Features

- SPARC V8e integer unit(s) with dual-issue pipeline, 16 KiB instruction and 16 KiB data caches, hardware multiplier and divider, power-down mode, hardware watchpoints, etc.
- Double precision IEEE-754 floating point unit
- Memory management unit
- Advanced on-chip debug support unit
- Level-2 cache
- DDR4 SDRAM memory controller
- UART, Timers, GPIO port, Interrupt controller, Status registers

Description

The LEON-PF FPGA bitstreams are a collection of example designs built from Cobham Gaisler’s GRLIB IP library using a template design for Microchip PolarFire devices. The example designs are suitable for evaluation of LEON microprocessors in system-on-chip designs.

Specification

- Targets Microchip MPF300-SPLASH-KIT FPGA board
- 50 MHz system frequency

Applications

The LEON/GRLIB template designs can be adapted as multiple configurations, covering instrument, payload and control applications.
Table of contents

1 Introduction .. 3
 1.1 Scope ...3
 1.2 Document revision history ..3
 1.3 Reference documents ..3

2 Example designs .. 4
 2.1 Overview ...4
 2.2 Configurations ...5

3 Architecture .. 6
 3.1 Cores ...6
 3.2 Interrupts ...6
 3.3 IP core documentation ..7
 3.4 Signals ..8
 3.5 Resource utilization ..8

4 Working with the board .. 9
 4.1 Prerequisites ..9
 4.2 Programming the FPGA device and connecting with GRMON3 ..9
 4.3 Support ..9

5 Ordering information ... 10
1 Introduction

1.1 Scope

The LEON line of processors and the GRLIB IP library has support for Microchip PolarFire devices. This support consists of a techmap layer that wraps specific technology elements such as memory macros and pads. GRLIB also contains a template designs for development boards such as the Microchip MPF300-SPLASH-KIT and infrastructure that automatically builds project files for Microchip Libero and Synopsys Synplify Premier.

This document describes a set of ready-made FPGA configurations (bitstreams) that have been built from the GRLIB template designs.

1.2 Document revision history

Table 1. Change record

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2020 December</td>
<td>First issue</td>
</tr>
</tbody>
</table>

1.3 Reference documents

2 Example designs

2.1 Overview

The LEON-PF-EX example designs are based on a common architecture. The architecture is centered around the AMBA [AMBA] Advanced High-speed Bus (AHB), to which the processor(s) and other high-bandwidth units are connected. Low-bandwidth units are connected to the AMBA Advanced Peripheral Bus (APB) which is accessed through an AHB to APB bridge. The architecture for the basic design is shown in figure 1.

![Architectural block diagram of LEON-PF-EX1](image)

The full LEON-PF-EX architecture includes the following modules:

- LEON5 SPARC V8e Integer Unit with 16 KiB instruction cache and 16 KiB data cache. IEEE-754 Floating Point Unit and Memory Management Unit.
- Debug Support Unit with UART and JTAG Debug Links
- Level-2 cache controller
- Microchip FDDR4 SDRAM controller
- Timer unit with two 32-bit timers
- Interrupt controller for 15 interrupts in two priority levels
- UART with FIFO and separate baud rate generator
- General purpose I/O port (GPIO).
- AMBA AHB status register

The GRLIB IP library contains a template design that has been used as the base for LEON-PF-EX designs. The template design can easily be extended to add additional GRLIB IP library IP cores such as:

- Memory controllers with EDAC
- SpaceWire links with CRC support and hardware RMAP target
- SpaceFibre links
- CAN-2.0 controllers
- Mil-Std-1553 BC/BM/RT

A full list of GRLIB IP library components can be found in [GRIP]. The GRLIB user’s manual is available on-line [GRLIB].
2.2 Configurations

The bitstream is available for download from https://www.gaisler.com/LEON-PF

Table 2. Example configurations

<table>
<thead>
<tr>
<th>Configuration name</th>
<th>EX1</th>
<th>EX2</th>
<th>EX3</th>
<th>EX4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PolarFire device</td>
<td>MPF300TS</td>
<td>MPF300TS</td>
<td>MPF300TS</td>
<td>MPF300TS</td>
</tr>
<tr>
<td>Processor</td>
<td>LEON5</td>
<td>LEON5</td>
<td>LEON5</td>
<td>LEON5</td>
</tr>
<tr>
<td>Number of processor cores</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Level-1 cache</td>
<td>16+16 KiB</td>
<td>16+16 KiB</td>
<td>16+16 KiB</td>
<td>16+16 KiB</td>
</tr>
<tr>
<td>Hardware multiply&divide</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multiply & accumulate</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Single-vector trapping</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Power down mode</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Memory Management Unit</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Floating Point Unit</td>
<td>GRFPU5</td>
<td>NanoFPU</td>
<td>GRFPU</td>
<td>NanoFPU</td>
</tr>
<tr>
<td>Debug Support Unit</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Level-2 cache</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>UART Debug Link</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>JTAG Debug Link</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Memory Controller</td>
<td>Microchip FDDR4</td>
<td>Microchip FDDR4</td>
<td>Microchip FDDR4</td>
<td>Microchip FDDR4</td>
</tr>
<tr>
<td>Standard peripherals</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: The configurations above are examples on how to use the GRLIB IP cores on Microchip PolarFire. All IP cores have several configuration parameters and are individually configurable.

Note: While software may report that fault-tolerance is enabled for the example designs, the bitstreams are not suitable for use in environments with radiation effects.
3 Architecture

3.1 Cores

The common architecture is based on cores from the GRLIB IP library. The vendor and device identifiers for each core can be extracted from the plug & play information. The used IP cores are listed in table 3.

Table 3. Used IP cores

<table>
<thead>
<tr>
<th>Core</th>
<th>Function</th>
<th>Vendor</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHBCTRL</td>
<td>AHB Arbiter & Decoder</td>
<td>0x01</td>
<td>-</td>
</tr>
<tr>
<td>APBCTRL</td>
<td>AHB/APB Bridge</td>
<td>0x01</td>
<td>0x006</td>
</tr>
<tr>
<td>LEON5</td>
<td>LEON5 SPARC V8 32-bit processor</td>
<td>0x01</td>
<td>0x0BA</td>
</tr>
<tr>
<td>DSU5</td>
<td>LEON5 Debug support unit</td>
<td>0x01</td>
<td>0x0BB</td>
</tr>
<tr>
<td>L5STAT</td>
<td>LEON5 Performance counters</td>
<td>0x01</td>
<td>0x0B9</td>
</tr>
<tr>
<td>AHBUART</td>
<td>Serial/AHB debug interface</td>
<td>0x01</td>
<td>0x007</td>
</tr>
<tr>
<td>AHBJTAG</td>
<td>JTAG/AHB debug interface</td>
<td>0x01</td>
<td>0x01C</td>
</tr>
<tr>
<td>AHBUSTAT</td>
<td>AHB failing address register</td>
<td>0x01</td>
<td>0x052</td>
</tr>
<tr>
<td>APBUART</td>
<td>8-bit UART with FIFO</td>
<td>0x01</td>
<td>0x00C</td>
</tr>
<tr>
<td>GPTIMER</td>
<td>Modular timer unit with watchdog</td>
<td>0x01</td>
<td>0x011</td>
</tr>
<tr>
<td>IRQMP</td>
<td>LEON3 Interrupt controller</td>
<td>0x01</td>
<td>0x00D</td>
</tr>
<tr>
<td>GRGPIO</td>
<td>General purpose I/O port</td>
<td>0x01</td>
<td>0x01A</td>
</tr>
<tr>
<td>L2CACHE</td>
<td>Level-2 Cache Controller</td>
<td>0x01</td>
<td>0x04B</td>
</tr>
<tr>
<td>PolarFire FDDR4</td>
<td>PolarFire FDDR4 controller - with GRLIB wrapper</td>
<td>0xAC</td>
<td>0x00C</td>
</tr>
</tbody>
</table>

Note that the table above lists IP cores used in the full set of planned LEON-PF-EX designs. Some designs may contain a subset of the IP cores in the table.

3.2 Interrupts

The LEON-PF-EX example designs use the same interrupt assignment for all configurations. See the description of the individual cores for how and when the interrupts are raised. All interrupts are handled by the interrupt controller and forwarded to the processor.

Table 4. Interrupt assignment

<table>
<thead>
<tr>
<th>Core</th>
<th>Interrupt</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHBSTAT</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>APBUART</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>GPTIMER</td>
<td>8, 9</td>
<td></td>
</tr>
</tbody>
</table>
3.3 IP core documentation

The GRMON debug monitor also provides information about the system-on-chip’s configuration via the command `info sys`.
3.4 Signals

Please see the LEON-PF-EX Quick Start Guide [QSG] for information on FPGA pinout.

3.5 Resource utilization

Resource utilization is described in the GRLIB area spreadsheet, available at:

https://www.gaisler.com/products/grlib/grlib_area.xls
4 Working with the board

4.1 Prerequisites

The following items are required to use LEON-PF-EX designs:

- Workstation with Windows or Linux
- Microchip MPF300-SPLASH-KIT
- GRMON3 debug monitor
- LEON-PF bitstream

The two last items can be downloaded via http://gaisler.com/LEON-PF.

Cobham Gaisler’s standard offer of toolchains can be used to build and run software on the LEON-PF-EX designs. Toolchains and run-time environments are available for download via http://gaisler.com.

4.2 Programming the FPGA device and connecting with GRMON3

Please see the LEON-PF-EX Quick Start Guide [QSG] for information on FPGA programming and using the SoC design.

4.3 Support

In case of technical issues please contact support@gaisler.com. The support line is normally available only to companies and institutions with active support contracts. Limited support for the LEON-PF-EX example designs is provided. When contacting support please provide a clear description of which design that is used and your affiliation.

Sales and licensing questions should be directed to sales@gaisler.com.

There is also an open forum available at https://grlib.community
5 Ordering information

Please contact sales@gaisler.com for information on the GRLIB IP library.