
A generic SPARC architecture simulator capable of em-
ulating LEON-based computer systems

TSIM3

TSIM3 Simulator User's Manual

U
ser M

anual

Document: TSIM3-UM
July 2021, Version 3.1.2

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 2

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

Table of Contents
1. Introduction .. 6

1.1. General .. 6
1.2. Staged releasing .. 6
1.3. Supported host platforms and system requirements .. 6
1.4. Obtaining TSIM .. 6
1.5. License .. 6
1.6. Evaluation version ... 7
1.7. Problem reports ... 7

2. Installation .. 8
2.1. General .. 8
2.2. License key installation .. 8

3. Operation .. 9
3.1. Overview ... 9
3.2. Starting TSIM ... 9
3.3. Standalone mode commands .. 13

3.3.1. General commands .. 14
3.3.2. Time specification for commands ... 20
3.3.3. Tcl commands .. 20
3.3.4. Tcl variables ... 20
3.3.5. Core specific commands ... 20

3.4. Return values for simulation stop reasons ... 22
3.5. Symbolic debug information .. 22
3.6. Breakpoints and watchpoints .. 23
3.7. Profiling ... 23
3.8. Performance .. 24
3.9. Code coverage ... 24
3.10. Check-pointing .. 26
3.11. Backtrace .. 26
3.12. Connecting to GDB .. 26
3.13. Thread support .. 27

3.13.1. TSIM thread commands .. 27
3.13.2. GDB thread commands ... 28

3.14. Synchronising TSIM time to external time .. 30
3.15. Debugging particular device types and devices .. 30

4. Emulation characteristics ... 31
4.1. Common behaviour .. 31

4.1.1. Timing .. 31
4.1.2. UARTs .. 31
4.1.3. Floating point unit (FPU) .. 32
4.1.4. Delayed write to special registers ... 32
4.1.5. Peripherals registers ... 32
4.1.6. Idle-loop optimisation .. 32
4.1.7. Custom instruction emulation .. 32
4.1.8. Chip-specific errata .. 33

4.2. LEON2 specific emulation .. 33
4.2.1. Processor ... 33
4.2.2. Cache memories .. 33
4.2.3. Interrupt controller ... 33
4.2.4. Power-down mode ... 33
4.2.5. Memory emulation .. 33
4.2.6. SPARC V8 MUL/DIV and V8E MAC instructions .. 34
4.2.7. FPU emulation .. 34
4.2.8. DSU and hardware breakpoints .. 34

4.3. LEON3 specific emulation .. 34
4.3.1. General .. 34
4.3.2. Processor ... 34
4.3.3. Cache memories .. 34
4.3.4. Power-down mode ... 34

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 3

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

4.3.5. Interrupt controller ... 34
4.3.6. Memory emulation .. 34
4.3.7. CASA instruction .. 35
4.3.8. SPARC V8 MUL/DIV and V8E MAC instructions .. 35
4.3.9. FPU emulation .. 35
4.3.10. DSU and hardware breakpoints .. 35
4.3.11. AHB status registers ... 35
4.3.12. GPTIMER emulation .. 35
4.3.13. GRTIMER emulation ... 35

4.4. LEON4 specific emulation .. 35
4.4.1. Processor ... 35
4.4.2. L1 Cache memories ... 36
4.4.3. L2 Cache memory ... 36
4.4.4. Power-down mode ... 36
4.4.5. Interrupt controller ... 36
4.4.6. Memory emulation .. 36
4.4.7. IOMMU .. 37
4.4.8. CASA instruction .. 37
4.4.9. SPARC V8 MUL/DIV and V8E MAC instructions .. 37
4.4.10. FPU emulation .. 37
4.4.11. DSU and hardware breakpoints .. 37
4.4.12. AHB status registers ... 37
4.4.13. GPTIMER emulation .. 37

5. Loadable modules .. 38
5.1. General module interface .. 38

5.1.1. Loading modules ... 38
5.1.2. General module API .. 38
5.1.3. Connecting specific modules ... 39
5.1.4. General module examples ... 39

5.2. TSIM exported emulation interfaces .. 39
5.2.1. simif structure ... 39
5.2.2. ioif structure ... 41
5.2.3. procif structure .. 41

5.3. LEON AHB emulation interface ... 42
5.3.1. Structure to be provided by AHB module .. 42
5.3.2. Big versus little endianess ... 46
5.3.3. AHB module example .. 46
5.3.4. AHB module limitations ... 46

5.4. I/O module interface .. 46
5.5. Adding startup options .. 47
5.6. Adding user commands ... 47
5.7. Loadable modules distributed with TSIM ... 48

6. TSIM library (TLIB) .. 49
6.1. Introduction .. 49
6.2. Function interface .. 49
6.3. Builtin and external modules and user models ... 51
6.4. Linking a TLIB application ... 51

7. Cobham Gaisler GR712RC emulation .. 52
7.1. Clock Gating Unit, CANMUX and GRGPREG ... 52

8. Cobham Gaisler GR716 emulation .. 53
8.1. GR716 Boot ROM ... 53
8.2. Dummy registers ... 54
8.3. DAC .. 54

9. Cobham Gaisler GR740 emulation .. 55
9.1. Dummy registers ... 55

10. CAES UT699 emulation .. 56
11. CAES UT699E emulation .. 57
12. CAES UT700 emulation .. 58
13. Atmel AT697 emulation .. 59
14. GRCAN .. 60

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 4

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

14.1. Start up options ... 60
14.2. Commands .. 60
14.3. Debug flags ... 60
14.4. CAN interface ... 60

14.4.1. Connecting a user CAN model ... 60
14.4.2. CAN model API .. 61
14.4.3. Error injections ... 63
14.4.4. Commands ... 63
14.4.5. Debug status ... 63
14.4.6. Current limitations ... 63

15. CAN_OC interface ... 64
15.1. Start up options ... 64
15.2. Commands .. 64
15.3. Debug flags ... 64
15.4. Packet server ... 64
15.5. CAN packet server protocol ... 65

15.5.1. CAN message packet format .. 65
15.5.2. Error counter packet format ... 65
15.5.3. Acknowledge packet format .. 66
15.5.4. Acknowledge packet format .. 66

16. 10/100 Mbps Ethernet Media Access Controller interface .. 67
16.1. Start up options ... 67
16.2. Commands .. 67
16.3. Debug flags ... 67
16.4. Ethernet packet server ... 68
16.5. Ethernet packet server protocol ... 68

17. GPIO interface ... 69
17.1. Connecting a user GPIO model .. 69
17.2. GPIO model API ... 69
17.3. Commands .. 69
17.4. Debug flags ... 69

18. GRPCI, PCI initiator/target interface .. 71
18.1. Commands .. 71
18.2. Debug flags ... 71
18.3. PCI bus model API .. 71

18.3.1. PCI command table .. 72
18.4. Examples .. 73

19. GRSPW1, SpaceWire interface with RMAP support ... 74
19.1. Start up options ... 74
19.2. Commands .. 74
19.3. Debug flags ... 74
19.4. SpaceWire packet server ... 74
19.5. SpaceWire packet server protocol ... 75

19.5.1. Data packet format ... 75
19.5.2. Time code packet format .. 76

20. GRSPW2, SpaceWire interface with RMAP support ... 77
20.1. Start up options ... 77
20.2. Commands .. 77
20.3. Debug flags ... 78
20.4. SpaceWire packet server ... 78
20.5. SpaceWire packet server protocol ... 79

20.5.1. Flow control limitations .. 79
20.5.2. Data part packet format .. 79
20.5.3. Time code packet format .. 80
20.5.4. Link state packet format ... 80
20.5.5. Link control packet format .. 81
20.5.6. RX frequency packet format .. 82
20.5.7. Link error injection packet format ... 83
20.5.8. Packet error request packet format .. 84

20.6. Simple Mode ... 85

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 5

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

21. SPI interface .. 87
21.1. Connecting a user SPI model ... 87
21.2. SPI bus model API ... 87
21.3. Commands .. 87
21.4. Debug flags ... 87

22. SPIM interface ... 89
22.1. Connecting a user SPIM model to TSIM .. 89
22.2. SPIM model API ... 89

23. AT697 PCI interface ... 91
23.1. Commands .. 91
23.2. Debug flags ... 91
23.3. Registers ... 91
23.4. ESAPCI bus model API .. 92

23.4.1. PCI command table .. 93
23.5. Examples .. 93

24. TPS VxWorks 6.x AHB Module ... 94
24.1. Overview .. 94
24.2. Loading the module .. 94
24.3. Configuration .. 94

25. Support ... 95

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 6

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

1. Introduction

1.1. General

TSIM is a generic SPARC1 architecture simulator capable of emulating LEON-based computer systems.

TSIM provides:

• Emulation of LEON2/3/4 processors in general and tailored emulation of specific chips
• High precision multi core CPU models with bus contention and inter-processor effects modelled on a per

instruction level (LEON 3/4)
• FPU and MMU emulation
• Accelerated processor standby mode, allowing faster-than-realtime simulation speeds
• Standalone operation with scriptable Tcl command line
• Operation via remote connection from GNU debugger (GDB)
• Provided as a library to be included in larger simulator frameworks
• 64-bit time for practically unlimited simulation periods
• Detailed instruction traces and AMBA bus traces
• Memory emulation, including SRAM, SDRAM, PROM, SPI memories, local data RAM and local instruction

RAM.
• L2 cache emulation with support for configurable replacement, cache way locking, as well as and protected

and uncached regions (currenly only supported for LEON4)
• Emulation of interrupt controllers, UARTs, timers, IOMMU, SpaceWire interfaces, CAN controllers, SPI

controllers, GPIOs, Ethernet interfaces, DAC, PCI
• Loadable modules to include user-defined device models
• Non-intrusive execution time profiling
• Non-intrusive code coverage monitoring
• Stack backtrace with symbolic information
• Check-pointing capability to save and restore complete simulator state (to be released in a future update)
• Unlimited number of breakpoints and watchpoints
• Predefined simulation models for GR740, GR712RC, GR716, UT699, UT700 and AT697

1.2. Staged releasing

Some general features that are not yet available in this release, will be released in upcoming updates. This includes
saving and restoring simulator state, and various features of the LEON4 L2 cache such as AMBA split response.
This is noted as such in the manual.

Additional simulation models for various I/O cores will be added in the future. Supported devices and interfaces
of modelled chips are listed in their respective chapters. There, details on limitations of some of the models are
also listed or pointed to.

Application program interfaces for user modules and user models are not yet finalised and thus subject to change.
They are functional in their current form, unless otherwise noted, and usage examples are included in the distri-
bution.

1.3. Supported host platforms and system requirements

TSIM supports the following host platforms: Linux and Windows 10.

1.4. Obtaining TSIM

The primary site for TSIM is the Cobham Gaisler website [https://www.gaisler.com] where the latest version of
TSIM can be ordered and evaluation versions downloaded.

1.5. License

TSIM3 LEON2, TSIM3 LEON3 and TSIM3 LEON4 are licensed separately as separate products. Emulation of the
GR716 LEON3FT microcontroller is available in TSIM3 LEON3, but can also be licensed separately as TSIM3
GR716 that simulates GR716 only.

1SPARC is a registered trademark of SPARC International

www.caes.com/Gaisler
https://www.gaisler.com
https://www.gaisler.com

Document: TSIM3-UM
July 2021, Version 3.1.2 7

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

The license text can be found in license.txt in the top directory after installation. Please contact
sales@gaisler.com to acquire a license.

1.6. Evaluation version

An evaluation version of TSIM3 LEON3 is available from the Cobham Gaisler website [https://www.gaisler.com].
The evaluation version may only be used for evaluation and internal testing and only during a period of 21 days
without purchasing a license. See the license.txt file that is included in the archive for details.

The evaluation version simulates a basic dual core LEON3 system, but can be made to simuate a single core
system using the -numcpus option. The evaluation version is limited to 32-bit time. It does not support check-
pointing, loadable modules, library interface, code coverage, configuration of caches, diagnostic cache accesses,
configuration of memory or chip flags such as -gr712rc or -ut700. The -help option can show options that
available in the evaluation version. There are also upper limits on number of simulations restarts, instruction and
bus trace lengths and number of frontend command executions.

1.7. Problem reports

Please send problem reports or comments to support@gaisler.com.

Customers with a valid support agreement may send questions to support@gaisler.com. Include a TSIM log when
sending questions, please. A log can be obtained by starting TSIM with the command line switch -log file-
name. Try to include as much details as possible from commands such as reg, inst/ahb (enable history with inst
len len or ahb len len), bt and with relevant debug options turned on. See also Chapter 25.

www.caes.com/Gaisler
https://www.gaisler.com
https://www.gaisler.com

Document: TSIM3-UM
July 2021, Version 3.1.2 8

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

2. Installation

2.1. General

TSIM is distributed as a tar-file (e.g. tsim-leon3-3.1.2.tar.gz) with the following contents:

Table 2.1. TSIM content

Directory Description

coverage Source level coverage helper scripts

doc TSIM documentation

examples/input Example loadable modules for interfaces

examples/test Example programs

examples/modules Example loadable modules

license.txt TSIM license text

share Tcl distribution

tsim/linux-x64 TSIM binary for Linux

tsim/win64 TSIM binary for Windows

On Linux, the tar-file can be installed at any location with the following command:

tar xf tsim-leon3-3.1.2.tar.gz

On windows, the archive can be unpacked e.g. with the freely available 7-zip application.

TSIM must find the share directory to work properly. TSIM will try to automatically detect the location of the
folder. If TSIM fails to automatically detect the folder, then the environment variable TSIM_SHARE can be set
to point a moved share folder. If TSIM fails to find the share folder altogether it will fail to start up.

2.2. License key installation

TSIM is licensed using a Sentinel LDK USB hardware key and has support for node-locked and floating license
keys. The type of key can be identified by the colour of the USB dongle. The node-locked keys are purple and
the floating license keys are red.

1. Node-locked keys (purple USB key)

For node-locked keys, the Sentinel LDK Run-time for the key must be installed before the key can be used (see
below).

2. Floating keys (red USB key)

In the case of floating keys, the Sentinel LDK Run-time must be installed on the server and the client computer
(see below).

Sentinel LDK communicates via TCP and UDP on socket 1947. This socket is IANA-registered exclusively for
this purpose. By default the client will find the server by issuing a UDP broadcast to local subnets on port 1947.

If broadcasting is not working or unwanted, then advanced network settings can be setup via the Sentinel Admin
Control Center. The Sentinel Admin Control Center is accessed by opening the URL localhost:1947 in a web
browser. The network settings are reached by selecting "Configuration" in the menu and then selecting the "Access
to Remote License Managers" tab. Detailed information on how to setup the network settings can be found by
selecting "Help" in the menu.

3. Sentinel LDK Runtime

The latest runtime can be found at the TSIM download page [https://www.gaisler.com/index.php/downloads/sim-
ulators]. Included in the downloaded Sentinel LDK runtime archive is a README file which contains detailed
installation instructions.

Administrator privileges are required on Windows. On Linux it is required that the runtime is installed as root user.

www.caes.com/Gaisler
https://www.gaisler.com/index.php/downloads/simulators
https://www.gaisler.com/index.php/downloads/simulators
https://www.gaisler.com/index.php/downloads/simulators

Document: TSIM3-UM
July 2021, Version 3.1.2 9

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

3. Operation

3.1. Overview

TSIM can operate in tree modes: standalone, used as a library and attached to GDB. In standalone mode, LEON
applications can be loaded and simulated using a scriptable Tcl based command line interface. A number of com-
mands are available to drive, investigate and interact with the simulation. When TSIM is used is a library. TSIM
can be driven via a C API (see Chapter 6). This API makes standalone commands available as well as additional
functionality. When attached to GDB, TSIM acts as a remote GDB target (see Section 3.12). Applications are
loaded and debugged through GDB (or a GDB front-end such as DDD or Eclipse). It this mode it is also possible
to use the standalone commands through the “monitor” GDB command.

3.2. Starting TSIM

TSIM is started as follows on a command line:

tsim-leon2 [options] [input_files]
tsim-leon3 [options] [input_files]
tsim-leon4 [options] [input_files]

Please note that when starting TSIM with a chip option, e.g. -gr712rc or -gr716, TSIM will configure chip
specific features. This includes CPU configuration parameters like caches, MMU, FPU, as well as what interfaces
are present and how they are configured. Thus, when using a chip option there is no need to manually configure
parameters that affects configuration internal to the chosen chip. If a parameter is set by both a chip option and
a option directly, TSIM will always use the direct option.

When using a TSIM3 GR716 license, the -gr716 option is implicitly declared and thus GR716 features are
already enabled. Some of the following options that are not supported by GR716 or is already enabled by the -
gr716 option have been disabled in the GR716 only release. This does not apply to -gr716 when using a TSIM
LEON3 license.

Many options can be used without an argument to enable or disable a feature but can also take an optional 1 or 0
as an argument. Many of these are documented as having the optional argument [0|1] without any description
of the optional argument. For these cases, regardless of if the option enables or disables something a 1 argument
is the same as no argument and will work as per the description of the option and a 0 argument will invert the
meaning of the option. This can be used to override something enabled or disabled by earlier options.

For standalone TSIM, command line options can also be specified in the file .tsimcfg in the home directory.
This file, if present, will be read at startup the contents will be prepended to the options given on the command
line. In other words, options from the command line will, when possible, override options specified in the config
file. See the -cfg option for how to turn this off or how to use a different file.

The following command line options are supported by TSIM:

-ahbstatus [0|1]
Adds AHB status register support.

-asi1allocate [0|1]
Makes ASI 1 reads allocate cache lines (LEON3/4 only). This is enabled by default.

-at697e
Set parameters according to the Atmel AT697E device (LEON2 only). See Chapter 13 for details on AT697
emulation.

-banks <1|2|4>
Sets how many RAM banks the SRAM is divided on. Supported values are 1, 2 or 4. Default is 1.

-bootstrap val
Sets the GR716 bootstrap register to val (GR716 only).

-bopt [0|1]
Enables idle-loop optimisation (see Section 4.1.6).

-bp [0|1]
Enables emulation of LEON3/4 branch prediction

-bz [0|1]
Halt execution on all traps except privileged_instruction, fpu_disabled, window_overflow,
window_underflow, asynchronous_interrupt and trap_instruction (As GRMON does when not using
GRMON's -nb option). This halts at the pc and in the register window of the trapping instruction. Note

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 10

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

that this does not function as an ordinary break in execution; continuing from this halt will re-execute the
trapping instruction. This does not affect debugging through GDB. Use instead the -nb [0|1] option
to set up that behaviour.

-c file
Evaluate the contents in the file file at startup. This is run through TSIM's Tcl interpreter and can thus
contain Tcl code in general, including TSIM commands. This is a convenient way for specifying additional
Tcl procedure definitions, for specifying simple sequences of TSIM commands as well as setting up more
elaborate Tcl scripting of TSIM. See also the -e option on how to specify commands on the command line.
Multiple -c and/or -e options can be given and will be evaluated in order.

-cfg file|none
Reads extra configuration options from file. If file name is "none" it will prevent a default (for standalone
TSIM) configuration file .tsimcfg from the home directory from being read. Options from the command
line will override options specified in the config file.

-cfgreg_and and_mask, -cfgreg_or or_mask
LEON2 only: Patch the Leon Configuration Register (0x80000024). The new value will be: (reg &
and_mask)| or_mask.

-cas [0|1]
Enable emulation of the CASA instruction, or disable with a 0 argument. (LEON3/4 only). Enabled by
default. Chip options enables or disables CASA support according to the corresponding chip.

-dcsize size
Defines the set-size (KiB) of the LEON data cache. Allowed values are powers of two in the range 1 - 64
for LEON2 and 1-256 for LEON3/4. Default is 4 KiB.

-dlock [0|1]
Enable data cache line locking. Default is disabled.

-dlram addr size
Allocates size KiB of local data RAM (a.k.a. tightly coupled data memory and data scratch-pad RAM)
at address addr. (LEON3/4)

-dlsize <16|32>
Sets the line size of the LEON data cache (in bytes). Allowed values are 16 or 32. Default is 16.

-drepl <rnd|lru|lrr>
Sets the replacement algorithm for the LEON data cache. Allowed values are rnd (default for LEON2)
for random replacement, lru (default for LEON3/4) for the least-recently-used replacement algorithm and
lrr for the least-recently-replaced replacement algorithm.

-dsets sets
Defines the number of sets in the LEON data cache. Allowed values are 1 - 4. Defaults to 1 for LEON2
and 4 in general. Is set to 1 in the evaluation version.

-e command(s)
Executes command(s) at simulator startup. This is run through TSIM's Tcl interpreter and thus does not
not need to be a single command. For example, a string containing semicolon separated commands can
be specified and will then run in sequence. See also the -c option on how to specify commands in a file.
Multiple -e and/or -c options can be given and will be evaluated in order.

-eclipse [0|1]
Enable some special handling of the GDB protocol when connecting with Eclipse.

-ext nr
Enable extended IRQ in the interrupt controller with extended IRQ number nr (LEON3/4 only).

-fast_uart [0|1]
Run UARTs at infinite speed, rather than with correct baud rate.

-freq system_clock
Sets the simulated system clock in MHz. Default is 50.

-gdb [port]
Listen for GDB connection directly at start-up. If the port is not specified, the default port number 1234
is used. See also the -port option that changes the default GDB server port number without starting the
server.

-gdbuartfwd [0|1]
Forward UART output to GDB when being connected over GDB. Which UART if any is forwarded is
determined by the -u X option. The default behaviour is for GDB to not change UART forwarding
behaviour.

-gr712rc
Set parameters to emulate the GR712RC device. See Chapter 7 for details on GR721RC emulation.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 11

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

-gr716
Set parameters to emulate the GR716 device. See Chapter 8 for details on GR716 emulation.

-grfpu
Emulate the GRFPU floating point unit.

-grfpulite
Emulate the GRFPU-lite floating point unit (LEON3/4).

-help [option]
List short help on all available options or show specific help for a given option. Many options specific to
certain cores will only be available when a chip option, that instantiates models that adds more options, is
also given together with the -help option. Without an argument (i.e. it being the last option given), this
displays short help for all available options. When the name of another option is given as an argument to
-help, it will print, potentially more detailed, help about that option specifically.

-swbp [0|1]
Enable use of software breakpoints for GDB breakpoints. By default TSIM uses hardware breakpoints for
GDB breakpoints. This does not affect standalone TSIM breakpoints.

-stack addr
Set initial stack pointer.

-icsize size
Defines the set-size (KiB) of the LEON instruction cache. Allowed values are powers of two in the range
1 - 64 for LEON2 and 1-256 for LEON3/4. Default is 4 KiB.

-ilock [0|1]
Enable instruction cache line locking. Default is disabled.

-ilram addr size
Allocates size KiB of local instruction RAM (a.k.a. tightly coupled instruction memory and instruction
scratch-pad RAM) at address addr. (LEON3/4)

-ilsize <16|32>
Sets the line size of the LEON instruction cache (in bytes). Allowed values are 16 or 32. Default is 16 for
LEON2/3 and 32 for LEON4.

-irepl <rnd|lru|lrr>
Sets the replacement algorithm for the LEON instruction cache. Allowed values are rnd (default for
LEON2) for random replacement, lru (default for LEON3/4) for the least-recently-used replacement al-
gorithm and lrr for the least-recently-replaced replacement algorithm.

-isets sets
Defines the number of sets in the LEON instruction cache. Allowed values are 1 - 4. Defaults to 1 for
LEON2 and 4 in general. Is set to 1 in the evaluation version.

-log filename
Logs the console output to filename. If filename is preceded by ‘+’ output is appended.

-mcfgX value
Set the reset value of memory configuration register X, where X can be 1, 2 or 3.

-mflat [0|1]
This switch should be used when the application software has been compiled with the gcc -mflat option,
and debugging with GDB is done.

-mmu [0|1]
Enable MMU support, or disable with a 0 argument. By default LEON3 and LEON4 has MMU support,
but LEON2 does not. Chip options enables or disables MMU support according to the corresponding chip.

-mod file
Loads an user specified loadable_module from file. The environment variable
TSIM_MODULE_PATH can be used as a list of search paths. See Section 5.1.1 for details.

-mul value
Set instruction cost of smul/umul to value.

-nb [0|1]
Do not break on error exceptions when debugging through GDB. To affect standalone TSIM or TLIB
behaviour, see instead the -bz [0|1] option.

-nofpu [0|1]
Disables the FPU to emulate a system without FPU. Any floating-point instruction will generate an FP
disabled trap.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 12

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

-ni [0|1]
Prevents the GDB server from bootloader-like initialisation when using the gdb reset command and when
starting the GDB server before any simulation has been done. No other commands are affected.

-mac [0|1]
Enable LEON MAC instructions.

-nosram [0|1]
Disable SRAM on startup. When SRAM is disabled, SDRAM will appear at 0x40000000.

-nothreads
Disable threads support.

-bmthreads
Force bare metal thread support, even when an OS is detected. Bare metal thread support consists of re-
porting each CPU as a thread to GDB. Bare metal thread support is default if no OS is detected.

-nov8 [0|1]
Disable SPARC V8 MUL/DIV instructions.

-nrtimers val
Adds support for more than 2 timers (in one timer unit). Value val can be in the range of 2 - 7 (LEON3/4
only). Default: 2. See also the -sametimerirq [0|1] and -timerirqbase number switches.

-numcpus value
Set number of CPUs between 1 and 4. In the LEON3 evaluation version, the maximum number of CPUs
is limited to 2.

-nwin win
Defines the number of register windows in the processor. Valid range is between 2 and 32. The default is
8. Only applicable to LEON3/4.

-port port
Set the port number port to be used for GDB communication. The default port number is 1234. The port
number can also be specified with the -gdb option or the gdb command.

-pr [0|1]
Enable profiling automatically at startup.

-ram ram_size
Sets the amount of simulated RAM (KiB). Default is 8192 KiB.

-ramwidth <8|16|32>
By default, the RAM area at reset time is considered to be 32-bit. Specifying 8, 16 or 32 will initialise the
memory width field in the memory configuration register to 8-, 16- or 32-bits. The only visible difference
is in the instruction timing.

-rfpart [0|1]
Enable register window partitioning support.

-rom rom_size
Sets the amount of simulated ROM (KiB). Default is 8192 KiB.

-romwidth <8|16|32>
By default, the PROM area at reset time is considered to be 32-bit. Specifying 8, 16 or 32 will initialise the
memory width field in the memory configuration register to 8-, 16- or 32-bits. The only visible difference
is in the instruction timing.

-rtems ver
Override auto-detected RTEMS version for thread support. ver should be 46, 48, 48-edisoft or 410.

-sametimerirq [0|1]
Force the IRQ number to be the same for all timers (in one timer unit). Default: separate increasing IRQ
numbers for each timer. (LEON3/4 only). See also the -nrtimers val and -timerirqbase num-
ber switches.

-sdfreq frequency
Set the frequency of the SDRAM in the SDCTRL in GR740. Default is 100 MHz.

-sdramwidth <32|64>
Set the SDRAM bus width of the SDCTRL in GR740 to 32 or 64 bit. Default is 64-bit. The only visible
difference is in the instruction timing.

-sdram sdram_size
Sets the amount of simulated SDRAM (MiB). Default is 128.

-sdbanks <1|2>
Sets the number of SDRAM banks. Default is 1.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 13

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

-strict_reset [0|1]
This enables strict reset behaviour for the memory controller. When this is not enabled, TSIM not only
resets the memory controller configuration registers, but also sets up fields that are not reset in hardware.
For example RAM banks sizes, RAM width are set up, and SDRAM is enabled if available and the RAM
area is disabled of the -nosram option is used. This default behaviour is for convenience when working
with RAM images. Enabling strict reset behaviour can be useful e.g. when testing boot loaders.

-sym file
Read symbols from file. This can be useful e.g. for self-extracting applications and applications that sets
up non one-to-one MMU mapping.

-timer32 [0|1]
Use 32 bit timers instead of 24 bit. (LEON2 only)

-timerirqbase number
Set the IRQ number of the first timer (in one timer unit) to interrupt number number (LEON3/4 only).
Default: 8. See also the -nrtimers val and -sametimerirq [0|1] switches.

-u X
This options handles with which, if any, uart is to be connected to stdin/stdout. By default UART0 is
connected stdin/stdout. Using this with X in the range 0 up to the number of UARTs (exclusive) sets up the
chosen UART to be connected to stdin/stdout, whereas a negative X makes sure that none of the UARTs
are connected to stdin/stdout. See also -uartX device for UARTs to other devices.

-uartX device

This option connects the chosen UART to a serial device. Here, X can be in the range 0 up to the number
of UARTs (exclusive). See also -u X that is used to connect a UART to stdin/stdout.

On Linux, e.g. connecting the first uart to /dev/ttyUSB0 can be done with “-uart0 /dev/ttyUSB0”. On Linux,
using the device /dev/ptmx will create a pseudo-terminal pair with the chosen uart at one end. TSIM prints
out the name of the other end of the pair to be opened by host software communicating with the chosen uart.

On Windows use //./com1, //./com2 etc. to access the serial ports. The serial port settings can be adjusted
by opening the relevant entry under “Ports (COM and LPT)” entry in the Device Manager and choosing
the “Port Settings” tab in the dialogue that pops up.

-uart_fs <1|2|4|8|16|32>
Set UART FIFO depth in characters (LEON3/4 only). This setting affects all APBUARTs in the system.
Valid configurations are 1, 2, 4, 8 (default), 16 and 32 characters. If the FIFO depth is configured to 1 the
UART FIFO is not present instead only the holding register is present and FIFO level interrupts are not
present. The FIFO interface is available for both fast and accurate mode, however the transmitter side in
fast mode never fills the FIFO since characters are always sent immediately.

-upcounter [0|1]
Enables upcounter registers (ASR22/23). For LEON3/4 only.

-ut699
Set parameters to emulate the UT699 device. Note that when -ut699 is given, snooping will be set as
non-functional. This also sets up TSIM to simulate only one APBUART core. See Chapter 10 for details
on UT699 emulation.

-ut699e
Set parameters to emulate the UT699E device. This also sets up TSIM to simulate only one APBUART
core. See Chapter 11 for details on UT699E emulation.

-ut700
Set parameters to emulate the UT700 device. This also sets up TSIM to simulate only one APBUART core.
See Chapter 12 for details on UT700 emulation.

-v
Turn on verbose output.

-vv
Turn on very verbose output.

input_files
Executable files to be loaded into memory. The input files are loaded into the emulated memory according
to the entry point for each segment. Recognised formats are elf32, aout and srecords.

3.3. Standalone mode commands

The TSIM command line interface is a Tcl driven command line interface with a number of different type of
recognised commands. There are general TSIM commands that are always present, native Tcl commands (see

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 14

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

Section 3.3.3) that allows for Tcl scripting, as well as core specific commands that are available if specific devices
are present in the simulated hardware configuration. See Section 3.3.1, Section 3.3.3 and Section 3.3.5 respectively.
The help command can also be used to show a listing with short help for all commands, and to show more detailed
help about specific commands.

As long as there are no ambiguities, short forms of the commands are allowed. For example, dis, is interpreted
as disassemble, but re is reported as ambiguous. TSIM offers tab completion on things like commands names,
subcommand names, symbols, device names and debug flags. In addition tab completion on Tcl variables are
possible when after typing a “$”.

Commands that takes an address as an argument can in general also take a symbol as an argument in place of
an address, as well as tab complete on symbols. Some commands can take optional cpuX arguments to select a
specific CPU, or for some commands a set of CPUs. For such arguments X is in this case replaced with the CPU
id. In other words to select CPU 0, “cpu0” is used. Such cpuX arguments must be placed last in the command call.
For commands that does something in the context of a specific CPU, the current CPU is the one that is affected.
The cpu can be used to change which CPU that is the current CPU.

Typing a ‘Ctrl-C’ will interrupt a running simulator. Note however that in order to abort user created Tcl loops,
the script should manually break out of the loop if the Tcl tsim::interrupt variable is not zero.

If the file .tsimrc exists in the home directory, it will be used for standalone TSIM as a batch file and the commands
in it will be evaluated as Tcl at startup. This can be used for commands to be executed as well as for defining
Tcl procedures for later use.

3.3.1. General commands

Below is a description of general commands

ahb [-f file] [length]

Display the latest length (default 30) entries in the AMBA bus trace history. Using -f filename will
write the AMBA bus trace to file rather than print it.

Note: CPU accesses to local instruction RAM and local data RAM do not in general go via the AMBA
bus and thus do not show up in the AMBA bus trace history. The one exception is instruction fetch from
dual-port local data RAM on GR716.

ahb len length
Set the AMBA bus trace buffer length, clear the AMBA bus trace buffer and enable AMBA bus tracing.
Setting it to zero clears and disables AMBA bus tracing.

batch file [arguments...]
Execute a Tcl script in the file file. During the script evaluation make argv0 contain the script filename,
argv contain a list of all the arguments that appear after the filename and argc will be the length of argv.
See also the -c option on how to specify commands in a file that is evaluated at startup.

bload file [startaddr]
Load the binary file file into memory starting at startaddr. The default startaddr is the start of
RAM memory. If an L2 cache is present, it will be flushed and invalidated and the loaded content will be
placed uncached in the memory behind the L2 cache.

boot [address/symbol | -t] [instructions | amount timeunit]

Performs a cold boot. In other words, resets the simulator and starts simulation from time 0 bootloader-like
initialisation. The event queue is emptied but memory contents and any set breakpoints remain. If an L2
cache is present, it is flushed, invalidated and disabled. If an address or symbol is given, execution starts
from there. Otherwise, the starting point is determined according to the following priority. If an entry point
has been set with the ep command, execution starts from that entry point (which can be different for different
CPUs). If no address is given and no entry point has been set, execution starts at the reset address. No entry
points of loaded images are taken into account, in contrast to the run command.

The boot command never performs bootloader-like initialisation of the system before starting the simula-
tion. Use the run command when such initialisation is desired.

If an address or symbol is specified, or -t is used instead of an address or symbol, an optional number
of instructions or amount of time to stop after can also be specified. See Section 3.3.2 for the syntax for
specifying time.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 15

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

See Section 3.4 on Tcl return value.
bopt [0|1]

Enable (bopt 1), disable (bopt 0), or show the current status bopt of idle-loop optimisation (see Sec-
tion 4.1.6).

bp [cpuX...]
Prints all breakpoints and watchpoints. With optional cpuX arguments, breakpoints and watchpoints can
be shown for a subset of the available CPUs.

bp address [cpuX...]
Adds an breakpoint at address. With optional cpuX arguments, breakpoints can be set for a subset of
the available CPUs.

bp delete [num]
Deletes breakpoint/watchpoint num. If num is omitted, all breakpoints and watchpoints are deleted.

bp watch address [cpuX...]
Adds a watchpoint at address. With optional cpuX arguments, watchpoints can be set for a subset of
the available CPUs.

bt [cpuX...]
Print backtrace for the current or specified CPUs.

cont [instructions | amount timeunit]

Continue execution at present position, optionally for a number of instructions or an amount of time. See
Section 3.3.2 for the syntax for specifying time.

See Section 3.4 on Tcl return value.
coverage enable [merge|percpu]

Enable coverage. Data will be merged for all CPUs if merge flag is specified, or recorded per CPU if percpu
flag is specified. If no flag is specified then default is to merge. Note that changing coverage mode will
reset the coverage data. See Section 3.9 for more details.

coverage disable
Disables coverage.

coverage save [file_name] [cpuX...]
Merge and write coverage data for specified CPUs to file (file name and CPU is optional). The coverage
data will be merged for all CPUs if no CPU is specified. See Section 3.9 for more details.

coverage lcov [file_name] [cpuX...]
Merge and write coverage data for specified CPUs to file using the lcov output format (file name and CPU
is optional). The coverage data will be merged for all CPUs if no CPU is specified. See Section 3.9 for
more details.

coverage clear
Resets coverage data.

coverage print address [len] [cpuX...]
Print coverage data to console, starting at address. If no CPU is specified the data will be merged for all
CPUs. Else merged data for specified CPUs will be printed. See Section 3.9 for more details.

cpu [active X]
List CPUs or switch CPU X to be the active CPU.

dbgon flag
Toggle flag debug for all applicable cores. See the coreX_dbg commands for which flags are available
for different cores.

dcache print [cpuX...]
Print the data cache contents for the current or specified CPUs.

dcache flush [addr|sym] [cpuX...]
Flush the current or specified CPUs data cache, optionally for given address or symbol only.

dcache query <addr|sym> [cpuX...]
Print current or specified CPUs data cache status for given address or symbol.

dump file address length
Dumps memory content to file file, in whole aligned words. The address argument can be a symbol.

disassemble [addr] [count] [cpuX...]
Disassemble [count] instructions at address [addr] for the current CPU or for the specified CPUs. Default
value for count is 16 and for addr the current program counter.

ep [clear] [cpuX...]
Clear entry point for execution on all or given CPUs.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 16

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

ep [address] [cpuX...]
Show or set entry point for execution on all or given CPUs. When an entry point has not explicitly been set
for a CPU, the entry point printed and returned is the entry point that would be used by the run command.
Setting the entry point overrides the default start of execution address for the run and boot commands. The
Tcl return value for this command is a list of all affected CPUs entry points. The list is sorted in ascending
CPU index order.

event
Print events in the event queue. Only user-inserted events are printed.

exit [val]
Exit the simulator with exit value val, when given, or zero.

float [-v] [cpuX...]
Prints the FPU registers for the current or given CPUs. With the optional -v argument, the fields of the FSR
registers are listed and denormalized numbers are marked.

gdb [port]
Start GDB server, listening for GDB connection, optionally on the given port. The default port is 1234,
unless changed by the -gdb or -port option.

gdb reset
Prepares TSIM for a new run via GDB. This is in some cases needed before loading an image from GDB (or
via GDB e.g. from Eclipse). See Section 3.12 for details. This should only be used in/via GDB as “monitor
gdb reset”.

gdb postload
Performs final preparations after loading an image from GDB (or via GDB e.g. from Eclipse). This is in
some cases needed when debugging multicore images. See Section 3.12 for details. This should only be
used in/via GDB as “monitor gdb postload”.

go address/symbol [instructions | amount timeunit]

Continues simulation after having set the PC of the current CPU to the given address.

The go command never restarts simulation, resets the system or does any bootloader-like initialisation. Use
the run or boot command when that is desired.

An optional number of instructions or amount of time to stop after can be specified. See Section 3.3.2 for
the syntax for specifying time.

See Section 3.4 on Tcl return value.
help [command|topic]

Without an argument, print a help menu for TSIM commands. Using helpcommand, will show help for
command when available. The tcl topic will list help for native Tcl commands.

hist [-v] [-f file] [length] [cpuX]

Displays the latest length (default 30) entries from both the current or given CPUs instruction trace
buffers and AMBA bus trace buffers interleaved. Not that only one CPU can be specified at a time. Using
-f filename will write the trace to file rather than print it. Using -v enables verbose output.

icache print [cpuX...]
Print the instruction cache contents for the current or specified CPUs.

icache flush [addr|sym] [cpuX...]
Flush the current or specified CPUs instruction cache, optionally for given address or symbol only.

icache query <addr|sym> [cpuX...]
Print current or specified CPUs instruction cache status for given address or symbol.

info reg [-v] [devicename|registername|addr]...
Shows system registers. If one or more device names are passed to the command, then only the registers
belonging them are printed. If one or more register names/addresses are passed, only those registers will
be printed. See Section 3.3.4 on how to address registers by name. Use the leon command to list the names
of the available devices in the system. If option -v is specified then TSIM will print the field names and
values of each register. Note that some registers are not implemented in TSIM and thus will not show up.
Note that for LEON2, in this release only the memory controller and PCI interface shows up in info reg.
On LEON2, the leon command is used to show the non-PCI device registers.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 17

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

inst [-v] [-f file] [length] [cpuX]

Display the latest length (default 30) instructions in the instruction trace buffer, for the current or given
CPUs. Using -f filename will write the instruction trace to file rather than print it. Using -v enables
verbose output.

inst len [length] [cpuX]
Set the instruction trace buffer length, clear the instruction trace buffer and enable instruction tracing, for
all or the given CPUs. Setting it to zero clears and disables instruction tracing.

iommu apv decode <base>
Decodes APV starting at base base.

iommu cache flush
Flushes the IOMMU cache.

iommu cache show <line> <count>
Shows the contents of the IOMMU cache. Shows count lines starting at line line.

iommu cache write <line> <data0...dataN> <tag>
Write full cache line including tag to cache line line , i.e. the number of data words depends on the size
of the cache line.

iommu pagetable lookup <base> <addr>
Lookup specified IO address addr in page table starting at base.

l2cache
Show L2 cache settings.

l2cache show data [way] [count] [start]
Prints the data of count cache lines of way way starting at cache line start.

l2cache show tag [count] [start]
Prints the tags of count cache lines, for all ways, starting at cache line start.

l2cache enable
Enable the cache.

l2cache disable
Disable the cache.

l2cache disable flushinvalidate
Disable the cache and all dirty cache lines are invalidated and written back to memory as an atomic oper-
ation.

l2cache invalidate
Invalidate all cache lines.

l2cache flush
Perform a cache flush to all cache lines.

l2cache lookup addr
Prints the data and status of a cache line if addr generates a cache hit.

l2cache flushinvalidate
Flush and invalidate all cache lines (copy-back).

leon
Display an overview of available peripherals and display the current CPUs configuration registers. Registers
of individual peripherals can be displayed in detail with the info reg command. Note that for LEON2,
in this release only the memory controller and PCI interface shows up in info reg. On LEON2, the leon
command is used to show the non-PCI device registers.

load files
Load files into simulator memory. If an L2 cache is present, it will be flushed and invalidated and the
loaded content will be placed uncached in the memory behind the L2 cache.

mcfgX [value]
Set or show the user defined value that is used to set the memory configuration register X when TSIM acts
as a boot loader (e.g on run, but not boot). These commands do not set the corresponding registers when
the commands themselves are evaluated. Here X can be 1, 2 or 3.

mem [option] addr [count]
memh [option] addr [count]
memb [option] addr [count]

Display memory at addr for count bytes. The mem, memh and memb commands shows and returns
the result as words, half-words and bytes respectively. An unaligned addresses and lengths are rounded
down. Unimplemented address areas are displayed as zero. Possible options affecting the format of the Tcl
return value are:

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 18

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

-ascii If the -ascii flag has been given, then a single ASCII string is returned instead of a list of values.

-cstr If the -cstr flag has been given, then a single ASCII string, up to the first null character, is returned
instead of a list of values.

-hex Give the -hex flag to make the Tcl return value be list hex strings, but without any 0x prefix. The
numbers are always 2, 4 or 8 characters wide strings regardless of the actual integer value.

-x Give the -x flag to make the Tcl return value be a list of hex strings prefixed with 0x. The numbers after
0x are always 2, 4 or 8 characters wide strings regardless of the actual integer value.

mmu [cpuX]
Display the MMU registers for the current or given CPUs.

mmu debug [value] [cpuX]
Set debug level for the MMU on current or given CPU.

mmu ctrl [value] [cpuX]
Display or set the value of the MMU control to value for the current or given CPUs.

mmu ctx [value] [cpuX]
Display or set the value of the MMU context register to value for the current or given CPUs.

mmu ctxptr [value] [cpuX]
Display or set the value of the MMU context pointer register to value for the current or given CPUs.

mmu tlb [cpuX]
Display the TLB for the current or given CPUs.

nolog cmd
Suppress the log output of a command.

perf [cpuX...]
The perf command will display various execution statistics. By default, the statistics information for all
CPUs that has been started are merged. With optional cpuX arguments, profiling can be shown for a
subset of the available CPUs. Restarting simulation (e.g. via run, boot, or reset) also resets the statistic
information.

perf reset
Reset the performance statistics. This can be used if statistics shall be calculated only over a part of the
program. Restarting simulation (e.g. via run, boot, or reset) also resets the statistic information.

profile enable [stime]
Enable profiling on all CPUs, clearing any previous profiling information. Default sampling period is 1000
clock cycles, but can be changed by specifying stime as the number of clock cycles between samples.

profile disable
Disable profiling, but do not clear profiling information.

profile [num] [cpuX...]
Show profiling information. By default all symbols with enough samples to reach 0.01% is printed. With a
num argument the number of printed lines are limited to num. By default, the profiling information for all
CPUs that has been started during the sampling (including being started but in power down) are merged.
With optional cpuX arguments, profiling can be shown for a subset of the available CPUs.

quit
Exits the simulator. Use the exit command to exit with a given exit value.

reg [reg_name [value]|window]... [cpuX]
Prints and sets the IU registers in the current register window, prints and sets individual registers and prints
other register windows on the current or the given CPU. reg without parameters prints the IU registers
of the current register window. reg reg_name shows the value of the corresponding register. Valid reg-
ister names are asr(16,17,20,22,23), psr, tbr, wim, y, pc, npc, fsr, g1-g7, o0-o7, l0-l7, i0-i7, f0-f31. reg
reg_name value sets the corresponding register to value. To view a certain register window, use reg
wn, where n is the index of the register window. To show or set a single register from a specific window,
prepend wn to the register name, e.g. w1i2.

reset
Restarts the simulation (simtime is set to zero) and resets the system. If an L2 cache is present, it will be
flushed, invalidated and disabled.

restore file
Saving and restoring simulator state is not yet available, but will be released in a future update. Restore
simulator state from file. See Section 3.10 for details.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 19

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

run [address/symbol | -t] [instructions | amount timeunit]

Resets the simulator and starts simulation from time 0. The event queue is emptied but memory contents
and any set breakpoints remain. If an address or symbol is given, execution starts from there. Otherwise,
the starting point is determined according to the following priority. If an entry point has been set with the ep
command, execution starts from that entry point (which can be different for different CPUs). Otherwise, if
an image has been loaded, execution starts from the entry point of that image. If no image has been loaded
either, execution starts at the reset address.

The run command always performs bootloader-like initialisation of the system before starting the simula-
tion. Use the boot command when no such initialisation is desired. If an L2 cache is present, it will be
flushed, invalidated and then enabled as part of the this initialisation.

If an address or symbol is specified, or -t is used instead of an address or symbol, an optional number
of instructions or amount of time to stop after can also be specified. See Section 3.3.2 for the syntax for
specifying time.

See Section 3.4 on Tcl return value.
save file

Saving and restoring simulator state is not yet available, but will be released in a future update. Save
simulator state to file. See Section 3.10 for details.

shell cmd
Execute the shell command cmd in the host system shell.

silent cmd
Suppress stdout of a command.

stack [clear|address] [cpuX...]
Show, clear or set initial stack pointer for the current or given CPU. Setting the stack pointer will override
the default stack pointer. Clearing a set stack pointer will make TSIM go back to setting a default stack
pointer.

step [-v] [instructions | amount timeunit]

Execute and disassemble one or more instructions or for a certain amount of time on the current CPU. Using
-v enables verbose output. Any other CPUs will execute as usual, silently, in the resulting timespan.

See Section 3.4 on Tcl return value.
symbols file

Load symbol table from file.
symbols clear

Clear all knowledge of symbols.
symbols list

Prints a list of the loaded symbols.
symbols lookup symbol

Look up the address of the given symbol. Prints and returns the result.
thread [info | bt]

Prints thread info or thread backtrace. See also Section 3.13.1.
version

Prints the TSIM version and build date.
vmem [option] addr [count]
vmemh [option] addr [count]
vmemb [option] addr [count]

Same as mem, memh and memh respectively, but does a MMU translation on vaddr first whenever
MMU is present and enabled.

vwmem vaddr val...
Write word with value val to virtual address vaddr. If MMU is not present or not enabled, no address
translation is done. If several values are given, they are written to consecutive virtual word addresses.

walk <address|symbol>[cpuX]
If the MMU is enabled printout a table walk for the given address or symbol on the current or given CPUs.

wmem, wmemh, wmemb address value...
Write a word, half-word or byte directly to simulated memory space. If several values are given, they are
written to the consecutive word, half-word or byte addresses respectively.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 20

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

xwmem asi address value
Write a word to simulated memory using ASI=asi.

3.3.2. Time specification for commands

Commands such as run, boot, cont, go and step supports simulating for a specified amount of time.

If an amount without a unit is specified, execution will stop after the specified number of instructions. If an amount
and a time unit (with whitespace between) is specified, the execution will continue until the given time has passed
(relative to the current time). The following time units are supported:

Table 3.1. Time units for commands that run simulation

Argument Unit

c cycles

us microseconds

ms milliseconds

s seconds

min minutes

h hours

d days

3.3.3. Tcl commands

TSIM has built-in support for Tcl 8.6. All command lines entered through the command line interface as well
as via the GDB monitor command or executed from TLIB will pass through a Tcl-interpreter. This enables e.g.
loops, variables, procedures, scripts, and arithmetic calculations for the user. Commands like mem, reg, run, go,
cont and step gives useful Tcl return values that can be used for scripting.

Although this manual does not list all supported native Tcl commands, the TSIM help tcl can be used list short help
for all supported native Tcl commands and help cmdname can be used to list full help for a given Tcl command.
The help for the native Tcl info command can be listed with help tclinfo.

3.3.4. Tcl variables

TSIM provides Tcl variables for commonly used values. Such as core registers and fields. The notation for registers
are coreX::register and for fields coreX::register::field. This notation can be used to both read
from a specific register and to set the value of it. Tab completion on these variables are supported.

3.3.5. Core specific commands

Many cores in the system has their own commands on the format coreX_commandname, where X is the index
(starting from 0) off the core within the set of cores of the same type. For example gpio0_status shows the status
of the first GPIO in the system. The availability of these commands depends upon what cores are present in the
simulated system. The available cores in the simulated hardware can be shown with the leon command.

For some cores in the system there is a coreX_status command shows some additional status information. For
some cores it is possible to enable extra debug information with their coreX_dbg command. This command
takes a debug flag or a subcommand as argument. The flags are specific for each core type and explained in the
respective chapter. Common for all coreX_dbg commands are the subcommands all, clean and list which will
enable, disable or list all applicable debug flags respectively for the core in question.

gpioX_status
Print status for the GPIO core.

gpioX_dbg [flag|all|clean|list]
Toggle specific flag, set all, clear all, or list debug flags for the given GPIO core. See Section 17.4 for a
list of debug flags.

canbusX_status
Prints the status information on the given CAN bus. Note that this is only used for systems with one or
more GRCAN devices, not for CAN_OC.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 21

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

grcanX_dbg [flag|all|clean|list]
Toggle specific flag, set all, clear all, or list debug flags for the given GRCAN core. See Section 14.3 for
a list of debug flags.

grspwX_connect host:[port]
Connect GRSPW/GRSPW2 core X to packet server at specified server and TCP port.

grspwX_server port
Open a packet server for GRSPW/GRSPW2 core X on specified TCP port.

grspwX_dbg [flag|all|clean|list]
Toggle specific flag, set all, clear all, or list debug flags for the given GRSPW/GRSPW2 core. See Sec-
tion 19.3 for a list of debug flags for GRSPW cores and Section 20.3 for GRSPW2 cores.

grspwX_status
Print status for GRSPW2 core X.

grethX_dbg [flag|all|clean|list]
Toggle specific flag, set all, clear all, or list debug flags for the given GRETH core. See Section 16.3 for
a list of debug flags.

grethX_status
Prints the status of greth core X.

grethX_connect [ip[:port]]
Connect to packet server at given IP address and optional port. Default port is 2224. If no IP address is
specified, the default is localhost.

grethX_ping ip
Simulate a ping. Packets will be generated by TSIM.

grethX_dump file
Dump packets to Ethereal readable file.

grethX_reconnect <0|1>
Turn GRETH autoreconnect on or off.

can_ocX_connect host:[port]
Connect CAN_OC core X to packet server to specified server and TCP port.

can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.

can_ocX_ack <0|1>
Specifies whether the CAN_OC core will wait for a acknowledgement packet on transmission. This com-
mand should only be issued after a connection has been established.

can_ocX_status
Prints out status information for the CAN_OC core.

can_ocX_dbg [flag|all|clean|list]
Toggle, set, clear, list debug flags for the CAN_OC core.

grpciX_status
Print status for PCI core X

grpciX_dbg
Toggle specific flag, set all, clear all, or list debug flags for the given grpci core. See Section 18.2 for a
list of debug flags.

esapci0_dbg
Toggle specific flag, set all, clear all, or list debug flags for the given PCI core. See Section 23.2 for a
list of debug flags.

spiX_dbg [flag|all|clean|list]
Toggle specific flag, set all, clear all, or list debug flags for the given SPI core. See Section 21.4 for a list
of debug flags.

bootstrap_status
Prints the bootstrap register.

print_dummies
List all dummy register areas, if any. For some configurations TSIM implements registers of some cores
as dummy registers. They can be read and written, but writes do not stick and reads will always yield 0.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 22

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

3.4. Return values for simulation stop reasons

Tcl commands such as run, boot, cont, go and step that starts simulation returns a Tcl result that indicates why
simulation was stopped. They return it as a list of stopping reasons, in form of a signal name, for each CPU
according to Table 3.2.

When SIGINT is the returned reason, each CPU will have that in its list entry in the returned list. Otherwise, the
CPU that caused a stop will get the stop reason in its list entry and all other CPUs will have SIGSTOP in theirs.
If simulation stops for another reason than a CPU triggering some condition, all CPUs will be marked SIGSTOP.
This includes stopping due to a after a given number of instructions (even though it is tied to a certain CPU).

Table 3.2. Returned reasons for simulation stopping

SIGINT Simulation stopped due to interruption, e.g. Ctrl-C. All CPUs marked thusly.

SIGSTOP Simulation stopped, not because of a condition of the CPU itself.

SIGTRAP Simulation stopped due to breakpoint hit

SIGSEGV Simulation stopped due to processor in error mode

SIGTERM Simulation stopped due to program termination

For example when CPU 1 in a dual core system hits a breakpoint:

tsim> set result [cont]

 CPU 1 stopped at breakpoint 2: t_wovf
tsim> puts $result
 SIGSTOP SIGTRAP

For TLIB, the returned stop reasons codes from tsim_cont and tsim_get_stopreason are logically the
same, but in a different format. Instead of a list of names, the returned information is in form of one stop reason
and one CPU ID for the CPU responsible for the stop. The stop reason is an integer matching macros with the
names as in Table 3.2. When the reason is SIGINT and SIGSTOP, -1 will be returned as CPU ID, and for the
other reasons, the ID of the CPU causing the stop.

3.5. Symbolic debug information

TSIM will automatically extract (.text) symbol information from elf-files. The symbols can be used where an
address is expected:

tsim> bp main
 breakpoint 1 at 0x310013b0: main + 0x4

tsim> dis strcmp 5

 31004198 82120009 or %o0, %o1, %g1 strcmp
 3100419c 80886003 andcc %g1, 0x3, %g0 strcmp + 0x4
 310041a0 3280001e bne,a 0x31004218 strcmp + 0x8
 310041a4 c24a0000 ldsb [%o0], %g1 strcmp + 0xc
 310041a8 c2024000 ld [%o1], %g1 strcmp + 0x10

The symbols list command can be used to lookup and display all symbols. Symbols are automatically read from
files loaded with the load command. To to read in symbols from an alternate (elf) file use symbols file.

tsim> symbols dhrystone.elf
 read 476 symbols
tsim> symbols lookup strcmp
 Found address 0x31004198
tsim> symbols list
 ...
 0x31000000 L __text_start
 0x31000000 L __bcc_trap_table
 0x31000000 L __bcc_entry_point
 0x31001000 L __bcc_crt0
 0x310010c8 L deregister_tm_clones
 0x31001108 L register_tm_clones
 0x3100115c L __do_global_dtors_aux
 0x31001200 L call___do_global_dtors_aux

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 23

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

 0x3100120c L frame_dummy
 0x3100123c L call_frame_dummy
 0x31001248 L Proc_1
 0x310012f0 L Proc_2
 0x31001324 L Proc_3
 0x31001360 L Proc_4
 0x31001394 L Proc_5
 0x310013ac L main
 0x31001868 L Proc_6
 0x310018c4 L Proc_7
 0x310018d8 L Proc_8
 0x31001934 L Func_1
 0x31001964 L Func_2
 0x310019ac L Func_3
 ...

Reading symbols from alternate files is necessary when debugging applications were the image does not con-
tain debugging symbols. This includes self-extracting applications and applications extracted by a bootrom, e.g.
bootrom created with mkprom, application software images unpacked by the GR716 boot ROM and Linux images.

3.6. Breakpoints and watchpoints

TSIM supports execution breakpoints and write data watchpoints. In standalone mode, hardware breakpoints are
always used and no instrumentation of memory or changes to memory are made. TSIM's hardware breakpoints
are entirely handled outside the simulation model. No DSU hardware breakpoints are emulated. Breakpoints and
watchpoints are set, displayed and deleted with the bp command.

When using the GDB interface, the GDB ‘break’ command requests TSIM to set breakpoints, which by default is
handled using TSIM's internal hard breakpoints. If -swbp is enabled, TSIM lets GDB handle software breakpoints
by itself overwriting the breakpoint address with a ‘ta 1’ instruction. In addition, hardware breakpoints can always
be inserted by using the GDB ‘hbreak’ command. Data write watchpoints are inserted using the ‘watch’ command.
A watchpoint can only cover one word address, block watchpoints are currently not available.

3.7. Profiling

The profiling function calculates the amount of execution time spent in and under each subroutine of the simulat-
ed program. The profiling is non-intrusive. The Profiling does not have any affect on the execution in terms of
simulated time and no changes needs to be done to the instrumented code. The profiling is made by periodically
sample the execution point and the associated call tree. In other words, the profiling is inclusive. At each sample
point all functions in the call stack are considered to be be executing, e.g. time spent in a function g called by a
function f will tally up samples for both f and g. Cycles in the call graph are properly handled, as well as sections
of the code where no stack is available (e.g. trap handlers).

The profiling information is printed as a list sorted on highest execution time ratio using profile. For a particular
symbol, the presented percentage number is the percentage of all samples that the symbol was found in the call
stack. By default all symbols with enough samples to reach 0.01% is printed. With a numeric argument the number
of printed lines are limited to the given number of lines. By default, the profiling information for all CPUs that has
been started during the sampling (including being started but in power down) are merged. With optional cpuX
arguments, profiling can be shown for a subset of the available CPUs.

Profiling is enabled through the profile enable command. The sampling period is by default 1000 clocks which
typically provides a good compromise between accuracy and performance. Other sampling periods can also be
set through profile enable n where n is a the profile period in clock cycles. Profiling can be disabled through
the profile disable command.

Below is an example profiling the Dhrystone benchmark:

tsim> load dhrystone.elf
...
tsim> profile enable
 Profiling enabled with sample period 1000
tsim> run
...
tsim> profile
 Merged profile for all started CPUs:

 function ratio(%)
 -------- --------

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 24

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

 __bcc_crt0 99.99
 main 99.79
 Func_2 29.22
 strcmp 25.64
 memcpy 17.09
 Proc_8 8.34
 Func_1 4.77
 Proc_7 4.37
 Proc_6 1.78
tsim>

3.8. Performance

The perf command will display various execution statistics. A perf reset command will reset the statistics. This
can be used if statistics shall be calculated only over a part of the program. Restarting simulation (e.g. via run,
boot, or reset) also resets the statistic information.

By default, the performance information for all CPUs that has been started are merged. With optional cpuX
arguments, performance can be shown for a subset of the available CPUs.

Below is an example of performance statistics

tsim> perf
 Performance statistics for CPU 0
 Cycles : 467054246
 Instructions : 334033114
 Overall CPI : 1.40

 CPU performance (50.0 MHz) : 35.76 MOPS (35.76 MIPS, 0.00 MFLOPS)
 Simulated time : 9.34 s
 Processor utilisation : 100.00 %

 Performance of the simulator:
 Real-time performance : 123.93 %
 Simulator performance : 44.32 MIPS
 Used time (sys + user) : 7.54 s
tsim>

3.9. Code coverage

To aid software verification, TSIM includes support for code coverage. When enabled, code coverage keeps a
record for each 32-bit word in the emulated memory and monitors whether the location has been read, written or
executed. Coverage information can be recorded individually per CPU or merged for all CPUs. Coverage infor-
mation will be recorded also for cache hits. The coverage function is controlled by the coverage command:

coverage enable [merge|percpu] Enable coverage. Data will be merged for all CPUs if merge flag is
specified, or recorded per CPU if percpu flag is specified. If no flag is
specified then default is to merge. Note that changing coverage mode
will reset the coverage data.

coverage disable Disable coverage

coverage save [filename] [cpuX...] Merge and write coverage data for specified CPUs to file (file name
and CPU is optional). The coverage data will be merged for all CPUs
if no CPU is specified.

coverage lcov [filename] [cpuX...] Merge and write coverage data for specified CPUs to file using the
lcov output format (file name and CPU is optional). The coverage data
will be merged for all CPUs if no CPU is specified.

coverage print address [len] [cpuX...] Print coverage data to console, starting at address. If no CPU is speci-
fied the data will be merged for all CPUs. Else data for specified CPUs
will be merged and printed.

coverage clear Reset coverage data

The coverage data for each 32-bit word of memory consists of a 5-bit field, with bit0 (lsb) indicating that the word
has been executed, bit1 indicating that the word has been written, and bit2 that the word has been read. Bit3 and
bit4 indicates the presence of a branch instruction; if bit3 is set then the branch was taken while bit4 is set if the
branch was not taken.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 25

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

As an example, a coverage data of 0x6 would indicate that the word has been read and written, while 0x1 would
indicate that the word has been executed. When the coverage data is printed to the console or save to a file, it is
presented for one block of 32 words (128 bytes) per line:

tsim> cov print strcmp
 31004198 : 1 1 11 0 1 1 1 11 0 1 1 1 1 1 1 1
 310041d8 : 9 1 0 0 1 1 1 11 0 1 1 1 1 19 1 1
 31004218 : 1 11 1 1 1 9 1 0 0 1 1 19 1 1 1 1
 31004258 : 1 9 1 0 0 0 0 1 1 1 0 0 1 9 1 0
 31004298 : 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
 310042d8 : 1 1 1 1 9 1 0 0 0 0 0 0 0 0 0 0
 31004318 : 0 0 0 0 1 1 19 1 1 1 0 0 0 0 0 0
 31004358 : 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
 31004398 : 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
 310043d8 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 31004418 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 31004458 : 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
 31004498 : 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
 310044d8 : 1 11 1 1 1 11 1 1 1 1 11 0 1 1 1 11
 31004518 : 1 1 1 11 0 1 1 1 19 1 1 1 1 1 1 1
 31004558 : 11 1 1 1 19 1 1 11 0 1 1 1 1 1 1 1

When the code coverage is saved to file, only blocks with at least one coverage field set are written to the file.
Block that have all the coverage fields set to zero are not saved in order to decrease the file size.

Only internally emulated memory are currently subject for code coverage. Any memory emulated in the user
modules must be handled by a user-defined coverage function.

The memory controller address ranges that are monitored are based on the memory configuration at the moment
when coverage is enabled. When using TSIM's startup parameters to configure memory, coverage can be enabled
before starting simulation. For instance, the range corresponding to SDRAM, for an FTMCTRL memory controller
with the RAM area starting at 0x40000000, will begin at address 0x40000000 if TSIM was started with -nosram
or -ram 0, or will begin at 0x60000000 otherwise. In case a bootloader or the application itself sets up the
memory controller configuration, coverage should be enabled after this setup has been completed.

NOTE on MMU and coverage: The TSIM coverage system does not do any address translations. The monitored
address ranges are based on the physical address ranges where TSIM emulates some kind of memory. There is
currently no support for getting virtual address coverage for virtual addresses that untranslated would go outside
these memory ranges.

When coverage is enabled, disassembly will include an extra column after the address, indicating the coverage
data. This makes it easier to analyse which instructions has not been executed:

tsim> dis strcmp

 31004198 1 82120009 or %o0, %o1, %g1 strcmp
 3100419c 1 80886003 andcc %g1, 0x3, %g0 strcmp + 0x4
 310041a0 11 3280001e bne,a 0x31004218 strcmp + 0x8
 310041a4 0 c24a0000 ldsb [%o0], %g1 strcmp + 0xc
 310041a8 1 c2024000 ld [%o1], %g1 strcmp + 0x10
 310041ac 1 c4020000 ld [%o0], %g2 strcmp + 0x14
 310041b0 1 80a04002 cmp %g1, %g2 strcmp + 0x18
 310041b4 11 32800019 bne,a 0x31004218 strcmp + 0x1c
 310041b8 0 c24a0000 ldsb [%o0], %g1 strcmp + 0x20
 310041bc 1 093fbfbf sethi %hi(0xfefefc00), %g4 strcmp + 0x24
 310041c0 1 07202020 sethi %hi(0x80808000), %g3 strcmp + 0x28
 310041c4 1 881122ff or %g4, 0x2ff, %g4 strcmp + 0x2c
 310041c8 1 8610e080 or %g3, 0x80, %g3 strcmp + 0x30
 310041cc 1 84004004 add %g1, %g4, %g2 strcmp + 0x34
 310041d0 1 82288001 andn %g2, %g1, %g1 strcmp + 0x38
 310041d4 1 80884003 andcc %g1, %g3, %g0 strcmp + 0x3c

The coverage data is not saved or restored during check-pointing operations. When enabled, the coverage func-
tion reduces the simulation performance of about 30%. When disabled, the coverage function does not impact
simulation performance.

Example scripts for annotating C code using saved coverage information from TSIM can be found in the coverage
sub-directory.

Using the coverage lcov command the coverage information is stored in a format that can be easily processed
using the lcov utility. This allows coverage data from multiple runs to be combined, compared, or filtered. It can

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 26

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

also be used by the genhtml utility to create HTML pages with the coverage information in the form of annotated
source code.

3.10. Check-pointing

Saving and restoring simulator state is not yet available, but will be released in a future update.

TSIM can save and restore its complete state, allowing to resume simulation from a saved check-point. Saving
the state is done with the save file command. The state is then saved to file.tss. To restore the state, use
the restore file command.

NOTE: TSIM command line options are not stored. When restoring state in a different instance, TSIM should be
started with the same options as when state was saved.

3.11. Backtrace

The bt command will display the current call backtrace and associated stack pointer:

tsim> bt
 %pc %sp
 #0 0x31004198 0x3000fcf8 strcmp + 0x0
 #1 0x31001980 0x3000fcf8 Func_2 + 0x1c
 #2 0x31001540 0x3000fd58 main + 0x194
 #3 0x310010b0 0x3000fe10 __bcc_crt0 + 0xb0

3.12. Connecting to GDB

TSIM can act as a remote target for GDB, allowing symbolic debugging of target applications. GDB versions 6.8
and 8.2 are actively supported.

To initiate GDB communication, start the simulator with the -gdb switch or use the TSIM gdb command:

tsim> gdb
 gdb interface: using port 1234
 Starting GDB server. Use Ctrl-C to stop waiting for connection.

Then, start GDB in a different window and connect to TSIM using the extended-remote protocol:

$ sparc-rtems-gdb example.exe
(gdb) target extended-remote localhost:1234
Remote debugging using localhost:1234
0x0 in ?? ()
(gdb)

To interrupt simulation, Ctrl-C can be typed in both GDB and TSIM windows. The program can be restarted using
the GDB run command but a monitor gdb reset and load has first to be executed in/via GDB to set up TSIM for
a new run and reload the program image into the simulator. The monitor gdb reset command can be omitted if
the MMU is not in use when using extended-remote target type and using the GDB run to start new simulation.

(gdb) monitor gdb reset
(gdb) load
Loading section .text, size 0x14e50 lma 0x40000000
Loading section .data, size 0x640 lma 0x40014e50
Start address 0x40000000 , load size 87184
Transfer rate: 697472 bits/sec, 278 bytes/write.
(gdb) run

The monitor gdb reset can always be omitted when using the extended-remote target type, with remote exec-file
and starting each new execution via the GDB run command.

(gdb) target extended-remote :1234
Remote debugging using :1234
0x00000000 in ?? ()
(gdb) set remote exec-file /full/path/to/example.exe
(gdb) run
The program being debugged has been started already.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 27

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

Start it from the beginning? (y or n) y
...

(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
...

When using remote target type (as opposed to extended-remote, e.g. when running via GDB in Eclipse) or not
using run to start simulation, the monitor gdb reset should never be omitted before loading an image. In addition,
when debugging multicore images in this situation, monitor gdb postload needs to be issued after loading to
prepare all CPUs for a new run.

(gdb) target remote :1234
(gdb) monitor gdb reset
(gdb) load
Loading section .text, size 0x14e50 lma 0x40000000
Loading section .data, size 0x640 lma 0x40014e50
Start address 0x40000000 , load size 87184
Transfer rate: 697472 bits/sec, 278 bytes/write.
(gdb) monitor gdb postload
(gdb) cont
...

If GDB is detached using the detach command, the simulator returns to the command prompt, and the program
can be debugged using the standard TSIM commands. The simulator can also be re-attached to GDB by issuing
the gdb command to the simulator (and the target command to GDB). While attached, normal TSIM commands
can be executed using the GDB monitor command. Output from the TSIM commands is then displayed in the
GDB console. UART output forwarded to stdout is forwarded to GDB when running the simulation from GDB
if TSIM is started with the -gdbuartfwd option.

TSIM translates SPARC traps into (Unix) signals which are communicated to GDB. If the application encounters
a fatal trap, simulation will be stopped exactly on the failing instruction. The target memory and register values
can then be examined in GDB to determine the error cause. To disable this and let execution continue through the
corresponding trap handler instead, use the -nb [0|1] startup option.

Profiling an application executed from GDB is possible if the symbol table is loaded in TSIM before execution
is started. GDB does not download the symbol information to TSIM, so the symbol table should be loaded using
the monitor command:

 (gdb) monitor symbols example.exe
 read 158 symbols

When an application that has been compiled using the gcc -mflat option is debugged through GDB, TSIM should
be started with -mflat in order to generate the correct stack frames to GDB.

3.13. Thread support

TSIM has thread support for the RTEMS 4.8 and RTEMS 4.10 operating system. Additional OS support will be
added to future versions. The GDB interface of TSIM is also thread aware and the related GDB commands are
described later.

3.13.1. TSIM thread commands

thread info - lists all known threads. The currently running thread is marked with an asterisk. (The wide example
output below has been split into two parts.)

tsim> thread info

 Name | Type | Id | Prio | Time (h:m:s) | Entry point ...
-- ...
 Int. | internal | 0x09010001 | 255 | 5:30.682722 | bsp_idle_thread ...
-- ...
 UI1 | classic | 0x0a010001 | 100 | 0.041217 | system_init ...
-- ...
 ntwk | classic | 0x0a010002 | 100 | 0.251199 | soconnsleep ...
-- ...

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 28

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

 ETH0 | classic | 0x0a010003 | 100 | 0.000161 | soconnsleep ...
-- ...
* TA1 | classic | 0x0a010004 | 1 | 0.034739 | prep_timer ...
-- ...
 TA2 | classic | 0x0a010005 | 1 | 0.025740 | prep_timer ...
-- ...
 TA3 | classic | 0x0a010006 | 1 | 0.021357 | prep_timer ...
-- ...
 TTCP | classic | 0x0a010007 | 100 | 0.002914 | rtems_ttcp_main ...
-- ...

... | PC | State

... ---

... | 0x40044bec _Thread_Dispatch + 0xd8 | READY

... ---

... | 0x40044bec _Thread_Dispatch + 0xd8 | SUSP

... ---

... | 0x40044bec _Thread_Dispatch + 0xd8 | READY

... ---

... | 0x40044bec _Thread_Dispatch + 0xd8 | Wevnt

... ---

... | 0x40006a28 printf + 0x4 | READY

... ---

... | 0x40044bec _Thread_Dispatch + 0xd8 | DELAY

... ---

... | 0x40044bec _Thread_Dispatch + 0xd8 | DELAY

... ---

... | 0x40044bec _Thread_Dispatch + 0xd8 | Wevnt

... ---

thread bt id prints a backtrace of a thread.

tsim> thread bt 0x0a010007

 %%pc
#0 0x40044bec _Thread_Dispatch + 0xd8
#1 0x400418f8 rtems_event_receive + 0x74
#2 0x40031eb4 rtems_bsdnet_event_receive + 0x18
#3 0x40032050 soconnsleep + 0x50
#4 0x40033d48 accept + 0x60
#5 0x4000366c rtems_ttcp_main + 0xda0

A backtrace of the current thread (equivalent to normal bt command):

tsim> thread bt
 %pc %sp
#0 0x40006a28 0x4008d7d0 printf + 0x0
#1 0x40001c04 0x4008d838 Test_task + 0x178
#2 0x4005c88c 0x4008d8d0 _Thread_Handler + 0xfc
#3 0x4005c78c 0x4008d930 _Thread_Evaluate_mode + 0x58

3.13.2. GDB thread commands

TSIM needs the symbolic information of the image that is being debugged to be able to check for thread informa-
tion. Therefore the symbols needs to be read from the image using the symbols command before issuing the gdb
command. When a program running in GDB stops TSIM reports which thread it is in. The command info threads
can be used in GDB to list all known threads.

Program received signal SIGINT, Interrupt.
[Switching to Thread 167837703]

0x40001b5c in console_outbyte_polled (port=0, ch=113 ’q’) at ../../../../../../../../../rtems-
4.6.5/c/src/lib/libbsp/sparc/leon3/console/debugputs.c:38
38 while ((LEON3_Console_Uart[LEON3_Cpu_Index+port]->status & LEON_REG_UART_STATUS_THE)
== 0);

(gdb) info threads

 8 Thread 167837702 (FTPD Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
 7 Thread 167837701 (FTPa Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
 6 Thread 167837700 (DCtx Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
 5 Thread 167837699 (DCrx Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
 4 Thread 167837698 (ntwk ready) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 29

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

 3 Thread 167837697 (UI1 ready) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
 2 Thread 151060481 (Int. ready) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
* 1 Thread 167837703 (HTPD ready) 0x40001b5c in console_outbyte_polled (port=0, ch=113 ’q’)
 at ../../../../../../../../../rtems-4.6.5/c/src/lib/libbsp/sparc/leon3/console/debugputs.c:38

Using the thread command a specified thread can be selected:

(gdb) thread 8

[Switching to thread 8 (Thread 167837702)]#0 0x4002f760 in _Thread_Dispatch () at ../../../../
../../rtems-4.6.5/cpukit/score/src/threaddispatch.c:109
109 _Context_Switch(&executing->Registers, &heir->Registers);

Then a backtrace of the selected thread can be printed using the bt command:

(gdb) bt

#0 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-4.6.5/cpukit/score/src/thread-
dispatch.c:109
#1 0x40013ee0 in rtems_event_receive (event_in=33554432, option_set=0, ticks=0,
event_out=0x43fecc14)
 at ../../../../leon3/lib/include/rtems/score/thread.inl:205
#2 0x4002782c in rtems_bsdnet_event_receive (event_in=33554432, option_set=2, ticks=0,
event_out=0x43fecc14)
 at ../../../../../../rtems-4.6.5/cpukit/libnetworking/rtems/rtems_glue.c:641
#3 0x40027548 in soconnsleep (so=0x43f0cd70) at ../../../../../../rtems-4.6.5/cpukit/libnetwork-
ing/rtems/rtems_glue.c:465
#4 0x40029118 in accept (s=3, name=0x43feccf0, namelen=0x43feccec) at ../../../../../../rtems-
4.6.5/cpukit/libnetworking/rtems/rtems_syscall.c:215
#5 0x40004028 in daemon () at ../../../../../../rtems-4.6.5/c/src/libnetworking/rtems_servers/
ftpd.c:1925
#6 0x40053388 in _Thread_Handler () at ../../../../../../rtems-4.6.5/cpukit/score/src/threadhan-
dler.c:123
#7 0x40053270 in __res_mkquery (op=0, dname=0x0, class=0, type=0, data=0x0, datalen=0,
newrr_in=0x0, buf=0x0, buflen=0)
 at ../../../../../../../rtems-4.6.5/cpukit/libnetworking/libc/res_mkquery.c:199

It is possible to use the frame command to select a stack frame of interest and examine the registers using the info
registers command. Note that the info registers command only can see the following registers for an inactive
task: g0-g7, l0-l7, i0-i7, o0-o7, pc and psr. The other registers will be displayed as 0:

(gdb) frame 5

#5 0x40004028 in daemon () at ../../../../../../rtems-4.6.5/c/src/libnetworking/rtems_servers/
ftpd.c:1925
1925 ss = accept(s, (struct sockaddr *)&addr, &addrLen);

(gdb) info reg

g0 0x0 0
g1 0x0 0
g2 0xffffffff -1
g3 0x0 0
g4 0x0 0
g5 0x0 0
g6 0x0 0
g7 0x0 0
o0 0x3 3
o1 0x43feccf0 1140772080
o2 0x43feccec 1140772076
o3 0x0 0
o4 0xf34000e4 -213909276
o5 0x4007cc00 1074252800
sp 0x43fecc88 0x43fecc88
o7 0x40004020 1073758240
10 0x4007ce88 1074253448
11 0x4007ce88 1074253448
12 0x400048fc 1073760508
13 0x43feccf0 1140772080
14 0x3 3
15 0x1 1
16 0x0 0
17 0x0 0
i0 0x0 0
i1 0x40003f94 1073758100
i2 0x0 0
i3 0x43ffafc8 1140830152
i4 0x0 0
i5 0x4007cd40 1074253120
fp 0x43fecd08 0x43fecd08

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 30

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

i7 0x40053380 1074082688
y 0x0 0
psr 0xf34000e0 -213909280
wim 0x0 0
tbr 0x0 0
pc 0x40004028 0x40004028 <daemon+148>
npc 0x4000402c 0x4000402c <daemon+152>
fsr 0x0 0
csr 0x0 0

It is not supported to set thread specific breakpoints. All breakpoints are global and stops the execution of all
threads. It is not possible to change the value of registers other than those of the current thread.

3.14. Synchronising TSIM time to external time

To maximise simulation performance, TSIM executes as fast as possible doing no synchronisation of the simula-
tion time with any external notion of time. This is especially apparent when the processor is in power-down mode
and simulation time is increased by the events in the event queue alone.

To synchronise the simulation time with an external notion of time, events that handles synchronisation needs
to be added to the event queue. The walltimesync example module in the examples/modules directory
provides an example that makes sure that TSIM does not execute faster than real time. This example can be used
as a template for synchronising to other notions of time. See Chapter 5 on how to use modules.

3.15. Debugging particular device types and devices

To enable printout of debug information one can issue the dbgon flag command on the TSIM3 command line
to toggle the on/off state of a flag for all cores of a certain type. The debug flags that are available are described
for each core in their chapters.

Many cores also have their own debug commands on the format coreX_dbg that targets single cores instead of
all of one kind and that have support to set all or none of the debug flags options and list the current setting for
the debug flags. See the sections on the respective cores for details.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 31

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

4. Emulation characteristics

4.1. Common behaviour

4.1.1. Timing

The simulator time is maintained and incremented in terms of clock cycles. The parallel execution between the IU
and FPU is modelled, as well as stalls due to operand dependencies. Instruction timing has been modelled after
the real devices. Integer instructions have a higher accuracy than floating-point instructions due to the somewhat
unpredictable operand-dependent timing of the FPU. Typical usage patterns have higher accuracy than atypical
ones, e.g. having vs. not having caches enabled on LEON systems. Tracing using the inst, ahb or hist command
will display the corresponding simulator time in the left column. This time indicates when the instruction or bus
access finished. Cache misses, waitstates or data dependencies will delay the following fetch according to the
incurred delay.

4.1.2. UARTs

The UART model can be operating in two modes, accurate mode and fast mode. In the accurate mode the baud
rate and frame length is taken into account but in fast mode the UARTs operate at infinite speed. In fast mode the
transmitter FIFO/holding register is always empty and a transmitter empty interrupt is generated directly after each
write to the transmitter data register. The receivers can never overflow or generate errors. Fast mode is enabled
with the -fast_uart switch.

Note that in accurate mode, it is possible that the last character of a program is not displayed on the console. This
can happen if the program forces a processor in error mode, thereby terminating the simulation, before the last
character has been shifted out from the transmitter shift register. To avoid this, an application can poll the UART
status register and not force the processor in error mode before the transmitter shift registers are empty. The real
hardware does not exhibit this problem since the UARTs continue to operate even when the processor is halted.

When an application is running with UART forwarded to the console (as the first UART is by default, or some
other UART using the -u option) the following key sequences will be available. The sequences can be used to
send key sequences to the UART that would otherwise be intercepted by the host operating system or to adjust
the input to what the target system expects. For a key sequence to take effect, both key presses must be pressed
within 1.5 seconds of each other. Otherwise, they will be forwarded as is.

Table 4.1. Uart control sequences

Key sequence Action

Ctrl+A B Toggle delete to backspace conversion

Ctrl+A C Send break (Ctrl+C) to the running application

Ctrl+A D Toggle backspace to delete conversion

Ctrl+A E Toggle local echo on/off

Ctrl+A H Show a help message

Ctrl+A N Enable/disable newline insertion on carriage return

Ctrl+A S Show current settings

Ctrl+A Z Send suspend (Ctrl+Z) to the running application

Ctrl+A Ctrl+A Send a single Ctrl+A to the running application

4.1.2.1. APBUART model (LEON3/4 only)

The APBUART model used on LEON3 and LEON4 systems is by default set up for receiver and transmitter
FIFO mode. In this mode the additional FIFO flags and level interrupts are also modelled like the APBUART IP.
The FIFO depth can be configured with the -uart_fs switch. FIFO mode can be disabled altogether with -
uart_fs 1. FIFO mode is supported with both accurate and fast mode. However in fast mode the transmitter
operates in infinite speed always causing the FIFO to be empty.

Loopback mode is supported both in fast and accurate mode. In fast mode transmitted characters directly ends
up in the receiver. Similar to the hardware the CTSN/RTSN signals are connected together in loop back mode
making flow control possible regardless of operating mode.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 32

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

Flow control bit is supported but has a different effect compared to hardware when loopback mode is disabled.
TSIM UARTs interfaces to user controlled devices (see -uartX) which may/may not implement flow control
in different ways. When flow control is enabled APBUART receiver never overflows, however the transmitter
operates independently of the flow control setting as if CTSN is always 0 by pausing the simulator until the
character is transferred to the UART device.

The debugflag APBUART_ACC can be used with the TSIM command uartX_dbg to enable debug printouts
each time a register access is made to the core. Here X is the index of the APBUART core.

4.1.2.2. UART model (LEON2 only)

The UART model of LEON2 automatically switch to fast mode when the scaler baud rate register is set to zero.
This is different from the APBUART model where only the -fast_uart switch is used to determine the mode.

4.1.3. Floating point unit (FPU)

The models for the GRFPU-lite and GRFPU models supports parallel IU and FPU execution, deferred floating
point traps and the floating point deferred trap queue. The model for the Meiko FPU on LEON2 models the FPU
setup for AT697E and AT7913E with no parallel IU and FPU execution, no floating point queue and no deferred
floating point traps.

The GRFPU model simulates all types calculation results and exceptions, including denormal numbers and NaN
results. It does not however simulate the possibility of multiple outstanding floating point operations. The complex
internal timing of the GRFPU is not modelled in detail.

The simulator implements (to some extent) data-dependent execution timing for the Meiko FPU and GRFPU-lite.
The only discrepancy between TSIM and actual hardware in terms of results is that when NaN results are generated
on Meiko FPU on LEON2 and GRFPU-lite, they can differ compared to real hardware in the significand bits (but
not in the signalling/quiet bit).

4.1.4. Delayed write to special registers

The SPARC architecture defines that a write to the special registers (%psr, %wim, %tbr, %fsr, %y) may have up
to 3 delay cycles, meaning that up to 3 of the instructions following a special register write might not ‘see’ the
newly written value due to pipeline effects. While LEON have between 2 and 3 delay cycles, TSIM has 0. This
does not affect simulation accuracy or timing as long as the SPARC ABI recommendations are followed that each
special register write must always be followed by three NOP. If the three NOP are left out, the software might fail
on real hardware while still executing ‘correctly’ on the simulator.

4.1.5. Peripherals registers

An overview of peripherals can be displayed with the leon command. Individual registers can be listed with the
info reg coreX or info reg addr command.

4.1.6. Idle-loop optimisation

To minimise power consumption, LEON applications will typically place the processor in power-down mode when
the idle task is scheduled in the operation system. In power-down mode, TSIM increments the event queue with-
out executing any instructions, thereby significantly improving simulation performance. However, some (poorly
written) code might use a busy loop (BA 0) instead of triggering power-down mode. The -bopt switch will en-
able a detection mechanism which will identify such behaviour and optimise the simulation as if the power-down
mode was entered.

4.1.7. Custom instruction emulation

TSIM/LEON allows the emulation of custom (non-SPARC) instructions. A handler for non-standard instruction
can be installed using the tsim_ext_ins() callback function (see Section 6.2). The function handler is called
each time an instruction is encountered that would cause an unimplemented instruction trap. The handler is passed
the CPU ID of the executing CPU, cpuid, and a pointer, r, to a structure containing the opcode and all processor
registers, allowing it to decode and emulate a custom instruction, and update the processor state.

The definition for the custom instruction handler is:

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 33

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

int (*func)(void *priv,
 int cpuid,
 uint32 inst,
 uint32 **window,
 uint32 *icnt),

The priv pointer is a private pointer registered by user and passed to func when it is called. The cpuid argument
is the CPU index of CPU for which instruction is to be executed. The inst argument contsins the instruction to
be executed. The window argument is an array of pointers to instructions. It can be used both for to read and write
registers. It can be indexed using the G*, I*, O*, and L* constants from enum regname. It can be used both to
get current register values as well as change variables in the current register window. In case other registers needs
to be accessed, tsim_get_reg and tsim_set_reg can be used. Using the icnt argument, the number of
cycles in the pipeline for the instruction can be set in *icnt. It defaults to 1, a fully pipelined instruction.

The return value of the custom handler indicates which trap the emulated instruction has generated, or 0 if no
trap was caused. If the handler could not decode the instruction, 2 should be returned to cause an unimplemented
instruction trap.

The number of clocks consumed by the instruction should be returned in *icnt. This value is by default 1, which
corresponds to a fully pipelined instruction without data interlock. The handler should not increment the %pc or
%npc registers, as this is done by TSIM.

4.1.8. Chip-specific errata

Incorrect behaviour described in errata documents for specific devices are not emulated by TSIM in general.

4.2. LEON2 specific emulation

4.2.1. Processor

The LEON2 version of TSIM emulates the behaviour of the LEON2 VHDL model. The (optional) MMU can be
emulated by starting TSIM with the -mmu switch.

4.2.2. Cache memories

TSIM/LEON2 can emulate any permissible cache configuration using the -icsize, -ilsize, -dcsize and
-dlsize options. Allowed sizes are 1 - 64 KiB with 16 - 32 bytes/line. The characteristics of the LEON multi-set
caches can be emulated using the -isets, -dsets, -irepl, -drelp, -ilock and -dlock options. Diag-
nostic cache reads/writes are implemented. The simulator commands icache and dcache can be used to display
cache contents. Starting TSIM with -at697e will configure that caches according to the Atmel AT697E device.

4.2.3. Interrupt controller

External interrupts are not implemented, so the I/O port interrupt register has no function. Internal interrupts are
generated as defined in the LEON specification. All 15 interrupts can also be generated from the user defined I/
O module using the set_irq() callback.

4.2.4. Power-down mode

The power-down register (0x80000018) is implemented as in the specification. In power-down mode, the simulator
skips time until the next event in the event queue, thereby significantly increasing the simulation speed. A Ctrl-C
in the simulator window will break execution, but will not make the CPU exit power-down mode.

4.2.5. Memory emulation

The memory configuration registers 1/2 are used to decode the simulated memory. The memory configuration
registers has to be programmed by software to reflect the available memory, and the number and size of the memory
banks. The waitstates fields must also be programmed with the correct configuration after reset. Both SRAM and
functionally modelled SDRAM (with SRAM timing) can be emulated.

Using the -banks option, it is possible to set over how many RAM banks the external SRAM is divided in. For
mkprom encapsulated programs, it is essential that the same RAM size and bank number setting is used for both
mkprom and TSIM.

The memory EDAC of LEON2-FT is not implemented.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 34

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

4.2.6. SPARC V8 MUL/DIV and V8E MAC instructions

TSIM/LEON2 by default supports the SPARC V8 multiply and divide instructions. To emulate LEON2 systems
which do not implement these, use the -nov8 option to disable multiply and divide instructions. TSIM/LEON2
optionally implements the SPARC V8E MAC instructions. To emulate LEON2 systems which implement these,
use the -mac option to enable the MAC instructions, and make sure to not use -nov8.

4.2.7. FPU emulation

By default, TSIM/LEON emulates the Meiko FPU. The -grfpu command line option enables the GRFPU model.
See Section 4.1.3 for details on the FPU models.

4.2.8. DSU and hardware breakpoints

The LEON debug support unit (DSU) and the hardware watchpoints (%asr24 - %asr31) are not emulated.

4.3. LEON3 specific emulation

4.3.1. General

The LEON3 version of TSIM by default emulates the behaviour of a generic LEON3. The system includes the
following modules: LEON3 processor, APB bridge, IRQMP interrupt controller, FTMCTRL memory controller
(but EDAC is not modelled), GPTIMER timer units with 32-bit timers and APBUART UARTs. Chip options
instead sets up TSIM to emulate a particular chip. Other hardware configuration options can change parameters
from either the default values or from the values set up by a chip option.

4.3.2. Processor

The instruction timing of the emulated LEON3 processor is modelled after the LEON3 in GRLIB IP library and
after the specific chips that have their own chip options. The processor can be configured with 2 - 32 register
windows using the -nwin switch. The MMU is emulated by default, but can be disabled using -mmu 0. Local
instruction RAM and local data RAM can be added with the -ilram and -dlram switches.

4.3.3. Cache memories

TSIM can emulate any permissible cache configuration using the -icsize, -ilsize, -dcsize and -dlsize
options. Allowed sizes are 1 - 256 KiB with 16 - 32 bytes/line. The characteristics of the LEON multi-way caches
can be emulated using the -isets, -dsets, -irepl, -drelp, -ilock and -dlock options. Diagnostic
cache reads/writes are implemented. The simulator commands icache and dcache can be used to display cache
contents, flush caches and query cache status for given addresses.

The evaluation version of TSIM/LEON3 implements 2*4 KiB caches, with 16 bytes per line.

4.3.4. Power-down mode

The LEON3 power-down function is implemented as in the specification. When in power down mode, the simu-
lator skips time until the next event in the event queue, thereby significantly increasing the simulation speed. A
Ctrl-C in the simulator window will break execution,but will not make any CPU exit power-down mode.

4.3.5. Interrupt controller

The IRQMP interrupt controller model supports extended interrupts, multicore registers, interrupt maps, and in-
terrupt timestamping. When having extended interrupts enabled, interrupts 1-31 can be generated. For GR716
interrupts 1-63 can be generated. Extended interrupts can be enabled by the -ext option, or with a chip option
for a chip that has extended interrupts (e.g. -gr712rc, -ut700 and -ut699e). Interrupts can be generated by
user models using the set_irq() callback of TSIM's ioif struct. See Section 5.2.2 for details.

The debugflag IRQMP_ACC can be used with the TSIM command irqmpX_dbg to enable debug printouts each
time a register access is made to the interrupt controller. Here X is the index of the interrupt controller.

4.3.6. Memory emulation

The FTMCTRL (without EDAC emulation) or the LEON2 memory controller is emulated in the LEON3 version
of TSIM. The memory configuration registers 1 and 2 are used to decode the simulated memory. The memory

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 35

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

configuration registers has to be programmed by software to reflect the available memory, and the number and size
of the memory banks. Both SRAM and SDRAM can be emulated, however, the SDRAM model does not support
sending commands using the SDRAM command field in mcfg2. The PROM area is basically modelled as MRAM.

The SRAM is configured using options like -ram, -ramwidth, -banks and -nosram. The SDRAM is con-
figured using options like -sdram and -sdbanks. The PROM is configured using options like -rom and -
romwidth.

When booting from PROM, it is important that the configuration done by the bootloader matches the system setup,
just as for booting on actual hardware. TSIM however does not model any failure due to too few waitstates.

Options regarding memory characteristics are not available in the evaluation version of TSIM/LEON3.

4.3.7. CASA instruction

The -cas option or any chip option for a chip with CASA support enables emulation of the CASA instruction
(LEON3/4 only). Using -cas 0 can disable CASA support when otherwise already enabled.

4.3.8. SPARC V8 MUL/DIV and V8E MAC instructions

TSIM/LEON3 by default supports the SPARC V8 multiply and divide instructions. To emulate LEON3 systems
which do not implement these, use the -nov8 option to disable multiply and divide instructions. TSIM/LEON3
optionally implements the SPARC V8E MAC instructions. To emulate LEON3 systems which implement these,
use the -mac option to enable the MAC instructions, and make sure to not use -nov8.

4.3.9. FPU emulation

By default, TSIM/LEON3 emulates the GRFPU-lite FPU unless a chip option for a chip with a GRFPU is used.
The -grfpu command line option enables the GRFPU model. See Section 4.1.3 for details on the FPU models.

4.3.10. DSU and hardware breakpoints

The LEON debug support unit (DSU) and the hardware watchpoints (%asr24 - %asr31) are not emulated.

4.3.11. AHB status registers

When using -ahbstatus or a chip option for a chip that has AHB status registers, AHB status registers are
enabled. As TSIM/LEON3 does not emulate FT, the CE bit will never be set by TSIM's internal memory models,
but the correctable_error() function (Section 5.3.1) can be used in a user model to set it. Furthermore,
the HMASTER field is set to the CPU index (starting at zero) when the CPU caused the error and one over the
last CPU index (i.e. 1 in a one CPU system) when any other master caused the error.

4.3.12. GPTIMER emulation

The debugflag GPTIMER_ACC can be used with the TSIM command gptimerX_dbg to enable debug printouts
each time a register access is made to the core. Here X is the index of the GPTIMER core.

4.3.13. GRTIMER emulation

When using -gr712rc, the GRTIMER core is modelled (in addition to the regular GPTIMER core).

The debugflag GRTIMER_ACC can be used with the TSIM command grtimerX_dbg to enable debug printouts
each time a register access is made to the core. Here X is the index of the GRTIMER core.

4.4. LEON4 specific emulation

Currently, the only supported LEON4 configuration is GR740.

4.4.1. Processor

The four emulated LEON4 processors are modelled after the LEON4 VHDL model in GRLIB IP library and is
configured to emulate GR740. Simulation of LEON4 in other configurations is not yet available.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 36

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

4.4.2. L1 Cache memories

TSIM/LEON4 can emulate any permissible cache configuration using the -icsize, -ilsize, -dcsize and -
dlsize options. Allowed sizes are 1 - 256 KiB with 16 - 32 bytes/line. The characteristics of the LEON multi-set
caches can be emulated using the -isets, -dsets, -irepl, -drelp, -ilock and -dlock options. Diag-
nostic cache reads/writes are implemented. The simulator commands icache and dcache can be used to display
cache contents, flush caches and query cache status for given addresses.

4.4.3. L2 Cache memory

GR740 has a 2 MiB L2 cache with 4 cache ways and 32 byte cache lines. The L2 cache has support for dynamically
configurable replacement policies as well as locked ways. Individual memory regions can be write protected or
marked uncacheable by the MTRR registers.

When starting TSIM the L2 cache is set up in reset state and thus disabled. The run command will as part of the
boot-loading flush, invalidate and enable the L2 cache. The boot command will flush and invalidate the cache as
part of restarting simulation but will otherwise leave it in its reset state. The L2 cache can otherwise be enabled
or disabled via the register interface or the l2cache enable and l2cache disable commands.

The l2cache command shows the current overview of the state of the L2 cache. For more commands for flushing,
invalidating the cache as well as investigating the L2 cache state, see the various l2cache subcommands in Sec-
tion 3.3.1 or use the help l2cache command to list the available L2 cache commands.

4.4.3.1. Limitations of the L2 cache model

In this release, the L2 cache model has a number of features that are not yet supported. AMBA split responses and
writethrough are not supported. In other words, only waitstate responses will be given and only copy-back will be
performed. The different tuning settings available in the access control register are not modelled. Moreover, dirty
cachelines are always modelled as fully dirty and not half dirty. These limitations have no functional effects on
simulated software as long as the cache is flushed before disabling if the cache needs to be disabled.

No FT features are modelled. There is no EDAC emulation, error injection, scrubbing. This includes related reg-
isters and register fields, including the entire error status/control register. There is also no support for HPROT
signals. These limitations are reflected in the registers shown by the info reg command for the L2 cache. Timing
of cache clushing is not modelled.

Interacting with the L2 cache with commands such as the mem and wmem will affect the state the cache just
as regular bus accesses would, including timing of future accesses when continuing (as opposed to restarting)
execution. In the same way, l2cache commands that changes L2 cache state, will affect timing of future accesses
when continuing execution.

4.4.4. Power-down mode

The LEON4 power-down function is implemented as in the specification. When in power down mode, the simu-
lator skips time until the next event in the event queue, thereby significantly increasing the simulation speed. A
Ctrl-C in the simulator window will break execution, but will not make any CPU exit power-down mode.

4.4.5. Interrupt controller

The IRQ(A)MP interrupt controller model supports multiple internal interrupt controllers, extended interrupts,
multicore registers, interrupt maps, interrupt timestamping and extended interrupts. All 31 interrupts can be gen-
erated by user models using the set_irq() callback of TSIM's ioif struct. See Section 5.2.2 for details. The
watchdog control and error mode status registers are not yet implemented.

The debugflag IRQMP_ACC can be used with the TSIM command irqmpX_dbg to enable debug printouts each
time a register access is made to the interrupt controller. Here X is the index of the interrupt controller.

4.4.6. Memory emulation

The SDRAM controller behind the L2 cache is modelled for GR740. It can be configured with the -sdram, -
sdfreq and -sdbanks options as well as through the SDRAM controller registers, sdcfg1/sdcfg2.

In this release the simulated timing is based on a CPU frequency of 250 or 50 MHz and a memory frequency of
either 50 or 100 MHz, default memory frequency is 100 MHz. For CPU frequencies other than 250 or 50 MHz,

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 37

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

timing is a rough estimate. Issuing commands to the SDRAM through the sdcfg1 register is not supported. No
EDAC functionality is currently emulated.

The FTMCTRL for the PROM and I/O areas is also emulated. No EDAC functionality is currently emulated.

4.4.7. IOMMU

Two modes of protection are supported, access protection vector (APV) and MMU mode. Diagnostic accesses and
error injection are not supported. But most diagnostic functionality is supported by commands, such as displaying
the contents of the cache, writing cache lines/tags and looking up address translations.

4.4.8. CASA instruction

The -cas option or any chip option for a chip with CASA support enables emulation of the CASA instruction
(LEON3/4 only). Using -cas 0 can disable CASA support when otherwise already enabled.

4.4.9. SPARC V8 MUL/DIV and V8E MAC instructions

TSIM/LEON4 by default supports the SPARC V8 multiply and divide instructions. To emulate LEON4 systems
which do not implement these, use the -nov8 option to disable multiply and divide instructions. TSIM/LEON4
optionally implements the SPARC V8E MAC instructions. To emulate LEON4 systems which implement these,
use the -mac option to enable the MAC instructions, and make sure to not use -nov8.

4.4.10. FPU emulation

By default, TSIM/LEON4 emulates the GRFPU FPU. See Section 4.1.3 for details on the FPU models.

4.4.11. DSU and hardware breakpoints

The LEON debug support unit (DSU) and the hardware watchpoints (%asr24 - %asr31) are not emulated.

4.4.12. AHB status registers

The AHB status register on the processor bus is modelled. The CE bit will never be set by TSIM's internal mem-
ory models, but the correctable_error() function (Section 5.3.1) can be used in a user model to set it.
Furthermore, the HMASTER field is set to the CPU index (starting at zero) when the CPU caused the error, and
4 when any other master caused the error.

When using -ahbstatus or a chip option for a chip that has AHB status registers, AHB status registers are
enabled. As TSIM currently does not emulate FT, the CE bit will never be set by TSIM's internal memory models,
but the correctable_error() function (Section 5.3.1) can be used in a user model to set it. Furthermore,
the HMASTER field is set to the CPU index (starting at zero) when the CPU caused the error and one over the
last CPU index (i.e. 1 in a one CPU system) when any other master caused the error.

4.4.13. GPTIMER emulation

The debugflag GPTIMER_ACC can be used with the TSIM command gptimerX_dbg to enable debug printouts
each time a register access is made to the core. Here X is the index of the GPTIMER core.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 38

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

5. Loadable modules

NOTE: At this stage, the available interfaces are not entirely in their final form and are subject to change.

User-defined models using C APIs are all loaded into TSIM using the general module interface, from which the
specific user modules can be registered with TSIM using different registration functions.

5.1. General module interface

This section describes the general module interface. General modules can in themselves be used in to run code
from various callbacks called from TSIM, but are also used as spring boards for all kinds of user models that are
registered from one or several general modules.

5.1.1. Loading modules

To load a general module in standalone TSIM, use the -mod option to specify a general module in form of a
dynamic shared object for TSIM to load. In other words a .so file in Linux and DLL in Windows. Note that in
Linux you generally cannot just specify the name of the file even if it is in the current directory.

$ tsim-leon3 -mod ./module.so

The environment variable TSIM_MODULE_PATH can be set to list of seach paths in order to find modules
without specifying a full path. This should be a ‘:’ separated list in Linux, and a ‘;’ separated list in Windows.
When using TLIB, the tsim_register_module function is an alternative to the -mod option. See Chapter 6.

See Section 5.1.3 on how to register other kind of modules from a general module and in which sections they
are documented.

5.1.2. General module API

A module should be a dynamic library that should expose a public symbol loadable_module of type struct
loadable_module *. Note that the module must be compiled to be position-independent, i.e. with the -fPIC
switch (gcc).

The struct loadable_module is defined in tsim.h as:

struct loadable_module {
 void *priv; /* Free for the module to use */
 int (*preinit)(struct loadable_module *module);
 int (*init)(struct loadable_module *module);
 void (*exit)(struct loadable_module *module);
 void (*restart)(struct loadable_module *module);
 void (*reset)(struct loadable_module *module);
 void (*preset)(struct loadable_module *module);
 void (*start)(struct loadable_module *module);
 void (*stop)(struct loadable_module *module);
};

The elements in the structure has the following meaning:

void *priv;
Free for the module to use.

int (*preinit)(struct loadable_module *module);
Called once before simulator startup. Startup options should be registered here. See Section 5.5.

int (*init)(struct loadable_module *module);
Called once on simulator startup. Modules should be registered here.

void (*exit)(struct loadable_module *module);
Called once on simulator exit.

void (*restart)(struct loadable_module *module);
Called every time the simulator is restarted (simtime set to zero) including at startup. After a restart TSIM
will also issue a call to reset.

void (*reset)(struct loadable_module *module);
Called every time the system is reset, including at startup and after a restart.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 39

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

void (*preset)(struct loadable_module *module);
Called when the run command performs bootloader-like operations.

void (*start)(struct loadable_module *module);
Called each time simulation starts, both when starting for the first time using boot or run command and
when continuing using go, cont, step and the like.

void (*stop)(struct loadable_module *module);
Called every time simulation stops, e.g. due to breakpoints, user pressing Ctrl-C, etc.

5.1.3. Connecting specific modules

Specific modules should be registered from the init function of a general module. The following functions are
used for that:

tsim_register_ahb_module(struct ahb_subsystem *ahbsystem)
Register an AHB system module. See Section 5.3.

tsim_register_io_module(struct io_subsystem *iosystem)
Register a I/O system module. See Section 5.4.

tsim_register_spim_module(struct spim_subsystem *subsystem, int index)
Register subsystem to SPIM controller with index index. See Chapter 22.

tsim_register_gpio_module(struct gpio_input *inp, int index)
Register inp to GPIO controller with index index. See Chapter 17.

tsim_register_spi_module(struct spi_input *inp, int index)
Register inp to SPI controller with index index. See Chapter 21.

tsim_register_dac_module(struct dac_input *inp, int index)
Register inp to DAC controller with index index. See Section 8.3.

tsim_register_can_node(struct can_node *node, int canbus_index)
Register node to CAN bus with index canbus_index. See Section 14.4 for more information.

tsim_register_grpci_module(struct grpci_input *inp, int index)
Register inp to GRPCI controller with index index. See Section 18.3 for more information.

5.1.4. General module examples

The walltimesync.c example is a pure general module example that does not register another type of module.
See Section 5.7 for a more complete list of module examples, that all are general modules as entry points.

5.2. TSIM exported emulation interfaces

TSIM exports three structures: simif, ioif and procif. The simif structure defines functions and data structures
belonging to the simulator core, while ioif defines functions for bus accesses. The procif structure defines a few
functions giving access to the processor emulation, cache behaviour and interrupt controller.

Note that in general the exported functions in these structures may only be called from user module functions that
are called by TSIM, e.g. the init function, from event callbacks, from read and write functions, as well as from
TLIB. Unless explicitly allowed, do not call them from a separate thread or a signal handler.

Pointers to simif, ioif and procif can be obtained by the functions tsim_get_simif(), tsim_get_ioif()
and tsim_get_procif()defined in tsim.h.

5.2.1. simif structure

The simif structure is defined in tsim.h as:

struct sim_options {
 uint32 phys_ram;
 uint32 phys_rom;
 float64 freq;
 float64 wdfreq;
 uint32 phys_sdram;
};
struct sim_interface {
 struct sim_options *options; /* tsim command-line options */
 uint64 (*simtime)(void); /* current simulator time */
 void (*sys_reset)(void); /* reset processor */
 void (*sim_stop)(void); /* stop simulation */
 void (*event)(void (*cfunc)(void *), void *arg, uint64 offset);
 int (*stop_event)(void (*cfunc)(void *));

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 40

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

 int (*stop_event_arg)(void (*cfunc)(void *), void *arg);
 int (*stop_one_event)(void (*cfunc)(void *));
 int (*stop_one_event_arg)(void (*cfunc)(void *), void *arg);

 /* Restorable events */
 unsigned short (*reg_revent)(void (*cfunc) (void *arg));
 unsigned short (*reg_revent_prearg)(void (*cfunc) (void *arg),
 void *arg);
 int (*revent)(unsigned short index, void *arg, uint64 offset);
 int (*revent_prearg)(unsigned short index, uint64 offset);
 int (*stop_revent)(unsigned short index);
 int (*lprintf)(const char *format, ...); /* logged formatted output */
 int (*vlprintf)(const char *format, va_list ap); /* logged formatted output */

 /* Collected arguments from all sources, excluding executable name */
 int argc;
 char **argv;
};

The elements in the structure has the following meaning:

struct sim_options *options;
Contains some tsim startup options. options.freq defines the clock frequency of the emulated processor and
can be used to correlate the simulator time to the real time.

uint64 (*simtime)(void);
Returns the current simulator time. Time is counted in clock cycles since start of simulation. To calculate
the elapsed real time, divide simtime with options.freq.

void (*sys_reset)(void);
Performs a system reset. Should only be used if the model is capable of driving the reset input.

void (*sim_stop)(void);
Stops current simulation. Can be used for debugging purposes if manual intervention is needed after a
certain event.

void (*event)(void (*cfunc)(void *), void *arg, uint64 offset);

TSIM maintains an event queue to emulate time-dependent functions. The event() function inserts an
event in the event queue. An event consists of a function to be called when the event expires, an argument
with which the function is called, and an offset (relative the current time) defining when the event should
expire.

NOTE: The event() function may only be called from event callbacks or at start of simulation (e.g. not
from from from a separate thread or a signal handler). The event queue can hold a maximum of 2048 events.

NOTE: For save and restore support, restorable events should be used instead.
int (*stop_event)(void (*cfunc)(void *));

Removes all events from the event queue which has the calling function equal to cfunc(). Returns the
number of events stopped.

int (*stop_event_arg)(void (*cfunc)(void *), void *arg);
Removes all events from the event queue which has the callback function equal to cfunc() and argument
equal to arg. Can be useful when simulating multiple instances of an entity.

int (*stop_one_event)(void (*cfunc)(void *));
Removes at most one event, closest in time, from the event queue which has the calling function equal to
cfunc(). Returns the number of events stopped. Can be used when either only one of many events is to
be removed or for better performance when knowing that there is only one possible match.

int (*stop_one_event_arg)(void (*cfunc)(void *), void *arg);
Removes at most one event, closest in time, from the event queue which has the callback function equal
to cfunc() and argument equal to arg. Can be useful when simulating multiple instances of an entity.
Can be used when either one of many events is to be removed or for better performance when knowing
that there is only one possible match.

unsigned short (*reg_revent)(void (*cfunc)(void *arg));
Registers a restorable event that will use cfunc as callback. The returned index should be used when call-
ing revent(). The event argument is supplied when calling revent(). The call to reg_revent()
should be done once at module initialisation.

unsigned short (*reg_revent_prearg)(void (*cfunc) (void *arg), void *arg);
Registers a restorable event that will use cfunc as callback and arg as argument. This can be used to
register an argument that is a pointer to a data structure. The returned index should be used when calling
revent_prearg(). The call to reg_revent_prearg() should be done once at module initialisa-
tion.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 41

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

int (*revent)(unsigned short index, void *arg, uint64 offset);
This inserts an event registered by reg_revent() into the event queue with the registered cfunc for
the given index. Multiple events with the same index can be in the event queue at the same time. The
arg and offset arguments are the same as for the event() function.

NOTE: See the description of event() for limitations on number of events and from which contexts
events can be added.

int (*revent_prearg)(unsigned short index, uint64 offset);
This inserts an event registered by reg_revent_prearg() into the event queue with the registered
cfunc and arg for the given index. Multiple events with the same index can be in the event queue at
the same time. The offset argument is the same as for the event() function.

NOTE: See the description of event() for limitations on number of events and from which contexts
events can be added.

int (*stop_revent)(unsigned short index);
This removes at most one event, closest in time, from the event queue that has been entered by revent()
or revent_prearg() using the given index. Returns the number of events stopped.

int (*lprintf)(const char *format, ...)
Function for formatted output that goes both to stdout and, when logging is enabled, to the log. The function
interface works like for printf.

int (*vlprintf)(const char *format, va_list ap)
Function for formatted output that goes both to stdout and, when logging is enabled, to the log. The function
interface works like for vprintf.

int argc, char** argv
argv is the collected arguments from all sources, excluding executable name. argc is the number of
arguments.

5.2.2. ioif structure

The ioif structure is defined in tsim.h as:

struct io_interface {
 void (*set_irq)(uint32 irq);
 int (*dma_read)(uint32 master_id, uint32 addr, uint32 *data, int num);
 int (*dma_write)(uint32 master_id, uint32 addr, uint32 *data, int num);
 int (*dma_write_sub)(uint32 master_id, uint32 addr, uint32 *data, int sz);
};

The elements of the structure have the following meaning:

void (*set_irq)(uint32 irq);
Generate interrupt irq on the bus. Valid values of irq is 1 - 15 for systems without extended interrupts and
1-31 for systems with extended interrupts, and 1-63 for GR716. Note that the interrupt controller controls
how and when processor interrupts are actually generated.

int (*dma_read)(uint32 master_id, uint32 addr, uint32 *data, int num);
int (*dma_write)(uint32 master_id, uint32 addr, uint32 *data, int num);

Performs DMA transactions to/from the emulated processor memory. Only 32-bit word transfers are al-
lowed, and the address must be word aligned. On bus error, 1 is returned, otherwise 0. DMA takes place
on the AMBA AHB bus.

int (*dma_write_sub)(uint32 master_id, uint32 addr, uint32 *data, int sz);
Performs DMA transactions to/from the emulated processor memory on the AMBA AHB bus. On bus
error, 1 is returned, otherwise 0. Write size is indicated by sz as follows: 0 = byte, 1 = half-word, 2 =
word, 3 = double-word.

5.2.3. procif structure

The procif structure is defined in tsim.h as:

struct proc_interface {
 void (*set_irl)(int cpuid, int level); /* Generate external interrupt signal directly to CPU */
 void (*cache_snoop)(uint32 addr);
 void (*cctrl)(int cpuid, uint32 *data, uint32 read);
 void (*power_down)(int cpuid);
 void (*set_irq_level)(uin32 irq, int set);
 void (*set_irq)(uint32 irq); /* generate external interrupt */

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 42

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

};

The elements in the structure have the following meaning:

void (*set_irl)(int cpuid, int level);

Set the the current interrupt level (iui.irl in VHDL model) signal directly to the specified CPU. Allowed
values are 0 - 15, with 0 meaning no pending interrupt. Once the interrupt level is set, it will remain until
it is changed by a new call to set_irl(). The modules interrupt callback routine should typically reset
the interrupt level to avoid new interrupts.

NOTE: For normal interrupt generation, use set_irq instead. This bypasses the built in interrupt con-
troller model.

void (*cache_snoop)(uint32 addr);
The cache_snoop() function can be used to invalidate data cache lines (regardless of whether data cache
snooping is enabled or not). The tags to the given address will be checked, and if a match is detected the
corresponding cache lines will be flushed (i.e. the tag will be cleared). If an MMU is present and is enabled
the argument should be a virtual address. See also the snoop function in struct ahb_interface.

void (*cctrl)(int cpuid, uint32 *data, uint32 read);
Read and write the specified CPUs cache control register (CCR). If read = 1, the CCR value is returned in
*data, else the value of *data is written to the CCR.

void (*power_down)(int cpuid);
The specified processor enters power down-mode when called.

void (*set_irq_level)(uin32 irq, int set);
This is used to generate level interrupts. When calling set_irq_level with set set to 1 this enables a
constant generation of interrupt irq that remains active until a subsequent call to set_irq_level with
the same irq value and with set set to 0.

void (*set_irq)(uint32 irq);
Generate interrupt irq on the bus. Valid values of irq is 1 - 15 for systems without extended interrupts and
1-31 for systems with extended interrupts, and 1-63 for GR716. Note that the interrupt controller controls
how and when processor interrupts are actually generated.

5.3. LEON AHB emulation interface

TSIM allows user defined AHB modules simulating devices on the AMBA buses (both AHB and APB). The em-
ulated processor core communicates with an AHB module using an interface similar to the AHB master interface
in the real LEON VHDL model. As the real processor, the simulator primarily interacts with the emulated device
through read and write requests, while the emulated device can optionally generate interrupts and DMA requests.

To load and register an AHB system, the general module interface should be used to load it in, and from the general
module init function call tsim_register_ahb_module() to register the AHB system The ahb_subsystem
struct is described in Section 5.3.1.

The AHB module interface is made up of two parts; one that is exported by the AHB module and allows TSIM
to access the emulated AHB devices; and one that is filled in by TSIM and defines TSIM functions and data
structures that can be used by the AHB module. The data structures documented in Section 5.2 can also be used
by the AHB module. The information there about from where those functions are allowed to be called applies to
the TSIM provided function in the AHB module interface as well.

To register memory areas, use the add_ahb_slave and/or add_apb_slave functions. Whenever an ac-
cess to that memory area is performed either the registered read or write callback will be called. To be able to
use the load or bload command, a function get_mem_ptr needs to be registered when adding an AHB slave.
This function should return a pointer to the module's internal underlying memory. The AHB module can use
the add_ahb_pp or add_ahb_pp_full, and add_apb_pp functions to register plug&play entries that will
show up in plug&play areas and thus can be seen during plug&play-scanning. Memory areas and plug&play en-
tries should be registered from the ahb_subsystem init function.

5.3.1. Structure to be provided by AHB module

tsim.h defines the ahb_subsystem structure to be provided by the emulated AHB module:

struct ahb_subsystem {
 /* --- Initialied by module --- */
 void (*init)(void);

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 43

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

 void (*exit)(void);
 void (*reset)(void);
 void (*restart)(void);
 int (*intack)(int level);
 void (*intpend)(unsigned int pend);
 void (*start)(void);
 void (*stop)(void);

 /* --- Initialised by TSIM --- */
 void (*correctable_error)(uint32 addr, uint32 master, uint32 size, int write);
 int (*add_apb_slave)(uint32 base,
 uint32 size,
 void *priv,
 int (*read)(void *priv, uint32 addr, uint32 *data),
 int (*write)(void *priv, uint32 addr, uint32 data));
 int (*add_ahb_slave)(uint32 base,
 uint32 size,
 int cacheable,
 void *priv,
 uint8 *(*get_mem_ptr)(void *priv, uint32 base, uint32 size),
 int (*read)(void *priv, struct ahb_access *access),
 int (*write)(void *priv, struct ahb_access *access));
 void (*add_apb_pp)(uint32 vendor, uint32 device,
 uint32 version, uint32 irq,
 uint32 absolute_address,
 uint32 absolute_mask);
 uint32 (*build_ahb_id)(uint32 vendor, uint32 device, uint32 version,
 uint32 irq);
 uint32 (*build_ahb_membar)(uint32 start, uint32 size,
 int cacheable, int prefetchable);
 uint32 (*build_ahb_iobar)(uint32 start, uint32 size,
 int cacheable, int prefetchable);
 int (*add_ahb_pp)(int master, uint32 id,
 uint32 bar0, uint32 bar1, uint32 bar2, uint32 bar3);
 int (*add_ahb_pp_full)(int busid, int master, uint32 id,
 uint32 user0, uint32 user1, uint32 user2,
 uint32 bar0, uint32 bar1, uint32 bar2, uint32 bar3);
};

5.3.1.1. Elements initialised by module

The elements of the structure initialised by modules have the following meanings:

void (*init)(void);
Called once on simulator startup. Set to NULL if unused.

void (*exit)();
Called once on simulator exit. Set to NULL if unused.

void (*reset)();
Called every time the system is reset, including at startup and restart. Set to NULL if unused.

void (*restart)();
Called every time the simulator is restarted (simtime set to zero). Set to NULL if unused.

int (*intack)(int level);
intack() is called when the processor takes an interrupt trap (tt = 0x11 - 0x1f). The level of the taken
interrupt is passed in level. This callback can be used to implement interrupt controllers. intack() should
return 1 if the interrupt acknowledgement was handled by the AHB module, otherwise 0. If 0 is returned,
the default LEON interrupt controller will receive the intack instead.

void (*intpend)(unsigned int pend);
Leon3/4 only: The intpend() function is called when the set of pending interrupts changes. The pend
argument is a bitmask with the bits of pending interrupts set to 1.

void (*start)(void)
Called each time simulation starts, both when starting for the first time using boot or run command and
when continuing using go, cont, step and the like.

void (*stop)(void)
Called every time simulation stops, e.g. due to breakpoints, user pressing Ctrl-C, etc.

5.3.1.2. Elements initialised by TSIM

The elements of the structure initialised by TSIM have the following meanings:

struct sim_interface *simif;
Entry simif is initialised by tsim with the global struct sim_interface structure.

void (*snoop) (unsigned int addr)
The callback snoop is initialised by tsim. If data cache snooping is enabled (and functioning, i.e. not
UT699) it flushes (i.e. invalidates) data cache lines corresponding to physical address addr (on LEON3/4

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 44

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

even when MMU is enabled). If the AHB module is doing DMA writes directly to memory pointers, it is
the responsibility of the AHB module to call this for all changed words for snooping to work correctly.

struct io_interface *io;
Initialised with the I/O interface structure pointer.

void (*dprint)(char *);
Initialised by tsim with a callback pointer to the debug output function. Output ends up in log, when logging
is enabled and gets forwarded to gdb when running TSIM via gdb. See lprintf and vlprintf for the
formatted counterparts.

struct proc_interface *proc;
Initialised with the procif structure pointer.

int (*lprintf)(const char *format, ...)
Initialised by TSIM with a function for formatted output that goes both to stdout and, when logging, to the
log. The function interface works like for printf.

int (*vlprintf)(const char *format, va_list ap)
Initialised by TSIM with a function for formatted output that goes both to stdout and, when logging is
enabled, to the log. The function interface works like for vprintf.

void correctable_error(uint32 addr, uint32 master, uint32 size, int write)
Can be called by an AHB module to signal a correctable error to an AHBSTAT core (if present) or a LEON2
memstat. It is intended to be called during handling of a successful read or write. The parameters to supply
corresponds to the register fields to the AHBSTAT registers or LEON2 FAILAR/FAILSR registers (the
rw field in LEON2 FAILSR corresponding to !write).

int (*add_apb_slave)(uint32 base, uint32 size, void *priv, int (*read)(void
*priv, uint32 addr, uint32 *data), int (*write)(void *priv, uint32 addr,
uint32 data));

Registers an APB slave. The, base parameter is the start address of the area, size is the size of the area
(in bytes). The priv parameter is a pointer that can be set freely by the user and is provided to calls to
the read and write functions. The registered read and write functions are called on bus reads and writes
from and to the registered memory area respectively. APB slave models (in contrast to AHB slave models)
do not need to be concerned about access timing, different write sizes or number of multiple word reads.
Those things are handled by the APB controller model. The APB slave only handles single word reads and
single word writes.

The read function is called for reads from the registered area. The priv argument is the pointer registered
in the add_apb_slave call. The addr parameter contains the address of the single word read. The data
parameter points to a buffer where the read data should be placed into on a successful read. The function
should return 0 for a successful access or 1 for a failed access.

The write function is called for writes to the registered area. The priv argument is the pointer registered
in the add_apb_slave call. The addr parameter contains the address of the single word write. The
data parameter contains the word that is written. The function should return 0 for a successful access or
1 for a failed access.

int (*add_ahb_slave)(uint32 base, uint32 size, int cacheable, void *priv,
uint8 *(*get_mem_ptr)(void *priv, uint32 base, uint32 size), int (*read)
(void *priv, struct ahb_access *access), int (*write)(void *priv, struct
ahb_access *access))

Registers an AHB slave. Here, base is the start address of the area, size is the size of the area (in bytes),
cacheable indicates if the area is cacheable or not. The priv parameter can be set freely by the user and
is provided to calls to the read and write functions. Details on the read, write and get_mem_ptr
functions are described in Section 5.3.1.3.

void (*add_apb_pp)(uint32 vendor, uint32 device, uint32 version, uint32
irq, uint32 absolute_address, uint32 absolute_mask)

Add APB plug&play entry. Here, vendor is the vendor ID of the device, device is the de-
vice ID and version is the device version. The irq parameter is the registered device IRQ. The
absolute_address parameter is the base address of the area. absolute_mask is the address mask,
usually taking the size of the area in bytes - 1 and bit-invert that.

uint32 (*build_ahb_id)(uint32 vendor, uint32 device, uint32 version, uint32
irq)

Helper function to build a plug&play ID.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 45

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

uint32 (*build_ahb_membar)(uint32 start, uint32 size, int cacheable, int
prefetchable)

Helper function to build a plug&play bar. Here, start is the beginning of the area, size is the size.
cacheable indicates if the area is cacheable and prefetchable indicates if the area is prefetchable.
Calling with both start and size set to 0 will produce an all zero bar and can be used as a disabled
bar. Otherwise a return value of 0 indicates failure to build an I/O bar, and an accompanying error printout
will be made.

uint32 (*build_ahb_iobar)(uint32 start, uint32 size, int cacheable, int
prefetchable)

Helper function to build a plug&play bar. start is the beginning of the area, size is the size.
cacheable indicates if the area is cacheable and prefetchable indicates if the area is prefetchable.
Calling with both start and size set to 0 will produce an all zero bar and can be used as a disabled
bar. Otherwise a return value of 0 indicates failure to build an I/O bar, and an accompanying error printout
will be made.

int (*add_ahb_pp)(int master, uint32 id, uint32 bar0, uint32 bar1, uint32
bar2, uint32 bar3)

Register an AHB plug&play entry. Above helper build_* functions can be used to construct the differ-
ent bars. The master argument should be 1 when registering an entry for an AHB master and 0 when
registering an AHB slave. The build_ahb_id helper function can be used for building the id, and the
build_ahb_iobar and build_ahb_membar helper functions can be used for building the different
bars. Returns 0 on success, and non-zero on error. See also add_ahb_pp_full that also supports choos-
ing a bus to add the entry to and adding user data fields.

int (*add_ahb_pp_full)(int busid, int master, uint32 id, uint32 user0,
uint32 user1, uint32 user2, uint32 bar0, uint32 bar1, uint32 bar2, uint32
bar3);

Register an AHB plug&play entry. Works just like add_ahb_pp, but with the added possibility to choos-
ing a bus to add the entry to and adding user data fields. Above helper build_* functions can be used
to constructthe different bars. The master argument should be 1 when registering an entry for an AHB
master and 0 when registering an AHB slave. The build_ahb_id helper function can be used for build-
ing the id, and the build_ahb_iobar and build_ahb_membar helper functions can be used for
building the different bars. Returns 0 on success, and non-zero on error.

5.3.1.3. Callbacks for AHB module AHB slaves

For AHB slaves, read and write callback functions is registered using add_ahb_slave to handle reads and
writes from and to the registered memory area. It is also possible to register a get_mem_ptr to allow access to
emulated memory. That is required for e.g. load to work against user emulated memory. Note that for APB slaves,
a slightly different interface is used.

struct ahb_access {
 uint32 address;
 uint32 *data;
 uint32 ws;
 uint32 rnum;
 uint32 wsize;
};

/* Callbacks */
int (*read)(void *priv, struct ahb_access *access)
int (*write)(void *priv, struct ahb_access *access)
uint8 *(*get_mem_ptr)(void *priv, uint32 base, uint32 size)

AMBA slave read function. The registered read function is called on bus reads from the registered memory
area. The priv argument is a pointer to the private data used when the area was registered. A read is always
treated as a read of one or more 32-bit words. The access->addr field contains the address of the first word
to read. The access->data field points to a buffer that should be filled in with the read data on a successful
read. The access->ws field should be set by the module to the number of cycles for the complete access. The
access->rnum field contains the number of words to be read. The function should return 0 for a successful
access or 1 for a failed access. The access->wsize field is not used for reads.

AMBA slave write function. The registered write function is called on bus writes to the registered memory
area. The priv argument is a pointer to the private data used when the area was registered. The access->addr
field contains the address of the write. The access->data field points to the data to write; either one word for

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 46

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

a byte, half word or word write, or two words for double-word writes. The access->wsize field defines write
size as follows: 0 = byte, 1 = half-word, 2 = word, 3 = double-word (no other sizes are valid). The access->ws
field should be set by the module to the number of cycles for the complete access.The function should return 0 for
a successful access and 1 for failed access. The access->rnum field is not used for writes.

AHB slave get_mem_ptr function. During file load operations, TSIM will access emulated memory through
a memory pointer. Such a pointer can be returned from user emulated memory via the get_mem_ptr function.
Without such a pointer, loads can not be performed to user emulated memory. When this function is available it
can also be used by TSIM for other non-simulation accesses like when displaying memory contents. The priv
argument is the private data pointer used when the area was registered. The base parameter is the base address of
the area and and size parameter is the size of the area requested (in bytes). The function should return a character
pointer to the emulated memory array if the address and size is totally within the range of the emulated memory.
If outside the range, NULL should be returned. Set this callback to NULL if not used.

5.3.2. Big versus little endianess

SPARC conforms to the big endian byte ordering. This means that the most significant byte of a (half) word has
lowest address. To execute efficiently on little-endian hosts (such as Intel x86 PCs), emulated memory is organised
on word basis with the bytes within a word arranged according the endianess of the host. Read cycles can then
be performed without any conversion since SPARC always reads a full 32-bit word. During byte and half word
writes, care must be taken to insert the written data properly into the emulated memory. On a byte-write to address
0, the written byte should be inserted at address 3, since this is the most significant byte according to little endian.
Similarly, on a half-word write to bytes 0/1, bytes 2/3 should be written.

5.3.3. AHB module example

See the ahb.c example pointed out in Section 5.7.

5.3.4. AHB module limitations

Currently there is no support for user defined AHB modules to override accesses to a builtin I/O core model in
TSIM. This will be made possible in an upcoming release.

5.4. I/O module interface

The AHB module system is the primary way to add user models for bus devices. The I/O device interface can
be used to add a module to the I/O bus behind the memory controller (when present in the system) or to act
as a fallback taking care of accesses for areas that are not modelled by anyone. If neither TSIM or any AHB
module handles a memory access it will be forwarded to an I/O module if present. To register an I/O module,
call tsim_register_io_module(iosystem) from the init function of a loadable_module struct, see Sec-
tion 5.1.2. There can be only one I/O module.

The io_subsystem struct is described below.

struct io_subsystem {
 void (*io_init)(void); /* start-up */
 void (*io_exit)(); /* called once on exit */
 void (*io_reset)(); /* called on processor reset */
 void (*io_restart)(); /* called on simulator restart */
 int (*io_read)(unsigned int addr, int *data, int *ws);
 int (*io_write)(unsigned int addr, int *data, int *ws, int size);
 char *(*get_io_ptr)(unsigned int addr, int size);
};

The elements of the structure have the following meanings:

void (*io_init)(void);
Called once on simulator startup. Set to NULL if unused.

void (*io_exit)();
Called once on simulator exit. Set to NULL if unused.

void (*io_reset)();
Called every time the system is reset, including at startup and restart. Set to NULL if unused.

void (*io_restart)();
Called every time the simulator is restarted (simtime set to zero). Set to NULL if unused.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 47

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

int (*io_read)(unsigned int addr, int *data, int *ws);
Processor read call. The processor always reads one full 32-bit word from addr. The data should be returned
in *data, the number of waitstates should be returned in *ws. If the access would fail (illegal address etc.),
1 should be returned, on success 0.

int (*io_write)(unsigned int addr, int *data, int *ws, int size);
Processor write call. The size of the written data is indicated in size: 0 = byte, 1 = half-word, 2 = word, 3 =
double-word. The address is provided in addr, and is always aligned with respect to the size of the written
data. The number of waitstates should be returned in *ws. If the access would fail (illegal address etc.), 1
should be returned, on success 0.

char * (*get_io_ptr)(unsigned int addr, int size);
TSIM can access emulated memory in the I/O device in two ways: either through the io_read/io_write
functions or directly through a memory pointer. get_io_ptr() is called with the target address and
transfer size (in bytes), and should return a character pointer to the emulated memory array if the address
and size is within the range of the emulated memory. If outside the range, NULL should be returned. Set
to NULL if not used.

5.5. Adding startup options
A module can register a startup option by filling in a struct user_option and calling the
tsim_register_user_option function which will return 0 on success and 1 on failure to register the op-
tion.

struct user_option {
 /* User defined private pointer*/
 void *arg;
 /* Called when the option is parsed */
 int (*option_execute)(void *arg, int argc, const char **argv);
 const char *name; /* Name of the option */
 const char *help_oneline; /* One line description */
 const char *help_full; /* Comlete description */
 const char *help_syntax; /* Description of option syntax */
};

int tsim_register_user_option(struct user_option *user_option);

The name pointer must be set to a unique option name, and the option_execute pointer to a callback function.
The option_execute callback will be called when the option is parsed at simulator startup and will get the
registered arg as first parameter with the number of startup arguments in argc and the arguments in the argv
array. The option name itself is included in the count and is the first entry of the array. The return value from
option_execute should be how many arguments the option parsed, e.g. 1 if no arguments other than the
option itself, or 2 if another parameter was parsed.

The help_oneline, help_full and help_syntax pointers can be set to a oneline description of the option,
a full documentation of the option and if the option takes any arguments the syntax can be set, in order for the
options to be supported by the -help option.

5.6. Adding user commands
A module can register a user command by filling in a struct user_cmd and calling the
tsim_register_user_cmd function which will return 0 on success and 1 on failure to register the command.

struct user_cmd {
 /* User defined private pointer*/
 void *arg;
 /* Called when the command is executed */
 int (*cmd_execute)(void *arg, int argc, char **argv);
 /* Called on unregistration of commands */
 void (*cmd_unregister)(void *arg);
 const char *name; /* Name of the command */
 const char *help_oneline; /* One line description */
 const char *help_full; /* Comlete description */
 const char *help_syntax; /* Description of command syntax */
};

int tsim_register_user_cmd(struct user_cmd *user_cmd);

The name pointer must be set to a unique command name, and the cmd_execute pointer to a callback function.
The cmd_execute callback will be called when the command is evaluated and will get the registered arg as first
parameter with the number of command arguments in argv and the arguments in the argv array. The command
name itself is included in the count and is the first entry of the array. The return value from cmd_execute
becomes a signed integer Tcl return value.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 48

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

The help_oneline, help_full and help_syntax pointers can be set to a oneline description of the com-
mand, a full documentation of the command and if the command takes any arguments the syntax can be set, in
order for the command to be supported by the help command. The cmd_unregister pointer can optionally be
set to be called when TSIM exits, e.g. if cleanup needs to be done.

5.7. Loadable modules distributed with TSIM

The following table shows which loadable modules are distributed with which TSIM versions.

Table 5.1. Loadable modules distributed with TSIM

Module File For TSIM versions

AHB module example examples/modules/ahb.c All

I/O module example examples/modules/io.c All

Walltime synchronisation example examples/mod-
ules/walltimesync.c

All

CAN node example examples/input/can_node.c LEON3/4

GPIO input example examples/input/gpio.c LEON3/4

SPI slave example examples/input/spi.c LEON3/4

SPI memory example examples/input/spim.c LEON3

PCI target example examples/input/pci_target.c LEON3

TPS VxWorks 6.x AHB Module tps/linux-x64/tps.so
tps/win64/tps.dll

LEON3/4

The example modules that are provided in source also comes with makefiles to build them. The example modules
in examples/input also has usage examples in the examples/input/README.txt.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 49

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

6. TSIM library (TLIB)

6.1. Introduction

TSIM is also available as a library, allowing the simulator to be integrated in a larger simulation frame-work. All
options, commands and Tcl possibilities of standalone TSIM are accessible through a simple function interface.
Both builtin and external user models can be added, using the same interfaces as for standalone TSIM.

6.2. Function interface

The following functions are provided to access TSIM features. Note that a lot of additional functions accessed via
the callback structs returned by the tsim_get_simif, tsim_get_procif and tsim_get_ioif functions
are available as well. They are described in Section 5.2.

int tsim_init(char *option);
Initialise TSIM. This must be called before any other TSIM function (except tsim_set_diag and
tsim_register_module) are used. The options string can contain any valid TSIM startup options.
The tsim_init function will return 0 on success or 1 on failure. Quotation with " and escaping with \ is
supported in order to pass arguments that contains whitespace. The tsim_init or tsim_argv_init
function may only be called once. Commands like run, boot and reset can restart simulation without
restarting the process.

int tsim_argv_init(int argc, char **argv);
Initialise TSIM. This must be called before any other TSIM function (except tsim_set_diag and
tsim_register_module) are used. The options array can contain any valid TSIM startup options. The
tsim_argv_init function will return 0 on success or 1 on failure. This version can be advantageous
over tsim_init e.g. to avoid having to escape whitespace characters for arguments with whitespace in
them. The tsim_init or tsim_argv_init function may only be called once. Commands like run,
boot and reset can restart simulation without restarting the process.

int tsim_cmd(char *cmd);
Execute TSIM command. Any valid TSIM command-line or Tcl command may be given. If the command
was executed successfully the result can be retrieved with the helper functions tsim_get_result_*().
Returns 0 on success and non-zero on failure.

int tsim_cmdf(const char *format, ...) FMT_PRINTF(1, 2);
int tsim_vcmdf(const char *format, va_list ap);

Execute TSIM command built up as with a printf format string. Any valid TSIM command-line command
or Tcl expression may be built. If the command was executed successfully the result can be retrieved with
the helper functions tsim_get_result_*(). Returns 0 on success and non-zero on failure.

int tsim_get_result_int32(int32 *result);
int tsim_get_result_uint32(uint32 *result);
int tsim_get_result_int64(int64 *result);
int tsim_get_result_uint64(uint64 *result);

After a executed TSIM command. The result of the command can be retrieved as integer. The result will
be returned in *result. Return 0 on success or non-zero if result could not be interpreted as an integer.

int tsim_get_result_double(double *result);
After a executed TSIM command. The result of the command can be retrieved as double. The result will
be returned in *result. Return 0 on success or non-zero if result could not be interpreted as a double.

int tsim_get_result_str(char **result);
After a executed TSIM command. The result of the command can be retrieved as string. The result will
be returned in **result. Return 0 on success or non-zero if result could not be interpreted as a string.
The caller is responsible to free the string.

void tsim_exit(int val);
Should be called to cleanup TSIM internal state before main program exits.

int tsim_cont(struct tsim_duration *duration, int *sig, int *cpuid)
Continues simulation for duration specified in the tsim_duration struct, described in tsim.h. If the sig is
not NULL, the reason for why simulation stopped is returned in *sig. If the cpuid is not NULL, the CPU
resposible for why simulation stopped is returned in *cpuid. Returns 0 if simulation could be started or
non-zero on error starting simulation. See Section 3.4 and Table 3.2 for how to interpret *sig and *cpuid.

int tsim_get_stopreason(int *sig, int *cpuid)
Returns reason for stopping, and ID of the CPU that was responsible for stopping the last simulation exe-
cution. If the sig is not NULL, the reason for why simulation stopped is returned in *sig. If the cpuid

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 50

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

is not NULL, the CPU resposible for why simulation stopped is returned in *cpuid. See Section 3.4 and
Table 3.2 for how to interpret *sig and *cpuid.

int tsim_get_reg(int cpuid, int regid, uint32 *value)
Get single SPARC register. cpuid is an index of the CPU to get the register value from, regid is an
index of the register to get, as per enum regnames in tsim.h, and value is a pointer to where the
register value will be returned. Returns 0 on success, non-zero on falure.

int tsim_set_reg(int cpuid, int regid, uint32 value)
Set single SPARC register. cpuid is an index of the CPU to set the register value on, regid is an index
of the register to set, as per enum regnames in tsim.h, and value is the value to set the register to.
Returns 0 on success, non-zero on falure.

int tsim_read(unsigned int addr, unsigned int *data);
Performs a read from addr, returning the value in *data. Only for diagnostic use. Returns 0 on success
else 1.

int tsim_write(unsigned int addr, unsigned int data);
Performs a write to addr, with value data. Only for diagnostic use. Returns the number of bytes written.

int tsim_set_diag(int (*cfunc)(void *priv, const char *buf, int len), void
*priv);

Set output forwarding function. By default, TSIM writes all output to stdout and stderr. This function can
be used to direct all output to a user defined routine. The cfunc callback function will be called for all
TSIM output. It should make sure to handle the entire buffer and return number for bytes handled. The
priv parameter gets passed to each call. The buf and len arguments contains the buffer with text to be
handled and the length of it. The tsim_set_diag function returns 0 on success 1 or failure.

int tsim_set_callback(int cpuid, void (*cfunc)(int cpuid, uint32 pc));
Set the debug callback function for a given CPU. Calling tsim_set_callback() with a function
pointer will cause TSIM to call the callback function just before each executed instruction on the given
CPU. Returns 0 on success else non-zero.

void tsim_trap(int (*trap)(int cpuid, int tt), void (*rett)(int cpuid));
tsim_trap() is used to install callback functions that are called every time the processor takes a trap or
returns from a trap (RETT instruction). The trap() function is called with the CPU ID of the trapping
CPU, cpuid, and the SPARC trap number, tt. If the trap() function returns 0, execution will continue.
A non-zero return value will stop simulation with the program counter pointing to the instruction that will
cause the trap. The rett() function is called when the program counter points to the RETT instruction
but before the instruction is executed. The cpuid parameter contains the CPU ID of the CPU that is about
to return from trap. It is possible to install only one callback function by setting the other one to NULL.
The callbacks can be removed by calling tsim_trap() with NULL arguments.

void tsim_cov_get(int cpuid, int start, int end, char *ptr);
tsim_cov_get() will return the coverage data for the address range from start (inclusive) to end
(exlusive) from the specified CPU. The coverage data will be written to a char array pointed to by *ptr,
starting at ptr[0]. One character per 32-bit word in the address range will be written. The user must assure
that the char array is large enough to hold the coverage data. Note that changing coverage modes will reset
the coverage data.

void tsim_cov_set(int cpuid, int start, int end, char val);
tsim_cov_set() will fill the coverage data in the address range limited by start and end (see above
for definition), for the specified CPU, with the value of val.

int tsim_lastbp(int *addr, int *cpu, int *bp)
When simulation stopped due to breakpoint or watchpoint hit (SIGTRAP), this function will return the
address of the break/watchpoint in *addr. The index of the CPU in *cpu and the index of the break/
watchpoint in *bp. The function return value indicates the break cause; 0 = breakpoint, 1 = watchpoint.

void tsim_ext_ins(int (*func)(void *priv, int cpuid, uint32 inst, uint32
**window, uint32 *icnt), void *priv);

Installs a handler, func, for custom instructions. The installed function gets to emulate instructions as
described in Section 4.1.7. Calling with func as a a NULL pointer will remove the handler.

typedef int (*gdb_send_func)(void *priv, const void *buf, int len, int
*bytes);
typedef int (*gdb_recv_func)(void *priv, void *buf, int len, int *bytes);
int tsim_gdb(gdb_send_func send, gdb_recv_func recv, void *priv);

Starts a GDB session with custom send and receive functions handling the GDB remote protocol input
and output streams. Returns 0 on success, non-zero of error. The send callback is a function pointer to a

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 51

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

function that is called by TSIMs GDB server to send. The recv callback is a function pointer to a function
that is called by TSIMs GDB server to receive. The priv pointer is registered by the user to be passed
to the send and recv callbacks.

The callback functions should return 0 on success, non-zero on error. Error return here stops the GDB
session. The callback parameters works as follows. The priv parameter is the private pointer registered
by user. The buf parameter is a buffer to send from or to receive into. The len parameter is the buffer
size for receive, and length of data to be sent. The bytes parameter is used to set the number of bytes
actually sent or received should be set in *bytes.

Note that in order for a Ctrl-C in a connected GDB to work, execution should be interrupted using struct
sim_interface.sim_stop when GDB want to send, i.e. the recv callback has data to return, during
ongoing simulation.

struct sim_interface *tsim_get_simif(void);
Get TSIM simif interface. See Section 5.2.

struct proc_interface *tsim_get_procif(void);
Get TSIM procif interface. See Section 5.2.

struct io_interface *tsim_get_ioif(void);
Get TSIM ioif interface. See Section 5.2.

int tsim_register_module(struct loadable_module *module);
Registers a custom module. Must be called before tsim_init(). See Chapter 5 for more information.
Return 0 on success else non-zero.

6.3. Builtin and external modules and user models

Builtin modules can be loaded when using TLIB by registering a module with the tsim_register_module
function. See Chapter 5 for further information. It is also possible to use external modules as with standalone
TSIM using -mod module when calling tsim_init()

6.4. Linking a TLIB application

The library versions of TSIM are provided as dynamic shared objects, as .so files on Linux and DLL files on Win-
dows. Sample applications are provided, demonstrating different TLIB functionalities, together with a Makefile
showing how to build and link them with TLIB.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 52

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

7. Cobham Gaisler GR712RC emulation

To emulate the GR712RC chip the -gr712rc option should be used.

The following table lists which cores in the GR712RC are modelled by TSIM or not. The table contains some
notes of some unsupported features for otherwise supported cores, but is not necessarily exhaustive in this respect.

Table 7.1. Simulation models for GR712RC

Core Status Notes

LEON3FT Supported by core TSIM3 Both CPUs are modelled. No FT features are modelled.

GRFPU Supported by core TSIM3 Does not simulate the possibility of multiple outstanding
floating point operations.

AHBSTAT Supported by core TSIM3

APBCTRL Supported by core TSIM3

APBUART Supported by core TSIM3

FTMCTRL Supported by core TSIM3 No FT features are modelled

GPTIMER Supported by core TSIM3 No Watchdog support.

GRTIMER Supported by core TSIM3

IRQMP Supported by core TSIM3

CAN_OC Supported by core TSIM3 See Chapter 15.

FTAHBRAM Supported by core TSIM3 No FT features are modelled.

GRETH Supported by core TSIM3 See Chapter 16.

GRGPIO Supported by core TSIM3 See Chapter 17.

GRSPW2 Supported by core TSIM3 See Chapter 20.

SPICTRL Supported by core TSIM3 See Chapter 21.

CANMUX Dummy in TSIM3 Functionality-less registers only

CLKGATE Dummy in TSIM3 Functionality-less registers only

GRGPREG Dummy in TSIM3 Functionality-less registers only

B1553BRM Not supported

GRASCS Not supported

GRSLINK Not supported

GRTC Not supported

GRTM Not supported

I2CMST Not supported

AHBJTAG Not supported Debug link

DSU3 Not supported Debug unit

TSIM supports running user defined models for unsupported cores.

7.1. Clock Gating Unit, CANMUX and GRGPREG

The Clock Gate Unit, CANMUX and GRGPREG I/O registers and AMBA Plug & Play area are present in the
GR712RC module. Some of the logic to control which bits are implemented, readable and writable etc. is imple-
mented. However the register bits has no functionality. The current register values can be used by custom I/O
modules in SW validation. For example checking that accessing a specific address are has not been clock gate
disabled or that the SpW clock PLL match with the expect value after initialisation.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 53

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

8. Cobham Gaisler GR716 emulation

To emulate the GR716 chip the -gr716 option should be used. When using the GR716 only release, TSIM only
simulates GR716 and the -gr716 option is implicit.

Table 8.1. Simulation models for GR716

Core Notes and model limitations

AHBROM GR716 Boot ROM. See Section 8.1.

AHBSTAT Only the AHB Status Register for the main AMBA bus supported

APBCTRL Atomic operations supported.

APBUART Transmitter shift register empty interrupt, delayed interrupt and using two stop bits currently
not supported.

LRAM Atomic operations and DMA accesses supported. Configuration registers are implemented
as dummy registers, see Section 8.2.

FTMCTRL EDAC not supported.

GPTIMER No Watchdog support.

GRCAN See Chapter 14 for details about the CAN bus.

GRGPIO See Chapter 17. Pulse sampler and Pulse sequencer are not currently supported. Atomic
operations supported.

GRGPREG Only bootstrap register implemented.

GRSPW2 See Chapter 20 for details and limitations.

IRQMP Watchdog control and Error mode status register currently not implemented.

LEON3FT No FT features are modelled. ZeroJitter, Alternative Window Pointer and REX ISA not
currently supported. Register window partitioning is supported.

SPICTRL See Chapter 21. Automatic Slave select, ThreeWire mode and Slave mode are not currently
supported.

SPIMCTRL See Chapter 22. EDAC not supported.

DAC See Section 8.3.

GR716 has tightly coupled dual-port local data and instruction RAM. GR716 does not have cache memories.
Some register areas for devices that are not emulated are implemented as dummy registers. See Section 8.2. TSIM
does not emulate the DSU, L3STAT and AHBTRACE cores but provide a lot of corresponding functionality and
information via TSIM commands instead.

8.1. GR716 Boot ROM

In addition to running RAM images directly from memory using load and run, TSIM can simulate a cold start
going through the bootloader in the GR716 Boot ROM, with its different boot possibilities, or bypassing the Boot
ROM, booting directly from a different source. The boot command is used to start simulating a cold start.

The bootloader in the GR716 Boot ROM supports multiple boot sources. Booting from external SRAM, exter-
nal PROM and external SPI memory is supported. There is currently no built-in model for the I2C controller.
Therefore, to support booting an image read over from I2C, a user model for the I2C controller and bus is needed.
The bootloader can also set up the GR716 for remote access. However, the remote access mode is currently not
supported in TSIM. The bootloader can also be bypassed altogether to boot the GR716 directly from external SPI
memory, SRAM or PROM (without going through the bootloader first).

GR716 samples various signals on reset and populates the bootstrap register with the result. TSIM does not sim-
ulate this sampling. Instead the user can set the value of the bootstrap register with the -bootstrap option.
For example, to boot using an application software (ASW) image residing in external PROM, start TSIM with
-bootstrap 0x0000c00a, load the software image with load image, and simulation with boot to start
execution from the Boot ROM from a reset state.

The following are examples of different bootstrap values that can be used. This is not an exhaustive list. See the
GR716 Data Sheet and User's manual for details.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 54

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

Table 8.2. Boot methods and example bootstrap values

Boot type Bootstrap value Notes

External SPI memory boot 0x0000c000 Execution continues directly in SPI memory

External SRAM boot 0x0000c004 Execution continues directly in SRAM

External PROM boot 0x0000c008 Execution continues directly in PROM

External SPI memory ASW boot 0x0000c002 Extracts ASW image from SPI memory

External SRAM ASW boot 0x0000c006 Extracts ASW image from SRAM

External PROM ASW boot 0x0000c00a Extracts ASW image from PROM

External I2C memory ASW boot 0x0000c00e Not supported without user model of I2C.

Bypass directly to SPI memory 0x1000c000 Execution starts from SPI memory

Bypass directly to SRAM 0x1000c004 Execution starts from SRAM

Bypass directly to PROM 0x1000c008 Execution starts from PROM

Remote access Currently not supported by TSIM

Note: if the boot sequence fails the boot software will potentially get stuck in a loop and never reach the main
application.

8.2. Dummy registers

The following GR716 register areas are in TSIM currently implemented as dummy registers. They can be written
to without effect and read from with value 0.

Table 8.3. Dummy register areas in the GR716 model

Address Name

0x80001000 - 0x800010ff DLRAM config

0x80006000 - 0x800060ff Clock gating unit 0

0x80007000 - 0x800070ff Clock gating unit 1

0x8000b000 - 0x8000b0ff ILRAM config

0x8000d000 - 0x8000d0ff IOMUX config

0x8010c000 - 0x8010c0ff Brown-Out detection control registers

0x8010d000 - 0x8010d0ff PLL control registers

0x80307000 - 0x803070ff NVRAM config

8.3. DAC
TSIM GR716 provides a DAC interface. To connect to TSIM's internal DAC model use
tsim_register_dac_model(dac_input, index) where dac_input is a pointer to a struct
dac_input (see below), and index is the index of the DAC controller to connect to. The struct
dac_input can be found in dac_input.h.

See Chapter 5 for further details on how to connect the user model.

struct dac_input {
 void (*dac_output)(double value);
};

Table 8.4. struct dac_input members

Parameter Description

dac_output Callback set by the user. Will be called each time the DAC controllers output value is
changed. value is the DAC output value.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 55

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

9. Cobham Gaisler GR740 emulation

When starting tsim3-leon4 TSIM emulates the GR740 by default.

Table 9.1. Simulation models for GR740

Core Notes and model limitations

LEON4 No FT features are modelled. Dynamically configurable L1 cache replacement policy not
yet supported.

GRFPU Does not simulate the possibility of multiple outstanding floating point operations.

AHBSTAT Only the AHB Status Register for the main AMBA bus supported

APBUART Transmitter shift register empty interrupt, delayed interrupt and using two stop bits currently
not supported.

FTMCTRL PROM and I/O controller. EDAC and write lead out cycles not supported.

GPTIMER No Watchdog support.

GRCAN See Chapter 14 for details about the CAN bus.

GRETH Currently modelled as a GRETH core, not a GRETH_GBIT core. See Chapter 16.

GRGPIO See Chapter 17. Pulse sampler and Pulse sequencer are not currently supported.

IRQ(A)MP Watchdog control and error mode status registers are currently not implemented.

L2 Cache See Section 4.4.3.

SDCTRL Timings based on a CPU frequency of 250 or 50 MHz and a memory frequency of either
50 or 100 MHz. No EDAC is supported.

SpaceWire router Router itself not yet emulated. Emulated by 4 GRSPW2 cores.

GRIOMMU See Section 4.4.7.

SPICTRL See Chapter 21. Automatic Slave select, ThreeWire mode and Slave mode are not currently
supported.

9.1. Dummy registers

The following GR740 register areas are in TSIM currently implemented as dummy registers. They can be written
to without effect and read from with value 0.

Table 9.2. Dummy register areas in the GR740 model

Address Name

0xffa04000 - 0xffa040ff Clock gating unit

0xffa09000 - 0xffa090ff Register for bootstrap signals

0xffa0b000 - 0xffa0b0ff General purpose register bank

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 56

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

10. CAES UT699 emulation

To emulate the UT699 chip the -ut699 option should be used. That sets up parameters for core TSIM to match
UT699 and sets snooping as non-functional.

The following table lists which cores in the UT699 are modelled by TSIM or not. The table contains some notes
of some unsupported features for otherwise supported cores, but is not necessarily exhaustive in this respect.

Table 10.1. Simulation models for UT699

Core Status Notes

LEON3FT Supported by core TSIM3 No FT features are modelled.

GRFPU Supported by core TSIM3 Does not simulate the possibility of multiple outstanding
floating point operations.

AHBSTAT Supported by core TSIM3

APBCTRL Supported by core TSIM3

APBUART Supported by core TSIM3

FTMCTRL Supported by core TSIM3 No FT features are modelled

GPTIMER Supported by core TSIM3 No Watchdog support.

IRQMP Supported by core TSIM3

CAN_OC Supported by core TSIM3 See Chapter 15.

GRETH Supported by core TSIM3 See Chapter 16.

GRGPIO Supported by core TSIM3 See Chapter 17.

GRPCI Supported by core TSIM3 Including DMA controller. See Chapter 17.

GRSPW Supported by core TSIM3 See Chapter 19.

CLKGATE Not supported

AHBJTAG Not supported Debug link

AHBUART Not supported Debug link

DSU3 Not supported Debug unit

TSIM supports running user defined models for unsupported cores.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 57

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

11. CAES UT699E emulation

To emulate the UT699E chip the -ut699e option should be used. That sets up parameters for core TSIM to
match UT699E.

The following table lists which cores in the UT699E are modelled by TSIM or not. The table contains some notes
of some unsupported features for otherwise supported cores, but is not necessarily exhaustive in this respect.

Table 11.1. Simulation models for UT699E

Core Status Notes

LEON3FT Supported by core TSIM3 No FT features are modelled.

GRFPU Supported by core TSIM3 Does not simulate the possibility of multiple outstanding
floating point operations.

AHBSTAT Supported by core TSIM3

APBCTRL Supported by core TSIM3

APBUART Supported by core TSIM3

FTMCTRL Supported by core TSIM3 No FT features are modelled

GPTIMER Supported by core TSIM3 No Watchdog support.

IRQMP Supported by core TSIM3

CAN_OC Supported by core TSIM3 See Chapter 15.

GRETH Supported by core TSIM3 See Chapter 16.

GRGPIO Supported by core TSIM3 See Chapter 17.

GRPCI Supported by core TSIM3 Including DMA controller. See Chapter 18.

GRSPW2 Supported by core TSIM3 See Chapter 20.

CLKGATE Not supported

AHBJTAG Not supported Debug link

AHBUART Not supported Debug link

DSU3 Not supported Debug unit

TSIM supports running user defined models for unsupported cores.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 58

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

12. CAES UT700 emulation

To emulate the UT700 chip the -ut700 option should be used. That sets up parameters for core TSIM to match
UT700.

The following table lists which cores in the UT700 are modelled by TSIM or not. The table contains some notes
of some unsupported features for otherwise supported cores, but is not necessarily exhaustive in this respect.

Table 12.1. Simulation models for UT700

Core Status Notes

LEON3FT Supported by core TSIM3 No FT features are modelled.

GRFPU Supported by core TSIM3 Does not simulate the possibility of multiple outstanding
floating point operations.

AHBSTAT Supported by core TSIM3

APBCTRL Supported by core TSIM3

APBUART Supported by core TSIM3

FTMCTRL Supported by core TSIM3 No FT features are modelled

GPTIMER Supported by core TSIM3 No Watchdog support.

IRQMP Supported by core TSIM3

CAN_OC Supported by core TSIM3 See Chapter 15.

GRETH Supported by core TSIM3 See Chapter 16.

GRGPIO Supported by core TSIM3 See Chapter 17.

GRPCI Supported by core TSIM3 Including DMA controller. See Chapter 18.

GRSPW2 Supported by core TSIM3 See Chapter 20.

SPICTRL Supported by core TSIM3 See Chapter 21.

CLKGATE Not supported

GR1553B Not supported

GRTC Not supported

GRTM Not supported

AHBJTAG Not supported Debug link

AHBUART Not supported Debug link

DSU3 Not supported Debug unit

TSIM supports running user defined models for unsupported cores.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 59

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

13. Atmel AT697 emulation

To emulate the AT697E chip the -at697e option should be used. That sets up parameters for core TSIM3 to
match AT697E and enables simulation of the AT697 PCI interface.

The following table lists which cores in the AT697 are modelled by TSIM or not. The table contains some notes
of some unsupported features for otherwise supported cores, but is not necessarily exhaustive in this respect. See
Chapter 4 for details on the builtin simulation models and Chapter 23 for the PCI model.

Table 13.1. Simulation models for AT697

Core Status Notes

LEON2FT Supported by core TSIM3 No FT features are modelled.

FPU Supported by core TSIM3

LEON2 system registers Supported by core TSIM3

Interrupt controller Supported by core TSIM3

Memory controller Supported by core TSIM3 No FT features are modelled

UART Supported by core TSIM3

PCI Supported by core TSIM3 See Chapter 23

I/O port Not supported Easily modelled in user module

JTAG Not supported Debug link

Debug UART Not supported Debug link

DSU Not supported Debug unit

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 60

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

14. GRCAN

Each GRCAN core are connected to two CAN buses (with the possibility to choose which bus to be active on for
each GRCAN core). Default values for the bus index is GRCAN core index * 2 for the main bus and (GRCAN
core index * 2) + 1 for the secondary bus. With the exception for GR716 where both GRCAN cores are connected
to bus 0 and 1 for the main and secondary bus. TSIM models these buses according to the Section 14.4 API.

See the examples/test directory for an example GRCAN test program. This test program can be used together
with the example can node found in examples/input.

14.1. Start up options

GRCAN core start up options

-grcanX_bus0 index
Sets the index of the main CAN bus for GRCAN core X.

-grcanX_bus1 index
Sets the index of the secondary CAN bus for GRCAN core X.

X in the above commands is the index of the core.

14.2. Commands

GRCAN Commands

grcanX_dbg [flag|all|clean|list]
Toggle specific flag, set all, clear all, or list debug flags for the given GRCAN core. See Section 14.3 for
a list of debug flags.

X in the above commands is the index of the core.

14.3. Debug flags

The following debug flags and debug subcommands are available for the GRCAN cores. The CAN_* flags can be
used with the grcanX_dbg command to toggle individual flags for individual GRCAN cores. The subcommands
can be used with the grcanX_dbg command to change and list the settings of all flags for individual GRCAN cores.

Table 14.1. GRCAN debug flags

Flag Trace

CAN_ACC GRCAN register accesses

CAN_RX GRCAN received messages

CAN_TX GRCAN transmitted messages

CAN_IRQ GRCAN interrupts

all Set all debug flags for the core

clean Set none of the debug flags for the core

list List the current setting of the debug flags for the core

14.4. CAN interface

Currently, this CAN bus model is only used for GRCAN. For emulation of CAN OC in GR712RC, UT699,
UT699E and UT700, see Chapter 15.

14.4.1. Connecting a user CAN model
To connect a custom CAN node to TSIM's internal CAN bus use tsim_register_can_node(node,
canbus_index) where node is a pointer to a struct can_node (see below), and canbus_index
is the index of the bus to connect to. Both struct can_node and struct can_msg can be found in
canbus_input.h.

See Chapter 5 for further details on how to connect the user model.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 61

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

14.4.2. CAN model API

The internal CAN bus is available through struct canbus_interface *canbus provided by the init
function of struct can_node that is called during simulation startup if it has been registered by using the
tsim_register_can_node function.

The different structs are described below.

struct canbus_interface {
 int (*update)(uint32 bus_id);
 };

Table 14.2. struct canbus_interface members

Parameter Description

update Used to update a bus after a change in node status.

struct can_node {
 unsigned int id;
 void (*init)(struct can_node *node, struct canbus_interface *canbus);
 int (*rx_callback)(uint32 bus_id, uint32 sender_id, struct can_node *node, struct can_msg msg);
 void (*tx_callback)(uint32 bus_id, struct can_node *node, uint32 error_flags, int num_acks);
 struct can_msg (*get_message)(struct can_node *node);
 void (*status)(struct can_node *node);
 uint32 *wants_to_send;
 uint32 *bus_off;
 uint32 *error_passive;
 uint32 invisible;
 uint32 disconnect;
 void *priv;
};

Table 14.3. struct can_node members

Parameter Description

id The nodes id, each node needs an unique id.

init Callback called by the CAN bus during simulation start up. Provides the module with a
canbus_interface, see above. node is a pointer to the node being initiated.

rx_callback Callback called by the CAN bus each time a new message is available. Input parameters
described below.

tx_callback Callback called by the CAN bus each time this node has sent a message. Input parameters
described below.

get_message Callback called by the CAN bus when the bus is free and the node wants to send. Should
return a can_msg struct

status Callback called by the CAN bus when printing status. Can optionally be set to print the
nodes status at the same time.

wants_to_send Pointer set by the user indicating if the node wants to send a message or not. If set
get_message will be called each time the CAN bus is free

bus_off Pointer set by the user indicating if the node is in bus off state.

error_passive Pointer set by the user indicating if the node is in error passive state. Otherwise it is in
error active state

invisible If set the node is invisible on the bus. It will receive all messages via the rx_callback.
But cannot acknowledge or flag errors.

disconnect If set the node is disconnected from the CAN bus. It will receive no messages and have
no impact on the bus.

priv Pointer to private data. Can be set freely by the user.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 62

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

If a node wants to send a message it should set *wants_to_send to non-zero and call canbus.update.
Next time the bus is free get_message is called and the node should return a can message of type struct
can_msg. The internal bus model will then collect messages from each node that wants to send and perform
arbitration, the winning message will then be sent.

Table 14.4. tx_callback parameters

Parameter Description

bus_id Index of the CAN bus which the message was sent on.

node Pointer to the struct can_node that sent the message.

error_flags If any receiving node forced an error this flag is set.

num_acks Number of nodes correctly acked the message.

When a message is sent the rx_callback is called for each connected node. To acknowledge this message
normally this function should return 0, if an error is detected return an error flag. The msg.flags property can
be used to check if an error should be forced.

Table 14.5. rx_callback parameters

Parameter Description

bus_id Index of the CAN bus which the message was received on.

sender_id ID of the sender node.

node Pointer to the struct can_node that is receiving the message.

msg A struct can_msg containing the message.

If a node enters bus off mode or error passive mode, the corresponding property should be set by the user. While
the node is in bus off mode it will not be able to send messages but rx_callback will still be called to receive
messages, it is up to the user model if it wants to discard the message or not, note that if in bus off mode the
return value will be ignored.

When a node is done sending messages *wants_to_send should be set to zero.
If arbitration is won and all nodes have received the message, the winning nodes tx_callback is called. If
any error was detected the error_flags is set. If arbitration is won the node will not receive it's own message
through rx_callback. The priv pointer is unused by the CAN bus and can be set freely by the user. It can,
for example, be used to differentiate between different nodes using the same callback functions or used to add
extra properties to the node.

struct can_msg {
 uint32 *data;

 uint32 flags;
 uint32 nominal_bitrate;
 uint32 fd_bitrate;
};

Table 14.6. struct can_msg members

Parameter Description

data Pointer to the CAN message data.

flags When transmitting, errors can be forced by this flag. When receiving this indicates if
errors has been found

nominal_bitrate The nominal bit-rate which the message will be sent. Measured in clock cycles per bit.

fd_bitrate The CAN-FD data bit-rate. Should be left as zero when transmitting ordinary CAN-
Messages. Measured in clock cycles per bit.

See the examples/input directory for an example can node implementation. The example demonstrates how
to set up a basic can node that will receive and acknowledge messages.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 63

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

14.4.3. Error injections

Errors can be injected by the uint32 flags property of struct can_msg. When transmitting a message
the flags can be set to let a receiver know that it should force an error. When receiving the rx_callback can
return non-zero to let the transmitter know an error has occurred.

Bit 0-4 and bit 31 is reserved and defined below. Bit 0-4 indicates one of the standard errors, defined by the ISO
standard 11898-1:2015 (2nd edition), has occurred. Bit 31 indicates if the error was flagged by an error passive
node. Remaining bits can be used freely for system specific flags by the users.

Table 14.7. Error flag definitions

Bit Description

0 Ack error.

1 Form error.

2 CRC error.

3 Stuff error.

4 Bit error

31 Error flagged by error passive node.

14.4.4. Commands

CAN bus Commands

canbusX_status
Prints the status information on the given CAN bus. Note that this is only used for systems with one or
more GRCAN devices, not for CAN_OC.

X in the above commands is the index of the bus.

14.4.5. Debug status

To display the status of an internal CAN bus use the canbusX_status command. This command will print the
status of each connected node, as well as call the optional status command that can be provided by a user model.

14.4.6. Current limitations

Arbitration loss is not reported to the node, it has to check it manually when receiving by either comparing its
own message with the received one.

Each node has to have an unique ID.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 64

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

15. CAN_OC interface

The UT699, UT699E, UT700 and GR712RC chips contains CAN_OC cores which models the CAN_OC cores
available in the chip. For core details and register specification please see the manual for each emulated chip.

15.1. Start up options

CAN_OC core start up options

-can_ocX_connect host:port
Connect CAN_OC core X to packet server to specified server and TCP port.

-can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.

-can_ocX_ack [0|1]
Enables waiting for an acknowledgement packet on transmission for CAN_OC core X.

X in the above commands is the index of the core.

15.2. Commands

CAN OC Commands

can_ocX_connect host:[port]
Connect CAN_OC core X to packet server to specified server and TCP port.

can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.

can_ocX_ack <0|1>
Specifies whether the CAN_OC core will wait for a acknowledgement packet on transmission. This com-
mand should only be issued after a connection has been established.

can_ocX_status
Prints out status information for the CAN_OC core.

can_ocX_dbg [flag|all|clean|list]
Toggle, set, clear, list debug flags for the CAN_OC core.

X in the above commands is the index of the core.

15.3. Debug flags

The following debug flags and debug subcommands are available for CAN interfaces. The GAISLER_CAN_OC_*
flags can be used with the can_ocX_dbg command to toggle individual flags for individual CAN_OC cores and
with the dbgon command to toggle individual flags for all CAN_OC cores. The subcommands can be used with
the can_ocX_dbg command to change and list the settings of all flags for individual CAN_OC cores.

Table 15.1. CAN debug flags

Flag Trace

GAISLER_CAN_OC_ACC CAN_OC register accesses

GAISLER_CAN_OC_RXPACKET CAN_OC received messages

GAISLER_CAN_OC_TXPACKET CAN_OC transmitted messages

GAISLER_CAN_OC_ACK CAN_OC acknowledgements

GAISLER_CAN_OC_IRQ CAN_OC interrupts

all Set all debug flags for the core

clean Set none of the debug flags for the core

list List the current setting of the debug flags for the core

15.4. Packet server

Each CAN_OC core can be configured independently as a packet server or client using either -
can_ocX_server or -can_ocX_connect. When acting as a server the core can only accept a single con-
nection.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 65

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

A connection should be set up before starting simulation for the first time, and must not be broken after that.
Restarting the simulation will not tear down the connection, nor emptying any socket buffers. The socket based
interface does not support any signalling of restart of the simulation. To ensure a clean restart of simulation when
using this interface, restarting TSIM entirely and reconnecting socket interfaces is advisable.

15.5. CAN packet server protocol

The protocol used to communicate with the packet server is described below. Four different types of packets are
defined according to the table below.

Table 15.2. CAN packet types

Type Value

Message 0x00

Error counter 0xFD

Acknowledge 0xFE

Acknowledge config 0xFF

15.5.1. CAN message packet format

Used to send and receive CAN messages.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

CAN message

Byte # Description Bits (MSB-LSB)

7 6 5 4 3 2 1 0

4 Protocol ID = 0 Prot ID 7-0

5 Control FF RTR - - DLC (max 8 bytes)

6-9 ID (32 bit word in network byte
order)

ID 10-0 (bits 31 - 11 ignored for standard frame format)
ID 28-0 (bits 31-29 ignored for extended frame format)

10-17 Data byte 1 - DLC Data byte n 7-0

Figure 15.1. CAN message packet format

15.5.2. Error counter packet format

Used to write the RX and TX error counter of the modelled CAN interface.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Error counter packet

Byte # Field Description

4 Packet type Type of packet, 0xFD for error counter packets

5 Register 0 - RX error counter, 1 - TX error counter

6 Value Value to write to error counter

Figure 15.2. Error counter packet format

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 66

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

15.5.3. Acknowledge packet format

If the acknowledge function has been enabled through the start up option or command the CAN interface will wait
for an acknowledge packet each time it transmits a message. To enable the CAN receiver to send acknowledge
packets (either NAK or ACK) an acknowledge configuration packet must be sent. This is done automatically by
the CAN interface when can_ocX_ack is issued.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Acknowledge packet

Byte # Field Description

4 Packet type Type of packet, 0xFE for acknowledge packets

5 Ack payload 0 - No acknowledge, 1 - Acknowledge

Figure 15.3. Acknowledge packet format

15.5.4. Acknowledge packet format

This packet is used for enabling/disabling the transmission of acknowledge packets and their payload (ACK
or NAK) by the CAN receiver. The CAN transmitter will always wait for an acknowledge if started with -
can_ocX_ack or if the can_ocX_ack command has been issued.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Acknowledge configuration packet

Byte # Field Description

4 Packet type Type of packet, 0xFF for acknowledge configuration packets

bit 0 Unused

bit 1 Ack packet enable, 1 - enabled, 0 - disabled

5 Ack configuration

bit 2 Set ack packet payload, 1 - ACK, 0 - NAK

Figure 15.4. Acknowledge configuration packet format

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 67

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

16. 10/100 Mbps Ethernet Media Access Controller interface

The Ethernet core simulation model is designed to functionally model the 10/100 Ethernet MAC available in
UT699, UT699E, UT700 and GR712RC. For core details and register specification please see the chip manual.

The following features are supported:

• Direct Memory Access
• Interrupts

16.1. Start up options

Ethernet core start up options

-grethX_connect host[:port]
Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.

-grethX_mac X:X:X:X:X:X
Set MAC address of the Ethernet core.

16.2. Commands

GRETH Commands

grethX_dbg [flag|all|clean|list]
Toggle specific flag, set all, clear all, or list debug flags for the given GRETH core. See Section 16.3 for
a list of debug flags.

grethX_status
Prints the status of greth core X.

grethX_connect [ip[:port]]
Connect to packet server at given IP address and optional port. Default port is 2224. If no IP address is
specified, the default is localhost.

grethX_ping ip
Simulate a ping. Packets will be generated by TSIM.

grethX_dump file
Dump packets to Ethereal readable file.

grethX_reconnect <0|1>
Turn GRETH autoreconnect on or off.

X in the above commands is the index of the core.

16.3. Debug flags

The following debug flags are available for the Ethernet interface. Use the them in conjunction with the dbgon
command to enable different levels of debug information.

Table 16.1. Ethernet debug flags

Flag Trace

GAISLER_GRETH_ACC GRETH accesses

GAISLER_GRETH_L1 GRETH accesses verbose

GAISLER_GRETH_TX GRETH transmissions

GAISLER_GRETH_RX GRETH reception

GAISLER_GRETH_RXPACKET GRETH received packets

GAISLER_GRETH_RXCTRL GRETH RX packet server protocol

GAISLER_GRETH_RXBDCTRL GRETH RX buffer descriptors DMA

GAISLER_GRETH_RXBDCTRL GRETH TX packet server protocol

GAISLER_GRETH_TXPACKET GRETH transmitted packets

GAISLER_GRETH_IRQ GRETH interrupts

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 68

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

16.4. Ethernet packet server

The simulation model relies on a packet server to receive and transmit the Ethernet packets. The packet server
should open a TCP socket which the module can connect to. The Ethernet core is connected to a packet server
using the -grethX_connect start-up parameter or using the grethX_connect command.

A connection should be set up before starting simulation for the first time, and must not be broken after that.
Restarting the simulation will not tear down the connection, nor emptying any socket buffers. The socket based
interface does not support any signalling of restart of the simulation. To ensure a clean restart of simulation when
using this interface, restarting TSIM entirely and reconnecting socket interfaces is advisable.

An example implementation of a packet server, named greth_config, is included in TSIM distribution. It
uses the TUN/TAP interface in Linux, or the WinPcap library on Windows, to connect the GRETH core to a
physical Ethernet LAN. This makes it easy to connect the simulated GRETH core to real hardware. It can provide a
throughput in the order of magnitude of 500 to 1000 KiB/sec. See its distributed README for usage instructions.

16.5. Ethernet packet server protocol

Ethernet data packets have the following format. Note that each packet is prepended with a one word length field
indicating the length of the packet to come (including its header).

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 4 + number of data bytes

Header at offset 0x4:

31 16 15 8 7 5 4 0

R IPID TYPE R

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 1 for Ethernet

7:5 TYPE Packet type: 0 for data packets

4:0 R Reserved for future use. Must be set to 0.

Offset 0x8: The rest of the packet is the encapsulated Ethernet packet

Figure 16.1. Ethernet data packet

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 69

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

17. GPIO interface

17.1. Connecting a user GPIO model
To register a GPIO user module, call tsim_register_gpio_module(gpio_input, index) from an
input modules init function. Here gpio_input is a pointer to a gpio_input struct, and index is the index of the
GPIO core to register on. See Chapter 5 for further details on how to connect the user model.

17.2. GPIO model API

The structure struct gpio_input models the GPIO pins. It is defined as:

/* GPIO input provider */
struct gpio_input {
 int index;
 int (*gpioout)(struct gpio_input *ctrl, unsigned int dir, unsigned int output);
 int (*gpioin) (struct gpio_input *ctrl, unsigned int in);
 void (*gpioinit)(struct gpio_input *ctrl);
 void (*gpioreset)(struct gpio_input *ctrl);
 void (*print_status)(struct gpio_input *ctrl);

 void* priv;
};

The gpioout callback should be set by the user module at startup. The gpioin callback is set by tsim. The
gpioout callback is called by the module whenever a GPIO output pin changes. The gpioin callback is called
by the user module when the input pins should change. Typically the user module would register an event handler
at a certain time offset and call gpioin from within the event handler. The gpioinit callback is called during
simulator startup and the gpioreset is called each time TSIM resets. Optionally the print_status callback
can be set to print user model status. The priv parameter can be set freely by the user.

Table 17.1. gpioout callback parameters

Parameter Description

dir Bit x of dir indicates that the grgpio core drives output
on line x when 1 and that it does not when it is 0.

out The values of the output pins

Table 17.2. gpioin callback parameters

Parameter Description

in The input pin values

The return value of gpioin/gpioout is ignored.

See the examples/input directory for an example module implementation. See the examples/test direc-
tory for an example test program.

17.3. Commands

GPIO Commands

gpioX_status
Print status for the GPIO core.

gpioX_dbg [flag|all|clean|list]
Toggle specific flag, set all, clear all, or list debug flags for the given GPIO core. See Section 17.4 for a
list of debug flags.

X in the above commands is the index of the core.

17.4. Debug flags

The following debug flags and debug subcommands are available for GPIO interfaces. The GAISLER_GPIO_*
flags can be used with the gpioX_dbg command to toggle individual flags for individual GPIO cores and with the
dbgon command to toggle individual flags for all GPIO cores. The subcommands can be used with the gpioX_dbg
command to change and list the settings of all flags for individual GPIO cores.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 70

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

Table 17.3. GPIO debug flags

Flag/subcommand Trace

GAISLER_GPIO_ACC GPIO register accesses

GAISLER_GPIO_IRQ GPIO interrupts

all Set all GPIO debug flags for the core

clean Set none of the GPIO debug flags for the core

list List the current setting of the debug flags for the core

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 71

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

18. GRPCI, PCI initiator/target interface

TSIM models the GRPCI cores available in UT699, UT699E and UT700. For core details and register specification
please see the manual for each chip.

18.1. Commands

PCI Commands

grpciX_status
Print status for PCI core X

grpciX_dbg
Toggle specific flag, set all, clear all, or list debug flags for the given grpci core. See Section 18.2 for a
list of debug flags.

X in the above commands is the index of the core.

18.2. Debug flags

The following debug flags are available for the PCI interface. Use them in conjunction with the grpciX_dbg
command to enable different levels of debug information.

Table 18.1. PCI interface debug flags

Flag Trace

GAISLER_GRPCI_ACC AHB accesses to/from PCI core

GAISLER_GRPCI_REGACC GRPCI APB register accesses

GAISLER_GRPCI_DMA_REGACC PCIDMA APB register accesses

GAISLER_GRPCI_DMA GRPCI DMA accesses on the AHB bus

GAISLER_GRPCI_TARGET_ACC GRPCI target accesses

GAISLER_GRPCI_INIT Print summary on startup

18.3. PCI bus model API

To register a GRPCI module call tsim_register_grpci_module(struct grpci_input *inp,
int index); from an input modules init function. Here inp is a pointer to a grpci_input struct and index
is the index of the GRPCI controller to register on. See Chapter 5 for further details on how to connect the user
model. The struct grpci_input is defined in grpci_input.h as:

struct grpci_input {
 int (*acc)(struct grpci_input *ctrl,
 int cmd,
 unsigned int addr,
 unsigned int wsize,
 unsigned int *data,
 unsigned int *abort,
 unsigned int *ws);

 void (*grpci_init)(struct grpci_interface *grpciif);
};

The acc callback should be set by the PCI user module at startup. It is called by the the model whenever the PCI
core reads/writes as a PCI bus master.

Table 18.2. acc callback parameters

Parameter Description

cmd Command to execute, see Section 18.3.1 details.

addr PCI address.

wsize 0: 8-bit access 1: 16-bit access, 2: 32-bit access. Is always 2 for read accesses.

data Data buffer. The user module should return the read data in *data for read
commands or write the data in *data for write commands.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 72

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

Parameter Description

abort Set *abort to 1 to generate target abort, or 0 otherwise.

ws Set *ws to the number of PCI clocks it takes to complete the transaction.

The return value of acc determines if the transaction terminates successfully (0 or GRPCI_ACC_OK) or with
master abort (1 or GRPCI_ACC_MASTER_ABORT).

The grpci_init callback should be set by the PCI user module at startup. It is called by TSIM at simulator startup.

Table 18.3. grpci_init callback parameters

Parameter Description

grpciif Pointer to a struct grpci_interface. Should be saved by the module
to interface with TSIM's GRPCI model.

The struct grpci_interface is defined in grpci_input.h as:

struct grpci_interface {
 int (*target_acc)(int index,
 int cmd,
 unsigned int addr,
 unsigned int wsize,
 unsigned int *data,
 unsigned int *mexc);
};

The callback target_acc is installed by the TSIM. The PCI user dynamic library can call this function to initiate
an access to the PCI target.

Table 18.4. target_acc parameters

Parameter Description

index Index of GRPCI core of the system. Typically, 0 is the only valid index.

cmd Command to execute, see Section 18.3.1 for details. I/O cycles are not sup-
ported by the target.

addr PCI address. Should always be word aligned for read accesses.

wsize 0: 8-bit access 1: 16-bit access, 2: 32-bit access. Should always be 2 for read
accesses.

data Data buffer. The read data is returned in *data for read commands or the
data in *data is written for write commands.

mexc The model sets *mexc to 0 if access is successful, or 1 in case of target abort.

If a supported command hits MEMBAR0, MEMBAR1 or CONFIG, target_acc() will return 0. For unsupported
commands or other areas, it will return 1.

18.3.1. PCI command table

Table 18.5. PCI command table

Command Description

0 IRQ acknowledge

1 Special cycle

2 I/O Read

3 I/O Write

4 Reserved

5 Reserved

6 Memory Read

7 Memory Write

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 73

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

Command Description

8 Reserved

9 Reserved

10 Configuration Read

11 Configuration Write

12 Memory Read Multiple

13 Dual Address Cycle

14 Memory Read Line

15 Memory Write And Invalidate

18.4. Examples

See the PCI files in examples/input for header files and an example PCI user module. See example usage
in examples/test.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 74

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

19. GRSPW1, SpaceWire interface with RMAP support

The UT699 chip contains 4 GRSPW cores which are modelled in TSIM. For core details and register specification
please see the UT699 manual.

The UT699E chip has GRSPW2 cores instead of GRSPW cores. So, for UT699E see Chapter 20 instead.

The following features are supported:

• Transmission and reception of SpaceWire packets
• Interrupts
• RMAP

19.1. Start up options

SpaceWire core start up options

-grspwX_connect host:port
Connect GRSPW core X to packet server at specified server and port.

-grspwX_server port
Open a packet server for core X on specified port.

-grspw_rxfreq freq
Set the RX frequency which is used to calculate receive performance.

-grspw_txfreq freq
Set the TX frequency which is used to calculate transmission performance.

X in the above commands is the index of the core.

19.2. Commands

GRSPW SpaceWire core TSIM commands

grspwX_connect host:[port]
Connect GRSPW core X to packet server at specified server and TCP port.

grspwX_server port
Open a packet server for GRSPW core X on specified TCP port.

grspwX_dbg [flag|all|clean|list]
Toggle specific flag, set all, clear all, or list debug flags for the given GRSPW core. See Section 19.3 for
a list of debug flags.

X in the above commands is the index of the core.

19.3. Debug flags

The following debug flags are available for the SpaceWire interfaces. Use the them in conjunction with the dbgon
command to enable different levels of debug information.

Table 19.1. SpaceWire debug flags

Flag Trace

GAISLER_GRSPW_ACC GRSPW accesses

GAISLER_GRSPW_RXPACKET GRSPW received packets

GAISLER_GRSPW_RXCTRL GRSPW rx protocol

GAISLER_GRSPW_TXPACKET GRSPW transmitted packets

GAISLER_GRSPW_TXCTRL GRSPW tx protocol

19.4. SpaceWire packet server

Each SpaceWire core can be configured independently as a packet server or client using either -
grspwX_server or -grspwX_connect. TCP sockets are used for establishing the connections. When acting
as a server the core can only accept a single connection.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 75

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

A connection should be set up before starting simulation for the first time, and must not be broken after that.
Restarting the simulation will not tear down the connection, nor emptying any socket buffers. The socket based
interface does not support any signalling of restart of the simulation. To ensure a clean restart of simulation when
using this interface, restarting TSIM entirely and reconnecting socket interfaces is advisable.

For more flexibility, such as custom routing, an external packet server can be implemented using the protocol
specified in the following sections. Each core should then be connected to that server.

19.5. SpaceWire packet server protocol

The protocol used to communicate with the packet server is described below. Three different types of packets are
defined according to the table below.

Table 19.2. Packet types

Type Value

Data 0

Time code 1

Note that all packets are prepended by a one word length field which specified the length of the coming packet
including the header.

19.5.1. Data packet format

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 4 + number of data bytes

Header at offset 0x4:

31 16 15 8 7 5 4 1 0

R IPID TYPE R EE

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 0 for data packets

4:1 R Reserved for future use. Must be set to 0.

0 EE Error End of Packet. Set when the packet is truncated and terminated by an EEP.

Offset 0x8: The rest of the packet is the encapsulated SpaceWire packet

Figure 19.1. SpaceWire data packet

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 76

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

19.5.2. Time code packet format

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 8

Header at offset 0x4:

31 16 15 8 7 5 4 0

R IPID TYPE R

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 1 for time code packets

4:0 R Reserved for future use. Must be set to 0.

Payload at offset 0x8:

31 8 7 6 5 0

R CT CN

31:8 R Reserved for future use. Must be set to 0.

7:6 CT Time control flags

5:0 CN Value of time counter

Figure 19.2. SpaceWire time code packet

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 77

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

20. GRSPW2, SpaceWire interface with RMAP support

TSIM models the GRSPW2 cores available in UT699E, UT700, GR712RC and GR716. For core details and
register specification please see the manual for each chip.

Supported features include:

• Transmission and reception of SpaceWire packets
• Transmission and reception of Time codes
• RMAP
• Server side link state model
• Link errors
• Link error injection

All GRSPW2 register fields with underlying functionality in UT699E, UT700, GR712RC and GR716 are sup-
ported except for:

• The link model is only in error reset state or run state.
• The RMAP buffer disable (RD) bit in the control register with underlying functionality is not modelled.
• The limitations of the No spill (NS) DMA control register bit as noted in the section on Flow control limi-

tations below.
• No support for RX/TX of SpW interrupt codes (GR716).
• No support for SpaceWire Plug & Play via RMAP access (GR716).
• The port loopback (Loop) bit in the control register with underlying functionality is not modelled (UT700).

20.1. Start up options

SpaceWire core start up options

-grspwX_connect host:port
Connect GRSPW2 core X to packet server at specified server and port.

-grspwX_server port
Open a packet server for core X on specified port.

-grspw_spwfreq freq
Sets the SpaceWire input clock frequency. Combined with the clock divisor register, this determines the
startup frequency and TX frequency.

-grspw_clkdiv value
Sets the reset value for the clock divisor register for all GRSPW2 cores.

-grspw_tx_max_part_len len
Sets up all GRSPW2 cores to transmit any SpaceWire packet longer than len in data part packets with
no more than len bytes of data.

-grspw_endpacket [0|1]
Enable (or disable with 0 argument) end marking data part packets. When enabled, the last data part packet
of a simulated SpaceWire packet will always be a data part packet with no data and an end marker. This
is the default unless simple mode is enabled. When disabled the last data part packet can contain both data
and an end marker. This is the default when simple mode is enabled.

-grspw_simple [0|1]
Enable “simple mode” for all GRSPW2 cores. This can be used for backward compatibility with TSIM
2.0.44 and backwards. See the separate section on simple mode for details.

-grspw_simple_rxfreq freq
Sets the RX frequency in MHz for all GRSPW2 cores to freq. This is only valid together with the -
grspw_simple option.

X in the above commands is the index of the core.

20.2. Commands

GRSPW2 SpaceWire core TSIM commands

grspwX_connect host:[port]
Connect GRSPW2 core X to packet server at specified server and TCP port.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 78

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

grspwX_server port
Open a packet server for GRSPW2 core X on specified TCP port.

grspwX_dbg [flag|all|clean|list]
Toggle specific flag, set all, clear all, or list debug flags for the given GRSPW2 core. See Section 20.3
for a list of debug flags.

grspwX_status
Print status for GRSPW2 core X.

X in the above commands is the index of the core.

20.3. Debug flags

The following debug flags and debug subcommands are available for SpaceWire interfaces. The
GAISLER_GRSPW_* flags can be used with the grspwX_dbg command to toggle individual flags for individ-
ual SpaceWire cores and with the dbgon command to toggle individual flags for all GRSPW2 cores. The sub-
commands can be used with the grspwX_dbg command to change and list the settings of all flags for individual
SpaceWire cores.

Table 20.1. SpaceWire debug flags

Flag/subcommand Trace

GAISLER_GRSPW_ACC GRSPW accesses

GAISLER_GRSPW_RXPACKET GRSPW received packets

GAISLER_GRSPW_RXCTRL GRSPW rx protocol

GAISLER_GRSPW_TXPACKET GRSPW transmitted packets

GAISLER_GRSPW_TXCTRL GRSPW tx protocol

GAISLER_GRSPW_RMAP GRSPW RMAP accesses

GAISLER_GRSPW_RMAPPACKET GRSPW RMAP packet dumps

GAISLER_GRSPW_RMAPPACKDE GRSPW RMAP packet decoding

GAISLER_GRSPW_DMAERR GRSPW DMA errors

GAISLER_GRSPW_LINK Link changes

GAISLER_GRSPW_PART TX/RX of GRSPW data part packets

all Set all debug flags for the core

clean Set none of the debug flags for the core

list List the current setting of the debug flags for the core

20.4. SpaceWire packet server

Each SpaceWire core can be configured independently as a packet server or client using either -
grspwX_server or -grspwX_connect. TCP sockets are used for establishing the connections. When acting
as a server the core can only accept a single connection.

A connection should be set up before starting simulation for the first time, and must not be broken after that.
Restarting the simulation will not tear down the connection, nor emptying any socket buffers. The socket based
interface does not support any signalling of restart of the simulation. To ensure a clean restart of simulation when
using this interface, restarting TSIM entirely and reconnecting socket interfaces is advisable.

The server side contains a link model that gets control information from the models at each end of the link,
determines the link state and communicates frequencies and link errors to the two models at each ends of the link.
It also supports error injection via two error injection packet types that can be sent from a custom client. See the
the following sections for details.

For more flexibility, such as custom routing, an external packet server can be implemented using the protocol
specified in the following sections. Each core should then be connected to that server. That server would also
have to implement a link model that at least reacts to link control packets and sends out link state packets and
RX frequency packets.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 79

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

20.5. SpaceWire packet server protocol

The protocol used to communicate with the packet server is described below. The different types of packets are
defined according to the table below.

Table 20.2. Packet types

Type Value Direction Notes

Data part 0 Both Only when in run state

Time code 1 Both Only when in run state

Link state 2 Server to client

Link control 3 Client to server Must be sent for model to reach run state

RX frequency 4 Server to client

Error injection 5 Client to server Optional

Packet error request 6 Client to server Optional

All packets begin with a 32-bit big endian word length field which specifies the length of the rest of the packet,
including header and other fixed fields. For most packet types this length is fixed for the particular type. Apart
from the data part packet type, where data follows the header byte-wise, all fields are 32-bit big endian words if
not otherwise specified.

All packets received by the GRSPW2 model are handled sequentially, and all packets sent by the GRSPW2 model
and the server side link model are supposed to be handled sequentially by the client. SpaceWire packets can be split
into multiple data parts, transferred in data part packets. Between such parts other packets such as for time codes,
link state changes, link control changes, etc., can be handled. During the simulated time span for the reception of a
data part, the receiver will not/should not handle any other packet types. Use the -grspw_tx_max_part_len
option to set up GRSPW2 model to split up SpaceWire packets into data parts in order for such events to be able
to happen during the data stream.

20.5.1. Flow control limitations

Flow control in terms of credit is not modelled between two ends of a link. A transmitter gets no notice if the
other end cannot give more credit. If the no-spill bit in the GRSPW2 core is set and an enabled receiving DMA
channel has no enabled descriptors, the data part packet will be held on the receiving side until a descriptor is
available. Due to the sequential nature of the packet model a link error, time code, etc. will not be handled at all
by the GRSPW2 model during this time.

20.5.2. Data part packet format

A SpaceWire packet is represented by one or more data parts. A data part packet represents one such a part. For
the data parts of a multi part SpaceWire packet, only the last data part should have an EOP or EEP end marker,
i.e. the END field set to 0 or 1. The other parts should have no end marker, i.e. the END field set to 2. Each data
part is delivered in its entirety or not at all. A link error occurring between data parts on the other hand cuts the
SpaceWire packet short and is considered the end of that SpaceWire packet.

A data part packet is sent at the beginning of transmission of the corresponding part of the SpaceWire packet, so
that the receiver can start reacting to it as soon as the transmission starts. The GRSPW2 model by default sends
a SpaceWire packet in the form of two data part packets. The first data part packet is sent at the beginning of
transmission and contains all data but has no end marker. The second data part packet is sent when transmission
is completed and has the appropriate end marker set but contains no data. If a user model is not waiting for the
end marker packet before responding, the response could arrive before transmission is considered done by the
GRSPW2 model. Generation of separate end marker packets can be turned off using the -grspw_endpacket
option. Splitting up SpaceWire packets into several data containing data part packets can be enabled with the -
grspw_tx_max_part_len option.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 80

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 4 + number of data bytes in the part

Header at offset 0x4:

31 16 15 8 7 5 4 2 1 0

R IPID TYPE R END

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 0 for data part packets

4:2 R Reserved for future use. Must be set to 0.

1:0 END End marker: 0: Normal End of Packet, 1: Error End of Packet, 2: No end marker

Offset 0x8: The data bytes of the part starts here

Figure 20.1. SpaceWire data part packet

20.5.3. Time code packet format

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 8

Header at offset 0x4:

31 16 15 8 7 5 4 0

R IPID TYPE R

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 1 for time code packets

4:0 R Reserved for future use. Must be set to 0.

Payload at offset 0x8:

31 8 7 6 5 0

R CT CN

31:8 R Reserved for future use. Must be set to 0.

7:6 CT Time control flags

5:0 CN Value of time counter

Figure 20.2. SpaceWire time code packet

20.5.4. Link state packet format

Link state packets are sent out by the server side link model when the link state changes. The only states currently
simulated are Error Reset and Run. A link state packet with state Error Reset can have the ERROR field
set to an error seen at the receiver. Other link state packets has only None in the ERROR field.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 81

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 4

Header at offset 0x4:

31 19 18 16 15 8 7 5 4 3 2 0

R ERROR IPID TYPE R LS

31:19 R Reserved for future use. Must be set to 0.

18:16 ERROR Link error: 0: None, 1: Disconnect, 2: Parity, 3: Escape, 4:Credit

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 2 for link state packets

4:3 R Reserved for future use. Must be set to 0.

2:0 LS Link State: 0: Error reset, 1: Error wait, 2: Ready, 3: Started, 4: Connecting, 5: Run

Figure 20.3. SpaceWire link state packet

20.5.5. Link control packet format

A link control packet must be sent from a client to the server side link model to inform if that side of the link is
in start mode, autostart mode, and/or has the link disabled. In addition, the control packet contains information on
the startup frequency and the TX frequency that will be used once run state is reached. A new link control packet
should be sent from a client any time any of these parameters change.

If the startup frequencies of the two ends differ by more than a factor 1.1/0.9, the link model will reach run state.
This limit is chosen based on the limits on timeout periods in the SpaceWire standard that must be within 10%
up or down from nominal frequency. So even though the startup frequency should be 10 MHz, run state can be
reached if startup frequencies are close enough.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 82

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 12

Header at offset 0x4:

31 16 15 8 7 5 4 3 2 1 0

R IPID TYPE R AS LS LD

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 3 for link control packets

4:3 R Reserved for future use. Must be set to 0.

2 AS Link autostart.

1 LS Link start.

0 LD Link disable.

Startup frequency in MHz at offset 0x8:

31 0

SFREQ

31:0 SFREQ Startup frequency in MHz, big endian IEEE-754 32-bit float

TX frequency in MHz at offset 0xc:

31 0

TFREQ

31:0 TFREQ TX frequency in MHz, big endian in IEEE-754 32-bit float

Figure 20.4. SpaceWire link control packet

20.5.6. RX frequency packet format

The server side link model sends out this packet type to inform the client of with what frequency the other side
transmits with when in run state. A new packet of this type is sent any time the transmitter on the other side
changes its TX frequency.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 83

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 8

Header at offset 0x4:

31 16 15 8 7 5 4 0

R IPID TYPE R

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 4 for rx frequency packets

4:0 R Reserved for future use. Must be set to 0.

RX frequency in MHz at offset 0x8:

31 0

RFREQ

31:0 RFREQ RX frequency in MHz, big endian IEEE-754 32-bit float

Figure 20.5. SpaceWire rx frequency packet

20.5.7. Link error injection packet format

A client can send a packet of this kind to the server side link model to request that a link error will occur. The
error specified is the link error that is seen at the targeted end. The OE bit determines which end of the link is the
targeted end, i.e. will see the error.

If the OE bit is set to 1, the error will be seen at the receiver of the simulation model on the other end. The simulation
model on the client side will see a disconnect error via a link state packet. In order for this error to happen during
reception of a SpaceWire packet at the other end, the client can sent a data part packet with no end marker followed
by a link error injection packet.

If the OE bit is set to 0, the error will be seen at the receiver on the client end. The simulation model at the client
end will see the requested error via a link state packet. The simulation model at the other end will see a disconnect
error. Note that due to the nature of the model, this cannot in general be relied upon to inject an error during the
reception of a SpaceWire packet, even if split up in multiple data parts. The link state packet will not be sent by the
server side link model until all previous packets have been handled, and the client should handle all other packets
queued up before that link state packet can be handled. To inject a link error during the reception of a SpaceWire
packet at the client side, the packet error request packet should be used instead.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 84

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 4

Header at offset 0x4:

31 21 20 19 18 16 15 8 7 5 4 0

R OE R ERROR IPID TYPE R

31:21 R Reserved for future use. Must be set to 0.

20 OE Other end: 1: other end gets the error, 0: my end gets error

19 R Reserved for future use. Must be set to 0.

18:16 ERROR Link error: 1: Disconnect, 2: Parity, 3: Escape, 4:Credit

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 5 for link error injection packets

4:0 R Reserved for future use. Must be set to 0.

Figure 20.6. SpaceWire link error injection packet

20.5.8. Packet error request packet format

A client can send a packet of this kind to the server side link model to request that a link error will occur during
reception of a certain data packet by the client. The error specified is the link error that is seen, via a link state
packet, by the client as a result. The other side will see a disconnect error. A 64-bit packet number, counting from
0, indicates during which SpaceWire packet sent from the other side to the client the link error should happen. Note
that this number is indexing SpaceWire packets, not individual data part packets, and does not take SpaceWire
packets sent from the client to the server side into account in the numbering. There can only be one outstanding
packet error request per targeted GRSPW2 core at a time.

The grspwX_status command can be issued for the targeted GRSPW2 core to see how many SpaceWire packets
have currently been sent by that core. This includes started but aborted SpaceWire packets, due to link error, core
reset or active aborting using the Abort TX (AT) bit in the DMA control register of the GRSPW2 core.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 85

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 16

Header at offset 0x4:

31 19 18 16 15 8 7 5 4 0

R ERROR IPID TYPE R

31:19 R Reserved for future use. Must be set to 0.

18:16 ERROR Link error: 1: Disconnect, 2: Parity, 3: Escape, 4:Credit

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 6 for packet error request packets

4:0 R Reserved for future use. Must be set to 0.

Packet number to request error for, most significant word at offset 0x8:

31 0

MSW

31:0 MSW Bits 63:32 of unsigned 64-bit big endian integer

Packet number to request error for, least significant word at offset 0xc:

31 0

LSW

31:0 LSW Bits 31:0 of unsigned 64-bit big endian integer

Reserved field at offset 0x10:

31 0

R

31:0 R Reserved for future use. Must be set to 0.

Figure 20.7. SpaceWire packet error request packet

20.6. Simple Mode

For backwards compatibility with TSIM 2.0.44 and older, the GRSPW2 models can be set up in “simple mode”
with the -grspw_simple option. This makes the following changes to the simulation model for all GRSPW2
cores:

• The only supported packet types are data part packets and time code packets. The model sends out no other
packet types and accepts no other packet types.

• In simple mode a SpaceWire packet is by default sent as a single data part packet with an end mark-
er. Generation of separate end packets can be enabled with the -grspw_endpacket option. Simple
mode does support all kinds of data part packets. However, if one needs to be compatible with the old-
er protocol, each data part packet should contain a full SpaceWire packet with an end marker and the -
grspw_tx_max_part_len option should not be used.

• The link state that a GRSPW2 core perceives is solely determined by its own link control setting. The other
end is assumed to try to start the link. In other words, run state is achieved once the GRSPW2 is set to start or
autostart without having link disable set. Moreover, startup frequencies are ignored and run state is achieved
without any delay.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 86

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

• The RX frequency is determined primarily by the -grspw_simple_rxfreq option. If that is not used, the
RX frequency is taken by the -grspw_spwfreq option. If none of those options are set the CPU frequency
is used. No cases take any clock divisors info account. The TX frequency is determined in the usual way as
when not in simple mode, which includes taking the clock divisor register into account.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 87

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

21. SPI interface

21.1. Connecting a user SPI model
To register a SPI user module, call tsim_register_spi_module(spi_input, index) from an input
modules init function. Here spi_input is a pointer to a spi_input struct, and index is the index of the SPI core
to register on. See Chapter 5 for further details on how to connect the user model.

21.2. SPI bus model API

The structure struct spi_input models the SPI bus. It is defined as:

/* Spi input provider */

struct spi_input {
 int (*spishift)(struct spi_input *ctrl, uint32 select, uint32 bitcnt,
 uint32 out, uint32 *in);
 void *priv;
};

The spishift callback should be set by the SPI user module at startup. It is called by the SPI core whenever it shifts
a word through the SPI bus.

Table 21.1. spishift callback parameters

Parameter Description

select Slave select register bits when such a register is present. Zero otherwise.

bitcnt Number of bits per word (as per the MODE register) for actual shifts. If bitcnt is -1 then
the operation is not an actual shift and the call is merely to indicate a change in the slave
select register (when such a register is present).

out Shift out (tx) data

in Shift in (rx) data

The priv parameter is a pointer to private data and be set freely by the user.

The return value of spishift is ignored.

See the examples/input directory for an example module implementation. See the examples/test direc-
tory for an example test program.

21.3. Commands

SPI Commands

spiX_dbg [flag|all|clean|list]
Toggle specific flag, set all, clear all, or list debug flags for the given SPI core. See Section 21.4 for a list
of debug flags.

21.4. Debug flags

The following debug flags and debug subcommands are available for SPI interfaces. The GAISLER_SPI_* flags
can be used with the spiX_dbg command to toggle individual flags for individual SPI cores and with the dbgon
command to toggle individual flags for all SPI cores. The subcommands can be used with the spiX_dbg command
to change and list the settings of all flags for individual SPI cores.

Table 21.2. SPI debug flags

Flag/subcommand Trace

GAISLER_SPI_ACC SPI register accesses

GAISLER_SPI_IRQ SPI interrupts

all Set all SPI debug flags for the core

clean Set none of the SPI debug flags for the core

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 88

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

Flag/subcommand Trace

list List the current setting of the debug flags for the core

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 89

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

22. SPIM interface

22.1. Connecting a user SPIM model to TSIM

To register a user module on a SPIM controller call tsim_register_spim_module(spim_subsystem,
index) from an input modules init function. Here spim_subsystem is a pointer to a spim_subsystem struct
and index is the index of the SPIM controller to register on. See Chapter 5 for further details on how to connect
the user model. The struct spim_subsystem is defined in spim_input.h as:

struct spim_subsystem {
 struct spim_input *inp;
};

22.2. SPIM model API

The structure struct spim_input models the SPIM bus. It is defined as:

/* Spim input provider */

struct spim_input {
 int (*spishift)(struct spim_input * ctrl, unsigned int select,
 unsigned int bitcnt, unsigned int timing_scaler,
 unsigned int out, unsigned int *in);
 void (*spim_init)(struct spim_interface *spimif);
 void *priv;
};

The spishift callback should be set by the SPIM user module at startup. It is called by TSIM3 whenever a
new byte is written to the TX register.

Table 22.1. spishift callback parameters

Parameter Description

select Slave select bits

bitcnt Number of bits the user model will receive. This will always be set to 8.

timing_scaler The relation between the SPIM core SCK and the system clk.

out Shift out (tx) data

in Shift in (rx) data

The priv is a pointer to private data and can be set freely by the user. The spim_init is called at startup and
provides the user model with a SPIM interface struct. The SPIM interface struct is defined as:

struct spim_interface {
 int (*spim_get_flashb)(unsigned int index, void *data);
};

Table 22.2. spim_get_flashb parameters

Parameter Description

index Index of the SPIM controller to access.

data Pointer to a spim_flash_data struct to be filled in.

The spimif struct allows access to TSIM3s internal SPIM memory representation with spim_get_flashb.
index is the index of the SPIM controller to access. The data parameter should be a pointer to a
spim_flash_data struct which will be updated with the necessary data to access the internal memory repre-
sentation. The spim_flash_data struct is defined as:

struct spim_flash_data {

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 90

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

 unsigned int flash_size;
 unsigned char *flashb;
 unsigned int flash_mask;
};

Table 22.3. struct spim_flash_data members

Parameter Description

flash_size Size of the flash memory.

flashb Pointer to the flash memory.

flash_mask Flash memory mask.

See the examples/input directory for an example module implementation. The example demonstrates how
to set up a basic model, get access to TSIM's internal memory representation and updates the RX register. See the
examples/test directory for an example test program.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 91

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

23. AT697 PCI interface

TSIM models the PCI interface in AT697, in TSIM called “ESAPCI”. For core details and register specification
please see the manual for the chip.

The PCI model will process all accesses to memory region 0xa0000000 - 0xf0000000 (AHB slave mode) and the
APB registers starting at 0x80000100. The AT697 PCI model implements all registers of the PCI core. It will in
turn load the PCI user modules that will implement the devices. The AT697 model is supposed to be the PCI host.
Both PCI Initiator mode and PCI Target mode are supported. The interface to the PCI user modules is implemented
on bus level. Two callbacks model the PCI bus.

23.1. Commands

ESAPCI TSIM Commands

esapci0_dbg
Toggle specific flag, set all, clear all, or list debug flags for the given PCI core. See Section 23.2 for a
list of debug flags.

23.2. Debug flags

The following debug flags are available for the ESAPCI interface. Use them in conjunction with the esapci0_dbg
command to enable different levels of debug information.

Table 23.1. ESAPCI interface debug flags

ESAPCI_REGACC Trace accesses to the PCI registers

ESAPCI_ACC Trace accesses to the PCI AHB-slave address space

ESAPCI_DMA Trace DMA

ESAPCI_IRQ Trace PCI IRQ

23.3. Registers

Table 23.2 contains a list of implemented and not implemented fields of the AT697F PCI Registers. Only register
fields that are relevant for the emulated PCI module is implemented.

Table 23.2. PCI register support

Register Implemented Not implemented

PCIID1 device id, vendor id

PCISC stat 13, stat 12, stat 11, stat 7, stat 6 stat 5,
stat 4, com2, com 1, com1

stat15 stat14 stat10_9 stat8 com10 com9 com8
com7 com6 com5 com4 com3

PCIID2 class code, revision id

PCIBHDLC [bist, header type, latency timer, cache
size] config-space only

PCIMBAR1 base address, pref, type, msi

PCIMBAR2 base address, pref, type, msi

PCIIOBAR3 io base address, ms

PCISID subsystem id, svi

PCICP pointer

PCILI [max_lat min_gnt int_pin int_line] con-
fig-space-only

PCIRT [retry trdy] config-space-only

PCICW ben

PCISA start address

PCIIW ben

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 92

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

Register Implemented Not implemented

PCIDMA wdcnt, com b2b

PCIIS act, xff, xfe, rfe dmas, ss

PCIIC mod, commsb dwr, dww, perr

PCITPA tpa1, tpa2

PCITSC errmem, xff, xfe, rfe, tms

PCIITE dmaer,imier, tier cmfer, imper, tbeer, tper, syser

PCIITP dmaer,imier, tier cmfer, imper, tbeer, tper, syser

PCIITF dmaer,imier, tier, cmfer, imper, tbeer,
tper, syser

PCID dat

PCIBE dat

PCIDMAA addr

PCIA p0, p1, p2, p3

23.4. ESAPCI bus model API

To register a ESAPCI module call tsim_register_esa_pci_module(struct esa_pci_input
*inp, int index); from an input modules init function. Here inp is a pointer to a esa_pci_input struct and
index is the index of the ESAPCI controller to register on. See Chapter 5 for further details on how to connect
the user model. The struct esa_pci_input is defined in esa_pci_input.h as:

struct esa_pci_input {
 int (*acc)(struct esa_pci_input *ctrl,
 int cmd,
 unsigned int addr,
 unsigned int wsize,
 unsigned int *data,
 unsigned int *abort,
 unsigned int *ws);

 void (*esapci_init)(struct esa_pci_interface *esapciif);
};

The acc callback should be set by the PCI user module at startup. It is called by the the model whenever the PCI
core reads/writes as a PCI bus master.

Table 23.3. acc callback parameters

Parameter Description

cmd Command to execute, see Section 23.4.1 details.

addr PCI address.

wsize 0: 8-bit access 1: 16-bit access, 2: 32-bit access. Is always 2 for read accesses.

data Data buffer. The user module should return the read data in *data for read
commands or write the data in *data for write commands.

abort Set *abort to 1 to generate target abort, or 0 otherwise.

ws Set *ws to the number of PCI clocks it takes to complete the transaction.

The return value of acc determines if the transaction terminates successfully (0 or ESA_PCI_ACC_OK) or with
master abort (1 or ESA_PCI_ACC_MASTER_ABORT).

The esapci_init callback should be set by the PCI user module at startup. It is called by TSIM at simulator startup.

Table 23.4. esapci_init callback parameters

Parameter Description

esapciif Pointer to a struct esa_pci_interface. Should be saved by the mod-
ule to interface with TSIM's ESAPCI model.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 93

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

The struct esa_pci_interface is defined in esapci_input.h as:

struct esa_pci_interface {
 int (*target_acc)(int index,
 int cmd,
 unsigned int addr,
 unsigned int wsize,
 unsigned int *data,
 unsigned int *mexc);
};

The callback target_acc is installed by the TSIM. The PCI user dynamic library can call this function to initiate
an access to the PCI target.

Table 23.5. target_acc parameters

Parameter Description

index Index of ESAPCI core of the system. This should be 0.

cmd Command to execute, see Section 23.4.1 for details. Configuration cycles are
not supported. ESAPCI is supposed to be the host.

addr PCI address. Should always be word aligned for read accesses.

wsize 0: 8-bit access 1: 16-bit access, 2: 32-bit access. Should always be 2 for read
accesses.

data Data buffer. The read data is returned in *data for read commands or the
data in *data is written for write commands.

mexc The model sets *mexc to 0 if access is successful, or 1 in case of target abort.

If a supported command hits MEMBAR0, MEMBAR1 or IOBAR, target_acc() will return 0. For unsupported
commands or other areas, it will return 1.

23.4.1. PCI command table

Table 23.6. PCI command table

Command Description

0 IRQ acknowledge

1 Special cycle

2 I/O Read

3 I/O Write

4 Reserved

5 Reserved

6 Memory Read

7 Memory Write

8 Reserved

9 Reserved

10 Configuration Read

11 Configuration Write

12 Memory Read Multiple

13 Dual Address Cycle

14 Memory Read Line

15 Memory Write And Invalidate

23.5. Examples

See the PCI files in examples/input for header files and an example PCI user module. See example usage
in examples/test.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 94

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

24. TPS VxWorks 6.x AHB Module

24.1. Overview

The TPS VxWorks Module is a loadable module that simplifies communication between TSIM and the VxWorks
Workbench for VxWorks 6.7 and 6.9. It provides a virtual core that acts similar to a basic Ethernet controller,
but does not require a packet server.

The module is only useful in conjunction with VxWorks 6.7 and 6.9. See also Section 5.3.4 on some limitations
of some features when using this module.

Table 24.1. Files delivered with the TPS VxWorks TSIM module

File Description

tps/linux/tps-vxworks.so TPS VxWorks module for Linux

tps/win64/tps-vxworks.dll TPS VxWorks module for Windows

24.2. Loading the module

The module is loaded using the TSIM3 option -mod. It can be used in conjunction with other modules, such as
the UT699 and GR712RC modules.

On Linux (together with the UT699 design):

tsim-leon3 -ut699 -mod ./tps/linux/tps-vxworks.so

On Windows (together with the GR712RC design):

tsim-leon3 -gr712rc -mod ./tps/win64/tps-vxworks.dll

24.3. Configuration

By default the module uses IRQ 5 and UDP port 0x4321. This can be changed by using the following command
line arguments:

-tps_vxworks_irq irq
Uses IRQ irq instead of the default.

-tps_vxworks_port port
Uses UDP port port instead of the default.

Use the following command line to make the TPS module use IRQ 10 and port 5000 on Linux together with the
UT699 design:

tsim-leon3 -ut699 -mod ./tps/linux/tps-vxworks.so
 -tps_vxworks_port 5000 -tps_vxworks_irq 10

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 95

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

25. Support

For support contact the Cobham Gaisler support team at support@gaisler.com.

When contacting support, please identify yourself in full, including company affiliation and site name and address.
Please identify exactly what product that is used, specifying if it is an IP core (with full name of the library
distribution archive file), component, software version, compiler version, operating system version, debug tool
version, simulator tool version, board version, etc.

The support service is only for paying customers with a support contract.

www.caes.com/Gaisler

Document: TSIM3-UM
July 2021, Version 3.1.2 96

Cobham Gaisler AB
Kungsgatan 12 | SE-41119 Gothenburg | Sweden

+46 31 7758650 | www.caes.com/Gaisler

Cobham Gaisler AB
Kungsgatan 12
411 19 Gothenburg
Sweden
www.caes.com/Gaisler
sales@gaisler.com
T: +46 31 7758650
F: +46 31 421407

CAES reserves the right to make changes to any products and services described herein at any time without notice. Consult CAES
or an authorized sales representative to verify that the information in this document is current before using this product. CAES
does not assume any responsibility or liability arising out of the application or use of any product or service described herein,
except as expressly agreed to in writing by CAES; nor does the purchase, lease, or use of a product or service from CAES convey
a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of CAES or of third parties.
All information is provided as is. There is no warranty that it is correct or suitable for any purpose, neither implicit nor explicit.

Copyright © 2021 Cobham Gaisler AB

www.caes.com/Gaisler
www.caes.com/Gaisler

	
	Table of Contents
	1. Introduction
	1.1. General
	1.2. Staged releasing
	1.3. Supported host platforms and system requirements
	1.4. Obtaining TSIM
	1.5. License
	1.6. Evaluation version
	1.7. Problem reports

	2. Installation
	2.1. General
	2.2. License key installation
	1. Node-locked keys (purple USB key)
	2. Floating keys (red USB key)
	3. Sentinel LDK Runtime

	3. Operation
	3.1. Overview
	3.2. Starting TSIM
	3.3. Standalone mode commands
	3.3.1. General commands
	3.3.2. Time specification for commands
	3.3.3. Tcl commands
	3.3.4. Tcl variables
	3.3.5. Core specific commands

	3.4. Return values for simulation stop reasons
	3.5. Symbolic debug information
	3.6. Breakpoints and watchpoints
	3.7. Profiling
	3.8. Performance
	3.9. Code coverage
	3.10. Check-pointing
	3.11. Backtrace
	3.12. Connecting to GDB
	3.13. Thread support
	3.13.1. TSIM thread commands
	3.13.2. GDB thread commands

	3.14. Synchronising TSIM time to external time
	3.15. Debugging particular device types and devices

	4. Emulation characteristics
	4.1. Common behaviour
	4.1.1. Timing
	4.1.2. UARTs
	4.1.2.1. APBUART model (LEON3/4 only)
	4.1.2.2. UART model (LEON2 only)

	4.1.3. Floating point unit (FPU)
	4.1.4. Delayed write to special registers
	4.1.5. Peripherals registers
	4.1.6. Idle-loop optimisation
	4.1.7. Custom instruction emulation
	4.1.8. Chip-specific errata

	4.2. LEON2 specific emulation
	4.2.1. Processor
	4.2.2. Cache memories
	4.2.3. Interrupt controller
	4.2.4. Power-down mode
	4.2.5. Memory emulation
	4.2.6. SPARC V8 MUL/DIV and V8E MAC instructions
	4.2.7. FPU emulation
	4.2.8. DSU and hardware breakpoints

	4.3. LEON3 specific emulation
	4.3.1. General
	4.3.2. Processor
	4.3.3. Cache memories
	4.3.4. Power-down mode
	4.3.5. Interrupt controller
	4.3.6. Memory emulation
	4.3.7. CASA instruction
	4.3.8. SPARC V8 MUL/DIV and V8E MAC instructions
	4.3.9. FPU emulation
	4.3.10. DSU and hardware breakpoints
	4.3.11. AHB status registers
	4.3.12. GPTIMER emulation
	4.3.13. GRTIMER emulation

	4.4. LEON4 specific emulation
	4.4.1. Processor
	4.4.2. L1 Cache memories
	4.4.3. L2 Cache memory
	4.4.3.1. Limitations of the L2 cache model

	4.4.4. Power-down mode
	4.4.5. Interrupt controller
	4.4.6. Memory emulation
	4.4.7. IOMMU
	4.4.8. CASA instruction
	4.4.9. SPARC V8 MUL/DIV and V8E MAC instructions
	4.4.10. FPU emulation
	4.4.11. DSU and hardware breakpoints
	4.4.12. AHB status registers
	4.4.13. GPTIMER emulation

	5. Loadable modules
	5.1. General module interface
	5.1.1. Loading modules
	5.1.2. General module API
	5.1.3. Connecting specific modules
	5.1.4. General module examples

	5.2. TSIM exported emulation interfaces
	5.2.1. simif structure
	5.2.2. ioif structure
	5.2.3. procif structure

	5.3. LEON AHB emulation interface
	5.3.1. Structure to be provided by AHB module
	5.3.1.1. Elements initialised by module
	5.3.1.2. Elements initialised by TSIM
	5.3.1.3. Callbacks for AHB module AHB slaves

	5.3.2. Big versus little endianess
	5.3.3. AHB module example
	5.3.4. AHB module limitations

	5.4. I/O module interface
	5.5. Adding startup options
	5.6. Adding user commands
	5.7. Loadable modules distributed with TSIM

	6. TSIM library (TLIB)
	6.1. Introduction
	6.2. Function interface
	6.3. Builtin and external modules and user models
	6.4. Linking a TLIB application

	7. Cobham Gaisler GR712RC emulation
	7.1. Clock Gating Unit, CANMUX and GRGPREG

	8. Cobham Gaisler GR716 emulation
	8.1. GR716 Boot ROM
	8.2. Dummy registers
	8.3. DAC

	9. Cobham Gaisler GR740 emulation
	9.1. Dummy registers

	10. CAES UT699 emulation
	11. CAES UT699E emulation
	12. CAES UT700 emulation
	13. Atmel AT697 emulation
	14. GRCAN
	14.1. Start up options
	14.2. Commands
	14.3. Debug flags
	14.4. CAN interface
	14.4.1. Connecting a user CAN model
	14.4.2. CAN model API
	14.4.3. Error injections
	14.4.4. Commands
	14.4.5. Debug status
	14.4.6. Current limitations

	15. CAN_OC interface
	15.1. Start up options
	15.2. Commands
	15.3. Debug flags
	15.4. Packet server
	15.5. CAN packet server protocol
	15.5.1. CAN message packet format
	15.5.2. Error counter packet format
	15.5.3. Acknowledge packet format
	15.5.4. Acknowledge packet format

	16. 10/100 Mbps Ethernet Media Access Controller interface
	16.1. Start up options
	16.2. Commands
	16.3. Debug flags
	16.4. Ethernet packet server
	16.5. Ethernet packet server protocol

	17. GPIO interface
	17.1. Connecting a user GPIO model
	17.2. GPIO model API
	17.3. Commands
	17.4. Debug flags

	18. GRPCI, PCI initiator/target interface
	18.1. Commands
	18.2. Debug flags
	18.3. PCI bus model API
	18.3.1. PCI command table

	18.4. Examples

	19. GRSPW1, SpaceWire interface with RMAP support
	19.1. Start up options
	19.2. Commands
	19.3. Debug flags
	19.4. SpaceWire packet server
	19.5. SpaceWire packet server protocol
	19.5.1. Data packet format
	19.5.2. Time code packet format

	20. GRSPW2, SpaceWire interface with RMAP support
	20.1. Start up options
	20.2. Commands
	20.3. Debug flags
	20.4. SpaceWire packet server
	20.5. SpaceWire packet server protocol
	20.5.1. Flow control limitations
	20.5.2. Data part packet format
	20.5.3. Time code packet format
	20.5.4. Link state packet format
	20.5.5. Link control packet format
	20.5.6. RX frequency packet format
	20.5.7. Link error injection packet format
	20.5.8. Packet error request packet format

	20.6. Simple Mode

	21. SPI interface
	21.1. Connecting a user SPI model
	21.2. SPI bus model API
	21.3. Commands
	21.4. Debug flags

	22. SPIM interface
	22.1. Connecting a user SPIM model to TSIM
	22.2. SPIM model API

	23. AT697 PCI interface
	23.1. Commands
	23.2. Debug flags
	23.3. Registers
	23.4. ESAPCI bus model API
	23.4.1. PCI command table

	23.5. Examples

	24. TPS VxWorks 6.x AHB Module
	24.1. Overview
	24.2. Loading the module
	24.3. Configuration

	25. Support

