GRLIB IP Core

GRLIB VHDL IP Core Library

2018 User’s Manual

The most important thing we build is trust

GRLIB IP Core User’'s Manual

Sep 2018, Version 2018.3

GRIP, Sep 2018, Version 2018.3 www.cobham.com/gaisler

GRLIB IP Core

O 0 9 N N Bk~ W N =

W W W W W N N N N DN N N DN DN N e e e e e e e
AW D= O O 0NN N R WD RO O NN N R WD O

Table of contents

INETOAUCTION ...ttt ettt e et e b e st e et eeabeenbeesneeenneas 6
AHB2AHB - Uni-directional AHB/AHB bridge.........ccccueeiuieiiiiiieieeiieieeieeeeee e 18
AHBM2AXI - AHB Master to AXT Adapter.......cccoeecuierieeiiieiieeiieeie et eveeseae v ens 36
AHB2AXIB - AHB t0 AXI BIIde ...ccvveevieiieiieeiieieeeeeeeeeese ettt 43
AHBBRIDGE - Bi-directional AHB/AHB bridge.........cccoouveiiiiiiiiieeiieieeieeieeeeee e 52
AHBCTRL - AMBA AHB controller with plug&play Supportccccvevveeciierieecieenieeneens 57
AHBITAG - JTAG Debug Link with AHB Master Interface.........cccceccvveeeieeecieeecieeereeeee, 65
AHBRAM - Single-port RAM with AHB interfaceccccoveeviiniiniiiinieniienieeceene 71
AHBDPRAM - Dual-port RAM with AHB interface.........c.cccoceeeviiieeriieeiieeieeeieeeeee 74
AHBROM - Single-port ROM with AHB Interfaceccceeeviieviiieciieeiiecieeeee e 76
AHBSTAT - AHB Status REEIStEIS....c.eeeiieiiiieiieiieeieeie ettt ettt sneessee e ens 79
AHBTRACE - AHB Trace buffer.........ccccovieiiiiiiceeeeeeeeeeee e 84
AHBUART- AMBA AHB Serial Debug Interface...........ccccvveeiiieniiieciieeieeeeeeee e 92
AMBAMON - AMBA BUS MONIEOTooutiiiiiiiniiiiiiiesieeeeitese ettt 98
APBCTRL - AMBA AHB/APB bridge with plug&play Supportcccceeeveeeveenieenveenneenne. 104
APBPS2 - PS/2 host controller with APB interface..........ccccooeieiiiiiiiniiiiicceeee 108
APBUART - AMBA APB UART Serial Interface..........cccceceeieneininiinieniinieneeieneeeene, 118
APBVGA - VGA controller with APB Interfacecccccooeieiiiiiiiiiniiiiieececcee 128
CAN_OC - GRLIB wrapper for OpenCores CAN Interface core..........ccoveevveeecieercrneennee. 132
CLKGEN - ClOCK ZENETAtION.ccuiiiiiieiieeiieiieeieerite et ettesreeteeeeteeseessreeseesnaeenseessseenseas 151
DDRSPA - 16-, 32- and 64-bit DDR266 Controllerccooooiooeoeieieeeeeeeeeeeeeeeee e 174
DDR2SPA - 16-, 32- and 64-bit Single-Port Asynchronous DDR2 Controller................... 188
DIV32 - Signed/unsigned 64/32 divider moduleccoeouveiiiiniiiiniiniieieeeeeeeee 207
DSU3 - LEON3 Hardware Debug Support Unitccceeeeiiveriieeniieeiie e 210
DSU4 - LEON4 Hardware Debug Support Unitccceeeevieeiiieeiiee e 226
FTAHBRAM - On-chip SRAM with EDAC and AHB interfacecccccoeeveevienirenenne. 244
FTMCTRL - 8/16/32-bit Memory Controller with EDACccccoeviiiiiiiiiiiieeieeeeee 251
FTSDCTRL - 32/64-bit PC133 SDRAM Controller with EDACcccocoeveiieiieienee. 282
FTSRCTRL - Fault Tolerant 32-bit PROM/SRAM/IO Controllerc.ccoceeverveenvennenne. 295
FTSRCTRLS - 8-bit SRAM/16-bit IO Memory Controller with EDACcccoee.. 314
GPTIMER - General Purpose Timer Unitcccveeiiieeiiiiniieeciie e 329
GRI1553B - MIL-STD-1553B / AS15531 Interface.......ccccecvevienieeienienieiieneeieeienieeeene 338
GRTIMER - General Purpose Timer Uitccocueeeriieeiieiniieeeiie e 380
GRACECTRL - AMBA System ACE Interface Controller.............ccccveeviveeniiencieeerieeee, 381

www.cobham.com/gaisler

GRLIB IP Core

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

GRAES - Advanced Encryption Standardccceeviieeiiiiniiieniececee e 386
GRAES DMA - Advanced Encryption Standard with DMA............cocccoiiiiiiiniiee, 392
GRCAN - CAN 2.0 Controller with DMAcocieiiiiiniiiienieeeereeeeeseee e 401
GRCANEFD - CAN Flexible Data-Rate Controller..............coooeiiiiniiiiiniiiiiiniceieniceee, 425
GRCLKGATE / GRCLKGATE2X - Clock gating unit..........ccceeeerueeneenieerienieeieeseeeeen 453
GRDMAC - DMA Controller with internal AHB/APB bridgecccceeevieiienciieniieeiennen. 460
GRECC - Elliptic Curve Cryptographyc.ceeeveeeriieeiieeeiieeeieeeeieeesieeesiveeeeeeeeeeeesveeeenns 481
GRETH - Ethernet Media Access Controller (MAC) with EDCL supportcc.u....... 496
GRETH_GBIT - Gigabit Ethernet Media Access Controller (MAC) w. EDCL.................. 516
GRFIFO - FIFO INtEITaCe ...cueeeiiiiiiiiiiiiieee ettt 538
GRADCDAC - ADC / DAC INETfaCeeeeueieiieiiieiieeieeiiese ettt 562
GRFPU - High-performance IEEE-754 Floating-point unit............cccceocevveveeneniieneenennen. 575
GRFPC - GRFPU COontrol Utc..eeiiiiiiiiieiiesieeieeseeitee et 582
GRFPU Lite - IEEE-754 Floating-Point Unit.........ccccoceviiiiiriininiiiniiinicneeiceecnieeieeene 584
GRLFPC - GRFPU Lite Floating-point unit Controllerc..ecevieririiniieninieneenenne 587
GRGPIO - General Purpose 1/0 POrt.......ccveeeeiiiiiiieeiiececcee et 589
GRGPREG - General Purpose REgIStETcoviruiiiiiniiniiiiinieieeienieeieeeseeieeee e 600
GRIOMMU - AHB/AHB bridge with access protection and address translation 603
GRPCI2 - 32-bit PCI(Initiator/Target) / AHB(Master/Slave) bridge..........cccccveeevveernnenee. 648
GRPULSE - General Purpose Input OUtPULc.oeviiiiiiiienieeiieee e 677
GRPWM - Pulse Width Modulation Generatorcc.eecuerienieeriinienienieneeeeie e 684
GRRT - MIL-STD-1553B / AS15531 Remote Terminal Back-End...........ccccoooiiiininee. 697
GRSPW - SpaceWire codec with AHB host Interface and RMAP target..........cccccoceevuenee 704
GRSPW?2 - SpaceWire codec with AHB host Interface and RMAP target............c.cccuenee. 748
GRSPW2 GEN - GRSPW2 wrapper with Std_Logic interface...........ccceceeevveeeeieenneeennne. 821
GRSPW2 PHY - GRSPW2 Receiver Physical Interface.........c..cocevveneniiniininiicnicncnnne 828
GRSPW_CODEC - SpaceWire encoder-decoderceoieriiinieniieniienieeieeie e 834
GRSPW_CODEC _GEN - GRSPW_CODEC wrapper with Std_Logic interface............... 852
GRSPWROUTER - SPaceWIre TOULET.......ccuietieriieiiieeiietieeiee ettt eiee st seeeeveesneeeeees 859
SPWTDP - SpaceWire - Time Distribution Protocol...........cccceecviviiiiiiieniiiiiiieeieeieee 916
GRSPFI_CODEC - SpaceFibre encoder/decoder............ocvveriieeriieeniieeieeeiee e 947
GRSRIO - Serial RapidIO endpoint with AHB or AXI4 bus master interface.................... 961
GRSYSMON - AMBA Wrapper for Xilinx System Monitor..........cccceeeeverreeneeneeeenene 1017
GRUSBDC - USB Device CONtIOLIET........ccouuiiiiiiiiiiieiieeieeite ettt 1025
GRUSB_DCL - USB Debug Communication Linkccccecerieniniiniininninicneeieneene 1051

www.cobham.com/gaisler

GRLIB IP Core

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

GRUSBHC - USB 2.0 Host Controller..........cocueiiiiiiiinieiieeieieeieeseeeeeseeee e 1058
GRVERSION - Version and Revision information register..........c.cceevveeerieeeeieeeireeenineeenns 1075
[I2C2AHB - I2C t0 AHB BIidgeooveeeiiieiieeieeiieee ettt 1077
[2CMST = T2CMASTET ...ttt ettt ettt et et e s e b e 1087
T2CSLV = T2C SIAVE ...ttt et sttt et et e et 1098
IRQMP - Multiprocessor Interrupt CONtrollercceevcvieiieriiierieniieie e 1106
IRQ(A)MP - Multiprocessor Interrupt Controller with extended ASMP support 1116
L2C - Level 2 Cache controller..........coueiuiiiiiiiiieiiieiee et 1131
L3STAT - LEON3 StatistiCs UNItcocueeiirieiieeiinienieeieeitesieeieeitesie et 1155
LASTAT - LEON4 StatisticS UNItceouiiiiiiiiiiiiieiieeieesiceeeee ettt 1163
LEON _DSU_STAT BASE - LEON3/4 SUBSYSTEM.....cccoeoiiiiieeeeieeeeeseee s 1171
LEON3/FT - High-performance SPARC V8 32-bit Processorccccceceveerierieneeniennns 1177
LEON4 - High-performance SPARC V8 32-bit Processor.........ccceevveerieeerieeniieeeiieeennenn 1226
LOGAN - On-chip Logic ANALYZETcoouiiiiiiiiiiiieiiece ettt 1270
MCTRL - Combined PROM/IO/SRAM/SDRAM Memory Controllerc.ccvenneeen. 1277
MEMSCRUB - AHB Memory Scrubber and Status Registercccccvevviveniieencieennnnn. 1297
MMA - Memory Mapped AMBA Bridge........cooeeriiiiiiiiiieiieeieeese et 1308
MUL32 - Signed/unsigned 32x32 multiplier module............cccoeeiiriiiiniiniiiinieeieieee 1313
MULTLIB - High-performance multipliersScccueeeiuieeriieeniieeriie e 1317
NANDFCTRL - NAND Flash Memory Controller............cocceveevieniieniniinienenicnecienens 1319
PHY - Ethernet PHY simulation modelcccoooiiiiiiiniiniiiiiieeeeeeeeseeens 1344
RGMII - Reduced Ethernet Media Access Controlleroocueeveeriiiiieniieiieenicieeneee 1347
REGFILE 3P 3-port RAM generator (2 read, 1 WIIte)ccevvueeiuieniiiiienieeiceceeiee e 1357
RSTGEN - RESEt ZENEIALIONccuvieniieiiiieiieeiie ettt eiee et et et e et e s e ebeesbeebeeseneensaesaneens 1359
GR(274)(68, 60, 8, T=1) - QEC/QED error correction code encoder/decoder.................. 1363
RS(24, 16, 8, E=1) - Reed-Solomon encoder/decoder............ccccueeviieeviieecieeniieeeieeenenn 1367
RS(48, 32, 16, E=1+1) - Reed-Solomon encoder/decoder - interleaved 1370
RS(40, 32, 8, E=1) - Reed-Solomon encoder/decoder............cccueevieeeniieniieenieeeiieeeeenn 1372
RS(48, 32, 16, E=2) - Reed-Solomon encoder/decoder............cceevveeenieeecieeniieeeiee e 1375
SDCTRL - 32/64-bit PC133 SDRAM Controller.........ccceoeeienienenienieienieneeieeieieenen 1379
SPI2AHB - SPI t0 AHB DIIAZE....c.eeiiiiieiieieeieeeeee et 1389
SPICTRL = SPT CONLIOLIET ...ttt ettt et 1398
SPIMCTRL - SPI Memory Controller...........oovvieiiiiriieiieiieeiieeie et 1419
SPIMASTER - SPI Master DEVICEcccceiuiiiiiiiiiiiieeiieeetee e 1427
SPISLAVE - Dual Port SPI S1aVeooiiiiiiiiiieiiee e 1436

www.cobham.com/gaisler

GRLIB IP Core

105
106
107
108
109
110
111
112
113
114
115
116
117
118

119

120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

SRCTRL- 8/32-bit PROM/SRAM CoOntrollerccccoveeiiiiiiiiieiiiinieeieeiceeeseeeeeee 1454
SSRCTRL- 32-bit SSRAM/PROM Controller...........coceeriiiiiieiiiiiienieeieeee e 1462
SVGACTRL - VGA CONtroller COTe.........covuieieriiieriiniieieeiesiteie sttt 1472
SYNCIOTEST - Test block for synchronous I/O interfaces...........ccoccveeeeieencieencieencnenns 1480
SYNCRAM - Single-port RAM ENeratorccceevieeiiieniieiienie ettt 1482
SYNCRAMBW - Single-port RAM generator with byte enables.........c.ccoceveeveniennennee. 1486
SYNCRAM 2P - TwWo-port RAM gENEratorc.cccccueeerieeeriieeiieeeiieeeeeeeieeeeveeesvee e 1490
SYNCRAM_DP - Dual-port RAM gEeNerator..........cceevueerieeiiienieeiienieeieese e 1494
SYNCRAMEFT - Single-port RAM generator with EDAC.........ccccooiviiiiniiniiiiiieeee, 1497
TAP - JTAG TAP CONIOLLET ...coueiiiiiiiiiiieeeeee e 1499
GRTM - CCSDS/ECSS Telemetry ENcoderc.cooieiiiiiieniiiiieieeieee e 1503
GRTM_DESC - CCSDS/ECSS Telemetry Encoder - Descriptor..........cocveeveerieeeveenenne. 1530
GRTM_VC - CCSDS/ECSS Telemetry Encoder - Virtual Channel Generation 1533
GRTM_PAHB - CCSDS/ECSS Telemetry Encoder -

Virtual Channel Generation Input - AMBAcociiiiiiiieeeceeee et 1535
GRTM_PW - CCSDS/ECSS Telemetry Encoder -

Virtual Channel Generation Input - PacketWirecooccooiiiiiiiiiniiiieeee 1539
GRTM_UART - CCSDS/ECSS Telemetry Encoder -

Virtual Channel Generation Input - UARTccooooiiiiiiiieeeee e 1541
GEFFE - CCSDS/ECSS Telemetry Encoder - Geffe Generator..........c..cocevvveveeneeicnnenne 1544
GRTMRX - CCSDS/ECSS Telemetry RECEIVETc.cevveeiieniieeiieieeieeiie e 1550
GRCE/GRCD - CCSDS/ECSS Convolutional Encoder and Quicklook Decoder............. 1564
GRTC - CCSDS/ECSS Telecommand Decoderc.ooeoieriiiiiiiniiniieie e 1569
TCAU - Telecommand Decoder Authentication Unit...........cccceveeririiinieneniieneeneeienne 1595
GRTC_HW - CCSDS/ECSS Telecommand Decoder - Hardware Commands.................. 1606
GRTC_UART - CCSDS/ECSS Telecommand Decoder - UARTcccceeviiviinenicnnnnne. 1613
GRTCTX - CCSDS/ECSS Telecommand TranSmitterceeeerveeierienerieeneenieeieneenne 1616
GRCTM - CCSDS Time ManaEETccuveeeiurieeiieeeiiieeeiieeeieeeeieeesseeessveeensseessseesnsneesseeenns 1626
SPWCUC - SpaceWire - CCSDS Unsegmented Code Transfer Protocolc...c........ 1658
GRPW - PacketWire INterfacecoeeuerieniiiieiieieciececcete e 1674
GRPWRX - PacketWire RECEIVETcccueiiiiiiiiiiiiiiiieieeeee e 1681
GRPWTX - PacketWire TranSmittercccueeiuierireiiieniieeieesite ettt 1690
PW2APB - PacketWire receiver to AMBA APB Interface........cccccocevveviiniinenicnciniennn, 1697
APB2PW - AMBA APB to PacketWire Transmitter Interfacecccceoveiiiiniiinnnncn. 1703
AHB2PP - AMBA AHB to Packet Parallel Interface............ccocoeviiniiiiiiniiiiiiee 1709
GRRM - Reconfiguration Modulecoocuieiieiiiiiiienieeiiceceee e 1714

www.cobham.com/gaisler

GRLIB IP Core

1.1

1.2

1.3

1.4

Introduction

Scope

This document describes specific IP cores provided with the GRLIB IP library. When applicable, the
cores use the GRLIP plug&play configuration method as described in the ‘GRLIB User’s Manual’.

Other resources

There are several documents that together describe the GRLIB IP Library and Cobham Gaisler’s IP

cores:

* GRLIB IP Library User’s Manual (grlib.pdf) - Main GRLIB document that describes the library
infrastructure, organization, tool support and on-chip bus.

* GRLIB-FT User’s Manual (grlib-ft.pdf) - Describes the FT and FT-FPGA versions of the GRLIB
IP library. The document is an addendum to the GRLIB IP Library User’s Manual. This docu-
ment is only available in the FT and FT-FPGA distributions of GRLIB.

* GRLIB FT-FPGA Xilinx Add-on User’s Manual (grlib-ft-fpga-xilinx.pdf) - Describes function-
ality of the Virtex5-QV and Xilinx TMRTool add-on package to the FT-FPGA version of the
GRLIP IP library. The document should be read as an addendum to the ‘GRLIB IP Library
User’s Manual’ and to the GRLIB FT-FPGA User’s Manual. This document is only available as
part of the add-on package for FT-FPGA.

« LEON/GRLIB Configuration and Development Guide (guide.pdf) - This configuration and
development guide is intended to aid designers when developing systems based on LEON/
GRLIB. The guide complements the GRLIB IP Library User’s Manual and the GRLIB IP Core
User’s Manual. While the IP Library user’s manual is suited for RTL designs and the IP Core
user’s manual is suited for instantiation and usage of specific cores, this guide aims to help
designers make decisions in the specification stage.

Reference documents

[AMBA] AMBA™ gSpecification, Rev 2.0, ARM THI 0011A, 1999, Issue A, ARM Limited

[GRLIB] GRLIB IP Library User's Manual, Cobham Gaisler, www.gaisler.com

[AS1553] AS15531 - Digital Time Division Command/Response Multiplex Data Bus, SAE
International, November 1995

[MIL1553] MIL-STD-1553B, Digital Time Division Command/Response Multiplex Data Bus,

US Department of Defence, September 1978
[MIL1553N2] MIL-STD-1553B Notice 2, US Department of Defence, September 1986

[ECSS1553] Interface and Communication Protocol for MIL-STD-1553B Data Bus Onboard
Spacecraft, ECSS-E-ST-50-13C. November 2008

IP core overview

The tables below lists the provided IP cores and their AMBA plug&play device ID. The columns on
the right indicate in which GRLIB distributions a core is available. GPL is the GRLIB GNU GPL
(free) distribution, COM is the commercial distribution, FT the full fault-tolerant distribution and FT-
FPGA is the GRLIB release targeted for raditation-tolerant programmable devices. Distributions pre-
fixed with L4- contain the LEON4 processor. Some cores can only be licensed separately or as addi-
tions to existing releases, this is marked in the Notes column. Contact Cobham Gaisler for licensing
details.

Note: The open-source version of GRLIB includes only cores marked with “Yes” in the GPL column.

www.cobham.com/gaisler

GRLIB IP Core

Note: IP core FT features are only supported in FT or FT-FPGA distributions. This includes protec-
tion of Level-1 cache and register files for the LEON3 and LEON4 processors and fault-tolerance fea-
tures for other IP cores such as the PCI, Ethernet and SpaceWire controllers.

Note: For encrypted RTL, contact Cobham Gaisler to ensure that your EDA tool is supported by

GRLIB for encrypted RTL. Supported tools are listed in the GRLIB IP Library user’s manual.

Table 1. Processors and support functions

<| =
18l gl g
= % = Q=] g
Name Function Vendor:Device O © E Bl 3| 3 2
LEON3 SPARC V8 32-bit processor 0x01 : 0x003 Yes | Yes | Yes | Yes [No | No | 5)
LEON3FT Fault-tolerant SPARC V8 32-bit Proces- | 0x01 : 0x053 No | No | Yes | Yes | No [No |2),
sor 5)
DSU3 Multi-processor Debug support unit 0x01 : 0x004 Yes | Yes | Yes | Yes [No | No
(LEON3)
L3STAT LEONS statistics unit 0x01 : 0x098 Yes | Yes | Yes | Yes | No | No
LEON4 SPARC V8 32-bit processor 0x01 : 0x048 No | No [No [No | Yes [No |1,
4),
5)
LEON4FT Fault-tolerant SPARC V8 32-bit Proces- | 0x01 : 0x048 No | No |No | No |No | Yes |1,
sor 4),
5)
L4STAT LEON4 statistics unit 0x01 : 0x047 No | No | No [No | Yes | Yes | 1)
DSuU4 Multi-processor Debug support unit 0x01 : 0x049 No | No [No [No | Yes | Yes| 1)
(LEON4)
LEON3/4 LEON processor double clocking - No | Yes | Yes | Yes | Yes | Yes
CLK2x (includes special LEON entity, interrupt
controller and qualifier unit)
CLKGEN Clock generation - Yes | Yes | Yes | Yes | Yes | Yes
DIV32 Divider module - Yes | Yes | Yes | Yes | Yes | Yes
GPTIMER General purpose timer unit 0x01 : 0x011 Yes | Yes | Yes | Yes | Yes | Yes
GRCLKGATE Clock gate unit 0x01 : 0x02C No | Yes | Yes | Yes | Yes | Yes
GRDMAC DMA controller with AHB/APB bridge | 0x01 : 0x095 Yes | Yes | Yes | Yes | Yes | Yes
GRTIMER General purpose timer unit 0x01 : 0x038 No | Yes | Yes | Yes | Yes | Yes
GRFPU / High-performance IEEE-754 Floating- - No [No |No | No [No |No | 1),
GRFPC point unit with floating-point controller 2)
to interface LEON
GRFPU-Lite / Low-area IEEE-754 Floating-point unit | - No |No |No [No [No [No | 1),
GRFPC-lite with floating point controller to interface 2)
LEON
IRQMP Multi-processor Interrupt controller 0x01 : 0x00D Yes | Yes | Yes | Yes | Yes | Yes
IRQ(A)MP Multi-processor Interrupt controller 0x01 : 0x00D Yes | Yes | Yes | Yes | Yes | Yes
MUL32 32x32 multiplier module - Yes | Yes | Yes | Yes | Yes | Yes
MULTLIB High-performance multipliers - Yes | Yes | Yes | Yes | Yes | Yes

1) Available as separate package or as addition to existing releases.
2) Delivered as encrypted RTL or in netlist format
3) Requires PHY for selected target technology. Please see IP core documentation for supported technologies.
4) Fault-tolerance (LEON4-FT functionality) is only supported in GRLIB-FT distributions.

5) The LEON3 and LEON3FT cores are functionally equivalent with the addition that fault-tolerance features can be

enabled for the LEON3FT core. The functional behaviour of the LEON4 core is the same in all distributions wiht the addi-
tion that fault-tolerance features for the LEON4 core can be enabled in GRLIB FT distributions.

www.cobham.com/gaisler

GRLIB IP Core

Table 2. Memory controllers and supporting cores

< | =
I
2|3 S99 & ¢
=]
Name Function Vendor:Device Q| © E B2 3| 2
DDRSPA Single-port 16/32/64 bit DDR controller | 0x01 : 0x025 Yes | Yes | Yes | Yes | Yes | Yes | 3)
DDR2SPA Single-port 16/32/64-bit DDR2 control- | 0x01 : 0x02E Yes | Yes | Yes | Yes | Yes | Yes | 3)
ler
MCTRL 8/16/32-bit PROM/SRAM/SDRAM 0x04 : 0xO00F Yes | Yes | Yes | Yes | Yes | Yes
controller
SDCTRL 32-bit PC133 SDRAM controller 0x01 : 0x009 Yes | Yes | Yes | Yes | Yes | Yes
SRCTRL 8/32-bit PROM/SRAM controller 0x01 : 0x008 Yes | Yes | Yes | Yes | Yes | Yes
SSRCTRL 32-bit Synchronous SRAM (SSRAM) 0x01 : 0x00A No | Yes | Yes | Yes | Yes | Yes
controller
FTMCTRL 8//32-bit PROM/SRAM/SDRAM con- 0x01 : 0x054 No | No | Yes | Yes | No | Yes
troller w. RS/BCH EDAC
FTSDCTRL 32/64-bit PC133 SDRAM Controller 0x01 : 0x055 No | No | Yes | Yes | No | Yes
with EDAC
FTSDCTRL64 64-bit PC133 SDRAM controller with 0x01 : 0x058 No | No [No [No |No | No |4)
EDAC
FTSRCTRL 8/32-bit PROM/SRAM/IO Controller w. | 0x01 : 0x051 No | No | Yes | Yes | No | Yes
BCH EDAC
FTSRCTRLS 8-bit SRAM / 16-bit IO Memory Con- 0x01 : 0x056 No | No | Yes | Yes | No | Yes
troller with EDAC
NANDFCTRL NAND Flash memory controller 0x01 : 0x059 No | Yes | Yes | Yes | Yes | Yes
SPIMCTRL SPI Memory controller 0x01 : 0x045 Yes | Yes | Yes | Yes | Yes | Yes
AHBSTAT AHB status register 0x01 : 0x052 Yes | Yes | Yes | Yes | Yes | Yes
MEMSCRUB Memory scrubber 0x01 : 0x057 No | No | Yes | Yes | No | Yes
1) Available as separate package or as addition to existing releases.
2) Delivered as encrypted RTL or in netlist format
3) Requires PHY for selected target technology. Please see IP core documentation for supported technologies.
4) Deprecated
Table 3. AMBA Bus control
< | =
S| 8| &
= % = Q) = g
Name Function Vendor:Device O © E Bl 3] 3 2
AHB2AHB Uni-directional AHB/AHB Bridge 0x01 : 0x020 No | Yes | Yes | Yes | Yes | Yes
AHB2AVLA Asynchronous AHB to Avalon Bridge 0x01 : 0x096 Yes | Yes | No | No | Yes | No
AHB2AXI AHB to AXI bridge 0x01 : 0xO9F Yes | Yes | Yes | Yes | Yes | Yes
AHBBRIDGE Bi-directional AHB/AHB Bridge 0x01 : 0x020 No | Yes | Yes | Yes | Yes | Yes
AHBCTRL AMBA AHB bus controller with - Yes | Yes | Yes | Yes | Yes | Yes
plug&play
APBCTRL AMBA APB Bridge with plug&play 0x01 : 0x006 Yes | Yes | Yes | Yes | Yes | Yes
AHBTRACE AMBA AHB Trace buffer 0x01 : 0x017 Yes | Yes | Yes | Yes | Yes | Yes
GRIOMMU I/O Memory management unit 0x01 : 0x04F No | No [No [No | Yes| Yes | 1)

1) Available as separate package or as addition to existing releases.

www.cobham.com/gaisler

GRLIB IP Core

Table 4. PCI interface

<| =
e
2|3 519 5| ¢
Name Function Vendor:Device O © E B2 3 2
GRPCI2 Advanced 32-bit PCI bridge 0x01 : 0x07C Yes | Yes | Yes | Yes | Yes | Yes
PCITARGET 32-bit target-only PCI interface (depre- | 0x01 : 0x012 No | No | No [No |No | No
cated)
PCIMTF/GRPCI | 32-bit PCI master/target interface with | 0x01 : 0x014 No | No | No [No | No | No
FIFO (deprecated)
PCITRACE 32-bit PCI trace buffer (deprecated) 0x01 : 0x015 No | No | No [No |No | No
PCIDMA DMA controller for PCIMTF (depre- 0x01 : 0x016 No |No | No [No [No | No
cated)
PCIARB PCI Bus arbiter 0x04 : 0x010 Yes | Yes | Yes | Yes | Yes | Yes
Table 5. On-chip memory functions
<| =
I
2|3 519 5| ¢
Name Function Vendor:Device Q| © E B2 3 2
AHBRAM Single-port RAM with AHB interface 0x01 : 0xO0E Yes | Yes | Yes | Yes | Yes | Yes
AHBDPRAM Dual-port RAM with AHB and user 0x01 : 0xO0F Yes | Yes | Yes | Yes | Yes | Yes
back-end interface
AHBROM ROM generator with AHB interface 0x01 : 0x01B Yes | Yes | Yes | Yes | Yes | Yes
FTAHBRAM RAM with AHB interface and EDAC 0x01 : 0x050 No | No | Yes | Yes | No | Yes
protection
L2CACHE Level-2 cache controller 0x01 : 0x04B No | No | No [No | Yes| Yes | 1)
REGFILE 3P Parametrizable 3-port register file - Yes | Yes | Yes | Yes | Yes | Yes
SYNCRAM Parametrizable 1-port RAM - Yes | Yes | Yes | Yes | Yes | Yes
SYNCRAM 2P | Parametrizable 2-port RAM - Yes | Yes | Yes | Yes | Yes | Yes
SYNCRAM DP | Parametrizable dual-port RAM - Yes | Yes | Yes | Yes | Yes | Yes

1) Available as separate package or as addition to existing releases.

www.cobham.com/gaisler

GRLIB IP Core

Table 6. Serial communication

8|
| NEENHEIEE
Name Function Vendor:Device Q| O | &=| =R | =2 | Z
AHBUART Serial/AHB debug interface 0x01 : 0x007 Yes | Yes | Yes | Yes | Yes | Yes
AHBITAG JTAG/AHB debug interface 0x01 : 0x01C Yes | Yes | Yes | Yes | Yes | Yes
APBPS2 PS/2 host controller with APB inter- 0x01 : 0x060 Yes | Yes | Yes | Yes | Yes | Yes
face
APBUART Programmable UART with APB inter- | 0x01 : 0x00C Yes | Yes | Yes | Yes | Yes | Yes
face
CAN OC Opencores CAN 2.0 MAC with AHB | 0x01 : 0x019 Yes | Yes | Yes | Yes | Yes | Yes
interface
GRCAN CAN 2.0 Controller with DMA 0x01 : 0x03D No | Yes | Yes | Yes | Yes | Yes
GRCANFD CAN Flexible Data Rate Controller 0x01 : 0x0OBS No |No | No [No |No |No | 1)
GRSPW SpaceWire link with RMAP and AHB | 0x01 : 0xO1F No |No |No [No [No |No [1),
interface 2)
GRSPW2 SpaceWire link with RMAP and AHB | 0x01 : 0x029 No [No |No |No [No [No | 1),
interface 2)
GRSPW_CODEC | SpaceWire Codec N/A No |No |No |No |No [No [1),
2)
GRSPW_PHY Receiver Physical layer for GRSPW N/A No |No |No [No |[No |No |1),
2)
GRSPW2_PHY Receiver Physical layer N/A No |No |No |No |No [No [1),
2)
GRSPWROUTER | SpaceWire routing switch 0x01 : 0x03E No |No |No [No |[No |No |1),
2),
3)
GRSPWTDP SpaceWire - Time Distribution Proto- | 0x01 : 0x097 No [No |No |[No [No [No |1)
col
GRSRIO Serial Rapid 10 0x01 : 0x0A8 No |No |No [No [No |No |1)
GRSPFI_CODEC | SpaceFibre Codec N/A No |No | No [No |No |No | 1)
12C2AHB 12C (slave) to AHB bridge 0x01 : 0x00B Yes | Yes | Yes | Yes | Yes | Yes
[2CMST 12C Master with APB interface 0x01 : 0x028 Yes | Yes | Yes | Yes | Yes | Yes
12CSLV 12C Slave with APB interface 0x01 : 0x03E Yes | Yes | Yes | Yes | Yes | Yes
SPI2AHB SPI (slave) to AHB bridge 0x01 : 0x05C Yes | Yes | Yes | Yes | Yes | Yes
SPICTRL SPI Controller with APB interface 0x01 : 0x02D Yes | Yes | Yes | Yes | Yes | Yes
SPIMASTER SPI master device 0x01 : 0x0A6 No |No | No [No |No |No | 1)
SPISLAVE Dual port SPI slave 0x01 : 0x0A7 No |No |No [No [No |No [1)
TAP JTAG TAP controller - No | Yes | Yes | Yes | Yes | Yes

1) Available as separate package or as addition to existing releases.
2) Delivered as encrypted RTL or in netlist format
3) The GRSPWROUTER is only licensed together with a complete LEON system.

www.cobham.com/gaisler

GRLIB IP Core

Table 7. Ethernet interface

< | =
S| 8| &
2|3 59 5| ¢
Name Function Vendor:Device Q| © E Bl 3] 3 2
GRETH Cobham Gaisler 10/100 Mbit Ethernet 0x01 : 0x01D Yes | Yes | Yes | Yes | Yes | Yes
MAC with AHB I/F
GRETH _GBIT | Cobham Gaisler 10/100/1000 Mbit 0x01 : 0x01D No | Yes | Yes | Yes | Yes | Yes
Ethernet MAC with AHB
RGMII Cobham Gaisler RGMII<-> GMII 0x01 : 0x093 Yes | Yes | Yes | Yes | Yes | Yes
adapter
Table 8. USB interface
<| =
I
2| 3 = QB g
Name Function Vendor:Device O © E £l 3| 3 2
GRUSBHC USB-2.0 Host controller (UHCI/EHCI) 0x01 : 0x027 No | No |No [No |No |No 1)
with AHB I/F
GRUSBDC/ | USB-2.0 device controller / AHB debug 0x01 : 0x022 No |No |No [No [No |No |1)
GRUSB_DCL | communication link
1) Available as separate package or as addition to existing releases.
Table 9. MIL-STD-1553 Bus interface
<| =
S| 8| &
2| 3 59| 5] ¢
Name Function Device ID O © E £l 3 3 2
GR1553B Advanced MIL-ST-1553B / AS15551 0x01 : 0x04D No | No [No | No |No |No | 1),
Interface 2),
3)
GRRT MIL-STD-1553B / AS15531 Remote - No |No [No [No |No [No |1),
Terminal Back-End 2),
3)
1) Available as separate package or as addition to existing releases.
2) Delivered as encrypted RTL or in netlist format.
3) Both BR1553B and GRRT are covered by the same IP core license and are delivered in the same package.
Table 10. Encryption
<| =
| 8| &
2| 3 = 9 R o8
Name Function Vendor:Device O © E B3| 2| 2
GRAES 128-bit AES Encryption/Decryption 0x01 : 0x073 No |No |No [No [No |No | 1)
Core
GRAES DMA | Advanced Encryption Standard with 0x01 : 0x07B No | No [No [No |No |No | 1)
DMA
GRECC Elliptic Curve Cryptography Core 0x01 : 0x074 No | No [No [No |No |No | 1)

1) Available as separate package or as addition to existing releases.

www.cobham.com/gaisler

GRLIB IP Core

Table 11. Simulation and debugging

<| =
$18| ¢
2| 3 59 5| ¢
Name Function Vendor:Device Q| © E B2 3 2
SRAM SRAM simulation model with srecord - Yes | Yes | Yes | Yes | Yes | Yes
pre-load
MT48LC16M16 | Micron SDRAM model with srecord - Yes | Yes | Yes | Yes | Yes | Yes
pre-load
MT46V16M16 | Micron DDR model - Yes | Yes | Yes | Yes | Yes | Yes
CY7C1354B Cypress ZBT SSRAM model with sre- | - Yes | Yes | Yes | Yes | Yes | Yes
cord pre-load
AHBMSTEM AHB master simulation model with 0x01 : 0x040 Yes | Yes | Yes | Yes | Yes | Yes
scripting (deprecated)
AHBSLVEM AHB slave simulation model with script- | 0x01 : 0x041 Yes | Yes | Yes | Yes | Yes | Yes
ing (deprecated)
AMBAMON AHB and APB protocol monitor - No | Yes | Yes | Yes | Yes | Yes
ATF AMBA test framework consisting of 0x01 : No | Yes | Yes | Yes | Yes | Yes
master, slave and arbiter. 0x068 - 0x06A
LOGAN On-chip Logic Analyzer 0x01 : 0x062 Yes | Yes | Yes | Yes | Yes | Yes
Table 12. Graphics functions
<| =
218 &
2|3 5% 5| ¢
Name Function Vendor:Device Q| © E B2 3 2
APBVGA VGA controller with APB interface 0x01 : 0x061 Yes | Yes | Yes | Yes | Yes | Yes
SVGACTRL VGA controller core with DMA 0x01 : 0x063 Yes | Yes | Yes | Yes | Yes | Yes
Table 13. Auxiliary functions
<| =
I
2| 3 = 9 =g
Name Function Vendor:Device O © E B2 3 2
GRACECTRL AMBA SystemACE interface controller | 0x01 : 0x067 Yes | Yes | Yes | Yes | Yes | Yes
GRADCDAC Combined ADC / DAC Interface 0x01 : 0x036 No | Yes | Yes | Yes | Yes | Yes
GRFIFO External FIFO Interface with DMA 0x01 : 0x035 No | Yes | Yes | Yes | Yes | Yes
GRGPIO General purpose I/O port 0x01 : 0x01A Yes | Yes | Yes | Yes | Yes | Yes
GRGPREG General purpose Register 0x01 : 0x087 Yes | Yes | Yes | Yes | Yes | Yes
GRPULSE General purpose I/0 with pulses 0x01 : 0x037 No | Yes | Yes | Yes | Yes | Yes
GRPWM PWM generator 0x01 : 0x04A No | Yes | Yes | Yes | Yes | Yes
GRSYSMON AMBA Wrapper for Xilinx System 0x01 : 0x066 Yes | Yes | Yes | Yes | Yes | Yes
Monitor
GRVERSION Version and revision register 0x01 : 0x03A Yes | Yes | Yes | Yes | Yes | Yes

www.cobham.com/gaisler

GRLIB IP Core

Table 14. Error detection and correction functions

<| =
S8 &
2| 3 519 5] ¢
Name Function Ol O E E E 3 2
RS(24, 16, 8, E=1) 16 bit data, 8 check bits, corrects 4-bit error in 1 nib- |[No |No | Yes | Yes | No | Yes
ble
RS(40, 32, 8, E=1) 32 bit data, 8 check bits, corrects 4-bit error in 1 nib- | No |No | Yes | Yes |No | Yes
ble
RS(48, 32, 16, E=1+1) 32 bit data, 16 check bits, corrects 4-bit error in 2 No [No |[Yes |[Yes [No | Yes
nibbles
RS(48, 32, 16, E=2) 32 bit data, 16 check bits, corrects 4-bit error in 2 No [No |Yes |[Yes |No [Yes
nibbles
GR(2"4)(68, 60, 8, T=1) | QEC/QED error correction code encoder/decoder No [No |Yes |Yes [No |Yes
Table 15. Test functions
< | =
51 8| ¢
2|3 = 9 =g
Name Function Ol O E : E 3 2
SYNCIOTEST Test block for synchronous I/O interfaces Yes | Yes | Yes | Yes | Yes | Yes

www.cobham.com/gaisler

GRLIB IP Core

1.5

Spacecraft data handling IP cores

The Spacecraft Data Handling IP cores represent a collection of cores that have been developed spe-
cifically for the space sector.

These IP cores implement functions commonly used in spacecraft data handling and management sys-
tems. They implement international standards from organizations such as Consultative Committee for
Space Data Systems (CCSDS), European Cooperation on Space Standardization (ECSS), and the for-
mer Procedures, Standards and Specifications (PSS) from the European Space Agency (ESA).

The table below lists the existing CCSDS/ECSS IP cores and AMBA plug&play device identifiers.

The columns on the right indicate in which GRLIB distributions a core is available. GPL is the
GRLIB GNU GPL (free) distribution, COM is the commercial distribution, FT the full fault-tolerant
distribution and FT-FPGA is the GRLIB release targeted for radiation-tolerant programmable devices.
Distributions prefixed with L4- contain the LEON4 processor.

The TMTC license covers IP cores, with the upper TM and TC layers implemented in software, hard-
ware and also cores for implementing TM and TC test equipment. It can be provided as a separate
package or as an add-on to other GRLIB distributions.

Table 16. Spacecraft data handling functions

=

=z [E1S]|E|E]
Name Function Vendor : Device % 8 E EI EI 2 E E
GRTM CCSDS Telemetry Encoder 0x01 : 0x030 No | No | No | No [No | No | Yes
GRTM_DESC CCSDS Telemetry Encoder - Descriptor 0x01 : 0x084 No | No | No | No | No | No | Yes
GRTM_VC CCSDS Telemetry Encoder - Virtual Channel Generation 0x01 : 0x085 No [No | No | No | No | No | Yes
GRTM_PAHB CCSDS Telemetry Encoder - VC Generation Input - AMBA 0x01 : 0x088 No | No | No | No | No | No | Yes
GRTM_PW CCSDS Telemetry Encoder - VC Generation Input - PacketWire | N/A No | No | No | No | No | No | Yes
GRTM_UART CCSDS Telemetry Encoder - VC Generation Input - UART N/A No | No | No [No | No | No | Yes
GRTM_CLCWRX CCSDS Telemetry Encoder - CLCW Receiver N/A No | No | No [No [No | No | Yes | 2)
GRTM_CLCWMUX |CCSDS Telemetry Encoder - CLCW Multiplexer N/A No | No | No [No [No | No | Yes | 2)
GRGEFFE CCSDS Telemetry Encoder - Geffe Generator 0x01 : 0x086 No | No | No | No | No | No | Yes
GRCE/GRCD CCSDS Convolutional Encoder and Quicklook Decoder N/A No | No | No | No | No | No | Yes
GRTMRX CCSDS Telemetry Receiver 0x01 : 0x082 No [No [No | No | No [No | Yes
GRTC CCSDS Telecommand Decoder - Coding Layer 0x01 : 0x031 No | No | No | No | No | No | Yes
TCAU ESA PSS Telecommand Decoder Authentication Unit N/A No | No | No [No | No | No | Yes
GRTC_HW CCSDS Telecommand Decoder - Hardware Commands N/A No | No | No | No | No | No | Yes
GRTC_UART CCSDS Telecommand Decoder - UART N/A No [No | No | No | No | No | Yes
GRTC_CLCWTX CCSDS Telecommand Decoder - CLCW Transmitter N/A No | No | No | No | No | No | Yes | 2)
GRTCTX CCSDS Telecommand Transmitter 0x01 : 0x083 No | No | No | No | No | No | Yes
GRCTM CCSDS Time manager 0x01 : 0x033 No | No | No [No | No | No | Yes
SPWCUC SpaceWire - CCSDS Unsegmented Code Transfer Protocol 0x01 : 0x089 No | No | No | No [No | No | Yes
GRPW PacketWire receiver with AHB interface 0x01 : 0x032 No | No | No [No | No | No | Yes
GRPWRX PacketWire Receiver (rev 1) 0x01 : 0x03C No | No | No | No | No | No | Yes
GRPWTX PacketWire Transmitter (rev 1) 0x01 : 0x03B No | No | No | No | No | No | Yes
APB2PW PacketWire Transmitter Interface (rev 0) 0x01 : 0x03B No | No | No | No | No | No | Yes
PW2APB PacketWire Receiver Interface (rev 0) 0x01 : 0x03C No | No | No | No | No | No | Yes
AHB2PP Packet Parallel Interface 0x01 : 0x039 No | No | No | No [No | No | Yes
GRRM Reconfiguration Module 0x01 : 0x09A No | No | No [No [No |No |No | 1)
Note 1) Available as separate package or as addition to existing releases.
Note 2) There is no user manual for these simple cores.

www.cobham.com/gaisler

GRLIB IP Core

1.6 Supported technologies

Technology support and instructions for extending GRLIB with support for additional technologies is
documented in the ‘GRLIB User’s Manual’. The table below shows the technology maps available
from Cobham Gaisler for GRLIB and in which GRLIB distributions these technology maps are

included.
=
g
2|3 . £

Vendor Technology O © e E S

Actel / ProASIC3, ProASIC3e, ProASIC3l, No | Yes | Yes | Yes

Microsemi Axcelerator, Axcelerator DSP, Fusion,

IGLOO2

Actel / RTG4 No |No | * * RTG#4 support is distributed as a sep-

Microsemi arate add-on package.

Altera Cyclone?2 - 4, Stratix - StratixV Yes | Yes | Yes | Yes | Note that several parts of the FT and
FT-FPGA versions are distributed as
encrypted RTL. Encrypted RTL is
not provided for the Quartus II tool.

Lattice - Yes | Yes | No | No

Xilinx Unisim (Virtex2 - 7-series) Yes | Yes | Yes | Yes | Xilinx Sirf (Virtex-5QV) and TMR-
Tool support is distributed as a sepa-
rate add-on package.

Other ASIC - No | - - No | Contact Cobham Gaisler for details.
See also GRLIB IP Library User’s
Manual.

www.cobham.com/gaisler

GRLIB IP Core

1.7

1.8

Implementation characteristics

Implementation characteristics are available in the GRLIB area spreadsheet:
http://www.gaisler.com/products/grlib/grlib_area.xls

The spreadsheet is also included in GRLIB packages together with this document.

Definitions

This section and the following subsections define the typographic and naming conventions used
throughout this document.

1.8.1 Bit numbering

The following conventions are used for bit numbering:
* The most significant bit (MSb) of a data type has the leftmost position
* The least significant bit of a data type has the rightmost position

* Unless otherwise indicated, the MSb of a data type has the highest bit number and the LSb the
lowest bit number

1.8.2 Radix

The following conventions is used for writing numbers:

* Binary numbers are indicated by the prefix "0b", e.g. 0b1010.

* Hexadecimal numbers are indicated by the prefix "0x", e.g. 0OxFOOF

* Unless a radix is explicitly declared, the number should be considered a decimal.

1.8.3 Data types

Byte (BYTE) 8 bits of data
Halfword (HWORD) 16 bits of data
Word (WORD) 32 bits of data
Double word (DWORD) 64 bits of data
Quad word (4WORD) 128-bits of data

www.cobham.com/gaisler

http://www.gaisler.com/products/grlib/grlib_area.xls

GRLIB IP Core

1.9

Register descriptions

An example register, showing the register layout used throughout this document, can be seen in table
17. The values used for the reset value fields are described in table 18, and the values used for the
field type fields are described in table 19. Fields that are named RESERVED, RES, or R are read-only
fields. These fields can be written with zero or with the value read from the same register field.

Table 17. <Address> - <Register acronym> - <Register name>

31 24 23 16 15 7 0
EF3 EF2 EF1 EFO
<Reset value for EF3> <Reset value for EF2> <Reset value for EF1> <Reset value for EF0>
<Field type for EF3> <Field type for EF2> <Field type for EF1> <Field type for EFO>

31: 24
23: 16
15: 8
7: 0

Example field 3 (EF3) - <Field description>
Example field 2 (EF2) - <Field description>
Example field 1 (EF1) - <Field description>
Example field 0 (EF0) - <Field description>

Table 18. Reset value definitions

Value Description

0 Reset value 0.

1 Reset value 1. Used for single-bit fields.

OxNN Hexadecimal representation of reset value. Used for multi-bit fields.

ObNN Binary representation of reset value. Used for multi-bit fields.

NR Field not reset. Fields marked with NR will be reset to 0 if full reset of all registers have been

enabled in the global GRLIB configuration options (see GRLIB user manual for more information).

Special reset condition, described in textual description of the field. Used for example when reset
value is taken from a pin.

Don’t care / Not applicable

Table 19. Field type definitions

Value Description

T Read-only. Writes have no effect.

w Write-only. Used for a writable field in a register where the field’s read-value has no meaning.

™w Readable and writable.

rw* Readable and writable. Special condition for write, described in textual description of field.

wc Write-clear. Readable, and cleared when written with a 1

cas Readable, and writable through compare-and-swap. Only applies to SpaceWire Plug-and-Play regis-

ters.

www.cobham.com/gaisler

GRLIB IP Core

2

2.1

2.2

AHB2AHB - Uni-directional AHB/AHB bridge

Overview

The uni-directional AHB/AHB bridge is used to connect twvo AMBA AHB buses clocked by synchro-
nous clocks with any frequency ratio. The bridge is connected through a pair consisting of an AHB
slave and an AHB master interface. AHB transfer forwarding is performed in one direction, where
AHB transfers to the slave interface are forwarded to the master interface. Applications of the uni-
directional bridge include system partitioning, clock domain partitioning and system expansion.

Features offered by the uni-directional AHB to AHB bridge are:
* Single and burst AHB transfers
* Data buffering in internal FIFOs

» Efficient bus utilization through (optional) use of SPLIT response and data prefetching. NOTE:
SPLIT responses require an AHB arbiter that allows assertion of HSPLIT during second cycle of
SPLIT response. This is supported by GRLIB’s AHBCTRL IP core.

e Posted writes

* Read and write combining, improves bus utilization and allows connecting cores with differing
AMBA access size restrictions.

* Deadlock detection logic enables use of two uni-directional bridges to build a bi-directional
bridge (one example is the bi-directional AHB/AHB bridge core (AHBBRIDGE))

MASTER 1 MASTER 2 MASTER N
AHB Bus 0
BUS
CONTROL
SLAVE 1 SLAVE 2
SLAVE IIF
AHB/AHB
BRIDGE
MASTER I/F
MASTER 1 MASTER N
AHB Bus 1
BUS
CONTROL
SLAVE 1 SLAVE 2
Figure 1. Two AHB buses connected with (uni-directional) AHB/AHB bridge
Operation

2.2.1 General

The address space occupied by the AHB/AHB bridge on the slave bus is configurable and determined
by Bank Address Registers in the slave interface’s AHB Plug&Play configuration record.

The bridge is capable of handling single and burst transfers of all burst types. Supported transfer sizes
(HSIZE) are BYTE, HALF-WORD, WORD, DWORD, 4WORD and 8WORD.

www.cobham.com/gaisler

GRLIB IP Core

For AHB write transfers write data is always buffered in an internal FIFO implementing posted
writes. For AHB read transfers the bridge uses GRLIB’s AMBA Plug&Play information to determine
whether the read data will be prefetched and buffered in an internal FIFO. If the target address for an
AHB read burst transfer is a prefetchable location the read data will be prefetched and buffered.

The bridge can be implemented to use SPLIT responses or to insert wait states when handling an
access. With SPLIT responses enabled, an AHB master initiating a read transfer to the bridge is
always splitted on the first transfer attempt to allow other masters to use the slave bus while the bridge
performs read transfer on the master bus.The descriptions of operation in the sections below assume
that the bridge has been implemented with support for AMBA SPLIT responses. The effects of dis-
abling support for AMBA SPLIT responses are described in section 2.2.11.

If interrupt forwarding is enabled the interrupts on the slave bus interrupt lines will be forwarded to
the master bus and vice versa.

2.2.2 AHB read transfers

When a read transfer is registered on the slave interface the bridge gives a SPLIT response. The mas-
ter that initiated the transfer will be de-granted allowing other bus masters to use the slave bus while
the bridge performs a read transfer on the master side. The master interface then requests the bus and
starts the read transfer on the master side. Single transfers on the slave side are normally translated to
single transfers with the same AHB address and control signals on the master side, however read com-
bining can translate one access into several smaller accesses. Translation of burst transfers from the
slave to the master side depends on the burst type, burst length, access size and the AHB/AHB bridge
configuration.

If the read FIFO is enabled and the transfer is a burst transfer to a prefetchable location, the master
interface will prefetch data in the internal read FIFO. If the splitted burst on the slave side was an
incremental burst of unspecified length (INCR), the length of the burst is unknown. In this case the
master interface performs an incremental burst up to a specified address boundary (determined by the
VHDL generic rburst). The bridge can be configured to recognize an INCR read burst marked as
instruction fetch (indicated on HPROT signal). In this case the prefetching on the master side is com-
pleted at the end of a cache line (the cache line size is configurable through the VHDL generic iburst).
When the burst transfer is completed on the master side, the splitted master that initiated the transfer
(on the slave side) is allowed in bus arbitration by asserting the appropriate HSPLIT signal to the
AHB controller. The splitted master re-attempts the transfer and the bridge will return data with zero
wait states.

If the read FIFO is disabled, or the burst is to non-prefetchable area, the burst transfer on the master
side is performed using sequence of NONSEQ, BUSY and SEQ transfers. The first access in the burst
on the master side is of NONSEQ type. Since the master interface can not decide whether the splitted
burst will continue on the slave side or not, the master bus is held by performing BUSY transfers. On
the slave side the splitted master that initiated the transfer is allowed in bus arbitration by asserting the
HSPLIT signal to the AHB controller. The first access in the transfer is completed by returning read
data. The next access in the transfer on the slave side is extended by asserting HREADY low. On the
master side the next access is started by performing a SEQ transfer (and then holding the bus using
BUSY transfers). This sequence is repeated until the transfer is ended on the slave side.

In case of an ERROR response on the master side the ERROR response will be given for the same
access (address) on the slave side. SPLIT and RETRY responses on the master side are re-attempted
until an OKAY or ERROR response is received.

2.2.3 AHB write transfers

The AHB/AHB bridge implements posted writes. During the AHB write transfer on the slave side the
data is buffered in the internal write FIFO and the transfer is completed on the slave side by always
giving an OKAY response. The master interface requests the bus and performs the write transfer when
the master bus is granted. If the burst transfer crosses the write burst boundary (defined by VHDL

www.cobham.com/gaisler

GRLIB IP Core

generic wburst), a SPLIT response is given. When the bridge has written the contents of the FIFO out
on the master side, the bridge will allow the master on the slave side to perform the remaining
accesses of the write burst transfer.

Writes are accepted with zero wait states if the bridge is idle and the incoming access is not locked. If
the incoming access is locked, each access will have one wait state. If write combining is disabled a
non-locked BUSY cycle will lead to a flush of the write FIFO. If write combining is enabled or if the
incoming access is locked, the bridge will not flush the write FIFO during the BUSY cycle.

2.2.4 Deadlock conditions

When two bridges are used to form a bi-drectional bridge, a deadlock situation can occur if the
bridges are simultaneously accessed from both buses. The bridge that has been configured as a slave
contains deadlock detection logic which will resolve a deadlock condition by giving a RETRY
response, or by issuing SPLIT complete followed by a new SPLIT response. When the core resolves a
deadlock while prefetching data, any data in the prefetch buffer will be dropped when the core’s slave
interface issues the AMBA RETRY response. When the access is retried it may lead to the same
memory locations being read twice.

Deadlock detection logic for bi-directional configurations may lead to deadlocks in other parts of the
system. Consider the case where a processor on bus A on one side of the bidirectional bridge needs to
perform an instruction fetch over the bridge before it can release a semaphore located in memory on
bus A. Another processor on bus B, on the other side of the bridge, may spin on the semaphore wating
for its release. In this scenario, the accesses from the processor on bus B could, depending on system
configuration, continuously trigger a deadlock condition where the core will drop data in, or be pre-
vented from initiating, the instruction fetch for the processor on bus A. Due to scenarios of this kind
the bridge should not be used in bi-directional configurations where dependencies as the one
described above exist between the buses connected by the bridge.

Other deadlock conditions exist with locked transfers, see section 2.2.5.

2.2.5 Locked transfers

The AHB/AHB bridge supports locked transfers. The master bus will be locked when the bus is
granted and remain locked until the transfer completes on the slave side. Locked transfers can lead to
deadlock conditions, the core’s VHDL generic Ickdac determines if and how the deadlock conditions
are resolved.

With the VHDL generic Ickdac set to 0, locked transfers may not be made after another read access
which received SPLIT until the first read access has received split complete. This is because the
bridge will return split complete for the first access first and wait for the first master to return. This
will cause deadlock since the arbiter is not allowed to change master until a locked transfer has been
completed. The AMBA specification requires that the locked transfer is handled before the previous
transfer, which received a SPLIT response, is completed.

With Ickdac set to 1, the core will respond with an AMBA ERROR response to locked access that is
made while an ongoing read access has received a SPLIT response. With Ickdac set to 2 the bridge
will save state for the read access that received a SPLIT response, allow the locked access to com-
plete, and then complete the first access. All non-locked accesses from other masters will receive
SPLIT responses until the saved data has been read out.

If the core is used to create a bi-directional bridge there is one more deadlock condition that may arise
when locked accesses are made simultaneously in both directions. If the VHDL generic Ickdac is set
to 0 the core will deadlock. If Ickdac is set to a non-zero value the slave bridge will resolve the dead-
lock condition by issuing an AMBA ERROR response to the incoming locked access.

www.cobham.com/gaisler

GRLIB IP Core

2.2.6 Read and write combining

Read and write combining allows the bridge to assemble or split AMBA accesses on the bridge’s
slave interface into one or several accesses on the master interface. This functionality can improve bus
utilization and also allows cores that have differing AMBA access size restrictions to communicate
with each other. The functionality attained by read and write combining depends on the VHDL gener-
ics rdcomb (defines type of read combining), wrcomb (defines type of write combining), slvmstaccsz
(defines maximum AHB access size supported by the bridge’s slave interface) and mstmaccsz
(defines maximum AHB access size that can be used by bridge’s master interface). These VHDL
generics are described in section 2.6. The table below shows the effect of different settings. BYTE
and HALF-WORD accesses are special cases. The table does not list illegal combinations, for
instance mstmaccsz /= slvmaccsz requires that wrcomb /= 0 and rdcomb /= 0.

Table 20. Read and write combining

Access on slave interface Access size wrcomb | rdcomb | Resulting access(es) on master interface
BYTE or HALF-WORD sin- | - - - Single access of same size
gle read access to any area
BYTE or HALF-WORD - - - Incremental read burst of same access size as on
read burst to prefetchable slave interface, the length is the same as the
area number of 32-bit words in the read buffer, but
will not cross the read burst boundary.
BYTE or HALF-WORD - - - Incremental read burst of same access size as on
read burst to non-prefetch- slave interface, the length is the same as the
able area length of the incoming burst. The master inter-
face will insert BUSY cycles between the
sequential accesses.
BYTE or HALF-WORD sin- | - - - Single access of same size
gle write
BYTE or HALF-WORD - - - Incremental write burst of same size and length,
write burst the maximum length is the number of 32-bit
words in the write FIFO.
Single read access to any Access size <= | - - Single access of same size
area mstmaccsz
Single read access to any Access size> | - 1 Sequence of single accesses of mstmaccsz. Num-
area mstmaccsz ber of accesses: (access size)/mstmaccsz
Single read access to any Access size > | - 2 Burst of accesses of size mstmaccsz. Length of
area mstmaccsz burst: (access size)/mstmaccsz
Read burst to prefetchable - - 0 Burst of accesses of incoming access size up to
area address boundary defined by rburst.
Read burst to prefetchable - - lor2 Burst of accesses of size mstmaccsz up to
area address boundary defined by rburst.
Read burst to non-prefetch- | Access size <= | - - Incremental read burst of same access size as on
able area mstmaccsz slave interface, the length is the same as the
length of the incoming burst. The master inter-
face will insert BUSY cycles between the
sequential accesses.
Read burst to non-prefetch- | Access size > | - lor2 Burst of accesses of size mstmaccsz. Length of
able area mstmaccsz burst:
(incoming burst length)*(access size)/mstmaccsz
Single write Access size <= | - - Single write access of same size
mstmaccsz
Single write Access size > | 1 - Sequence of single access of mstmaccsz. Num-
mstmaccsz ber of accesses: (access size)/mstmaccsz.
Single write Access size> |2 - Burst of accesses of mstmaccsz. Length of burst:
mstmaccsz (access size)/mstmaccsz.

www.cobham.com/gaisler

GRLIB IP Core

Table 20. Read and write combining

Access on slave interface Access size wrcomb | rdcomb | Resulting access(es) on master interface

Write burst - 0 - Burst of same size as incoming burst, up to
address boundary defined by VHDL generic
wburst.

Write burst - lor2 - Burst write of maximum possible size. The
bridge will use the maximum size (up to mst-
maccsz) that it can use to empty the writebuffer.

Read and write combining prevents the bridge from propagating fixed length bursts and wrapping
bursts. See section 2.2.7 for a discussion on burst operation.

Read and write combining with VHDL generics wrcomb/rdcomb set to 1 cause the bridge to use sin-
gle accesses when divding an incoming access into several smaller accesses. This means that another
master on the bus may write or read parts of the memory area to be accessed by the bridge before the
bridge has read or written all the data. In bi-directional configurations, an incoming access on the
master bridge may cause a collision that aborts the operation on the slave bridge. This may cause the
bridge to read the same memory locations twice. This is normally not a problem when accessing
memory areas. The same issues apply when using an AHB arbiter that performs early burst termina-
tion. The standard GRLIB AHBCTRL core does not perform early burst termination.

To ensure that the bridge does not re-read an address, and that all data in an access from the bridge’s
slave interface is propagated out on the master interface without interruption the VHDL generics
rdcomb and wrcomb should both be set to 0 or 2. In addition to this, the AHB arbiter may not perform
early burst termination (early burst termination is not performed by the GRLIB AHBCTRL arbiter).

Read and write combining can be limited to specified address ranges. See description of the comb-
mask VHDL generic for more information. Note that if the core is implemented with support for
prefetch and read combining, it will not obey combmask for prefetch operations (burst read to
prefetchable areas). Prefetch operations will always be performed with the maximum allowed size on
the master interface.

2.2.7 Burst operation

The core can be configured to support all AMBA 2.0 burst types (single access, incrementing burst of
unspecified length, fixed length incrementing bursts and wrapping bursts). Single accesses and incre-
menting bursts of unspecified length have previously been discussed in this document. An incoming
single access will lead to one access, or multiple accesses for some cases with read/write combining,
on the other side of the bridge. An incoming incrementing burst of unspecified length to a prefetch-
able area will lead to the prefetch buffer (if available) being filled using the same access size, or the
maximum allowed access size if read/write combining is enabled, on the master interface.

If the core is used in a system where no fixed length bursts or incremental bursts will be used in
accesses to the bridge, then set the allbrst generic to 0 and skip the remainder of this section.

The VHDL generic allbrst controls if the core will support fixed length and wrapping burst accesses.
If allbrst is set to 0, the core will treat all burst accesses as incrementing of unspecified length. For
fixed length and wrapping bursts this can lead to performance penalties and malfunctions. Support for
fixed length and wrapping bursts is enabled by setting allbrst to 1 or 2. Table 21 describes how the
core will handle different burst types depending on the setting of allbrst.

www.cobham.com/gaisler

GRLIB IP Core

Table 21. Burst handling

Value of | Access type* | Undefined length Fixed length incrementing | Wrapping burst

allbrst incrementing burst burst WRAP{4,8,16}

generic INCR INCR{4,8,16}

0 Reads to Incrementing burst with | Fixed length burst with Malfunction. Not supported
non- BUSY cycles inserted. BUSY cycles inserted. If the

prefetchable | Same behaviour with burst is short then the burst

area read and write combin- | may end with a BUSY cycle.

ing. If access combining is used
the HBURST signal will get
incorrect values.

Reads to Incrementing burst of maximum allowed size, filling Malfunction. Not supported

prefetchable | prefetch buffer, starting at address boundary defined by

area prefetch buffer.

Write burst Incrementing burst Incrementing burst, if write | Write combining is not sup-
combining is enabled, and ported. Same access size will be
triggered, the burst will be used on both sides of the bridge.
translated to an increment-
ing burst of undefined
length. VHDL generic
wrcomb should not be set to
1 (but to 0 or 2) in this case

1 Reads to Incrementing burst with | Same burst type with BUSY | Same burst type with BUSY
non- BUSY cycles inserted. cycles inserted. If read com- | cycles inserted. If read combin-
prefetchable | Same behaviour with bining is enabled, and trig- ing is enabled, and triggered by
area read and write combin- | gered by the incoming access | the incoming access size, an

ing. size, an incremental burst of | incremental burst of unspecified
unspecified length will be length will be used. This will
used. If the burst is short then | cause AMBA violations if the
the burst may end with a wrapping burst does not start
BUSY cycle. from offset 0.

Reads to Incrementing burst of For reads, the core will perform full (or part that fits in prefetch

prefetchable | maximum allowed size, | buffer) fixed/wrapping burst on master interface and then

area filling prefetch buffer. respond with data. No BUSY cycles are inserted.

If the access made to the slave interface is larger than the maxi-
mum supported access size on the master interface then a incre-
menting burst of unspecified length will be used to fill the
prefetch buffer. This (read combining) is not supported for wrap-
ping bursts.

Write burst Same as for allbrst =0

2 Reads to Incrementing burst with

non- BUSY cycle.s 1nser.ted. Reads are treated as a prefetchable burst. See below.

prefetchable | Same behaviour with

area read and write combin-

ing.
Reads to Incrementing burst of Core will perform full (or part that fits in prefetch buffer) fixed/
prefetchable | maximum allowed size, | wrapping burst on master interface and then respond with data.
area filling prefetch buffer, No BUSY cycles are inserted.
starting at address If the access made to the slave interface is larger than the maxi-
boundary defined by mum supported access size on the master interface then a incre-
prefetch buffer. menting burst of unspecified length will be used to fill the
prefetch buffer. This (read combining) is not supported for wrap-
ping bursts.
Write burst Same as for allbrst =0

* Access to prefetchable area where the core’s prefetch buffer is ised (VHDL generic pfen /= 0).

www.cobham.com/gaisler

GRLIB IP Core

2.2.8 Transaction ordering, starvation and AMBA arbitration schemes

The bridge is configured at implementation to use one of two available schemes to handle incoming
accesses. The bridge will issue SPLIT responses when it is busy and on incoming read accesses. If the
bridge has been configured to use first-come, first-served ordering it will keep track of the order of
incoming accesses and serve the requests in the same order. If first-come, first-served ordering is dis-
abled the bridge will give some advantage to the master it has a response for and then allow all mas-
ters in to arbitration simultaneously, moving the decision on which master that should be allowed to
access the bridge to the bus arbitration.

When designing a system containing a bridge the expected traffic patterns should be analyzed. The
designer must be aware how SPLIT responses affect arbitration and how the selected transaction
ordering in the bridge will affect the system. The two different schemes are further described in sec-
tions 2.2.9 and 2.2.10.

2.2.9 First-come, first-served ordering

First-come, first served ordering is used when the VHDL generic fcfs is non-zero.

With first-come, first-served ordering the bridge will keep track of the order of incoming accesses.
The accesses will then be served in the same order. For instance, if master O initiates an access to the
bridge, followed by master 3 and then master 5, the bridge will propagate the access from master 0
(and respond with SPLIT on a read access) and then respond with SPLIT to the other masters. When
the bridge has a response for master 0, this master will be allowed in arbitration again by the bridge
asserting HSPLIT. When the bridge has finished serving master 0 it will allow the next queued master
in arbitration, in this case master 3. Other incoming masters will receive SPLIT responses and will not
be allowed in arbitration until all previous masters have been served.

An incoming locked access will always be given precedence over any other masters in the queue.

A burst that has initiated a pre-fetch operation will receive SPLIT and be inserted last in the master
queue if the burst is longer than the maximum burst length that the bridge has been configured for.

It should be noted that first-come, first-served ordering may not work well in systems where an AHB
master needs to have higher priority compared to the other masters. The bridge will not prioritize any
master, except for masters performing locked accesses.

2.2.10 Bus arbiter ordering

Bus arbiter ordering is used when VHDL generic fcfs is set to zero.

When several masters have received SPLIT and the bridge has a response for one of these masters, the
master with the queued response will be allowed in to bus arbitration by the bridge asserting the corre-
sponding HSPLIT signal. In the following clock cycle, all other masters that have received SPLIT
responses will also be allowed in bus arbitration as the bridge asserts their HSPLIT signals simultane-
ously. By doing this the bridge defers the decision on the master to be granted next to the AHB arbiter.
The bridge does not show any preference based on the order in which it issued SPLIT responses to
masters, except to the master that initially started a read or write operation. Care has been taken so
that the bridge shows a consistent behavior when issuing SPLIT responses. For instance, the bridge
could be simplified if it could issue a SPLIT response just to be able to change state, and not initiate a
new operation, to an access coming after an access that read out prefetched data. When the bridge
entered its idle state it could then allow all masters in bus arbitration and resume normal operation.
That solution could lead to starvation issues such as:

TO: Master 1 and Master 2 have received SPLIT responses, the bridge is prefetching data for Master 1
T1: Master 1 is allowed in bus arbitration by setting the corresponding HSPLIT
T2: Master 1 reads out prefetch data, Master 2 HSPLIT is asserted to let Master 2 in to bus arbitration

www.cobham.com/gaisler

GRLIB IP Core

T3: Master 2 performs an access, receives SPLIT, however the bridge does not initiate an access, it
just stalls in order to enter its idle state.

T4: Master 2 is allowed in to bus arbitration, Master 1 initiates an access that leads to a prefetch and
Master 1 receives a SPLIT response

T5: Master 2 performs an access, receives SPLIT since the bridge is prefetching data for master 1
T6: Go back to TO

This pattern will repeat until Master 1 backs away from the bus and Master 2 is able to make an access
that starts an operation over the bridge. In most systems it is unlikely that this behavior would intro-
duce a bus lock. However, the case above could lead to an unexpectedly long time for Master 2 to
complete its access. Please note that the example above is illustrative and the problem does not exist
in the core as the core does not issue SPLIT responses to (non-locked) accesses in order to just change
state but a similar pattern could appear as a result of decisions taken by the AHB arbiter if Master 1 is
given higher priority than Master 2.

In the case of write operations the scenario is slightly different. The bridge will accept a write imme-
diately and will not issue a SPLIT response. While the bridge is busy performing the write on the mas-
ter side it will issue SPLIT responses to all incoming accesses. When the bridge has completed the
write operation on the master side it will continue to issue SPLIT responses to any incoming access
until there is a cycle where the bridge does not receive an access. In this cycle the bridge will assert
HSPLIT for all masters that have received a SPLIT response and return to its idle state. The first mas-
ter to access the bridge in the idle state will be able to start a new operation. This can lead to the fol-
lowing behavior:

TO: Master 1 performs a write operation, does NOT receive a SPLIT response

T1: Master 2 accesses the bridge and receives a SPLIT response

T2: The bridge now switches state to idle since the write completed and asserts HSPLIT for Master 2.
T3: Master 1 is before Master 2 in the arbitration order and we are back at TO.

In order to avoid this last pattern the bridge would have to keep track of the order in which it has
issued SPLIT responses and then assert HSPLIT in the same order. This is done with first-come, first-
served ordering described in section 2.2.9.

2.2.11 AMBA SPLIT support

Support for AMBA SPLIT responses is enabled/disabled through the VHDL generic split. SPLIT sup-
port should be enabled in most systems. The benefits of using SPLIT responses is that the bus on the
bridge’s slave interface side can be free while the bridge is performing an operation on the master
side. This will allow other masters to access the bus and generally improve system performance. The
use of SPLIT responses also allows First-come, first-served transaction ordering.

For configurations where the bridge is the only slave interface on a bus, it can be beneficial to imple-
ment the bridge without support for AMBA SPLIT responses. Removing support for SPLIT responses
reduces the area used by the bridge and may also reduce the time required to perform accesses that
traverse the bridge. It should be noted that building a bi-directional bridge without support for SPLIT
responses will increase the risk of access collisions.

If SPLIT support is disabled the bridge will insert wait states where it would otherwise issue a SPLIT
response to a master initiating an access. This means that the arbitration ordering will be left to the bus
arbiter and the bridge cannot be implemented with the First-come, first-served transaction ordering
scheme. The bridge will still issue RETRY responses to resolve dead lock conditions, to split up long
burst and also when the bridge is busy emptying it’s write buffer on the master side.

www.cobham.com/gaisler

GRLIB IP Core

2.2.12 Core latency

The delay incurred when performing an access over the core depends on several parameters such as
core configuration, the operating frequency of the AMBA buses, AMBA bus widths and memory
access patterns. Table 22 below shows core behavior in a system where both AMBA buses are run-
ning at the same frequency and the core has been configured to use AMBA SPLIT responses. Table
23 further down shows core behavior in the same system without support for SPLIT responses.

Table 22. Example of single read with FFACT = 1, and SPLIT support

Clock cycle

Core slave side activity

Core master side activity

0

Discovers access and transitions from idle state

Idle

1

Slave side waits for master side, SPLIT response
is given to incoming access, any new incoming
accesses also receive SPLIT responses.

Discovers slave side transition. Master interface output
signals are assigned.

If bus access is granted, perform address phase. Other-
wise wait for bus grant.

Register read data and transition to data ready state.

Discovers that read data is ready, assign read
data output and assign SPLIT complete

SPLIT complete output is HIGH

Typically a wait cycle for the SPLIT:ed master to
be allowed into arbitration. Core waits for master
to return. Other masters receive SPLIT
responses.

Master has been allowed into arbitration and per-
forms address phase. Core keeps HREADY high

Access data phase. Core has returned to idle
state.

Idle

Table 23. Example of single read with FFACT = 1, without SPLIT support

Clock cycle

Core slave side activity

Core master side activity

0

Discovers access and transitions from idle state

Idle

1

Slave side waits for master side, wait states are
inserted on the AMBA bus.

Discovers slave side transition. Master interface output
signals are assigned.

Bus access is granted, perform address phase.

Register read data and transition to data ready state.

Discovers that read data is ready, assign
HREADY output register and data output regis-
ter.

HREADY is driven on AMBA bus. Core has
returned to idle state

Idle

While the transitions shown in tables 22 and 23 are simplified they give an accurate view of the core
delay. If the master interface needs to wait for a bus grant or if the read operation receives wait states,
these cycles must be added to to the cycle count in the tables. The behavior of the core with a fre-

www.cobham.com/gaisler

GRLIB IP Core

quency factor of two between the buses is shown in tables 24 and 25 (best case, delay may be larger
depending on on which slave clock cycle an access is made to the core).

Table 24. Example of single read with FFACT = 2, Master freq. > Slave freq, without SPLIT support

Slave side Core slave side activity Master side | Core master side activity
clock cycle clock cycle
0 Discovers access and transitions from idle 0 Discovers slave side transition. Master inter-
state face output signals are assigned.
1 Slave side waits for master side, wait states
2 are inserted on the AMBA bus. 1 Bus access is granted, perform address
3 phase.
4 2 Register read data and transition to data
5 ready state.
6 Discovers that read data is ready, assign 3 Idle
HREADY output register and data output
register.
7 HREADY is driven on AMBA bus. Core

has returned to idle state

Table 25. Example of single read with FFACT = 2, Master freq. > Slave freq, without SPLIT support

Slave side Core slave side activity Master side | Core master side activity
clock cycle clock cycle
0 Discovers access and transitions from idle 0 Idle
state 1
1 Slave side waits for master side, wait states 2 Discovers slave side transition. Master inter-
are inserted on the AMBA bus. face output signals are assigned.
3 Bus access is granted, perform address
phase.
2 Discovers that read data is ready, assign 4 Register read data and transition to data
HREADY output register and data output ready state.
register. 5 Idle
3 HREADY is driven on AMBA bus. Core 6
has returned to idle state 7

Table 26 below lists the delays incurred for single operations that traverse the bridge while the bridge
is in its idle state. The second column shows the number of cycles it takes the master side to perform
the requested access, this column assumes that the master slave gets access to the bus immediately
and that each access is completed with zero wait states. The table only includes the delay incurred by
traversing the core. For instance, when the access initiating master reads the core’s prefetch buffer,
each additional read will consume one clock cycle. However, this delay would also have been present
if the master accessed any other slave.

Write accesses are accepted with zero wait states if the bridge is idle, this means that performing a
write to the idle core does not incur any extra latency. However, the core must complete the write
operation on the master side before it can handle a new access on the slave side. If the core has not
transitioned into its idle state, pending the completion of an earlier access, the delay suffered by an
access be longer than what is shown in the tables in this section. Accesses may also suffer increased
delays during collisions when the core has been instantiated to form a bi-directional bridge. Locked
accesses that abort on-going read operations will also mean additional delays.

www.cobham.com/gaisler

GRLIB IP Core

2.3

24

25

If the core has been implemented to use AMBA SPLIT responses there will be an additional delay
where, typically, one cycle is required for the arbiter to react to the assertion of HSPLIT and one clock
cycle for the repetition of the address phase.

Note that if the core has support for read and/or write combining, the number of cycles required for
the master will change depending on the access size and length of the incoming burst access. For
instance, in a system where the bus in the core’s master side is wider than the bus on the slave side,
write combining will allow the core to accept writes with zero wait states and then combine several
accesses into one or several larger access. Depending on memory controller implementation this
could reduce the time required to move data to external memory, and will reduce the load on the mas-
ter side bus.

Table 26. Access latencies

Access Master acc. cycles | Slave cycles Delay incurred by performing access over core
Single read 3 1 1 * clkgy + 3 * clkpg

Burst read with prefetch | 2 + (burst length)* | 2 2 * clkg, *+ (2 + burst length)* clk,

Single write** (@) 0 0

Burst write®® (2 + (burst length)) | 0 0

* A prefetch operation ends at the address boundary defined by the prefetch buffer’s size
*X The core implements posted writes, the number of cycles taken by the master side can only affect the next access.

2.2.13 Endianness

The core is designed for big-endian systems.

Registers

The core does not implement any registers.

Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x020. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

Implementation

2.5.1 Technology mapping

The uni-directional AHB to AHB bridge has two technology mapping generics memtech and fcfsm-
tech. memtech selects which memory technology that will be used to implement the FIFO memories.
fcfsmtech selects the memory technology to be used to implement the First-come, first-served buffer,
if FCFS is enaled.

2.5.2 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).

The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.

The core does not support grlib_async_reset_enable. All registers that react on the reset signal will
have a synchronous reset.

www.cobham.com/gaisler

GRLIB IP Core

2.5.3 RAM usage

The uni-directional AHB to AHB bridge instantiates one or several syncram_2p blocks from the tech-
nology mapping library (TECHMAP). If prefetching is enabled max(mstmaccsz, slvaccsz)/32 syn-
cram_2p block(s) with organization (max(rburst,iburst)-max(mstmaccsz, slvaccsz)/32) x 32 is used to
implement read FIFO (max(rburst,iburst) is the size of the read FIFO in 32-bit words). max(mst-
maccsz, slvaccsz)/32 syncram_2p block(s) with organization (wburst - max(mstmaccsz, slvaccsz)/32)
x 32, is always used to implement the write FIFO (where wburst is the size of the write FIFO in 32-bit
words).

If the core has support for first-come, first-served ordering then one fcfs x 4 syncram_2p block will be
instantiated, using the technology specified by the VHDL generic fcfsmtech.

2.6 Configuration options

Table 27 shows the configuration options of the core (VHDL generics).

Table 27. Configuration options (VHDL generics)

Generic Function Allowed range Default
memtech Memory technology

hsindex Slave I/F AHB index 0 to NAHBMAX-1 0
hmindex Master I/F AHB index 0 to NAHBMAX-1 0

dir 0 - clock frequency on the master bus is lower than or 0-1 0

equal to the frequency on the slave bus
1 - clock frequency on the master bus is higher than or
equal to the frequency on the slave bus

(for VHDL generic ffact = 1 the value of dir does not
matter)

ffact Frequency scaling factor between AHB clocks on master | 1 -15 2
and slave buses.

slv Slave bridge. Used in bi-directional bridge configuration | 0 - 1 0
where slv is set to 0 for master bridge and 1 for slave
bridge. When a deadlock condition is detected slave
bridge (slv=1) will give RETRY response to current
access, effectively resolving the deadlock situation.

This generic must only be set to 1 for a bridge where the
frequency of the bus connecting the master interface is
higher or equal to the frequency of the AHB bus con-
necting to the bridge’s slave interface. Otherwise a race
condition during access collisions may cause the bridge
to deadlock.

pfen Prefetch enable. Enables read FIFO. 0-1 0

irqsync Interrupt forwarding. Forward interrupts from slave 0-3
interface to master interface and vice versa.

0 - no interrupt forwarding, 1 - forward interrupts 1 - 15,
2 - forward interrupts 0 - 31.

3 - forward interrupts 0 - 31.

Since interrupts are forwarded in both directions, inter-
rupt forwarding should be enabled for one bridge only in
a bi-directional AHB/AHB bridge.

whburst Length of write bursts in 32-bit words. Determines write | 2 - 32 8
FIFO size and write burst address boundary. If the
whburst generic is set to 2 the bridge will not perform
write bursts over a 2x4=8 byte boundary. This generic
must be set so that the buffer can contain two of the max-
imum sized accesses that the bridge can handle.

www.cobham.com/gaisler

GRLIB IP Core

Table 27. Configuration options (VHDL generics)

Generic

Function

Allowed range

Default

iburst

Instruction fetch burst length. This value is only used if
the generic ibrsten is set to 1. Determines the length of
prefetching instruction read bursts on the master side.
The maximum of (iburst,rburst) determines the size of
the core’s read buffer FIFO.

4-8

8

rburst

Incremental read burst length. Determines the maximum
length of incremental read burst of unspecified length
(INCR) on the master interface. The maximum of rburst
and iburst determine the read burst boundary. As an
example, if the maximum value of these generics is 8 the
bridge will not perform read bursts over a 8x4=32 byte
boundary.

This generic must be set so that the buffer can contain
two of the maximum sized accesses that the bridge can
handle.

For systems where AHB masters perform fixed length
burst (INCRx , WRAPx) rburst should not be less than
the length of the longest fixed length burst.

bar0

Address area 0 decoded by the bridge’s slave interface.
Appears as memory address register (BARO) on the
slave interface. The generic has the same bit layout as
bank address registers with bits [19:18] suppressed (use
functions ahb2ahb_membar and ahb2ahb_iobar in gais-
ler.misc package to generate this generic).

0-1073741823

barl

Address area 1 (BAR1)

0-1073741823

bar2

Address area 2 (BAR2)

0-1073741823

bar3

Address area 3 (BAR2)

0-1073741823

sbus

The number of the AHB bus to which the slave interface
is connected. The value appears in bits [1:0] of the user-
defined register 0 in the slave interface configuration
record and master configuration record.

0-3

o|lo|lo| o

mbus

The number of the AHB bus to which the master inter-
face is connected. The value appears in bits [3:2] of the
user-defined register 0 in the slave interface configura-
tion record and master configuration record.

0-3

ioarea

Address of the I/0O area containing the configuration area
for AHB bus connected to the bridge’s master interface.
This address appears in the bridge’s slave interface user-
defined register 1. In order for a master on the slave
interface’s bus to access the configuration area on the
bus connected to the bridge’s master interface, the 1/0
area must be mapped on one of the bridge’s BARs.

If this generic is set to 0, some tools, such as Cobham
Gaisler’s GRMON debug monitor, will not perform
Plug’n’Play scanning over the bridge.

0 - 16#FFF#

ibrsten

Instruction fetch burst enable. If set, the bridge will per-
form bursts of iburst length for opcode access
(HPROTJO0] = ‘0’), otherwise bursts of rburst length will
be used for both data and opcode accesses.

www.cobham.com/gaisler

GRLIB IP Core

Table 27. Configuration options (VHDL generics)

Generic Function Allowed range Default

Ickdac Locked access error detection and correction. Locked 0-2 0
accesses may lead to deadlock if a locked access is made
while an ongoing read access has received a SPLIT
response. The value of Ickdac determines how the core
handles this scenario:

0: Core will deadlock

1: Core will issue an AMBA ERROR response to the
locked access

2: Core will allow both accesses to complete.

If the core is used to create a bidirectional bridge, a dead-
lock condition may arise when locked accesses are made
simultaneously in both directions. With Ickdac set to 0
the core will deadlock. With Ickdac set to a non-zero
value the slave bridge will issue an ERROR response to
the incoming locked access.

slvmaccsz The maximum size of accesses that will be made to the | 32 - 256 32
bridge’s slave interface. This value must equal mst-
maccsz unless rdcomb /= 0 and wrcomb /= 0.

mstmaccsz The maximum size of accesses that will be performed by | 32 - 256 32
the bridge’s master interface. This value must equal mst-
maccsz unless rdcomb /= 0 and wrcomb /= 0.

rdcomb Read combining. If this generic is set to a non-zero value | 0 -2 0
the core will use the master interface’s maximum AHB
access size when prefetching data and allow data to be
read out using any other access size supported by the
slave interface.

If slvmaccsz > 32 and mstmaccsz > 32 and an incoming
single access, or access to a non-prefetchable area, is
larger than the size supported by the master interface the
bridge will perform a series of small accesses in order to
fetch all the data. If this generic is set to 2 the core will
use a burst of small fetches. If this generic is set to 1 the
bridge will not use a burst unless the incoming access
was a burst.

Read combining is only supported for single accesses
and incremental bursts of unspecified length.

wrcomb Write combining. If this generic is set to a non-zero 0-2 0
value the core may assemble several small write accesses
(that are part of a burst) into one or more larger accesses
or assemble one or more accesses into several smaller
accesses. The settings are as follows:

0: No write combining
1: Combine if burst can be preserved

2: Combine if burst can be preserved and allow single
accesses to be converted to bursts (only applicable if
slvmaccsz > 32)

Only supported for single accesses and incremental
bursts of unspecified length

www.cobham.com/gaisler

GRLIB IP Core

Table 27. Configuration options (VHDL generics)

Generic Function Allowed range Default

combmask Read/write combining mask. This generic determines 0 - 16#FFFF# 16#FFFF#
which ranges that the core can perform read/write com-
bining to (only available when rdcomb respectively
wrcomb are non-zero). The value given for combmask is
treated as a 16-bit vector with LSB bit (right-most) indi-
cating address 0x0 - 0x10000000. Making an access to
an address in an area marked as ‘0’ in combmask is
equivalent to making an access over a bridge with
rdcomb = 0 and wrcomb = 0. However, combmask is not
taken into account when the core performs a prefetch
operation (see pfen generic). When a prefetch operation
is initiated, the core will always use the maximum sup-
ported access size (when rdcomb /= 0).

allbrst Support all burst types 0-2 0

2: Support all types of burst and always prefetch for
wrapping and fixed length bursts.

1: Support all types of bursts

0: Only support incremental bursts of unspecified length

See section 2.2.7 for more information.

When allbrst is enabled, the core’s read buffer (size set
via rburst/iburst generics) must have at least 16 slots.

ifctrlen Interface control enable. When this generic is setto 1 the | 0 - 1 0
input signals ifctrl.mstifen and ifctrl.slvifen can be used
to force the AMBA slave respectively master interface
into an idle state. This functionality is intended to be
used when the clock of one interface has been gated-off
and any stimuli on one side of the bridge should not be
propagated to the interface on the other side of the
bridge.

When this generic is set to 0, the ifctrl.* input signals are
unused.

fefs First-come, first-served operation. When this genericis | 0 - NAHBMST 0
set to a non-zero value, the core will keep track of the
order of incoming accesses and handle the requests in the
same order. If this generic is set to zero the bridge will
not preserve the order and leave this up to bus arbitra-
tion. If FCFS is enabled the value of this generic must be
higher or equal to the number of masters that may per-
form accesses over the bridge.

fefsmtech Memory technology to use for FCFS buffer. When 0 - NTECH 0 (inferred)
VHDL generic fcfs is set to a non-zero value, the core
will instantiate a 4 bit x fcfs buffer to keep track of the
incoming master indexes. This generic decides the mem-
ory technology to use for the buffer.

scantest Enable scan support 0-1 0

split Use AMBA SPLIT responses. When this genericis setto | 0-1 1
1 the core will issue AMBA SPLIT responses. When this
generic is set to 0 the core will insert waitstates instead
and may also issue AMBA RETRY responses. If this
generic is set to 0, the fcfs generic must also be set to 0,
otherwise a simulation failure will be asserted.

www.cobham.com/gaisler

GRLIB IP Core

Table 27. Configuration options (VHDL generics)

Generic Function Allowed range Default

pipe This setting controls the insertion of pipeline registers 0, 1,128
between the master and slave side of the bridge.

pipe set to 0 does not include any extra pipeline registers
and the incurred delays for accesses over the bridge is as
described in this documentation.

pipe set to 1 includes extra registers on all signals
between the master and slave side.

pipe set to 2 includes pipeline registers on all signals
going from the slave interface to the master interface and
does NOT insert extra registers on signals going from the
master interface to the slave interface.

pipe set to 3 includes pipeline registers on all signals
going from the master interface to the slave interface and
does NOT insert extra registers on signals going from the
slave interface to the master interface.

pipe set to 128 includes signals on a subset of the signals
to prevent direct paths from the slave clock to the master
side bus and from the master clock to the slave side bus.

www.cobham.com/gaisler

GRLIB IP Core

2.7 Signal descriptions
Table 28 shows the interface signals of the core (VHDL ports).

Table 28. Signal descriptions (VHDL ports)

Signal name Field Type Function Active
RST Input Reset Low
HCLKM Input AHB master bus clock -
HCLKS Input AHB slave bus clock -
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
AHBMI * Input AHB master input signals -
AHBMO * Output AHB master output signals -
AHBSO2 * Input AHB slave input vector signals (on master i/f -

side). Used to decode cachability and prefetch-
ability Plug&Play information on bus connected
to the bridge’s master interface.

LCKI slck Input Used in systems with multiple AHB/AHB High
blck bridges (e.g. bi-directional AHB/AHB bridge) to
mlck detect deadlock conditions. Tie to “000” in sys-
tems with only uni-directional AHB/AHB bus.
LCKO slck Output Indicates possible deadlock condition High
blck
mlck
IFCTRL mstifen Input Enable master interface. This input signal is High

unused if the VHDL generic ifctrlen is 0. If
VHDL generic ifctrlen is 1 this signal must be
set to ‘1’ in order to enable the core’s AMBA
master interface, otherwise the master interface
will always be idle and will not respond to stim-
uli on the core’s AMBA slave interface. This sig-
nal is intended to be used to keep the core’s
master interface in a good state when the core’s
slave interface clock has been gated off. Care
should be taken to ensure that the bridge is idle
when the master interface is disabled.

slvifen Input Enable slave interface. This input signal is High
unused if the VHDL generic ifctrlen is 0. If
VHDL generic ifctrlen is 1 this signal must be
set to ‘1” in order to enable the core’s AMBA
slave interface, otherwise the interface will
always be ready and the bridge will not propa-
gate stimuli on the core’s AMBA slave interface
to the core’s AMBA master interface. This signal
is intended to be used to keep the slave interface
in a good state when the core’s master interface
clock has been gated off. Care should be taken to
ensure that the bridge is idle when the slave
interface is disabled.

* see GRLIB IP Library User’s Manual

www.cobham.com/gaisler

GRLIB IP Core

2.8

2.9

Library dependencies

Table 29 shows the libraries used when instantiating the core (VHDL libraries).

Table 29. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Component Component declaration
Instantiation

GRLIB contains two example designs with AHB2AHB and LEON processors: designs/leon3-
ahb2ahb (only available in commercial distributions) and designs/leon4-ahb2ahb (only in distribu-
tions that include LEON4 processor). The LEON/GRLIB Configuration and Development Guide con-
tains more information on how to use the bridge to create multi-bus systems.

www.cobham.com/gaisler

GRLIB IP Core

3

3.1

3.2

AHBM2AXI - AHB Master to AXI Adapter

Overview

The AHBM2AXI adapter allows a single AHB master to be used as an AXI3 or AXI4 master. The
adapter has an AHB slave interface on the AHB side and AXI3 or AXI4 master interface on the AXI
side (see Fig. 2). The adapter has optional read prefetching and write buffering features in order to
improve the latency of burst operations. The adapter is not compatible with AHB2AHB and GRD-
MAC components which is a part of GRLIB IP library.

AHB AXI
MASTER [€P|AHBM2AXI¢—>| g avE

Figure 2. A standalone AHB master is connected to an AXI slave through AHBM2AXI adapter

3.1.1 AHB support

The AHBM2AXI adapter currently supports the following features of the AHB protocol:
Transfer Type: IDLE, NONSEQ, SEQ

Burst Operation: SINGLE, INCR, INCR4, INCRS, INCR16

Data-width: 32-bit, 64-bit, 128-bit, 256-bit

Transfer Size: All possible transfer sizes up to the selected data-width are supported.

Response: AXI read and write error responses are translated to AHB read and write errors.

Unsupported AHB Features:
The following features of AHB protocol are not supported by the AHBM2AXI adapter.

+ BUSY transfer type : Behavior of the AHBM2AXI adapter is unpredictable when a BUSY trans-
action is received hence the AHBM2AXI adapter can not be used with the AHB2AHB bridge
which is a part of GRLIB IP library.

* Locked transfers : Locked transfers are ignored by the AHBM2AXI adapter.

Unused AHB Features:
* RETRY and SPLIT responses : The adapter does not generate these response types.

Special Considerations

There is a combinatorial path between the incoming HTRANS signal and outgoing HREADY signal
on the AHB side of the adapter, in order to allow write-buffering and write response propagation at
the same time. As a result, this component is only intended to connect to a single IP core with an AHB
master interface in which HTRANS output does not depend on the incoming HREADY signal combi-
natorially. Propagating the write response correctly is important to make sure that the intended trans-
action ordering has been met, meaning the AHB master that is connected to the adapter receives the
acknowledgment for the last write beat in the burst when the write response has been received on the

www.cobham.com/gaisler

GRLIB IP Core

33

AXI side. Being able to propagate correct write response can also simplify the software development.
The AHBM2AXI adapter can not be used with the GRDMAC IP core which is a part of GRLIB IP
library.

Operation

3.3.1 Read Prefetching and Write Buffering

The adapter has the feature of read prefetching and write buffering for the AHB bursts in which the
transfer size (HSIZE) is equal to the selected data-width. For the transfer sizes that are narrower than
the data-width each beat in the burst treated as a single transaction on the AXI side. Read prefetching
and write buffering reduces the latency of undefined length burst operations since otherwise each beat
in an undefined length burst has to be treated as an independent AXI transaction with a length of one.

3.3.2 Read Prefetching

Read prefetch number that is set through rprefetch_num generic determines the length of the AXI
transaction(s) that is generated when an undefined length AHB read burst is encountered. When an
undefined length AHB read burst is encountered, an AXI transaction is generated with a length of
rprefetch_num. If the AHB read burst has less beats than rprefetch_num then dummy reads are gener-
ated on the AXI side to complete the AXI transaction. If the AHB read burst has more beats than
rprefetch_num then a new AXI transaction is generated with a number of beats equal to rprefetch_-
num and this scheme continuous until the AHB burst ends. If the start address of a burst is not aligned
to the prefetch boundary then the initial prefetch has less number of beats in order to align the upcom-
ing prefetches. For example given a 32-bit (4 Byte) data-width and a rprefetch_num of 16 (16*4=64
Bytes) if the least significant bits of the initial burst address corresponds to byte 48, then the initial
prefetch length is 4 ((64-48)/4). This way the upcoming prefetches are always aligned to 64 Byte
boundary. If a new AHB burst is encountered during dummy read operations on the AXI side, the
AHB burst is stalled until the current AXI transaction ends.

The maximum read prefetch number depends on the AXI protocol. For AXI3 the maximum number is
16, and for AXI4 it can be up to 256 depending on the selected data-width. Prefetch length can only
be a power of two and if it is not set to be a power of two then the number is floored to the closest
power of two automatically. For fixed length AHB bursts (single, INCR4, INCR8, INCR16) the
length of the AXI burst is equal to the AHB burst length since in those cases the burst length is known
at the beginning of the burst. The adapter will not issue a new AXI transaction while dummy cycles
are inserted hence there is a trade-off for performance when selecting the read prefetch number.

3.3.3 Write Buffering

Write buffering gathers a number of consecutive beats in a AHB write burst and initiates an AXI
transaction. A generic called wbuffer_num determines the maximum number of AHB write burst
beats that will be gathered before an AXI write burst transaction is generated. If the number of beats
in the AHB write burst is less than wbuffer_num then the AXT write transaction starts after detecting
the last beat in the burst (transition from SEQ to IDLE). If the number of beats are higher than
wbuffer_num then the first AXI transaction is generated once wbuffer_num number of beats are buft-
ered. It should be noted that once an AXI write transaction is generated and AHB burst still continues
then AXI transaction and buffering for the next write batch happens in parallel to minimize the
latency. This scheme continuous until the AHB burst is ended. When the last data beat of the burst is
reached the HREADY on the AHB side is asserted once the write response is received from the AXI
side. The write buffering feature is used for the fixed size burst also in the same way as undefined
length bursts.

www.cobham.com/gaisler

GRLIB IP Core

Write buffer length can only be a power of two, and if it is not set to be a power of two then the num-
ber is floored to the closest power of two automatically. The maximum number has the same con-
straints as the read prefetch number. A synchronous memory width one read and write port is
generated for write buffering. The size of the memory is determined by the write buffer length. The
type of the memory can be configured with a generic also. The first AXI write transaction will not
start until the buffer is filled or the AHB transaction has written the last beat in the burst. As a result
there is a trade-off for performance while selecting the write buffer length which depends on the AXI
slave behavior.

3.3.4 Endianness

The AHB side of the AHB2AXIB bridge is always assumed to be big-endian. The endianness on the
AXI side is configurable through the endianness_mode generic.

When endianness_mode generic is set to zero a byte-invariant big-endian endianness mode is used on
the AXI side. In order to translate big-endian AHB to byte-invariant big-endian AXI the byte order is
reversed (see Fig. 3). No address translation occurs inside the adapter in this mode.

(Bit position)(31) 0)
AHB DATA-BUS | B3 | B2 | B1 | B0
MSB
MSB
AXIDATA-BUS | B0 | B1 | B2 | B3
(Bit position) (31) 0)

Figure 3. Big-endian AHB to byte-invariant Big-endian AXI translation (32-bit data-width)

When endianness_mode generic is set to one then big-endian AHB is translated to little-endian AXI.
In order to achieve this the byte order is preserved but the address is translated from big-endian repre-
sentation to little-endian representation when a narrow sized transaction is encountered (See Fig. 4 for
an example with 32-bit data-bus width.).

The address translation formula for 32-bit, 64-bit, 128-bit and 256-bit data-bus widths are following:
32-bit data bus width:
if HSIZE < “010” :

axi_address(1:0) = (“100” - “1”<<*“HSIZE” - ahb_address(1:0))(1:0)
otherwise:

axi_address(1:0) = ahb_address(1:0)
64-bit data bus width:
if HSIZE < “011”:

axi_address(2:0) = (“1000” - “17<<“HSIZE” - ahb_address(2:0))(2:0)
otherwise:

axi_address(2:0) = ahb_address(2:0)

www.cobham.com/gaisler

GRLIB IP Core

128-bit data bus width:
if HSIZE < “100” :
axi_address(3:0) = (“10000” - “1”<<*“HSIZE” - ahb_address(3:0))(3:0)

otherwise:
axi_address(3:0) = ahb_address(3:0)
256-bit data bus width:
if HSIZE <101 :
axi_address(4:0) = (“100000” - “1”<<*“HSIZE” - ahb_address(4:0))(4:0)

otherwise:

axi_address(4:0) = ahb_address(4:0)

Address translation for 32-bit data-bus width

(Bit position)(31) 0) (address bits 1 and 0 is translated)
AHB DATA-BUS | B3 | B2 | B1 | BO When HSIZE = “010” no translation
MSB When HSIZE = “001”

AHB-side “00” -> AXI-side “10”
AHB-side “10” -> AXI-side “00”

MSBY Y When HSIZE = “000”
AXIDATA-BUS | B3 | B2 | B1 | BO AHB-side "007 -> AXI-side "11”
AHB-side “01” > AXI-side “10”

(Blt pOS]thn) (31) (0) AHB—SldC “10” > AXI—Slde “01”

AHB-side “00” -> AXI-side “00”
Figure 4. Big-endian AHB to little-endian AXI through address translation (32-bit data-width)

34 AXI AXPROT and AxCACHE Translations

The AXPROT and AXCACHE signals are translated partly according to the HPROT signal of AHB
transactions. The full list of translation can be seen from Table 30.

Table 30. AXPROT and AxCACHE translations

AXI signal Assignment

AxCACHE[3] | always logic ‘0’
AxCACHE][2] | always logic ‘0’
AxCACHE[1] | HPROT[3]
AxCACHE[0] | HPROT[2]

AXPROT[2] | not (HPROT[0])

AxPROTI1] See configuration
options (Table. 31)

AxPROT[0] | HPROTJ!]

www.cobham.com/gaisler

GRLIB IP Core

3.5 Configuration Options

Table 31. Configuration options (both AHBM2AXI3 and AHBM2AXI4)

Generic Function Allowed range Default
aximid AXI master ID used for Read and Write transactions 0-15 0
always_secure When set to 1 the AXPROT([1] bit is tied to logic ‘0’ 0-1 1

(always secure access), when set to 0 the AXPROT[1] bit
is tied to logic ‘1’ (always unsecure access).

endianness mode | Determines the endianness mode (see section 3.3.4 for 0-1 0
more detail)

0 -> Big-endian AHB to byte-invariant big-endian AXI
1 -> Big-endian AHB to little-endian AXI

Table 32. Configuration options specific for AXI3 (AHBM2AXI3)

Generic Function Allowed range Default
wbuffer num Write-buffer length which determines the memory size 1-16 8

also.
rprefetch_num Read prefetch length. 1-16 8

Table 33. Configuration options specific for AX14 (AHBM2AXI4)

Generic Function Allowed range Default

wbuffer num Write-buffer length which determines the memory size 1-256 for data-width of | 8
also. 32-bit,

1-128 for data-width of
64-bit

1-64 for data-width of
128-bit

1-32 for data-width of
256-bit

rprefetch num Read prefetch length. 1-256 for data-width of | 8
32-bit,

1-128 for data-width of
64-bit

1-64 for data-width of
128-bit

1-32 for data-width of
256-bit

www.cobham.com/gaisler

GRLIB IP Core

3.6 Signal descriptions
Table 34 shows the interface signals of the core (VHDL ports).

Table 34. Signal descriptions (VHDL ports)

Signal name Field Type Function Active
RST Input Reset Low
CLK Input AHB & AXI bus clock -
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
AXIMI * Input AXI3/4 master input signals -
AXIMO * Output AXI3/4 master output signals -

* see GRLIB IP Library User’s Manual

3.7 Library dependencies
Table 35 shows the libraries used when instantiating the core (VHDL libraries).

Table 35. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA & AXI signal definitions
GAISLER AXI Component Component declaration

3.8 Instantiation

The instantiation of the AHBM2AXI adapter depends on the AXI protocol type. There are two com-
ponents called AHBM2AXI3 which is built for AXI3 protocl and AHBM2AXI4 which is built for
AXI4 protocol. The difference between these two components are the AXI master output signals and
the maximum values that can be set for read prefetching and write buffering.

Since AHBM2AXI adapter is intended to be used for only a single core, a transaction is sampled and
evaluated directly on the rising edge of the clock, the “hsel” and “hready” inputs are ignored by the
AHBM2AXI adapter. The grant signal for the AHB master that is connected to the adapter should be
hardwired to logic 1.

Following is an example in which a component with an ahb master interface called “ahbm_ex” is con-
nected to the AHBM2AXI4 adapter which can act as an master for AXI4 protocol.

library ieee;
use ieee.std_logic_1164.all;

library grlib;

use grlib.amba.all;
library gaisler;

use gaisler.axi.all;

entity ahbm2axi4_ex is
port (
rstn : in std_logic;

www.cobham.com/gaisler

GRLIB IP Core

clk > in std_logic;

aximi : iIn axi_somi_type;

aximo : out axi4_mosi_type
):

end;

architecture rtl of ahbm2axi4_ex is

signal ahbsi : in ahb_slave_in_type;

signal ahbso : out ahb_slave_out_type;

signal ahbmi : in ahb_mst_in_type;
signal ahbmo : out ahb_mst_out_type;

component ahbm_ex is

port (

signal rstn : in std_logic;
signal clk : in std_logic;
signal ahbmi : in ahb_mst_in_type;

signal ahbmo : out ahb_mst_out_type);

end component;

begin

adapter:ahbm2axi4
generic map (
memtech => 0,
aximid => 0,
wbuffer_num => 16,
rprefetch_num=> 16,
always_secure => 1

)

port map (
rstn => rstn,
clk => clk,

ahbsi => ahbsi,
ahbso => ahbso,
aximi => aximi,
aximo => aximo);

ahbmaster:ahbm_ex

port map (
rstn => rstn,
clk => clk,

ahbmi => ahbmi,
ahbmo => ahbmo);

ahbsi.haddr <= ahbmo.hadddr;
ahbsi.hwrite <= ahbmo.hwrite;
ahbsi.htrans <= ahbmo.htrans;
ahbsi._hsize <= ahbmo.hsize;

ahbsi .hburst <= ahbmo.hburst;
ahbsi .hwdata <= ahbmo.hwdata;
ahbsi._hprot <= ahbmo.hprot;

ahbmi._hgrant <= (others=> “1%);
ahbmi_hready <= ahbso.hready;
ahbmi_hresp <= ahbso.hresp;
ahbmi_hrdata <= ahbso.hrdata;

--Remaining ahb master inputs are implementation

dependent

www.cobham.com/gaisler

GRLIB IP Core

4

4.1

AHB2AXIB - AHB to AXI Bridge

Overview

The AHB2AXIB bridge allows to access an AXI3 or AXI4 slave from an AHB bus through an AHB
slave interface (see Fig. 5). It can also be used to connect a standalone AHB master to an AXI slave
(see Fig. 6). The bridge has an AHB slave interface on the AHB side and AXI3 or AXI4 master inter-
face on the AXI side. The bridge has optional read prefetching and write buffering features in order to
improve the latency of burst operations. The AHB2AXIB bridge is not compatible with the
AHB2AHB bridge which is a part of GRLIB IP library.

AHB AHB
MASTER-0 MASTER-N
AHB I I
Controller I
AXI

»AHB BUS

Figure 5. An AXI slave connected to the AHB bus through AHB2AXIB bridge

AHB
MASTER

“—>

AHB2AXIB

AXI

> sLAvE

Figure 6. A standalone AHB master is connected to an AXI slave through AHB2AXIB bridge

4.1.1 AHB support

The AHB2AXIB bridge currently supports the following features of the AHB protocol:
Transfer Type: IDLE, NONSEQ, SEQ
Burst Operation: SINGLE, INCR, INCR4, INCRS, INCR16
Data-width: 32-bit, 64-bit, 128-bit, 256-bit

Transfer Size: All possible transfer sizes up to the selected data-width are supported.

Response: AXI read error response is translated to AHB read error.

Unsupported AHB Features:
The following features of AHB protocol are not supported by the AHB2AXIB bridge.

www.cobham.com/gaisler

GRLIB IP Core

4.2

» BUSY transfer type : Behavior of the AHB2AXIB bridge is unpredictable when a BUSY trans-
action is received hence the AHB2AXIB bridge can not be used with the AHB2AHB bridge
which is a part of GRLIB IP library.

* Locked transfers : Locked transfers are ignored by the AHB2AXIB bridge.

Unused AHB Features:
* RETRY and SPLIT responses ; AHB2AXIB bridge does not generate these response types.

* Write error response : Due to the difference between the write error handling of AXI and AHB
protocol the write errors received from the AXI side is not propagated.

Operation

4.2.1 Read Prefetching and Write Buffering and Postponed Writes

The bridge has the feature of read prefetching and write buffering for the AHB bursts in which the
transfer size (HSIZE) is equal to the selected data-width. For the transfer sizes that are narrower than
the data-width it can still support read prefetching and write buffering if byte invariant big endian
mode is used. Otherwise each beat in the burst treated as a single transaction on the AXI side. Read
prefetching and write buffering reduces the latency of undefined length burst operations since other-
wise each beat in an undefined length burst has to be treated as an independent AXI transaction with a
length of one.

4.2.2 Read Prefetching

Read prefetch number that is set through rprefetch_num generic determines the length of the AXI
transaction(s) that is generated when an undefined length AHB read burst is encountered. When an
undefined length AHB read burst is encountered, an AXI transaction is generated with a length of
rprefetch_num. If the AHB read burst has less beats than rprefetch_num then dummy reads are gener-
ated on the AXI side to complete the AXI transaction. If the AHB read burst has more beats than
rprefetch_num then a new AXI transaction is generated with a number of beats equal to rprefetch_-
num and this scheme continuous until the AHB burst ends. If the start address of a burst is not aligned
to the prefetch boundary then the initial prefetch has less number of beats in order to align the upcom-
ing prefetches. For example given a 32-bit (4 Byte) data-width and a rprefetch_num of 16 (16*4=64
Bytes) if the least significant bits of the initial burst address corresponds to byte 48, then the initial
prefetch length is 4 ((64-48)/4). This way the upcoming prefetches are always aligned to 64 Byte
boundary. If a new AHB burst is encountered during dummy read operations on the AXI side, the
AHB burst is stalled until the current AXI transaction ends.

The maximum read prefetch number depends on the AXI protocol. For AXI3 the maximum number is
16, and for AXI4 it can be up to 256 depending on the selected data-width. Prefetch length can only
be a power of two and if it is not set to be a power of two then the number is floored to the closest
power of two automatically. For fixed length AHB bursts (single, INCR4, INCRS8, INCR16) the
length of the AXI burst is equal to the AHB burst length since in those cases the burst length is known
at the beginning of the burst. The bridge will not issue a new AXI transaction while dummy cycles are
inserted hence there is a trade-off for performance when selecting the read prefetch number.

4.2.3 Write Buffering

Write buffering gathers a number of consecutive beats in a AHB write burst and initiates an AXI
transaction. A generic called wbuffer_num determines the maximum number of AHB write burst
beats that will be gathered before an AXI write burst transaction is generated. If the number of beats

www.cobham.com/gaisler

GRLIB IP Core

in the AHB write burst is less than wbuffer_num then the AXI write transaction starts after detecting
the last beat in the burst (transition from SEQ to IDLE). If the number of beats are higher than
whbuffer_num then the first AXI transaction is generated once wbuffer_num number of beats are buff-
ered. It should be noted that once an AXI write transaction is generated and AHB write burst still con-
tinues then AXI transaction and buffering of the next write batch happens in parallel to improve the
latency. This scheme continuous until the AHB burst is ended. The last data beat in the burst is always
acknowledged with OKAY response immediately when it is buffered in the bridge. See section 4.2.5
for more detailed information.

Write buffer length can only be a power of two, and if it is not set to be a power of two then the num-
ber is floored to the closest power of two automatically. The maximum number has the same con-
straints as the read prefetch number. A synchronous memory width one read and write port is
generated for write buffering. The size of the memory is determined by the write buffer length. The
type of the memory can be configured with a generic also. The first AXI write transaction will not
start until the buffer is filled or the AHB transaction has written the last beat in the burst. As a result
there is a trade-off for performance while selecting the write buffer length which depends on the AXI
slave behavior.

4.2.4 Narrow Sized Transactions

When an AHB transaction is encountered which has a narrower size (HSIZE) than the data-width of
the AHB2AXIB bridge, the behavior is configurable through the generics depending on the selected
endianness on the AXI side. When the endianness mode on the AXI side is set as little-endian than
each beat in the narrow sized AXI transaction is treated as single transaction on the AXI side. When
the endinness mode on the AXI side is set as byte invariant big-endian than the narrow_acc_mode
generic determines the behaviour. If the narrow_acc_mode generic is set as zero than each beat in the
narrow sized AXI transaction is treated as single transaction on the AXI side. If it is set to 1 then a
corresponding narrow sized AXI burst is generated with read prefetching and write buffering. But it
should be noted that the length of the narrow sized burst will be determined by rprefetch_num and
whbuffer_num generics and it is same as for all access sizes. When the endianness on the AXI side is
set ass little-endian then narrow_acc_mode generic must be set to zero. See sec. 4.2.6 for more
detailed information about endianness modes.

4.2.5 Postponed Writes

Since the write response from AXI is not propagated to AHB side the last beat in the AHB write trans-
action is acknowledged immediately when it is buffered in the bridge. Hence the corresponding AXI
write transaction will finish after the AHB write transaction is completed. The transaction order on the
AHB bus side will be preserved because the bridge will block an AHB read, if there is an AXI write
transaction is ongoing, until the AXI write response is received. But if a transaction order has to be
preserved between the AHB side of a AHB2AXIB bridge and an independent AXI master that
accesses to the same AXI slave then special considerations in software might be needed. If the
AHB2AXIB bridge is intended to be used for a single AHB master without an AHB bus then it is pos-
sible to use the AHBM2AXI adapter that is a part of GRLIB IP library if the AHB master is compati-
ble. The AHBM2AXI adapter propagates the AXI write response.

4.2.6 Endianness

The AHB side of the AHB2AXIB bridge is always assumed to be big-endian. The endianness on the
AXI side is configurable through the endianness_mode generic.

www.cobham.com/gaisler

GRLIB IP Core

When endianness_mode generic is set to zero a byte-invariant big-endian endianness mode is used on
the AXI side. In order to translate big-endian AHB to byte-invariant big-endian AXI the byte order is
reversed (see Fig. 7). No address translation occurs inside the adapter in this mode.

(Bit position)(31) (0)
AHB DATA-BUS | B3 | B2 | B1 | B0
MSB
MSB
AXIDATA-BUS | B0 | B1 | B2 | B3
(Bit position) (31) 0)

Figure 7. Big-endian AHB to byte-invariant Big-endian AXI translation (32-bit data-width)

When endianness_mode generic is set to one then big-endian AHB is translated to little-endian AXI.
In order to achieve this the byte order is preserved but the address is translated from big-endian repre-
sentation to little-endian representation when a narrow sized transaction is encountered (See Fig. 8 for
an example with 32-bit data-bus width.).

The address translation formula for 32-bit, 64-bit, 128-bit and 256-bit data-bus widths are following:
32-bit data bus width:
if HSIZE < «“010” :

axi_address(1:0) = (“100” - “1”<<*HSIZE” - ahb_address(1:0))(1:0)
otherwise:

axi_address(1:0) = ahb_address(1:0)
64-bit data bus width:
if HSIZE < “011”:

axi_address(2:0) = (“1000” - “17<<“HSIZE” - ahb_address(2:0))(2:0)
otherwise:

axi_address(2:0) = ahb_address(2:0)
128-bit data bus width:
if HSIZE < “100” :

axi_address(3:0) = (“10000” - “1”<<*“HSIZE” - ahb_address(3:0))(3:0)
otherwise:

axi_address(3:0) = ahb_address(3:0)
256-bit data bus width:
if HSIZE < “101”:

axi_address(4:0) = (“100000” - “17<<“HSIZE” - ahb_address(4:0))(4:0)
otherwise:

axi_address(4:0) = ahb_address(4:0)

www.cobham.com/gaisler

GRLIB IP Core

Address translation for 32-bit data-bus width

(Bit position) (31) 0) (address bits 1 and 0 is translated)
AHB DATA-BUS | B3 | B2 | B1 | BO When HSIZE = “010” no translation
MSB When HSIZE = “001”

AHB-side “00” -> AXI-side “10”
AHB-side “10” -> AXI-side “00”

MSBy Y When HSIZE = “000”
AXIDATA-BUS | B3 | B2 | B1 | BO AHB-side 007 -> AXI-side "11”
L AHB-side “01” -> AXI-side “10”
(Bit position) (31) (0)

AHB-side “10” -> AXI-side “01”
AHB-side “00” -> AXI-side “00”
Figure 8. Big-endian AHB to little-endian AXI through address translation (32-bit data-width)

4.3 AXI AXPROT and AxCACHE Translations

The AXPROT and AXCACHE signals are translated partly according to the HPROT signal of AHB
transactions. The full list of translation can be seen from Table 36.

Table 36. AXPROT and AxCACHE translations

AXI signal Assignment

AxCACHE[3] | always logic ‘0’

AxCACHE][2] | always logic ‘0’
]
]

AxCACHE[1] | HPROTI[3]
AxCACHE[0] | HPROT[2]
AXPROT[2] | not (HPROT[0])

AxPROTI1] See configuration
options (Table. 37)

AxXPROT[0] | HPROTJ!]

www.cobham.com/gaisler

GRLIB IP Core

4.4 Configuration Options

Table 37. Configuration options (both AHB2AXI3B and AHB2AXI4B)

Generic

Function

Allowed range

Default

aximid

AXI master ID used for Read and Write transactions

0-15

0

always secure

When set to 1 the AXPROT(1] bit is tied to logic ‘0’
(always secure access), when set to 0 the AXPROT][1] bit
is tied to logic ‘1’ (always unsecure access).

0-1

1

endianness_mode

Determines the endianness mode (see section 4.2.6 for
more detail)

0 -> Big-endian AHB to byte-invariant big-endian AXI
1 -> Big-endian AHB to little-endian AXI

0-1

narrow_acc_mode

Determines if bursts with narrow access size than the
data-bus width should be directly translated to narrow
access size AXI bursts or single AXI transactions with
narrow access size. (see section 4.2.4 for more detail)

0-> Each beat in the narrow sized AHB burst is treated as
single transaction on the AXI side.

1-> Narrow sized AHB bursts are translated to narrow
sized AXI bursts. (supported only when endianness_-
mode generic is 0)

Note: This generic must be set to 0 if endianness_mode
is setto 1.

0-1

vendor

GRLIB plug&play vendor ID

GAISLER

device

GRLIB plug&play device ID

AHB2AXI

bar0

Address area 0 decoded by the bridge’s slave interface.
Appears as memory address register (BARO) on the
slave interface. The generic has the same bit layout as
bank address registers with bits [19:18] suppressed (use
functions ahb2ahb_membar and ahb2ahb_iobar in gais-
ler.misc package to generate this generic).

0-1073741823

0

barl

Address area 1 (BAR1)

0-1073741823

bar2

Address area 2 (BAR2)

0-1073741823

bar3

Address area 3 (BAR2)

0-1073741823

Table 38. Configuration options specific for AXI3 (AHB2AXI3B)

Generic

Function

Allowed range

Default

wbuffer num

Write-buffer length which determines the memory size
also.

1-16

8

rprefetch num

Read prefetch length.

1-16

www.cobham.com/gaisler

GRLIB IP Core

Table 39. Configuration options specific for AXI14 (AHB2AXI4B)

Generic Function Allowed range Default

wbuffer num Write-buffer length which determines the memory size 1-256 for data-width of | 8
also. 32-bit,

1-128 for data-width of
64-bit

1-64 for data-width of
128-bit

1-32 for data-width of
256-bit

rprefetch_num Read prefetch length. 1-256 for data-width of | 8
32-bit,

1-128 for data-width of
64-bit

1-64 for data-width of
128-bit

1-32 for data-width of
256-bit

4.5 Signal descriptions
Table 40 shows the interface signals of the core (VHDL ports).

Table 40. Signal descriptions (VHDL ports)

Signal name Field Type Function Active
RST Input Reset Low
CLK Input AHB & AXI bus clock -
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
AXIMI * Input AXI3/4 master input signals -
AXIMO * Output AXI3/4 master output signals -

* see GRLIB IP Library User’s Manual

4.6 Library dependencies
Table 41 shows the libraries used when instantiating the core (VHDL libraries).

Table 41. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA & AXI signal definitions
GAISLER AXI Component Component declaration

www.cobham.com/gaisler

GRLIB IP Core

4.7 Instantiation

The instantiation of the AHB2AXIB bridge depends on the AXI protocol type. There are two compo-
nents called AHB2AXI3B which is built for AXI3 protocol and AHB2AXI4B which is built for AX14
protocol. The difference between these two components are the AXI master output signals and the
maximum values that can be set for read prefetching and write buffering.

4.7.1 AHB2AXIB bridge is used to connect an AXI slave to an AHB bus

library ieee;
use ieee.std_logic_1164.all;

library grlib;

use grlib.amba.all;
library gaisler;

use gaisler.axi.all;

entity ahb2axib_ex is

port (
rstn : in std_logic;
clk : in std_logic;

aximi I in axi_somi_type;
aximo : out axi4_mosi_type;
):

end;

architecture rtl of ahb2axib_ex is

constant hindex_ahb2axi4b : integer := 2;

begin

ahbctrl & other components

bridge:ahb2axi4b

generic map (

hindex => hindex_ahb2axi4b,
aximid => 0
)

port map (

rstn => rstn,

clk => clk,

ahbsi => ahbsi,

ahbso => ahbso(hindex_ahb2axi4b),
aximi => aximi,

aximo => aximo);

www.cobham.com/gaisler

GRLIB IP Core

4.7.2 AHB2AXIB bridge is used to connect a standalone AHB master to an AXI slave.

If AHB2AXIB bridge is intended to be used to connect a standalone AHB master to an AXI slave
then the following assignments are needed for correct operations:

The hsel input of the AHB2AXIB must be assigned to an array of (others=>’1’) so that it works
regardless of the assigned hindex value.

The hready input of the AHB2AXIB must be connected to the hready output of the AHB2AXIB.

The hgrant input of the AHB master must be assigned to an array of (others=>1") so that it works
regardless of the assigned hindex value.

www.cobham.com/gaisler

GRLIB IP Core

5

5.1

5.2

AHBBRIDGE - Bi-directional AHB/AHB bridge

Overview

A pair of uni-directional bridges (AHB2AHB) can be instantiated to form a bi-directional bridge. The
bi-directional AHB/AHB bridge (AHBBRIDGE) instantiates two uni-directional bridges that are con-
figured to suit the bus architecture shown in figure 9. The bus architecture consists of two AHB buses:
a high-speed AHB bus hosting LEON3 CPU(s) and an external memory controller and a low-speed
AHB bus hosting communication IP-cores.

Note: For other architectures, a more general bi-directional bridge that is more suitable can be created
by instantiating two uni-directional AHB to AHB bridges (see AHB2AHB core). AHBBRIDGE is not
suitable for LEON4 systems and for other systems with wide AHB buses.

LEON3 LEON3 DSU3
SDRAM [e— SDRAM I I I o
Controller I High-speed bus CTRL
AHB/AHB Serial JTAG
Bridge Dbg Link Dbg Link
PROM Async Mem I I I AHB
Controller I Low-speed bus I I CTRL
SRAM AHB/APB PCI Ethernet
Bridge MAC
110 I
|]]
UARTS || Timers IrqCtrl
Figure 9. LEON3 system with a bi-directional AHB/AHB bridge
Operation

5.2.1 General

The AHB/AHB bridge is connected to each AHB bus through a pair consisting of an AHB master and
an AHB slave interface. The address space occupied by the AHB/AHB bridge on each bus is deter-
mined by Bank Address Registers which are configured through VHDL generics. The bridge is capa-
ble of handling single and burst transfers in both directions. Internal FIFOs are used for data
buffering. The bridge implements the AMBA SPLIT response to improve AHB bus utilization. For
more information on AHB transfers please refer to the documentation for the uni-directional AHB/
AHB bridge (AHB2AHB).

The requirements on the two bus clocks are that they are synchronous. The two uni-directional
bridges forming the bi-directional AHB/AHB bridge are configured asymmetrically. Configuration of
the bridge connecting high-speed bus with the low-speed bus (down bus) is optimized for the bus traf-
fic generated by the LEON3 CPU since the CPU is the only master on the high-speed bus (except for
the bridge itself). Read transfers generated by the CPU are single read transfers generated by single
load instructions (LD), read bursts of length two generated by double load instructions (LDD) or
incremental read bursts of maximal length equal to cache line size (4 or 8 words) generated during
instruction cache line fill. The size of the read FIFO for the down bridge is therefore configurable to 4
or 8 entries which is the maximal read burst length. If a read burst is an instruction fetch (indicated on
AHB HPROT signal) to a prefetchable area the bridge will prefetch data to the end of a instruction

www.cobham.com/gaisler

GRLIB IP Core

53

5.4

cache line. If a read burst to a prefetchable area is a data access, two words will be prefetched (this
transfer is generated by the LDD instruction). The write FIFO has two entries capable of buffering the
longest write burst (generated by the STD instruction). The down bridge also performs interrupt for-
warding, interrupt lines 1-15 on both buses are monitored and an interrupt on one bus is forwarded to
the other one.

Since the low-speed bus does not host a LEON3 CPU, all AHB transfers forwarded by the uni-direc-
tional bridge connecting the low-speed bus and the high-speed bus (up bridge) are data transfers.
Therefore the bridge does not make a distinction between instruction and data transfers. The size of
the read and write FIFOs for this bridge is configurable and should be set by the user to suite burst
transfers generated by the cores on the low-speed bus.

Note that the bridge has been optimized for a LEON3 system with a specific set of masters and a spe-
cific bus topology. Therefore the core may not be suitable for a design containing later versions of the
LEON processor or other masters. In general it is not recommended instantiate the AHBBRIDGE
core and instead instantiate two uni-directional AHB to AHB bridges (AHB2AHB cores) with config-
urations tailored for a specific design.

5.2.2 Deadlock conditions

A deadlock situation can occur if the bridge is simultaneously accessed from both buses. The bridge
contains deadlock detection logic which will resolve a deadlock condition by giving a RETRY
response on the low-speed bus.

There are several deadlock conditions that can occur with locked accesses. If the VHDL generic Ick-
dac is 0, the bridge will deadlock if two simultaneous accesses from both buses are locked, or if a
locked access is made while the bridge has issued a SPLIT response to a read access and the splitted
access has not completed. If Ickdac is greater than 0, the bridge will resolve the deadlock condition
from two simultaneous locked accesses by giving an ERROR response on the low-speed bus. If Ick-
dac is 1 and a locked access is made while the bridge has issued a SPLIT response to a read access,
the bridge will respond with ERROR to the incoming locked access. If Ickdac is 2 the bridge will
allow both the locked access and the splitted read access to complete. Note that with lckdac set to 2
and two incoming locked accesses, the access on the low-speed bus will still receive an ERROR
response.

5.2.3 Read and write combining

The bridge can be configured to support read and write combining so that prefetch operations and
write bursts are always performed with the maximum access size possible on the master interface.
Please see the documentation for the uni-directional AHB/AHB bridge (AHB2AHB) for a description
of read and write combining and note that the same VHDL generics are used to specify both the max-
imum master and maximum slave access size on the bi-directional AHB/AHB bridge.

5.2.4 Endianness

The core is designed for big-endian systems

Registers

The core does not implement any registers.

Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x020. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

www.cobham.com/gaisler

GRLIB IP Core

5.5

5.6

Implementation

See documentation for AHB2AHB.

Configuration options

Table 42 shows the configuration options of the core (VHDL generics).

Table 42. Configuration options

Generic

Function

Allowed range

Default

memtech

Memory technology

0

ffact

Frequency ratio

1-

hsb_hsindex

AHB slave index on the high-speed bus

0 to NAHBMAX-1

hsb_hmindex

AHB master index on the high-speed bus

0 to NAHBMAX-1

hsb_iclsize

Cache line size (in number of 32-bit words) for CPUs on
the high-speed bus. Determines the number of the words
that are prefetched by the bridge when CPU performs
instruction bursts.

4,8

2
0
0
8

hsb_bank0

Address area 0 mapped on the high-speed bus and
decoded by the bridge’s slave interface on the low-speed
bus. Appears as memory address register (BARO) on the
bridge’s low-speed bus slave interface. The generic has
the same bit layout as bank address registers with bits
[19:18] suppressed (use functions ahb2ahb_membar and
ahb2ahb_iobar in gaisler.misc package to generate this
generic).

0-1073741823

hsb_bank1

Address area 1 mapped on the high-speed bus

0-1073741823

hsb_bank2

Address area 2 mapped on the high-speed bus

0-1073741823

hsb_bank3

Address area 3 mapped on the high-speed bus

0-1073741823

hsb_ioarea

Address of high-speed bus 1/O area that contains the
high-speed bus configuration area. Will appear in the
bridge’s user-defined register 1 on the low-speed bus.
Note that to allow low-speed bus masters to read the
high-speed bus configuration area, the area must be
mapped on one of the hsh_bank generics.

0 - 16#FFF#

o|lo|lo| o

Isb_hsindex

AHB slave index on the low-speed bus

0 to NAHBMAX-1

Isb_hmindex

AHB master index on the low-speed bus

0 to NAHBMAX-1

Isb_rburst

Size of the prefetch buffer for read transfers initiated on
the low-speed-bus and crossing the bridge.

16, 32

16

Isb_wburst

Size of the write buffer for write transfers initiated on the
low-speed bus and crossing the bridge.

16, 32

16

Isb_bank0

Address area 0 mapped on the low-speed bus and
decoded by the bridge’s slave interface on the high-speed
bus. Appears as memory address register (BARO) on the
bridge’s high-speed bus slave interface. The generic has
the same bit layout as bank address registers with bits
[19:18] suppressed (use functions ahb2ahb_membar and
ahb2ahb_iobar in gaisler.misc package to generate this
generic).

0-1073741823

Isb_bankl

Address area 1 mapped on the low-speed bus

0-1073741823

Isb_bank2

Address area 2 mapped on the low-speed bus

0-1073741823

Isb_bank3

Address area 3 mapped on the low-speed bus

0-1073741823

www.cobham.com/gaisler

GRLIB IP Core

Table 42. Configuration options

Generic

Function

Allowed range

Default

Isb_ioarea

Address of low-speed bus I/O area that contains the low-
speed bus configuration area. Will appear in the bridge’s
user-defined register 1 on the high-speed bus. Note that
to allow high-speed bus masters to read the low-speed
bus configuration area, the area must be mapped on one
of the Isb_bank generics.

0 - 16#FFF#

0

Ickdac

Locked access error detection and correction. This
generic is mapped to the generic with the same name on
the two AHB2AHB cores instantiated by AHBBRIDGE.
Please see the documentation for the AHB2AHB core’s
VHDL generics for more information.

maccsz

This generic is propagated to the slvmaccsz and mst-
maccsz VHDL generics on the two AHB2AHB cores
instantiated by AHBBRIDGE. The generic determines
the maximum AHB access size supported by the bridge.
Please see the documentation for the AHB2AHB core’s
VHDL generics for more information.

32-256

32

rdcomb

Read combining, this generic is mapped to the generic
with the same name on the two AHB2AHB cores instan-
tiated by AHBBRIDGE. Please see the documentation
for the AHB2AHB core’s VHDL generics for more
information.

wrcomb

Write combining, this generic is mapped to the generic
with the same name on the two AHB2AHB cores instan-
tiated by AHBBRIDGE. Please see the documentation
for the AHB2AHB core’s VHDL generics for more
information.

combmask

Read/Write combining mask, this generic is mapped to
the generic with the same name on the two AHB2AHB
cores instantiated by AHBBRIDGE. Please see the docu-
mentation for the AHB2AHB core’s VHDL generics for
more information.

0 - 16#FFFF#

16#FFFF#

allbrst

Support all burst types, this generic is mapped to the
generic with the same name on the two AHB2AHB cores
instantiated by AHBBRIDGE. Please see the documen-
tation for the AHB2AHB core’s VHDL generics for
more information.

fcfs

First-come, first-served operation, this generic is mapped
to the generic with the same name on the two
AHB2AHB cores instantiated by AHBBRIDGE. Please
see the documentation for the AHB2AHB core’s VHDL
generics for more information.

0 - NAHBMST

scantest

Enable scan support

www.cobham.com/gaisler

GRLIB IP Core

5.7 Signal descriptions
Table 43 shows the interface signals of the core (VHDL ports).

Table 43. Signal descriptions

Signal name Type Function Active
RST Input Reset Low
HSB HCLK Input High-speed AHB clock -
LSB HCLK Input Low-speed AHB clock -
HSB_ AHBSI Input High-speed bus AHB slave input signals -
HSB_AHBSO Output High-speed bus AHB slave output signals -
HSB_AHBSOV Input High-speed bus AHB slave input signals -
HSB_AHBMI Input High-speed bus AHB master input signals -
HSB_AHBMO Output High-speed bus AHB master output signals -
LSB_AHBSI Input Low-speed bus AHB slave input signals -
LSB_AHBSO Output Low-speed bus AHB slave output signals -
LSB_AHBSOV Input Low-speed bus AHB slave input signals -
LSB _AHBMI Input Low-speed bus AHB master input signals -
LSB_ AHBMO Output Low-speed bus AHB master output signals -

5.8 Library dependencies

Table 44 shows the libraries used when instantiating the core (VHDL libraries).

Table 44. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER MISC Component Component declaration

www.cobham.com/gaisler

GRLIB IP Core

6

6.1

6.2

AHBCTRL - AMBA AHB controller with plug&play support

Overview

The AMBA AHB controller is a combined AHB arbiter, bus multiplexer and slave decoder according
to the AMBA 2.0 standard.

The controller supports up to 16 AHB masters, and 16 AHB slaves. The maximum number of masters
and slaves are defined in the GRLIB.AMBA package, in the VHDL constants NAHBSLV and
NAHBMST. It can also be set with the nahbm and nahbs VHDL generics.

MASTER MASTER
X 7y
AHBCTRL
r——————— ——— =T - —n
| \ 2 I
| | ARBITER/ |
DECODER
| |
Lo A -
v v
SLAVE SLAVE

Figure 10. AHB controller block diagram
Operation

6.2.1 Arbitration

The AHB controller supports two arbitration algorithms: fixed-priority and round-robin. The selection
is done by the VHDL generic rrobin. In fixed-priority mode (rrobin = 0), the bus request priority is
equal to the master’s bus index, with index 0 being the lowest priority. If no master requests the bus,
the master with bus index 0 (set by the VHDL generic defmast) will be granted.

In round-robin mode, priority is rotated one step after each AHB transfer. If no master requests the
bus, the last owner will be granted (bus parking). The VHDL generic mprio can be used to specify one
or more masters that should be prioritized when the core is configured for round-robin mode.

Note that there are AHB slaves that implement split-like functionality by giving AHB retry responses
until the access has finished and the original master tries again. All masters on the bus accessing such
slaves must be round-robin arbitrated without prioritization to avoid deadlock situations. For GRLIB
this applies to the GRPCI and GRPCI2 cores.

During incremental bursts, the AHB master should keep the bus request asserted until the last access
as recommended in the AMBA 2.0 specification, or it might loose bus ownership. For fixed-length
burst, the AHB master will be granted the bus during the full burst, and can release the bus request
immediately after the first access has started. For this to work however, the VHDL generic fixbrst
should be set to 1.

6.2.2 Decoding

Decoding (generation of HSEL) of AHB slaves is done using the plug&play method explained in the
GRLIB User’s Manual. A slave can occupy any binary aligned address space with a size of 1 - 4096
Mbyte. A specific 1/O area is also decoded, where slaves can occupy 256 byte - 1 Mbyte. The default
address of the I/O area is 0xFFF00000, but can be changed with the ioaddr and iomask VHDL gener-
ics. Access to unused addresses will cause an AHB error response.

www.cobham.com/gaisler

GRLIB IP Core

The I/O area can be placed within a memory area occupied by a slave. The slave will not be selected
when the I/0O area is accessed.

6.2.3 Plug&play information

GRLIB devices contain a number of plug&play information words which are included in the AHB
records they drive on the bus (see the GRLIB user’s manual for more information). These records are
combined into an array which is connected to the AHB controller unit.

The plug&play information is mapped on a read-only address area, defined by the cfgaddr and cfg-
mask VHDL generics, in combination with the ioaddr and iomask VHDL generics. By default, the
area is mapped on address OXFFFFF000 - OxFFFFFFFF. The master information is placed on the first
2 kbyte of the block (0OxFFFFF000 - OxFFFFF800), while the slave information is placed on the sec-
ond 2 kbyte block. Each unit occupies 32 bytes, which means that the area has place for 64 masters
and 64 slaves. The address of the plug&play information for a certain unit is defined by its bus index.
The address for masters is thus OXFFFFF000 + n*32, and OxFFFFF800 + n*32 for slaves.

31 24 23 121110 9 5 4 0
Identification Register 00 VENDOR ID DEVICE ID IRQ VERSION IRQ
04 USER-DEFINED
08 USER-DEFINED
oc USER-DEFINED
BARO 10 ADDR 00 |P|C MASK TYPE
BAR1 14 ADDR 00 |P|C MASK TYPE
Bank Address Registers
BAR2 18 ADDR 00 |P|C MASK TYPE
BAR3 1C ADDR 00 |P|C MASK TYPE
31 20 1918 17 16 15 4 3 0

6.3

6.4

P = Prefetchable TYPE
C = Cacheable 0001 = APB 1/O space

0010 = AHB Memory space
0011 = AHB /O space

Figure 11. AHB plug&play information record

AHB split support

AHB SPLIT functionality is supported if the split VHDL generic is set to 1. In this case, all slaves
must drive the AHB SPLIT signal.

It is important to implement the split functionality in slaves carefully since locked splits can otherwise
easily lead to deadlocks. A locked access to a slave which is currently processing (it has returned a
split response but not yet split complete) an access which it returned split for to another master must
be handled first. This means that the slave must either be able to return an OKAY response to the
locked access immediately or it has to split it but return split complete to the master performing the
locked transfer before it has finished the first access which received split.

Locked accesses

The GRLIB AHB controller treats HLOCK as coupled to a specific access. If a previous access by a
master received a SPLIT/RETRY response then the arbiter will disregard the current value of
HLOCK. This is done as opposed to always treating HLOCK as being valid for the next access which
can result in a previously non-locked access being treated as locked when it is retried. Consider the
following sequence:

www.cobham.com/gaisler

GRLIB IP Core

6.5

6.6

6.7

6.8

TO: MSTx write 0
T1: MSTx write 1, HLOCK asserted as next access performed by master will be locked
T2: MSTx locked read

If (the non-locked) write 0 access at TO receives a RETRY or SPLIT response (given at time T1), then
the next access to be performed may be a retry of write 0. In this case the arbiter will disregard the
HLOCK setting and the retried access will not have HMASTLOCK set.

AHB bus monitor

An AHB bus monitor is integrated into the core. It is enabled with the enbusmon generic. It has the
same functionality as the AHB and arbiter parts in the AMBA monitor core (AMBAMON). For more
information on which rules are checked se the AMBAMON documentation.

Registers

The core does not implement any registers.
Implementation

6.7.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).

The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.

The core will use asynchronous reset for all registers if the GRLIB config package setting grlib_asyn-
c_reset_enable is set.

Configuration options
Table 45 shows the configuration options of the core (VHDL generics).

Table 45. Configuration options

Generic Function Allowed range Default

ioaddr The MSB address of the I/O area. Sets the 12 most sig- | 0 - 16#FFF# 16#FFF#
nificant bits in the 32-bit AHB address (i.e. 31 downto
20)

iomask The /O area address mask. Sets the size of the /O area | 0 - 16#FFF# 16#FFF#
and the start address together with ioaddr.

cfgaddr The MSB address of the configuration area. Sets 12 bits | 0 - 16#FFF# 16#FFO0#
in the 32-bit AHB address (i.e. 19 downto 8).

cfgmask The address mask of the configuration area. Sets the size | 0 - 16#FFF# 16#FFO0#
of the configuration area and the start address together
with cfgaddr. If set to 0, the configuration will be dis-
abled.

rrobin Selects between round-robin (1) or fixed-priority (0) bus | 0 -1 0
arbitration algorithm.

split Enable support for AHB SPLIT response 0-1 0

defmast Default AHB master 0 - NAHBMST-1

ioen AHB I/O area enable. Set to 0 to disable the I/O area 0-1 1

disirq Set to 1 to disable interrupt routing 0-1 0

nahbm Number of AHB masters 1 - NAHBMST NAHBMST

nahbs Number of AHB slaves 1 - NAHBSLV NAHBSLV

www.cobham.com/gaisler

GRLIB IP Core

Table 45. Configuration options

Generic Function Allowed range Default
timeout Perform bus timeout checks (NOT IMPLEMENTED). 0-1 0
fixbrst Enable support for fixed-length bursts 0-1 0
debug Print configuration (O=none, 1=short, 2=all cores) 0-2 2
fpnpen Enables full decoding of the PnP configuration records. |0 -1 0

When disabled the user-defined registers in the PnP con-
figuration records are not mapped in the configuration

area.

icheck Check bus index 0-1 1

devid Assign unique device identifier readable from plug and | N/A 0
play area.

enbusmon Enable AHB bus monitor 0-1

assertwarn Enable assertions for AMBA recommendations. Viola- [0 -1 0

tions are asserted with severity warning.

asserterr Enable assertions for AMBA requirements. Violations 0-1 0
are asserted with severity error.
hmstdisable Disable AHB master rule check. To disable a master rule | N/A 0

check a value is assigned so that the binary representa-
tion contains a one at the position corresponding to the
rule number, e.g 0x80 disables rule 7.

hslvdisable Disable AHB slave tests. Values are assigned as for N/A 0
hmstdisable.

arbdisable Disable Arbiter tests. Values are assigned as for hmstdis- | N/A 0
able.

mprio Master(s) with highest priority. This value is converted | N/A 0

to a vector where each position corresponds to a master.
To prioritize masters x and y set this generic to 2% + 2.

mcheck Check if there are any intersections between core mem- | 0 - 2 1
ory areas. If two areas intersect an assert with level fail-
ure will be triggered (in simulation). mcheck = 1 does
not report intersects between AHB 10 areas and AHB
memory areas (as 1O areas are allowed to override mem-
ory areas). mcheck = 2 triggers on all overlaps.

See also documentation of VHDL generic shadow

below.

ccheck Perform sanity checks on PnP configuration records (in | 0 -1 1
simulation).

acdm AMBA compliant data multiplexing (for HSIZE > 0-1 0

word). If this generic is set to 1, and the AMBA bus data
width in the system exceeds 32-bits, the core will ensure
AMBA compliant data multiplexing for access sizes
(HSIZE) over 32-bits. GRLIB cores have an optimiza-
tion where they drive the same data on all lanes. Read
data is always taken from the lowest lanes. If an AMBA
compliant core from another vendor is introduced in the
design, that core may not always place valid data on the
low part of the bus. By setting this generic to 1, the
AHBCTRL core will replicate the data, allowing the
non-GRLIB cores to be instantiated without modifica-

tion.
index AHB index for trace print-out, currently unused N/A 0
ahbtrace AHB trace print-out to simulator console in simulation. | 0 -1

www.cobham.com/gaisler

GRLIB IP Core

Table 45. Configuration options

Generic Function Allowed range Default

hwdebug Enable hardware debug registers. If this genericis setto | 0-1 0
1 the configuration area will include to diagnostic regis-
ters at offsets 0xFF4 and OxFF8.

Offset 0xFF4 will show a 32-bit register where bit n
shows the current status of AHB master n’s HBUSREQ
signal.

Offset 0xFF8 will show a 32-bit register where bit n
shows the current SPLIT status of AHB master n. The bit
will be set when AHB master n receives a SPLIT reply
and will be re-set to ‘0’ when HSPLIT for AHB master n
has been asserted.

This functionality is not intended to be used in produc-
tion systems but can provide valuable information while
debugging systems with cores that have problems with

AMBA SPLIT replies.

fourgslave Allow and optimize for case with one single slave that 0-1 0
has one 4 GiB bar

shadow Allow memory areas to shadow other memory areas. If | 0-1 0

this generic is set to 0 and two slaves map the same
memory area then HSEL/HMBSEL signals will be
asserted for both memory bars / slaves.

This may lead to system malfunctions and causes a simu-
lation failure if the mcheck VHDL generic is set to a
non-zero value. If the shadow generic is set to 1 then
memory area intersects are allowed and only the lowest
HSEL and HMBSEL (HSEL has priority) will be
asserted - only the slave or bar with the lowest index will
be selected instead of both slaves / bars. The mcheck
simulation failure will instead be asserted as a note about
intersecting memory areas.

Also note that intersections of cacheable and noncache-
able areas will be treated as cacheable by GRLB cores
that decode the plug&play information. If a non-cache-
able area is placed in a cacheable area then it is recom-
mended to use fixed cacheability.

unmapslv If this generic is non-zero then accesses to unmapped 0
address space (address space not occupied by any slave)
will be redirected to the slave and bar selected via:
256+bar*32+slv.

6.9 Signal descriptions

Table 46 shows the interface signals of the core (VHDL ports).

Table 46. Signal descriptions

Signal name Field Type Function Active
RST N/A Input AHB reset Low
CLK N/A Input AHB clock -
MSTI * Output AMBA AHB master interface record array -
MSTO * Input AMBA AHB master interface record array -

SLVI * Output AMBA AHB slave interface record array -
SLVO * Input AMBA AHB slave interface record array -

* see GRLIB IP Library User’s Manual

www.cobham.com/gaisler

GRLIB IP Core

6.10 Library dependencies

Table 47 shows libraries used when instantiating the core (VHDL libraries).

Table 47. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Types AMBA signal type definitions

6.11 Component declaration

library grlib;
use grlib.amba.all;

component ahbctrl

generic (
defmast : integer := 0;-- default master
split : integer := 0;-- split support
rrobin : integer := 0;-- round-robin arbitration
timeout : integer range O to 255 := 0; -- HREADY timeout
ioaddr : ahb_addr_type := 16#fff#; -- 1/0 area MSB address
iomask : ahb_addr_type := 16#Fff#; -- 1/0 area address mask
cfgaddr : ahb_addr_type := 16#ff0#; -- config area MSB address
cfgmask : ahb_addr_type := 16#ff0#; -- config area address maskk
nahbm o integer range 1 to NAHBMST := NAHBMST; -- number of masters
nahbs : integer range 1 to NAHBSLV := NAHBSLV; -- number of slaves
ioen : integer range O to 15 := 1; -- enable 1/0 area
disirqg : integer range O to 1 := 0; -- disable interrupt routing
fixbrst : integer range O to 1 := 0; -- support Fix-length bursts
debug : integer range O to 2 := 2; -- print configuration to consolee
fpnpen : integer range O to 1 := 0; -— full PnP configuration decoding
icheck : integer range O to 1 =1
devid : integer := 0; -- unique device ID
enbusmon : integer range O to 1 := 0; --enable bus monitor
assertwarn : integer range O to 1 := 0; --enable assertions for warnings
asserterr : integer range O to 1 := 0; --enable assertions for errors
hmstdisable : integer := 0; --disable master checks
hslvdisable : integer := 0; --disable slave checks
arbdisable : integer := 0; --disable arbiter checks
mprio : integer := 0; --master with highest priority
enebterm : integer range O to 1 := 0 --enable early burst termination
):
port (
rst > in std_ulogic;
clk > in std_ulogic;
msti : out ahb_mst_in_type;
msto : in ahb_mst_out_vector;
slvi : out ahb_slv_in_type;
slvo - in ahb_slv_out_vector;
testen : in std_ulogic := ’07;
testrst : in std_ulogic = *17;
scanen : in std_ulogic := ’07;
testoen : in std_ulogic := *1”

);

end component;

6.12 Instantiation
This example shows the core can be instantiated.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;

www.cobham.com/gaisler

GRLIB IP Core

6.13

-- AMBA signals
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector :
signal ahbmi : ahb_mst_in_type;
signal ahbmo : ahb_mst_out_vector :

(others => ahbs_none);

(others => ahbm_none);
begin
-- ARBITER

ahbO : ahbctrl -- AHB arbiter/multiplexer
generic map (defmast => CFG_DEFMST, split => CFG_SPLIT,

rrobin => CFG_RROBIN, ioaddr => CFG_AHBIO, nahbm => 8, nahbs => 8)
port map (rstn, clkm, ahbmi, ahbmo, ahbsi, ahbso);

-- AHB slave

srO : srctrl generic map (hindex => 3)
port map (rstn, clkm, ahbsi, ahbso(3), memi, memo, sdo3);

-- AHB master

el : eth_oc

generic map (mstndx => 2, slvndx => 5, i1oaddr => CFG_ETHIO, irg => 12, memtech =>
memtech)

port map (rstn, clkm, ahbsi, ahbso(5), ahbmi => ahbmi,
ahbmo => ahbmo(2), ethil, ethol);

end;
Debug print-out

If the debug generic is set to 2, the plug&play information of all attached AHB units are printed to the
console during the start of simulation. Reporting starts by scanning the master interface array from 0
to NAHBMST - 1 (defined in the grlib.amba package). It checks each entry in the array for a valid
vendor-id (all nonzero ids are considered valid) and if one is found, it also retrieves the device-id. The
descriptions for these ids are obtained from the GRLIB.DEVICES package, and are then printed on
standard out together with the master number. If the index check is enabled (done with a VHDL
generic), the report module also checks if the hindex number returned in the record matches the array
number of the record currently checked (the array index). If they do not match, the simulation is
aborted and an error message is printed.

This procedure is repeated for slave interfaces found in the slave interface array. It is scanned from 0
to NAHBSLYV - 1 and the same information is printed and the same checks are done as for the master
interfaces. In addition, the address range and memory type is checked and printed. The address infor-
mation includes type, address, mask, cacheable and pre-fetchable fields. From this information, the
report module calculates the start address of the device and the size of the range. The information
finally printed is type, start address, size, cacheability and pre-fetchability. The address ranges cur-
rently defined are AHB memory, AHB I/O and APB 1/0. APB I/O ranges are ignored by this module.

vsim -c -quiet leon3mp
VSIM 1> run

LEON3 MP Demonstration design

GRLIB Version 1.0.7

Target technology: inferred, memory library: inferred

ahbctrl: AHB arbiter/multiplexer rev 1

ahbctrl: Common 1/0 area disabled

ahbctrl: Configuration area at Oxfffff000, 4 kbyte

ahbctrl: mstO: Cobham Gaisler Leon3 SPARC V8 Processor
ahbctrl: mstl: Cobham Gaisler AHB Debug UART

#

ahbctrl: slvO0: European Space Agency Leon2 Memory Controller

www.cobham.com/gaisler

GRLIB IP Core

ahbctrl: memory at 0x00000000, size 512 Mbyte, cacheable, prefetch
ahbctrl: memory at 0x20000000, size 512 Mbyte

ahbctrl: memory at 0x40000000, size 1024 Mbyte, cacheable, prefetch
ahbctrl: slvl: Cobham Gaisler AHB/APB Bridge

ahbctrl: memory at 0x80000000, size 1 Mbyte

apbctrl: APB Bridge at 0x80000000 rev 1
apbctrl: slvO0: European Space Agency Leon2 Memory Controller

apbctrl: 1/0 ports at 0x80000000, size 256 byte

apbctrl: slvl: Cobham Gaisler Generic UART

apbctrl: 1/0 ports at 0x80000100, size 256 byte

apbctrl: slv2: Cobham Gaisler Multi-processor Interrupt Ctrl.
apbctrl: 1/0 ports at 0x80000200, size 256 byte

apbctrl: slv3: Cobham Gaisler Modular Timer Unit
apbctrl: 1/0 ports at 0x80000300, size 256 byte

apbctrl: slv7: Cobham Gaisler AHB Debug UART

apbctrl: 1/0 ports at 0x80000700, size 256 byte

apbctrl: slvll: Cobham Gaisler General Purpose 1/0 port
apbctrl: 1/0 ports at 0x80000b00, size 256 byte

grgpioll: 8-bit GPIO Unit rev O

gptimer3: GR Timer Unit rev 0, 8-bit scaler, 2 32-bit timers, irq 8
irgmp: Multi-processor Interrupt Controller rev 3, #cpu 1

apbuartl: Generic UART rev 1, fifo 4, irq 2

ahbuart7: AHB Debug UART rev O

leon3_0: LEON3 SPARC V8 processor rev 0

leon3_0: icache 1*8 kbyte, dcache 1*8 kbyte

VSIM 2>

HHEHHFHFHFFEHRHEFFEHRFEHHHEE TR

www.cobham.com/gaisler

GRLIB IP Core

7

7.1

7.2

AHBJTAG - JTAG Debug Link with AHB Master Interface

Overview

The JTAG debug interface provides access to on-chip AMBA AHB bus through JTAG. The JTAG
debug interface implements a simple protocol which translates JTAG instructions to AHB transfers.
Through this link, a read or write transfer can be generated to any address on the AHB bus.

TDI

!

Tck —» JTAG TAP
T™MS —»| Controller JTAG Communication
Interface ,
DO AHB master interface
l T AMBA AHB
Figure 12. JTAG Debug link block diagram
Operation

7.2.1 Transmission protocol

The JTAG Debug link decodes two JTAG instructions and implements two JTAG data registers: the
command/address register and data register. A read access is initiated by shifting in a command con-
sisting of read/write bit, AHB access size and AHB address into the command/address register. The
AHB read access is performed and data is ready to be shifted out of the data register. Write access is
performed by shifting in command, AHB size and AHB address into the command/data register fol-
lowed by shifting in write data into the data register. Sequential transfers can be performed by shifting
in command and address for the transfer start address and shifting in SEQ bit in data register for fol-
lowing accesses. The SEQ bit will increment the AHB address for the subsequent access. Sequential
transfers should not cross a 1 kB boundary. Sequential transfers are always word based.

Table 48. JTAG debug link Command/Address register

34 33 32 31 0
(W] sizE | AHB ADDRESS
34 Write (W) - ‘0 - read transfer, ‘1’ - write transfer
33 32 AHB transfer size - “00” - byte, “01” - half-word, “10” - word, “11”- reserved
31 30 AHB address

Table 49. JTAG debug link Data register
32 31 0
| sEQ | AHB DATA

32 Sequential transfer (SEQ) - If “1” is shifted in this bit position when read data is shifted out or write
data shifted in, the subsequent transfer will be to next word address. When read out from the device,
this bit is 1’ if the AHB access has completed and ‘0’ otherwise.

31 30 AHB Data - AHB write/read data. For byte and half-word transfers data is aligned according to big-
endian order where data with address offset 0 data is placed in MSB bits.

www.cobham.com/gaisler

GRLIB IP Core

7.3

7.4

7.5

7.6

As of version 1 of the JTAG debug link the core will signal AHB access completion by setting bit 32
of the data register. In previous versions the debug host could not determine if an AHB accesses had
finished when the read data was shifted out of the JTAG debug link data register. As of version 1 a
debug host can look at bit 32 of the received data to determine if the access was successful. If bit 32 is
‘1’ the access completed and the data is valid. If bit 32 is ‘0’, the AHB access was not finished when
the host started to read data. In this case the host can repeat the read of the data register until bit 32 is
set to ‘1°, signaling that the data is valid and that the AMBA AHB access has completed.

It should be noted that while bit 32 returns ‘0°, new data will not be shifted into the data register. The
debug host should therefore inspect bit 32 when shifting in data for a sequential AHB access to see if
the previous command has completed. If bit 32 is ‘0’, the read data is not valid and the command just
shifted in has been dropped by the core.

Inspection of bit 32 should not be done for JTAG Debug links with version number 0.
7.2.2 Endianness

The core is designed for big-endian systems.
Implementation

7.3.1 Clocking

Except for the TAP state machine and instruction register, the JTAG debug link operates in the
AMBA clock domain. To detect when to shift the address/data register, the JTAG clock and TDI are
resynchronized to the AMBA domain. The JTAG clock must be less than 1/3 of the AHB clock fre-
quency for the debug link commands to work when nsync=2, and less than 1/2 of the AHB frequency
when nsync=1.

7.3.2 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). Registers in the JTAG clock domain have asynchronous reset connected
to the JTAG trst. Registers in the system clock domain have synchronous reset.

Registers

The core does not implement any registers mapped in the AMBA AHB or APB address space.

Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x01C. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

Implementation

7.6.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).

The core will add reset for all registers, except synchronization registers, if the GRLIB config pack-
age setting grlib_sync_reset_enable_all is set.

The core does not support the GRLIB config package setting grlib_async_reset_enable.

www.cobham.com/gaisler

GRLIB IP Core

7.7 Configuration options

Table 50 shows the configuration options of the core (VHDL generics).

Table 50. Configuration options

Generic Function Allowed range Default
tech Target technology 0 - NTECH 0
hindex AHB master index 0 - NAHBMST-1 0
nsync Number of synchronization registers between clock 1-2 1
regions
idcode JTAG IDCODE instruction code (generic tech only) 0-255 9
manf Manufacturer id. Appears as bits 11-1 in TAP controllers | 0 - 2047 804
device identification register. Used only for generic tech-
nology. Default is Cobham Gaisler manufacturer id.
part Part number (generic tech only). Bits 27-12 in device id. | 0 - 65535 0
reg.
ver Version number (generic tech only). Bits 31-28 in device | 0-15 0
id. reg.
ainst Code of the JTAG instruction used to access JTAG 0-255 2
Debug link command/address register.
For Actel TAPs (tech VHDL generic is set to an Actel
technology) this generic should be set to 16, for all other
technologies the default value (2) can be used.
dinst Code of the JTAG instruction used to access JTAG 0-255 3
Debug link data register
For Actel TAPs (tech VHDL generic is set to an Actel
technology) this generic should be set to 17, for all other
technologies the default value (3) can be used.
scantest Enable scan test support 0-1 0
oepol Output enable polarity for TDOEN 0-1 1
tcknen Support externally inverted TCK (generic tech only) 0-1 0

www.cobham.com/gaisler

GRLIB IP Core

7.8

7.9

Signal descriptions

Table 51 shows the interface signals of the core (VHDL ports).

Table 51. Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input System clock (AHB clock domain) -
TCK N/A Input JTAG clock* -
™S N/A Input JTAG TMS signal* High
TDI N/A Input JTAG TDI signal* High
TDO N/A Output JTAG TDO signal* High
AHBI HoA* Input AHB Master interface input -
AHBO wAK Output AHB Master interface output -
TAPO TCK N/A Output TAP Controller User interface TCK signal** High
TAPO_TDI N/A Output TAP Controller User interface TDI signal** High
TAPO_INST[7:0] | N/A Output TAP Controller User interface INSTsignal** High
TAPO_RST N/A Output TAP Controller User interface RST signal** High
TAPO_CAPT N/A Output TAP Controller User interface CAPT signal** High
TAPO_SHFT N/A Output TAP Controller User interface SHFT signal** High
TAPO_UPD N/A Output TAP Controller User interface UPD signal** High
TAPI_TDO N/A Input TAP Controller User interface TDO signal** High
TRST N/A Input JTAG TRST signal Low
TDOEN N/A Output Output-enable for TDO See oepol
TCKN N/A Input Inverted JTAG clock* (if tcknen is set) -
TAPO_TCKN N/A Output TAP Controller User interface TCKN signal** High
TAPO_NINST N/A Output TAP Controller User interface NINSTsignal** High
TAPO_IUPD N/A Output TAP Controller User interface [IUPD signal** High

*) If the target technology is Xilinx or Altera the cores JTAG signals TCK, TCKN, TMS, TDI and TDO are not used.
Instead the dedicated FPGA JTAG pins are used. These pins are implicitly made visible to the core through TAP controller

instantiation.

**) User interface signals from the JTAG TAP controller. These signals are used to interface additional user defined JTAG
data registers such as boundary-scan register. For more information on the JTAG TAP controller user interface see JTAG
TAP Controller IP-core documentation. If not used tie TAPI_TDO to ground and leave TAPO_* outputs unconnected.

**%) see GRLIB IP Library User’s Manual

Signal definitions and reset values

The signals and their reset values are described in table 52.

Table 52. Signal definitions and reset values

Signal name Type Function Active Reset value
dsutck Input JTAG clock - -

dsutms Input JTAG TMS High -

dsutdi Input JTAG TDI High -

dsutdo Output JTAG TDO High undefined

www.cobham.com/gaisler

GRLIB IP Core

7.10 Timing

The timing waveforms and timing parameters are shown in figure 13 and are defined in table 53.

taHBJTAGO tAHBITAGY
dsutck _/_\

tanBuTAG2 =] |

dsutdi, dsutms X X X X X X

taHBUTAGH| | — taHBJTAG3

dsutdo XXX (X

Figure 13. Timing waveforms

Table 53. Timing parameters

Name Parameter Reference edge Min Max Unit
tAHBITAGO clock period - TBD - ns
tAHBITAGI clock low/high period - TBD - ns
tAHBITAG2 data input to clock setup rising dsutck edge TBD - ns
tAHBITAG3 data input from clock hold rising dsutck edge TBD - ns
tAHBITAG4 clock to data output delay falling dsutck edge - TBD ns

7.11 Library dependencies

Table 54 shows libraries used when instantiating the core (VHDL libraries).

Table 54. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER JTAG Signals, component Signals and component declaration

7.12 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;

use grlib.amba.all;
library gaisler;

use gaisler_jtag.all;

entity ahbjtag_ex is
port (
clk : in std_ulogic;
rstn : in std_ulogic;

-- JTAG signals
tck : in std_ulogic;

tms : in std_ulogic;
tdi : in std_ulogic;
tdo : out std_ulogic
);
end;

architecture rtl of ahbjtag_ex is

www.cobham.com/gaisler

GRLIB IP Core

7.13

-- AMBA signals

signal ahbmi : ahb_mst_in_type;

signal ahbmo : ahb_mst _out vector := (others => ahbm_none);
signal gnd : std_ulogic;

constant clkperiod : integer := 100;
begin
gnd <= “07;

-- AMBA Components are instantiated here

-- AHB JTAG
ahbjtag0 : ahbjtag generic map(tech => 0, hindex => 1)
port map(rstn, clkm, tck, tckn, tms, tdi, tdo, ahbmi, ahbmo(1),
open, open, open, open, open, open, open, gnd);

jtagproc : process
begin
wait;
jtagcom(tdo, tck, tms, tdi, 100, 20, 16#40000000#, true);
wait;
end process;

end;

Simulation

DSU communication over the JTAG debug link can be simulated using jtagcom procedure. The jtag-
com procedure sends JTAG commands to the AHBJTAG on JTAG signals TCK, TMS, TDI and TDO.
The commands read out and report the device identification code, optionally put the CPU(s) in debug
mode, perform three write operations to the memory and read out the data from the memory. The
JTAG test works if the generic JTAG tap controller is used and will not work with built-in TAP mac-
ros (such as Altera and Xilinx JTAG macros) since these macros don’t have visible JTAG pins. The
jtagcom procedure is part of jtagtst package in gaisler library and has following declaration:

procedure jtagcom(signal tdo : in std_ulogic;
signal tck, tms, tdi : out std_ulogic;
cp, start, addr : in integer;

-- cp - TCK clock period in ns

-- start - time in us when JTAG test is started
-- addr - read/write operation destination address

haltcpu : in boolean);

www.cobham.com/gaisler

GRLIB IP Core

8

8.1

8.2

8.3

AHBRAM - Single-port RAM with AHB interface

Overview

AHBRAM implements on-chip RAM with an AHB slave interface. Memory size is configurable in
binary steps through a VHDL generic. Minimum size is 1KiB and maximum size is dependent on tar-
get technology and physical resources. Read accesses have zero or one waitstate (configured at imple-
mentation time), write access have one waitstate. The RAM supports byte- and half-word accesses, as
well as all types of AHB burst accesses.

Internally, the AHBRAM instantiates a SYNCRAM block with byte writes. Depending on the target
technology map, this will translate into memory with byte enables or to multiple 8-bit wide SYN-
CRAM blocks.

The size of the RAM implemented within AHBRAM can be read via the core’s AMBA plug&play
version field. The version field will display log2(number of bytes), for a 1 KiB SYNCRAM the ver-
sion field will have the value 10, where 2! = 1024 bytes = 1 KiB.

8.1.1 Endianness

The core is designed for big-endian systems.

Vendor and device identifiers
The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0XOOE. For description of

vendor and device identifiers see GRLIB IP Library User’s Manual.

Implementation

8.3.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).

The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.

The core does not support grlib_async_reset_enable. All registers that react on the reset signal will
have a synchronous reset.

www.cobham.com/gaisler

GRLIB IP Core

Configuration options

Table 55 shows the configuration options of the core (VHDL generics).

Table 55. Configuration options

Generic Function Allowed range Default
hindex AHB slave bus index 0 - NAHBSLV-1 0
haddr The MSB address of the AHB area. Sets the 12 most sig- | 0 - 16#FFF# 16#FFF#
nificant bits in the 32-bit AHB address.
hmask The AHB area address mask. Sets the size of the AHB 0 - 16#FFF# 16#FF0#
area and the start address together with haddr.
tech Technology to implement on-chip RAM 0 - NTECH 0
kbytes RAM size in KiB. The size of the RAM implemented target-dependent 1
will be the minumum size that will hold the size speci-
fied by kbytes. A value of 1 here will instantiate a 1 KiB
SYNCRAM, a value of 3 will instantiate a 4 KiB SYN-
CRAM. The actual RAM usage on the target technology
then depends on the available RAM resources and the
technology map.
pipe Add registers on data outputs. If set to 0 the AMBA data [0- 1 0
outputs will be connected directly to the core’s internal
RAM. If set to 1 the core will include registers on the
data outputs. Settings this generic to 1 makes read
accesses have one waitstate, otherwise the core will
respond to read accesses with zero waitstates.
maccsz Maximum access size supported. This generic restricts 32,64, 128,256 AHBDW
the maximum AMBA access size supported by the core
and selects the width of the SYNCRAMBW RAM used
internally. The default value is assigned from AHBDW,
which sets the maximum bus width for the GRLIB
design.
scantest Enable scan test support (passed on to syncram) 0-1 0
endianness Select endianness. Big endian if set to 0 and little endian | 0 - 1 0
if setto 1.
Signal descriptions
Table 56 shows the interface signals of the core (VHDL ports).
Table 56. Signal descriptions
Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
AHBSI * Input AMB slave input signals -
AHBSO * Output AHB slave output signals -

* see GRLIB IP Library User’s Manual

www.cobham.com/gaisler

GRLIB IP Core

8.6

8.7

8.8

Library dependencies

Table 57 shows libraries used when instantiating the core (VHDL libraries).

Table 57. Library dependencies

Library Package Imported unit(s)

Description

GRLIB AMBA Types

AMBA signal type definitions

GAISLER MISC Component

Component declaration

Component declaration

library grlib;

use grlib.amba.all;
library gaisler;

use gaisler._misc.all;

component ahbram

generic (hindex : integer := 0; haddr : integer := 0; hmask :

tech : integer := 0; kbytes : integer := 1);
port (

rst : in std_ulogic;

clk - in std_ulogic;

ahbsi : in ahb_slv_in_type;

ahbso : out ahb_slv_out_type

):

end component;

Instantiation

This example shows how the core can be instantiated.

library grlib;

use grlib.amba.all;
library gaisler;

use gaisler._misc.all;

ahbramO : ahbram generic map (hindex => 7, haddr => CFG_AHBRADDR,

tech => CFG_MEMTECH, kbytes => 8)
port map (rstn, clkm, ahbsi, ahbso(7));

integer := 16#fff#;

www.cobham.com/gaisler

GRLIB IP Core

9

9.1

9.2

9.3

9.4

AHBDPRAM - Dual-port RAM with AHB interface

Overview

AHBDPRAM implements a 32-bit wide on-chip RAM with one AHB slave interface port and one
back-end port for a user application. The AHBDPRAM is therefore useful as a buffer memory
between the AHB bus and a custom IP core with a RAM interface

The memory size is configurable in binary steps through the abits VHDL generic. The minimum size
is 1kB while maximum size is dependent on target technology and physical resources. Read accesses
are zero-waitstate, write access have one waitstate. The RAM optionally supports byte- and half-word
accesses, as well as all types of AHB burst accesses. Internally, the AHBRAM instantiates one 32-bit
or four 8-bit wide SYNCRAM _DP blocks. The target technology must have support for dual-port
RAM cells.

The back-end port consists of separate clock, address, datain, dataout, enable and write signals. All
these signals are sampled on the rising edge of the back-end clock (CLKDP), implementing a syn-
chronous RAM interface. Read-write collisions between the AHB port and the back-end port are not
handled and must be prevented by the user. If byte write is enabled, the WRITE(0:3) signal controls
the writing of each byte lane in big-endian fashion. WRITE(O) controls the writing of
DATAIN(31:24) and so on. If byte write is disabled, WRITE(0) controls writing to the complete 32-
bit word.

9.1.1 Endianness

The core is designed for big-endian systems.

Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x00F. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

Implementation

9.3.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset.

Configuration options

Table 58 shows the configuration options of the core (VHDL generics).

Table 58. Configuration options

Generic Function Allowed range Default

hindex AHB slave bus index 0 - NAHBSLV-1 0

haddr The MSB address of the AHB area. Sets the 12 most sig- | 0 - 16#FFF# 16#FFF#
nificant bits in the 32-bit AHB address.

hmask The AHB area address mask. Sets the size of the AHB 0 - 16#FFF# 16#FFO#
area and the start address together with haddr.

tech Technology to implement on-chip RAM 0 - NTECH 2

abits Address bits. The RAM size in Kbytes is equal to 8-19 8
2**(abits +2)

bytewrite If set to 1, enabled support for byte and half-word writes | 0 - 1 0

www.cobham.com/gaisler

GRLIB IP Core

9.5 Signal descriptions
Table 59 shows the interface signals of the core (VHDL ports).

Table 59. Signal descriptions

Signal name Field Type Function Active
RST N/A Input AHB Reset Low
CLK N/A Input AHB Clock -
AHBSI * Input AMB slave input signals -
AHBSO * Output AHB slave output signals -
CLKDP Input Clock for back-end port -
ADDRESS(abits-1:0) Input Address for back-end port -
DATAIN(31 : 0) Input Write data for back-end port -
DATAOUT(31 : 0) Output Read data from back-end port -
ENABLE Input Chip select for back-end port High
WRITE(O : 3) Input Write-enable byte select for back-end port | High

* see GRLIB IP Library User’s Manual

9.6 Library dependencies
Table 60 shows libraries used when instantiating the core (VHDL libraries).

Table 60. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Types AMBA signal type definitions
GAISLER MISC Component Component declaration

9.7 Component declaration

library grlib;

use grlib.amba.all;
library gaisler;

use gaisler._misc.all;

component ahbdpram

generic (
hindex : integer := O;
haddr : integer := 0;
hmask : integer := 16#fff#;
tech : integer := 2;
abits : integer range 8 to 19 := 8;
bytewrite : integer range O to 1 := 0
):
port (
rst - in std_ulogic;
clk : in std_ulogic;
ahbsi : in ahb_slv_in_type;
ahbso : out ahb_slv_out_type;
clkdp : in std_ulogic;

address : in std_logic_vector((abits -1) downto 0);

datain : in std_logic_vector(31 downto 0);

dataout : out std_logic_vector(31 downto 0);

enable : in std_ulogic;-- active high chip select

write : in std_logic_vector(0 to 3)-- active high byte write enable
):

end component;

www.cobham.com/gaisler

GRLIB IP Core

10

10.1

10.2

10.3

10.4

AHBROM - Single-port ROM with AHB interface

Overview

The AHBROM core implements a 32/64/128-bit wide on-chip ROM with an AHB slave interface.
Read accesses take zero waitstates, or one waitstate if the pipeline option is enabled. The ROM sup-
ports byte- and half-word accesses, as well as all types of AHB burst accesses.

PROM generation

The AHBPROM is automatically generated by the make utility in GRLIB. The input format is a
sparc-elf binary file, produced by the BCC cross-compiler (sparc-elf-gcc). To create a PROM, first
compile a suitable binary and the run the make utility:

bash$ sparc-elf-gcc prom.S -o prom.exe
bash$ make ahbrom.vhd

Creating ahbrom.vhd : file size 272 bytes, address bits 9

The default binary file for creating a PROM is prom.exe. To use a different file, run make with the
FILE parameter set to the input file:

bash$ make ahbrom.vhd FILE=myfile.exe

The created PROM is realized in synthesizable VHDL code, using a CASE statement. For FPGA tar-
gets, most synthesis tools will map the CASE statement on a block RAM/ROM if available. For ASIC
implementations, the ROM will be synthesized as gates. It is then recommended to use the pipe option
to improve the timing.

The default is to build a 32-bit wide ahbrom, to instead build 64-bit or 128-bit wide ahbrom versions,
use the flow described above but with the “make ahbrom64.vhd” and “make ahbrom128.vhd” make
targets.

10.2.1 Endianness

The core is designed for big-endian systems.

Vendor and device identifiers
The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x01B. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

Implementation

10.4.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).

The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.

The core does not support the GRLIB config package setting grlib_async_reset_enable.

www.cobham.com/gaisler

GRLIB IP Core

10.5 Configuration options

10.6

10.7

10.8

Table 61 shows the configuration options of the core (VHDL generics).

Table 61. Configuration options

Generic Function Allowed range Default
hindex AHB slave bus index 0 - NAHBSLV-1 0
haddr The MSB address of the AHB area. Sets the 12 most sig- | 0 - 16#FFF# 16#FFF#
nificant bits in the 32-bit AHB address.
hmask The AHB area address mask. Sets the size of the AHB 0 - 16#FFF# 16#FF0#
area and the start address together with haddr.
tech Not used
pipe Add a pipeline stage on read data 0 0
kbytes Not used
Only on ahbrom64 and ahbrom128:
wideonly Removes muxing logic needed to properly support 32-bit | 0 - 1 0
masters on wide bus
Signal descriptions
Table 62 shows the interface signals of the core (VHDL ports).
Table 62. Signal descriptions
Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
AHBSI * Input AMB slave input signals -
AHBSO * Output AHB slave output signals -
* see GRLIB IP Library User’s Manual
Library dependencies
Table 63 shows libraries used when instantiating the core (VHDL libraries).
Table 63. Library dependencies
Library Package Imported unit(s) Description
GRLIB AMBA Types AMBA signal type definitions
Component declaration
component ahbrom
generic (hindex : integer := 0; haddr : integer := 0; hmask : integer := 16#fff#;
pipe : integer := 0; tech : integer := 0);
port (
rst : in std_ulogic;
clk - in std_ulogic;
ahbsi : in ahb_slv_in_type;
ahbso : out ahb_slv_out_type
);

end component;

www.cobham.com/gaisler

GRLIB IP Core

10.9 Instantiation

This example shows how the core can be instantiated.

library grlib;
use grlib.amba.all;

brom : entity work.ahbrom
generic map (hindex => 8, haddr => CFG_AHBRODDR, pipe => CFG_AHBROPIP)
port map (rstn, clkm, ahbsi, ahbso(8));

www.cobham.com/gaisler

GRLIB IP Core

11

11.1

11.2

AHBSTAT - AHB Status Registers

Overview

The status registers store information about AMBA AHB accesses triggering an error response. There
is a status register and a failing address register capturing the control and address signal values of a
failing AMBA bus transaction, or the occurrence of a correctable error being signaled from a another
peripheral in the system.

The status register and the failing address register are accessed from the AMBA APB bus.
Operation

11.2.1 Errors

The registers monitor AMBA AHB bus transactions and store the current HADDR, HWRITE,
HMASTER and HSIZE internally. The monitoring are always active after startup and reset until an
error response (HRESP = “01”) is detected. When the error is detected, the status and address register
contents are frozen and the New Error (NE) bit is set to one. At the same time an interrupt is gener-
ated, as described hereunder.

Note that many of the fault tolerant units containing EDAC signal an un-correctable error as an
AMBA error response, so that it can be detected by the processor as described above.

11.2.2 Correctable errors

Not only error responses on the AHB bus can be detected. Many of the fault tolerant units containing
EDAC have a correctable error signal which is asserted each time a correctable error is detected.
When such an error is detected, the effect will be the same as for an AHB error response. The only dif-
ference is that the Correctable Error (CE) bit in the status register is set to one when a correctable
error is detected.

When the CE bit is set the interrupt routine can acquire the address containing the correctable error
from the failing address register and correct it. When it is finished it resets the NE bit and the monitor-
ing becomes active again. Interrupt handling is described in detail hereunder.

The correctable error signals from the fault tolerant units should be connected to the stati.cerror input
signal vector of the AHB status register core, which is or-ed internally and if the resulting signal is
asserted, it will have the same effect as an AHB error response.

11.2.3 Interrupts

The interrupt is generated on the line selected by the pirg VHDL generic.

The interrupt is connected to the interrupt controller to inform the processor of the error condition.
The normal procedure is that an interrupt routine handles the error with the aid of the information in
the status registers. When it is finished it resets the NE bit and the monitoring becomes active again.
Interrupts are generated for both AMBA error responses and correctable errors as described above.

11.2.4 Filtering and multiple error detection

The status register can optionally be implemented with two sets of status and failing address register.
In this case the core also supports filtering on errors and has a status bit that gets set in case additional
errors are detected when the New Error (NE) bit is set. The core will only react to the first error in a
burst operation. After the first error has been detected, monitoring of the burst is suspended. An error
event will only be recorded by the first status register that should react based on filter settings. If reg-
ister set 1 has reacted then register 2 will not be set for the same error event.

www.cobham.com/gaisler

GRLIB IP Core

11.3

The extra register set, filtering, and multiple error detection is available in revision 1 of the status reg-
ister. The functionality is enabled through the ver VHDL generic. The value of this generic also
affects the core version in the GRLIB plug&play information.

Registers

The core is programmed through registers mapped into APB address space.

Table 64. AHB Status registers

APB address offset

Registers

0x00 AHB Status register

0x04 AHB Failing address register

0x08 AHB Status register 2 (optional)

0x0C AHB Failing Address register 2 (optional)

www.cobham.com/gaisler

GRLIB IP Core

11.3.1 AHB Status register

11.4

11.5

Table 65. 0x00, 0x08- AHBS - AHB Status register

31 14 13 12 11 10 9 8 7 6 3 2 0
RESERVED ME |[FW|CF | AF |CE|NE| HWRITE | HMASTER HSIZE
0 ojo0j0j0j0]|O NR NR NR
r w*| w* | rw* | rw*| rw | rw r r r

31: 14
13

12

11

10

A
S W

RESERVED

Multiple Error detection (ME) - This field is set to 1 when the New Error bit is set and one more
error is detected. Filtering is considered when setting the ME bit.

This field is only available in version 1 of the core (version is selected at implementation).

Filter Write (FW) - This bit needs to be set to ‘1’ during a write operation for CF and AF fields to be
updated in the same write operation. Always reads as zero.

This field is only available in version 1 of the core (version is selected at implementation).

Correctable Error Filter (CF) - If this bit is set to 1 then this status register will ignore correctable
errors. This field will only be written if the FW bit is set.

This field is only available in version 1 of the core (version is selected at implementation).

AMBA ERROR Filter (AF) - If this bit is set to 1 then this status register will ignore AMBA
ERROR. This field will only be written if the FW bit is set.

This field is only available in version 1 of the core (version is selected at implementation).

Correctable Error (CE) - Set if the detected error was caused by a correctable error and zero other-
wise.

New Error (NE) - Deasserted at start-up and after reset. Asserted when an error is detected. Reset by
writing a zero to it.

The HWRITE signal of the AHB transaction that caused the error.
The HMASTER signal of the AHB transaction that caused the error.
The HSIZE signal of the AHB transaction that caused the error

11.3.2 AHB Failing address register

Table 66. 0x04, 0x0C -

31

AHBFAR - AHB Failing address register

AHB FAILING ADDRESS

NR

t

31:0

The HADDR of the AHB transaction that caused the error.

Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x052. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

Implementation

11.5.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). When reset is asserted the new error and correctable error registers are

reset to zero.

www.cobham.com/gaisler

GRLIB IP Core

11.6

Configuration options
Table 67 shows the configuration options of the core (VHDL generics).

Table 67. Configuration options

Generic Function Allowed range Default
pindex APB slave index 0 - NAHBSLV-1 0
paddr APB address 0 - 16#FFF# 0
pmask APB address mask 0 - 16#FFF# 16#FFF#
pirq Interrupt line driven by the core 0 - 16#FFF# 0
nftslv Number of FT slaves connected to the cerror vector 1 - NAHBSLV-1 3
ver Selects version of the core. Setting this value to 1 imple- | 0 - 1 0
ments the two sets of registers, multiple error detection,
and filter functionality.
11.7 Signal descriptions
Table 68 shows the interface signals of the core (VHDL ports).
Table 68. Signal descriptions
Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
AHBMI * Input AHB slave input signals -
AHBSI * Input AHB slave output signals -
STATI CERROR Input Correctable Error Signals High
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -

11.8

11.9

* see GRLIB IP Library User’s Manual

Library dependencies

Table 69 shows libraries used when instantiating the core (VHDL libraries).

Table 69. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MISC Component Component declaration
Instantiation

This example shows how the core can be instantiated.

The example design contains an AMBA bus with a number of AHB components connected to it
including the status register. There are three Fault Tolerant units with EDAC connected to the status
register cerror vector. The connection of the different memory controllers to external memory is not
shown.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;

www.cobham.com/gaisler

GRLIB IP Core

use grlib.tech.all;
library gaisler;

use gaisler.memctrl.all;
use gaisler._misc.all;

entity mctril_ex is
port (
clk - in std_ulogic;
rstn : in std_ulogic;
--other signals
);

end;
architecture rtl of mctrl_ex is

-- AMBA bus (AHB and APB)
signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out _vector := (others => apb_none);
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector :
signal ahbmi : ahb_mst_in_type;
signal ahbmo : ahb_mst_out_vector :

(others => ahbs_none);

(others => ahbm_none);

-- signals used to connect memory controller and memory bus
signal memi : memory_in_type;
signal memo : memory_out_type;

signal sdo, sdo2: sdctrl_out_type;
signal sdi : sdctrl_in_type;

-- correctable error vector
signal stati : ahbstat_in_type;
signal aramo : ahbram_out_type;

begin
-- AMBA Components are defined here ...

-- AHB Status Register
astatO : ahbstat generic map(pindex => 13, paddr => 13, pirq => 11,
nftslv => 3)
port map(rstn, clkm, ahbmi, ahbsi, stati, apbi, apbo(13));
stati.cerror(3 to NAHBSLV-1) <= (others => “07);

--FT AHB RAM
a0 : ftahbram generic map(hindex => 1, haddr => 1, tech => inferred,
kbytes => 64, pindex => 4, paddr => 4, edacen => 1, autoscrub => 0,
errcnt => 1, cntbits => 4)
port map(rst, clk, ahbsi, ahbso, apbi, apbo(4), aramo);
stati.cerror(0) <= aramo.ce;
-- SDRAM controller
sdc : ftsdctrl generic map (hindex => 3, haddr => 16#600#, hmask => 16#F00#,
ioaddr => 1, fast => 0, pwron => 1, invclk => 0, edacen => 1, errcnt => 1,
cntbits => 4)
port map (rstn, clk, ahbsi, ahbso(3), sdi, sdo);
stati.cerror(l) <= sdo.ce;

-- Memory controller
mctrl0 : ftsrctrl generic map (rmw => 1, pindex => 10, paddr => 10,
edacen => 1, errcnt => 1, cntbits => 4)
port map (rstn, clk, ahbsi, ahbso(0), apbi, apbo(10), memi, memo, sdo2);
stati.cerror(2) <= memo.ce;
end;

www.cobham.com/gaisler

GRLIB IP Core

12 AHBTRACE - AHB Trace buffer

12.1 Overview

The trace buffer consists of a circular buffer that stores AMBA AHB data transfers. The address, data
and various control signals of the AHB bus are stored and can be read out for later analysis.

AHB Trace Buffer
r——— - - - - -—- - - - - - = A
I I
! Trace control Trace buffer RAM |
I I
I I
| v 1 |
[AHB slave interface |
| IRQ |
L — — — - - - — — |
AMBA AHB

Figure 14. Block diagram

When the trace buffer is configured in 32-bit bus mode, it is 128 bits wide. The information stored is

indicated in the table below:

Table 70. AHB Trace buffer data allocation

Bits Name Definition

127:96 Time tag The value of the time tag counter

95 AHB breakpoint hit Set to ‘1’ if a DSU AHB breakpoint hit occurred.
94:80 - Not used

79 Hwrite AHB HWRITE

78:77 Htrans AHB HTRANS

76:74 Hsize AHB HSIZE

73:71 Hburst AHB HBURST

70:67 Hmaster AHB HMASTER

66 Hmastlock AHB HMASTLOCK

65:64 Hresp AHB HRESP

63:32 Load/Store data AHB HRDATA[31:0] or HWDATA[31:0]
31:0 Load/Store address AHB HADDR

In addition to the AHB signals, a 32-bit counter is also stored in the trace as time tag.

When the trace buffer is configured in 64-bit or 128-bit bus mode, its contents are extended according

to the table below.

Bits Name

Definition

223:160 128-bit extended load/store data

AHB HRDATA[127:64] or HWDATA[127:64]

159:128 64-bit extended load/store data

AHB HRDATA[63:32] or HWDATA[63:32]

www.cobham.com/gaisler

GRLIB IP Core

12.2 Operation

12.2.1 Overview

The trace buffer is enabled by setting the enable bit (EN) in the trace control register. Each AMBA
AHB transfer is then stored in the buffer in a circular manner. The address to which the next transfer is
written is held in the trace buffer index register, and is automatically incremented after each transfer.
Tracing is stopped when the EN bit is reset, or when a AHB breakpoint is hit. An interrupt is gener-
ated when a breakpoint is hit.

Note: the LEON3 and LEON4 Debug Support Units (DSU3/DSU4) also includes an AHB trace buf-
fer. The standalone trace buffer is intended to be used in system without a processor or when the
DSU3 is not present.

The size of the trace buffer is configured by means of the kbytes VHDL generic, defining the size of the
complete buffer in kbytes.

The number of lines in the trace buffer is kbytes * 1024 / 16 bytes.

The total size of the trace buffer depends on the bwidth generic. When the ahb trace buffer is in 32-bit
bus mode, the size of the buffer is simply kbytes kbytes.

When the ahb trace buffer is configured in 64-bit or 128-bit bus mode, the kbytes generic will not
reflect the exact amount of memory used in the core. You will have to multiply each line, calculated as
above, for 20 bytes or 28 bytes, for 64-bit bus mode or 128-bit bus mode respectively. Therefore the
total size for the buffer when in 64-bit mode is kbytes * 1.25 kbytes, and for the buffer in 128-bit bus
mode it is kbytes * 1.75 kbytes.

12.2.2 AHB statistics

The core can be implemented to generate statistics from the traced AHB bus. When statistics collec-
tion is enabled the core will assert outputs that are suitable to connect to a LEON statistics unit
(L3STAT and LASTAT). The statistical outputs can be filtered by the AHB trace buffer filters, this is
controlled by the Performance counter Filter bit (PF) in the AHB trace buffer control register. The
core can collect data for the events listed in table 71 below.

Table 71. AHB events

Event Description Note

idle HTRANS=IDLE Active when HTRANS IDLE is driven on the AHB slave inputs and
slave has asserted HREADY.

busy HTRANS=BUSY Active when HTRANS BUSY is driven on the AHB slave inputs and
slave has asserted HREADY.

nseq HTRANS=NONSEQ Active when HTRANS NONSEQ is driven on the AHB slave inputs
and slave has asserted HREADY.

seq HTRANS=SEQ Active when HTRANS SEQUENTIAL is driven on the AHB slave
inputs and slave has asserted HREADY.

read Read access Active when HTRANS is SEQUENTIAL or NON-SEQUENTIAL,
slave has asserted HREADY and the HWRITE input is low.

write Write access Active when HTRANS is SEQUENTIAL or NON-SEQUENTIAL,
slave has asserted HREADY and the HWRITE input is high.

hsize[5:0] | Transfer size Active when HTRANS is SEQUENTIAL or NON-SEQUENTIAL,
slave has asserted HREADY and HSIZE is BYTE (hsize[0]),
HWORD (HSIZE[1]), WORD (hsize[2]), DWORD (hsize[3]),
4WORD hsize[4], or SWORD (hsize[5]).

WS Wait state Active when HREADY input to AHB slaves is low and AMBA
response is OKAY.

retry RETRY response Active when master receives RETRY response

www.cobham.com/gaisler

GRLIB IP Core

12.3

Table 71. AHB events

Event Description Note
split SPLIT response Active when master receives SPLIT response
spdel SPLIT delay Active during the time a master waits to be granted access to the bus

after reception of a SPLIT response. The core will only keep track of
one master at a time. This means that when a SPLIT response is
detected, the core will save the master index. This event will then be
active until the same master is re-allowed into bus arbitration and is
granted access to the bus. This also means that the delay measured
will include the time for re-arbitration, delays from other ongoing
transfers and delays resulting from other masters being granted
access to the bus before the SPLIT:ed master is granted again after
receiving SPLIT complete.

If another master receives a SPLIT response while this event is
active, the SPLIT delay for the second master will not be measured.

locked Locked access Active while the HMASTLOCK signal is asserted on the AHB slave

inputs. (Currently not used by L3STATand L4STAT)

Registers

12.3.1 Register address map

The trace buffer occupies 128 KiB of address space in the AHB /O area. The address mapping in
parentheses is only available when the core is in 64-bit or 128-bit bus mode. Only 32-bit single-
accesses to the area are supported. The following register addresses are decoded:

Table 72. Trace buffer address space

Address Register
0x000000 Trace buffer control register
0x000004 Trace buffer index register
0x000008 Time tag counter
0x00000C Trace buffer master/slave filter register
0x000010 AHB break address 1
0x000014 AHB mask 1
0x000018 AHB break address 2
0x00001C AHB mask 2
0x010000 - 0x020000 Trace buffer
.0 Trace bits 127 - 96
4 Trace bits 95 - 64
.8 Trace bits 63 - 32
C Trace bits 31 - 0
(...10) Trace bits 159 - 128, when in 64- or 128-bit bus mode
(...14) Trace bits 223 - 192, when in 128-bit bus mode
(...18) Trace bits 191 - 160, when in 128-bit bus mode
(...10) Zero

www.cobham.com/gaisler

GRLIB IP Core

12.3.2 Trace buffer control register

The trace buffer is controlled by the trace buffer control register:

Table 73. 0x000000 - CTRL - Trace buffer control register

31 16 15 14 122 1 9 8 7 6 5 4 3 2 1 0
DCNT BA BSEL RESERVED|PF| BW |RF|AF|FR|FW |DM|EN

0 * 0 0 0 * 0|00 0|0| ™

w r w r w r TWirw | rw rw,|r |rw

31: 16

15

14: 12

11: 9

Trace buffer delay counter (DCNT) - Note that the number of bits actually implemented depends on
the size of the trace buffer.

Bus select Available (BA) - If this field is set to “1°, the core has several buses connected. The bus to
trace is selected via the BSEL field. If this field is ‘0’, the core is only capable of tracing one AHB
bus.

Bus select (BSEL) - If the BA field is ‘1’ this field selects the bus to trace. If the BA field is ‘0’, this
field is not writable.

RESERVED

Performance counter Filter (PF) - If this bit is set to ‘1°, the cores performance counter (statistical)
outputs will be filtered using the same filter settings as used for the trace buffer. If a filter inhibits a
write to the trace buffer, setting this bit to ‘1’ will cause the same filter setting to inhibit the pulse on
the statistical output.

Bus width (BW) - This value corresponds to log2(Supported bus width / 32)

Retry filter (RF) - If this bit is set to ‘1°, AHB retry responses will not be included in the trace buffer.
This bit can only be set of the core has been implemented with support for filtering

Address Filter (AF) - If this bit is set to ‘1°, only the address range defined by AHB trace buffer
breakpoint 2’s address and mask will be included in the trace buffer. This bit can only be set of the
core has been implemented with support for filtering

Filter Reads (FR) - If this bit is set to ‘1°, read accesses will not be included in the trace buffer. This
bit can only be set of the core has been implemented with support for filtering.

Filter Writes (FW) - If this bit is set to ‘1°, write accesses will not be included in the trace buffer.
This bit can only be set of the core has been implemented with support for filtering.

Delay counter mode (DM) - Indicates that the trace buffer is in delay counter mode.
Trace enable (EN) - Enables the trace buffer

12.3.3 Trace buffer index register

The trace buffer index register indicates the address of the next 128-bit line to be written.

Table 74. 0x000004 - INDEX - Trace buffer index register

31 4 3 0
INDEX 0x0
NR 0
w r

Trace buffer index counter (INDEX). Note that the number of bits actually implemented depends on
the size of the trace buffer

Read as 0x0

www.cobham.com/gaisler

GRLIB IP Core

12.3.4 Trace buffer time tag register

The time tag register contains a 32-bit counter that increments each clock when the trace buffer is
enabled. The value of the counter is stored in the trace to provide a time tag.

Table 75. 0x000008 - TIMETAG - Trace buffer time tag counter
31 0
TIME TAG VALUE
0
r

12.3.5 Trace buffer master/slave filter register

The master/slave filter register allows filtering out specified master and slaves from the trace. This
register can only be assigned if the trace buffer has been implemented with support for filtering.

Table 76. Trace buffer master/slave filter register

31 16 15 0
SMASK[15:0] MMASKI[15:0]
0 0
w w
31: 16 Slave Mask (SMASK) - If SMASK[n] is set to “1°, the trace buffer will not save accesses performed
to slave n.
15:0 Master Mask (MMASK) - If MMASK]n] is set to ‘1°, the trace buffer will not save accesses per-

formed by master n.

12.3.6 Trace buffer breakpoint registers

The DSU contains two breakpoint registers for matching AHB addresses. A breakpoint hit is used to
freeze the trace buffer by clearing the enable bit. Freezing can be delayed by programming the DCNT
field in the trace buffer control register to a non-zero value. In this case, the DCNT value will be dec-
remented for each additional trace until it reaches zero and after two additional entries, the trace buf-
fer is frozen. A mask register is associated with each breakpoint, allowing breaking on a block of
addresses. Only address bits with the corresponding mask bit set to ‘1’ are compared during break-
point detection. To break on AHB load or store accesses, the LD and/or ST bits should be set.

Table 77. Trace buffer AHB breakpoint address register

31 2 1 0
BADDR[31:2] 0b00
NR 0
w r
31:2 Breakpoint address (BADDR) - Bits 31:2 of breakpoint address
1: 0 Reserved, read as 0

Table 78. Trace buffer AHB breakpoint mask register

31 2 1 0
BMASK][31:2] LD | ST
NR 0|0
w w | rw
31:2 Breakpoint mask (BMASK) - Bits 31:2 of breakpoint mask
Load (LD) - Break on data load address
0 Store (ST) - Break on data store address

www.cobham.com/gaisler

GRLIB IP Core

12.4

12.5

12.6

Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x017. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

Implementation

12.5.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

Configuration options
Table 79 shows the configuration options of the core (VHDL generics).

Table 79. Configuration options

Generic Function Allowed range Default
hindex AHB slave bus index 0 - NAHBSLV-1 0
ioaddr The MSB address of the I/O area. Sets the 12 most sig- | 0 - 16#FFF# 16#000#
nificant bits in the 20-bit I/O address.
iomask The /O area address mask. Sets the size of the /O area | 0 - 16#FFF# 16#E00#
and the start address together with ioaddr.
irq Interrupt number 0 - NAHBIRQ-1 0
tech Technology to implement on-chip RAM 0-NTECH
kbytes Trace buffer size in kbytes 1-64 1
bwidth Traced AHB bus width 32,64, 128 64
ahbfilt If this generic is set to 1 the core will be implemented 0-2 0
with support for AHB trace buffer filters. If ahbpf is
larger than 1 then the core’s statistical outputs will be
enabled.
ntrace Number of buses to trace. This generic is only available |1 -8 1
if the entity ahbtrace_mmb is instantiated.
scantest Support scan test and memory BIST 0-1 0
exttimer If set to 1 then the time tag value will be taken from the | 0- 1
core’s timer signal input. Otherwise the core will use an
internal timer.

www.cobham.com/gaisler

GRLIB IP Core

12.7 Signal descriptions

12.8

12.9

Table 80 shows the interface signals of the core (VHDL ports).

Table 80. Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
AHBMI * Input AHB master input signals -
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
TIMER[30:0] N/A Input External timestamp (only used when VHDL -

generic exttimer is nonzero). Suitable for con-

nection to dbgo.timer signal from debug support

unit (DSU IP Core)
ASTAT * Output AHB statistics outputs. Intended to be connected | -

to L3STAT and L4STAT core.

* see GRLIB IP Library User’s Manual

Library dep

endencies

Table 81 shows libraries used when instantiating the core (VHDL libraries).

Table 81. Library dependencies
Library Package Imported unit(s) Description
GRLIB AMBA Types AMBA signal type definitions
GAISLER MISC Component Component declaration

Component declaration

library grlib
use grlib.amb
library gaisl

a.all;
er;

use gaisler._misc.all;
component ahbtrace is
generic (
hindex integer := 0;
ioaddr integer := 16#000#;
iomask integer := 16#EOQ0#;
tech integer := 0;
irq integer := 0;
kbytes integer := 1;
exttimer : integer range O to 1 := 0);
port (
rst in std_ulogic;
clk in std_ulogic;
ahbmi in ahb_mst_in_type;
ahbsi in ahb_slv_in_type;
ahbso out ahb_slv_out_type;
timer in std_logic_vector(30 downto 0) := (others => “07));

end component;

-- Tracebuffer that can trace separate bus:
component ahbtrace_mb is

generic (
hindex integer := 0;
ioaddr integer := 16#000#;
iomask integer := 16#E00%#;

www.cobham.com/gaisler

GRLIB IP Core

tech integer := DEFMEMTECH;
irq integer := 0;
kbytes integer := 1;
exttimer : integer range O to 1 := 0);
port (
rst > in std_ulogic; clk : in std_ulogic;
ahbsi : in ahb_slv_in_type; -- Register interface
ahbso : out ahb_slv_out_type;
tahbmi : in ahb_mst_in_type; tahbsi : in ahb_slv_in_type -- Trace
timer : in std_logic_vector(30 downto 0) := (others => “07));

end component;

-- Tracebuffer that can trace several separate buses:
component ahbtrace_mmb is

generic (
hindex integer := 0;
ioaddr integer := 16#000#;
iomask integer := 16#E00%#;
tech integer := DEFMEMTECH;
irq integer := 0;
kbytes integer := 1;
ntrace integer range 1 to 8 := 1;
exttimer : integer range O to 1 := 0);
port (
rst - in std_ulogic; clk - in std_ulogic;
ahbsi > in ahb_slv_in_type; -- Register interface
ahbso : out ahb_slv_out_type;

ahb_mst_in_vector_type(0 to ntrace-1);
ahb_slv_in_vector_type(0 to ntrace-1) -- Trace
std_logic_vector(30 downto 0) := (others => “07));

tahbmiv : in
tahbsiv : in
timer :in
end component;

www.cobham.com/gaisler

GRLIB IP Core

13

13.1

13.2

AHBUART- AMBA AHB Serial Debug Interface

Overview

The interface consists of a UART connected to the AMBA AHB bus as a master. A simple communi-
cation protocol is supported to transmit access parameters and data. Through the communication link,
aread or write transfer can be generated to any address on the AMBA AHB bus.

Baud-rate i Serial port
generator 87bitclk Contrcfﬁer ¢——» AMBAAPB
RX E}——» Receiver shift register Transmitter shift register —»K TX
AHB master interface AHB data/response

l AMBA AHB T

Figure 15. Block diagram

Operation

13.2.1 Transmission protocol

The interface supports a simple protocol where commands consist of a control byte, followed by a 32-
bit address, followed by optional write data. Write access does not return any response, while a read
access only returns the read data. Data is sent on 8-bit basis as shown below.

TStart’ DO ‘ D1 ‘ D2 ‘ D3 ‘ D4 ‘ D5 ‘ D6 ‘ D7 ‘Stop‘

Figure 16. Data frame

Write Command

Send [11]Length -1][Addr[31:24]|| Addr[23:16]|| Addr[15:8] || Addr(7:0] || Data[31:24]|| Data[23:16]|| Data[15:8] || Data[7:0] |

Read command

Send [10]Length -1][Addr[31:24] || Addr[23:16]|| Addr{15:8] | | Addr[7:0] |

Receive | Data[31:24] || Data[23:16] || Data[15:8] || Data[7:0] |

Figure 17. Commands

Block transfers can be performed be setting the length field to n-1, where n denotes the number of
transferred words. For write accesses, the control byte and address is sent once, followed by the num-
ber of data words to be written. The address is automatically incremented after each data word. For

www.cobham.com/gaisler

GRLIB IP Core

13.3

read accesses, the control byte and address is sent once and the corresponding number of data words is
returned.

13.2.2 Baud rate generation

The UART contains a 18-bit down-counting scaler to generate the desired baud-rate. The scaler is
clocked by the system clock and generates a UART tick each time it underflows. The scaler is
reloaded with the value of the UART scaler reload register after each underflow. The resulting UART
tick frequency should be 8 times the desired baud-rate.

If not programmed by software, the baud rate will be automatically discovered. This is done by
searching for the shortest period between two falling edges of the received data (corresponding to two
bit periods). When three identical two-bit periods has been found, the corresponding scaler reload
value is latched into the reload register, and the BL and RXEN bits are set in the UART control regis-
ter. If the BL bit is reset by software, the baud rate discovery process is restarted. The baud-rate dis-
covery is also restarted when a ‘break’ or framing error is detected by the receiver, allowing to change
to baudrate from the external transmitter. For proper baudrate detection, the value 0x55 should be
transmitted to the receiver after reset or after sending break.

The best scaler value for manually programming the baudrate can be calculated as follows:
scaler = (((system_clk*10)/(baudrate*8))-5)/10

Registers
The core is programmed through registers mapped into APB address space.

Table 82. AHB UART registers

APB address offset Register

0x4 AHB UART status register
0x8 AHB UART control register
0xC AHB UART scaler register

www.cobham.com/gaisler

GRLIB IP Core

13.3.1 AHB UART control register

Table 83. 0x08 - CTRL - AHB UART control register

31 2 1 2
RESERVED BL |[EN
0 0|0
r w | rw
0: Receiver enable (EN) - if set, enables both the transmitter and receiver. Reset value: ‘0’.

Baud rate locked (BL) - is automatically set when the baud rate is locked. Reset value: ‘0’.
13.3.2 AHB UART status register

Table 84. 0x04 - STAT - AHB UART status register

31 07 9 8 7 6 5 4 3 2 1 0
RESERVED RX|FE| R |OV|BR|TH|TS |DR
0 MRfO| O/ O0O|O0O|1]1]0
r r(rw| r |rwjrwjr r r
0: Data ready (DR) - indicates that new data has been received by the AMBA AHB master interface.
Read only. Reset value: 0.
1: Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty. Read only.
Reset value: ‘1’
2: Transmitter hold register empty (TH) - indicates that the transmitter hold register is empty. Read only.
Reset value: ‘1
3: Break (BR) - indicates that a BREAKE has been received. Reset value: ‘0’
4. Overflow (OV) - indicates that one or more character have been lost due to receiver overflow. Reset
value: ‘0’
6: Frame error (FE) - indicates that a framing error was detected. Reset value: ‘0’
13.3.3 AHB UART scaler register
Table 85. 0x0C - SCALER - AHB UART scaler register
31 18 17 0
RESERVED SCALER RELOAD VALUE
0 Ox3FFFB
r w
17: 0 Baudrate scaler reload value = (((system_clk*10)/(baudrate*8))-5)/10. Reset value: “3FFFF*.

13.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x007. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

13.5 Implementation

13.5.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).

www.cobham.com/gaisler

GRLIB IP Core

The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.

The core does not support grlib_async_reset_enable. All registers that react on the reset signal will
have a synchronous reset.

13.6 Configuration options
Table 86 shows the configuration options of the core (VHDL generics).

Table 86. Configuration options

Generic Function Allowed range Default

hindex AHB master index 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 164#FFF#

13.7 Signal descriptions
Table 87 shows the interface signals of the core (VHDL ports)..
Table 87. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

UARTI RXD Input UART receiver data High
CTSN Input UART clear-to-send High
EXTCLK Input Use as alternative UART clock -

UARTO RTSN Output UART request-to-send High
TXD Output UART transmit data High

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

AHBI * Input AMB master input signals -

AHBO * Output AHB master output signals -

* see GRLIB IP Library User’s Manual

13.8 Signal definitions and reset values

The signals and their reset values are described in table 88.

Table 88. Signal definitions and reset values

Signal name Type Function Active Reset value
dsutx Output UART transmit data line - Logical 1
dsurx Input UART receive data line - -

13.9 Timing

The timing waveforms and timing parameters are shown in figure 18 and are defined in table 89.

www.cobham.com/gaisler

GRLIB IP Core

clk AVAVAVAVAVAVAVNRNVAVYAVAV]
dsutx — \#— tAHBUARTO ,\C tAHBUARTO
dsurx — \{ﬁ tAHBUART1 ﬁ~/—<— tAHBUART2

Table 89. Timing parameters

Figure 18. Timing waveforms

Name Parameter Reference edge Min Max Unit
tAHBUARTO clock to output delay rising clk edge TBD TBD ns
tAHBUARTI input to clock hold rising clk edge - - ns
tAHBUART2 input to clock setup rising clk edge - - ns

Note: The dsurx input is re-synchronized internally. The signal does not have to meet any setup or
hold requirements.

13.10 Library dependencies
Table 90 shows libraries used when instantiating the core (VHDL libraries).
Table 90. Library dependencies
Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER UART Signals, component Signals and component declaration
13.11 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;

use grlib.amba.all;
library gaisler;

use gaisler._uart.all;

entity ahbuart_ex is

port (
clk - in std_ulogic;
rstn : in std_ulogic;

-- UART signals
ahbrxd o in
ahbtxd
);

end;

std_ulogic;
: out std_ulogic

architecture rtl of ahbuart_ex is

www.cobham.com/gaisler

GRLIB IP Core

-- AMBA signals
signal apbi : apb_slv_in_type;

signal apbo : apb_slv_out vector := (others => apb_none);
signal ahbmi : ahb_mst_in_type;
signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

-- UART signals

signal ahbuarti : uart_in_type;

signal ahbuarto : uart_out_type;
begin

-- AMBA Components are instantiated here

-- AHB UART

ahbuart0 : ahbuart

generic map (hindex => 5, pindex => 7, paddr => 7)

port map (rstn, clk, ahbuarti, ahbuarto, apbi, apbo(7), ahbmi, ahbmo(5));

-- AHB UART input data
ahbuarti.rxd <= ahbrxd;

-- connect AHB UART output to entity output signal
ahbtxd <= ahbuarto.txd;

end;

www.cobham.com/gaisler

GRLIB IP Core

14

14.1

14.2

AMBAMON - AMBA Bus Monitor

Overview

The AMBA bus monitor checks the AHB and APB buses for violations against a set of rules. When
an error is detected a signal is asserted and error message is (optionally) printed.

Rules

This section lists all rules checked by the AMBA monitor. The rules are divided into four different
tables depending on which type of device they apply to.

Some requirements of the AMBA specification are not adopted by the GRLIB implementation (on a
system level). These requirements are listed in the table below.

Table 91. Requirements not checked in GRLIB

Rule
Number

Description

References

1

A slave which issues RETRY must only be accessed by one master at a
time.

AMBA Spec. Rev 2.0 3-38.

Table 92. AHB master rules.

Rule

Number | Description References

1 Busy can only occur in the middle of bursts. That is only after a NON- | AMBA Spec. Rev 2.0 3-9.

SEQ, SEQ or BUSY. http://www.arm.com/support/faqip/
492 html
2 Busy can only occur in the middle of bursts. It can be the last access of | AMBA Spec. Rev 2.0 3-9.
a burst but only for INCR bursts. http://www.arm.com/support/faqip/
492 html
3 The address and control signals must reflect the next transfer in the AMBA Spec. Rev 2.0 3-9.
burst during busy cycles.
4 The first transfer of a single access or a burst must be NONSEQ (this is | AMBA Spec. Rev 2.0 3-9.
ensured together with rule 1).

5 HSIZE must never be larger than the bus width. AMBA Spec. Rev 2.0 3-43.

6 HADDR must be aligned to the transfer size. AMBA Spec. Rev 2.0 3-12, 3-25.
http://www.arm.com/support/faqip/
582.html

7 Address and controls signals can only change when hready is low if http://www.arm.com/support/faqip/

the previous HTRANS value was IDLE, BUSY or if an ERROR, 487 .html
SPLIT or RETRY response is given. http://www.arm.com/support/faqip/
579.html

8 Address and control signals cannot change between consecutive AMBA Spec. Rev 2.0 3-9.

BUSY cycles.

9 Address must be related to the previous access according to HBURST | AMBA Spec. Rev 2.0 3-9.

and HSIZE and control signals must be identical for SEQUENTIAL
accesses.
10 Master must cancel the following transfer when receiving an RETRY | AMBA Spec. Rev 2.0 3-22.

response.

Master must cancel the following transfer when receiving an SPLIT
response.

AMBA Spec. Rev 2.0 3-22.

www.cobham.com/gaisler

GRLIB IP Core

Table 92. AHB master rules.

Rule
Number

Description

References

12

Master must reattempt the transfer which received a RETRY response.

AMBA Spec. Rev 2.0 3-21.

http://www.arm.com/support/faqip/
603.html.

Master must reattempt the transfer which received a SPLIT response.

AMBA Spec. Rev 2.0 3-21.

http://www.arm.com/support/faqip/
603.html.

14

Master can optionally cancel the following transfer when receiving an
ERROR response. Only a warning is given if assertions are enabled if
it does not cancel the following transfer.

AMBA Spec. Rev 2.0 3-23.

Master must hold HWDATA stable for the whole data phase when wait
states are inserted. Only the appropriate byte lanes need to be driven
for subword transfers.

AMBA Spec. Rev 2.0 3-7. AMBA
Spec. Rev 2.0 3-25.

16

Bursts must not cross a 1 kB address boundary.

AMBA Spec. Rev 2.0 3-11.

17

HMASTLOCK indicates that the current transfer is part of a locked
sequence. It must have the same timing as address/control.

AMBA Spec. Rev 2.0 3-28.

HLOCK must be asserted at least one clock cycle before the address
phase to which it refers.

AMBA Spec. Rev 2.0 3-28.

19

HLOCK must be asserted for the duration of a burst and can only be
deasserted so that HMASTLOCK is deasserted after the final address
phase.

http://www.arm.com/support/faqip/
597.html

20

HLOCK must be deasserted in the last address phase of a burst.

http://www.arm.com/support/faqip/
588.html

21

HTRANS must be driven to IDLE during reset.

http://www.arm.com/support/faqip/
495.html

22

HTRANS can only change from IDLE to NONSEQ or stay IDLE
when HREADY is deasserted.

http://www.arm.com/support/faqip/
579.html

Table 93. AHB slave rules.

Rule
Number

Description

References

1

AHB slave must respond with a zero wait state OKAY response to
BUSY cycles in the same way as for IDLE.

AMBA Spec. Rev 2.0 3-9.

AHB slave must respond with a zero wait state OKAY response to
IDLE.

AMBA Spec. Rev 2.0 3-9.

HRESP should be set to ERROR, SPLIT or RETRY only one cycle
before HREADY is driven high.

AMBA Spec. Rev 2.0 3-22.

Two-cycle ERROR response must be given.

AMBA Spec. Rev 2.0 3-22.

Two-cycle SPLIT response must be given.

AMBA Spec. Rev 2.0 3-22.

Two-cycle RETRY response must be given.

AMBA Spec. Rev 2.0 3-22.

BN e N RV, I N

SPLIT complete signalled to master which did not have pending
access.

AMBA Spec. Rev 2.0 3-36.

Split complete must not be signalled during same cycle as SPLIT.

http://www.arm.com/support/faqip/
616.html

It is recommended that slaves drive HREADY high and HRESP to
OKAY when not selected. A warning will be given if this is not fol-
lowed.

http://www.arm.com/support/faqip/
476.html

www.cobham.com/gaisler

GRLIB IP Core

Table 93. AHB slave rules.

Rule
Number

Description

References

10

It is recommended that slaves do not insert more than 16 wait states. If
this is violated a warning will be given if assertions are enabled.

AMBA Spec. Rev 2.0 3-20.

11

Slaves should not assert the HSPLIT (Split complete) signal for more
than one cycle for each SPLIT response. If a slave asserts HSPLIT for
more than one cycle it will not cause the system to malfunction. It can
however be a indication that a core does not perform as expected.
Therefore assertion of HSPLIT during more than one cycle for a
SPLIT response is reported as a warning.

No reference

Table 94. APB slave rules.

Rule
Number

Description

References

1

The bus must move to the SETUP state or remain in the IDLE state
when in the IDLE state.

AMBA Spec. Rev 2.0 5-4.

The bus must move from SETUP to ENABLE in one cycle.

AMBA Spec. Rev 2.0 5-4.

The bus must move from ENABLE to SETUP or IDLE in one cycle.

AMBA Spec. Rev 2.0 5-5.

The bus must never be in another state than IDLE, SETUP, ENABLE.

AMBA Spec. Rev 2.0 5-4.

PADDR must be stable during transition from SETUP to ENABLE.

AMBA Spec. Rev 2.0 5-5.

PWRITE must be stable during transition from SETUP to ENABLE.

AMBA Spec. Rev 2.0 5-5.

PWDATA must be stable during transition from SETUP to ENABLE.

AMBA Spec. Rev 2.0 5-5.

Only one PSEL must be enabled at a time.

AMBA Spec. Rev 2.0 5-4.

Nl B N BENE e Y R A R

PSEL must be stable during transition from SETUP to ENABLE.

AMBA Spec. Rev 2.0 5-5.

Table 95. Arbiter rules

Rule
Number

Description

References

1

Hreadyln to slaves and master must be driven by the currently selected
device.

http://www.arm.com/support/faqip/
482.html

A master which received a SPLIT response must not be granted the
bus until the slave has set the corresponding HSPLIT line.

AMBA Spec. Rev 2.0 3-35.

The dummy master must be selected when a SPLIT response is
received for a locked transfer.

http://www.arm.com/support/faqip/
14307.html

www.cobham.com/gaisler

GRLIB IP Core

14.3 Configuration options

Table 96 shows the configuration options of the core (VHDL generics).

Table 96. Configuration options

Generic Function Allowed range Default
asserterr Enable assertions for AMBA requirements. Violations 0-1 1
are asserted with severity error.
assertwarn Enable assertions for AMBA recommendations. Viola- [0 -1 1
tions are asserted with severity warning.
hmstdisable Disable AHB master rule check. To disable a master rule | - 0
check a value is assigned so that the binary representa-
tion contains a one at the position corresponding to the
rule number, e.g 0x80 disables rule 7.
hslvdisable Disable AHB slave tests. Values are assigned as for - 0
hmstdisable.
pslvdisable Disable APB slave tests. Values are assigned as for hmst- | - 0
disable.
arbdisable Disable Arbiter tests. Values are assigned as for hmstdis- | - 0
able.
nahbm Number of AHB masters in the system. 0 - NAHBMST NAHBMST
nahbs Number of AHB slaves in the system. 0 - NAHBSLV NAHBSLV
napb Number of APB slaves in the system. 0 - NAPBSLV NAPBSLV
ebterm Relax rule checks to allow use in systems with early 0-1 0
burst termination. This generic should be set to 0 for sys-
tems that use GRLIB’s AHBCTRL core.
14.4 Signal descriptions
Table 97 shows the interface signals of the core (VHDL ports).
Table 97. Signal descriptions
Signal name Field Type Function Active
RST N/A Input AHB reset Low
CLK N/A Input AHB clock -
AHBMI * Input AHB master interface input record -
AHBMO * Input AHB master interface output record array -
AHBSI * Input AHB slave interface input record -
AHBSO * Input AHB slave interface output record array -
APBI * Input APB slave interface input record
APBO * Input APB slave interface output record array
ERR N/A Output Error signal (error detected) High

* see GRLIB IP Library User’s Manual

www.cobham.com/gaisler

GRLIB IP Core

14.5

14.6

Library dependencies

Table 98 shows libraries used when instantiating the core (VHDL libraries).

Table 98. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions

GAISLER SIM Component Component declaration
Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;

use grlib.amba.all;
library gaisler;

use gaisler._sim.all;

entity ambamon_ex is
port (
clk - in std_ulogic;
rst : in std_ulogic
end;

architecture rtl of ambamon_ex is

-- APB signals
signal apbi
signal apbo

: apb_slv_in_type;

-- APB signals
signal apbi : apb_slv_in_type;
signal apbo

begin
-- AMBA Components are instantiated here

library ieee;

use ieee.std_logic_1164.all;
library grlib;

use grlib.amba.all;

library gaisler;
use gaisler.sim.all;

entity ambamon_ex is

port (
clk - in std_ulogic;
rst : in std_ulogic;

err : out std_ulogic
end;

architecture rtl of ambamon_ex is
-- AHB signals
signal ahbmi
signal ahbmo

: ahb_mst_in_type;

-- AHB signals
signal ahbsi
signal ahbso

: ahb_slv_in_type;

-- APB signals

: apb_slv_out_vector := (others => apb_none);

: apb_slv_out_vector := (others => apb_none);

: ahb_mst_out_vector := (others => apb_none);

: ahb_slv_out_vector := (others => apb_none);

www.cobham.com/gaisler

GRLIB IP Core

signal apbi
signal apbo

begin

: apb_slv_in_type;
: apb_slv_out_vector

mon0O : ambamon

generic map(
assert_err
assert_war
nahbm
nahbs
napb

)

port map(
rst
clk
ahbmi
ahbmo
ahbsi
ahbso
apbi
apbo
err

end;

=>
=>
=>
=>
=>

=>
=>
=>
=>
=>
=>
=>
=>

P NDNOPR

rst,
clk,
ahbmi,
ahbmo,
ahbsi,
ahbso,
apbi,
apbo,
err);

:= (others => apb_none);

www.cobham.com/gaisler

GRLIB IP Core

15 APBCTRL - AMBA AHB/APB bridge with plug&play support
15.1 Overview
The AMBA AHB/APB bridge is a APB bus master according the AMBA 2.0 standard.
The controller supports up to 16 slaves. The actual maximum number of slaves is defined in the
GRLIB.AMBA package, in the VHDL constant NAPBSLV. The number of slaves can also be set
using the nslaves VHDL generic.
r———— - - - - - - - A
AHB BUS | AHBIAPB Bridge |
| APEOCL L | APB SLAVE
AHBSI I |
AHBSO[n] | f?]'?e?fgéive DI e [APB SLAVE
| |
| |
| | ApBi
Lo — 4
Figure 19. AHB/APB bridge block diagram
15.2 Operation
15.2.1 Decoding
Decoding (generation of PSEL) of APB slaves is done using the plug&play method explained in the
GRLIB IP Library User’s Manual. A slave can occupy any binary aligned address space with a size of
256 bytes - 1 Mbyte. Writes to unassigned areas will be ignored, while reads from unassigned areas
will return an arbitrary value. AHB error response will never be generated.
15.2.2 Plug&play information
GRLIB APB slaves contain two plug&play information words which are included in the APB records
they drive on the bus (see the GRLIB IP Library User’s Manual for more information). These records
are combined into an array which is connected to the APB bridge.
The plug&play information is mapped on a read-only address area at the top 4 kbytes of the bridge
address space. Each plug&play block occupies 8 bytes. The address of the plug&play information for
a certain unit is defined by its bus index. If the bridge is mapped on AHB address 0x80000000, the
address for the plug&play records is thus 0x800FF000 + n*8.
31 24 23 121110 9 5 4 0
APB Plug&play record 0x00 VENDOR ID DEVICE ID IRQ VERSION IRQ Configuration word
0x04 ADDR C/P MASK TYPE BAR
31 20 19 16 15 4 3 0

Figure 20. APB plug&play information

www.cobham.com/gaisler

GRLIB IP Core

15.3

15.4

15.5

15.6

APB bus monitor

An APB bus monitor is integrated into the core. It is enabled with the enbusmon generic. It has the
same functionality as the APB parts in the AMBA monitor core (AMBAMON). For more information
on which rules are checked se the AMBAMON documentation.

Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x006. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

Implementation

15.5.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).

The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.

The core will use asynchronous reset for all registers if the GRLIB config package setting grlib_asyn-
c_reset_enable is set.

Configuration options
Table 99 shows the configuration options of the core (VHDL generics).

Table 99. Configuration options

Generic Function Allowed range Default
hindex AHB slave index 0 - NAHBSLV-1 0
haddr The MSB address of the AHB area. Sets the 12 most sig- | 0 - 16#FFF# 0
nificant bits in the 32-bit AHB address.
hmask The AHB area address mask. Sets the size of the AHB 0 - 16#FFF# 16#FFF#
area and the start address together with haddr.
nslaves The maximum number of slaves 1 - NAPBSLV NAPBSLV
debug Print debug information during simulation 0-2 2
icheck Enable bus index checking (PINDEX) 0-1 1
enbusmon Enable APB bus monitor 0-1
asserterr Enable assertions for AMBA requirements. Violations 0-1 0
are asserted with severity error.
assertwarn Enable assertions for AMBA recommendations. Viola- [0 -1 0
tions are asserted with severity warning.
pslvdisable Disable APB slave rule check. To disable a slave rule N/A 0

check a value is assigned so that the binary representa-
tion contains a one at the position corresponding to the
rule number, e.g 0x80 disables rule 7.

mcheck Check if there are any intersections between APB slave | 0 -1 1
memory areas. If two areas intersect an assert with level
failure will be triggered (in simulation).

ccheck Perform sanity checks on PnP configuration records (in [0 -1 1

simulation).

www.cobham.com/gaisler

GRLIB IP Core

15.7 Signal descriptions

15.8

15.9

15.10 Instantiation

Table 100 shows the interface signals of the core (VHDL ports).

Table 100.Signal descriptions

Signal name Field Type Function Active
RST N/A Input AHB reset Low
CLK N/A Input AHB clock -
AHBI * Input AHB slave input -
AHBO * Output AHB slave output -
APBI * Output APB slave inputs -
APBO * Input APB slave outputs -

* see GRLIB IP Library User’s Manual

Library dependencies

Table 101 shows libraries used when instantiating the core (VHDL libraries).

Table 101.Library dependencies

Library

Package

Imported unit(s)

Description

GRLIB

AMBA

Types

AMBA signal type definitions

Component declaration

library grlib;

use grlib.amba.all;

component apbctrl

generic (
hindex
haddr
hmask

nslaves :

debug
icheck
):
port (
rst
clk
ahbi
ahbo
apbi
apbo
)

integer :
integer :
integer :

integer range 1 to NAPBSLV

0;
0;
16#FFF#;

integer range 0 to 2 := 2;
integer range O to 1 := 1

-
35 3 35

std_ulogic;
std_ulogic;
: ahb_slv_in_type;
: out ahb_slv_out_type;
: out apb_slv_in_type;

in apb_slv_out_vector

end component;

= NAPBSLV;
-- print config to

This example shows how an APB bridge can be instantiated.

library ieee;

use ieee.std_logic_1164.all;

library grlib;

use grlib.amba.all;
use work.debug.all;

www.cobham.com/gaisler

GRLIB IP Core

15.11

-- AMBA signals

signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahbs_none);

signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector := (others => apb_none);

begin

-- APB bridge

apb0 : apbctrl-- AHB/APB bridge
generic map (hindex => 1, haddr => CFG_APBADDR)
port map (rstn, clk, ahbsi, ahbso(1), apbi, apbo);

-- APB slaves

uartl : apbuart
generic map (pindex => 1, paddr => 1, pirq => 2)
port map (rstn, clk, apbi, apbo(1), uli, ulo);

irgctrlO - irgmp
generic map (pindex => 2, paddr => 2)
port map (rstn, clk, apbi, apbo(2), irgo, irgi);

end;

Debug print-out

The APB bridge can print-out the plug-play information from the attached during simulation. This is
enabled by setting the debug VHDL generic to 2. Reporting starts by scanning the array from 0 to
NAPBSLYV - 1 (defined in the grlib.amba package). It checks each entry in the array for a valid ven-
dor-id (all nonzero ids are considered valid) and if one is found, it also retrieves the device-id. The
description for these ids are obtained from the GRLIB.DEVICES package, and is printed on standard
out together with the slave number. If the index check is enabled (done with a VHDL generic), the
report module also checks if the pindex number returned in the record matches the array number of
the record currently checked (the array index). If they do not match, the simulation is aborted and an
error message is printed.

The address range and memory type is also checked and printed. The address information includes
type, address and mask. The address ranges currently defined are AHB memory, AHB I/O and APB I/
O. All APB devices are in the APB 1/0 range so the type does not have to be checked. From this infor-
mation, the report module calculates the start address of the device and the size of the range. The
information finally printed is start address and size.

www.cobham.com/gaisler

GRLIB IP Core

16

16.1

16.2

APBPS2 - PS/2 host controller with APB interface

Introduction

The PS/2 interface is a bidirectional synchronous serial bus primarily used for keyboard and mouse
communications. The APBPS2 core implements the PS2 protocol with a APB back-end. Figure 21
shows a model of APBPS2 and the electrical interface.

Vce

FPGA/ASIC
r

PS2Data_out

I

I

I

. Data
| Keyboard
I

I

I

I

PS2Data

APBPS2

Clock

PS2Clk

=
PS2Clk_out \I
o
L~
e
~

Figure 21. APBPS2 electrical interface

PS/2 data is sent in 11 bits frames. The first bit is a start bit followed by eight data bits, one odd parity
bit and finally one stop bit. Figure 22 shows a typical PS/2 data frame.

Data frame with parity: ~|start| Do [D1 [D2 [D3 [D4 [D5 | D6 | D7 Parity[stop

Figure 22. PS/2 data frame

Receiver operation

The receiver of APBPS2 receives the data from the keyboard or mouse, and converts it to 8-bit data
frames to be read out via the APB bus. It is enabled through the receiver enable (RE) bit in the PS/2
control register. If a parity error or framing error occurs, the data frame will be discarded. Correctly
received data will be transferred to a 16 byte FIFO. The data ready (DR) bit in the PS/2 status register
will be set, and retained as long as the FIFO contains at least one data frame. When the FIFO is full,
the receiver buffer full (RF) bit in the status register is set. The keyboard will be inhibited and buffer
data until the FIFO gets read again. Interrupt is sent when a correct stop bit is received then it’s up to
the software to handle any resend operations if the parity bit is wrong. Figure 23 shows a flow chart
for the operations of the receiver state machine.

www.cobham.com/gaisler

GRLIB IP Core

16.3

16.4

J
J

Idle

update shift register

Frame_error =1

Start

update parity flag

update FIFO

1
ps2_data_sync
0

'

Idle

Figure 23. Flow chart for the receiver state machine

Transmitter operations

The transmitter part of APBPS2 is enabled for through the transmitter enable (TE) bit in the PS/2 con-
trol register. The PS/2 interface has a 16 byte transmission FIFO that stores commands sent by the
CPU. Commands are used to set the LEDs on the keyboard, and the typematic rate and delay. Type-
matic rate is the repeat rate of a key that is held down, while the delay controls for how long a key has
to be held down before it begins automatically repeating. Typematic repeat rates, delays and possible
other commands are listed in table 113.

If the TE bit is set and the transmission FIFO is not empty a transmission of the command will start.
The host will pull the clock line low for at least 100 us and then transmit a start bit, the eight bit com-
mand, an odd parity bit, a stop bit and wait for an acknowledgement bit by the device. When this hap-
pens an interrupt is generated. Figure 24 shows the flow chart for the transmission state machine.

Clock generation

A PS/2 interface should generate a clock of 10.0 - 16.7 kHz. To transmit data, a PS/2 host must inhibit
communication by pulling the clock low for at least 100 microseconds. To do this, APBPS2 divides
the APB clock with either a fixed or programmable division factor. The divider consist of a 17-bit
down-counter and can divide the APB clock with a factor of 1 - 131071. The division rate, and the
reset value of the timer reload register, is set to the fKHz generic divided by 10 in order to generate the
100 microsecond clock low time. If the VHDL generic fixed is 0, the division rate can be programmed
through the timer reload register and should be programmed with the system frequency in kHz
divided by ten. The reset value of the reload register is always set to the fKHz value divided by ten.
However, the register will not be readable via the APB interface unless the fixed VHDL generic has
been set to 0.

www.cobham.com/gaisler

GRLIB IP Core

Idle Start

ps2clkoe =1
read FIFO

Data

Ack

0
ps2clk =0
ps2clkoe =0

ps2data = 1
ps2dataoe = 0

'Waitrequest

timer = timer + 1

timer < 5000

0

ps2clk = 1, ps2data =0
timer = 0

Parity

1
ps2_data_sync
0

tx_irq = 1, ps2data = 1
ps2dataoe = 1,

Idle

1
ps2data = parity bit

Figure 24. Flow chart for the transmitter state machine

16.5 Registers

The core is controlled through registers mapped into APB address space.

Table 102.APB PS/2 registers

APB address offset Register

0x00 PS/2 Data register

0x04 PS/2 Status register

0x08 PS/2 Control register
0x0C PS/2 Timer reload register

16.5.1 PS/2 Data Register

Table 103.0x00 - DATA - PS/2 data register

31 8 7 0
RESERVED DATA
0 NR
r rw
7: 0 Receiver holding FIFO (read access) and Transmitter holding FIFO (write access). If the receiver

FIFO is not empty, read accesses retrieve the next byte from the FIFO. Bytes written to this field are
stored in the transmitter holding FIFO if it is not full.

www.cobham.com/gaisler

GRLIB IP Core

16.6

16.7

16.5.2 PS/2 Status Register

Table 104.0x04 - STAT - PS/2 status register

31 27 26 22 6 5 4 3 2 1 0

RCNT | TCNT RESERVED TF |RF | KI | FE|PE |DR
0 0 0 0j0j0|0]O0]|O
r r r rlr|rwirwfirw|r

0 Data ready (DR) - indicates that new data is available in the receiver holding register (read only).
1 Parity error (PE) - indicates that a parity error was detected

2 Framing error (FE) - indicates that a framing error was detected.

3: Keyboard inhibit (KI) - indicates that the keyboard is inhibited.

4 Receiver buffer full (RF) - indicates that the output buffer (FIFO) is full (read only).

5: Transmitter buffer full (TF) - indicates that the input buffer (FIFO) is full (read only).

26: 22 Transmit FIFO count (TCNT) - shows the number of data frames in the transmit FIFO (read only).
31:27 Receiver FIFO count (RCNT) - shows the number of data frames in the receiver FIFO (read only).

16.5.3 PS/2 Control Register

Table 105.0x08 - CTRL - PS/2 control register

31 4 3 2 1 0
RESERVED TI | RI'|TE|RE

0 0o/0(0|0
r W | rw | rw|rw

Receiver enable (RE) - if set, enables the receiver.
Transmitter enable (TE) - if set, enables the transmitter.

Keyboard interrupt enable (RI) - if set, interrupts are generated when a frame is received.

w oy 2 Q

Host interrupt enable (TI) - if set, interrupts are generated when a frame is transmitted.
16.5.4 PS/2 Timer Reload Register

Table 106.0x0C - TIMER - PS/2 reload register

31 17 16 0
RESERVED TIMER RELOAD REG
0 .
r w*
16: 0 PS/2 timer reload register - Reset value determined by fktlz VHDL generic. Register only present it

“fixed” VHDL generic is zero.

Vendor and device identifiers
The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x060. For a description

of vendor and device identifiers see GRLIB IP Library User’s Manual.

Implementation

16.7.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-

nal registers.

www.cobham.com/gaisler

GRLIB IP Core

16.8 Configuration options
Table 107 shows the configuration options of the core (VHDL generics).

Table 107.Configuration options

Generic Function Allowed range Default

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

pirq Index of the interrupt line. 0 - NAHBIRQ-1 0

fKHz Frequency of APB clock in KHz. This value divided by | 1-1310710 50000
10 is the reset value of the timer reload register.

fixed Used fixed clock divider to generate PS/2 clock. 0-1 0

oepol Output enable polarity 0-1

16.9 Signal descriptions
Table 108 shows the interface signals of the core (VHDL ports).

Table 108.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
PS21 PS2 CLK I Input PS/2 clock input -
PS2 DATA 1 Input PS/2 data input -
PS20 PS2 CLK O Output PS/2 clock output -
PS2 CLK OE Output PS/2 clock output enable Low
PS2 DATA O Output PS/2 data output -
PS2 DATA_OE Output PS/2 data output enable Low

* see GRLIB IP Library User’s Manual

16.10 Library dependencies
Table 109 shows libraries used when instantiating the core (VHDL libraries).

Table 109.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals APB signal definitions
GAISLER MISC Signals, component PS/2 signal and component declaration

16.11 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;

www.cobham.com/gaisler

GRLIB IP Core

use grlib.amba.all;
use grlib.gencomp.all;

library gaisler;
use gaisler._misc.all;

entity apbps2_ex is
port (
rstn : in std_ulogic;
clk : in std_ulogic;

-- PS/2 signals

ps2clk : inout std_ulogic;
ps2data : inout std_ulogic
);

end;
architecture rtl of apbuart_ex is
-- APB signals
signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out _vector := (others => apb_none);
-- PS/2 signals
signal kbdi : ps2_in_type;
signal kbdo : ps2_out_type;
begin

ps20 : apbps2 generic map(pindex => 5, paddr => 5, pirg => 4)
port map(rstn, clkm, apbi, apbo(5), kbdi, kbdo);

kbdclk_pad : iopad generic map (tech => padtech)
port map (ps2clk,kbdo.ps2_clk_o, kbdo.ps2_clk_oe, kbdi.ps2_clk_i);

kbdata_pad : iopad generic map (tech => padtech)
port map (ps2data, kbdo.ps2_data o, kbdo.ps2_data_oe, kbdi.ps2_data_ i);

end;

www.cobham.com/gaisler

GRLIB IP Core

16.12 Keboard scan codes

Table 110.Scan code set 2, 104-key keyboard

KEY MAKE | BREAK |-|KEY MAKE | BREAK | -|KEY MAKE | BREAK
A 1C F0,1C 9 46 F0,46 [54 FO,54
B 32 F0,32 ‘0E FO,0E INSERT | E0,70 E0,F0,70
C 21 F0,21 - 4E FO,4E HOME E0,6C E0,F0,6C
D 23 F0,23 = 55 FO,55 PG UP E0,7D E0,F0,7D
E 24 F0,24 \ 5D F0,5D DELETE | E0,71 E0,F0,71
F 2B F0,2B BKSP 66 F0,66 END E0,69 E0,F0,69
G 34 F0,34 SPACE |29 F0,29 PG DN E0,7A E0,F0,7A
H 33 F0,33 TAB 0D F0,0D 8] E0,75 E0,F0,75
ARROW
I 43 F0,43 CAPS 58 F0,58 L E0,6B E0,F0,6B
ARROW
J 3B F0,3B LSHFT |12 FO,12 D E0,72 E0,F0,72
ARROW
K 42 F0,42 LCTRL |14 FO,14 R E0,74 E0,F0,74
ARROW
L 4B FO0,4B L GUI EO0,1F E0,F0,1F NUM 77 F0,77
M 3A FO,3A LALT 11 FO,11 KP/ E0,4A E0,F0,4A
N 31 F0,31 RSHFT |59 F0,59 KP * 7C F0,7C
0 44 F0,44 RCTRL |EO0,14 E0,F0,14 KP - 7B F0,7B
P 4D F0,4D R GUI E0,27 E0,F0,27 KP + 79 F0,79
Q 15 F0,15 RALT EO0,11 E0,F0,11 KP EN E0,5A E0,F0,5A
R 2D F0,2D APPS E0,2F E0,F0,2F KP. 71 F0,71
S 1B F0,1B ENTER |5A F0,5A KP 0 70 F0,70
T 2C F0,2C ESC 76 F0,76 KP 1 69 F0,69
8] 3C F0,3C F1 5 F0,05 KP2 72 F0,72
\% 2A FO,2A F2 6 F0,06 KP3 7A FO,7A
w 1D F0,1D F3 4 F0,04 KP4 6B F0,6B
X 22 F0,22 F4 0C F0,0C KP5 73 F0,73
Y 35 F0,35 F5 3 F0,03 KP 6 74 F0,74
z 1A FO,1A F6 0B F0,0B KP7 6C F0,6C
0 45 F0,45 F7 83 F0,83 KP 8 75 F0,75
1 16 F0,16 F8 0A FO0,0A KP 9 7D F0,7D
2 IE FO,1E F9 1 F0,01] 5B F0,5B
3 26 F0,26 F10 9 F0,09 ; 4c F0,4C
4 25 F0,25 F11 78 F0,78 52 F0,52
5 2E FO,2E F12 7 F0,07 , 41 F0,41
6 36 F0,36 PRNT E0,12, E0,FO0, . 49 F0,49
SCRN E0,7C 7C,E0,
F0,12
3D F0,3D SCROLL | 7E F0,7E / 4A FO,4A
3E FO,3E PAUSE |E1,14,77, | -NONE-
EL,F0,14,
F0,77

www.cobham.com/gaisler

GRLIB IP Core

Table 111.Windows multimedia scan codes

KEY MAKE | BREAK

Next Track EO, 4D EO, FO, 4D
Previous Track | EO, 15 EO, FO, 15
Stop EO, 3B EO, FO, 3B
Play/Pause EO, 34 EO, FO, 34
Mute EO, 23 EO, FO, 23
Volume Up EO, 32 EO, FO, 32

Volume Down EO, 21 EO, FO, 21
Media Select EO0, 50 EO, FO, 50
E-Mail EO, 48 EO, FO, 48
Calculator EO, 2B EO, FO, 2B
My Computer EO0, 40 EO, FO, 40
WWW Search EO, 10 EO, FO, 10
WWW Home EO, 3A EO, FO, 3A
WWW Back EO, 38 EO, FO, 38
WWW Forward | EO, 30 EO, FO, 30
WWW Stop EO, 28 EO, FO, 28
WWW Refresh | EO, 20 EO0, FO, 20

WWW Favor- EO, 18 EO, FO, 18
ites

Table 112. ACPI scan codes (Advanced Configuration and Power Interface)

KEY MAKE BREAK

Power EO0, 37 EO0, FO, 37
Sleep EO, 3F EO, FO, 3F
Wake EO, 5E EO, FO, 5E

www.cobham.com/gaisler

GRLIB IP Core

16.13 Keyboard commands

Table 113.Transmit commands:

Command

Description

0xED

Set status LED’s - keyboard will reply with ACK (0xFA). The host follows this command with an
argument byte*

0xEE

Echo command - expects an echo response

0xFO0

Set scan code set - keyboard will reply with ACK (0xFA) and wait for another byte. 0x01-0x03
which determines the scan code set to use. 0x00 returns the current set.

0xF2

Read ID - the keyboard responds by sending a two byte device ID of 0xAB 0x83

0xF3

Set typematic repeat rate - keyboard will reply with ACK (0xFA) and wait for another byte which
determines the typematic rate.

0xF4

Keyboard enable - clears the keyboards output buffer, enables keyboard scanning and returns an
acknowledgement.

0xF5

Keyboard disable - resets the keyboard, disables keyboard scanning and returns an acknowledge-
ment.

0xF6

Set default - load default typematic rate/delay (10.9cps/500ms) and scan code set 2

0xFE

Resend - upon receipt of the resend command the keyboard will retransmit the last byte

0xFF

Reset - resets the keyboard

* bit 0 controls the scroll lock, bit 1 the num lock, bit 2 the caps lock, bit 3-7 are ignored

Table 114.Receive commands:

Command Description

O0xFA Acknowledge

0xAA Power on self test passed (BAT completed)

O0xEE Echo respond

O0xFE Resend - upon receipt of the resend command the host should retransmit the last byte
0x00 Error or buffer overflow

OxFF Error of buffer overflow

Table 115.The typematic rate/delay argument byte

MSB

LSB

| 0 | DELAY

DELAY | RATE RATE RATE RATE RATE

www.cobham.com/gaisler

GRLIB IP Core

Table 116.Typematic repeat rates

Bits 0- | Rate Bits 0- | Rate Bits 0- | Rate Bits 0- | Rate
4 (cps) 4 (cps) 4 (cps) 4 (cps)
00h 30 08h 15 10h 7.5 18h 3.7
01lh 26.7 0%h 13.3 11h 6.7 15h 33
02h 24 0Ah 12 12h 6 1Ah 3
03h 21.8 0Bh 10.9 13h 55 1Bh 2.7
04h 20.7 0Ch 10 14h 5 1Ch 2.5
05h 18.5 0Dh 9.2 15h 4.6 1Dh 2.3
06h 17.1 0Eh 8.6 16h 43 1Eh 2.1
07h 16 OFh 8 17h 4 1Fh 2

Table 117.Typematic delays

Bits 5-6 | Delay (seconds)
00b 0.25

01b 0.5

10b 0.75

11b 1

www.cobham.com/gaisler

GRLIB IP Core

17

171

17.2

APBUART - AMBA APB UART Serial Interface

Overview

The interface is provided for serial communications. The UART supports data frames with 8 data bits,
one optional parity bit and one or two stop bits. To generate the bit-rate, each UART has a program-
mable 12-bit clock divider. Two FIFOs are used for data transfer between the APB bus and UART,
when fifosize VHDL generic > 1. Two holding registers are used data transfer between the APB bus
and UART, when fifosize VHDL generic = 1. Hardware flow-control is supported through the RTSN/
CTSN hand-shake signals, when flow VHDL generic is set. Parity is supported, when parity VHDL
generic is set.

<+«— CTSN
Serial port
Baud-rate 8*bitclk Controller ——»F] RTSN
generator
RXD E}— Receiver shift register Transmitter shift register ——»KJ TXD
Receiver FIFO or Transmitter FIFO or
holding register holding register

| w1

Figure 25. Block diagram

Operation

17.2.1 Transmitter operation

The transmitter is enabled through the TE bit in the UART control register. Data that is to be trans-
ferred is stored in the FIFO/holding register by writing to the data register. This FIFO is configurable
to different sizes via the fifosize VHDL generic. When the size is 1, only a single holding register is
used but in the following discussion both will be referred to as FIFOs. When ready to transmit, data is
transferred from the transmitter FIFO/holding register to the transmitter shift register and converted to
a serial stream on the transmitter serial output pin (TXD). It automatically sends a start bit followed
by eight data bits, an optional parity bit, and one stop bit (figure 26). The least significant bit of the
data is sent first. It is also possible to use two stop bits, this is configured via the control register.

www.cobham.com/gaisler

GRLIB IP Core

Data frame, no parity: Tsm] DO \ D1 \ D2 \ D3 \ D4 \ D5 \ D6 \ D7 ‘Stop‘

Data frame with parity: ~ |start| Do [D1 [D2 [D3 [D4 [D5 | D6 | D7 Parity[stop

Figure 26. UART data frames

Following the transmission of the stop bit, if a new character is not available in the transmitter FIFO,
the transmitter serial data output remains high and the transmitter shift register empty bit (TS) will be
set in the UART status register. Transmission resumes and the TS is cleared when a new character is
loaded into the transmitter FIFO. When the FIFO is empty the TE bit is set in the status register. If the
transmitter is disabled, it will immediately stop any active transmissions including the character cur-
rently being shifted out from the transmitter shift register. The transmitter holding register may not be
loaded when the transmitter is disabled or when the FIFO (or holding register) is full. If this is done,
data might be overwritten and one or more frames are lost.

The discussion above applies to any FIFO configurations including the special case with a holding
register (VHDL generic fifosize = 1). If FIFOs are used (VHDL generic fifosize > 1) some additional
status and control bits are available. The TF status bit (not to be confused with the TF control bit) is
set if the transmitter FIFO is currently full and the TH bit is set as long as the FIFO is less than half-
full (less than half of entries in the FIFO contain data). The TF control bit enables FIFO interrupts
when set. The status register also contains a counter (TCNT) showing the current number of data
entries in the FIFO.

When flow control is enabled, the CTSN input must be low in order for the character to be transmit-
ted. If it is deasserted in the middle of a transmission, the character in the shift register is transmitted
and the transmitter serial output then remains inactive until CTSN is asserted again. If the CTSN is
connected to a receivers RTSN, overrun can effectively be prevented.

17.2.2 Receiver operation

The receiver is enabled for data reception through the receiver enable (RE) bit in the UART control
register. The receiver looks for a high to low transition of a start bit on the receiver serial data input
pin. If a transition is detected, the state of the serial input is sampled a half bit clocks later. If the serial
input is sampled high the start bit is invalid and the search for a valid start bit continues. If the serial
input is still low, a valid start bit is assumed and the receiver continues to sample the serial input at
one bit time intervals (at the theoretical centre of the bit) until the proper number of data bits and the
parity bit have been assembled and one stop bit has been detected. The serial input is shifted through
an 8-bit shift register where all bits have to have the same value before the new value is taken into
account, effectively forming a low-pass filter with a cut-off frequency of 1/8 system clock.

The receiver also has a configurable FIFO which is identical to the one in the transmitter. As men-
tioned in the transmitter part, both the holding register and FIFO will be referred to as FIFO.

During reception, the least significant bit is received first. The data is then transferred to the receiver
FIFO and the data ready (DR) bit is set in the UART status register as soon as the FIFO contains at
least one data frame. The parity, framing and overrun error bits are set at the received byte boundary,
at the same time as the data ready bit would have been set. The data frame is not stored in the FIFO if
an error is detected. Also, the new error status bits are or:ed with the old values before they are stored
into the status register. Thus, they are not cleared until written to with zeros from the AMBA APB
bus. If both the receiver FIFO and shift registers are full when a new start bit is detected, then the

www.cobham.com/gaisler

GRLIB IP Core

17.3

17.4

17.5

17.6

character held in the receiver shift register will be lost and the overrun bit will be set in the UART sta-
tus register. A break received (BR) is indicated when a BREAK has been received, which is a framing
error with all data received being zero.

If flow control is enabled, then the RTSN will be negated (high) when a valid start bit is detected and
the receiver FIFO is full. When the holding register is read, the RTSN will automatically be reasserted
again.

When the VHDL generic fifosize > 1, which means that holding registers are not considered here,
some additional status and control bits are available. The RF status bit (not to be confused with the RF
control bit) is set when the receiver FIFO is full. The RH status bit is set when the receiver FIFO is
half-full (at least half of the entries in the FIFO contain data frames). The RF control bit enables
receiver FIFO interrupts when set. A RCNT field is also available showing the current number of data
frames in the FIFO.

Baud-rate generation

Each UART contains a 12-bit down-counting scaler to generate the desired baud-rate, the number of
scaler bits can be increased with VHDL generic sbits. The scaler is clocked by the system clock and
generates a UART tick each time it underflows. It is reloaded with the value of the UART scaler
reload register after each underflow. The resulting UART tick frequency should be 8 times the desired
baud-rate. One appropriate formula to calculate the scaler value for a desired baud rate, using integer
division where the remainder is discarded, is:

scaler value = (system_clock_frequency) / (baud_rate * 8 + 7).
To calculate the exact required scaler value use:
scaler value = (system_clock_frequency) / (baud_rate * 8) - 1

If the EC bit is set, the ticks will be generated with the same frequency as the external clock input
instead of at the scaler underflow rate. In this case, the frequency of external clock must be less than
half the frequency of the system clock.

Loop back mode

If the LB bit in the UART control register is set, the UART will be in loop back mode. In this mode,
the transmitter output is internally connected to the receiver input and the RTSN is connected to the
CTSN. It is then possible to perform loop back tests to verify operation of receiver, transmitter and
associated software routines. In this mode, the outputs remain in the inactive state, in order to avoid
sending out data.

FIFO debug mode

FIFO debug mode is entered by setting the debug mode bit in the control register. In this mode it is
possible to read the transmitter FIFO and write the receiver FIFO through the FIFO debug register.
The transmitter output is held inactive when in debug mode. A write to the receiver FIFO generates an
interrupt if receiver interrupts are enabled.

FIFO debug mode requires that the hardware implementation supports flow control (VHDL generic
flow =1).

Interrupt generation

Interrupts are generated differently when a holding register is used (VHDL generic fifosize = 1) and
when FIFOs are used (VHDL generic fifosize > 1). When holding registers are used, the UART will
generate an interrupt under the following conditions: when the transmitter is enabled, the transmitter
interrupt is enabled and the transmitter holding register moves from full to empty; when the receiver
is enabled, the receiver interrupt is enabled and the receiver holding register moves from empty to

www.cobham.com/gaisler

GRLIB IP Core

17.7

full; when the receiver is enabled, the receiver interrupt is enabled and a character with either parity,
framing or overrun error is received.

For FIFOs, two different kinds of interrupts are available: normal interrupts and FIFO interrupts. For
the transmitter, normal interrupts are generated when transmitter interrupts are enabled (TI), the trans-
mitter is enabled and the transmitter FIFO goes from containing data to being empty. FIFO interrupts
are generated when the FIFO interrupts are enabled (TF), transmissions are enabled (TE) and the
UART is less than half-full (that is, whenever the TH status bit is set). This is a level interrupt and the
interrupt signal is continuously driven high as long as the condition prevails. The receiver interrupts
work in the same way. Normal interrupts are generated in the same manner as for the holding register.
FIFO interrupts are generated when receiver FIFO interrupts are enabled, the receiver is enabled and
the FIFO is half-full. The interrupt signal is continuously driven high as long as the receiver FIFO is
half-full (at least half of the entries contain data frames). Note that when using any of the LEON inter-
rupt controllers, the processor acknowledges and clears the corresponding interrupt pending register
but as the interrupt signal is continuously driven high another instance of interrupt pending is set in
the interrupt controller.

To reduce interrupt occurrence a delayed receiver interrupt is available. It is enabled using the delayed
interrupt enable (DI) bit. When enabled a timer is started each time a character is received and an
interrupt is only generated if another character has not been received within 4 character + 4 bit times.
If receiver FIFO interrupts are enabled a pending character interrupt will be cleared when the FIFO
interrupt is active since the character causing the pending irq state is already in the FIFO and is
noticed by the driver through the FIFO interrupt. In order to not take one additional interrupt (due to
the interrupt signal being driven continuously high as described above), software should clear the cor-
responding pending bit in the interrupt controller after the FIFO has been emptied.

There is also a separate interrupt for break characters. When enabled an interrupt will always be gen-
erated immediately when a break character is received even when delayed receiver interrupts are
enabled. When break interrupts are disabled no interrupt will be generated for break characters when
delayed interrupts are enabled.

When delayed interrupts are disabled the behavior is the same for the break interrupt bit except that an
interrupt will be generated for break characters if receiver interrupt enable is set even if break inter-
rupt is disabled.

An interrupt can also be enabled for the transmitter shift register. When enabled the core will generate
an interrupt each time the shift register goes from a non-empty to an empty state.

Registers
The core is controlled through registers mapped into APB address space.

Table 118.UART registers

APB address offset Register

0x0 UART Data register

0x4 UART Status register

0x8 UART Control register
0xC UART Scaler register

0x10 UART FIFO debug register

www.cobham.com/gaisler

GRLIB IP Core

17.7.1 UART Data Register

Table 119. 0x00 - DATA - UART data register
31 8 7 0
RESERVED DATA
NR

Receiver holding register or FIFO (read access)

0 Transmitter holding register or FIFO (write access)
17.7.2 UART Status Register

Table 120. 0x04 - STAT - UART status register

31 26 25 20 19 1710 9 8 7 6 5 4 3 2 1 0
RCNT TCNT RESERVED RF|TF |RH|TH |FE|PE|OV|BR|TE| TS |DR
0 0 0 o,0;j040j0j0j0O]0O|1T|1]0
r r r r r r r|wimnw, | rwji|rw,|r r r
31: 26 Receiver FIFO count (RCNT) - shows the number of data frames in the receiver FIFO. Reset: 0
25:20 Transmitter FIFO count (TCNT) - shows the number of data frames in the transmitter FIFO. Reset: 0
10 Receiver FIFO full (RF) - indicates that the Receiver FIFO is full. Reset: 0

Transmitter FIFO full (TF) - indicates that the Transmitter FIFO is full. Reset: 0

Receiver FIFO half-full (RH) -indicates that at least half of the FIFO is holding data. Reset: 0
Transmitter FIFO half-full (TH) - indicates that the FIFO is less than half-full. Reset: 0

Framing error (FE) - indicates that a framing error was detected. Reset: 0

Parity error (PE) - indicates that a parity error was detected. Reset: 0

Overrun (OV) - indicates that one or more character have been lost due to overrun. Reset: 0

Break received (BR) - indicates that a BREAK has been received. Reset: 0

Transmitter FIFO empty (TE) - indicates that the transmitter FIFO is empty. Reset: 1

Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty. Reset: 1

S = N W kA L N O 0 O

Data ready (DR) - indicates that new data is available in the receiver holding register. Reset: 0

www.cobham.com/gaisler

GRLIB IP Core

17.7.3 UART Control Register

Table 121. UART control register

31 30 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FA RESERVED NS| Sl | DI | Bl |\DB|RF|TF |EC|LB |FL |[PE|PS| Tl | RI | TE |RE
0 0 INR|NRINR|NR|NR|INR|NR| 0 |[NR| 0 INR|NR|NRINR| 0 | O
r W Iw |IW |IW|IW |ITW |ITW | ITW | IW | IW | IW | IW|IW|IW|TIW|IW]|Irw

31 FIFOs available (FA) - Set to 1 when receiver and transmitter FIFOs are available. When 0, only

holding register are available.
30: 16 RESERVED
15 Number of stop bits (NS) - When set to ‘1’ then two stop bits will be used, otherwise one stop bit

will be used.

14 Transmitter shift register empty interrupt enable (SI) - When set, an interrupt will be generated when
the transmitter shift register becomes empty. See section 17.6 for more details.

13 Delayed interrupt enable (DI) - When set, delayed receiver interrupts will be enabled and an inter-
rupt will only be generated for received characters after a delay of 4 character times + 4 bits if no
new character has been received during that interval. This is only applicable if receiver interrupt
enable is set. See section 17.6 for more details.

12 Break interrupt enable (BI) - When set, an interrupt will be generated each time a break character is
received. See section 16.6 for more details.

11 FIFO debug mode enable (DB) - when set, it is possible to read and write the FIFO debug register.
10 Receiver FIFO interrupt enable (RF) - when set, Receiver FIFO level interrupts are enabled.

9 Transmitter FIFO interrupt enable (TF) - when set, Transmitter FIFO level interrupts are enabled.
8 External Clock (EC) - if set, the UART scaler will be clocked by UARTL.LEXTCLK.

7 Loop back (LB) - if set, loop back mode will be enabled.

6 Flow control (FL) - if set, enables flow control using CTS/RTS (when implemented).

5 Parity enable (PE) - if set, enables parity generation and checking (when implemented).

4 Parity select (PS) - selects parity polarity (0 = even parity, 1 = odd parity) (when implemented).

3

Transmitter interrupt enable (TT) - if set, interrupts are generated when characters are transmitted
(see section 17.6 for details).

2 Receiver interrupt enable (RI) - if set, interrupts are generated when characters are received (see sec-
tion 17.6 for details).

Transmitter enable (TE) - if set, enables the transmitter.

0 Receiver enable (RE) - if set, enables the receiver.

17.7.4 UART Scaler Register

Table 122.0x0C - SCALER - UART scaler reload register

31 sbits sbits-1 0
RESERVED SCALER RELOAD VALUE
0 NR
r w
sbits-1:0 Scaler reload value

www.cobham.com/gaisler

GRLIB IP Core

17.7.5 UART FIFO Debug Register

Table 123. 0x10 - DEBUG - UART FIFO debug register

31 8 7 0
RESERVED DATA
0 NR
r w

Transmitter holding register or FIFO (read access)

0 Receiver holding register or FIFO (write access)

17.8 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x00C. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

17.9 Implementation

17.9.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).

The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.

The core does not support grlib_async_reset_enable. All registers that react on the reset signal will
have a synchronous reset.

17.10 Configuration options
Table 124 shows the configuration options of the core (VHDL generics).

Table 124.Configuration options

Generic Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0
paddr ADDR field of the APB BAR. 0 - 16#FFF# 0
pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#
console Prints output from the UART on console during VHDL [0 -1 0
simulation and speeds up simulation by always returning
‘1’ for Data Ready bit of UART Status register. Does not
affect synthesis.
pirq Index of the interrupt line. 0 - NAHBIRQ-1 0
parity Enables parity 0-1 1
flow Enables flow control. Flow control must be implemented | 0 - 1 1
for FIFO debug mode to be supported. Setting this
generic to 0 also disables FIFO debug mode.
fifosize Selects the size of the Receiver and Transmitter FIFOs 1,2,4,8, 16, 32 1
abits Selects the number of APB address bits used to decode | 3-8 8
the register addresses
sbits Selects the number of bits in the scaler 12-32 12

www.cobham.com/gaisler

GRLIB IP Core

17.11 Signal descriptions

Table 125 shows the interface signals of the core (VHDL ports).

Table 125.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
UARTI RXD Input UART receiver data -
CTSN Input UART clear-to-send Low
EXTCLK Input Use as alternative UART clock -
UARTO RTSN Output UART request-to-send Low
TXD Output UART transmit data -
SCALER Output UART scaler value -
TXEN Output Output enable for transmitter High
FLOW Output Unused -
RXEN Output Receiver enable High

* see GRLIB IP Library User’s Manual

17.12 Signal definitions and reset values

The signals and their reset values are described in table 126.

Table 126.Signal definitions and reset values

Signal name Type Function Active Reset value
txd[] Output UART transmit data line - Logical 1
rtsn[] Output Ready To Send Low Logical 1
rxd[] Input UART receive data line - -

ctsn[] Input Clear To Send Low -

www.cobham.com/gaisler

GRLIB IP Core

17.13 Timing

The timing waveforms and timing parameters are shown in figure 27 and are defined in table 127.

ok AVAVAVAWAVAVANERYVAWY

txd[l, rtsn[] — \#7 tAPBUARTO — ,\C tAPBUARTO
rxd[], ctsn[] — \{ﬁ tAPBUART1 ﬁ~/—<— tAPBUART2

Figure 27. Timing waveforms

Table 127.Timing parameters

Name Parameter Reference edge Min Max Unit
tAPBUARTO clock to output delay rising clk edge TBD TBD ns
tAPBUARTI input to clock hold rising clk edge - - ns
tAPBUART2 input to clock setup rising clk edge - - ns

Note: The ctsn[] and rxd[] inputs are re-synchronized internally. These signals do not have to meet
any setup or hold requirements.

17.14 Library dependencies
Table 128 shows libraries that should be used when instantiating the core.

Table 128.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals APB signal definitions
GAISLER UART Signals, component Signal and component declaration

17.15 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;

use grlib.amba.all;
library gaisler;

use gaisler.uart.all;

entity apbuart_ex is
port (
clk - in std_ulogic;
rstn : in std_ulogic;

-- UART signals

rxd : in std_ulogic;
txd : out std_ulogic
)

end;

architecture rtl of apbuart_ex is

www.cobham.com/gaisler

GRLIB IP Core

-- APB signals
signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out vector := (others => apb_none);

-- UART signals
signal uarti : uart_in_type;
signal uarto : uart _out_type;

begin
-- AMBA Components are instantiated here

-- APB UART

uart0 : apbuart

generic map (pindex => 1, paddr => 1, pirgq => 2,
console => 1, fifosize => 1)

port map (rstn, clk, apbi, apbo(1), uarti, uarto);

-- UART input data
uarti.rxd <= rxd;

-- APB UART inputs not used in this configuration
uarti.ctsn <= ’07; uarti.extclk <= ”07;

-- connect APB UART output to entity output signal
txd <= uarto.txd;

end;

www.cobham.com/gaisler

GRLIB IP Core

18

18.1

18.2

APBVGA - VGA controller with APB interface

Introduction

The APBVGA core is a text-only video controller with a resolution of 640x480 pixels, creating a dis-
play of 80x37 characters. The controller consists of a video signal generator, a 4 Kbyte text buffer, and
a ROM for character pixel information. The video controller is controlled through an APB interface.

A block diagram for the data path is shown in figure 28.

Character ROM

}

| »FJ HSYNC
—»K] VSYNC
: Video
Video memory Generator —»K] CB:SAl\f\IFI’(_SYNC
—»K] RED[7:0]

GREEN[7:0]
T BLUE[7:0]

APB

Figure 28. APBVGA block diagram

Operation

The video timing of APBVGA is fixed to generate a 640x480 display with 60 Hz refresh rate. The text
font is encoded using 8x13 pixels. The display is created by scanning a segment of 2960 characters of
the 4 Kbyte text buffer, rasterizing the characters using the character ROM, and sending the pixel data
to an external video DAC using three 8-bit color channels. The required pixel clock is 25.175 MHz,
which should be provided on the VGACLK input.

Writing to the video memory is made through the VGA data register. Bits [7:0] contains the character
to be written, while bits [19:8] defines the text buffer address. Foreground and background colours are
set through the background and foreground registers. These 24 bits corresponds to the three pixel col-
ors, RED, GREEN and BLUE. The eight most significant bits defines the red intensity, the next eight
bits defines the green intensity and the eight least significant bits defines the blue intensity. Maximum
intensity for a color is received when all eight bits are set and minimum intensity when none of the
bits are set. Changing the foreground color results in that all characters change their color, it is not
possible to just change the color of one character. In addition to the color channels, the video control-
ler generates HSYNC, VSYNC, CSYNC and BLANK. Togetherm the signals are suitable to drive an
external video DAC such as ADV7125 or similar.

APBVGA implements hardware scrolling to minimize processor overhead. The controller monitors
maintains a reference pointer containing the buffer address of the first character on the top-most line.
When the text buffer is written with an address larger than the reference pointer + 2960, the pointer is
incremented with 80. The 4 Kbyte text buffer is sufficient to buffer 51 lines of 80 characters. To sim-
plify hardware design, the last 16 bytes (4080 - 4095) should not be written. When address 4079 has
been written, the software driver should wrap to address 0. Sofware scrolling can be implemented by
only using the first 2960 address in the text buffer, thereby never activating the hardware scolling
mechanism.

www.cobham.com/gaisler

GRLIB IP Core

18.3 Registers
The APB VGA is controlled through three registers mapped into APB address space.

Table 129.APB VGA registers

APB address offset Register

0x0 VGA Data register (write-only, reads will return 0x00000000).

0x4 VGA Background color (write-only, reads will return 0x00000000).
0x8 VGA Foreground color (write-only, reads will return 0x00000000).

18.3.1 VGA Data Register

Table 130. 0x00 - DATA - VGA data register

31 20 19 8 7 0
RESERVED ADDRESS DATA
0 0 0
r w w
19: 8 Video memory address (write access)
7: 0 Video memory data (write access)
18.3.2 VGA Background Color
Table 131. 0x04 - BGCOL - VGA background register
31 24 23 16 15 8 7 0
RESERVED RED GREEN BLUE
0
r w w w
23: 16 Video background color red.
15: 8 Video background color green.
7: 0 Video background color blue.
18.3.3 VGA Foreground Color
Table 132. 0x00 - FGCOL - VGA foreground register
31 24 23 16 15 8 7 0
RESERVED RED GREEN BLUE
0
r w w w
23: 16 Video foreground color red.
15: 8 Video foreground color green.
7: 0 Video foreground color blue.

18.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x061. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

www.cobham.com/gaisler

GRLIB IP Core

18.5 Implementation

18.5.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-

nal registers.

18.6 Configuration o

Table 133 shows the configuration options of the core (VHDL generics).

ptions

Table 133.Configuration options

Generic Function Allowed range Default

memtech Technology to implement on-chip RAM 0-NTECH 2

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 164#FFF#

18.7 Signal descriptions
Table 134 shows the interface signals of the core (VHDL ports).
Table 134.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

VGACLK N/A Input | VGA Clock -

APBI * Input APB slave input signals -

APBO * Output | APB slave output signals -

VGAO HSYNC Output | Horizontal synchronization High
VSYNC Vertical synchronization High
COMP_SYNC Composite synchronization Low
BLANK Blanking Low
VIDEO OUT _R[7:0] Video out, color red -
VIDEO OUT G[7:0] Video out, color green -
VIDEO OUT _BJ[7:0] Video out, color blue -
BITDEPTH[1:0] Constant High -

* see GRLIB IP Library User’s Manual

18.8 Library dependencies

Table 135 shows libraries used when instantiating the core (VHDL libraries).

Table 135.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals APB signal definitions
GAISLER MISC Signals, component VGA signal and component declaration

www.cobham.com/gaisler

GRLIB IP Core

18.9 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;

library gaisler;
use gaisler._misc.all;

architecture rtl of apbuart_ex is

signal apbi : apb_slv_in_type;

signal apbo : apb_slv_out_vector := (others => apb_none);
signal vgao : apbvga out_type;
begin

-- AMBA Components are instantiated here

-- APB VGA

vga0 : apbvga

generic map (memtech => 2, pindex => 6, paddr => 6)

port map (rstn, clk, vgaclk, apbi, apbo(6), vgao);
end;

www.cobham.com/gaisler

GRLIB IP Core

19

19.1

19.2

19.3

CAN_OC - GRLIB wrapper for OpenCores CAN Interface core

Overview

CAN_OC is GRLIB wrapper for the CAN core from Opencores. It provides a bridge between AMBA
AHB and the CAN Core registers. The AHB slave interface is mapped in the AHB 1/O space using the
GRLIB plug&play functionality. The CAN core interrupt is routed to the AHB interrupt bus, and the
interrupt number is selected through the irq generic. The FIFO RAM in the CAN core is implemented
using the GRLIB parametrizable SYNCRAM 2P memories, assuring portability to all supported
technologies.

This CAN interface implements the CAN 20.A and 2.0B protocols. It is based on the Philips SJA1000
and has a compatible register map with a few exceptions.

CAN_OC Wrapper

CAN Core

: v 1

AHB slave interface

Figure 29. Block diagram

Opencores CAN controller overview

This CAN controller is based on the Philips SJA1000 and has a compatible register map with a few
exceptions. It also supports both BasicCAN (PCA82C200 like) and PeliCAN mode. In PeliCAN
mode the extended features of CAN 2.0B is supported. The mode of operation is chosen through the
Clock Divider register.

This document will list the registers and their functionality. The Philips SJA1000 data sheet can be
used as a reference if something needs clarification. See also the Design considerations chapter for
differences between this core and the SJTA1000.

The register map and functionality is different between the two modes of operation. First the Basic-
CAN mode will be described followed by PeliCAN. Common registers (clock divisor and bus timing)
are described in a separate chapter. The register map also differs depending on whether the core is in
operating mode or in reset mode. When reset the core starts in reset mode awaiting configuration.
Operating mode is entered by clearing the reset request bit in the command register. To re-enter reset
mode set this bit high again.

AHB interface

All registers are one byte wide and the addresses specified in this document are byte addresses. Byte
reads and writes should be used when interfacing with this core. The read byte is duplicated on all
byte lanes of the AHB bus. The wrapper is big endian so the core expects the MSB at the lowest
address.

The bit numbering in this document uses bit 7 as MSB and bit 0 as LSB.

The core is designed for big-endian systems.

www.cobham.com/gaisler

GRLIB IP Core

19.4 BasicCAN mode

19.4.1 BasicCAN register map

Table 136.BasicCAN address allocation

Address Operating mode Reset mode
Read Write Read Write
0 Control Control Control Control
1 (0xFF) Command (0xFF) Command
2 Status - Status -
3 Interrupt - Interrupt -
4 (0xFF) - Acceptance code Acceptance code
5 (0xFF) - Acceptance mask Acceptance mask
6 (0xFF) - Bus timing 0 Bus timing 0
7 (0xFF) - Bus timing 1 Bus timing 1
8 (0x00) - (0x00) -
9 (0x00) - (0x00) -
10 TX idl TX idl (0XFF) -
11 TX id2, rtr, dlc TX id2, rtr, dlc (0xFF) -
12 TX data byte 1 TX data byte 1 (0xFF) -
13 TX data byte 2 TX data byte 2 (0xFF) -
14 TX data byte 3 TX data byte 3 (0xFF) -
15 TX data byte 4 TX data byte 4 (0OxFF) -
16 TX data byte 5 TX data byte 5 (0xFF) -
17 TX data byte 6 TX data byte 6 (0xFF) -
18 TX data byte 7 TX data byte 7 (0xFF) -
19 TX data byte 8 TX data byte 8 (0xFF) -
20 RX idl - RXidl -
21 RXid2, rtr, dlc - RXid2, rtr, dlc -
22 RX data byte 1 - RX data byte 1 -
23 RX data byte 2 - RX data byte 2 -
24 RX data byte 3 - RX data byte 3 -
25 RX data byte 4 - RX data byte 4 -
26 RX data byte 5 - RX data byte 5 -
27 RX data byte 6 - RX data byte 6 -
28 RX data byte 7 - RX data byte 7 -
29 RX data byte 8 - RX data byte 8 -
30 (0x00) - (0x00) -
31 Clock divider Clock divider Clock divider Clock divider

www.cobham.com/gaisler

GRLIB IP Core

19.4.2 Control register

The control register contains interrupt enable bits as well as the reset request bit.

Table 137.Bit interpretation of control register (CR) (address 0)

Bit Name Description

CR.7 - reserved

CR.6 - reserved

CR.5 - reserved (reads as 1)

CRA4 Overrun Interrupt Enable 1 - enabled, 0 - disabled

CR.3 Error Interrupt Enable 1 - enabled, 0 - disabled

CR.2 Transmit Interrupt Enable 1 - enabled, O - disabled

CR.1 Receive Interrupt Enable 1 - enabled, 0 - disabled

CR.O Reset request Writing 1 to this bit aborts any ongoing transfer and enters reset mode. Writ-
ing 0 returns to operating mode.

19.4.3 Command register

Writing a one to the corresponding bit in this register initiates an action supported by the core.

Table 138.Bit interpretation of command register (CMR) (address 1)

Bit Name Description

CMR.7 - reserved

CMR.6 - reserved

CMR.5 - reserved

CMR 4 - not used (go to sleep in STA1000 core)

CMR.3 Clear data overrun Clear the data overrun status bit

CMR.2 Release receive buffer Free the current receive buffer for new reception
CMR.1 Abort transmission Aborts a not yet started transmission.

CMR.0 Transmission request Starts the transfer of the message in the TX buffer

A transmission is started by writing 1 to CMR.0. It can only be aborted by writing 1 to CMR.1 and
only if the transfer has not yet started. If the transmission has started it will not be aborted when set-
ting CMR.1 but it will not be retransmitted if an error occurs.

Giving the Release receive buffer command should be done after reading the contents of the receive
buffer in order to release this memory. If there is another message waiting in the FIFO a new receive
interrupt will be generated (if enabled) and the receive buffer status bit will be set again.

To clear the Data overrun status bit CMR.3 must be written with 1.

www.cobham.com/gaisler

GRLIB IP Core

19.4.4 Status register

The status register is read only and reflects the current status of the core.

Table 139.Bit interpretation of status register (SR) (address 2)

Bit Name Description

SR.7 Bus status 1 when the core is in bus-off and not involved in bus activities

SR.6 Error status At least one of the error counters have reached or exceeded the CPU warning
limit (96).

SR.5 Transmit status 1 when transmitting a message

SR.4 Receive status 1 when receiving a message

SR.3 Transmission complete 1 indicates the last message was successfully transferred.

SR.2 Transmit buffer status 1 means CPU can write into the transmit buffer

SR.1 Data overrun status 1 if a message was lost because no space in fifo.

SR.0 Receive buffer status 1 if messages available in the receive fifo.

Receive buffer status is cleared when the Release receive buffer command is given and set high if
there are more messages available in the fifo.

The data overrun status signals that a message which was accepted could not be placed in the fifo
because not enough space left. NOTE: This bit differs from the SJA1000 behavior and is set first
when the fifo has been read out.

When the transmit buffer status is high the transmit buffer is available to be written into by the CPU.
During an on-going transmission the buffer is locked and this bit is 0.

The transmission complete bit is set to 0 when a transmission request has been issued and will not be
set to 1 again until a message has successfully been transmitted.

19.4.5 Interrupt register

The interrupt register signals to CPU what caused the interrupt. The interrupt bits are only set if the
corresponding interrupt enable bit is set in the control register.

Table 140.Bit interpretation of interrupt register (IR) (address 3)

Bit Name Description

IR.7 - reserved (reads as 1)

IR.6 - reserved (reads as 1)

IR.5 - reserved (reads as 1)

IR 4 - not used (wake-up interrupt of STA1000)

IR.3 Data overrun interrupt Set when SR.1 goes from 0 to 1.

IR.2 Error interrupt Set when the error status or bus status are changed.

IR.1 Transmit interrupt Set when the transmit buffer is released (status bit 0->1)
IR.0 Receive interrupt This bit is set while there are more messages in the fifo.

This register is reset on read with the exception of IR.0. Note that this differs from the SJTA1000
behavior where all bits are reset on read in BasicCAN mode. This core resets the receive interrupt bit
when the release receive buffer command is given (like in PeliCAN mode).

Also note that bit IR.5 through IR.7 reads as 1 but IR.4 is 0.

www.cobham.com/gaisler

GRLIB IP Core

19.4.6 Transmit buffer

The table below shows the layout of the transmit buffer. In BasicCAN only standard frame messages
can be transmitted and received (EFF messages on the bus are ignored).

Table 141.Transmit buffer layout

Addr | Name Bits
7 6 5 4 3 2 1 0
10 ID byte 1 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5 ID.4 ID.3
11 ID byte 2 1D.2 ID.1 ID.0 RTR DLC.3 DLC.2 DLC.1 DLC.0
12 TX data 1 TX byte 1
13 TX data 2 TX byte 2
14 TX data 3 TX byte 3
15 TX data 4 TX byte 4
16 TX data 5 TX byte 5
17 TX data 6 TX byte 6
18 TX data 7 TX byte 7
19 TX data 8 TX byte 8

If the RTR bit is set no data bytes will be sent but DLC is still part of the frame and must be specified
according to the requested frame. Note that it is possible to specify a DLC larger than 8 bytes but
should not be done for compatibility reasons. If DLC > 8 still only 8 bytes can be sent.

19.4.7 Receive buffer

The receive buffer on address 20 through 29 is the visible part of the 64 byte RX FIFO. Its layout is
identical to that of the transmit buffer.

19.4.8 Acceptance filter

Messages can be filtered based on their identifiers using the acceptance code and acceptance mask
registers. The top 8 bits of the 11 bit identifier are compared with the acceptance code register only
comparing the bits set to zero in the acceptance mask register. If a match is detected the message is
stored to the fifo.

www.cobham.com/gaisler

GRLIB IP Core

19.5 PeliCAN mode

19.5.1 PeliCAN register map

Table 142.PeliCAN address allocation

Operating mode Reset mode
Read Write Read Write
0 Mode Mode Mode Mode
1 (0x00) Command (0x00) Command
2 Status - Status -
3 Interrupt - Interrupt -
4 Interrupt enable Interrupt enable Interrupt enable Interrupt enable
5 reserved (0x00) - reserved (0x00) -
6 Bus timing 0 - Bus timing 0 Bus timing 0
7 Bus timing 1 - Bus timing 1 Bus timing 1
8 (0x00) - (0x00) -
9 (0x00) - (0x00) -
10 | reserved (0x00) - reserved (0x00) -
11 | Arbitration lost capture - Arbitration lost capture | -
12 | Error code capture - Error code capture -
13 | Error warning limit - Error warning limit Error warning limit
14 | RX error counter - RX error counter RX error counter
15 | TX error counter - TX error counter TX error counter
16 | RX FI SFF RX FI EFF TX FI SFF TX FI EFF Acceptance code 0 Acceptance code 0
17 |RXID 1 RXID 1 TXID 1 TXID 1 Acceptance code 1 Acceptance code 1
18 |RXID2 RXID 2 TXID 2 TXID 2 Acceptance code 2 Acceptance code 2
19 [RX datal RXID 3 TX data 1 TXID3 Acceptance code 3 Acceptance code 3
20 | RX data2 RXID 4 TX data 2 TXID 4 Acceptance mask 0 Acceptance mask 0
21 |RX data3 RX data 1 TX data 3 TX data 1 Acceptance mask 1 Acceptance mask 1
22 | RX data 4 RX data 2 TX data 4 TX data 2 Acceptance mask 2 Acceptance mask 2
23 |RX data5s RX data 3 TX data 5 TX data 3 Acceptance mask 3 Acceptance mask 3
24 | RX data 6 RX data 4 TX data 6 TX data 4 reserved (0x00) -
25 | RX data 7 RX data 5 TX data 7 TX data 5 reserved (0x00) -
26 | RX data 8 RX data 6 TX data 8 TX data 6 reserved (0x00) -
27 | FIFO RX data 7 - TX data 7 reserved (0x00) -
28 | FIFO RX data 8 - TX data 8 reserved (0x00) -
29 | RX message counter - RX msg counter -
30 | (0x00) - (0x00) -
31 | Clock divider Clock divider Clock divider Clock divider

The transmit and receive buffers have different layout depending on if standard frame format (SFF) or
extended frame format (EFF) is to be transmitted/received. See the specific section below.

www.cobham.com/gaisler

GRLIB IP Core

19.5.2 Mode register

Table 143.Bit interpretation of mode register (MOD) (address 0)

Bit Name Description

MOD.7 - reserved

MOD.6 - reserved

MOD.5 - reserved

MOD.4 - not used (sleep mode in SJA1000)

MOD.3 Acceptance filter mode 1 - single filter mode, O - dual filter mode

MOD.2 Self test mode If set the controller is in self test mode

MOD.1 Listen only mode If set the controller is in listen only mode

MOD.0 Reset mode Writing 1 to this bit aborts any ongoing transfer and enters reset mode. Writ-
ing 0 returns to operating mode

Writing to MOD. 1-3 can only be done when reset mode has been entered previously.

In Listen only mode the core will not send any acknowledgements. Note that unlike the STA1000 the
Opencores core does not become error passive and active error frames are still sent!

When in Self test mode the core can complete a successful transmission without getting an acknowl-
edgement if given the Self reception request command. Note that the core must still be connected to a
real bus, it does not do an internal loopback.

19.5.3 Command register

Writing a one to the corresponding bit in this register initiates an action supported by the core.

Table 144 Bit interpretation of command register (CMR) (address 1)

Bit Name Description

CMR.7 - reserved

CMR.6 - reserved

CMR.5 - reserved

CMR 4 Self reception request Transmits and simultaneously receives a message
CMR.3 Clear data overrun Clears the data overrun status bit

CMR.2 Release receive buffer Free the current receive buffer for new reception
CMR.1 Abort transmission Aborts a not yet started transmission.

CMR.0 Transmission request Starts the transfer of the message in the TX buffer

A transmission is started by writing 1 to CMR.0. It can only be aborted by writing 1 to CMR.1 and
only if the transfer has not yet started. Setting CMR.0 and CMR.1 simultaneously will result in a so
called single shot transfer, i.e. the core will not try to retransmit the message if not successful the first
time.

Giving the Release receive buffer command should be done after reading the contents of the receive
buffer in order to release this memory. If there is another message waiting in the FIFO a new receive
interrupt will be generated (if enabled) and the receive buffer status bit will be set again.

The Self reception request bit together with the self test mode makes it possible to do a self test of the
core without any other cores on the bus. A message will simultaneously be transmitted and received
and both receive and transmit interrupt will be generated.

www.cobham.com/gaisler

GRLIB IP Core

19.5.4 Status register

The status register is read only and reflects the current status of the core.

Table 145.Bit interpretation of command register (SR) (address 2)

Bit Name Description

SR.7 Bus status 1 when the core is in bus-off and not involved in bus activities

SR.6 Error status At least one of the error counters have reached or exceeded the error warning
limit.

SR.5 Transmit status 1 when transmitting a message

SR.4 Receive status 1 when receiving a message

SR.3 Transmission complete 1 indicates the last message was successfully transferred.

SR.2 Transmit buffer status 1 means CPU can write into the transmit buffer

SR.1 Data overrun status 1 if a message was lost because no space in fifo.

SR.0 Receive buffer status 1 if messages available in the receive fifo.

Receive buffer status is cleared when there are no more messages in the fifo. The data overrun status
signals that a message which was accepted could not be placed in the fifo because not enough space
left. NOTE: This bit differs from the SJA1000 behavior and is set first when the fifo has been read
out.

When the transmit buffer status is high the transmit buffer is available to be written into by the CPU.
During an on-going transmission the buffer is locked and this bit is 0.

The transmission complete bit is set to 0 when a transmission request or self reception request has
been issued and will not be set to 1 again until a message has successfully been transmitted.

19.5.5 Interrupt register

The interrupt register signals to CPU what caused the interrupt. The interrupt bits are only set if the
corresponding interrupt enable bit is set in the interrupt enable register.

Table 146.Bit interpretation of interrupt register (IR) (address 3)

Bit Name Description

IR.7 Bus error interrupt Set if an error on the bus has been detected

IR.6 Arbitration lost interrupt Set when the core has lost arbitration

IR.S5 Error passive interrupt Set when the core goes between error active and error passive
IR 4 - not used (wake-up interrupt of STA1000)

IR.3 Data overrun interrupt Set when data overrun status bit is set

IR.2 Error warning interrupt Set on every change of the error status or bus status

IR.1 Transmit interrupt Set when the transmit buffer is released

IR.0 Receive interrupt Set while the fifo is not empty.

This register is reset on read with the exception of IR.0 which is reset when the fifo has been emptied.

www.cobham.com/gaisler

GRLIB IP Core

19.5.6 Interrupt enable register

In the interrupt enable register the separate interrupt sources can be enabled/disabled. If enabled the
corresponding bit in the interrupt register can be set and an interrupt generated.

Table 147.Bit interpretation of interrupt enable register (IER) (address 4)

Bit

Name

Description

IR.7

Bus error interrupt

1 - enabled, 0 - disabled

IR.6

Arbitration lost interrupt

1 - enabled, 0 - disabled

IR.S

Error passive interrupt

1 - enabled, O - disabled

IR .4

not used (wake-up interrupt of STA1000)

IR.3

Data overrun interrupt

1 - enabled, O - disabled

IR.2

Error warning interrupt

1 - enabled, 0 - disabled.

IR.1

Transmit interrupt

1 - enabled, 0 - disabled

IR.0

Receive interrupt

1 - enabled, 0 - disabled

19.5.7 Arbitration lost capture register

Table 148.Bit interpretation of arbitration lost capture register (ALC) (address 11)

Bit Name Description
ALC.7-5 - reserved
ALC.4-0 Bit number Bit where arbitration is lost

When the core loses arbitration the bit position of the bit stream processor is captured into arbitration
lost capture register. The register will not change content again until read out.

19.5.8 Error code capture register

Table 149.Bit interpretation of error code capture register (ECC) (address 12)

Bit Name Description

ECC.7-6 Error code Error code number

ECC.5 Direction 1 - Reception, 0 - transmission error
ECC.4-0 Segment Where in the frame the error occurred

When a bus error occurs the error code capture register is set according to what kind of error occurred,
if it was while transmitting or receiving and where in the frame it happened. As with the ALC register
the ECC register will not change value until it has been read out. The table below shows how to inter-
pret bit 7-6 of ECC.

Table 150.Error code interpretation

ECC.7-6 Description
0 Bit error

1 Form error
2 Stuff error

3 Other

www.cobham.com/gaisler

GRLIB IP Core

Bit 4 downto 0 of the ECC register is interpreted as below

Table 151.Bit interpretation of ECC.4-0

ECC.4-0 Description

0x03 Start of frame
0x02 1ID.28 - ID.21
0x06 1D.20 - ID.18
0x04 Bit SRTR

0x05 Bit IDE

0x07 ID.17 -1ID.13
0x0F ID.12 -ID.5
0x0E ID.4-1D.0

0x0C Bit RTR

0x0D Reserved bit 1
0x09 Reserved bit 0
0x0B Data length code
0x0A Data field

0x08 CRC sequence
0x18 CRC delimiter
0x19 Acknowledge slot
0x1B Acknowledge delimiter
Ox1A End of frame
0x12 Intermission

0x11 Active error flag
0x16 Passive error flag
0x13 Tolerate dominant bits
0x17 Error delimiter
0x1C Overload flag

19.5.9 Error warning limit register

This registers allows for setting the CPU error warning limit. It defaults to 96. Note that this register is
only writable in reset mode.

19.5.10 RX error counter register (address 14)

This register shows the value of the rx error counter. It is writable in reset mode. A bus-off event
resets this counter to 0.

19.5.11 TX error counter register (address 15)

This register shows the value of the tx error counter. It is writable in reset mode. If a bus-off event
occurs this register is initialized as to count down the protocol defined 128 occurrences of the bus-free
signal and the status of the bus-off recovery can be read out from this register. The CPU can force a
bus-off by writing 255 to this register. Note that unlike the SJA1000 this core will signal bus-off
immediately and not first when entering operating mode. The bus-off recovery sequence starts when
entering operating mode after writing 255 to this register in reset mode.

www.cobham.com/gaisler

GRLIB IP Core

19.5.12 Transmit buffer

The transmit buffer is write-only and mapped on address 16 to 28. Reading of this area is mapped to
the receive buffer described in the next section. The layout of the transmit buffer depends on whether
a standard frame (SFF) or an extended frame (EFF) is to be sent as seen below.

Table 152.
Write (SFF) Write(EFF)
16 | TX frame information TX frame information
17 | TXID 1 TXID 1
18 | TXID2 TXID 2
19 | TX data 1 TXID 3
20 | TX data 2 TXID 4
21 |TX data3 TX data 1
22 | TX data 4 TX data 2
23 | TX data 5 TX data 3
24 | TX data 6 TX data 4
25 | TX data 7 TX data 5
26 | TX data 8 TX data 6
27 | - TX data 7
28 |- TX data 8

TX frame information (this field has the same layout for both SFF and EFF frames)

Table 153.TX frame information address 16

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
FF RTR - - DLC.3 DLC.2 DLC.1 DLC.0
Bit 7- FF selects the frame format, i.e. whether this is to be interpreted as an extended or standard frame. 1 = EFF, 0 = SFF.

Bit 6 -

Bit 5:4 - are don’t care.

Bit 3:0 - DLC specifies the Data Length Code and should be a value between 0 and 8. If a value greater than 8 is used 8 bytes
will be transmitted.

RTR should be set to 1 for an remote transmission request frame.

TX identifier 1 (this field is the same for both SFF and EFF frames)

Table 154.TX identifier 1 address 17

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.28 1ID.27 ID.26 ID.25 ID.24 1ID.23 ID.22 ID.21

Bit 7:0 - The top eight bits of the identifier.

TX identifier 2, SFF frame

Table 155.TX identifier 2 address 18

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

ID.20

ID.19

ID.18

Bit 7:5 - Bottom three bits of an SFF identifier.

Bit 4:0 -

Don’t care.

www.cobham.com/gaisler

GRLIB IP Core

TX identifier 2, EFF frame

Table 156.TX identifier 2 address 18

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1D.20 1D.19 ID.18 1D.17 ID.16 ID.15 1ID.14 ID.13
Bit 7:0 - Bit 20 downto 13 of 29 bit EFF identifier.
TX identifier 3, EFF frame
Table 157.TX identifier 3 address 19
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.12 ID.11 ID.10 1ID.9 ID.8 ID.7 ID.6 ID.5
Bit 7:0 - Bit 12 downto 5 of 29 bit EFF identifier.
TX identifier 4, EFF frame
Table 158.TX identifier 4 address 20
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.4 1ID.3 ID.2 ID.1 ID.0 - - -

Bit 7:3 - Bit 4 downto 0 of 29 bit EFF identifier
Bit2:0 - Don’t care

Data field

For SFF frames the data field is located at address 19 to 26 and for EFF frames at 21 to 28. The data is

transmitted starting from the MSB at the lowest address.

www.cobham.com/gaisler

GRLIB IP Core

19.5.13 Receive buffer

Table 159.
Read (SFF) Read (EFF)
16 | RX frame information RX frame information
17 |RXID1 RXID 1
18 |RXID2 RXID2
19 | RX data 1 RXID 3
20 | RX data2 RXID 4
21 |RX data3 RX data 1
22 |RX data 4 RX data 2
23 |RX data 5 RX data 3
24 | RX data 6 RX data 4
25 | RX data 7 RX data 5
26 |RX data 8 RX data 6
27 | RX FI of next message in fifo RX data 7
28 | RX ID1 of next message in fifo RX data 8

RX frame information (this field has the same layout for both SFF and EFF frames)

Table 160.RX frame information address 16

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
FF RTR 0 0 DLC.3 DLC.2 DLC.1 DLC.0
Bit 7- Frame format of received message. 1 = EFF, 0 = SFF.
Bit6- 1if RTR frame.
Bit 5:4 - Always 0.
Bit 3:0 - DLC specifies the Data Length Code.
RX identifier 1(this field is the same for both SFF and EFF frames)
Table 161.RX identifier 1 address 17
Bit 7 Bit 6 Bit 5 Bit4 Bit 3 Bit 2 Bit1 Bit 0
ID.28 1D.27 ID.26 1ID.25 ID.24 ID.23 ID.22 ID.21
Bit 7:0 - The top eight bits of the identifier.
RX identifier 2, SFF frame
Table 162.RX identifier 2 address 18
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.20 ID.19 ID.18 RTR 0 0 0 0

Bit 7:5 - Bottom three bits of an SFF identifier.

Bit4 -
Bit 3:0

1 if RTR frame.

- Always 0.

www.cobham.com/gaisler

GRLIB IP Core

RX identifier 2, EFF frame

Table 163.RX identifier 2 address 18

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.20 ID.19 ID.18 ID.17 ID.16 ID.15 ID.14 ID.13

Bit 7:0 - Bit 20 downto 13 of 29 bit EFF identifier.

RX identifier 3, EFF frame

Table 164.RX identifier 3 address 19

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.12 ID.11 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5

Bit 7:0 - Bit 12 downto 5 of 29 bit EFF identifier.

RX identifier 4, EFF frame

Table 165.RX identifier 4 address 20

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.4 ID.3 ID.2 ID.1 ID.0 RTR 0 0

Bit 7:3 - Bit 4 downto 0 of 29 bit EFF identifier
Bit 2- 1 if RTR frame
Bit 1:0 - Don’t care

Data field
For received SFF frames the data field is located at address 19 to 26 and for EFF frames at 21 to 28.

19.5.14 Acceptance filter

The acceptance filter can be used to filter out messages not meeting certain demands. If a message is
filtered out it will not be put into the receive fifo and the CPU will not have to deal with it.

There are two different filtering modes, single and dual filter. Which one is used is controlled by bit 3
in the mode register. In single filter mode only one 4 byte filter is used. In dual filter two smaller fil-
ters are used and if either of these signals a match the message is accepted. Each filter consists of two
parts the acceptance code and the acceptance mask. The code registers are used for specifying the pat-
tern to match and the mask registers specify don’t care bits. In total eight registers are used for the
acceptance filter as shown in the table below. Note that they are only read/writable in reset mode.

www.cobham.com/gaisler

GRLIB IP Core

Table 166.Acceptance filter registers

Address Description

16 Acceptance code 0 (ACRO)
17 Acceptance code 1 (ACR1)
18 Acceptance code 2 (ACR2)
19 Acceptance code 3 (ACR3)
20 Acceptance mask 0 (AMRO)
21 Acceptance mask 1 (AMR1)
22 Acceptance mask 2 (AMR?2)
23 Acceptance mask 3 (AMR3)

Single filter mode, standard frame

When receiving a standard frame in single filter mode the registers ACR0-3 are compared against the
incoming message in the following way:

ACRO0.7-0 & ACR1.7-5 are compared to ID.28-18
ACR1.4 is compared to the RTR bit.

ACR1.3-0 are unused.

ACR2 & ACR3 are compared to data byte 1 & 2.

The corresponding bits in the AMR registers selects if the results of the comparison doesn’t matter. A
set bit in the mask register means don’t care.

Single filter mode, extended frame

When receiving an extended frame in single filter mode the registers ACRO0-3 are compared against
the incoming message in the following way:

ACRO0.7-0 & ACR1.7-0 are compared to ID.28-13
ACR2.7-0 & ACR3.7-3 are compared to ID.12-0
ACR3.2 are compared to the RTR bit

ACR3.1-0 are unused.

The corresponding bits in the AMR registers selects if the results of the comparison doesn’t matter. A
set bit in the mask register means don’t care.

Dual filter mode, standard frame

When receiving a standard frame in dual filter mode the registers ACRO-3 are compared against the
incoming message in the following way:

Filter 1

ACRO0.7-0 & ACR1.7-5 are compared to ID.28-18

ACR1.4 is compared to the RTR bit.

ACR1.3-0 are compared against upper nibble of data byte 1

ACR3.3-0 are compared against lower nibble of data byte 1
Filter 2

ACR2.7-0 & ACR3.7-5 are compared to ID.28-18

ACR3.4 is compared to the RTR bit.

The corresponding bits in the AMR registers selects if the results of the comparison doesn’t matter. A
set bit in the mask register means don’t care.
Dual filter mode, extended frame

When receiving a standard frame in dual filter mode the registers ACRO-3 are compared against the
incoming message in the following way:

www.cobham.com/gaisler

GRLIB IP Core

19.6

Filter 1
ACRO0.7-0 & ACR1.7-0 are compared to ID.28-13

Filter 2
ACR2.7-0 & ACR3.7-0 are compared to ID.28-13

The corresponding bits in the AMR registers selects if the results of the comparison doesn’t matter. A
set bit in the mask register means don’t care.

19.5.15 RX message counter

The RX message counter register at address 29 holds the number of messages currently stored in the
receive fifo. The top three bits are always 0.

Common registers

There are three common registers with the same addresses and the same functionality in both Basi-
CAN and PeliCAN mode. These are the clock divider register and bus timing register 0 and 1.

19.6.1 Clock divider register

The only real function of this register in the GRLIB version of the Opencores CAN is to choose
between PeliCAN and BasiCAN. The clkout output of the Opencore CAN core is not connected and it
is its frequency that can be controlled with this register.

Table 167.Bit interpretation of clock divider register (CDR) (address 31)

Bit Name Description

CDR.7 CAN mode 1 - PeliCAN, 0 - BasiCAN
CDR.6 - u