t i nesync example module in the exanpl es/ nodul es directory
provides an example that makes sure that TSIM does not execute faster than real time. This example can be used
as atemplate for synchronising to other notions of time. See Chapter 5 on how to use modules.

3.15. Debugging particular device types and devices

To enable printout of debug information one can issue the dbgon f | ag command on the TSIM3 command line
to toggle the on/off state of aflag for all cores of a certain type. The debug flags that are available are described
for each corein their chapters.

Many cores aso have their own debug commands on the format cor eX_dbg that targets single cores instead of
all of one kind and that have support to set all or none of the debug flags options and list the current setting for
the debug flags. See the sections on the respective cores for details.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 30 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

CRES 5555
ELECTRONICS
4. Emulation characteristics

4.1. Common behaviour

4.1.1. Timing

The simulator time is maintained and incremented in terms of clock cycles. The parallel execution between the |U
and FPU is modelled, as well as stalls due to operand dependencies. Instruction timing has been modelled after
the real devices. Integer instructions have a higher accuracy than floating-point instructions due to the somewhat
unpredictable operand-dependent timing of the FPU. Typical usage patterns have higher accuracy than atypical
ones, e.g. having vs. not having caches enabled on LEON systems. Tracing using the inst, ahb or hist command
will display the corresponding simulator time in the left column. This time indicates when the instruction or bus
access finished. Cache misses, waitstates or data dependencies will delay the following fetch according to the
incurred delay.

4.1.2. UARTs

The UART model can be operating in two modes, accurate mode and fast mode. In the accurate mode the baud
rate and frame length is taken into account but in fast mode the UARTs operate at infinite speed. In fast mode the
transmitter FIFO/holding register isalways empty and atransmitter empty interrupt is generated directly after each
write to the transmitter data register. The receivers can never overflow or generate errors. Fast mode is enabled
withthe-f ast _uart switch.

Note that in accurate mode, it is possible that the last character of aprogram is not displayed on the console. This
can happen if the program forces a processor in error mode, thereby terminating the simulation, before the last
character has been shifted out from the transmitter shift register. To avoid this, an application can poll the UART
status register and not force the processor in error mode before the transmitter shift registers are empty. The real
hardware does not exhibit this problem since the UARTS continue to operate even when the processor is halted.

When an application is running with UART forwarded to the console (as the first UART is by default, or some
other UART using the - u option) the following key sequences will be available. The sequences can be used to
send key sequences to the UART that would otherwise be intercepted by the host operating system or to adjust
the input to what the target system expects. For a key sequence to take effect, both key presses must be pressed
within 1.5 seconds of each other. Otherwise, they will be forwarded asis.

Table 4.1. Uart control sequences
Key sequence Action

Ctrl+A B Toggle delete to backspace conversion

Ctrl+A C Send break (Ctrl+C) to the running application
Ctrl+A D Toggle backspace to delete conversion

Ctrl+A E Toggle local echo on/off

Ctrl+A H Show a help message

Ctrl+A N Enable/disable newline insertion on carriage return
Ctrl+A S Show current settings

Ctrl+A Z Send suspend (Ctrl+Z) to the running application

Ctrl+A Ctrl+A Send a single Ctrl+A to the running application

4.1.2.1. APBUART model (LEON3/4 only)

The APBUART model used on LEON3 and LEON4 systems is by default set up for receiver and transmitter
FIFO mode. In this mode the additional FIFO flags and level interrupts are also modelled like the APBUART IP.
The FIFO depth can be configured with the - uart _f s switch. FIFO mode can be disabled atogether with -
uart_fs 1.FIFO modeis supported with both accurate and fast mode. However in fast mode the transmitter
operates in infinite speed always causing the FIFO to be empty.

Loopback mode is supported both in fast and accurate mode. In fast mode transmitted characters directly ends
up in the receiver. Similar to the hardware the CTSN/RTSN signals are connected together in loop back mode
making flow control possible regardiess of operating mode.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 31 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

Flow control bit is supported but has a different effect compared to hardware when loopback mode is disabled.
TSIM UARTS interfaces to user controlled devices (see - uar t X) which may/may not implement flow control
in different ways. When flow control is enabled APBUART receiver never overflows, however the transmitter
operates independently of the flow control setting as if CTSN is aways 0 by pausing the simulator until the
character istransferred to the UART device.

The debugflag APBUART_ACC can be used with the TSIM command uartX_dbg to enable debug printouts
each time aregister accessis made to the core. Here X isthe index of the APBUART core.

4.1.2.2. UART model (LEON2 only)

The UART model of LEONZ2 automatically switch to fast mode when the scaler baud rate register is set to zero.
Thisisdifferent from the APBUART model where only the- f ast _uart switchisused to determine the mode.

4.1.3. Floating point unit (FPU)

The models for the GRFPU-lite and GRFPU models supports paralel |U and FPU execution, deferred floating
point traps and the floating point deferred trap queue. The model for the Meiko FPU on LEON2 models the FPU
setup for AT697E and AT7913E with no parallel 1U and FPU execution, no floating point queue and no deferred
floating point traps.

The GRFPU model simulates all types calculation results and exceptions, including denormal numbers and NaN
results. It does not however simulate the possibility of multiple outstanding floating point operations. The complex
internal timing of the GRFPU is not modelled in detail.

The simulator implements (to some extent) data-dependent execution timing for the Meiko FPU and GRFPU-lite.
Theonly discrepancy between TSIM and actual hardwareinterms of resultsisthat when NaN results are generated
on Meiko FPU on LEON2 and GRFPU-lite, they can differ compared to real hardware in the significand bits (but
not in the signalling/quiet bit).

4.1.4. Delayed write to special registers

The SPARC architecture defines that a write to the special registers (%opsr, %wim, %tbr, %fsr, %y) may have up
to 3 delay cycles, meaning that up to 3 of the instructions following a specia register write might not ‘see’ the
newly written value due to pipeline effects. While LEON have between 2 and 3 delay cycles, TSIM has 0. This
does not affect simulation accuracy or timing aslong as the SPARC ABI recommendations are followed that each
special register write must always be followed by three NOP. If the three NOP are | eft out, the software might fail
on real hardware while still executing ‘ correctly’ on the simulator.

4.1.5. Peripherals registers

An overview of peripherals can be displayed with the leon command. Individual registers can be listed with the
inforegcor eXorinforegaddr command.

4.1.6. Idle-loop optimisation

Tominimise power consumption, LEON applicationswill typically placethe processor in power-down modewhen
theidle task is scheduled in the operation system. In power-down mode, TSIM increments the event queue with-
out executing any instructions, thereby significantly improving simulation performance. However, some (poorly
written) code might use a busy loop (BA 0) instead of triggering power-down mode. The - bopt switch will en-
able a detection mechanism which will identify such behaviour and optimise the simulation as if the power-down
mode was entered.

4.1.7. Custom instruction emulation

TSIM/LEON allows the emulation of custom (non-SPARC) instructions. A handler for non-standard instruction
canbeinstalled usingthet si m ext _i ns() callback function (see Section 6.2). The function handler iscalled
each time an instruction is encountered that would cause an unimplemented instruction trap. The handler is passed
the CPU ID of the executing CPU, cpui d, and apointer, r , to astructure containing the opcode and all processor
registers, allowing it to decode and emulate a custom instruction, and update the processor state.

The definition for the custom instruction handler is:

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 32 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

int (*func)(void *priv,
int cpuid,
uint32 inst,
ui nt 32 **wi ndow,
uint32 *icnt),

Thepr i v pointer isaprivate pointer registered by user and passed to func whenitiscalled. Thecpui d argument
isthe CPU index of CPU for which instruction is to be executed. Thei nst argument contsins the instruction to
be executed. Thewi ndowargument isan array of pointersto instructions. It can be used both for to read and write
registers. It can beindexed usingthe G+, | *, Of, and L* constantsfrom enum r egnane. It can be used both to
get current register values aswell as change variablesin the current register window. In case other registers needs
to be accessed, t si m get _reg andt si m set _r eg can be used. Using thei cnt argument, the number of
cyclesin the pipeline for the instruction can be set in *i cnt . It defaultsto 1, afully pipelined instruction.

The return value of the custom handler indicates which trap the emulated instruction has generated, or 0 if no
trap was caused. If the handler could not decode the instruction, 2 should be returned to cause an unimplemented
instruction trap.

The number of clocks consumed by the instruction should bereturned in* i cnt . Thisvalueisby default 1, which
corresponds to a fully pipelined instruction without data interlock. The handler should not increment the %pc or
9pc registers, asthisis done by TSIM.

4.1.8. Chip-specific errata

Incorrect behaviour described in errata documents for specific devices are not emulated by TSIM in general.
4.2. LEON2 specific emulation

4.2.1. Processor

The LEON2 version of TSIM emulates the behaviour of the LEON2 VHDL model. The (optional) MMU can be
emulated by starting TSIM with the - mu switch.

4.2.2. Cache memories

TSIM/LEON2 can emulate any permissible cache configuration using the - i csi ze,-i | si ze,-dcsi ze and
- dl si ze options. Allowed sizesare 1 - 64 KiB with 16 - 32 bytes/line. The characteristics of the LEON multi-set
caches can be emulated using the- i sets,-dsets,-irepl,-drel p,-il ock and-dl ock options. Diag-

nostic cache reads/writes are implemented. The simulator commands icache and dcache can be used to display
cache contents. Starting TSIM with - at 697e will configure that caches according to the Atmel AT697E device.

4.2.3. Interrupt controller

External interrupts are not implemented, so the 1/O port interrupt register has no function. Internal interrupts are
generated as defined in the LEON specification. All 15 interrupts can also be generated from the user defined 1/
O moduleusingtheset _i rq() callback.

4.2.4. Power-down mode

The power-down register (0x80000018) isimplemented asin the specification. In power-down mode, the simulator
skips time until the next event in the event queue, thereby significantly increasing the simulation speed. A Ctrl-C
in the simulator window will break execution, but will not make the CPU exit power-down mode.

4.2.5. Memory emulation

The memory configuration registers 1/2 are used to decode the smulated memory. The memory configuration
registershasto be programmed by softwareto reflect the available memory, and the number and size of the memory
banks. The waitstates fields must also be programmed with the correct configuration after reset. Both SRAM and
functionally modelled SDRAM (with SRAM timing) can be emulated.

Using the - banks option, it is possible to set over how many RAM banks the external SRAM isdivided in. For
mkprom encapsulated programs, it is essential that the same RAM size and bank number setting is used for both
mkprom and TSIM.

The memory EDAC of LEON2-FT is not implemented.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 33 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

4.2.6. SPARC V8 MUL/DIV and V8E MAC instructions

TSIM/LEONZ by default supports the SPARC V8 multiply and divide instructions. To emulate LEON2 systems
which do not implement these, use the - nov 8 option to disable multiply and divide instructions. TSIM/LEON2
optionally implements the SPARC V8E MAC instructions. To emulate LEONZ2 systems which implement these,
use the - mac option to enable the MAC instructions, and make sure to not use - nov 8.

4.2.7. FPU emulation

By default, TSIM/LEON emulatesthe Meiko FPU. The- gr f pu command line option enablesthe GRFPU model.
See Section 4.1.3 for detail s on the FPU models.

4.2.8. DSU and hardware breakpoints

The LEON debug support unit (DSU) and the hardware watchpoints (%asr24 - %asr31) are not emulated.
4.3. LEONS3 specific emulation
4.3.1. General

The LEON3 version of TSIM by default emulates the behaviour of a generic LEON3. The system includes the
following modules: LEON3 processor, APB bridge, IRQMP interrupt controller, FTMCTRL memory controller
(but EDAC is not modelled), GPTIMER timer units with 32-bit timers and APBUART UARTSs. Chip options
instead sets up TSIM to emulate a particular chip. Other hardware configuration options can change parameters
from either the default values or from the values set up by a chip option.

4.3.2. Processor

The instruction timing of the emulated LEON3 processor is modelled after the LEON3 in GRLIB IP library and
after the specific chips that have their own chip options. The processor can be configured with 2 - 32 register
windows using the - nwi n switch. The MMU is emulated by default, but can be disabled using - mmu 0. Local
instruction RAM and local data RAM can be added with the- i | r amand - dl r amswitches.

4.3.3. Cache memories

TSIM can emulate any permissible cache configurationusingthe- i csi ze,-i | si ze,-dcsi zeand- dl si ze
options. Allowed sizesare 1 - 256 KiB with 16 - 32 byteg/line. The characteristics of the LEON multi-way caches
can be emulated using the - i set s, -dsets,-irepl,-drelp,-ilock and-dl ock options. Diagnostic
cache reads/writes are implemented. The simulator commands icache and dcache can be used to display cache
contents, flush caches and query cache status for given addresses.

The evaluation version of TSIM/LEON3 implements 2*4 KiB caches, with 16 bytes per line.
4.3.4. Power-down mode

The LEON3 power-down function isimplemented as in the specification. When in power down mode, the simu-
lator skips time until the next event in the event queue, thereby significantly increasing the simulation speed. A
Ctrl-C in the simulator window will break execution,but will not make any CPU exit power-down mode.

4.3.5. Interrupt controller

The IRQMP interrupt controller model supports extended interrupts, multicore registers, interrupt maps, and in-
terrupt timestamping. When having extended interrupts enabled, interrupts 1-31 can be generated. For GR716
interrupts 1-63 can be generated. Extended interrupts can be enabled by the - ext option, or with a chip option
for a chip that has extended interrupts (e.g. - gr 712r c, - ut 700 and - ut 699e). Interrupts can be generated by
user modelsusingtheset _irq() calback of TSIM'sioif struct. See Section 5.2.2 for details.

The debugflag IRQMP_ACC can be used with the TSIM command irgmpX_dbg to enable debug printouts each
time aregister access is made to the interrupt controller. Here X isthe index of the interrupt controller.

4.3.6. Memory emulation

The FTMCTRL (without EDAC emulation) or the LEON2 memory controller is emulated in the LEON3 version
of TSIM. The memory configuration registers 1 and 2 are used to decode the ssimulated memory. The memory

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 34 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

configuration registers hasto be programmed by software to reflect the available memory, and the number and size
of the memory banks. Both SRAM and SDRAM can be emulated, however, the SDRAM model does not support
sending commands using the SDRAM command field in mcfg2. The PROM areaisbasically modelled asMRAM.

The SRAM is configured using options like - r am - r amwai dt h, - banks and - nosr am The SDRAM is con-
figured using options like - sdr amand - sdbanks. The PROM is configured using options like - r omand -
romwi dt h.

When booting from PROM, it isimportant that the configuration done by the bootl oader matches the system setup,
just as for booting on actual hardware. TSIM however does not model any failure due to too few waitstates.

Options regarding memory characteristics are not available in the evaluation version of TSIM/LEONS3.
4.3.7. CASA instruction

The - cas option or any chip option for a chip with CASA support enables emulation of the CASA instruction
(LEON3/4 only). Using - cas 0 can disable CASA support when otherwise already enabled.

4.3.8. SPARC V8 MUL/DIV and VBE MAC instructions

TSIM/LEON3 by default supports the SPARC V8 multiply and divide instructions. To emulate LEON3 systems
which do not implement these, use the - nov 8 option to disable multiply and divide instructions. TSIM/LEON3
optionally implements the SPARC V8E MAC instructions. To emulate LEON3 systems which implement these,
use the - nac option to enable the MAC instructions, and make sure to not use - nov 8.

4.3.9. FPU emulation

By default, TSIM/LEON3 emulates the GRFPU-lite FPU unless a chip option for a chip with a GRFPU is used.
The - gr f pu command line option enables the GRFPU model. See Section 4.1.3 for details on the FPU models.

4.3.10. DSU and hardware breakpoints

The LEON debug support unit (DSU) and the hardware watchpoints (%asr24 - %asr31) are not emulated.
4.3.11. AHB status registers

When using - ahbst at us or a chip option for a chip that has AHB status registers, AHB status registers are
enabled. As TSIM/LEONS3 does not emulate FT, the CE bit will never be set by TSIM'sinternal memory models,
but the correct abl e_error () function (Section 5.3.1) can be used in a user model to set it. Furthermore,
the HMASTER field is set to the CPU index (starting at zero) when the CPU caused the error and one over the
last CPU index (i.e. 1 in aone CPU system) when any other master caused the error.

4.3.12. GPTIMER emulation

The debugflag GPTIMER_ACC can be used with the TSIM command gptimer X_dbg to enable debug printouts
each time aregister accessis made to the core. Here X isthe index of the GPTIMER core.

4.3.13. GRTIMER emulation
When using - gr 712r ¢, the GRTIMER core is modelled (in addition to the regular GPTIMER core).

The debugflag GRTIMER_ACC can be used with the TSIM command grtimer X_dbg to enable debug printouts
each time aregister accessis made to the core. Here X isthe index of the GRTIMER core.

4.4. LEON4 specific emulation
Currently, the only supported LEON4 configuration is GR740.
4.4.1. Processor

The four emulated LEON4 processors are modelled after the LEON4 VHDL model in GRLIB IP library and is
configured to emulate GR740. Simulation of LEON4 in other configurationsis not yet available.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 35 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

4.4.2.L1 Cache memories

TSIM/LEON4 can emulate any permissible cache configurationusingthe- i csi ze,-i | si ze,-dcsi ze and-

dl si ze options. Allowed sizesare 1 - 256 KiB with 16 - 32 bytes/line. The characteristics of the LEON multi-set
caches can be emulated using the- i sets,-dsets,-irepl,-drel p,-il ock and-dl ock options. Diag-
nostic cache reads/writes are implemented. The simulator commands icache and dcache can be used to display
cache contents, flush caches and query cache status for given addresses.

4.4.3. L2 Cache memory

GR740hasa2 MiB L2 cachewith 4 cachewaysand 32 byte cachelines. The L2 cache has support for dynamically
configurable replacement policies as well as locked ways. Individual memory regions can be write protected or
marked uncacheable by the MTRR registers.

When starting TSIM the L2 cacheis set up in reset state and thus disabled. The run command will as part of the
boot-loading flush, invalidate and enable the L2 cache. The boot command will flush and invalidate the cache as
part of restarting simulation but will otherwise leave it in its reset state. The L2 cache can otherwise be enabled
or disabled viathe register interface or the [2cache enable and 12cache disable commands.

The [2cache command shows the current overview of the state of the L2 cache. For more commands for flushing,
invalidating the cache as well as investigating the L2 cache state, see the various |2cache subcommands in Sec-
tion 3.3.1 or use the help [2cache command to list the available L2 cache commands.

4.4.3.1. Limitations of the L2 cache model

Inthisrelease, the L2 cache model has a number of featuresthat are not yet supported. AMBA split responses and
writethrough are not supported. In other words, only waitstate responses will be given and only copy-back will be
performed. The different tuning settings available in the access control register are not modelled. Moreover, dirty
cachelines are always modelled as fully dirty and not half dirty. These limitations have no functional effects on
simulated software as long as the cache is flushed before disabling if the cache needs to be disabled.

No FT features are modelled. Thereis no EDAC emulation, error injection, scrubbing. Thisincludes related reg-
isters and register fields, including the entire error status/control register. There is also no support for HPROT
signals. These limitations are reflected in the registers shown by the info reg command for the L2 cache. Timing
of cache clushing is not modelled.

Interacting with the L2 cache with commands such as the mem and wmem will affect the state the cache just
as regular bus accesses would, including timing of future accesses when continuing (as opposed to restarting)
execution. In the same way, |2cache commands that changes L2 cache state, will affect timing of future accesses
when continuing execution.

4.4.4. Power-down mode

The LEON4 power-down function isimplemented as in the specification. When in power down mode, the simu-
lator skips time until the next event in the event queue, thereby significantly increasing the simulation speed. A
Ctrl-C in the simulator window will break execution, but will not make any CPU exit power-down mode.

4.4.5. Interrupt controller

The IRQ(A)MP interrupt controller model supports multiple internal interrupt controllers, extended interrupts,
multicore registers, interrupt maps, interrupt timestamping and extended interrupts. All 31 interrupts can be gen-
erated by user models using the set _i r q() calback of TSIM's ioif struct. See Section 5.2.2 for details. The
watchdog control and error mode status registers are not yet implemented.

The debugflag IRQMP_ACC can be used with the TSIM command irgmpX_dbg to enable debug printouts each
time aregister access is made to the interrupt controller. Here X isthe index of the interrupt controller.

4.4.6. Memory emulation

The SDRAM controller behind the L2 cache is modelled for GR740. It can be configured with the - sdr am -
sdf r eq and - sdbanks options as well as through the SDRAM controller registers, sdcfgl/sdcfg2.

In this release the simulated timing is based on a CPU frequency of 250 or 50 MHz and a memory fregquency of
either 50 or 100 MHz, default memory frequency is 100 MHz. For CPU frequencies other than 250 or 50 MHz,

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 36 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
CAES #%
ELECTRONICS
timing is a rough estimate. Issuing commands to the SDRAM through the sdcfgl register is not supported. No
EDAC functionality is currently emulated.
The FTMCTRL for the PROM and 1/O areas is also emulated. No EDAC functionality is currently emulated.
4.4.7. OMMU

Two modes of protection are supported, access protection vector (APV) and MMU mode. Diagnostic accesses and
error injection are not supported. But most diagnostic functionality is supported by commands, such as displaying
the contents of the cache, writing cache lines/tags and looking up address trand ations.

4.4.8. CASA instruction

The - cas option or any chip option for a chip with CASA support enables emulation of the CASA instruction
(LEON3/4 only). Using - cas 0 can disable CASA support when otherwise already enabled.

4.4.9. SPARC V8 MUL/DIV and V8E MAC instructions

TSIM/LEON4 by default supports the SPARC V8 multiply and divide instructions. To emulate LEON4 systems
which do not implement these, use the - nov 8 option to disable multiply and divide instructions. TSIM/LEON4
optionally implements the SPARC V8E MAC instructions. To emulate LEON4 systems which implement these,
use the - nac option to enable the MAC instructions, and make sure to not use - nov 8.

4.4.10. FPU emulation

By default, TSIM/LEON4 emulates the GRFPU FPU. See Section 4.1.3 for details on the FPU models.
4.4.11. DSU and hardware breakpoints

The LEON debug support unit (DSU) and the hardware watchpoints (%asr24 - %asr31) are not emulated.
4.4.12. AHB status registers

The AHB status register on the processor bus is modelled. The CE hit will never be set by TSIM'sinternal mem-
ory models, but the cor r ect abl e_error () function (Section 5.3.1) can be used in a user model to set it.
Furthermore, the HMASTER field is set to the CPU index (starting at zero) when the CPU caused the error, and
4 when any other master caused the error.

When using - ahbst at us or a chip option for a chip that has AHB status registers, AHB status registers are
enabled. AsTSIM currently does not emulate FT, the CE bit will never be set by TSIM'sinternal memory models,
but the correct abl e_error () function (Section 5.3.1) can be used in a user model to set it. Furthermore,
the HMASTER field is set to the CPU index (starting at zero) when the CPU caused the error and one over the
last CPU index (i.e. 1 in aone CPU system) when any other master caused the error.

4.4.13. GPTIMER emulation

The debugflag GPTIMER_ACC can be used with the TSIM command gptimer X_dbg to enable debug printouts
each time aregister accessis made to the core. Here X isthe index of the GPTIMER core.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 37 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

5. Loadable modules
NOTE: At this stage, the available interfaces are not entirely in their final form and are subject to change.

User-defined models using C APIs are all loaded into TSIM using the general module interface, from which the
specific user modules can be registered with TSIM using different registration functions.

5.1. General module interface

This section describes the general module interface. General modules can in themselves be used in to run code
from various callbacks called from TSIM, but are also used as spring boards for all kinds of user models that are
registered from one or several general modules.

5.1.1. Loading modules

To load a general module in standalone TSIM, use the - nod option to specify a general module in form of a
dynamic shared object for TSIM to load. In other words a .so file in Linux and DLL in Windows. Note that in
Linux you generally cannot just specify the name of the file even if it isin the current directory.

$ tsimleon3 -nod ./nodul e. so

The environment variable TSIM_MODULE_PATH can be set to list of seach paths in order to find modules
without specifying a full path. This should be a‘:" separated list in Linux, and a*;’ separated list in Windows.
Whenusing TLIB, thet si m r egi st er _nopdul e functionisan alternativeto the- nod option. See Chapter 6.

See Section 5.1.3 on how to register other kind of modules from a general module and in which sections they
are documented.

5.1.2. General module API

A module should be adynamic library that should expose apublic symbol | oadabl e_nodul e of typest r uct
| oadabl e_nodul e *. Notethat the module must be compiled to be position-independent, i.e. withthe- f PI C
switch (gcc).

Thestruct | oadabl e_nodul e isdefinedint si m h as;

struct | oadabl e_nodul e {
void *priv; /* Free for the npdule to use */
int (*preinit)(struct |oadable_nodule *nodule);
int (*init)(struct |oadable_npdul e *nodul e);
void (*exit)(struct |oadabl e_npdul e *nodul e);
void (*restart)(struct |oadabl e_nodul e *npdul e);
void (*reset)(struct |oadabl e_nodul e *nodul e);
void (*preset)(struct |oadabl e_nodul e *nodul e);
void (*start)(struct |oadabl e_nodul e *nodul e);
void (*stop)(struct | oadabl e_npdul e *nodul e);
int (*save)(struct |oadabl e_nodule *npdul e, struct user_checkpoint *ucp);
int (*restore)(struct |oadabl e_npdul e *nmodul e, struct user_checkpoint *ucp);

A~~~

¥
The elements in the structure has the following meaning:
void *priv;
Free for the module to use.
int (*preinit)(struct |oadable_nodul e *nodul e);
Called once before simulator startup. Startup options should be registered here. See Section 5.5.
int (*init)(struct |oadabl e nodul e *nodul e);
Called once on simulator startup. Modules should be registered here.
void (*exit)(struct |oadabl e nodul e *nodul e);
Called once on simulator exit.
void (*restart)(struct |oadabl e _nodul e *nodul e);
Called every time the smulator is restarted (sSimtime set to zero) including at startup. After arestart TSIM
will dsoissueacall tor eset .
void (*reset)(struct |oadabl e_nmodul e *nodul e);
Called every time the system isreset, including at startup and after arestart.
void (*preset)(struct | oadabl e nodul e *nodul e);
Called when the run command performs bootl oader-like operations.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 38 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

void (*start)(struct |oadabl e_nmodul e *nodul e);
Called each time simulation starts, both when starting for the first time using boot or run command and
when continuing using go, cont, step and the like.

void (*stop)(struct |oadabl e _nodul e *nodul e);
Called every time simulation stops, e.g. due to breakpoints, user pressing Ctrl-C, etc.

int (*save)(struct |oadabl e nodule *nod, struct user_checkpoint *ucp);
Called from the save command to let the user module save its state. See Section 5.7 for details.

int (*restore)(struct |oadabl e nodule *nod, struct user_checkpoint *ucp);
Called from the restor e command to let the user module save its state. See Section 5.7 for details.

5.1.3. Connecting specific modules

Specific modules should be registered from the init function of a general module. The following functions are
used for that:
tsimregi ster_ahb_nodul e(struct ahb_subsystem *ahbsyst en)
Register an AHB system module. See Section 5.3.
m regi ster_io _nodul e(struct io_subsystem *i osysten
Register al/O system module. See Section 5.4.
m regi ster_spi m nodul e(struct spimsubsystem *subsystem int index)
Register subsyst emto SPIM controller with index i ndex. See Chapter 22.
m regi ster_gpi o_nodul e(struct gpio_input *inp, int index)
Register i np to GPIO controller with index i ndex. See Chapter 17.
m regi ster_spi _nodul e(struct spi_input *inp, int index)
Register i np to SPI controller with index i ndex. See Chapter 21.
m regi st er _dac_nodul e(struct dac_i nput *inp, int index)
Register i np to DAC controller with index i ndex. See Section 8.3.
m regi ster _can_node(struct can_node *node, int canbus_i ndex)
Register node to CAN buswith index canbus_i ndex. See Section 14.4 for more information.
m regi ster_grpci_nodul e(struct grpci _input *inp, int index)
Register i np to GRPCI controller with index i ndex. See Section 18.3 for more information.

ts

ts

ts

ts

ts

ts

ts

5.1.4. General module examples

Thewal | ti mesync. c exampleisapure general module exampl e that does not register another type of module.
See Section 5.8 for amore complete list of module examples, that all are general modules as entry points.

5.2. TSIM exported emulation interfaces

TSIM exports three structures: simif, ioif and procif. The simif structure defines functions and data structures
belonging to the simulator core, while ioif defines functions for bus accesses. The procif structure defines a few
functions giving access to the processor emulation, cache behaviour and interrupt controller.

Notethat in general the exported functions in these structures may only be called from user modul e functions that
are called by TSIM, e.g. the init function, from event callbacks, from read and write functions, as well as from
TLIB. Unless explicitly allowed, do not call them from a separate thread or asignal handler.

Pointersto simif, ioif and procif can be obtained by the functionst si m get _sini f(),tsimget _ioif()
andtsi m get procif () definedintsim.h.

5.2.1. simif structure

The simif structureisdefinedint si m h as:

struct simoptions {
ui nt 32 phys_ram
ui nt 32 phys_rom
float64 freq;
fl oat 64 wdfreq;
ui nt 32 phys_sdram
¥

struct siminterface {

struct simoptions *options; /* tsimcommand-|ine options */

uint64 (*sintinme)(void); /* current sinulator tinme */

void (*sys_reset)(void); /* reset processor */

void (*simstop)(void); /* stop simulation */

void (*sim.interrupt)(void); /* interrupt sinulation just as Crl-C */
Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 39 Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

void (*event)(void (*cfunc)(void *), void *arg, uint64 offset);
int (*stop_event)(void (*cfunc)(void *));

int (*stop_event_arg)(void (*cfunc)(void *), void *arg);

int (*stop_one_event)(void (*cfunc)(void *));

int (*stop_one_event_arg)(void (*cfunc)(void *), void *arg);

/* Restorable events */
unsi gned short (*reg_revent)(void (*cfunc) (void *arg));
unsi gned short (*reg_revent_prearg)(void (*cfunc) (void *arg),
void *arg);
int (*revent) (unsigned short index, void *arg, uint64 offset);
int (*revent_prearg)(unsigned short index, uint64 offset);
int (*stop_revent) (unsigned short index);
int (*Iprintf)(const char *format, ...); /* logged formatted output */
int (*vliprintf)(const char *format, va_list ap); /* |ogged fornatted output */

/* Coll ected argunents fromall sources, excluding executable nane */
int argc;
char **argv;

s

The elementsin the structure has the following meaning:

struct sim.options *options;
Contains some tsim startup options. options.freq defines the clock frequency of the emulated processor and
can be used to correlate the simulator time to the real time.
uint64 (*sintinme)(void);
Returns the current simulator time. Time is counted in clock cycles since start of simulation. To calculate
the elapsed real time, divide simtime with options.freg.
d (*sys_reset)(void);
This function for performing a system reset without restarting simulation is currently not supported. This
can beworked around using sim_stop together with aTcl loop that restarts simulation, in standalone TSIM,
or acorresponding loop when using TLIB.
d (*simstop)(void);
Stops current simulation, just as if getting to the end e.g. a step or cont with duration. Does not set the
tsim::interrupt Tcl variable.
void (*siminterrupt)(void);
Interrupts current simulation, just asif Ctrl-C was pressed. Sets the tsim::interrupt Tcl variable to 1.
d (*event)(void (*cfunc)(void *), void *arg, uint64 offset);

VO

VO

VO

TSIM maintains an event queue to emulate time-dependent functions. The event () function inserts an
event in the event queue. An event consists of afunction to be called when the event expires, an argument
with which the function is called, and an offset (relative the current time) defining when the event should
expire.

NOTE: Theevent () function may only be called from event callbacks or at start of simulation (e.g. not
from from from aseparate thread or asignal handler). The event queue can hold amaximum of 2048 events.

NOTE: For save and restore support, restorable events should be used instead.

int (*stop_event)(void (*cfunc)(void *));
Removes al events from the event queue which has the calling function equal to cf unc() . Returns the
number of events stopped.

int (*stop_event_arg)(void (*cfunc)(void *), void *arg);
Removesall eventsfrom the event queue which hasthe callback function equal to cf unc() and argument
equal to ar g. Can be useful when simulating multiple instances of an entity.

int (*stop_one_event)(void (*cfunc)(void *));
Removes at most one event, closest in time, from the event queue which has the calling function equal to
cf unc() . Returns the number of events stopped. Can be used when either only one of many eventsisto
be removed or for better performance when knowing that there is only one possible match.

int (*stop_one_event _arg)(void (*cfunc)(void *), void *arg);
Removes at most one event, closest in time, from the event queue which has the callback function equal
tocfunc() and argument equal to ar g. Can be useful when simulating multiple instances of an entity.
Can be used when either one of many events is to be removed or for better performance when knowing
that there is only one possible match.

unsi gned short (*reg_revent)(void (*cfunc)(void *arg));
Registers arestorable event that will use cf unc ascallback. The returned index should be used when call-
ingrevent (). The event argument is supplied when calling r event () . Thecall toreg_revent ()
should be done once at module initialisation in the module'si ni t () callback.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 40 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

unsi gned short (*reg_revent_prearg)(void (*cfunc) (void *arg), void *arg);
Registers a restorable event that will use cf unc as callback and ar g as argument. This can be used to
register an argument that is a pointer to a data structure. The returned index should be used when calling
revent _prearg().Thecaltoreg revent prearg() should bedoneoncea moduleinitialisa-
tion.

int (*revent)(unsigned short index, void *arg, uint64 offset);
This inserts an event registered by r eg_r event () into the event queue with the registered cf unc for
the given i ndex. Multiple events with the same i ndex can be in the event queue at the same time. The
ar g and of f set arguments are the same as for the event () function. On success O is returned, non-
zero otherwise.

NOTE: See the description of event () for limitations on number of events and from which contexts
events can be added.

int (*revent_prearg)(unsigned short index, uint64 offset);
This inserts an event registered by r eg_r event _pr ear g() into the event queue with the registered
cfunc andar g for thegiveni ndex. Multiple events with the samei ndex can bein the event queue at
the sametime. The of f set argument isthe same asfor theevent () function. On success 0 isreturned,
non-zero otherwise.

NOTE: See the description of event () for limitations on number of events and from which contexts
events can be added.

int (*stop_revent) (unsigned short index);
Thisremoves at most one event, closest in time, from the event queue that has been entered by r event ()
orrevent prearg() usingthegiveni ndex. Returnsthe number of events stopped.

int (*lprintf)(const char *format, ...)
Function for formatted output that goes both to stdout and, when logging is enabled, to thelog. Thefunction
interface works like for printf.

int (*vlprintf)(const char *format, va_list ap)
Function for formatted output that goes both to stdout and, when logging is enabled, to thelog. Thefunction
interface works like for vprintf.

int argc, char** argv
ar gv is the collected arguments from all sources, excluding executable name. ar gc is the number of
arguments.

5.2.2.ioif structure

Theioif structure is defined in tsim.h as;

struct io_interface {
void (*set_irq)(uint32 irq);
int (*dma_read)(uint32 master_id, uint32 addr, uint32 *data, int num;
int (*dma_wite)(uint32 master_id, uint32 addr, uint32 *data, int num;
int (*dma_wite_sub)(uint32 master_id, uint32 addr, uint32 *data, int sz);

}

The elements of the structure have the following meaning:

void (*set _irq)(uint32 irq);
Generateinterrupti r g onthebus. Validvaluesof i r g is1- 15for systemswithout extended interruptsand
1-31 for systems with extended interrupts, and 1-63 for GR716. Note that the interrupt controller controls
how and when processor interrupts are actually generated.

int (*dma_read) (uint32 master_id, uint32 addr, uint32 *data, int nunj;

int (*dma_write)(uint32 master_id, uint32 addr, uint32 *data, int num;
Performs DMA transactions to/from the emulated processor memory. Only 32-bit word transfers are al-
lowed, and the address must be word aligned. On bus error, 1 is returned, otherwise 0. DMA takes place
onthe AMBA AHB bus.

int (*dma_wite_sub)(uint32 master_id, uint32 addr, uint32 *data, int sz);
Performs DMA transactions to/from the emulated processor memory on the AMBA AHB bus. On bus
error, 1 is returned, otherwise 0. Write size isindicated by sz as follows: O = byte, 1 = half-word, 2 =
word, 3 = double-word.

5.2.3. procif structure

The procif structure is defined intsim.h as:

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 41 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

struct proc_interface {

void (*set_irl)(int cpuid, int level); /* Cenerate external interrupt signal directly to CPU */
voi d (*cache_snoop) (ui nt 32 addr);
void (*cctrl)(int cpuid, uint32 *data, uint32 read);

void (*power_down) (int cpuid);
void (*set_irqg_level)(uin32 irq, int set);
void (*set_irqg)(uint32 irqg); /* generate external interrupt */

s

The elementsin the structure have the following meaning:
void (*set _irl)(int cpuid, int level);

Set the the current interrupt level (iui.irl in VHDL model) signal directly to the specified CPU. Allowed
values are 0 - 15, with 0 meaning no pending interrupt. Once the interrupt level is set, it will remain until
itischanged by anew call toset _i rl () . The modulesinterrupt callback routine should typically reset
the interrupt level to avoid new interrupts.

NOTE: For normal interrupt generation, use set _i r g instead. This bypasses the built in interrupt con-
troller model.

d (*cache_snoop) (ui nt 32 addr);

Thecache_snoop() functioncanbeusedtoinvalidate datacachelines(regardlessof whether datacache
snooping is enabled or not). The tags to the given address will be checked, and if a match is detected the
corresponding cache lineswill be flushed (i.e. the tag will be cleared). If an MMU is present and is enabled
the argument should be a virtual address. See also the snoop functioninst ruct ahb_i nterf ace.

d (*cctrl)(int cpuid, uint32 *data, uint32 read);

Read and write the specified CPUs cache control register (CCR). If read = 1, the CCR valueisreturned in
*dat a, elsethe value of * dat a iswritten to the CCR.

d (*power _down) (int cpuid);

The specified processor enters power down-mode when called.

void (*set _irq_level)(uin32 irqg, int set);

Thisisused to generate level interrupts. When callingset _irqg_I| evel withset setto 1thisenablesa
constant generation of interrupt i r g that remains active until asubsequent call toset i rq_| evel with
thesamei r q value and with set setto 0.

d (*set_irqg)(uint32 irq);

Generateinterrupti r g onthebus. Validvaluesof i r g is1- 15for systemswithout extended interruptsand
1-31 for systems with extended interrupts, and 1-63 for GR716. Note that the interrupt controller controls
how and when processor interrupts are actually generated.

vO

VO

VO

VO

5.3. LEON AHB emulation interface

TSIM alows user defined AHB modul es simulating devices on the AMBA buses (both AHB and APB). The em-
ulated processor core communicates with an AHB module using an interface similar to the AHB master interface
inthereal LEON VHDL model. Asthereal processor, the smulator primarily interacts with the emulated device
through read and write requests, while the emulated device can optionally generate interrupts and DMA requests.

Toload and register an AHB system, the general modul einterface should beused toload it in, and from the general
moduleinit function call t si m r egi st er _ahb_nodul e() to register the AHB system The ahb_subsystem
struct is described in Section 5.3.1.

The AHB module interface is made up of two parts; one that is exported by the AHB module and allows TSIM
to access the emulated AHB devices; and one that is filled in by TSIM and defines TSIM functions and data
structures that can be used by the AHB module. The data structures documented in Section 5.2 can aso be used
by the AHB module. The information there about from where those functions are allowed to be called appliesto
the TSIM provided function in the AHB module interface as well.

To register memory areas, use the add_ahb_sl ave and/or add_apb_sl ave functions. Whenever an ac-
cess to that memory area is performed either the registered read or write callback will be called. To be able to
use the load or bload command, afunction get _nmem pt r needs to be registered when adding an AHB slave.
This function should return a pointer to the module's internal underlying memory. The AHB module can use
theadd _ahb_pp oradd_ahb_pp full,andadd_apb_pp functionsto register plug&play entries that will
show up in plug& play areas and thus can be seen during plug& play-scanning. Memory areas and plugé& play en-
tries should be registered from the ahb_subsystem i ni t function.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 42 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

CRES 555
ELECTRONICS
5.3.1. Structure to be provided by AHB module

tsim.h definesthe ahb_subsyst emstructure to be provided by the emulated AHB module;

struct ahb_subsystem {

/* --- Initialied by nodule --- */

voi d (*init)(void);

voi d (*exit)(void);

voi d (*reset)(void);

voi d (*restart)(void);

int (*intack) (int level);

voi d (*irg_event)(uint32 irq, int kind);
voi d (*start)(void);

voi d (*stop)(void);

/* --- Initialised by TSIM--- */
void (*correctable_error)(uint32 addr, uint32 naster, uint32 size, int wite);
int (*add_apb_sl ave) (ui nt32 base,
ui nt 32 si ze,
void *priv,
int (*read)(void *priv, uint32 addr, uint32 *data),
int (*wite)(void *priv, uint32 addr, uint32 data));
int (*add_ahb_sl ave) (ui nt32 base,
ui nt 32 si ze,
int cacheable,
void *priv,
uint8 *(*get_memptr)(void *priv, uint32 base, uint32 size),
int (*read)(void *priv, struct ahb_access *access),
int (*wite)(void *priv, struct ahb_access *access));
int (*add_apb_pp) (ui nt32 vendor, uint32 device,
uint32 version, uint32 irq,
ui nt 32 absol ut e_addr ess,
ui nt 32 absol ut e_mask) ;
uint32 (*build_ahb_id)(uint32 vendor, uint32 device, uint32 version,
uint32 irq);
uint32 (*build_ahb_menbar) (uint32 start, uint32 size,
int cacheable, int prefetchable);
ui nt32 (*build_ahb_iobar)(uint32 start, uint32 size,
int cacheable, int prefetchable);
int (*add_ahb_pp)(int master, uint32 id,
uint32 bar0, uint32 barl, uint32 bar2, uint32 bar3);
int (*add_ahb_pp_full)(int busid, int master, uint32 id,
ui nt 32 user0, uint32 userl, uint32 user2,
uint32 bar0, uint32 barl, uint32 bar2, uint32 bar3);

5.3.1.1. Elements initialised by module

The elements of the structure initialised by modules have the following meanings:
void (*init)(void);

Called once on simulator startup. Set to NULL if unused.
void (*exit)();

Called once on simulator exit. Set to NULL if unused.
void (*reset)();

Called every time the system isreset, including at startup and restart. Set to NULL if unused.
void (*restart)();

Called every time the simulator is restarted (simtime set to zero). Set to NULL if unused.
int (*intack)(int |evel);
i ntack() iscaled when the processor takes an interrupt trap (tt = Ox11 - Ox1f). The level of the taken
interrupt ispassedin level. Thiscallback can be used toimplement interrupt controllers. i nt ack() should
return 1 if the interrupt acknowledgement was handled by the AHB module, otherwise O. If O is returned,
the default LEON interrupt controller will receive the intack instead.
d (*irg_event)(uint32 irqg, int kind)
Leon3/4 only: Thei r q_event () function is called when there is a change on the interrupt bus. When
an edge interrupt happens, kind is IRQKIND_EDGE. When a level interrupt starts to be driven kind is
IRQKIND_LEVELON, and when it stops kind is IRQKIND_LEVELOFF. The irq parameter is the inter-
rupt number of theinterrupt that is happening/changing, in the range 1-64 (maximum depends on system).
d (*start)(void)
Called each time simulation starts, both when starting for the first time using boot or run command and
when continuing using go, cont, step and the like.
void (*stop)(void)

Called every time simulation stops, e.g. due to breakpoints, user pressing Ctrl-C, etc.

VO

VO

Document: TSIM3-UM
December 2021, Version 3.1.4

43

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

CRES 5555
ELECTRONICS
5.3.1.2. Elements initialised by TSIM

The elements of the structure initialised by TSIM have the following meanings.

struct siminterface *simf;
Entry si mi f isinitialised by tsim with the global st ruct si m_i nt er f ace structure.

void (*snoop) (unsigned int addr)
The callback snoop is initialised by tsim. If data cache snooping is enabled (and functioning, i.e. not
UT699) it flushes (i.e. invalidates) data cache lines corresponding to physical addressaddr (on LEON3/4
even when MMU is enabled). If the AHB module is doing DMA writes directly to memory pointers, it is
the responsibility of the AHB module to call thisfor all changed words for snooping to work correctly.

struct io_interface *io;
Initialised with the /O interface structure pointer.

void (*dprint)(char *);
Initialised by tsim with acallback pointer to the debug output function. Output endsupinlog, whenlogging
is enabled and gets forwarded to gdb when running TSIM viagdb. Seel pri ntf andvl pri nt f for the
formatted counterparts.

struct proc_interface *proc;
Initialised with the procif structure pointer.

int (*lprintf)(const char *format, ...)
Initialised by TSIM with afunction for formatted output that goes both to stdout and, when logging, to the
log. The function interface works like for printf.

int (*vlprintf)(const char *format, va_list ap)
Initialised by TSIM with a function for formatted output that goes both to stdout and, when logging is
enabled, to the log. The function interface works like for vprintf.

voi d correctable_error(uint32 addr, uint32 naster, uint32 size, int wite)
Can be called by an AHB moduleto signal acorrectableerror toan AHBSTAT core (if present) or aLEON2
memstat. It isintended to be called during handling of a successful read or write. The parametersto supply
corresponds to the register fields to the AHBSTAT registers or LEON2 FAILAR/FAILSR registers (the
rw field in LEON2 FAILSR correspondingto! wri t e).

int (*add_apb_sl ave) (ui nt 32 base, uint32 size, void *priv, int (*read)(void

*priv, uint32 addr, uint32 *data), int (*wite)(void *priv, uint32 addr,

ui nt 32 data));

Registers an APB slave. The, base parameter isthe start address of the area, si ze isthe size of the area
(in bytes). The pri v parameter is a pointer that can be set freely by the user and is provided to calls to
ther ead andwr i t e functions. The registered read and write functions are called on bus reads and writes
from and to the registered memory arearespectively. APB slave models (in contrast to AHB slave models)
do not need to be concerned about access timing, different write sizes or number of multiple word reads.
Those things are handled by the APB controller model. The APB dlave only handles single word reads and
single word writes.

Ther ead functioniscalled for readsfrom theregistered area. Thepr i v argument isthe pointer registered
intheadd_apb_sl ave cal. Theaddr parameter containsthe address of thesingleword read. Thedat a
parameter points to a buffer where the read data should be placed into on a successful read. The function
should return O for a successful access or 1 for afailed access.

Thewr i t e functioniscalled for writesto theregistered area. Thepr i v argument isthe pointer registered
in the add_apb_sl ave call. The addr parameter contains the address of the single word write. The
dat a parameter contains the word that is written. The function should return O for a successful access or
1 for afalled access.
int (*add_ahb_sl ave) (ui nt32 base, uint32 size, int cacheable, void *priv,
uint8 *(*get_nmemptr)(void *priv, uint32 base, uint32 size), int (*read)
(void *priv, struct ahb_access *access), int (*wite)(void *priv, struct
ahb_access *access))
Registersan AHB slave. Here, base isthe start address of the area, si ze isthe size of the area (in bytes),
cacheabl e indicatesif theareaiscacheableor not. Thepr i v parameter can be set freely by the user and
isprovided to callstother ead and wr i t e functions. Detailsonther ead, writ e andget _nem ptr
functions are described in Section 5.3.1.3.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 44 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

void (*add_apb_pp) (uint32 vendor, uint32 device, uint32 version, uint32
irg, uint32 absol ute_address, uint32 absol ute_mask)
Add APB plug&play entry. Here, vendor is the vendor ID of the device, device is the de-
vice ID and ver si on is the device version. The i r q parameter is the registered device IRQ. The
absol ut e_addr ess parameter isthe base address of the area. absol ut e_nmask isthe address mask,
usually taking the size of the areain bytes - 1 and bit-invert that.
uint 32 (*buil d_ahb_id) (uint32 vendor, uint32 device, uint32 version, uint32
irq)
Helper function to build aplug&play ID.
uint32 (*build_ahb_menbar) (uint32 start, uint32 size, int cacheable, int
pr ef et chabl e)
Helper function to build a plug&play bar. Here, st ar t is the beginning of the area, si ze is the size.
cacheabl e indicatesif the areais cacheable and pr ef et chabl e indicatesif the areais prefetchable.
Calling with both st art and si ze set to 0 will produce an all zero bar and can be used as a disabled
bar. Otherwise areturn value of 0 indicates failure to build an 1/0 bar, and an accompanying error printout
will be made.
uint32 (*build_ahb_iobar)(uint32 start, uint32 size, int cacheable, int
pr ef et chabl e)
Helper function to build a plug&play bar. start is the beginning of the area, si ze is the size.
cacheabl e indicatesif the areais cacheable and pr ef et chabl e indicatesif the areais prefetchable.
Calling with both st art and si ze set to 0 will produce an all zero bar and can be used as a disabled
bar. Otherwise areturn value of 0 indicates failure to build an 1/0 bar, and an accompanying error printout
will be made.
int (*add_ahb _pp)(int master, uint32 id, uint32 bar0, uint32 barl, uint32
bar 2, uint32 bar3)
Register an AHB plug& play entry. Above helper bui | d_* functions can be used to construct the differ-
ent bars. The mast er argument should be 1 when registering an entry for an AHB master and 0 when
registering an AHB slave. Thebui | d_ahb_i d helper function can be used for building thei d, and the
bui | d_ahb_i obar andbui | d_ahb_nenbar helper functions can be used for building the different
bars. Returns 0 on success, and non-zero on error. Seealsoadd_ahb_pp_f ul | that also supports choos-
ing a bus to add the entry to and adding user data fields.
int (*add_ahb_pp _full)(int busid, int master, uint32 id, uint32 user0,
uint 32 userl, uint32 user2, uint32 bar0, uint32 barl, uint32 bar2, uint32
bar 3) ;
Register an AHB plug& play entry. Worksjust likeadd_ahb_pp, but with the added possibility to choos-
ing a bus to add the entry to and adding user data fields. Above helper bui | d_* functions can be used
to constructthe different bars. The mast er argument should be 1 when registering an entry for an AHB
master and O when registering an AHB slave. Thebui | d_ahb_i d helper function can be used for build-
ingthei d, and the bui | d_ahb_i obar and bui | d_ahb_nenbar helper functions can be used for
building the different bars. Returns 0 on success, and non-zero on error.

5.3.1.3. Callbacks for AHB module AHB slaves

For AHB slaves, read and write callback functions is registered using add_ahb_sl ave to handle reads and
writes from and to the registered memory area. It is also possible to register aget _nmem pt r to allow accessto
emulated memory. That isrequired for e.g. load to work against user emulated memory. Note that for APB dlaves,
adightly different interface is used.

struct ahb_access {

ui nt 32 addr ess;
ui nt 32 *dat a;
ui nt 32 ws;

ui nt 32 rnum

ui nt 32 wsi ze;

s

/* Cal | backs */

int (*read)(void *priv, struct ahb_access *access)

int (*write)(void *priv, struct ahb_access *access)

uint8 *(*get_nmemptr)(void *priv, uint32 base, uint32 size)

AMBA slaveread function. The registered read function is called on bus reads from the registered memory
area. The pri v argument is a pointer to the private data used when the area was registered. A read is aways

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 45 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

treated as a read of one or more 32-hit words. The access- >addr field contains the address of the first word
toread. The access- >dat a field points to a buffer that should be filled in with the read data on a successful
read. Theaccess- >ws field should be set by the module to the number of cycles for the complete access. The
access- >r numfield contains the number of words to be read. The function should return O for a successful
access or 1 for afailed access. Theaccess- >wsi ze field isnot used for reads.

AMBA slave write function. The registered write function is called on bus writes to the registered memory
area. Thepr i v argument isapointer to the private data used when the areawasregistered. Theaccess- >addr

field contains the address of the write. Theaccess- >dat a field points to the data to write; either one word for
abyte, half word or word write, or two words for double-word writes. Theaccess- >wsi ze field defineswrite
sizeasfollows: 0 = byte, 1 = half-word, 2 = word, 3 = double-word (no other sizesarevalid). Theaccess- >ws
field should be set by the modul e to the number of cyclesfor the complete access. The function should return O for
asuccessful accessand 1 for failed access. Theaccess- >r numfield is not used for writes.

AHB slave get_mem_ptr function. During file |load operations, TSIM will access emulated memory through
amemory pointer. Such a pointer can be returned from user emulated memory viatheget _nem ptr function.
Without such a pointer, loads can not be performed to user emulated memory. When this function is available it
can also be used by TSIM for other non-simulation accesses like when displaying memory contents. The pri v
argument isthe private data pointer used when the areawas registered. Thebase parameter isthe base address of
theareaand and si ze parameter isthe size of the arearequested (in bytes). The function should return a character
pointer to the emulated memory array if the address and size istotally within the range of the emulated memory.
If outside the range, NULL should be returned. Set this callback to NULL if not used.

5.3.2. Big versus little endianess

SPARC conforms to the big endian byte ordering. This means that the most significant byte of a (half) word has
lowest address. To execute efficiently on little-endian hosts (such asntel x86 PCs), emulated memory is organised
on word basis with the bytes within a word arranged according the endianess of the host. Read cycles can then
be performed without any conversion since SPARC aways reads a full 32-bit word. During byte and half word
writes, care must be taken to insert the written data properly into the emulated memory. On abyte-write to address
0, the written byte should be inserted at address 3, since thisis the most significant byte according to little endian.
Similarly, on a half-word write to bytes 0/1, bytes 2/3 should be written.

5.3.3. AHB module example
See the ahb.c example pointed out in Section 5.8.
5.3.4. AHB module limitations

Currently there is no support for user defined AHB modules to override accesses to a builtin I/O core model in
TSIM. Thiswill be made possible in an upcoming release.

5.4.1/0 module interface

The AHB module system is the primary way to add user models for bus devices. The I/O device interface can
be used to add a module to the I/O bus behind the memory controller (when present in the system) or to act
as a fallback taking care of accesses for areas that are not modelled by anyone. If neither TSIM or any AHB
module handles a memory access it will be forwarded to an 1/0 module if present. To register an I/O module,
caltsi mregister_io_nodul e(iosystemn fromtheinitfunction of aloadable module struct, see Sec-
tion 5.1.2. There can be only one I/O module.

Theio_subsystem struct is described below.

struct io_subsystem {
void (*io_init)(void); /* start-up */

void (*io_exit)(); /* called once on exit */

void (*io_reset)(); /* called on processor reset */

void (*io_restart)(); /* called on simulator restart */

int (*io_read)(unsigned int addr, int *data, int *ws);

int (*io_wite)(unsigned int addr, int *data, int *ws, int size);
char *(*get_io_ptr)(unsigned int addr, int size);

b
The elements of the structure have the following meanings:

void (*io_init)(void);
Called once on simulator startup. Set to NULL if unused.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 46 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

void (*io_exit)();
Called once on simulator exit. Set to NULL if unused.

void (*io_reset)();
Called every time the system isreset, including at startup and restart. Set to NULL if unused.

void (*io_restart)();
Called every time the simulator is restarted (simtime set to zero). Set to NULL if unused.

int (*io_read)(unsigned int addr, int *data, int *ws);
Processor read call. The processor always reads one full 32-bit word from addr. The data should be returned
in *data, the number of waitstates should be returned in *ws. If the access would fail (illegal address etc.),
1 should be returned, on success 0.

int (*fowite)(unsigned int addr, int *data, int *ws, int size);
Processor write call. The size of the written dataisindicated in size: 0 = byte, 1 = half-word, 2 =word, 3=
double-word. The addressis provided in addr, and is always aligned with respect to the size of the written
data. The number of waitstates should be returned in *ws. If the access would fail (illegal address etc.), 1
should be returned, on success 0.

char * (*get_io_ptr)(unsigned int addr, int size);
TSIM can accessemulated memory inthel/O deviceintwo ways. either throughthei o_read/io_write
functions or directly through a memory pointer. get _i o_pt r () is caled with the target address and
transfer size (in bytes), and should return a character pointer to the emulated memory array if the address
and size is within the range of the emulated memory. If outside the range, NULL should be returned. Set
to NULL if not used.

5.5. Adding startup options

A module can register a startup option by filling in a struct user_option and caling the
tsimregi ster_user_opti on function which will return 0 on success and 1 on failure to register the op-
tion.

struct user_option {
/* User defined private pointer*/
void *arg;
/* Called when the option is parsed */
int (*option_execute)(void *arg, int argc, const char **argv);

const char *nane; /* Nanme of the option */
const char *hel p_oneline; /* One line description */
const char *hel p_full; /* Conlete description */

const char *hel p_syntax; /* Description of option syntax */

s

int tsimregister_user_option(struct user_option *user_option);

Thenane pointer must be set to aunique option name, and theopt i on_execut e pointer to acallback function.
Theopt i on_execut e calback will be called when the option is parsed at smulator startup and will get the
registered ar g asfirst parameter with the number of startup argumentsin ar gc and the argumentsin the ar gv
array. The option name itself is included in the count and is the first entry of the array. The return value from
opt i on_execut e should be how many arguments the option parsed, e.g. 1 if no arguments other than the
option itself, or 2 if another parameter was parsed.

Thehel p_onel i ne,hel p_ful | andhel p_synt ax pointerscan be set to aonelinedescription of the option,
a full documentation of the option and if the option takes any arguments the syntax can be set, in order for the
options to be supported by the - hel p option.

5.6. Adding user commands
A module can register a user command by filling in a struct user_cnd and cdling the
tsi mregi ster_user_cnd functionwhichwill return 0 on successand 1 onfailureto register the command.

struct user_cnd {
/* User defined private pointer*/
void *arg;
/* Called when the command is executed */
int (*cmd_execute)(void *arg, int argc, char **argv);
/* Called on unregistration of commands */
void (*cnd_unregister)(void *arg);

const char *nane; /* Nanme of the command */
const char *hel p_oneline; /* One line description */
const char *hel p_full; /* Coml ete description */

const char *hel p_syntax; /* Description of command syntax */

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 47 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

int tsimregister_user_cnd(struct user_cnd *user_cnd);

The name pointer must be set to a unique command name, and thecnd_execut e pointer to acallback function.
Thecnd_execut e calback will be called when the command isevaluated and will get theregistered ar g asfirst
parameter with the number of command argumentsin ar gv and the argumentsinthear gv array. The command
name itself is included in the count and is the first entry of the array. The return value from cnd_execut e
becomes asigned integer Tcl return value.

Thehel p_onel i ne,hel p_ful | andhel p_synt ax pointers can be set to aoneline description of the com-
mand, a full documentation of the command and if the command takes any arguments the syntax can be set, in
order for the command to be supported by the help command. Thecnd_unr egi st er pointer can optionally be
set to be called when TSIM exits, e.g. if cleanup needs to be done.

5.7. Check-pointing module state

Modules can setup up callbacksfor thesave andr est or e module callbacks can be used to support saving and
restoring simulation state in user modules.

struct checkpoint; /* Type for pointers passed back to TSIM */

struct user_checkpoint {
void *priv; /* For the nodule to use during a call to its save/restore */
struct checkpoint *check; /* To pass to read/wite functions */
char *filename; /* File name for checkpoint */
int (*write_uint32)(struct checkpoint *check, uint32 data);
int (*wite_uint64)(struct checkpoint *check, uint64 data);
int (*write_buf)(struct checkpoint *check, void *data, uint64 size);
int (*wite_sparse_buf)(struct checkpoint *check, void *data, uint64 size);
int (*read_uint32)(struct checkpoint *check, uint32 *data);
int (*read_uint64)(struct checkpoint *check, uint64 *data);
int (*read_buf)(struct checkpoint *check, void *data, uint64 size);
int (*read_sparse_buf)(struct checkpoint *check, void *data, uint64 size);

I
struct | oadabl e_nodul e {

int (*save)(struct |oadabl e_nodul e *nodul e, struct user_checkpoint *ucp);
int (*restore)(struct |oadabl e_npbdul e *nmodul e, struct user_checkpoint *ucp);

I

Thestruct user_checkpoi nt passedtosave andr est or e functions containsthe pointers and functions
for a module to save state to or restore state from the file that is specified with the savefil e and restore
fil e commands.

Thewr i t e_ functions can be used in the module's save callback to write datato the current checkpoint file and
ther ead_ functions can be used in the module'sr est or e callback to read data to the current checkpoint file.
Care needs to be taken to exactly match thewr i t e_ function calls during save with the corresponding r ead__
between the save and restore call during restore. The_ui nt 32 and _ui nt 64 functions handles asingle integer.
The _buf functions handles any binary data of a given number of bytes. The _spar se_buf functions can be
used for data that potentially contains alot of repeated areas with zeroes, such as the backing buffer for emulated
memory, to keep the checkpoint file size down. The buffer passed to the _spar se_buf functions must be 32-
bit word aligned and the size (in bytes) must be divisible by 4. The read and write functions returns O on success
or non-zero on fail. When getting a non-zero return value, return that upwards in order to get the correct error
printouts. In case the module wishes to return an error for its own reasons, return 1 asthe error code.

When a module is using events it is important that it uses restorable events for check-pointing to work. Pre-
register eventsfrom any of thei ni t callbackstogetanID usingr eg_r event and/orr eg_r event _prearg.
The latter should be used when the user argument is some pointer that might differ in address between sessions.
Events are then added to the event queue with r event andr event _pr ear g respectively, and removed with
st op_revent, using the ID from the pre-registration.

The exanpl es/ modul es/ ahb. ¢ example module distributed with TSIM contains an example of using this
interface. In case one rather wants to save to and restore from a separate file, the filename of the current file is
also available to be able to base a separate file name on it.

5.8. Loadable modules distributed with TSIM

The following table shows which loadable modules are distributed with which TSIM versions.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 48 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

Table 5.1. Loadable modules distributed with TS M

Module File For TSIM versions
AHB module example examples/modul es/ahb.c All
1/0 module example examples/modules/io.c All
Walltime synchronisation example examples/mod- All
ules/walltimesync.c
CAN node example examples/input/can_node.c |LEON3/4
GPIO input example examples/input/gpio.c LEON3/4
SPI slave example examples/input/spi.c LEON3/4
SPI memory example examples/input/spim.c LEON3
PCI target example examples/input/pci_target.c |LEON3
TPS VxWorks 6.x AHB Module tps/linux-x64/tps.so LEON3/4

tps/win64/tps.dil

The example modules that are provided in source also comes with makefilesto build them. The example modules
inexanpl es/ i nput aso has usage examplesin the exanpl es/ i nput / README. t xt .

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 49 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

6. TSIM library (TLIB)

6.1. Introduction

TSIM isalso available asalibrary, alowing the simulator to be integrated in alarger simulation frame-work. All
options, commands and Tcl possibilities of standalone TSIM are accessible through a simple function interface.
Both builtin and external user models can be added, using the same interfaces as for standalone TSIM.

6.2. Function interface

The following functions are provided to access TSIM features. Note that alot of additional functions accessed via
the callback structsreturned by thet si m get _si m f,t si m get _procif andt si m get _i oi f functions
are available aswell. They are described in Section 5.2.

nt tsiminit(char *option);
Initialise TSIM. This must be called before any other TSIM function (except t si m set _di ag and
tsi mregi ster_nodul e) are used. The options string can contain any valid TSIM startup options.
Thet si m_i ni t functionwill return 0 on successor 1 onfailure. Quotation with" and escaping with\ is
supported in order to pass arguments that contains whitespace. Thet siminit ortsimargv_init
function may only be called once. Commands like run, boot and reset can restart simulation without
restarting the process.

nt tsimargv_init(int argc, char **argv);
Initialise TSIM. This must be called before any other TSIM function (except t si m set _di ag and
tsi mregister_nodul e)areused. Theoptionsarray can contain any valid TSIM startup options. The
tsimargv_init function will return 0 on success or 1 on failure. This version can be advantageous
overtsi minit eg.toavoid having to escape whitespace characters for arguments with whitespace in
them. Thetsiminit ortsimargv_init function may only be called once. Commands like run,
boot and reset can restart simulation without restarting the process.

nt tsimecnd(char *cnd);
Execute TSIM command. Any valid TSIM command-line or Tcl command may be given. If the command
was executed successfully theresult can beretrieved with the helper functionst si m get _result_*().
Returns 0 on success and non-zero on failure.

nt tsimecndf(const char *format, ...) FMI_PRINTF(1, 2);

nt tsimvecndf (const char *format, va_ list ap);
Execute TSIM command built up as with a printf format string. Any valid TSIM command-line command
or Tcl expression may be built. If the command was executed successfully the result can be retrieved with
the helper functionst si m get _result_*() . Returns 0 on success and non-zero on failure.

nt tsimget _result_int32(int32 *result);

nt tsimget_result_uint32(uint32 *result);

nt tsimget _result_int64(int64 *result);

nt tsimaget_result_uint64(uint64 *result);
After a executed TSIM command. The result of the command can be retrieved as integer. The result will
bereturned in*r esul t . Return 0 on success or non-zero if result could not be interpreted as an integer.

nt tsimget_result_doubl e(double *result);
After a executed TSIM command. The result of the command can be retrieved as double. The result will
bereturned in* r esul t . Return 0 on success or non-zero if result could not be interpreted as a double.

nt tsimget result_str(char **result);
After a executed TSIM command. The result of the command can be retrieved as string. The result will
be returned in * *r esul t . Return O on success or non-zero if result could not be interpreted as a string.
The caller isresponsible to free the string.

void tsimexit(int val);

Should be called to cleanup TSIM internal state before main program exits.
nt tsimcont(struct tsimduration *duration, int *sig, int *cpuid)

Continues simulation for duration specified in the tsim_duration struct, described in tsim.h. If the si g
is not NULL, the reason for why simulation stopped is returned in *si g. If the cpui d is not NULL,
the CPU resposible for why simulation stopped is returned in * cpui d. Returns O if simulation could be
started or non-zero on error starting simulation. Before and after one or more callstot si m cont, the
tsimcont _setupandtsi mcont_restore respectively should be called once. See Section 3.4
and Table 3.2 for how to interpret * si g and * cpui d.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 50 Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

int tsimcont_setup(void);

Prepares for having tsim_cont drive the simulation. Only one setup call is needed before any number or

callstotsim_cont. Thisisneeded for e.g. UART forwarding. Thisreturns 0 on success, non-zero on failure.
int tsimcont_restore(void);

Restores things after tsim_cont driving the simulation. Only one restorecall is enough after any number

or cals to tsim_cont. This is needed e.g. for the terminal to be restored to a normal state after UART

forwarding. This returns 0 on success, non-zero on failure.
int tsimaget _stopreason(int *sig, int *cpuid)

Returns reason for stopping, and ID of the CPU that was responsible for stopping the last simulation exe-

cution. If the si g isnot NULL, the reason for why simulation stopped is returned in * si g. If thecpui d

isnot NULL, the CPU resposible for why simulation stopped is returned in * cpui d. See Section 3.4 and

Table 3.2 for how to interpret * si g and * cpui d. This returns 0 on success, non-zero on failure.
int tsimget reg(int cpuid, int regid, uint32 *val ue)

Get single SPARC register. cpui d is an index of the CPU to get the register value from, r egi d is an

index of the register to get, as per enum r egnanes int si m h, and val ue is a pointer to where the

register value will be returned. Returns 0 on success, non-zero on failure.
int tsimset reg(int cpuid, int regid, uint32 value)

Set single SPARC register. cpui d isanindex of the CPU to set the register value on, r egi d isan index

of the register to set, as per enum r egnanes int si m h, and val ue isthe value to set the register to.

Returns 0 on success, non-zero on failure.
int tsimread(unsigned int addr, unsigned int *data);

Performs aread from addr , returning the value in * dat a. Only for diagnostic use. Returns 0 on success

esel.
int tsimwite(unsigned int addr, unsigned int data);

Performsawriteto addr , with value dat a. Only for diagnostic use. Returns the number of bytes written.
int tsimset_diag(int (*cfunc)(void *priv, const char *buf, int len), void
*priv);

Set output forwarding function. By default, TSIM writes all output to stdout and stderr. This function can

be used to direct al output to a user defined routine. The cf unc callback function will be called for al

TSIM output. It should make sure to handle the entire buffer and return number for bytes handled. The

pri v parameter gets passed to each call. Thebuf and | en arguments contains the buffer with text to be

handled and the length of it. Thet si m set _di ag function returns 0 on success 1 or failure.
int tsimset_callback(int cpuid, void (*cfunc)(int cpuid, uint32 pc));
Set the debug callback function for a given CPU. Calling t si m set _cal | back() with a function
pointer will cause TSIM to call the callback function just before each executed instruction on the given
CPU. Returns 0 on success €l se non-zero.
dtsimtrap(int (*trap)(int cpuid, int tt), void (*rett)(int cpuid));
tsi mtrap() isusedtoinstall callback functionsthat are called every time the processor takes atrap or
returns from atrap (RETT instruction). Thet r ap() function is caled with the CPU ID of the trapping
CPU, cpui d, and the SPARC trap number, t t . If thet r ap() function returns 0, execution will continue.
A non-zero return value will stop simulation with the program counter pointing to the instruction that will
cause thetrap. Therett () function is called when the program counter points to the RETT instruction
but before the instruction is executed. The cpui d parameter contains the CPU ID of the CPU that is about
to return from trap. It is possible to install only one callback function by setting the other one to NULL.
The callbacks can be removed by calingt si m t rap() with NULL arguments.
d tsimcov_get(int cpuid, int start, int end, char *ptr);
tsi m cov_get () will return the coverage data for the address range from st ar t (inclusive) to end
(exlusive) from the specified CPU. The coverage data will be written to a char array pointedto by *pt r,
starting at ptr[0]. One character per 32-bit word in the address range will be written. The user must assure
that the char array islarge enough to hold the coverage data. Note that changing coverage modes will reset
the coverage data.
void tsimcov_set(int cpuid, int start, int end, char val);

tsi m cov_set () will fill the coverage datain the addressrange limited by st art and end (see above

for definition), for the specified CPU, with the value of val .
int tsimlastbp(int *addr, int *cpu, int *bp)

When simulation stopped due to breakpoint or watchpoint hit (SIGTRAP), this function will return the

address of the break/watchpoint in * addr . The index of the CPU in * cpu and the index of the break/

watchpoint in * bp. The function return value indicates the break cause; 0 = breakpoint, 1 = watchpoint.

VO

VO

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 51 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

void tsimext_ins(int (*func)(void *priv, int cpuid, uint32 inst, uint32
**w ndow, uint32 *icnt), void *priv);
Installs a handler, f unc, for custom instructions. The installed function gets to emulate instructions as
described in Section 4.1.7. Calling with f unc asaaNULL pointer will remove the handler.
typedef int (*gdb_send_func)(void *priv, const void *buf, int len, int
*byt es);
typedef int (*gdb_recv_func)(void *priv, void *buf, int len, int *bytes);
int tsimgdb(gdb_send func send, gdb_recv_func recv, void *priv);

Starts a GDB session with custom send and receive functions handling the GDB remote protocol input
and output streams. Returns 0 on success, non-zero of error. The send callback is a function pointer to a
function that is called by TSIMs GDB server to send. Ther ecv callback isafunction pointer to afunction
that is called by TSIMs GDB server to receive. The pri v pointer is registered by the user to be passed
to the send and recv callbacks.

The callback functions should return O on success, non-zero on error. Error return here stops the GDB
session. The callback parameters works as follows. The pri v parameter is the private pointer registered
by user. The buf parameter is a buffer to send from or to receive into. The | en parameter is the buffer
size for receive, and length of datato be sent. The byt es parameter is used to set the number of bytes
actually sent or received should be setin * byt es.

Note that in order for a Ctrl-C in aconnected GDB to work, execution should beinterrupted using st r uct
sim.interface.si mstopwhenGDB wanttosend,i.e ther ecv callback hasdatato return, during
ongoing simulation.

struct siminterface *tsimget _simf(void);
Get TSIM simif interface. See Section 5.2.

struct proc_interface *tsimget _procif(void);
Get TSIM procif interface. See Section 5.2.

struct io_interface *tsimget _ioif(void);
Get TSIM ioif interface. See Section 5.2.

int tsimregister_nodul e(struct |oadabl e_nodul e *nodul e);
Registers a custom module. Must be called beforet si m_i ni t () . See Chapter 5 for more information.
Return 0 on success €l se hon-zero.

6.3. Builtin and external modules and user models

Builtin modules can be loaded when using TLIB by registering amodule withthe t si m regi ster _nodul e
function. See Chapter 5 for further information. It is aso possible to use externa modules as with standalone
TSIM using - nod nodul e whencallingt siminit ()

6.4. Linking a TLIB application

Thelibrary versions of TSIM are provided as dynamic shared objects, as.so fileson Linux and DLL fileson Win-
dows. Sample applications are provided, demonstrating different TLIB functionalities, together with a Makefile
showing how to build and link them with TLIB.

6.5. Files and Examples

The tli b directory contains a subdirectory for each architecture with the TLIB t si ml eon*. so so-file or
tsi m eon*. dl | DLL together with needed external libraries as well as example TLIB applications.

The app3. ¢ example contains an example simulation loop usingt si m cont betweent si m cont _set up
andt si m cont _rest or e cals, which is the suggested way (rather than using the cont command) to have a
loop progressing TSIM atimeslice at atime.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 52 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

7. GR712RC emulation

To emulate the GR712RC chip the - gr 712r ¢ option should be used.

PIONEERING
ADVANCED
ELECTRONICS

The following table lists which cores in the GR712RC are modelled by TSIM or not. The table contains some
notes of some unsupported features for otherwise supported cores, but is not necessarily exhaustivein this respect.

Table 7.1. Smulation models for GR712RC

Core Status Notes

LEON3FT Supported by core TSIM3 Both CPUs are modelled. No FT features are modelled.

GRFPU Supported by core TSIM3 Does not simulate the possibility of multiple outstanding
floating point operations.

AHBSTAT Supported by core TSIM3

APBCTRL Supported by core TSIM3

APBUART Supported by core TSIM3

FTMCTRL Supported by core TSIM3 No FT features are modelled

GPTIMER Supported by core TSIM3 No Watchdog support.

GRTIMER Supported by core TSIM3

IRQMP Supported by core TSIM3

CAN_OC Supported by core TSIM3 See Chapter 15. Checkpointing currently not supported.

FTAHBRAM Supported by core TSIM3 No FT features are modelled.

GRETH Supported by core TSIM3 See Chapter 16. Checkpointing currently not supported.

GRGPIO Supported by core TSIM3 See Chapter 17.

GRSPW2 Supported by core TSIM3 See Chapter 20. Checkpointing currenty not supported.

SPICTRL Supported by core TSIM3 See Chapter 21.

CANMUX Dummy in TSIM3 Functionality-less registers only

CLKGATE Dummy in TSIM3 Functionality-less registers only

GRGPREG Dummy in TSIM3 Functionality-less registers only

B1553BRM Not supported

GRASCS Not supported

GRSLINK Not supported

GRTC Not supported

GRTM Not supported

I2CMST Not supported

AHBJTAG Not supported Debug link

DSU3 Not supported Debug unit

TSIM supports running user defined models for unsupported cores.

7.1. Clock Gating Unit, CANMUX and GRGPREG

The Clock Gate Unit, CANMUX and GRGPREG /O registers and AMBA Plug & Play area are present in the
GR712RC module. Some of the logic to control which bits are implemented, readable and writable etc. isimple-
mented. However the register bits has no functionality. The current register values can be used by custom 1/0O
modules in SW validation. For example checking that accessing a specific address are has not been clock gate
disabled or that the SpW clock PLL match with the expect value after initialisation.

Document: TSIM3-UM
December 2021, Version 3.1.4

Cobham Gaisler AB
53 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

8. GR716 emulation

To emulate the GR716 chip the - gr 716 option should be used. When using the GR716 only release, TSIM only
simulates GR716 and the - gr 716 option isimplicit.

Table 8.1. Smulation models for GR716

Core Notes and mode limitations

AHBROM GR716 Boot ROM. See Section 8.1.

AHBSTAT Only the AHB Status Register for the main AMBA bus supported

APBCTRL Atomic operations supported.

APBUART Transmitter shift register empty interrupt, delayed interrupt and using two stop bitscurrently
not supported.

LRAM Atomic operations and DMA accesses supported. Configuration registers are implemented
as dummy registers, see Section 8.2.

FTMCTRL EDAC not supported.

GPTIMER No Watchdog support. Control register bits EV, ES and EE not supported.

GRCAN See Chapter 14 for details about the CAN bus. Checkpointing currently not supported.

GRGPIO See Chapter 17. Pulse sampler and Pulse sequencer are not currently supported. Atomic
operations supported.

GRGPREG Only bootstrap register implemented.

GRSPW2 See Chapter 20 for details and limitations. Checkpointing currently not supported.

IRQMP Watchdog control and Error mode status register currently not implemented.

LEON3FT No FT features are modelled. Zeroditter, Alternative Window Pointer and REX 1SA not
currently supported. Register window partitioning is supported.

SPICTRL See Chapter 21. Automatic Slave select, ThreeWire mode and Slave mode are not currently
supported.

SPIMCTRL See Chapter 22. EDAC not supported.

DAC See Section 8.3. Checkpointing currently not supported.

GR716 has tightly coupled dual-port local data and instruction RAM. GR716 does not have cache memories.
Some register areasfor devices that are not emulated are implemented as dummy registers. See Section 8.2. TSIM
does not emulate the DSU, L3STAT and AHBTRACE cores but provide alot of corresponding functionality and
information via TSIM commands instead.

8.1. GR716 Boot ROM

In addition to running RAM images directly from memory using load and run, TSIM can simulate a cold start
going through the bootloader in the GR716 Boot ROM, with its different boot possibilities, or bypassing the Boot
ROM, booting directly from a different source. The boot command is used to start smulating a cold start.

The bootloader in the GR716 Boot ROM supports multiple boot sources. Booting from external SRAM, exter-
nal PROM and external SPI memory is supported. There is currently no built-in model for the 1°C controller.
Therefore, to support booting an image read over from 1°C, auser model for the 12C controller and bus is needed.
The bootloader can also set up the GR716 for remote access. However, the remote access mode is currently not
supported in TSIM. The bootloader can also be bypassed altogether to boot the GR716 directly from external SPI
memory, SRAM or PROM (without going through the bootloader first).

GR716 samples various signals on reset and populates the bootstrap register with the result. TSIM does not sim-
ulate this sampling. Instead the user can set the value of the bootstrap register with the - boot st r ap option.
For example, to boot using an application software (ASW) image residing in external PROM, start TSIM with
-boot strap 0x0000c00a, load the software image with load i mage, and smulation with boot to start
execution from the Boot ROM from areset state.

The following are examples of different bootstrap values that can be used. Thisis not an exhaustive list. See the
GR716 Data Sheet and User's manual for details.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 54 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

Table 8.2. Boot methods and example bootstrap values

Boot type Bootstrap value | Notes

External SPI memory boot 0x0000c000 Execution continues directly in SPI memory
External SRAM boot 0x0000c004 Execution continues directly in SRAM
External PROM boot 0x0000c008 Execution continues directly in PROM
External SPI memory ASW boot 0x0000c002 Extracts ASW image from SPI memory
External SRAM ASW boot 0x0000c006 Extracts ASW image from SRAM
External PROM ASW boot 0x0000c00a Extracts ASW image from PROM
External 1°C memory ASW boot 0x0000c00e Not supported without user model of 1°C.
Bypass directly to SPI memory 0x1000c000 Execution starts from SPI memory
Bypass directly to SRAM 0x1000c004 Execution starts from SRAM

Bypass directly to PROM 0x1000c008 Execution starts from PROM

Remote access Currently not supported by TSIM

Note: if the boot sequence fails the boot software will potentially get stuck in aloop and never reach the main
application.

8.2. Dummy registers

Thefollowing GR716 register areasarein TSIM currently implemented as dummy registers. They can be written
to without effect and read from with value 0.

Table 8.3. Dummy register areasin the GR716 model

Address Name

0x80001000 - 0x800010ff |DLRAM config

0x80006000 - 0x800060ff | Clock gating unit O

0x80007000 - 0x800070ff |Clock gating unit 1

0x8000b000 - 0x8000b0ff |ILRAM config

0x8000d000 - 0x8000doff |IOMUX config

0x8010c000 - 0x8010cOff | Brown-Out detection control registers
0x8010d000 - 0x8010dOff |PLL control registers

0x80307000 - 0x803070ff |NVRAM config

8.3. DAC
TSIM GR716 provides a DAC interface. To connect to TSIM's interna DAC model use
tsi mregi ster_dac_nodel (dac_i nput, index) where dac_i nput is a pointer to a struct

dac_i nput (see below), and i ndex is the index of the DAC controller to connect to. The struct
dac_i nput canbefoundindac_i nput. h.

See Chapter 5 for further details on how to connect the user model.

struct dac_input {
voi d (*dac_out put) (doubl e val ue);

I

Table 8.4. struct dac_input members

Parameter Description

dac_output Callback set by the user. Will be called each time the DAC controllers output value is
changed. val ue isthe DAC output value.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 55 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

9. GR740 emulation

When starting tsim3-leon4 TSIM emulates the GR740 by defaullt.

Table 9.1. Smulation models for GR740

Core Notes and model limitations

LEON4 No FT features are modelled. Dynamically configurable L1 cache replacement policy not
yet supported.

GRFPU Does not simulate the possibility of multiple outstanding floating point operations.

AHBSTAT Only the AHB Status Register for the main AMBA bus supported

APBUART Transmitter shift register empty interrupt, delayed interrupt and using two stop bitscurrently
not supported.

FTMCTRL PROM and I/O controller. EDAC and write lead out cycles not supported.

GPTIMER No Watchdog support. Control register bits EV, ES and EE not supported.

GRCAN See Chapter 14 for details about the CAN bus. Checkpointing currently not supported.

GRETH Currently modelled as a GRETH core, not a GRETH_GBIT core. See Chapter 16. Check-
pointing currently not supported.

GRGPIO See Chapter 17. Pulse sampler and Pulse sequencer are not currently supported.

IRQ(A)MP Watchdog control and error mode status registers are currently not implemented.

L2 Cache See Section 4.4.3.

SDCTRL Timings based on a CPU frequency of 250 or 50 MHz and a memory frequency of either

50 or 100 MHz. No EDAC is supported.

SpaceWire router

Router itself not yet emulated. Emulated by 4 GRSPW?2 cores. Checkpointing currently not
supported.

GRIOMMU

See Section 4.4.7.

SPICTRL

See Chapter 21. Automatic Slave select, ThreeWire mode and Slave mode are not currently
supported.

9.1. Dummy registers

Thefollowing GR740 register areas arein TSIM currently implemented as dummy registers. They can be written
to without effect and read from with value 0.

Table 9.2. Dummy register areas in the GR740 model

Address

Name

OxffaD4000 - OxffaD40ff | Clock gating unit

Oxffa09000 - OxffaD90ff | Register for bootstrap signals

OxffaDb000 - Oxffa0bOff | General purpose register bank

Document: TSIM3-UM

Cobham Gaisler AB

December 2021, Version 3.1.4 56 Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

10. UT699 emulation

To emulate the UT699 chip the - ut 699 option should be used. That sets up parameters for core TSIM to match
UT699 and sets snooping as non-functional .

PIONEERING
ADVANCED
ELECTRONICS

The following table lists which cores in the UT699 are modelled by TSIM or not. The table contains some notes
of some unsupported features for otherwise supported cores, but is not necessarily exhaustive in this respect.

Table 10.1. Smulation models for UT699

Core Status Notes

LEON3FT Supported by core TSIM3 No FT features are modelled.

GRFPU Supported by core TSIM3 Does not simulate the possibility of multiple outstanding
floating point operations.

AHBSTAT Supported by core TSIM3

APBCTRL Supported by core TSIM3

APBUART Supported by core TSIM3

FTMCTRL Supported by core TSIM3 No FT features are modelled

GPTIMER Supported by core TSIM3 No Watchdog support.

IRQMP Supported by core TSIM3

CAN_OC Supported by core TSIM3 See Chapter 15. Checkpointing currently not supported.

GRETH Supported by core TSIM3 See Chapter 16. Checkpointing currently not supported.

GRGPIO Supported by core TSIM3 See Chapter 17.

GRPCI Supported by core TSIM3 Including DMA controller. See Chapter 18. Checkpointing
currently not supported.

GRSPW Supported by core TSIM3 See Chapter 19. Checkpointing currently not supported.

CLKGATE Not supported

AHBJTAG Not supported Debug link

AHBUART Not supported Debug link

DSU3 Not supported Debug unit

TSIM supports running user defined models for unsupported cores.

Document: TSIM3-UM
December 2021, Version 3.1.4

Cobham Gaisler AB
57 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

11. UT699E emulation

To emulate the UT699E chip the - ut 699e option should be used. That sets up parameters for core TSIM to

match UT699E.

PIONEERING
ADVANCED
ELECTRONICS

The following table lists which coresin the UT699E are modelled by TSIM or not. The table contains some notes
of some unsupported features for otherwise supported cores, but is not necessarily exhaustive in this respect.

Table 11.1. Smulation models for UT699E

Core Status Notes

LEON3FT Supported by core TSIM3 No FT features are modelled.

GRFPU Supported by core TSIM3 Does not simulate the possibility of multiple outstanding
floating point operations.

AHBSTAT Supported by core TSIM3

APBCTRL Supported by core TSIM3

APBUART Supported by core TSIM3

FTMCTRL Supported by core TSIM3 No FT features are modelled

GPTIMER Supported by core TSIM3 No Watchdog support.

IRQMP Supported by core TSIM3

CAN_OC Supported by core TSIM3 See Chapter 15. Checkpointing currently not supported.

GRETH Supported by core TSIM3 See Chapter 16. Checkpointing currently not supported.

GRGPIO Supported by core TSIM3 See Chapter 17.

GRPCI Supported by core TSIM3 Including DMA controller. See Chapter 18. Checkpointing
currently not supported.

GRSPW2 Supported by core TSIM3 See Chapter 20. Checkpointing currently not supported.

CLKGATE Not supported

AHBJTAG Not supported Debug link

AHBUART Not supported Debug link

DSU3 Not supported Debug unit

TSIM supports running user defined models for unsupported cores.

Document: TSIM3-UM
December 2021, Version 3.1.4

Cobham Gaisler AB
58 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

12. UT700 emulation

To emulate the UT700 chip the - ut 700 option should be used. That sets up parameters for core TSIM to match

UT700.

PIONEERING
ADVANCED
ELECTRONICS

The following table lists which cores in the UT700 are modelled by TSIM or not. The table contains some notes
of some unsupported features for otherwise supported cores, but is not necessarily exhaustive in this respect.

Table 12.1. Smulation models for UT700

Core Status Notes

LEON3FT Supported by core TSIM3 No FT features are modelled.

GRFPU Supported by core TSIM3 Does not simulate the possibility of multiple outstanding
floating point operations.

AHBSTAT Supported by core TSIM3

APBCTRL Supported by core TSIM3

APBUART Supported by core TSIM3

FTMCTRL Supported by core TSIM3 No FT features are modelled

GPTIMER Supported by core TSIM3 No Watchdog support.

IRQMP Supported by core TSIM3

CAN_OC Supported by core TSIM3 See Chapter 15. Checkpointing currently not supported.

GRETH Supported by core TSIM3 See Chapter 16. Checkpointing currently not supported.

GRGPIO Supported by core TSIM3 See Chapter 17.

GRPCI Supported by core TSIM3 Including DMA controller. See Chapter 18. Checkpointing
currently not supported.

GRSPW2 Supported by core TSIM3 See Chapter 20. Checkpointing currently not supported.

SPICTRL Supported by core TSIM3 See Chapter 21.

CLKGATE Not supported

GR1553B Not supported

GRTC Not supported

GRTM Not supported

AHBJTAG Not supported Debug link

AHBUART Not supported Debug link

DSU3 Not supported Debug unit

TSIM supports running user defined models for unsupported cores.

Document: TSIM3-UM
December 2021, Version 3.1.4

Cobham Gaisler AB

59 Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

13. AT697 emulation

To emulate the AT697E chip the - at 697e option should be used. That sets up parameters for core TSIM3 to
match AT697E and enables simulation of the AT697 PCI interface.

The following table lists which coresin the AT697 are modelled by TSIM or not. The table contains some notes
of some unsupported features for otherwise supported cores, but is not necessarily exhaustive in this respect. See
Chapter 4 for details on the builtin simulation models and Chapter 23 for the PCI model.

Table 13.1. Smulation models for AT697

Core Status Notes

LEON2FT Supported by core TSIM3 No FT features are modelled.
FPU Supported by core TSIM3

LEON2 system registers | Supported by core TSIM3

Interrupt controller

Supported by core TSIM3

Memory controller

Supported by core TSIM3

No FT features are modelled

UART Supported by core TSIM3

PCI Supported by core TSIM3 See Chapter 23. Checkpointing currently not sup-
ported.

1/O port Not supported Easily modelled in user module

JTAG Not supported Debug link

Debug UART Not supported Debug link

DsSU Not supported Debug unit

Document: TSIM3-UM Cobham Gaisler AB

December 2021, Version 3.1.4 60 Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

14. GRCAN

Each GRCAN core are connected to two CAN buses (with the possibility to choose which busto be active on for
each GRCAN core). Default values for the bus index is GRCAN core index * 2 for the main bus and (GRCAN
coreindex * 2) + 1 for the secondary bus. With the exception for GR716 where both GRCAN cores are connected
to bus 0 and 1 for the main and secondary bus. TSIM models these buses according to the Section 14.4 API.

Seetheexanpl es/ t est directory for an example GRCAN test program. Thistest program can be used together
with the example can node found in exanpl es/ i nput .

14.1. Start up options

GRCAN core start up options

-grcanX_busO i ndex
Sets the index of the main CAN bus for GRCAN core X.

-grcanX_busl i ndex
Setsthe index of the secondary CAN bus for GRCAN core X.

X in the above commands is the index of the core.

14.2. Commands

GRCAN Commands

grcanX_dbg [f | aglall|clean|list]
Toggle specific flag, set all, clear al, or list debug flags for the given GRCAN core. See Section 14.3 for
alist of debug flags.

X in the above commands is the index of the core.

14.3. Debug flags

Thefollowing debug flags and debug subcommands are available for the GRCAN cores. The CAN_* flags can be
used with the grcanX_dbg command to toggle individual flags for individual GRCAN cores. The subcommands
can beused withthe grcanX_dbg command to change and list the settingsof all flagsfor individual GRCAN cores.

Table 14.1. GRCAN debug flags

Flag Trace

CAN_ACC GRCAN register accesses

CAN_RX GRCAN received messages

CAN_TX GRCAN transmitted messages

CAN_IRQ GRCAN interrupts

al Set all debug flags for the core

clean Set none of the debug flags for the core

list List the current setting of the debug flags for the core

14.4. CAN interface

Currently, this CAN bus model is only used for GRCAN. For emulation of CAN OC in GR712RC, UT699,
UT699E and UT700, see Chapter 15.

14.4.1. Connecting a user CAN model

To connect a custom CAN node to TSIM's internal CAN bus use t si m r egi st er _can_node(node,
canbus_i ndex) where node is a pointer to astruct can_node (see below), and canbus_i ndex
is the index of the bus to connect to. Both st ruct can_node and struct can_nsg can be found in
canbus_i nput . h.

See Chapter 5 for further details on how to connect the user model.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 61 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
CRES 5%
ELECTRONICS
14.4.2. CAN model API
The internal CAN bus is available through st ruct canbus_i nterface *canbus provided by the init
function of st ruct can_node that is caled during simulation startup if it has been registered by using the

tsi mregi ster_can_node function.

The different structs are described below.

struct canbus_interface {
int (*update)(uint32 bus_id);
h

Table 14.2. struct canbus_interface members

Parameter Description

update Used to update a bus after a change in node status.

struct can_node {
unsigned int id;
void (*init)(struct can_node *node, struct canbus_interface *canbus);
int (*rx_callback)(uint32 bus_id, uint32 sender_id, struct can_node *node, struct can_nsg nsg);
void (*tx_call back) (uint32 bus_id, struct can_node *node, uint32 error_flags, int num acks);
struct can_msg (*get_mnessage) (struct can_node *node);
void (*status)(struct can_node *node);
uint32 *wants_to_send;
uint32 *bus_off;
uint32 *error_passive;
ui nt 32 invisible;
ui nt 32 di sconnect;
void *priv;

Table 14.3. struct can_node members

Parameter Description

id The nodes id, each node needs an unique id.

init Callback called by the CAN bus during simulation start up. Provides the module with a
canbus_interface, see above. node isapointer to the node being initiated.

rx_callback Callback called by the CAN bus each time anew message is available. Input parameters
described below.

tx_callback Callback called by the CAN buseach timethisnode has sent amessage. Input parameters
described below.

get_message Callback called by the CAN buswhen the busisfree and the node wantsto send. Should
return acan_msg struct

status Callback called by the CAN buswhen printing status. Can optionally be set to print the

nodes status at the same time.

wants to_send

Pointer set by the user indicating if the node wants to send a message or not. If set
get_message will be called each time the CAN busisfree

bus off Pointer set by the user indicating if the nodeisin bus off state.

error_passive Pointer set by the user indicating if the node isin error passive state. Otherwiseit isin
error active state

invisible If set the node is invisible on the bus. It will receive all messages via the rx_callback.
But cannot acknowledge or flag errors.

disconnect If set the node is disconnected from the CAN bus. It will receive no messages and have
no impact on the bus.

priv Pointer to private data. Can be set freely by the user.

Document: TSIM3-UM
December 2021, Version 3.1.4 62

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

If a node wants to send a message it should set *want s_t o_send to non-zero and call canbus. updat e.
Next time the bus is free get _message is caled and the node should return a can message of type st r uct
can_nmnsg. The internal bus model will then collect messages from each node that wants to send and perform

arbitration, the winning message will then be sent.

Table 14.4. tx_callback parameters

Parameter Description

bus id Index of the CAN bus which the message was sent on.
node Pointer tothest ruct can_node that sent the message.
error_flags If any receiving node forced an error thisflag is set.
num_acks Number of nodes correctly acked the message.

When a message is sent the r x_cal | back is called for each connected node. To acknowledge this message
normally this function should return O, if an error is detected return an error flag. Thenmsg. f | ags property can
be used to check if an error should be forced.

Table 14.5. rx_callback parameters

Parameter Description

bus id Index of the CAN bus which the message was received on.
sender_id ID of the sender node.

node Pointer tothest ruct can_node that isreceiving the message.
msg A struct can_nsg containing the message.

If a node enters bus off mode or error passive mode, the corresponding property should be set by the user. While
the node isin bus off mode it will not be able to send messagesbut r x_cal | back will still be called to receive
messages, it is up to the user model if it wants to discard the message or not, note that if in bus off mode the
return value will be ignored.

When anode is done sending messages * want s_t o_send should be set to zero.

If arbitration is won and al nodes have received the message, the winning nodest x_cal | back is called. If
any error was detected theer r or _f | ags isset. If arbitration is won the node will not receive it's own message
through r x_cal | back. Thepri v pointer is unused by the CAN bus and can be set freely by the user. It can,
for example, be used to differentiate between different nodes using the same callback functions or used to add

extra properties to the node.

struct can_msg {
ui nt 32 *dat a;

uint 32 flags;

uint32 nomnal _bitrate;
uint32 fd_bitrate;

Table 14.6. struct can_msg members

Parameter Description

data Pointer to the CAN message data.

flags When transmitting, errors can be forced by this flag. When receiving this indicates if
errors has been found

The nominal bit-rate which the message will be sent. Measured in clock cycles per hit.

The CAN-FD data bit-rate. Should be left as zero when transmitting ordinary CAN-
Messages. Measured in clock cycles per hit.

nominal_bitrate
fd_bitrate

Seetheexanpl es/ i nput directory for an example can node implementation. The example demonstrates how
to set up abasic can node that will receive and acknowledge messages.

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

Document: TSIM3-UM
December 2021, Version 3.1.4 63

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

14.4.3. Error injections

Errors can be injected by the ui nt 32 f | ags property of st ruct can_nsg. When transmitting a message
the flags can be set to let areceiver know that it should force an error. When receiving ther x_cal | back can
return non-zero to let the transmitter know an error has occurred.

Bit 0-4 and bit 31 isreserved and defined below. Bit 0-4 indicates one of the standard errors, defined by the 1ISO
standard 11898-1:2015 (2nd edition), has occurred. Bit 31 indicates if the error was flagged by an error passive
node. Remaining bits can be used freely for system specific flags by the users.

Table 14.7. Error flag definitions

Bit Description

Ack error.

0

1 Form error.
2 CRC error.
3

4

Stuff error.

Bit error

31 Error flagged by error passive node.

14.4.4. Commands

CAN bus Commands

canbusX_status
Prints the status information on the given CAN bus. Note that thisis only used for systems with one or
more GRCAN devices, not for CAN_OC.

X in the above commands is the index of the bus.

14.4.5. Debug status

To display the status of an internal CAN bus use the canbusX_status command. This command will print the
status of each connected node, as well as call the optional status command that can be provided by a user model.

14.4.6. Current limitations

Arbitration loss is not reported to the node, it has to check it manually when receiving by either comparing its
own message with the received one.

Each node has to have an unique ID.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 64 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

15. CAN_OC interface

The UT699, UT699E, UT700 and GR712RC chips contains CAN_OC cores which models the CAN_OC cores
available in the chip. For core details and register specification please see the manual for each emulated chip.

15.1. Start up options

CAN_OC core start up options
-can_ocX _connect host: port
Connect CAN_OC core X to packet server to specified server and TCP port.

-can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.

-can_ocX_ ack [0] 1]
Enables waiting for an acknowledgement packet on transmission for CAN_OC core X.

X in the above commands is the index of the core.

15.2. Commands

CAN OC Commands

can_ocX_connect host : [port]

Connect CAN_OC core X to packet server to specified server and TCP port.
can_ocX_server port

Open a packet server for CAN_OC core X on specified TCP port.
can_ocX_ack <0| 1>

Specifies whether the CAN_OC core will wait for a acknowledgement packet on transmission. This com-

mand should only beissued after a connection has been established.
can_ocX_status

Prints out status information for the CAN_OC core.
can_ocX_dbg [f | ag|all|cleanllist]

Toggle, set, clear, list debug flags for the CAN_OC core.

X in the above commands is the index of the core.

15.3. Debug flags

Thefollowing debug flags and debug subcommands areavailablefor CAN interfaces. The GAI SLER_CAN _OC *
flags can be used with the can_ocX_dbg command to toggle individual flags for individual CAN_OC cores and
with the dbgon command to toggle individual flags for all CAN_OC cores. The subcommands can be used with
the can_ocX_dbg command to change and list the settings of all flags for individual CAN_OC cores.

Table 15.1. CAN debug flags

Flag Trace

GAISLER_CAN_OC _ACC CAN_OC register accesses
GAISLER_CAN_OC_RXPACKET CAN_OC received messages
GAISLER_CAN_OC TXPACKET CAN_OC transmitted messages
GAISLER_CAN_OC_ACK CAN_OC acknowledgements
GAISLER_CAN_OC_IRQ CAN_OC interrupts

al Set all debug flags for the core

clean Set none of the debug flags for the core

list List the current setting of the debug flags for the core

15.4. Packet server

Each CAN_OC core can be configured independently as a packet server or client using either -
can_ocX _server or-can_ocX connect . When acting as a server the core can only accept a single con-
nection.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 65 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

A connection should be set up before starting simulation for the first time, and must not be broken after that.
Restarting the simulation will not tear down the connection, nor emptying any socket buffers. The socket based
interface does not support any signalling of restart of the simulation. To ensure a clean restart of simulation when
using thisinterface, restarting TSIM entirely and reconnecting socket interfaces is advisable.

15.5. CAN packet server protocol

The protocol used to communicate with the packet server is described below. Four different types of packets are
defined according to the table below.

Table 15.2. CAN packet types

Type Value
Message 0x00
Error counter OxFD
Acknowledge OXFE
Acknowledge config OxFF

15.5.1. CAN message packet format

Used to send and receive CAN messages.

31 0
0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet

CAN message
Byte # Description Bits (M SB-L SB)
7 6 |5 |4 [3]2 1 Jo

Protocol ID =0 Prot ID 7-0
5 Control FF \ RTR \ \ \ DLC (max 8 bytes)
6-9 ID (32 bit word in network byte|ID 10-0 (bits 31 - 11 ignored for standard frame format)

order) ID 28-0 (bits 31-29 ignored for extended frame format)
10-17 Databyte1 - DLC Databyten 7-0

Figure 15.1. CAN message packet format
15.5.2. Error counter packet format

Used to write the RX and TX error counter of the modelled CAN interface.

31 0

0x0 LENGTH
31.0 LENGTH, specifiesthe length of the rest of the packet

Error counter packet

Byte# Field Description

4 Packet type Type of packet, OXFD for error counter packets
5 Register 0 - RX error counter, 1 - TX error counter

6 Value Valueto writeto error counter

Figure 15.2. Error counter packet format

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 66 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

15.5.3. Acknowledge packet format

If the acknowledge function has been enabled through the start up option or command the CAN interface will wait
for an acknowledge packet each time it transmits a message. To enable the CAN receiver to send acknowledge
packets (either NAK or ACK) an acknowledge configuration packet must be sent. This is done automatically by
the CAN interface when can_ocX_ack isissued.

31 0
0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet
Acknowledge packet
Byte# Field Description
4 Packet type Type of packet, OXFE for acknowledge packets
5 Ack payload 0 - No acknowledge, 1 - Acknowledge

Figure 15.3. Acknowledge packet format

15.5.4. Acknowledge packet format

This packet is used for enabling/disabling the transmission of acknowledge packets and their payload (ACK
or NAK) by the CAN receiver. The CAN transmitter will always wait for an acknowledge if started with -
can_ocX_ack orif the can_ocX_ack command has been issued.

31 0

0x0 LENGTH
310 LENGTH, specifies the length of the rest of the packet

Acknowledge configuration packet

Byte# Field Description
4 Packet type Type of packet, OXFF for acknowledge configuration packets
5 Ack configuration bit 0 Unused

bit 1 Ack packet enable, 1 - enabled, O - disabled

bit 2 Set ack packet payload, 1 - ACK, 0- NAK

Figure 15.4. Acknowledge configuration packet format

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

Document: TSIM3-UM
December 2021, Version 3.1.4 67

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

16. 10/100 Mbps Ethernet Media Access Controller interface

The Ethernet core simulation model is designed to functionally model the 10/100 Ethernet MAC available in
UT699, UTE99E, UT700 and GR712RC. For core details and register specification please see the chip manual.

The following features are supported:

« Direct Memory Access
e Interrupts

16.1. Start up options

Ethernet core start up options

-gret hX_connect host[: port]

Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.
-grethX_mac X X X X X X

Set MAC address of the Ethernet core.

16.2. Commands

GRETH Commands

grethX_dbg [f | aglall|cleanllist]
Toggle specific flag, set al, clear dl, or list debug flags for the given GRETH core. See Section 16.3 for
alist of debug flags.
grethX_status
Prints the status of greth core X.
grethX _connect [i p[: port]]
Connect to packet server at given IP address and optional port. Default port is 2224. If no IP address is
specified, the default is localhost.
grethX_pingi p
Simulate a ping. Packets will be generated by TSIM.
grethX_dumpfile
Dump packets to Ethereal readablefi | e.
grethX_reconnect <0| 1>
Turn GRETH autoreconnect on or off.

X in the above commands is the index of the core.

16.3. Debug flags

The following debug flags are available for the Ethernet interface. Use the them in conjunction with the dbgon
command to enable different levels of debug information.

Table 16.1. Ethernet debug flags

Flag Trace

GAISLER GRETH_ACC GRETH accesses
GAISLER GRETH_L1
GAISLER_GRETH_TX GRETH transmissions
GAISLER_GRETH_RX GRETH reception
GAISLER_GRETH_RXPACKET GRETH received packets

GRETH accesses verbose

GAISLER_GRETH_RXCTRL

GRETH RX packet server protocol

GAISLER_GRETH_RXBDCTRL

GRETH RX buffer descriptors DMA

GAISLER_GRETH_RXBDCTRL

GRETH TX packet server protocol

GAISLER_GRETH_TXPACKET

GRETH transmitted packets

GAISLER_GRETH_IRQ

GRETH interrupts

Document: TSIM3-UM
December 2021, Version 3.1.4

Cobham Gaisler AB
68 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
CAES 5%

ELECTRONICS
16.4. Ethernet packet server

The simulation model relies on a packet server to receive and transmit the Ethernet packets. The packet server
should open a TCP socket which the module can connect to. The Ethernet core is connected to a packet server
usingthe- gr et hX_connect start-up parameter or using the grethX _connect command.

A connection should be set up before starting simulation for the first time, and must not be broken after that.
Restarting the simulation will not tear down the connection, nor emptying any socket buffers. The socket based
interface does not support any signalling of restart of the simulation. To ensure a clean restart of simulation when
using thisinterface, restarting TSIM entirely and reconnecting socket interfacesis advisable.

An example implementation of a packet server, named gr et h_confi g, isincluded in TSIM distribution. It
uses the TUN/TAP interface in Linux, or the WinPcap library on Windows, to connect the GRETH core to a
physical Ethernet LAN. Thismakesit easy to connect the smulated GRETH coretorea hardware. It can providea
throughput in the order of magnitude of 500 to 1000 KiB/sec. Seeits distributed README for usage instructions.

16.5. Ethernet packet server protocol

Ethernet data packets have the following format. Note that each packet is prepended with a one word length field
indicating the length of the packet to come (including its header).

Packet length at offset Ox0:
31 0

LEN

31.0 LEN Length of rest of packet: 4 + number of data bytes

Header at offset Ox4:

31 16 15 8 7 5 4 0
R IPID ‘ TYPE ‘ R

3116 R Reserved for future use. Must be set to O.

15:8 IPID IP coreID: 1 for Ethernet
75 TYPE Packet type: O for data packets
4.0 R Reserved for future use. Must be set to 0.

Offset 0x8: The rest of the packet is the encapsulated Ethernet packet

Figure 16.1. Ethernet data packet

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 69 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

17. GPIO interface

17.1. Connecting a user GPIO model

To register aGPIO user module, call t si m regi ster _gpi o_nodul e(gpi o_i nput, index) froman
input modulesinit function. Heregpi o_i nput isapointer to agpio_input struct, andi ndex istheindex of the
GPIO coreto register on. See Chapter 5 for further details on how to connect the user model.

17.2. GPIO model API

Thestructure st ruct gpi o_i nput modelsthe GPIO pins. It is defined as:

/* GPIO input provider */
struct gpio_input {

int index;
int (*gpioout)(struct gpio_input *ctrl, unsigned int dir, unsigned int output);
int (*gpioin) (struct gpio_input *ctrl, unsigned int in);

void (*gpioinit)(struct gpio_input *ctrl);
void (*gpioreset)(struct gpio_input *ctrl);
void (*print_status)(struct gpio_input *ctrl);

voi d* priv;

s

The gpi oout callback should be set by the user module at startup. The gpi oi n callback is set by tsim. The
gpi oout callback iscalled by the module whenever a GPIO output pin changes. Thegpi oi n callback iscalled
by the user module when the input pins should change. Typically the user module would register an event handler
at acertain time offset and call gpi oi n from within the event handler. Thegpi oi ni t callback iscalled during
simulator startup and thegpi or eset iscalled eachtime TSIM resets. Optionaly thepr i nt _st at us callback
can be set to print user model status. The pr i v parameter can be set freely by the user.

Table 17.1. gpioout callback parameters

Parameter Description

dir Bit x of dir indicates that the grgpio core drives output
on line x when 1 and that it does not when it is 0.

out The values of the output pins

Table 17.2. gpioin callback parameters

Parameter Description
in Theinput pin values

Thereturn value of gpi oi n/ gpi oout isignored.

Seetheexanpl es/ i nput directory for an example module implementation. Seetheexanpl es/ t est direc-
tory for an example test program.

17.3. Commands

GPIO Commands

gpioX_status
Print status for the GPIO core.

gpioX_dbg [f | aglall|clean]list]
Toggle specific flag, set all, clear al, or list debug flags for the given GPIO core. See Section 17.4 for a
list of debug flags.

X in the above commands is the index of the core.

17.4. Debug flags

The following debug flags and debug subcommands are available for GPIO interfaces. The GAI SLER_GPI O _*
flags can be used with the gpioX_dbg command to toggle individual flags for individual GPIO cores and with the
dbgon command to toggleindividual flagsfor all GPIO cores. The subcommands can be used with the gpioX _dbg
command to change and list the settings of all flags for individual GPIO cores.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 70 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

Table 17.3. GPIO debug flags

Flag/subcommand Trace

GAISLER_GPIO_ACC GPIO register accesses

GAISLER_GPIO_IRQ GPIO interrupts

al Set all GPIO debug flags for the core

clean Set none of the GPIO debug flags for the core

list List the current setting of the debug flags for the core
Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 71 Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

18. GRPCI, PCl initiator/target interface

TSIM modelsthe GRPCI coresavailablein UT699, UT699E and UT700. For core detail sand register specification
please see the manual for each chip.

18.1. Commands

PCI Commands

grpciX_status
Print status for PCI core X

grpciX_dbg
Toggle specific flag, set al, clear al, or list debug flags for the given grpci core. See Section 18.2 for a
list of debug flags.

X in the above commands is the index of the core.

18.2. Debug flags

The following debug flags are available for the PCI interface. Use them in conjunction with the grpciX_dbg
command to enable different levels of debug information.

Table 18.1. PCI interface debug flags

Flag Trace

GAISLER_GRPCI_ACC AHB accesses to/from PCI core
GAISLER_GRPCI_REGACC GRPCI APB register accesses
GAISLER_GRPCI_DMA_REGACC PCIDMA APB register accesses
GAISLER_GRPCI_DMA GRPCI DMA accesses on the AHB bus
GAISLER_GRPCI_TARGET_ACC GRPCI target accesses
GAISLER_GRPCI_INIT Print summary on startup

18.3. PCIl bus model API

To register a GRPCI module call t si m regi ster_grpci _nodul e(struct grpci_i nput *inp,
i nt index); fromaninput modulesinit function. Here i np isa pointer to a grpci_input struct and i ndex
is the index of the GRPCI controller to register on. See Chapter 5 for further details on how to connect the user
model. Thestruct grpci _i nput isdefinedingr pci _i nput . h as

struct grpci_input {
int (*acc)(struct grpci_input *ctrl,

int cnd,
unsi gned int addr,
unsi gned int wsize,
unsi gned int *data,
unsi gned int *abort,
unsi gned int *ws);

void (*grpci_init)(struct grpci_interface *grpciif);

b

The acc callback should be set by the PCI user module at startup. It is called by the the model whenever the PCI
core reads/writes as a PCl bus master.

Table 18.2. acc callback parameters

Parameter Description

cmd Command to execute, see Section 18.3.1 details.

addr PCI address.

wsize 0: 8-bit access 1: 16-bit access, 2: 32-bit access. Isalways 2 for read accesses.

data Data buffer. The user module should return the read datain * dat a for read
commands or write the datain * dat a for write commands.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 72 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

Parameter Description
abort Set *abort to 1 to generate target abort, or O otherwise.
ws Set * ws to the number of PCI clocks it takes to complete the transaction.

The return value of acc determines if the transaction terminates successfully (0 or GRPCI_ACC_OK) or with
master abort (1 or GRPCI_ACC_MASTER_ABORT).

The grpci_init callback should be set by the PCI user module at startup. It is called by TSIM at simulator startup.

Table 18.3. grpci_init callback parameters

Parameter

Description

grpciif

Pointertoast ruct grpci _i nt erface. Should be saved by the module
to interface with TSIM's GRPCI model.

Thestruct grpci _interfaceisdefinedingrpci _i nput. has

struct grpci_interface {
int (*target_acc)(int index,

int cmd,

unsi gned

unsi gned

unsi gned

unsi gned

int
int
int
int

s

addr,
wsi ze,
*dat a,
*mexc) ;

The callback target_acc isinstalled by the TSIM. The PCI user dynamic library can call this function to initiate

an access to the PCI target.

Table 18.4. target_acc parameters

Parameter Description

index Index of GRPCI core of the system. Typicaly, 0 isthe only valid index.

cmd Command to execute, see Section 18.3.1 for details. 1/0 cycles are not sup-
ported by the target.

addr PCI address. Should always be word aligned for read accesses.

wsize 0: 8-hit access 1: 16-bit access, 2: 32-bit access. Should always be 2 for read
accesses.

data Data buffer. The read data is returned in * dat a for read commands or the
datain * dat a iswritten for write commands.

mexc The model sets*mexc to 0 if accessis successful, or 1 in case of target abort.

If a supported command hits MEMBARO, MEMBAR1 or CONFIG, target_acc() will return 0. For unsupported
commands or other areas, it will return 1.

18.3.1. PCl command table

Table 18.5. PCI command table

Command

Description

IRQ acknowledge

Specia cycle

1/0 Read

1/O Write

Reserved

Reserved

Memory Read

N[O~ W N|FL|O

Memory Write

Document: TSIM3-UM
December 2021, Version 3.1.4

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

73

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

Command Description

8 Reserved

9 Reserved

10 Configuration Read

11 Configuration Write

12 Memory Read Multiple

13 Dual Address Cycle

14 Memory Read Line

15 Memory Write And Invalidate

18.4. Examples

See the PCI filesin exanpl es/ i nput for header files and an example PCI user module. See example usage
inexanmpl es/test.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 74 Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

19. GRSPW1, SpaceWire interface with RMAP support

The UT699 chip contains4 GRSPW cores which are modelled in TSIM. For core details and register specification
please see the UT699 manual .

The UT699E chip has GRSPW?2 cores instead of GRSPW cores. So, for UT699E see Chapter 20 instead.

The following features are supported:
e Transmission and reception of SpaceWire packets
* Interrupts
* RMAP

19.1. Start up options

SpaceWire core start up options

- grspwX_connect host: port
Connect GRSPW core X to packet server at specified server and port.

-grspwX_server port

Open a packet server for core X on specified port.
-grspw_rxfreq freq

Set the RX frequency which is used to calculate receive performance.
-grspw_txfreq freq

Set the TX freguency which is used to calculate transmission performance.

X in the above commands is the index of the core.

19.2. Commands

GRSPW SpaceWire core TSM commands

grspwX_connect host : [port]
Connect GRSPW core X to packet server at specified server and TCP port.
grspwX_server port
Open a packet server for GRSPW core X on specified TCP port.
grspwX_dbg [f | aglall|clean|list]
Toggle specific flag, set all, clear all, or list debug flags for the given GRSPW core. See Section 19.3 for
alist of debug flags.

X in the above commands is the index of the core.

19.3. Debug flags

Thefollowing debug flags are avail able for the SpaceWire interfaces. Use the them in conjunction with the dbgon
command to enable different levels of debug information.

Table 19.1. SpaceWire debug flags

Flag Trace
GAISLER_GRSPW_ACC GRSPW accesses
GAISLER_GRSPW_RXPACKET GRSPW received packets
GAISLER_GRSPW_RXCTRL GRSPW rx protocol
GAISLER_GRSPW_TXPACKET GRSPW transmitted packets
GAISLER_GRSPW_TXCTRL GRSPW tx protocol

19.4. SpaceWire packet server

Each SpaceWire core can be configured independently as a packet server or client using either -
gr spwX_server or-gr spwxX_connect . TCP socketsare used for establishing the connections. When acting
as aserver the core can only accept a single connection.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 75 Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

A connection should be set up before starting simulation for the first time, and must not be broken after that.
Restarting the simulation will not tear down the connection, nor emptying any socket buffers. The socket based
interface does not support any signalling of restart of the simulation. To ensure a clean restart of simulation when
using thisinterface, restarting TSIM entirely and reconnecting socket interfaces is advisable.

For more flexibility, such as custom routing, an external packet server can be implemented using the protocol
specified in the following sections. Each core should then be connected to that server.

19.5. SpaceWire packet server protocol

The protocol used to communicate with the packet server is described below. Three different types of packets are
defined according to the table below.

Table 19.2. Packet types

Type Value
Data 0
Time code 1

Note that all packets are prepended by a one word length field which specified the length of the coming packet
including the header.

19.5.1. Data packet format

Packet length at offset OxO:

31 0

LEN

310 LEN Length of rest of packet: 4 + number of data bytes

Header at offset Ox4:

31 16 15 8 7 5 4 10
R IPID | TYPE| R [EE

3116 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: O for SpaceWire

7.5 TYPE Packet type: O for data packets

4.1 R Reserved for future use. Must be set to O.

0 EE Error End of Packet. Set when the packet is truncated and terminated by an EEP.

Offset 0x8: Therest of the packet is the encapsulated SpaceWire packet

Figure 19.1. SpaceWire data packet

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 76 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

CRES 53
ELECTRONICS
19.5.2. Time code packet format

Packet length at offset 0x0:
31 0

LEN

31.0 LEN Length of rest of packet: 8

Header at offset Ox4:

31 16 15 8 7 5 4 0
R IPID | TYPE | R

3116 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: O for SpaceWire
7.5 TYPE Packet type: 1 for time code packets

4.0 R Reserved for future use. Must be set to 0.

Payload at offset Ox8:

31 8 7 6 5 0
\ R \ CT | CN

31:8 R Reserved for future use. Must be set to 0.

7:6 CT Time control flags

5.0 CN Value of time counter

Figure 19.2. SpaceWire time code packet

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 77 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

CAES:::::.
20. GRSPW2, SpaceWire interface with RMAP support

TSIM models the GRSPW?2 cores available in UT699E, UT700, GR712RC and GR716. For core details and
register specification please see the manual for each chip.

Supported features include:

» Transmission and reception of SpaceWire packets
» Transmission and reception of Time codes

* RMAP

* Server sidelink state model

 Link errors

e Link error injection

All GRSPW?2 register fields with underlying functionality in UT699E, UT700, GR712RC and GR716 are sup-
ported except for:

e Thelink model isonly inerror reset stateorr un state.

* The RMAP buffer disable (RD) bit in the control register with underlying functionality is not modelled.

» The limitations of the No spill (NS) DMA control register bit as noted in the section on Flow control limi-

tations below.

* No support for RX/TX of SpW interrupt codes (GR716).

« No support for SpaceWire Plug & Play viaRMAP access (GR716).

» The port loopback (Loop) bit in the control register with underlying functionality is not modelled (UT700).

20.1. Start up options

SoaceWire core start up options

- gr spwX_connect host: port
Connect GRSPW2 core X to packet server at specified server and port.

- grspwx_server port
Open a packet server for core X on specified port.

-grspw_spwireqfreq
Sets the SpaceWire input clock frequency. Combined with the clock divisor register, this determines the
startup frequency and TX frequency.

- grspw_cl kdi v val ue
Sets the reset value for the clock divisor register for all GRSPW?2 cores.

-grspw_tx_max_part_lenlen
Sets up all GRSPW?2 cores to transmit any SpaceWire packet longer than | en in data part packets with
no morethan | en bytes of data.

-grspw_endpacket [0] 1]
Enable (or disable with 0 argument) end marking data part packets. When enabled, the last data part packet
of asimulated SpaceWire packet will always be a data part packet with no data and an end marker. This
is the default unless simple mode is enabled. When disabled the last data part packet can contain both data
and an end marker. Thisis the default when simple mode is enabled.

-grspw_sinple [0] 1]
Enable “simple mode” for all GRSPW?2 cores. This can be used for backward compatibility with TSIM
2.0.44 and backwards. See the separate section on simple mode for details.

-grspw_sinple rxfreqfreq
Sets the RX frequency in MHz for all GRSPW2 coresto f r eq. This is only valid together with the -
gr spw_si npl e option.

X in the above commands is the index of the core.
20.2. Commands

GRSPW2 SpaceWire core TSM commands

grspwX_connect host : [port]
Connect GRSPW?2 core X to packet server at specified server and TCP port.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 78 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

grspwX_server port
Open a packet server for GRSPW2 core X on specified TCP port.
grspwX_dbg [f | aglall|clean|list]
Toggle specific flag, set al, clear al, or list debug flags for the given GRSPW2 core. See Section 20.3
for alist of debug flags.
grspwX_status
Print status for GRSPW2 core X.

X in the above commands is the index of the core.

20.3. Debug flags

The following debug flags and debug subcommands are available for SpaceWire interfaces. The
GAlI SLER_GRSPW * flags can be used with the grspwX_dbg command to toggle individual flags for individ-
ual SpaceWire cores and with the dbgon command to toggle individual flags for all GRSPW2 cores. The sub-
commands can be used with the grspwX_dbg command to change and list the settings of all flags for individual
SpaceWire cores.

Table 20.1. SpaceWire debug flags

Flag/subcommand Trace

GAISLER_GRSPW_ACC GRSPW accesses
GAISLER_GRSPW_RXPACKET GRSPW received packets
GAISLER_GRSPW_RXCTRL GRSPW rx protocol
GAISLER_GRSPW_TXPACKET GRSPW transmitted packets
GAISLER_GRSPW_TXCTRL GRSPW tx protocol
GAISLER_GRSPW_RMAP GRSPW RMAP accesses
GAISLER_GRSPW_RMAPPACKET GRSPW RMAP packet dumps
GAISLER_GRSPW_RMAPPACKDE GRSPW RMAP packet decoding
GAISLER_GRSPW_DMAERR GRSPW DMA errors
GAISLER_GRSPW_LINK Link changes
GAISLER_GRSPW_PART TX/RX of GRSPW data part packets
al Set all debug flags for the core

clean Set none of the debug flags for the core
list List the current setting of the debug flags for the core

20.4. SpaceWire packet server

Each SpaceWire core can be configured independently as a packet server or client using either -
gr spwX_server or-gr spwX_connect . TCP socketsare used for establishing the connections. When acting
as aserver the core can only accept a single connection.

A connection should be set up before starting simulation for the first time, and must not be broken after that.
Restarting the simulation will not tear down the connection, nor emptying any socket buffers. The socket based
interface does not support any signalling of restart of the simulation. To ensure a clean restart of simulation when
using thisinterface, restarting TSIM entirely and reconnecting socket interfacesis advisable.

The server side contains a link model that gets control information from the models at each end of the link,
determines the link state and communicates frequencies and link errorsto the two models at each ends of the link.
It also supports error injection via two error injection packet types that can be sent from a custom client. See the
the following sections for details.

For more flexibility, such as custom routing, an external packet server can be implemented using the protocol
specified in the following sections. Each core should then be connected to that server. That server would also
have to implement a link model that at least reacts to link control packets and sends out link state packets and
RX frequency packets.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 79 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
CAES 5%

ELECTRONICS
20.5. SpaceWire packet server protocol

The protocol used to communicate with the packet server is described below. The different types of packets are
defined according to the table below.

Table 20.2. Packet types

Type Value |Direction Notes

Data part 0 Both Only when in run state

Time code 1 Both Only when in run state

Link state 2 Server to client

Link control 3 Client to server Must be sent for model to reach run state
RX freguency 4 Server to client

Error injection 5 Client to server Optiona

Packet error request 6 Client to server Optional

All packets begin with a 32-bit big endian word length field which specifies the length of the rest of the packet,
including header and other fixed fields. For most packet types this length is fixed for the particular type. Apart
from the data part packet type, where data follows the header byte-wise, all fields are 32-hit big endian words if
not otherwise specified.

All packets received by the GRSPW2 model are handled sequentially, and all packets sent by the GRSPW?2 model
and the server sidelink model are supposed to be handled sequentially by the client. SpaceWire packets can be split
into multiple data parts, transferred in data part packets. Between such parts other packets such as for time codes,
link state changes, link control changes, etc., can be handled. During the simulated time span for the reception of a
data part, the receiver will not/should not handle any other packet types. Usethe- gr spw_t x_rmax_part _| en
option to set up GRSPW?2 model to split up SpaceWire packets into data parts in order for such eventsto be able
to happen during the data stream.

20.5.1. Flow control limitations

Flow control in terms of credit is not modelled between two ends of a link. A transmitter gets no notice if the
other end cannot give more credit. If the no-spill bit in the GRSPW2 core is set and an enabled receiving DMA
channel has no enabled descriptors, the data part packet will be held on the receiving side until a descriptor is
available. Due to the sequential nature of the packet model alink error, time code, etc. will not be handled at all
by the GRSPW2 model during thistime.

20.5.2. Data part packet format

A SpaceWire packet is represented by one or more data parts. A data part packet represents one such a part. For
the data parts of a multi part SpaceWire packet, only the last data part should have an EOP or EEP end marker,
i.e. the END field set to O or 1. The other parts should have no end marker, i.e. the END field set to 2. Each data
part is delivered in its entirety or not at al. A link error occurring between data parts on the other hand cuts the
SpaceWire packet short and is considered the end of that SpaceWire packet.

A data part packet is sent at the beginning of transmission of the corresponding part of the SpaceWire packet, so
that the receiver can start reacting to it as soon as the transmission starts. The GRSPW2 model by default sends
a SpaceWire packet in the form of two data part packets. The first data part packet is sent at the beginning of
transmission and contains all data but has no end marker. The second data part packet is sent when transmission
is completed and has the appropriate end marker set but contains no data. If a user model is not waiting for the
end marker packet before responding, the response could arrive before transmission is considered done by the
GRSPW2 model. Generation of separate end marker packets can be turned off using the - gr spw_endpacket

option. Splitting up SpaceWire packets into several data containing data part packets can be enabled with the -

grspw_t x_max_part _| en option.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 80 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

Packet length at offset OxO:
31 0

LEN

31.0 LEN Length of rest of packet: 4 + number of data bytesin the part

Header at offset Ox4:

31 16 15 87 54 210
R IPID ‘TYPE‘ R |END‘

31:.16 R Reserved for future use. Must be set to O.

15:8 IPID IP core ID: O for SpaceWire

75 TYPE Packet type: O for data part packets

4:2 R Reserved for future use. Must be set to 0.

1.0 END End marker: 0: Normal End of Packet, 1: Error End of Packet, 2: No end marker

Offset 0x8: The data bytes of the part starts here
Figure 20.1. SpaceWire data part packet
20.5.3. Time code packet format

Packet length at offset Ox0:
31 0

LEN

31.0 LEN Length of rest of packet: 8

Header at offset Ox4:

31 16 15 8 7 5 4 0
R IPID ‘ TYPE ‘ R

31:16 R Reserved for future use. Must be set to O.

15:8 IPID IP core ID: O for SpaceWire
75 TYPE Packet type: 1 for time code packets

4.0 R Reserved for future use. Must be set to 0.

Payload at offset Ox8:

31 8 7 6 5 0
R | cr | CN

31:8 R Reserved for future use. Must be set to 0.

7.6 CT Time control flags
5.0 CN Value of time counter

Figure 20.2. SpaceWire time code packet

20.5.4. Link state packet format

Link state packets are sent out by the server side link model when the link state changes. The only states currently
simulated are Er r or Reset and Run. A link state packet with state Er r or Reset can have the ERRORfield
set to an error seen at the receiver. Other link state packets has only None in the ERROR field.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 81 Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

Packet length at offset OxO:

31 0

LEN

31.0 LEN Length of rest of packet: 4

Header at offset Ox4:

31 1918 1615 87 5432 0
R ‘ERROR‘ IPID ‘TYPE‘ R \ LS \

31.19 R Reserved for future use. Must be set to O.

18:16 ERROR Link error: 0: None, 1. Disconnect, 2: Parity, 3: Escape, 4:Credit

15:8 IPID IP core ID: O for SpaceWire

7.5 TYPE Packet type: 2 for link state packets

4:3 R Reserved for future use. Must be set to 0.

2.0 LS Link State: O: Error reset, 1: Error wait, 2: Ready, 3: Started, 4: Connecting, 5: Run

Figure 20.3. SpaceWire link state packet

20.5.5. Link control packet format

A link control packet must be sent from a client to the server side link model to inform if that side of thelink is
in start mode, autostart mode, and/or hasthe link disabled. In addition, the control packet contains information on
the startup frequency and the TX frequency that will be used once run state is reached. A new link control packet
should be sent from a client any time any of these parameters change.

If the startup frequencies of the two ends differ by more than afactor 1.1/0.9, the link model will reach run state.
This limit is chosen based on the limits on timeout periods in the SpaceWire standard that must be within 10%
up or down from nominal frequency. So even though the startup frequency should be 10 MHz, run state can be
reached if startup frequencies are close enough.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 82 Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

Packet length at offset OxO:
31 0

LEN

31.0 LEN Length of rest of packet: 12

Header at offset Ox4:

31 16 15 87 543210
R IPID \ TYPE \ R ‘AS|LS‘LD‘

31:.16 R Reserved for future use. Must be set to O.

15:8 IPID IP core ID: O for SpaceWire
75 TYPE Packet type: 3 for link control packets

4:3 R Reserved for future use. Must be set to 0.
2 AS Link autostart.

1 LS Link start.

0 LD Link disable.

Startup frequency in MHz at offset 0x8:
31 0

SFREQ

31.0 SFREQ Startup frequency in MHz, big endian |EEE-754 32-bit float
TX frequency in MHz at offset Oxc:
31 0

TFREQ

31.0 TFREQ TX frequency in MHz, big endian in IEEE-754 32-bit float

Figure 20.4. SpaceWire link control packet

20.5.6. RX frequency packet format

The server side link model sends out this packet type to inform the client of with what frequency the other side

transmits with when in run state. A new packet of this type is sent any time the transmitter on the other side
changesits TX frequency.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 83 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

Packet length at offset OxO:
31 0

LEN

31.0 LEN Length of rest of packet: 8

Header at offset Ox4:

31 16 15 8 7 5 4 0
R IPID | TYPE | R

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: O for SpaceWire
75 TYPE Packet type: 4 for rx frequency packets
4.0 R Reserved for future use. Must be set to 0.

RX freguency in MHz at offset Ox8:
31 0

RFREQ

31.0 RFREQ RX frequency in MHz, big endian IEEE-754 32-hit float
Figure 20.5. SpaceWire rx frequency packet
20.5.7. Link error injection packet format

A client can send a packet of this kind to the server side link model to request that a link error will occur. The
error specified isthelink error that is seen at the targeted end. The OE bit determines which end of the link isthe
targeted end, i.e. will see the error.

If theOEbitisset to 1, theerror will be seen at the receiver of the simulation model on the other end. Thesimulation
model on the client side will see a disconnect error viaalink state packet. In order for this error to happen during
reception of a SpaceWire packet at the other end, the client can sent adata part packet with no end marker followed
by alink error injection packet.

If the OE bit is set to O, the error will be seen at the receiver on the client end. The simulation model! at the client
end will seethe requested error viaalink state packet. The simulation model at the other end will see adisconnect
error. Note that due to the nature of the model, this cannot in general be relied upon to inject an error during the
reception of a SpaceWire packet, even if split up in multiple data parts. Thelink state packet will not be sent by the
server side link model until al previous packets have been handled, and the client should handle all other packets
gueued up before that link state packet can be handled. To inject alink error during the reception of a SpaceWire
packet at the client side, the packet error request packet should be used instead.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 84 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

Packet length at offset OxO:

31 0

LEN

31.0 LEN Length of rest of packet: 4

Header at offset Ox4:

31 21 20 19 18 16 15 8 7 5 4 0
R ‘OE‘ R \ ERROR \ IPID \ TYPE \ R

31:121 R Reserved for future use. Must be set to 0.

20 OE Other end: 1: other end gets the error, 0: my end gets error

19 R Reserved for future use. Must be set to 0.

18:16 ERROR Link error: 1: Disconnect, 2: Parity, 3: Escape, 4:Credit
15:8 IPID IP core ID: O for SpaceWire

75 TYPE Packet type: 5 for link error injection packets

4.0 R Reserved for future use. Must be set to 0.

Figure 20.6. SpaceWire link error injection packet

20.5.8. Packet error request packet format

A client can send a packet of this kind to the server side link model to request that alink error will occur during
reception of a certain data packet by the client. The error specified is the link error that is seen, via alink state
packet, by the client as aresult. The other side will see adisconnect error. A 64-bit packet number, counting from
0, indicates during which SpaceWire packet sent from the other sideto the client thelink error should happen. Note
that this number is indexing SpaceWire packets, not individual data part packets, and does not take SpaceWire
packets sent from the client to the server side into account in the numbering. There can only be one outstanding
packet error request per targeted GRSPW2 core at atime.

The grspwX_status command can be issued for the targeted GRSPW?2 core to see how many SpaceWire packets
have currently been sent by that core. Thisincludes started but aborted SpaceWire packets, dueto link error, core
reset or active aborting using the Abort TX (AT) bit in the DMA control register of the GRSPW?2 core.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 85 Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

Packet length at offset OxO:
31 0

LEN

31.0 LEN Length of rest of packet: 16

Header at offset Ox4:

31 1918 1615 87 5 4 0
R \ ERROR \ IPID \ TYPE \ R

31.19 R Reserved for future use. Must be set to O.

18:16 ERROR Link error: 1: Disconnect, 2: Parity, 3: Escape, 4:Credit
15:8 IPID IP core ID: O for SpaceWire

7.5 TYPE Packet type: 6 for packet error request packets

4.0 R Reserved for future use. Must be set to 0.

Packet number to request error for, most significant word at offset 0x8:

31 0

MSW

31.0 MSW Bits 63:32 of unsigned 64-bit big endian integer
Packet number to request error for, least significant word at offset Oxc:

31 0

LSW

31.0 LSW Bits31:0 of unsigned 64-bit big endian integer
Reserved field at offset 0x10:
31 0

R

31.0 R Reserved for future use. Must be set to 0.

Figure 20.7. SpaceWire packet error request packet

20.6. Simple Mode

For backwards compatibility with TSIM 2.0.44 and older, the GRSPW?2 models can be set up in “simple mode”
with the - gr spw_si npl e option. This makes the following changes to the simulation model for all GRSPW?2
COres:

e The only supported packet types are data part packets and time code packets. The model sends out no other
packet types and accepts no other packet types.

e In simple mode a SpaceWire packet is by default sent as a single data part packet with an end mark-
er. Generation of separate end packets can be enabled with the - gr spw_endpacket option. Simple
mode does support al kinds of data part packets. However, if one needs to be compatible with the old-
er protocol, each data part packet should contain a full SpaceWire packet with an end marker and the -
grspw_t x_max_part _| en option should not be used.

e Thelink state that a GRSPW?2 core perceivesis solely determined by its own link control setting. The other
end isassumed to try to start thelink. In other words, run state is achieved once the GRSPW2 is set to start or
autostart without having link disable set. Moreover, startup frequencies are ignored and run stateis achieved
without any delay.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 86 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

* TheRX frequency isdetermined primarily by the- gr spw_si npl e_r xf r eq option. If that isnot used, the
RX frequency istaken by the- gr spw_spw r eq option. If none of those options are set the CPU frequency
isused. No cases take any clock divisors info account. The TX frequency is determined in the usual way as
when not in simple mode, which includes taking the clock divisor register into account.

Document: TSIM3-UM

Cobham Gaisler AB
December 2021, Version 3.1.4 87

Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

CRES 5555
ELECTRONICS
21. SPI interface

21.1. Connecting a user SPI model

Toregister aSPI user module, call t si m regi ster _spi _nodul e(spi _i nput, index) fromaninput
modulesinit function. Herespi _i nput isapointer to aspi_input struct, andi ndex istheindex of the SPI core
to register on. See Chapter 5 for further details on how to connect the user model.

21.2. SPIl bus model API

Thestructure st ruct spi _i nput modelsthe SPI bus. It is defined as:

/* Spi input provider */

struct spi_input {
int (*spishift)(struct spi_input *ctrl, uint32 select, uint32 bitcnt,
uint32 out, uint32 *in);
void *priv;

s

The spishift callback should be set by the SPI user modul e at startup. It iscalled by the SPI core whenever it shifts
aword through the SPI bus.

Table 21.1. spishift callback parameters

Parameter Description
select Slave select register bits when such aregister is present. Zero otherwise.
bitent Number of bits per word (as per the MODE register) for actual shifts. If bitcntis-1 then

the operation is not an actual shift and the call ismerely to indicate achangeinthe dlave
select register (when such aregister is present).

out Shift out (tx) data
in Shiftin (rx) data

Thepr i v parameter is apointer to private data and be set freely by the user.
The return value of spishift isignored.

Seetheexanpl es/ i nput directory for an example module implementation. Seetheexanpl es/ t est direc-
tory for an example test program.

21.3. Commands

SPI Commands

spiX_dbg [f | aglall|clean|list]
Toggle specific flag, set al, clear dl, or list debug flags for the given SPI core. See Section 21.4 for alist
of debug flags.

21.4. Debug flags

Thefollowing debug flags and debug subcommands are available for SPI interfaces. The GAI SLER_SPI _* flags
can be used with the spiX_dbg command to toggle individual flags for individual SPI cores and with the dbgon
command to toggleindividual flagsfor all SPI cores. The subcommands can be used with the spiX_dbg command
to change and list the settings of all flags for individual SPI cores.

Table 21.2. SPI debug flags

Flag/subcommand Trace

GAISLER_SPI_ACC SPI register accesses

GAISLER_SPI_IRQ SPI interrupts

al Set all SPI debug flags for the core

clean Set none of the SPI debug flags for the core

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 88 Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

Flag/subcommand Trace

list List the current setting of the debug flags for the core
Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 89 Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

CAES: .
22. SPIM interface
22.1. Connecting a user SPIM model to TSIM

To register auser module on aSPIM controller call t si m r egi st er _spi m nodul e(spi m subsystem
i ndex) from an input modulesinit function. Here spi m subsyst emis a pointer to a spim_subsystem struct
and i ndex istheindex of the SPIM controller to register on. See Chapter 5 for further details on how to connect
theuser model. Thest ruct spi m subsyst emisdefinedinspi m.i nput. h as

struct spimsubsystem {
struct spiminput *inp;
b

22.2. SPIM model API

The structure st ruct spi m_i nput modelsthe SPIM bus. It is defined as:

/* Spiminput provider */

struct spiminput {
int (*spishift)(struct spiminput * ctrl, unsigned int select,
unsigned int bitcnt, unsigned int timng_scaler,
unsigned int out, unsigned int *in);
void (*spiminit)(struct spiminterface *spinif);
void *priv;

The spi shi ft calback should be set by the SPIM user module at startup. It is called by TSIM3 whenever a
new byte iswritten to the TX register.

Table 22.1. spishift callback parameters

Parameter Description

select Slave select bits

bitent Number of bits the user model will receive. Thiswill always be set to 8.
timing_scaler The relation between the SPIM core SCK and the system clk.

out Shift out (tx) data

in Shift in (rx) data

Thepri v isapointer to private data and can be set freely by the user. Thespi m i ni t iscaled at startup and
provides the user model with a SPIM interface struct. The SPIM interface struct is defined as:

struct spiminterface {
int (*spimuget_flashb)(unsigned int index, void *data);

b

Table 22.2. spim _get_flashb parameters

Parameter Description
index Index of the SPIM controller to access.
data Pointer toaspi m f | ash_dat a struct to befilled in.

The spimif struct allows access to TSIM3s internal SPIM memory representation with spi m get _fl ashb.
i ndex is the index of the SPIM controller to access. The dat a parameter should be a pointer to a
spi m fl ash_dat a struct which will be updated with the necessary data to access the internal memory repre-
sentation. Thespi m fl ash_dat a struct is defined as:

struct spimflash_data {

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 20 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

unsi gned int flash_size;
unsi gned char *flashb;
unsi gned int flash_nask;

Table 22.3. struct spim flash _data members

PIONEERING
ADVANCED
ELECTRONICS

Parameter Description

flash size Size of the flash memory.
flashb Pointer to the flash memory.
flash_mask Flash memory mask.

See the exanpl es/ i nput directory for an example module implementation. The example demonstrates how
to set up abasic model, get accessto TSIM'sinternal memory representation and updates the RX register. Seethe
exanpl es/ t est directory for an example test program.

Document: TSIM3-UM

December 2021, Version 3.1.4

91

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

23. AT697 PCl interface

TSIM models the PCI interfacein AT697, in TSIM called “ESAPCI”. For core details and register specification
please see the manual for the chip.

The PCI model will process all accesses to memory region 0xa0000000 - 0xfO000000 (AHB slave mode) and the
APB registers starting at 0x80000100. The AT697 PCI model implements all registers of the PCI core. It will in
turn load the PCI user modules that will implement the devices. The AT697 model is supposed to be the PCI host.
Both PCI Initiator mode and PCI Target mode are supported. Theinterfaceto the PCI user modulesisimplemented
on bus level. Two callbacks model the PCI bus.

23.1. Commands

ESAPCI TSM Commands
esapci0_dbg

Toggle specific flag, set al, clear al, or list debug flags for the given PCI core. See Section 23.2 for a
list of debug flags.

23.2. Debug flags

Thefollowing debug flags are available for the ESAPCI interface. Use them in conjunction with the esapciO_dbg
command to enable different levels of debug information.

Table 23.1. ESAPCI interface debug flags

ESAPCI_REGACC Trace accesses to the PCI registers

ESAPCI_ACC Trace accesses to the PCI AHB-slave address space
ESAPCI_DMA Trace DMA

ESAPCI_IRQ Trace PCI IRQ

23.3. Registers

Table 23.2 contains alist of implemented and not implemented fields of the AT697F PCl Registers. Only register
fields that are relevant for the emulated PCI module isimplemented.

Table 23.2. PCI register support

Register Implemented Not implemented
PCIID1 deviceid, vendor id
PCISC stat 13, stat 12, stat 11, stat 7, stat 6 stat 5, | stat15 statl4 statl0 9 stat8 com10 com9 com8
stat 4, com2, com 1, coml1 com7 com6 com5 com4 com3
PCIID2 class code, revision id
PCIBHDLC [bist, header type, latency timer, cache
size] config-space only
PCIMBAR1 base address, pref, type, msi
PCIMBAR2 base address, pref, type, msi
PCIIOBAR3 i0 base address, ms
PCISID subsystem id, svi
PCICP pointer
PCILI [max_lat min_gnt int_pin int_line] con-
fig-space-only
PCIRT [retry trdy] config-space-only
PCICW ben
PCISA start address
PCIIW ben

Document: TSIM3-UM
December 2021, Version 3.1.4 92

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

Register Implemented Not implemented
PCIDMA wdcnt, com b2b
PCIIS act, xff, xfe, rfe dmeas, ss
PCIIC mod, commsb dwr, dww, perr
PCITPA tpal, tpa2
PCITSC errmem, xff, xfe, rfe, tms
PCIITE dmaer,imier, tier cmfer, imper, tbeer, tper, syser
PCIITP dmaer,imier, tier cmfer, imper, tbeer, tper, syser
PCIITF dmaer,imier, tier, cmfer, imper, tbeer,
tper, syser
PCID dat
PCIBE dat
PCIDMAA addr
PCIA po, p1, p2, p3

23.4. ESAPCI bus model API

To register a ESAPCI module call tsi m regi ster _esa _pci _nodul e(struct esa pci _i nput
*inp, int index); fromaninput modulesinitfunction. Herei np isapointer toaesa pci_input struct and
i ndex istheindex of the ESAPCI controller to register on. See Chapter 5 for further details on how to connect
theuser model. Thest ruct esa_pci _i nput isdefinedinesa_pci _i nput. h as:

struct esa_pci_input {
int (*acc)(struct esa_pci_input *ctrl,

int cnd,
unsi gned int addr,
unsi gned int wsize,
unsi gned int *data,
unsi gned int *abort,
unsi gned int *ws);

void (*esapci_init)(struct esa_pci_interface *esapciif);

}

The acc callback should be set by the PCI user module at startup. It is called by the the model whenever the PCI
core reads/writes as a PCl bus master.

Table 23.3. acc callback parameters

Parameter Description

cmd Command to execute, see Section 23.4.1 details.

addr PCI address.

wsize 0: 8-bit access 1: 16-bit access, 2: 32-bit access. Isalways 2 for read accesses.

data Data buffer. The user module should return the read datain * dat a for read
commands or write the datain * dat a for write commands.

abort Set *abort to 1 to generate target abort, or O otherwise.

ws Set * ws to the number of PCI clocksit takes to complete the transaction.

The return value of acc determines if the transaction terminates successfully (0 or ESA_PCI_ACC_OK) or with
master abort (1 or ESA_PCI_ACC_MASTER_ABORT).

The esapci_init callback should be set by the PCI user module at startup. It iscalled by TSIM at simulator startup.

Table 23.4. esapci_init callback parameters

Parameter Description

esapciif Pointertoast ruct esa_pci _i nt er f ace. Should be saved by themod-
ule to interface with TSIM's ESAPCI model.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 93 Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
CAES &%
ELECTRONICS
Thestruct esa_pci _interfaceisdefinedinesapci _i nput. has

struct esa_pci_interface {
int (*target_acc)(int index,
int cmd,
unsi gned int addr,
unsi gned int wsize,
unsi gned int *data,
unsi gned int *nexc);

s

The callback target_acc isinstaled by the TSIM. The PCI user dynamic library can call this function to initiate
an access to the PCI target.

Table 23.5. target_acc parameters

Parameter Description

index Index of ESAPCI core of the system. This should be 0.

cmd Command to execute, see Section 23.4.1 for details. Configuration cyclesare
not supported. ESAPCI is supposed to be the host.

addr PCI address. Should always be word aligned for read accesses.

wsize 0: 8-hit access 1: 16-bit access, 2: 32-bit access. Should always be 2 for read
accesses.

data Data buffer. The read datais returned in * dat a for read commands or the
datain * dat a iswritten for write commands.

mexc The model sets*mexc to 0if accessissuccessful, or 1 in case of target abort.

If a supported command hits MEMBARO, MEMBARL or IOBAR, target_acc() will return 0. For unsupported
commands or other areas, it will return 1.

23.4.1. PCl command table

Table 23.6. PCl command table

Command Description

IRQ acknowledge
Specia cycle

1/0 Read

I/O Write
Reserved

Reserved
Memory Read
Memory Write

Reserved

OO N|oO|U| B~ WIN| PO

Reserved

Configuration Read
Configuration Write

Memory Read Multiple

Dual Address Cycle

Memory Read Line

15 Memory Write And Invalidate

=
o

N
-

[N
N

[N
w

N
EN

23.5. Examples

See the PCI filesin exanpl es/ i nput for header files and an example PCI user module. See example usage
inexanpl es/test.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 94 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

24. TPS VxWorks 6.x AHB Module

24.1. Overview

The TPS VxWorks Module is aloadable module that simplifies communication between TSIM and the VxWorks
Workbench for VxWorks 6.7 and 6.9. It provides a virtual core that acts similar to a basic Ethernet controller,
but does not require a packet server.

The module is only useful in conjunction with VxWorks 6.7 and 6.9. See also Section 5.3.4 on some limitations
of some features when using this module.

Table 24.1. Files delivered with the TPS VxWorks TS M module

File Description
tpg/linux/tps-vxworks.so TPS VxWorks module for Linux
tps/win64/tps-vxworks.dll TPS VxWorks module for Windows

24.2. Loading the module

The module is loaded using the TSIM3 option - nod. It can be used in conjunction with other modules, such as
the UT699 and GR712RC modules.

On Linux (together with the UT699 design):

tsimleon3 -ut699 -nod ./tps/linux/tps-vxworks.so

On Windows (together with the GR712RC design):

tsimleon3 -gr712rc -nod ./tps/w n64/tps-vxworks. dl|
24.3. Configuration

By default the module uses IRQ 5 and UDP port 0x4321. This can be changed by using the following command
line arguments:
-tps_vxworks irqirq
UsesIRQi r q instead of the default.

-tps vxworks port port
Uses UDP port por t instead of the defaullt.

Use the following command line to make the TPS module use IRQ 10 and port 5000 on Linux together with the
UT699 design:

tsimleon3 -ut699 -nod ./tps/linux/tps-vxworks.so
-t ps_vxworks_port 5000 -tps_vxworks_irqg 10

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 95 Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

25. Support
For support contact the support team at support@gaiser.com.

When contacting support, pleaseidentify yourself in full, including company affiliation and site name and address.
Please identify exactly what product that is used, specifying if it is an IP core (with full name of the library
distribution archive file), component, software version, compiler version, operating system version, debug tool
version, simulator tool version, board version, etc.

The support serviceisonly for paying customers with a support contract.

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 926 Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

PIONEERING
ADVANCED
ELECTRONICS

Cobham Gaisler AB
Kungsgatan 12

411 19 Gothenburg
Sweden
www.caes.com/Gaisler
sales@gaisler.com

T: +46 31 7758650

F: +46 31 421407

Cobham Gaisler AB, reserves the right to make changes to any products and services described herein at any time without notice.
Consult the company or an authorized sales representative to verify that the information in this document is current before using
this product. The company does not assume any responsibility or liability arising out of the application or use of any product or
service described herein, except as expressly agreed to in writing by the company; nor does the purchase, lease, or use of a
product or service from the company convey a license under any patent rights, copyrights, trademark rights, or any other of the
intellectual rights of the company or of third parties. All information is provided as is. There is no warranty that it is correct or
suitable for any purpose, neither implicit nor explicit.

Copyright © 2021 Cobham Gaisler AB

Document: TSIM3-UM Cobham Gaisler AB
December 2021, Version 3.1.4 97 Kungsgatan 12 | SE-41119 Gothenburg | Sweden
+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler
www.caes.com/Gaisler

	
	Table of Contents
	1. Introduction
	1.1. General
	1.2. Staged releasing
	1.3. Supported host platforms and system requirements
	1.4. Obtaining TSIM
	1.5. License
	1.6. Evaluation version
	1.7. Problem reports

	2. Installation
	2.1. General
	2.2. License key installation
	1. Node-locked keys (purple USB key)
	2. Floating keys (red USB key)
	3. Sentinel LDK Runtime

	3. Operation
	3.1. Overview
	3.2. Starting TSIM
	3.3. Standalone mode commands
	3.3.1. General commands
	3.3.2. Time specification for commands
	3.3.3. Tcl commands
	3.3.4. Tcl variables
	3.3.5. Core specific commands

	3.4. Return values for simulation stop reasons
	3.5. Symbolic debug information
	3.6. Breakpoints and watchpoints
	3.7. Profiling
	3.8. Performance
	3.9. Code coverage
	3.10. Check-pointing
	3.11. Backtrace
	3.12. Connecting to GDB
	3.13. Thread support
	3.13.1. TSIM thread commands
	3.13.2. GDB thread commands

	3.14. Synchronising TSIM time to external time
	3.15. Debugging particular device types and devices

	4. Emulation characteristics
	4.1. Common behaviour
	4.1.1. Timing
	4.1.2. UARTs
	4.1.2.1. APBUART model (LEON3/4 only)
	4.1.2.2. UART model (LEON2 only)

	4.1.3. Floating point unit (FPU)
	4.1.4. Delayed write to special registers
	4.1.5. Peripherals registers
	4.1.6. Idle-loop optimisation
	4.1.7. Custom instruction emulation
	4.1.8. Chip-specific errata

	4.2. LEON2 specific emulation
	4.2.1. Processor
	4.2.2. Cache memories
	4.2.3. Interrupt controller
	4.2.4. Power-down mode
	4.2.5. Memory emulation
	4.2.6. SPARC V8 MUL/DIV and V8E MAC instructions
	4.2.7. FPU emulation
	4.2.8. DSU and hardware breakpoints

	4.3. LEON3 specific emulation
	4.3.1. General
	4.3.2. Processor
	4.3.3. Cache memories
	4.3.4. Power-down mode
	4.3.5. Interrupt controller
	4.3.6. Memory emulation
	4.3.7. CASA instruction
	4.3.8. SPARC V8 MUL/DIV and V8E MAC instructions
	4.3.9. FPU emulation
	4.3.10. DSU and hardware breakpoints
	4.3.11. AHB status registers
	4.3.12. GPTIMER emulation
	4.3.13. GRTIMER emulation

	4.4. LEON4 specific emulation
	4.4.1. Processor
	4.4.2. L1 Cache memories
	4.4.3. L2 Cache memory
	4.4.3.1. Limitations of the L2 cache model

	4.4.4. Power-down mode
	4.4.5. Interrupt controller
	4.4.6. Memory emulation
	4.4.7. IOMMU
	4.4.8. CASA instruction
	4.4.9. SPARC V8 MUL/DIV and V8E MAC instructions
	4.4.10. FPU emulation
	4.4.11. DSU and hardware breakpoints
	4.4.12. AHB status registers
	4.4.13. GPTIMER emulation

	5. Loadable modules
	5.1. General module interface
	5.1.1. Loading modules
	5.1.2. General module API
	5.1.3. Connecting specific modules
	5.1.4. General module examples

	5.2. TSIM exported emulation interfaces
	5.2.1. simif structure
	5.2.2. ioif structure
	5.2.3. procif structure

	5.3. LEON AHB emulation interface
	5.3.1. Structure to be provided by AHB module
	5.3.1.1. Elements initialised by module
	5.3.1.2. Elements initialised by TSIM
	5.3.1.3. Callbacks for AHB module AHB slaves

	5.3.2. Big versus little endianess
	5.3.3. AHB module example
	5.3.4. AHB module limitations

	5.4. I/O module interface
	5.5. Adding startup options
	5.6. Adding user commands
	5.7. Check-pointing module state
	5.8. Loadable modules distributed with TSIM

	6. TSIM library (TLIB)
	6.1. Introduction
	6.2. Function interface
	6.3. Builtin and external modules and user models
	6.4. Linking a TLIB application
	6.5. Files and Examples

	7. GR712RC emulation
	7.1. Clock Gating Unit, CANMUX and GRGPREG

	8. GR716 emulation
	8.1. GR716 Boot ROM
	8.2. Dummy registers
	8.3. DAC

	9. GR740 emulation
	9.1. Dummy registers

	10. UT699 emulation
	11. UT699E emulation
	12. UT700 emulation
	13. AT697 emulation
	14. GRCAN
	14.1. Start up options
	14.2. Commands
	14.3. Debug flags
	14.4. CAN interface
	14.4.1. Connecting a user CAN model
	14.4.2. CAN model API
	14.4.3. Error injections
	14.4.4. Commands
	14.4.5. Debug status
	14.4.6. Current limitations

	15. CAN_OC interface
	15.1. Start up options
	15.2. Commands
	15.3. Debug flags
	15.4. Packet server
	15.5. CAN packet server protocol
	15.5.1. CAN message packet format
	15.5.2. Error counter packet format
	15.5.3. Acknowledge packet format
	15.5.4. Acknowledge packet format

	16. 10/100 Mbps Ethernet Media Access Controller interface
	16.1. Start up options
	16.2. Commands
	16.3. Debug flags
	16.4. Ethernet packet server
	16.5. Ethernet packet server protocol

	17. GPIO interface
	17.1. Connecting a user GPIO model
	17.2. GPIO model API
	17.3. Commands
	17.4. Debug flags

	18. GRPCI, PCI initiator/target interface
	18.1. Commands
	18.2. Debug flags
	18.3. PCI bus model API
	18.3.1. PCI command table

	18.4. Examples

	19. GRSPW1, SpaceWire interface with RMAP support
	19.1. Start up options
	19.2. Commands
	19.3. Debug flags
	19.4. SpaceWire packet server
	19.5. SpaceWire packet server protocol
	19.5.1. Data packet format
	19.5.2. Time code packet format

	20. GRSPW2, SpaceWire interface with RMAP support
	20.1. Start up options
	20.2. Commands
	20.3. Debug flags
	20.4. SpaceWire packet server
	20.5. SpaceWire packet server protocol
	20.5.1. Flow control limitations
	20.5.2. Data part packet format
	20.5.3. Time code packet format
	20.5.4. Link state packet format
	20.5.5. Link control packet format
	20.5.6. RX frequency packet format
	20.5.7. Link error injection packet format
	20.5.8. Packet error request packet format

	20.6. Simple Mode

	21. SPI interface
	21.1. Connecting a user SPI model
	21.2. SPI bus model API
	21.3. Commands
	21.4. Debug flags

	22. SPIM interface
	22.1. Connecting a user SPIM model to TSIM
	22.2. SPIM model API

	23. AT697 PCI interface
	23.1. Commands
	23.2. Debug flags
	23.3. Registers
	23.4. ESAPCI bus model API
	23.4.1. PCI command table

	23.5. Examples

	24. TPS VxWorks 6.x AHB Module
	24.1. Overview
	24.2. Loading the module
	24.3. Configuration

	25. Support

