
�����������������������������
SPARC International Inc. · 535 Middlefield Road, Suite 210

· Menlo Park, CA 94025 · 415-321-8692
���

SPARC International, Inc.

�����������������������������
The SPARC Architecture Manual

Version 8

Revision SAV080SI9308

SPARC is a registered trademark of SPARC International, Inc.

The SPARC logo is a registered trademark of SPARC International, Inc.

UNIX and OPEN LOOK are registered trademarks of UNIX System Labora-
tories, Inc.

Copyright 1991,1992 SPARC International, Inc. − Printed in U.S.A.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior permission of the copyright owners.

Restricted rights legend: use, duplication, or disclosure by the U.S. government
is subject to restrictions set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 52.227-7013 and in
similar clauses in the FAR and NASA FAR Supplement.

The SPARC Architecture Manual

Version 8

Revision SAV080SI9308

1��������������������
Introduction

This document specifies Version 8 of the Scalable Processor ARChitecture,
or SPARC.

1.1. SPARC Attributes SPARC is a CPU instruction set architecture (ISA), derived from a reduced
instruction set computer (RISC) lineage. As an architecture, SPARC allows for a
spectrum of chip and system implementations at a variety of price/performance
points for a range of applications, including scientific/engineering, programming,
real-time, and commercial.

Design Goals SPARC was designed as a target for optimizing compilers and easily pipelined
hardware implementations. SPARC implementations provide exceptionally high
execution rates and short time-to-market development schedules.

Register Windows SPARC, formulated at Sun Microsystems in 1985, is based on the RISC I & II
designs engineered at the University of California at Berkeley from 1980 through
1982. the SPARC “register window” architecture, pioneered in UC Berkeley
designs, allows for straightforward, high-performance compilers and a significant
reduction in memory load/store instructions over other RISCs, particularly for
large application programs.

For languages such as C++, where object-oriented programming is dominant,
register windows result in an even greater reduction in instructions executed.
Note that supervisor software, not user programs, manages the register windows.
A supervisor can save a minimum number of registers (approximately 24) at the
time of a context switch, thereby optimizing context switch latency.

One difference between SPARC and the Berkeley RISC I & II is that SPARC
provides greater flexibility to a compiler in its assignment of registers to program
variables. SPARC is more flexible because register window management is not
tied to procedure call and return (CALL and JMPL) instructions, as it is on the
Berkeley machines. Instead, separate instructions (SAVE and RESTORE) pro-
vide register window management.

1 SPARC International, Inc.

2 The SPARC Architecture Manual: Version 8

1.2. SPARC System
Components

The architecture allows for a spectrum of input/output (I/O), memory manage-
ment unit (MMU), and cache system sub-architectures. SPARC assumes that
these elements are optimally defined by the specific requirements of particular
systems. Note that they are invisible to nearly all user application programs and
the interfaces to them can be limited to localized modules in an associated
operating system.

Reference MMU The SPARC ISA does not mandate that a single MMU design be used for all sys-
tem implementations. Rather, designers are free to use the MMU that is most
appropriate for their application — or no MMU at all, if they wish. A SPARC
“Reference MMU” has been specified, which is appropriate for a wide range of
applications. See Appendix H, “SPARC Reference MMU Architecture,” for
more information.

Supervisor Software SPARC does not assume all implementations must execute identical supervisor
software. Thus, certain supervisor-visible traits of an implementation can be
tailored to the requirements of the system. For example, SPARC allows for
implementations with different instruction concurrency and different exception
trap hardware.

Memory Model
A standard memory model called Total Store Ordering (TSO) is defined for
SPARC. The model applies both to uniprocessors and to shared-memory mul-
tiprocessors. The memory model guarantees that the stores, FLUSHes, and
atomic load-stores of all processors are executed by memory serially in an order
that conforms to the order in which the instructions were issued by processors.
All SPARC implementations must support TSO.

An additional model called Partial Store Ordering (PSO) is defined, which allows
higher-performance memory systems to be built.

Machines (including all early SPARC-based systems) that implement Strong
Consistency (also known as Strong Ordering) automatically satisfy both TSO and
PSO. Machines that implement TSO automatically satisfy PSO.

1.3. SPARC Compliance
Definitions

An important SPARC International Compatibility and Compliance Committee
function is to establish and publish SPARC Compliance Definitions (SCDs) and
migration guidelines between successive definitions. SCD use accelerates
development of binary-compatible SPARC/UNIX systems and software for both
system vendors and ISV members. SPARC binaries executed in user mode
should behave identically on all SPARC systems when those systems are running
an operating system known to provide a standard execution environment.

AT&T and SPARC International have developed a standard Application Binary
Interface (ABI) for the development of SPARC application code. Software con-
forming to this specification will produce the same results on every SPARC
ABI-compliant system, enabling the distribution of ‘‘shrink-wrapped’’ SPARC
software. Although different SPARC systems will execute programs at different
rates, they will generate the same results.

SPARC International, Inc.

Chapter 1 — Introduction 3

The formulation of SPARC Compliance Definitions (SCD 1.0 and SCD 2.0) by
SPARC International allows member companies to verify compliance of a broad
base of SPARC/UNIX products through openly agreed-upon, standard
definitions. SCD 2.0 is a superset of the SPARC ABI.

SCD 1.0 compliance is the formal beginning of migration to SCD 2.0, based on
the industry-standard UNIX System V Release 4 operating system from AT&T
and the OPEN LOOK graphical user interface. SPARC International’s Compati-
bility and Compliance Committee works to make this migration as smooth and as
representative of the members’ interests as possible.

The System V ABI from AT&T consists of two components: the processor
independent generic specification and the processor (SPARC)-specific supple-
ment. (Consult the AT&T manuals for strict adherence to the SCD 2.0 binary
interface conventions.)

SPARC International participates in all ABI specification reviews, and tests for
ABI compliance as part of the SCD 2.0 verification process. For more details on
SCD 2.0, contact SPARC International, 535 Middlefield Road, Suite 210, Menlo
Park, California 94025.

1.4. SPARC Features SPARC includes the following principal features:

� A linear, 32-bit address space.

� Few and simple instruction formats — All instructions are 32 bits wide, and
are aligned on 32-bit boundaries in memory. There are only three basic
instruction formats, and they feature uniform placement of opcode and regis-
ter address fields. Only load and store instructions access memory and I/O.

� Few addressing modes — A memory address is given by either “register +
register” or “register+immediate.”

� Triadic register addresses — Most instructions operate on two register
operands (or one register and a constant), and place the result in a third
register.

� A large “windowed” register file — At any one instant, a program sees 8
global integer registers plus a 24-register window into a larger register file.
The windowed registers can be described as a cache of procedure arguments,
local values, and return addresses.

� A separate floating-point register file — configurable by software into 32
single-precision (32-bit), 16 double-precision (64-bit), 8 quad-precision
registers (128-bit), or a mixture thereof.

� Delayed control transfer — The processor always fetches the next instruc-
tion after a delayed control-transfer instruction. It either executes it or not,
depending on the control-transfer instruction’s “annul” bit.

� Fast trap handlers — Traps are vectored through a table, and cause alloca-
tion of a fresh register window in the register file.

� Tagged instructions — The tagged add/subtract instructions assume that the
two least-significant bits of the operands are tag bits.

SPARC International, Inc.

4 The SPARC Architecture Manual: Version 8

� Multiprocessor synchronization instructions — One instruction performs an
atomic read-then-set-memory operation; another performs an atomic
exchange-register-with-memory operation.

� Coprocessor — The architecture defines a straightforward coprocessor
instruction set, in addition to the floating-point instruction set.

1.5. Conformability to
SPARC

An implementation that conforms to the definitions and algorithms given in this
document is an implementation of the SPARC ISA.

The SPARC architecture is a model which specifies unambiguously the behavior
observed by software on SPARC systems. Therefore, it does not necessarily
describe the operation of the hardware in any actual implementation.

An implementation is not required to execute every instruction in hardware. An
attempt to execute a SPARC instruction that is not implemented in hardware
generates a trap. If the unimplemented instruction is nonprivileged, then it must
be possible to emulate it in software. If it is a privileged instruction, whether it is
emulated by software is implementation-dependent. Appendix L, “Implementa-
tion Characteristics,” details which instructions are not in hardware in existing
implementations.

Compliance with this specification shall be claimed only by a collection of com-
ponents which is capable of fully implementing all SPARC opcodes, through any
combination of hardware or software. Specifically, nonprivileged instructions
which are not implemented in hardware must trap to the software such that they
can be implemented in software. For the implementation to be complete, by
default the implementation must trap and report all undefined, unimplemented,
and reserved instructions.

Some elements of the architecture are defined to be implementation-dependent.
These elements include certain registers and operations that may vary from
implementation to implementation, and are explicitly identified in this document.

Implementation elements (such as instructions or registers) that appear in an
implementation but are not defined in this document (or its updates) are not con-
sidered to be SPARC elements of that implementation.

Note that a “SPARC Architecture Test Suite” and a “SPARC Architectural
Simulator” (SPARCsim) are available.

1.6. Fonts in Manual In this manual, fonts are used as follows:

� Italic is used for register names, instruction fields, and register status fields.
For example: “The rs1 field contains the address of the r register.”

Italic is also used for references to sections, chapters, and appendices.

� Typewriter font is used for literals throughout the appendixes.

� Bold font is used for emphasis and the first time a word is defined. For
example: “A precise trap is induced by a particular instruction...”.

SPARC International, Inc.

Chapter 1 — Introduction 5

� UPPER CASE items may be either acronyms, instruction names, or register
mode fields that can be written by software. Some common acronyms
appear in the glossary in this chapter. Note that names of some instructions
contain both upper case and lower case letters.

� Underbar characters join words in register, register field, exception, or trap
names. For example: “The integer_condition_code field...”

� Square brackets [] indicate an addressed field in a register or a numbered
register in a register file. For example: "r[0] is zero."

1.7. Notes This manual provides three types of notes: ordinary notes, programming notes,
and implementation notes.

� Programming notes contain incidental information about programming using
the SPARC architecture; they appear in a reduced size font.

� Implementation notes contain information which may be specific to an
implementation, or which may differ in different implementations. They
also appear in a reduced size font.

1.8. Glossary The following paragraphs describe some of the most important words and acro-
nyms used in this manual:

Coprocessor Operate (CPop) instructions
Instructions that perform coprocessor calculations, as defined by the
CPop1 and CPop2 opcodes. CPop instructions do not include loads
and stores between memory and the coprocessor.

Current window
The block of 24 r registers to which the Current Window Pointer
points.

Floating-Point Operate (FPop) instructions
Instructions that perform floating-point calculations, as defined by the
FPop1 and FPop2 opcodes. FPop instructions do not include loads and
stores between memory and the FPU.

Ignored
Used to describe an instruction field, the contents of which are arbi-
trary, and which has no effect on the execution of the instruction. The
contents of an “ignored” field will continue to be ignored in future ver-
sions of the architecture. See also reserved and unused.

Implementation
Hardware or software that conforms to all the specifications of an ISA.

Instruction Set Architecture (ISA)
An ISA defines instructions, registers, instruction and data memory, the
effect of executed instructions on the registers and memory, and an
algorithm for controlling instruction execution. An ISA does not
define clock cycle times, cycles per instruction, data paths, etc.

SPARC International, Inc.

6 The SPARC Architecture Manual: Version 8

Next Program Counter (nPC)
Contains the address of the instruction to be executed next (if a trap
does not occur).

Privileged
An instruction (or register) that can only be executed (or accessed)
when the processor is in supervisor mode (when PSR[S]=1).

Processor
The combination of the IU, FPU, and CP (if present).

Program Counter (PC)
Contains the address of the instruction currently being executed by the
IU.

rs1, rs2, rd
Specify the register operands of an instruction. rs1 and rs2 are the
source registers; rd is the destination register.

Reserved
Used to describe an instruction or register field which is reserved for
definition by future versions of the architecture. A reserved field
should only be written to zero by software. A reserved register field
should read as zero in hardware; software intended to run on future ver-
sions of SPARC should not assume that the field will read as zero. See
also ignored and unused.

Supervisor Mode
A processor state that is active when the S bit of the PSR is set
(PSR[S] = 1).

Supervisor Software
Software that executes when the processor is in supervisor mode.

Trap
A vectored transfer of control to supervisor software through a table
whose address is given by a privileged IU register (the Trap Base
Register (TBR)).

Unused
Used to describe an instruction field or register field that is not
currently defined by the architecture. When read by software, the value
of an unused register field is undefined. However, since an unused
field could be defined by a future version of the architecture, an unused
field should only be written to zero by software. See also ignored and
reserved.

User Mode
A processor state that is active when the S bit of the PSR is not set
(when PSR[S] = 0).

User Application Program
A program executed with the processor in user mode. Also simply
called “application program”. [Note that statements made in this

SPARC International, Inc.

Chapter 1 — Introduction 7

document regarding user application programs may be inapplicable to
programs (for example, debuggers) that have access to privileged
supervisor state (e.g., as stored in a core dump)].

1.9. References For additional information, see:

R. B. K. Dewar and M. Smosna [1990]. Microprocessors: A Programmer’s
View, McGraw-Hill, Inc.

R. B. Garner [1988]. “SPARC: The Scalable Processor Architecture”, SunTech-
nology, vol. 1, no. 3, Summer, 1988, and M. Hall and J. Barry (eds.), The
Sun Technology Papers, Springer-Verlag, 1990, pp. 75-99.

R. B. Garner, A. Agrawal, F. Briggs, E. W. Brown, D. Hough, W. N. Joy,
S. Kleiman, S. Muchnick, M. Namjoo, D. Patterson, J. Pendleton, K. G. Tan,
and R. Tuck [1988]. “The Scalable Processor Architecture (SPARC)”, 33rd
Annual IEEE Computer Conference (COMPCON), Feb., 1988, San Francisco,
CA.

J. Hennessy and D. Patterson [1990]. Computer Architecture: A Quantitative
Approach, Morgan Kaufman Publishers, Inc, San Mateo, CA.

IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985,
IEEE, New York, NY, 1985.

M. Katevenis [1983]. Reduced Instruction Set Computer Architectures for VLSI,
Ph.D. dissertation, Computer Science Div., Univ. of California, Berkeley,
1983. Also published by M.I.T. Press, Cambridge, MA, 1985.

S. Kleiman and D. Williams [1988]. “SunOS on SPARC”, 33rd Annual IEEE
Comp. Conf. (COMPCON), Feb., 1988, San Francisco, CA, also appeared in
M. Hall and J. Barry (eds.), The Sun Technology Papers, Springer-Verlag,
1990, pp. 13-27.

S. Muchnick [1988]. “Optimizing Compilers for SPARC”, Sun Technology, sum-
mer 1988, pp. 64-71; also appeared in W. Stallings (ed.), Reduced Instruc-
tion Set Computers (2nd edition), IEEE Computer Society Press, 1990, pp.
160-173, and M. Hall and J. Barry (eds.), The Sun Technology Papers,
Springer-Verlag, 1990, pp. 41-68.

D. Patterson [1985]. “Reduced Instruction Set Computers”, Communications of
the ACM, vol. 28, no. 1, Jan. 1985.

SPARC International, Inc.

2��������������������
Overview

SPARC is an instruction set architecture (ISA) with 32-bit integer and 32-, 64-,
and 128-bit IEEE Standard 754 floating-point as its principal data types. It
defines general-purpose integer, floating-point, and special state/status registers
and 72 basic instruction operations, all encoded in 32-bit wide instruction for-
mats. The load/store instructions address a linear, 232-byte address space. In
addition to the floating-point instructions, SPARC also provides instruction set
support for an optional implementation-defined coprocessor.

2.1. SPARC Processor A SPARC processor logically comprises an integer unit (IU), a floating-point
unit (FPU), and an optional coprocessor (CP), each with its own registers. This
organization allows for implementations with maximum concurrency between
integer, floating-point, and coprocessor instruction execution. All of the registers
— with the possible exception of the coprocessor’s — are 32 bits wide. Instruc-
tion operands are generally single registers, register pairs, or register quadruples.

The processor can be in either of two modes: user or supervisor. In supervisor
mode, the processor can execute any instruction, including the privileged
(supervisor-only) instructions. In user mode, an attempt to execute a privileged
instruction will cause a trap to supervisor software. “User application” programs
are programs that execute while the processor is in user mode.

Integer Unit (IU) The IU contains the general-purpose registers and controls the overall operation
of the processor. The IU executes the integer arithmetic instructions and com-
putes memory addresses for loads and stores. It also maintains the program
counters and controls instruction execution for the FPU and the CP.

An implementation of the IU may contain from 40 to 520 general-purpose 32-bit
r registers. This corresponds to a grouping of the registers into 8 global r regis-
ters, plus a circular stack of from 2 to 32 sets of 16 registers each, known as
register windows. Since the number of register windows present (NWIN-
DOWS) is implementation-dependent, the total number of registers is
implementation-dependent.

At a given time, an instruction can access the 8 globals and a register window
into the r registers. A 24-register window comprises a 16-register set — divided
into 8 in and 8 local registers — together with the 8 in registers of an adjacent
register set, addressable from the current window as its out registers.

9 SPARC International, Inc.

10 The SPARC Architecture Manual: Version 8

The current window is specified by the current window pointer (CWP) field in
the processor state register (PSR). Window overflow and underflow are detected
via the window invalid mask (WIM) register, which is controlled by supervisor
software. The actual number of windows in a SPARC implementation is invisi-
ble to a user-application program.

When the IU accesses an instruction from memory, it appends to the address an
address space identifier, or ASI, which encodes whether the processor is in
supervisor or user mode, and whether the access is to instruction memory or to
data memory.

Floating-point Unit (FPU) The FPU has 32 32-bit floating-point f registers. Double-precision values occupy
an even-odd pair of registers, and quad-precision values occupy a quad-aligned
group of 4 registers. Thus, the floating-point registers can hold a maximum of
either 32 single-precision, 16 double-precision, or 8 quad-precision values.

Floating-point load/store instructions are used to move data between the FPU and
memory. The memory address is calculated by the IU. Floating-Point operate
(FPop) instructions perform the actual floating-point arithmetic.

The floating-point data formats and instruction set conform to the IEEE Standard
for Binary Floating-point Arithmetic, ANSI/IEEE Standard 754-1985. However,
SPARC does not require that all aspects of the standard, such as gradual
underflow, be implemented in hardware. An implementation can indicate that a
floating-point instruction did not produce a correct ANSI/IEEE Standard
754-1985 result by generating a special floating-point unfinished or unimple-
mented exception. Software must emulate any functionality not present in the
hardware.

If an FPU is not present, or if the enable floating-point (EF) bit in the PSR is 0,
an attempt to execute a floating-point instruction will generate an fp_disabled
trap. In either of these cases, software must emulate the trapped floating-point
instruction.

Coprocessor (CP) The instruction set includes support for a single, implementation-dependent
coprocessor. The coprocessor has its own set of registers, the actual
configuration of which is implementation-defined but is nominally some number
of 32-bit registers. Coprocessor load/store instructions are used to move data
between the coprocessor registers and memory. For each floating-point
load/store in the instruction set, there is an analogous coprocessor load/store
instruction.

If a CP is not present, or the enable_coprocessor (EC) bit in the PSR is 0, a
coprocessor instruction generates a cp_disabled trap.

SPARC International, Inc.

Chapter 2 — Overview 11

2.2. Instructions Instructions fall into six basic categories:

1) Load/store

2) Arithmetic/logical/shift

3) Control transfer

4) Read/write control register

5) Floating-point operate

6) Coprocessor operate

Load/Store Load/store instructions are the only instructions that access memory. They use
two r registers or an r register and a signed 13-bit immediate value to calculate a
32-bit, byte-aligned memory address. The IU appends to this address an ASI that
encodes whether the processor is in supervisor or user mode, and that it is a data
access.

The destination field of the load/store instruction specifies either an r register, f
register, or coprocessor register that supplies the data for a store or receives the
data from a load.

Integer load and store instructions support byte, halfword (16-bit), word (32-bit),
and doubleword (64-bit) accesses. There are versions of integer load instructions
that perform sign-extension on 8 and 16-bit values as they are loaded into the
destination register. Floating-point and coprocessor load and store instructions
support word and doubleword memory accesses.

Alignment Restrictions Halfword accesses must be aligned on 2-byte boundaries, word accesses must be
aligned on 4-byte boundaries, and doubleword accesses must be aligned on 8-
byte boundaries. An improperly aligned address in a load or store instruction
causes a trap to occur.

Addressing Conventions SPARC is a “big-endian” architecture: the address of a doubleword, word, or
halfword is the address of its most significant byte. Increasing the address gen-
erally means decreasing the significance of the unit being accessed. Addressing
conventions are illustrated in Figure 5-2.

Load/Store Alternate There are special, privileged versions of the load/store integer instructions, the
load/store alternate instructions, which can directly specify an arbitrary 8-bit
address space identifier for the load/store data access. The privileged load/store
alternate instructions can be used by supervisor software to access special pro-
tected registers, such as MMU, cache control, and processor state registers, and
other processor or system-dependent values.

SPARC International, Inc.

12 The SPARC Architecture Manual: Version 8

Separate I&D Memories Most specifications in this manual are written as if store instructions write to the
same memory from which instructions are accessed. However, an implementa-
tion may explicitly partition instructions and data into independent instruction
and data memories (caches), commonly referred to as a “Harvard” architecture or
“split I & D caches”. If a program includes self-modifying code, it must issue
FLUSH instructions (or supervisor calls that have an equivalent effect) for the
addresses to which new instructions were written. A FLUSH instruction ensures
that the data previously written by a store instruction is seen by subsequent
instruction fetches from the given address.

Arithmetic/Logical/Shift The arithmetic/logical/shift instructions perform arithmetic, tagged arithmetic,
logical, and shift operations. With one exception, these instructions compute a
result that is a function of two source operands; the result is either written into a
destination register, or discarded. The exception is a specialized instruction,
SETHI, which (along with a second instruction) can be used to create a 32-bit
constant in an r register.

Shift instructions can be used to shift the contents of an r register left or right by
a given distance. The shift distance may be specified by a constant in the instruc-
tion or by the contents of an r register.

The integer multiply instructions perform a signed or unsigned 32 × 32 → 64-bit
operation. The integer division instructions perform a signed or unsigned 64 ÷
32 → 32-bit operation. There are versions of multiply and divide that set the
condition codes. Division by zero causes a trap.

The tagged arithmetic instructions assume that the least-significant 2 bits of the
operands are data-type “tags”. These instructions set the overflow condition code
bit upon arithmetic overflow, or if any of the operands’ tag bits are nonzero.
There are also versions that trap when either of these conditions occurs.

Control Transfer Control-transfer instructions (CTIs) include PC-relative branches and calls,
register-indirect jumps, and conditional traps. Most of the control-transfer
instructions are delayed control-transfer instructions (DCTIs), where the instruc-
tion immediately following the DCTI is executed before the control transfer to
the target address is completed.

The instruction following a delayed control-transfer instruction is called a delay
instruction. The delay instruction is always fetched, even if the delayed control
transfer is an unconditional branch. However, a bit in the delayed control-
transfer instruction can cause the delay instruction to be annulled (that is, to have
no effect) if the branch is not taken (or in the branch always case, if the branch is
taken).

Branch and CALL instructions use PC-relative displacements. The jump and
link (JMPL) instruction uses a register-indirect target address. It computes its
target address as either the sum of two r registers, or the sum of an r register and
a 13-bit signed immediate value. The branch instruction provides a displacement
of ± 8 Mbytes, while the CALL instruction’s 30-bit word displacement allows a
control transfer to an arbitrary 32-bit instruction address.

SPARC International, Inc.

Chapter 2 — Overview 13

State Register Access The Read/Write Register instructions read and write the contents of software-
visible state/status registers. There are also read/write “ancillary state register”
instructions that software can use to read/write unique implementation-dependent
processor registers. Whether each of these instructions is privileged or not is
implementation-dependent.

Floating-Point/Coprocessor
Operate

Floating-point operate (FPop) instructions perform all floating-point calculations.
They are register-to-register instructions which operate upon the floating-point
registers. Like arithmetic/logical/shift instructions, FPop’s compute a result that
is a function of one or two source operands. Specific floating-point operations
are selected by a subfield of the FPop1/FPop2 instruction formats.

Coprocessor operate (CPop) instructions are defined by the implemented copro-
cessor, if any. These instructions are specified by the CPop1 and CPop2 instruc-
tion formats.

2.3. Memory Model The SPARC memory model defines the semantics of memory operations such as
load and store, and specifies how the order in which these operations are issued
by a processor is related to the order in which they are executed by memory. The
model applies both to uniprocessors and shared memory multiprocessors. The
standard memory model is called Total Store Ordering (TSO). All SPARC
implementations must provide at least TSO. An additional model called Partial
Store Ordering (PSO) is defined to allow higher performance memory systems
to be built. If present, this model is enabled via a mode bit, for example, in an
MMU control register. See Appendix H, “SPARC Reference MMU Architec-
ture.”

Machines that implement Strong Consistency (also called Strong Ordering)
automatically support both TSO and PSO because the requirements of Strong
Consistency are more stringent. In Strong Consistency, the loads, stores, and
atomic load-stores of all processors are executed by memory serially in an order
that conforms to the order in which these instructions were issued by individual
processors. However, a machine that implements Strong Consistency may
deliver lower performance than an equivalent machine that implements TSO or
PSO.

Programs written using single-writer-multiple-readers locks will be portable
across PSO, TSO, and Strong Consistency. Programs that use write-locks but
read without locking will be portable across PSO, TSO, and Strong Consistency
only if writes to shared data are separated by STBAR instructions. If these
STBAR instructions are omitted, then the code will be portable only across TSO
and Strong Consistency.

The guidelines for other programs are as follows: Programs written for PSO will
work automatically on a machine running in TSO mode or on a machine that
implements Strong Consistency; programs written for TSO will work automati-
cally on a machine that implements Strong Consistency; programs written for
Strong Consistency may not work on a TSO or PSO machine; programs written
for TSO may not work on a PSO machine.

SPARC International, Inc.

14 The SPARC Architecture Manual: Version 8

Multithreaded programs where all threads are restricted to run on a single proces-
sor will behave the same on PSO and TSO as they would on a Strongly Con-
sistent machine.

Input/Output SPARC assumes that input/output registers are accessed via load/store alternate
instructions, normal load/store instructions, coprocessor instructions, or
read/write ancillary state register instructions (RDASR, WRASR). In the
load/store alternate instructions case, the I/O registers can only be accessed by
the supervisor. If normal load/store instructions, coprocessor instructions, or
read/write Ancillary State Register instructions are used, whether the I/O regis-
ters can be accessed outside of supervisor code or not is implementation-
dependent.

The contents and addresses of I/O registers are implementation-dependent.

Definitions of “real memory” and “I/O locations” are provided in Chapter 6,
“Memory Model”.

2.4. Traps A trap is a vectored transfer of control to the operating system through a special
trap table that contains the first 4 instructions of each trap handler. The base
address of the table is established by software in an IU state register (the trap
base register, TBR). The displacement within the table is encoded in the type
number of each trap. Half of the table is reserved for hardware traps, and the
other half for software traps generated by trap (Ticc) instructions.

A trap causes the current window pointer (CWP) to advance to the next register
window and the hardware to write the program counters into two registers of the
new window. The trap handler can access the saved PC and nPC and, in general,
can freely use the 6 other local registers in the new window.

A trap may be caused by an instruction-induced exception, or by an external
interrupt request not directly related to a particular instruction. Before execut-
ing each instruction, the IU checks for pending exceptions and interrupt requests.
If any are present, the IU selects the one with the highest priority and causes a
corresponding trap to occur.

Trap Categories An exception or interrupt request can cause either a precise trap, a deferred trap,
or an interrupting trap.

A precise trap is induced by a particular instruction and occurs before any
program-visible state is changed by the trap-inducing instruction.

A deferred trap is also induced by a particular instruction, but unlike a precise
trap, it may occur after program-visible state is changed by the execution of one
or more instructions that follow the trap-inducing instruction. A deferred trap
may occur one or more instructions after the trap-inducing instruction is exe-
cuted. An implementation must provide sufficient supervisor-readable state
(called a deferred-trap queue) to enable it to emulate an instruction that caused
a deferred trap and to correctly resume execution of the process containing that
instruction.

SPARC International, Inc.

Chapter 2 — Overview 15

An interrupting trap may be due to an external interrupt request not directly
related to any particular instruction, or may be due to an exception caused by a
particular previously executed instruction. An interrupting trap is neither a pre-
cise trap nor a deferred trap. An implementation need not necessarily provide
sufficient state to emulate an instruction that caused an interrupting trap.

User-application programs do not “see” traps unless they install user trap
handlers for those traps (via calls to supervisor software). Also, the treatment of
implementation-dependent “non-resumable machine-check” exceptions can vary
across systems. Therefore, SPARC allows an implementation to provide alterna-
tive trap models for particular exception types.

SPARC defines a default trap model, which must be present in all implementa-
tions. The default trap model states that all traps must be precise except for:

(1) Floating-point or coprocessor traps, which may be deferred.

(2) “Non-resumable machine-check” exceptions, which may be deferred or
interrupting.

(3) “Non-resumable machine-check” exceptions on the second access of a two-
memory-access load/store instruction, which may be interrupting.

See Chapter 7, “Traps,” for a complete description of the default trap model.

SPARC International, Inc.

3��������������������
Data Formats

The SPARC architecture recognizes three fundamental data formats (or types):

� Signed Integer — 8, 16, 32, and 64 bits

� Unsigned Integer — 8, 16, 32, and 64 bits

� Floating-Point — 32, 64, and 128 bits

The format widths are defined as:

� Byte — 8 bits

� Halfword — 16 bits

� Word/Singleword — 32 bits

� Tagged Word — 32 bits (30-bit value plus 2 tag bits)

� Doubleword — 64 bits

� Quadword — 128 bits

The Signed Integer formats encode two’s-complement whole numbers. The
Unsigned Integer formats are general-purpose in that they do not encode any par-
ticular data type; they can represent a whole number, string, fraction, boolean
value, etc. The Floating-Point formats conform to the IEEE Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985. The Tagged formats
define a word in which the least-significant two bits are treated as tag bits.

Figure 3-1 illustrates the signed integer, unsigned integer, and tagged formats.
Figure 3-2 illustrates the floating-point formats. In Figure 3-1 and 3-2, the indi-
vidual subwords of the multiword data formats are assigned names. The arrange-
ment of the subformats in memory and processor registers based on these names
is shown in Table 3-1. Tables 3-2 through 3-5 define the integer and floating-
point formats.

17 SPARC International, Inc.

18 The SPARC Architecture Manual: Version 8

Figure 3-1 Signed Integer, Unsigned Integer, and Tagged Formats

Signed Integer Byte s

7 6 0

Signed Integer Halfword s

15 014

Signed Integer Word s

31 30 0

Signed Integer Double

SD–0 s signed_integer[62:32]

31 30 0

SD–1 signed_integer[31:0]

31 0

Unsigned Integer Byte

7 0

Unsigned Integer Halfword

15 0

Unsigned Integer Word

31 0

Tagged Word tag

31 2 1 0

Unsigned Integer Double

UD–0 unsigned_integer[63:32]

31 0

UD–1 unsigned_integer[31:0]

31 0

SPARC International, Inc.

Chapter 3 — Data Formats 19

Figure 3-2 Floating-Point Formats

Floating-point Single s exp[7:0] fraction[22:0]

31 2330 22 0

Floating-point Double

FD–0 s exp[10:0] fraction[51:32]

31 30 20 19 0

FD–1 fraction[31:0]

31 0

Floating-point Quad

FQ–0 s exp[14:0] fraction[111:96]

1631 30 15 0

FQ–1 fraction[95:64]

31 0

FQ–2 fraction[63:32]

31 0

FQ–3 fraction[31:0]

31 0

SPARC International, Inc.

20 The SPARC Architecture Manual: Version 8

Table 3-1 Arrangement of Doublewords and Quadwords in Memory & Registers

memory register
sub-format sub-format address memory number register
name field alignment address alignment number
SD-0 signed_integer[63:32] 0 mod 8 n 0 mod 2 r
SD-1 signed_integer[31:0] 4 mod 8 n+4 1 mod 2 r+1
UD-0 unsigned_integer[63:32] 0 mod 8 n 0 mod 2 r
UD-1 unsigned_integer[31:0] 4 mod 8 n+4 1 mod 2 r+1
FD-0 s:exp[10:0]:fraction[51:32] 0 mod 8 n 0 mod 2 r
FD-1 fraction[31:0] 4 mod 8 n+4 1 mod 2 r+1
FQ-0 s:exp[14:0]:fraction[111:96] 0 mod 8 n 0 mod 4 r
FQ-1 fraction[95:64] 4 mod 8 n+4 1 mod 4 r+1
FQ-2 fraction[63:32] 0 mod 8 n+8 2 mod 4 r+2
FQ-3 fraction[31:0] 4 mod 8 n+12 3 mod 4 r+3

Table 3-2 Signed Integer, Unsigned Integer, and Tagged Format Ranges

data type width (bits) range

signed integer byte 8 −27 to 27−1

signed integer halfword 16 −215 to 215−1

signed integer word 32 −231 to 231−1

signed integer tagged word 32 −229 to 229−1

signed integer double 64 −263 to 263−1

unsigned integer byte 8 0 to 28−1

unsigned integer halfword 16 0 to 216−1

unsigned integer word 32 0 to 232−1

unsigned integer tagged word 32 0 to 230−1

unsigned integer double 64 0 to 264−1

SPARC International, Inc.

Chapter 3 — Data Formats 21

Table 3-3 Floating-Point Singleword Format Definition

s = sign (1 bit)
e = biased exponent (8 bits)
f = fraction (23 bits)
u = undefined

normalized value (0 < e < 255): (−1) s × 2e−127 × 1.f
subnormal value (e = 0): (−1) s × 2−126 × 0.f
zero (e = 0): (−1) s × 0
signaling NaN: s = u; e = 255 (max); f = .0uu—uu

(at least one bit of fraction must be nonzero)

quiet NaN: s = u; e = 255 (max); f = .1uu—uu
− ∞ (negative infinity): s = 1; e = 255 (max); f = .000—00
+ ∞ (positive infinity): s = 0; e = 255 (max); f = .000—00

Table 3-4 Floating-Point Doubleword Format Definition

s = sign (1 bit)
e = biased exponent (11 bits)
f = fraction (52 bits)
u = undefined

normalized value (0 < e < 2047): (−1) s × 2e−1023 × 1.f
subnormal value (e = 0): (−1) s × 2−1022 × 0.f
zero (e = 0): (−1) s × 0
signaling NaN: s = u; e = 2047 (max); f = .0uu—uu

(at least one bit of fraction must be nonzero)

quiet NaN: s = u; e = 2047 (max); f = .1uu—uu
− ∞ (negative infinity): s = 1; e = 2047 (max); f = .000—00
+ ∞ (positive infinity): s = 0; e = 2047 (max); f = .000—00

Table 3-5 Floating-Point Quadword Format Definition

s = sign (1 bit)
e = biased exponent (15 bits)
f = fraction (112 bits)
u = undefined

normalized value (0 < e < 32767): (−1) s × 2e−16383 × 1.f
subnormal value (e = 0): (−1) s × 2−16382 × 0.f
zero (e = 0): (−1) s × 0
signaling NaN: s = u; e = 32767 (max); f = .0uu—uu

(at least one bit of fraction must be nonzero)

quiet NaN: s = u; e = 32767 (max); f = .1uu—uu
− ∞ (negative infinity): s = 1; e = 32767 (max); f = .000—00
+ ∞ (positive infinity): s = 0; e = 32767 (max); f = .000—00

SPARC International, Inc.

4��������������������
Registers

A SPARC processor includes two types of registers: general-purpose or “work-
ing” data registers and control/status registers. The IU’s general-purpose regis-
ters are called r registers, and the FPU’s general-purpose registers are called f
registers. Coprocessor working registers are coprocessor-implementation depen-
dent.

IU control/status registers include:

� Processor State Register (PSR)

� Window Invalid Mask (WIM)

� Trap Base Register (TBR)

� Multiply/Divide Register (Y)

� Program Counters (PC, nPC)

� implementation-dependent Ancillary State Registers (ASRs)

� implementation-dependent IU Deferred-Trap Queue

FPU control/status registers include:

� Floating-Point State Register (FSR)

� implementation-dependent Floating-Point Deferred-Trap Queue (FQ)

Coprocessor (CP) control/status registers, if present, may include:

� implementation-dependent Coprocessor State Register (CSR)

� implementation-dependent Coprocessor Deferred-Trap Queue (CQ)

4.1. IU r Registers An implementation of the IU may contain from 40 through 520 general-purpose
32-bit r registers. They are partitioned into 8 global registers, plus an
implementation-dependent number of 16-register sets. A register set is further
partitioned into 8 in registers and 8 local registers. See Table 4-1.

23 SPARC International, Inc.

24 The SPARC Architecture Manual: Version 8

Windowed r Registers At a given time, an instruction can access the 8 globals and a 24-register window
into the r registers. A register window comprises the 8 in and 8 local registers of
a particular register set, together with the 8 in registers of an adjacent register set,
which are addressable from the current window as out registers. See Figure 4-1.

The number of windows or register sets, NWINDOWS, ranges from 2 to 32,
depending on the implementation. The total number of r registers in a given
implementation is 8 (for the globals), plus the number of sets × 16 registers/set.
Thus, the minimum number of r registers is 40 (2 sets), and the maximum
number is 520 (32 sets).

Table 4-1 Window Addressing

Windowed Register Address r Register Address
in[0] − in[7] r[24] − r[31]
local[0] − local[7] r[16] − r[23]
out[0] − out[7] r[8] − r[15]
global[0] − global[7] r[0] − r[7]

The current window into the r registers is given by the current window pointer
(CWP), a 5-bit counter field in the Processor State Register (PSR). The CWP is
incremented by a RESTORE (or RETT) instruction and decremented by a SAVE
instruction or a trap. Window overflow and underflow are detected via the win-
dow invalid mask (WIM) register, which is controlled by supervisor software.

Overlapping of Windows Each window shares its ins and outs with the two adjacent windows. The outs of
the CWP+1 window are addressable as the ins of the current window, and the
outs in the current window are the ins of the CWP−1 window. The locals are
unique to each window.

An r register with address o, where 8 ≤ o ≤ 15, refers to exactly the same register
as (o + 16) does after the CWP is decremented by 1 (modulo NWINDOWS).
Likewise, a register with address i, where 24 ≤ i ≤ 31, refers to exactly the same
register as address (i − 16) does after the CWP is incremented by 1 (modulo
NWINDOWS). See Figure 4-2.

Since CWP arithmetic is performed modulo NWINDOWS, the highest numbered
implemented window overlaps with window 0. The outs of window 0 are the ins
of window NWINDOWS−1. Implemented windows must be contiguously num-
bered from 0 through NWINDOWS−1.

Programming Note Since the procedure call instructions (CALL and JMPL) do not change the CWP, a procedure can
be called without changing the window. See Appendix D, “Software Considerations.”

Because the windows overlap, the number of windows available to software is 1 less than the
number of implemented windows, or NWINDOWS−1. When the register file is full, the outs of the
newest window are the ins of the oldest window — which still contains valid program data.

No assumptions can be made regarding the values contained in the “local” and “out” regsiters of a
register window upon re-entering the window through a SAVE instruction. If, with traps enabled, a
program executes a RESTORE followed by a SAVE, the resulting window’s locals and outs may
not be valid after the SAVE, since a trap may have occurred between the RESTORE and the

SPARC International, Inc.

Chapter 4 — Registers 25

SAVE. However, with traps disabled, the locals and outs remain valid.

Doubleword Operands Instructions that access a doubleword in the r registers assume even-odd register
alignment. The least-significant bit of an r register address in these instructions
is reserved, and for future compatibility should be supplied as zero by software.

An attempt to execute a doubleword load or store instruction that refers to a mis-
aligned (odd) destination register number may cause an illegal_instruction trap.

Special r Registers The utilization of four r registers is fixed, in whole or in part, by the architecture:

� If r[0] is addressed as a source operand (rs1 = 0 or rs2 = 0, or rd = 0 for a
Store) the constant value 0 is read. When r[0] is used as a destination
operand (rd = 0, excepting Stores), the data written is discarded (no r regis-
ter is modified).

� The CALL instruction writes its own address into register r[15] (out register
7).

� When a trap occurs, the program counters PC and nPC are copied into regis-
ters r[17] and r[18] (local registers 1 and 2) of the trap’s new register win-
dow.

Register Usage See Appendix D, “Software Considerations,” for a description of conventional
usage of the r registers.

SPARC International, Inc.

26 The SPARC Architecture Manual: Version 8

window (CWP + 1)
r[31]
: ins

r[24]
r[23]
: locals

r[16] window CWP

r[15] r[31]
: outs : ins

r[8] r[24]
r[23]
: locals

r[16] window (CWP − 1)
r[15] r[31]
: outs : ins

r[8] r[24]
r[23]
: locals

r[16]
r[15]
: outs

r[8]

r[7]
: globals

r[1]
r[0] 0
31 0

Figure 4-1 Three Overlapping Windows and the 8 Global Registers

SPARC International, Inc.

Chapter 4 — Registers 27

w7 ins

w7 locals

w7 outs

w6 ins

w6 locals

w6 outs
w5 ins

w5 locals

w5 outs

w4 ins

w4 localsw4 outs

w3 ins

w3 locals

w3 outs

w2 ins

w2 locals

w2 outsw1 ins

w1 locals

w1 outs

w0 ins

w0 locals w0 outs
CWP+1

CWP
(current window)

CWP−1

WIM

RESTORE,
RETT

SAVE,
trap

Figure 4-2 The Windowed r Registers

In Figure 4-1, NWINDOWS = 8. The 8 globals are not illustrated. The register
sets are indicated in bold face. CWP = 0 and WIM[7] = 1. If the procedure using
window w0 executes a RESTORE, window w1 will become the current window.
If the procedure using window w0 executes a SAVE, a window_overflow trap
will occur. The overflow trap handler uses the w7 locals.

SPARC International, Inc.

28 The SPARC Architecture Manual: Version 8

4.2. IU Control/Status
Registers

The 32-bit IU control/status registers include the Processor State Register (PSR),
the Window Invalid Mask register (WIM), the Trap Base Register (TBR), the
multiply/divide (Y) register, the program counters (PC and nPC), and optional,
implementation-dependent Ancillary State Registers (ASRs) and the IU
deferred-trap queue.

Processor State Register
(PSR)

The 32-bit PSR contains various fields that control the processor and hold status
information. It can be modified by the SAVE, RESTORE, Ticc, and RETT
instructions, and by all instructions that modify the condition codes. The
privileged RDPSR and WRPSR instructions read and write the PSR directly.

Figure 4-3 PSR Fields

impl

31:28

ver

27:24

icc

23:20

reserved

19:14

EC

13

EF

12

PIL

11:8

S

7

PS

6

ET

5

CWP

4:0

The PSR provides the following fields:

PSR_implementation (impl) Bits 31 through 28 are hardwired to identify an implementation or class of imple-
mentations of the architecture. The hardware should not change this field in
response to a WRPSR instruction. Together, the PSR.impl and PSR.ver fields
define a unique implementation or class of implementations of the architecture.
See Appendix L, “Implementation Characteristics.”

PSR_version (ver) Bits 27 through 24 are implementation-dependent. The ver field is either
hardwired to identify one or more particular implementations or is a readable and
writable state field whose properties are implementation-dependent. See Appen-
dix L, “Implementation Characteristics.”

PSR_integer_cond_codes (icc) Bits 23 through 20 are the IU’s condition codes. These bits are modified by the
arithmetic and logical instructions whose names end with the letters cc (e.g.,
ANDcc), and by the WRPSR instruction. The Bicc and Ticc instructions cause a
transfer of control based on the value of these bits, which are defined as follows:

Figure 4-4 Integer Condition Codes (icc) Fields of the PSR

n

23

z

22

v

21

c

20

PSR_negative (n) Bit 23 indicates whether the 32-bit 2’s complement ALU result was negative for
the last instruction that modified the icc field. 1 = negative, 0 = not negative.

SPARC International, Inc.

Chapter 4 — Registers 29

PSR_zero (z) Bit 22 indicates whether the 32-bit ALU result was zero for the last instruction
that modified the icc field. 1 = zero, 0 = nonzero.

PSR_overflow (v) Bit 21 indicates whether the ALU result was within the range of (was represent-
able in) 32-bit 2’s complement notation for the last instruction that modified the
icc field. 1 = overflow, 0 = no overflow.

PSR_carry (c) Bit 20 indicates whether a 2’s complement carry out (or borrow) occurred for the
last instruction that modified the icc field. Carry is set on addition if there is a
carry out of bit 31. Carry is set on subtraction if there is borrow into bit 31. 1 =
carry, 0 = no carry.

PSR_reserved Bits 19 through 14 are reserved. When read by a RDPSR instruction, these bits
deliver zeros. For future compatibility, supervisor software should only issue
WRPSR instructions with zero values in this field.

PSR_enable_coprocessor (EC) Bit 13 determines whether the implementation-dependent coprocessor is enabled.
If disabled, a coprocessor instruction will trap. 1 = enabled, 0 = disabled. If an
implementation does not support a coprocessor in hardware, PSR.EC should
always read as 0 and writes to it should be ignored.

PSR_enable_floating-point (EF) Bit 12 determines whether the FPU is enabled. If disabled, a floating-point
instruction will trap. 1 = enabled, 0 = disabled. If an implementation does not
support a hardware FPU, PSR.EF should always read as 0 and writes to it should
be ignored.

Programming Note Software can use the EF and EC bits to determine whether a particular process uses the FPU or CP.
If a process does not use the FPU/CP, its registers do not need to be saved across a context switch.

PSR_proc_interrupt_level (PIL) Bits 11 (the most significant bit) through 8 (the least significant bit) identify the
interrupt level above which the processor will accept an interrupt. See Chapter 7,
“Traps.”

PSR_supervisor (S) Bit 7 determines whether the processor is in supervisor or user mode. 1 = super-
visor mode, 0 = user mode.

PSR_previous_supervisor (PS) Bit 6 contains the value of the S bit at the time of the most recent trap.

PSR_enable_traps (ET) Bit 5 determines whether traps are enabled. A trap automatically resets ET to 0.
When ET=0, an interrupt request is ignored and an exception trap causes the IU
to halt execution, which typically results in a reset trap that resumes execution at
address 0. 1 = traps enabled, 0 = traps disabled. See Chapter 7, “Traps.”

PSR_current_window_pointer
(CWP)

Bits 4 (the MSB) through 0 (the LSB) comprise the current window pointer, a
counter that identifies the current window into the r registers. The hardware
decrements the CWP on traps and SAVE instructions, and increments it on
RESTORE and RETT instructions (modulo NWINDOWS).

SPARC International, Inc.

30 The SPARC Architecture Manual: Version 8

Window Invalid Mask
Register (WIM)

The Window Invalid Mask register (WIM) is controlled by supervisor software
and is used by hardware to determine whether a window overflow or underflow
trap is to be generated by a SAVE, RESTORE, or RETT instruction.

Figure 4-5 WIM Fields

W31

31

W30

30

W29

29

. . . W0

0

W1

1

W2

2

There is an active state bit in the WIM for each register set or window in an
implementation. WIM[n] corresponds to the register set addressed when CWP =
n.

When a SAVE, RESTORE, or RETT instruction executes, the current value of
the CWP is compared against the WIM. If the SAVE, RESTORE, or RETT
instruction would cause the CWP to point to an “invalid” register set, that is, one
whose corresponding WIM bit equals 1 (WIM[CWP] = 1), a window_overflow
or window_underflow trap is caused.

The WIM can be read by the privileged RDWIM instruction and written by the
WRWIM instruction. Bits corresponding to unimplemented windows read as
zeroes and values written to unimplemented bits are unused. A WRWIM with all
bits set to 1, followed by a RDWIM, yields a bit vector in which the imple-
mented windows (and only the implemented windows) are indicated by 1’s.

The WIM allows for implementations with up to 32 windows.

SPARC International, Inc.

Chapter 4 — Registers 31

Trap Base Register (TBR) The Trap Base Register (TBR) contains three fields that together equal the
address to which control is transferred when a trap occurs.

Figure 4-6 TBR Fields

TBA

31:12

tt

11:4

zero

3:0

The TBR provides the following fields:

TBR_trap_base_address (TBA) Bits 31 through 12 are the trap base address, which is established by supervisor
software. It contains the most-significant 20 bits of the trap table address. The
TBA field is written by the WRTBR instruction.

TBR_trap_type (tt) Bits 11 through 4 comprise the trap type (tt) field. This 8-bit field is written by
the hardware when a trap occurs, and retains its value until the next trap. It pro-
vides an offset into the trap table. The WRTBR instruction does not affect the tt
field.

TBR_zero (0)
Bits 3 through 0 are zeroes. The WRTBR instruction does not affect this field.
For future compatibility, supervisor software should only issue a WRTBR
instruction with a zero value in this field.

See Chapter 7, “Traps,” for additional information.

SPARC International, Inc.

32 The SPARC Architecture Manual: Version 8

Multiply/Divide Register (Y) The 32-bit Y register contains the most significant word of the double-precision
product of an integer multiplication, as a result of either an integer multiply
(SMUL, SMULcc, UMUL, UMULcc) instruction, or of a routine that uses the
integer multiply step (MULScc) instruction. The Y register also holds the most
significant word of the double-precision dividend for an integer divide (SDIV,
SDIVcc, UDIV, UDIVcc) instruction.

The Y register can be read and written with the RDY and WRY instructions.

Program Counters (PC, nPC) The 32-bit PC contains the address of the instruction currently being executed by
the IU. The nPC holds the address of the next instruction to be executed (assum-
ing a trap does not occur).

For a delayed control transfer, the instruction that immediately follows the
transfer instruction is known as the delay instruction. This delay instruction is
executed (unless the control transfer instruction annuls it) before control is
transferred to the target. During execution of the delay instruction, the nPC
points to the target of the control transfer instruction, while the PC points to the
delay instruction. See Chapter 5, “Instructions.”

The PC is read by a CALL or JMPL instruction. The PC and nPC are written to
two local registers during a trap. See Chapter 7, “Traps,” for details.

Ancillary State Registers
(ASR)

SPARC provides for up to 31 Ancillary State Registers (ASR’s), numbered from
1 to 31.

ASR’s numbered 1-15 are reserved for future use by the architecture and should
not be referenced by software.

ASR’s numbered 16-31 are available for implementation-dependent uses, such as
timers, counters, diagnostic registers, self-test registers, and trap-control regis-
ters. A particular IU may choose to implement from zero to sixteen of these
ASR’s. The semantics of accessing any of these ASR’s is implementation-
dependent. Whether a particular Ancillary State Register is privileged or not is
implementation-dependent.

An ASR is read and written with the RDASR and WRASR instructions. A
read/write ASR instruction is privileged if the accessed register is privileged.

SPARC International, Inc.

Chapter 4 — Registers 33

IU Deferred-Trap Queue An implementation may contain zero or more deferred-trap queues. Such a
queue contains sufficient state to implement resumable deferred traps caused by
the IU. Note that fp_exception and cp_exception deferred traps are handled by
the floating-point and coprocessor deferred-trap queues.

An IU deferred-trap queue can be read and written via privileged load/store alter-
nate or read/write ancillary state register instructions.

The contents and operation of an IU deferred-trap queue are implementation-
dependent and are not visible to user application programs.

See Appendix L, “Implementation Characteristics,” for a discussion of imple-
mented queues.

4.3. FPU f Registers The FPU contains 32 32-bit floating-point f registers, which are numbered from
f[0] to f[31]. Unlike the windowed r registers, at a given time an instruction has
access to any of the 32 f registers. The f registers can be read and written by
FPop (FPop1/FPop2 format) instructions, and by load/store single/double
floating-point instructions (LDF, LDDF, STF, STDF). See Figure 4-7.

Figure 4-7 The f Registers

f[31]
f[30]

:
:

f[1]
f[0]

31 0

Double and Quad Operands A single f register can hold one single-precision operand. A double-precision
operand requires an aligned pair of f registers, and a quad-precision operand
requires an aligned quadruple of f registers. Thus, at a given time, the f registers
can hold a maximum of 32 single-precision, 16 double-precision, or 8 quad-
precision operands.

Instructions that access a floating-point double in the f registers assume double
alignment. The least-significant bit of a doubleword f register address specifier is
reserved and should be set to zero by software. Similarly, the least-significant
two bits of a quadword f register address are reserved and should be set to zero
by software. See Table 4-2.

SPARC International, Inc.

34 The SPARC Architecture Manual: Version 8

Table 4-2 Floating-Point Doubles and Quads in f Registers

sub-format format f register
name fields address
FD-0 s:exp[10:0]:fraction[51:32] 0 mod 2
FD-1 fraction[31:0] 1 mod 2
FQ-0 s:exp[14:0]:fraction[111:96] 0 mod 4
FQ-1 fraction[95:64] 1 mod 4
FQ-2 fraction[63:32] 2 mod 4
FQ-3 fraction[31:0] 3 mod 4

It is recommended (but not required) that an attempt to execute an instruction
that refers to a mis-aligned floating-point register operand (double-precision
operand in a register whose number is not 0 mod 2, or quadruple-precision
operand in a register whose number is not 0 mod 4) cause an fp_exception trap
with FSR.ftt = 6 (invalid_fp_register).

4.4. FPU Control/Status
Registers

The 32-bit FPU control/status registers include a Floating-point State Register
(FSR) that contains mode and status information about the FPU, and an optional,
implementation-dependent, floating-point deferred-trap queue (FQ).

Floating-Point State Register
(FSR)

The FSR register fields contain FPU mode and status information. The FSR is
read and written by the STFSR and LDFSR instructions.

Figure 4-8 FSR Fields

RD

31:30

u

29:28

TEM

27:23

NS

22

res

21:20

ver

19:17

ftt

16:14

qne

13

u

12

fcc

11:10

aexc

9:5

cexc

4:0

The FSR provides the following fields:

FSR_rounding_direction (RD) Bits 31 and 30 select the rounding direction for floating-point results according to
ANSI/IEEE Standard 754-1985.

SPARC International, Inc.

Chapter 4 — Registers 35

Table 4-3 Rounding Direction (RD) Field of FSR

RD Round Toward:
0 Nearest (even, if tie)
1 0
2 + ∞
3 − ∞

FSR_unused (u) Bits 29, 28, and 12 are unused. For future compatibility, software should only
issue a LDFSR instruction with zero values in these bits.

FSR_trap_enable_mask (TEM) Bits 27 through 23 are enable bits for each of the five floating-point exceptions
that can be indicated in the current_exception field (cexc). See Figure 4-9. If a
floating-point operate instruction generates one or more exceptions and the TEM
bit corresponding to one or more of the exceptions is 1, an fp_exception trap is
caused. A TEM value of 0 prevents that exception type from generating a trap.

FSR_nonstandard_fp (NS) Bit 22, when set to 1, causes the FPU to produce implementation-defined results
that may not correspond to ANSI/IEEE Standard 754-1985. For instance, to
obtain higher performance, implementations may convert a subnormal floating-
point operand or result to zero when NS is set. See Appendix L, “Implementa-
tion Characteristics,” for a description of how this field has been used in existing
implementations.

FSR_reserved (res) Bits 21 and 20 are reserved. When read by an STFSR instruction, these bits
deliver zeroes. For future compatibility, software should only issue LDFSR
instructions with zero values in these bits.

FSR_version (ver) Bits 19 through 17 identify one or more particular implementations of the FPU
architecture. For each SPARC IU implementation (as identified by its PSR.impl
and PSR.vers fields), there may be one or more FPU implementations, or none.
This field identifies the particular FPU implementation present. Version number
7 is reserved to indicate that no hardware floating-point controller is present. See
Appendix L, “Implementation Characteristics,” for a description of how this field
has been used in existing implementations.

FSR_floating-point_trap_type
(ftt)

Bits 16 through 14 identify floating-point exception trap types. After a floating-
point exception occurs, the ftt field encodes the type of floating-point exception
until an STFSR or another FPop is executed.

The ftt field can be read by the STFSR instruction. An LDFSR instruction does
not affect ftt.

Supervisor-mode software which handles floating-point traps must execute an
STFSR to determine the floating-point trap type. Whether STFSR explicitly
zeroes ftt is implementation-dependent; if STFSR does not zero ftt, then the trap
software must ensure that a subsequent STFSR from user mode shows a value of
zero for ftt.

SPARC International, Inc.

36 The SPARC Architecture Manual: Version 8

Programming Note LDFSR cannot be used for this purpose since it leaves ftt unchanged, although executing a non-
trapping FPop such as “fmovs %f0,%f0” prior to returning to user mode will zero ftt. ftt
remains valid until the next FPop instruction completes execution.

This field encodes the exception type according to Table 4-4. Note that value 7
is reserved for future expansion.

Table 4-4 Floating-point Trap Type (ftt) Field of FSR

ftt Trap Type
0 None
1 IEEE_754_exception
2 unfinished_FPop
3 unimplemented_FPop
4 sequence_error
5 hardware_error
6 invalid_fp_register
7 reserved

The sequence_error and hardware_error trap types are not expected to arise in the
normal course of computation. They are essentially unrecoverable, from the
point of view of user applications.

In contrast, IEEE_754_exception, unfinished_FPop, and unimplemented_FPop
are expected to arise occasionally in the normal course of computation and must
be recoverable by supervisor software. When a floating-point trap occurs (as
observed by a user signal (trap) handler):

1) The value of aexc is unchanged.

2) The value of cexc is unchanged, except that on an IEEE_754_exception
exactly one bit corresponding to the trapping exception will be set.
Unfinished_FPop, unimplemented_FPop, and sequence_error floating
point exceptions do not affect cexc.

3) The source f registers are unchanged (usually implemented by leaving
the destination f register unchanged).

4) The value of fcc is unchanged.

The foregoing describes the result seen by a user signal handler if an IEEE
exception is signaled, either immediately from an IEEE_754_exception or after
recovery from an unfinished_FPop or unimplemented_FPop. In either case, cexc
as seen by the trap handler will reflect the exception causing the trap.

In the cases of unfinished_FPop and unimplemented_FPop traps that don’t subse-
quently generate IEEE exceptions, the recovery software is expected to define
cexc, aexc, and either the destination f register or fcc, as appropriate.

SPARC International, Inc.

Chapter 4 — Registers 37

ftt = IEEE_754_exception An IEEE_754_exception floating-point trap type indicates that a floating-point
exception occurred that conforms to the ANSI/IEEE Standard 754-1985. The
exception type is encoded in the cexc field. Note that aexc, fcc, and the destina-
tion f register are not affected by an IEEE_754_exception trap.

ftt = unfinished_FPop An unfinished_FPop indicates that an implementation’s FPU was unable to gen-
erate correct results or exceptions as defined by ANSI/IEEE Standard 754-1985.
In this case, the cexc field is unchanged.

ftt = unimplemented_FPop An unimplemented_FPop indicates that an implementation’s FPU decoded an
FPop that it does not implement. In this case, the cexc field is unchanged.

Programming Note In the case of an unfinished_FPop or unimplemented_FPop floating-point trap type, software
should emulate or re-execute the exception-causing instruction, and update the FSR, destination f
register(s), and fcc.

ftt = sequence_error A sequence_error indicates one of three abnormal error conditions in the FPU, all
caused by erroneous supervisor software:

— An attempt was made to execute a STDFQ instruction on an implementation
without a floating-point deferred-trap queue (FQ).

— An attempt was made to execute a floating-point instruction when the FPU
was not able to accept one. This type of sequence_error arises from a logic
error in supervisor software that has caused a previous floating-point trap to
be incompletely serviced (for example, the floating-point queue was not emp-
tied after a previous floating-point exception).

— An attempt was made to execute a STDFQ instruction when the floating-
point deferred-trap queue (FQ) was empty, that is, when FSR.qne = 0. (Note
that generation of sequence_error is recommended, but not required in this
case)

Programming Note If a sequence_error fp_exception occurs during execution of user code (due to either of the above
conditions), it may not be possible to recover sufficient state to continue execution of the user
application.

ftt = hardware_error A hardware_error indicates that the FPU detected a catastrophic internal error,
such as an illegal state or a parity error on an f register access.

If a hardware_error occurs during execution of user code, it may not be possible
to recover sufficient state to continue execution of the user application.

ftt = invalid_fp_register
An invalid_fp_register trap type indicates that one (or more) operands of an FPop
are misaligned, that is, a double-precision register number is not 0 mod 2, or a
quadruple-precision register number is not 0 mod 4. It is recommended that
implementations generate an fp_exception trap with FSR.ftt = invalid_fp_register
in this case, but an implementation may choose not to generate a trap.

SPARC International, Inc.

38 The SPARC Architecture Manual: Version 8

FSR_FQ_not_empty (qne) Bit 13 indicates whether the optional floating-point deferred-trap queue (FQ) is
empty after a deferred fp_exception trap or after a store double floating-point
queue (STDFQ) instruction has been executed. If qne = 0, the queue is empty; if
qne = 1, the queue is not empty.

The qne bit can be read by the STFSR instruction. The LDFSR instruction does
not affect qne. However, executing successive STDFQ instructions will (eventu-
ally) cause the FQ to become empty (qne = 0). If an implementation does not
provide an FQ, this bit reads as zero. Supervisor software must arrange for this
bit to always read as zero to user mode software.

FSR_fp_condition_codes (fcc) Bits 11 and 10 contain the FPU condition codes. These bits are updated by
floating-point compare instructions (FCMP and FCMPE). They are read and
written by the STFSR and LDFSR instructions, respectively. FBfcc bases its
control transfer on this field.

In the following table, f rs1 and f rs2 correspond to the single, double, or quad
values in the f registers specified by an instruction’s rs1 and rs2 fields. The ques-
tion mark (?) indicates an unordered relation, which is true if either f rs1 or f rs2 is
a signaling NaN or quiet NaN. Note that fcc is unchanged if FCMP or FCMPE
generates an IEEE_754_exception trap.

Table 4-5 Floating-point Condition Codes (fcc) Field of FSR

fcc Relation
0 f rs1 = f rs2
1 f rs1 < f rs2
2 f rs1 > f rs2
3 f rs1 ? f rs2 (unordered)

FSR_accrued_exception (aexc) Bits 9 through 5 accumulate IEEE_754 floating-point exceptions while
fp_exception traps are disabled using the TEM field. See Figure 4-10. After an
FPop completes, the TEM and cexc fields are logically and’d together. If the
result is nonzero, an fp_exception trap is generated; otherwise, the new cexc field
is or’d into the aexc field. Thus, while traps are masked, exceptions are accumu-
lated in the aexc field.

FSR_current_exception (cexc) Bits 4 through 0 indicate that one or more IEEE_754 floating-point exceptions
were generated by the most recently executed FPop instruction. The absence of
an exception causes the corresponding bit to be cleared. See Figure 4-11.

The cexc bits are set as described in section 4.4.2 by the execution of an FPop
that either does not cause a trap or causes an fp_exception trap with
FSR.ftt = IEEE_754_exception. It is recommended that an IEEE_754_exception
which traps should cause exactly one bit in FSR.cexc to be set, corresponding to
the detected IEEE 754 exception. If the execution of an FPop causes a trap other
than an fp_exception due to an IEEE 754 exception, FSR.cexc is left unchanged.

SPARC International, Inc.

Chapter 4 — Registers 39

Floating-Point Exception
Fields

The current and accrued exception fields and the trap enable mask assume the
following definitions of the floating-point exception conditions (per ANSI/IEEE
Standard 754-1985):

Figure 4-9 Trap Enable Mask (TEM) Fields of FSR

NVM

27

OFM

26

UFM

25

DZM

24

NXM

23

Figure 4-10 Accrued Exception Bits (aexc) Fields of FSR

nva

9

ofa

8

ufa

7

dza

6

nxa

5

Figure 4-11 Current Exception Bits (cexc) Fields of FSR

nvc

4

ofc

3

ufc

2

dzc

1

nxc

0

FSR_invalid (nvc, nva) An operand is improper for the operation to be performed. For example, 0 ÷ 0,
and ∞ − ∞ are invalid. 1 = invalid operand, 0 = valid operand(s).

FSR_overflow (ofc, ofa) The rounded result would be larger in magnitude than the largest normalized
number in the specified format. 1 = overflow, 0 = no overflow.

FSR_underflow (ufc, ufa) The rounded result is inexact and would be smaller in magnitude than the smal-
lest normalized number in the indicated format. 1 = underflow, 0 = no
underflow.

Underflow is never indicated when the correct unrounded result is zero.
Otherwise,

if UFM=0: The ufc and ufa bits will be set if the correct unrounded result of an
operation is less in magnitude than the smallest normalized number
and the correctly-rounded result is inexact. These bits will be set if
the correct unrounded result is less than the smallest normalized
number, but the correct rounded result is the smallest normalized
number. nxc and nxa are always set as well.

if UFM=1: An IEEE-754_exception trap will occur if the correct unrounded
result of an operation would be smaller than the smallest normalized
number. A trap will occur if the correct unrounded result would be
smaller than the smallest normalized number, but the correct
rounded result would be the smallest normalized number.

SPARC International, Inc.

40 The SPARC Architecture Manual: Version 8

FSR_division-by-zero (dzc, dza) X ÷ 0, where X is subnormal or normalized. Note that 0 ÷ 0 does not set the dzc
bit. 1 = division-by-zero, 0 = no division-by-zero.

FSR_inexact (nxc, nxa) The rounded result of an operation differs from the infinitely precise correct
result. 1 = inexact result, 0 = exact result.

FSR Conformance An implementation may choose to implement the TEM, cexc, and aexc fields in
hardware in either of two ways:

(1) Implement all three fields conformant to ANSI/IEEE Standard 754-1985.

(2) Implement the NXM, nxa, and nxc bits of these fields conformant to
ANSI/IEEE Standard 754-1985. Implement each of the remaining bits in
the three fields either

(a) Conformant to the ANSI/IEEE Standard, or

(b) As a state bit that may be set by software which calculates the
ANSI/IEEE value of the bit. For any bit implemented as a state bit:

· The IEEE exception corresponding to the state bit must always
cause an exception (specifically, an unfinished_FPop exception).
During exception processing in the trap handler, the bit in the state
field can be written to the appropriate value by an LDFSR instruc-
tion, and

· The state bit must be implemented in such a way that if it is writ-
ten to a particular value by an LDFSR instruction, it will be read
back as the same value in a subsequent STFSR.

Programming Note The software must be capable of simulating the entire FPU to properly handle the
unimplemented_FPop, unfinished_FPop, and IEEE_754_exception floating-point traps. Thus, a
user application program always “sees” an FSR that is fully compliant with ANSI/IEEE Standard
754-1985.

Floating-Point Deferred-Trap
Queue (FQ)

The floating-point deferred-trap queue (FQ), if present in an implementation,
contains sufficient state information to implement resumable, deferred floating-
point traps.

If floating-point instructions are to execute concurrently with (asynchronously
from) integer instructions in a given implementation, the implementation must
provide a floating-point queue. If floating-point instructions execute synchro-
nously with integer instructions, provision of a floating-point queue is optional.

The FQ can be read with the privileged store double floating-point queue instruc-
tion (STDFQ). In a given implementation, it may also be readable or writable
via privileged load/store double alternate (LDDA, STDA) instructions, or by
read/write Ancillary State Register instructions (RDASR, WRASR).

SPARC International, Inc.

Chapter 4 — Registers 41

The contents of and operations upon the FQ are implementation-dependent.
However, if an FQ is present, supervisor software must be able to deduce the
exception-causing instruction’s opcode (opf), operands, and address from its FQ
entry. This must also be true of any other pending floating-point operations in
the queue. See Appendix L, “Implementation Characteristics,” for a discussion
of the formats and operation of implemented floating-point queues.

In an implementation without an FQ, the qne bit in the FSR is always 0, and an
STDFQ instruction causes an fp_exception trap with FSR.ftt = 4
(sequence_error).

4.5. CP Registers All of the coprocessor data and control/status registers are optional and
implementation-dependent.

The coprocessor working registers are accessed via load/store coprocessor and
CPop1/CPop2 format instructions.

The architecture also provides instruction support for reading and writing a
Coprocessor State Register (CSR) and a coprocessor deferred-trap queue (CQ).

If that a higher priority trap is not pending, and the CP is not present or PSR.EC
= 0, execution of a load or store to a coprocessor register or of a coprocessor
operate instruction generates a cp_disabled trap.

SPARC International, Inc.

5��������������������
Instructions

Instructions are accessed by the processor from memory and are executed,
annulled, or trapped. Instructions are encoded in three 32-bit formats and can be
partitioned into six general categories. There are 72 basic instruction operations.

5.1. Instruction Execution Architecturally, an instruction is read from memory at the address given by the
program counter (PC). It is then executed or not, depending on whether the pre-
vious instruction was an annulling branch (see below). An instruction may also
generate a trap due to the detection of an exceptional condition, caused by the
instruction itself (precise trap), a previous instruction (deferred trap), an external
interrupt (interrupting trap), or an external reset request. If an instruction is exe-
cuted, it may change program-visible processor and/or memory state.

If the instruction traps, control is vectored into a trap table at the address given
by the Trap Base Register (TBR). If an instruction does not trap, the next pro-
gram counter (nPC) is copied into the PC and the nPC is incremented by 4
(ignoring overflow, if any). If the instruction is a control-transfer instruction, the
processor writes the target address to nPC. Thus, the two program counters pro-
vide for a delayed-branch execution model.

For each instruction access and each normal data access, the IU appends to the
32-bit memory address an 8-bit address space identifier, or ASI. The ASI
encodes whether the processor is in supervisor or user mode, and whether the
access is an instruction or data access. There are also privileged load/store alter-
nate instructions (see below) that can provide an arbitrary ASI with their data
addresses.

Implementation Note The time required to execute an instruction is implementation-dependent, as is the degree of execu-
tion concurrency. The relationship between PC and nPC and the hardware that fetches and decodes
instructions is also implementation-dependent. In the absence of traps, an implementation should
cause the same program-visible register and memory state changes as if a program had executed
according to the sequential model implied in this document. See Chapter 7, “Traps,” for a
definition of architectural compliance in the presence of traps.

5.2. Instruction Formats Instructions are encoded in three major 32-bit formats. See Figure 5-1. There
are also several minor formats that are illustrated in Appendix B, “Instruction
Definitions.”

43 SPARC International, Inc.

44 The SPARC Architecture Manual: Version 8

Figure 5-1 Summary of Instruction Formats

Format 1 (op = 1): CALL

op disp30
31 29 0

Format 2 (op = 0): SETHI & Branches (Bicc, FBfcc, CBccc)

op rd op2 imm22
op a cond op2 disp22
31 29 28 24 21 0

Format 3 (op = 2 or 3): Remaining instructions

op rd op3 rs1 i=0 asi rs2
op rd op3 rs1 i=1 simm13
op rd op3 rs1 opf rs2
31 29 24 18 13 12 4 0

Instruction Fields The instruction fields are interpreted as follows:

op and op2
These 2- and 3-bit fields encode the 3 major formats and the format 2
instructions according to Tables 5-1 and 5-2.

Table 5-1 op Encoding (All Formats)

Format op Instructions
1 1 CALL
2 0 Bicc, FBfcc, CBccc, SETHI
3 3 memory instructions
3 2 arithmetic, logical, shift, and remaining

SPARC International, Inc.

Chapter 5 — Instructions 45

Table 5-2 op2 Encoding (Format 2)

op2 Instructions
0 UNIMP
1 unimplemented
2 Bicc
3 unimplemented
4 SETHI
5 unimplemented
6 FBfcc
7 CBccc

rd
This 5-bit field is the address of the destination (or source) r or f or coproces-
sor register(s) for a load/arithmetic (or store) instruction. For an instruction
that read/writes a double (or quad), the least significant one (or two) bits are
unused and should be supplied as zero by software.

a
The a bit in a branch instruction annuls the execution of the following
instruction if the branch is conditional and untaken or if it is unconditional
and taken.

cond
This 4-bit field selects the condition code(s) to test for a branch instruction.
See Appendix F, “Opcodes and Condition Codes,” for descriptions of its
values.

imm22
This 22-bit field is a constant that SETHI places in the upper end of a desti-
nation register.

disp22 and disp30
These 30-bit and 22-bit fields are word-aligned, sign-extended, PC-relative
displacements for a call or branch, respectively.

op3
This 6-bit field (together with 1 bit from op) encodes the format 3 instruc-
tions. See Appendix F, “Opcodes and Condition Codes,” for descriptions of
its values.

i
The i bit selects the second ALU operand for (integer) arithmetic and
load/store instructions. If i = 0, the operand is r[rs2]. If i = 1, the operand is
simm13, sign-extended from 13 to 32 bits.

asi
This 8-bit field is the address space identifier supplied by a load/store alter-
nate instruction.

rs1
This 5-bit field is the address of the first r or f or coprocessor register(s)
source operand. For an instruction that reads a double (or quad), the least

SPARC International, Inc.

46 The SPARC Architecture Manual: Version 8

significant bit (or 2 bits) are unused and should be supplied as zero by
software.

rs2
This 5-bit field is the address of the second r or f or coprocessor register(s)
source operand when i = 0. For an instruction that reads a double-length (or
quad-length) register sequence, the least significant bit (or 2 bits) are unused
and should be supplied as zero by software.

simm13
This 13-bit field is a sign-extended 13-bit immediate value used as the
second ALU operand for an (integer) arithmetic or load/store instruction
when i = 1.

opf
This 9-bit field encodes a floating-point operate (FPop) instruction or a
coprocessor operate (CPop) instruction. See Appendix F, “Opcodes and
Condition Codes,” for possible values and their meanings.

5.3. Instruction Categories SPARC instructions can be grouped into six categories: load/store, integer arith-
metic, control transfer (CTI), read/write control register, floating-point operate,
and coprocessor operate.

Load/Store Instructions Load/store instructions are the only instructions that access memory. See
Chapter 6, “Memory Model,” which specifies their semantics and the order in
which they appear to be executed by memory. Load and store instructions use
two r registers or an r register and simm13 to calculate a 32-bit, byte-aligned
memory address. To this address, the IU appends an ASI that encodes whether
the processor is in supervisor or user mode, and whether the access is an instruc-
tion or data access.

The destination field of the load/store instruction specifies either an r register, f
register, or coprocessor register that supplies the data for a store, or receives the
data from a load.

Integer load and store instructions support byte (8-bit), halfword (16-bit), word
(32-bit), and doubleword (64-bit) accesses. Floating-point and coprocessor load
and store instructions support word and doubleword memory accesses.

Programming Note When i = 1 and rs1 = 0, any location in the lowest or highest 4K bytes of an address space can be
accessed without using a register to hold an address.

Alignment Restrictions Halfword accesses must be aligned on a 2-byte boundary, word accesses (which
include instruction fetches) must be aligned on a 4-byte boundary, and double-
word accesses must be aligned on an 8-byte boundary. An improperly aligned
address causes a load or store instruction to generate a mem_address_not_aligned
trap.

SPARC International, Inc.

Chapter 5 — Instructions 47

Addressing Conventions SPARC is a big-endian architecture: the address of a doubleword, word, or half-
word is the address of its most significant byte. Increasing the address generally
means decreasing the significance of the unit being accessed. The addressing
conventions are illustrated in Figure 5-2 and defined as follows:

Byte
For a load/store byte instruction, the most significant byte of a word (bits 31
to 24) is accessed when address bits <1:0> = 0 and the least significant byte
(bits 7 to 0) is accessed when address bits <1:0> = 3.

Halfwords
For a load/store halfword instruction, the more significant halfword of a
word (bits 31 to 16) is accessed when address bits <1:0> = 0, and the less
significant halfword is accessed when address bits <1:0> = 2.

Doublewords
For a load/store double instruction, the more significant word (bits 63 to 32)
is accessed when address bits <2:0> = 0, and the less significant word (bits
31 to 0) is accessed when address bits <2:0> = 4.

SPARC International, Inc.

48 The SPARC Architecture Manual: Version 8

Figure 5-2 Addressing Conventions

7 0 7 0 7 0 7 0

address<1:0> 0 1 2 3

15 0 15 0

address<1:0> 0 2

address<1:0>

0310

63 32

31 0

address<2:0>

0

4

Bytes

Halfwords

Word

Doubleword

Address Space Identifiers
(ASIs)

A normal load/store instruction provides an ASI of either 0x0A or 0x0B for the
data access, depending on whether the processor is in user or supervisor mode.
However, privileged load from alternate space instructions and privileged store
into alternate space instructions supply explicit address space identifiers, from
the asi field in the instructions.

The ASI assignments are shown in Table 5-3.

Implementation Note The definitions of the alternate spaces are implementation-dependent. Whether an implementation
decodes all eight ASI bits is also implementation-dependent. See Appendix I, “Suggested ASI
Assignments for SPARC Systems,” for a set of recommended assignments.

SPARC International, Inc.

Chapter 5 — Instructions 49

Table 5-3 Address Space Identifiers

ASI Address Space
0x00 − 0x07 implementation-dependent

0x08 User Instruction
0x09 Supervisor Instruction
0x0A User Data
0x0B Supervisor Data

0x0C − 0xFF implementation-dependent

Separate Instruction Memory The SPARC architecture is defined in this manual as if store instructions access
the same memory from which instructions are fetched. However, an implemen-
tation may explicitly partition instructions and data into independent instruction
and data memories (caches), commonly referred to as a “Harvard” architecture or
“split I & D caches”.

If a program includes self-modifying code, it must issue a FLUSH instruction for
each modified instruction word 1, which ensures that the modified instruction will
be flushed to memory. In general, a store of an instruction must be followed by a
FLUSH1 before the new instruction can be reliably fetched from the instruction
stream. See Chapter 6, “Memory Model,” and Appendix B, “Instruction
Definitions.”

Input/Output SPARC assumes that input/output registers are accessed via load/store alternate
instructions, normal load/store instructions, coprocessor instructions, or
read/write Ancillary State Register instructions (RDASR, WRASR). In the first
case, the I/O registers can only be accessed by the supervisor. In the last case,
whether the I/O registers can be accessed from user code or not is
implementation-dependent.

The addresses and contents of I/O registers are implementation-dependent.

Integer Arithmetic
Instructions

The integer arithmetic instructions are generally triadic-register-address instruc-
tions which compute a result that is a function of two source operands, and either
write the result into the destination register r[rd] or discard it. One of the source
operands is always r[rs1]. The other source operand depends on the i bit in the
instruction: if i = 0, the operand is r[rs2], but if i = 1, the operand is the constant
simm13 sign-extended to a width of 32 bits.

Reading r[0] produces the value zero. If the destination field indicates a write
into r[0], no r register is modified and the result is discarded.

��
1 Or, issue supervisor calls (traps) having that effect.

SPARC International, Inc.

50 The SPARC Architecture Manual: Version 8

Set Condition Codes Most of these instructions are available in dual versions; one version sets the
integer condition codes (icc) as a side effect; the other version does not affect the
condition codes. A special comparison instruction for integer values is not
needed, as it is easily synthesized from the “subtract and set condition codes”
(SUBcc) instruction.

Shift Instructions Shift instructions shift an r register left or right by a constant or variable amount.
None of the shift instructions changes the condition codes.

Set High 22 Bits The “set high 22 bits of an r register” instruction (SETHI) writes a 22-bit con-
stant from the instruction into the high-order bits of the destination register. It
clears the low-order 10 bits, and does not affect the condition codes. Its primary
use is in construction of a 32-bit constant in a register.

Integer Multiply/Divide The integer multiply instructions perform 32 × 32 → 64-bit operations, and the
integer divide instructions perform 64 ÷ 32 → 32-bit operations. There are ver-
sions of these instructions that set the condition codes, and others that do not.
Division by zero causes a division-by-zero trap.

Tagged Add/Subtract The tagged add/subtract instructions assume tagged-format data, where the tag is
the two low-order bits of each operand. ‘‘Tag overflow’’ occurs if either of the
two operands has a nonzero tag, or if 32-bit arithmetic overflow occurs. If tag
overflow occurs, TADDcc and TSUBcc set the PSR’s overflow bit, and
TADDccTV and TSUBccTV cause a tag_overflow trap (but do not affect
PSR.icc.V).

Control-Transfer Instructions
(CTIs)

A control-transfer instruction changes the value of the next program counter
(nPC). There are five basic control-transfer instruction (CTI) types:

� Conditional branch (Bicc, FBfcc, CBccc)

� Call and Link (CALL)

� Jump and Link (JMPL)

� Return from trap (RETT)

� Trap (Ticc)

CTI Categories The control-transfer instructions can be categorized (Table 5-4) according to how
the target address is calculated (PC-relative vs. register-indirect), and the time at
which the control transfer takes place relative to the CTI (non-delayed vs.
delayed vs. conditional-delayed).

SPARC International, Inc.

Chapter 5 — Instructions 51

Table 5-4 CTI Categories

Control-Transfer Target Address Transfer Time
Instruction Calculation Relative to CTI

Bicc, FBfcc, CBccc PC-relative conditional-delayed
CALL PC-relative delayed
JMPL, RETT register-indirect delayed
Ticc register-indirect-vectored non-delayed

PC-relative CTI
A PC-relative CTI computes its target address by sign-extending its immedi-
ate field to 32 bits, left-shifting that word displacement by two bits to create
a byte displacement, and adding the resulting byte displacement to the con-
tents of the PC.

register-indirect CTI
A register-indirect CTI computes its target address as either “r[rs1] + r[rs2]”
if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

register-indirect-vectored CTI
A register-indirect-vectored CTI computes its target address in stages. First,
a trap type is calculated as “127 + r[rs1] + r[rs2]” if i = 0, or as “127 + r[rs1]
+ sign_ext(simm13)” if i = 1. This trap type is stored in the tt field of the
TBR register. The resulting contents of the TBR register is the target
address of the CTI.

delayed CTI (DCTI)
A delayed control transfer changes control to the instruction at the target
address after a 1-instruction delay. The delay instruction executed after the
CTI is executed before the target of the CTI is executed.

non-delayed CTI
A non-delayed control transfer changes control to the instruction at the target
address immediately after the CTI is executed.

conditional delayed CTI (conditional DCTI)
A conditional delayed control transfer causes either a delayed or a non-
delayed control transfer, depending on the value of the instruction’s annul a
bit and whether the transfer is conditional or not.

Note that both a delayed and a conditional delayed control-transfer instruction
are classified as delayed CTIs, or DCTIs.

Delay Instruction The instruction pointed to by the nPC when a delayed control-transfer instruction
is encountered is the delay instruction. Normally, this is the next sequential
instruction in the instruction space (that is, at location PC + 4). However, if the
instruction that immediately precedes a particular DCTI is itself a DCTI, the
address of the delay instruction is actually the target of the preceding DCTI
(since that is where the nPC will point when the DCTI in question is executed).
This is explained further in the section Delayed Control-Transfer Couples below.

SPARC International, Inc.

52 The SPARC Architecture Manual: Version 8

Delayed Transfer Table 5-5 demonstrates the order of execution for a generic delayed control
transfer. The order of execution by address is 8, 12, 16, and 40. If the delayed
control-transfer instruction is not taken, the order of execution by address is
8, 12, 16, and 20.

Table 5-5 Delayed Control Transfer

PC nPC
before before Instruction

execution execution
8 12 not-a-CTI
12 16 delayed CTI to 40
16 40 not-a-CTI
: :

40 44 ...

Conditional Delayed Transfer A conditional delayed transfer instruction changes control depending on the
value of the instruction’s annul (a) bit and whether the specified condition is true
or not. Note that the a bit is only specifiable in the branch instructions (Bicc,
FBfcc, and CBccc).

When the annul bit is 0 in a conditional delayed transfer instruction, its delay
instruction is always executed. When the annul bit is 1 in a conditional delayed
transfer instruction, the delay instruction is not executed, except when the
control-transfer instruction is a taken conditional branch. Table 5-6 summarizes
the conditions under which a delay instruction is or is not executed.

An annulled delay instruction has the same effect as would a NOP instruction.

Table 5-6 Conditions for Execution of Delay Instruction

Delay instruction
a bit Type of branch executed?

conditional, taken Yes
a = 0 conditional, not taken Yes

unconditional, taken (BA, etc) Yes
unconditional, not taken (BN, etc) Yes

conditional, taken Yes
a = 1 conditional, not taken No (annulled)

unconditional, taken (BA, etc) No (annulled)
unconditional, not taken (BN, etc) No (annulled)

Conditional with a = 1 If a = 1 in a conditional branch (not including branch always) and the branch is
not taken, the delay instruction is annulled (not executed). If the branch is
taken, the delay instruction is executed.

SPARC International, Inc.

Chapter 5 — Instructions 53

Table 5-7 Untaken Branch with a = 1

PC nPC Instruction Action
8 12 not-a-CTI executed
12 16 conditional branch (a=1) to 40 not taken
16 20 not-a-CTI not executed (annulled)
20 24 ... executed

Conditional with a = 0 If a = 0 in a conditional branch (including branch always), the delay instruction
is executed regardless of whether the branch is taken.

Table 5-8 Untaken Branch with a = 0

PC nPC Instruction Action
8 12 not-a-CTI executed
12 16 conditional branch (a=0) to 40 not taken
16 20 not-a-CTI executed
20 24 ... executed

Unconditional Delayed Transfer If a = 0 in an unconditional (“branch-always” or “branch-never”) branch instruc-
tion (that is, BA, FBA, CBA, BN, FBN, and CBN), the delay instruction is
always executed. If a = 1 in an unconditional branch instruction, the delay
instruction is not executed.

Programming Note A branch always with a = 1 can be used by the supervisor at program runtime to dynamically
replace an unimplemented instruction with a branch to an associated emulation routine that it writes
into the user address space. When re-executed, the overhead for emulating the unimplemented
instruction is significantly reduced. The first few instructions of the emulation routine can be
tailored at runtime to make available the operands of the replaced instruction.

Programming Note The annul bit increases the likelihood that a compiler can find a useful instruction to fill the delay
slot after a branch, thereby reducing the number of instructions executed by a program. Here are
two examples:

The annul bit can be used to move an instruction from within a loop to fill the delay slot of the
branch which closes the loop. If the Bicc in Table 5-9 has a = 0, a compiler can move a non-
control-transfer instruction from within the loop into location D. If the Bicc has a = 1, the compiler
can copy the non-control-transfer instruction at location L into location D and change the branch to
Bicc L’.

The annul bit can be used to move an instruction from either the “else” or the “then” arm of an “if-
then-else” program block to the delay slot of the branch which selects between them. Since the
conditional branch instructions provide both true and false tests for all the conditions, a compiler
can arrange the code (possibly reversing the sense of the branch test conditions) so that a non-
control-transfer instruction from either the “else” branch or the “then” branch can be moved into
the delay position after the “if” branch instruction. See Table 5-10.

SPARC International, Inc.

54 The SPARC Architecture Manual: Version 8

Table 5-9 Example Loop Code
Address Instruction

L: not-a-CTI
L’: not-a-CTI

...
Bicc to L

D: not-a-CTI

Table 5-10 If-Then-Else Optimization

Address Instruction Address Instruction

Bicc(cond, a=1) THEN Bicc(cond, a=1) ELSE
DELAY: then-phrase-instr-1 DELAY: else-phrase-instr-1
ELSE: else-phrase-instr-1 THEN: then-phrase-instr-1

goto ... goto ...
THEN: then-phrase-instr-2 ELSE: else-phrase-instr-2

CALL and JMPL Instructions The CALL instruction writes the contents of the PC (which point to the CALL
instruction itself) into r[15] (out register 7). CALL causes a delayed transfer of
control to an arbitrary PC-relative target address.

JMPL writes the contents of the PC (which point to the JMPL instruction) into
the r register specified by the rd field. JMPL causes a delayed transfer of control
to an arbitrary target address.

SAVE Instruction The SAVE instruction is identical to an ADD instruction, except that it also
decrements the CWP by 1. This causes the CWP−1 window to become the new
current window, thereby “saving” the caller’s window. Also, the source registers
for the addition are from the CWP window, while the result is written into a
register in the CWP−1 window.

RESTORE Instruction The RESTORE instruction is also identical to an ADD instruction, except that it
increments the CWP by 1. This causes the CWP+1 window to become the
current window, thereby “restoring” the caller’s window. Also, the source regis-
ters for the addition are from the CWP window, while the result is written into a
register in the CWP+1 window.

Both SAVE and RESTORE compare the new CWP against the Window Invalid
Mask (WIM) to check for window overflow or underflow.

Programming Note A procedure is invoked by executing a CALL (or a JMPL) instruction. If the procedure requires a
register window, it executes a SAVE instruction. A routine that has not allocated a register window
of its own (possibly a ‘‘leaf’’ procedure) should not write on any windowed registers except out
registers 0...6.

A procedure that uses a register window returns by executing both a RESTORE and a JMPL
instruction. A procedure that was not allocated a register window returns by executing a JMPL
only. The JMPL instruction typically returns to the instruction following the CALL’s or JMPL’s
delay instruction; in other words, the typical return address is 8 plus the address saved by the CALL
or JMPL.

SPARC International, Inc.

Chapter 5 — Instructions 55

The SAVE and RESTORE instructions can be used to atomically establish a new memory stack
pointer in an r register and update the CWP. See Appendix D, “Software Considerations.”

Trap (Ticc) Instruction The Ticc instruction evaluates the condition codes specified by its cond field and,
if the result is true, causes a trap. That is, it modifies the tt field of the Trap Base
Register (TBR), and causes a non-delayed control transfer to the address in the
TBR. If the selected condition codes evaluate to false, it executes as a NOP.

A Ticc instruction can specify one of 128 software trap types to be used in the tt
field of the TBR. After a taken Ticc, the processor disables traps, enters supervi-
sor mode, decrements the CWP, saves PC and nPC into r[17] and r[18] (local
registers 1 and 2) of the new window, places 128 + its source operand into the tt
field of the TBR, and transfers control to the address given in the TBR. See
Chapter 7, “Traps,” for more information.

Programming Note Ticc can be used to implement breakpointing, tracing, and calls to supervisor software. Ticc can
also be used for runtime checks, such as out-of-range array indices, integer overflow, etc.

Delayed Control-Transfer
Couples (DCTI)

When a delay instruction is itself a control-transfer instruction, the pair of
instructions are referred to as a delayed control-transfer instruction couple (DCTI
couple). The order of execution for DCTI couples is summarized in Table 5-12
based on the code sequence in Table 5-11.

Table 5-11 Example DCTI Couple Code

address: instruction target
8: not-a-CTI

12: CTI 40
16: CTI 60
20: not-a-CTI

24: ...

40: not-a-CTI

44: ...

60: not-a-CTI

64: ...

First-Taken Case In the first five cases of Table 5-12, the first instruction of a DCTI couple is a
CTI that causes a transfer of control. These cases are representative of the DCTI
couples that can occur during a return from a trap handler to user code, which can
happen via a “JMPL, RETT” instruction couple. Both the “JMPL, RETT” cou-
ple and an “RETT, user-CTI” couple can occur during returns from trap handlers.

First-Untaken Case In the sixth case in Table 5-12, the first instruction of a DCTI couple is a (possi-
bly untaken) conditional branch, the targets of the DCTI couple are within the
same address space as the DCTI couple, but are otherwise unpredictable.

SPARC International, Inc.

56 The SPARC Architecture Manual: Version 8

Table 5-12 Order of Execution by Address for DCTI Couples

Case 12: CTI 40 16: CTI 60 Order of Execution by Address
1 DCTI unconditional DCTI taken 12, 16, 40, 60, 64, ...
2 DCTI unconditional B*cc(a=0) untaken 12, 16, 40, 44, ...
3 DCTI unconditional B*cc(a=1) untaken 12, 16, 44, 48, ... (40 annulled)
4 DCTI unconditional B*A(a=1) 12, 16, 60, 64, ... (40 annulled)
5 B*A(a=1) any CTI 12, 40, 44, ... (16 annulled)
6 B*cc DCTI 12, unpredictable

Note: Where the a bit is not indicated above, it may be either 0 or 1. See next table for abbreviations.

Table 5-13 Abbreviations used in Previous Table

Abbreviation Refers to Instructions
B*A BA, FBA or CBA
B*cc Bicc, FBfcc, or CBccc

(including BN, FBN, CBN, but excluding B*A)
DCTI unconditional CALL, JMPL, RETT, or B*A(with a=0)
DCTI taken CALL, JMPL, RETT, B*A(with a=0), or B*cc taken

Read/Write State Registers The read/write state register instructions access the program-visible state and
status registers. These instructions read/write the state registers into/from r regis-
ters. A read/write Ancillary State Register instruction is privileged if the
accessed register is privileged.

Floating-Point Operate
(FPop) Instructions

Floating-point operate instructions (FPop’s) are generally triadic-register-address
instructions. They compute a result that is a function of one or two source
operands and place the result in a destination f register. The exceptions are
floating-point convert operations (which use one source and one destination
operands) and floating-point compare operations (which do not write to an f
register but update the fcc field of the FSR). If there is no attached floating-point
unit or if PSR.EF = 0, an FPop instruction generates an fp_disabled trap.

The term “FPop” refers to those instructions encoded by the FPop1 and FPop2
opcodes and does not include branches based on the floating-point condition
codes (FBfcc) or the load/store floating-point instructions.

All FPop instructions clear the ftt field and set the cexc field, unless they trap.
Some FPop instructions also write the fcc field. All FPop instructions that can
generate IEEE exceptions set the cexc and aexc fields, unless they trap. FABSs,
FMOVs,and FNEGs can’t generate IEEE exceptions, so clear cexc and leave
aexc unchanged.

SPARC International, Inc.

Chapter 5 — Instructions 57

Coprocessor Operate (CPop)
Instructions

The coprocessor operate instructions are executed by the attached coprocessor. If
there is no attached coprocessor or PSR.EC = 0, a CPop instruction generates a
cp_disabled trap.

The instruction fields of a CPop instruction, except for op and op3, are inter-
preted only by the coprocessor.

The term “CPop” refers to those instructions encoded by the CPop1 and CPop2
opcodes and does not include branches based on the coprocessor condition codes
(CBccc) or the load/store coprocessor instructions.

SPARC International, Inc.

6��������������������
Memory Model

The SPARC memory model defines the semantics of memory operations such as
load and store, and specifies how the order in which these operations are issued
by a processor is related to the order in which they are executed by memory. It
also specifies how instruction fetches are synchronized with memory operations.

The model applies both to uniprocessors and to shared-memory multiprocessors.

In the case of multiprocessor systems, the non-deterministic aspect of the
memory model (see below) requires that the result of executing a program on a
given implementation must be a possible result of executing the same program
on the model machine defined by the architecture. This allows for unspecified
(and unpredictable) timing-dependent effects of inter-processor interaction. Note
that other events, such as interrupts and I/O, can also cause non-deterministic
behavior.

As mentioned in Chapter 1, “Introduction”, the SPARC architecture is a model
which specifies the behavior observed by software on SPARC systems. There-
fore, access to memory can be implemented in any manner in hardware, as long
as the model described here is the one observed by software.

The standard memory model is called Total Store Ordering (TSO). All
SPARC implementations must provide at least the TSO model. An additional
model called Partial Store Ordering (PSO) is defined, which allows higher-
performance memory systems to be built. If present, this model is enabled via a
system mode bit; if a SPARC Reference MMU is used, this bit is the PSO mode
bit in the MMU control register. See Appendix H, “SPARC Reference MMU
Architecture.”

Machines that implement Strong Consistency (also called Strong Ordering)
automatically support both TSO and PSO because the requirements of Strong
Consistency are more stringent than either. In Strong Consistency, the loads,
stores, and atomic load-stores of all processors are executed by memory serially
in an order that conforms to the order in which these instructions were issued by
individual processors. However, a machine that implements Strong Consistency
may deliver lower performance than an equivalent machine that implements TSO
or PSO. Although particular SPARC implementations may support Strong Con-
sistency, software must not rely on having this model available on all machines.
Strong Consistency is not the standard SPARC memory model.

59 SPARC International, Inc.

60 The SPARC Architecture Manual: Version 8

Programs written using single-writer-multiple-readers locks are portable across
PSO, TSO, and Strong Consistency. Programs that use write-locks but read
without locking are portable across PSO,TSO, and Strong Consistency only if
writes to shared data are separated by STBAR instructions. If these STBAR
instructions are omitted, then the code is portable only across TSO and Strong
Consistency. The guidelines for other programs are as follows: Programs written
for PSO work automatically on a machine running in TSO mode or on a machine
that implements Strong Consistency; programs written for TSO work automati-
cally on a machine that implements Strong Consistency; programs written for
Strong Consistency may not work on a TSO or PSO machine; programs written
for TSO may not work on a PSO machine.

Multithreaded programs in which all threads are restricted to run on a single pro-
cessor behave the same on PSO and TSO as they would on a Strongly Consistent
machine.

6.1. Basic Definitions Memory is the collection of locations accessed by the load/store instructions
(described in Appendix B, Sections B.1 through B.8). These locations include
traditional memory, as well as I/O registers, and registers accessible via address
space identifiers.

Real Memory Real (or main) memory is defined to be those memory locations accessed when
either:

· the ASI field is 8, 9, 0xA, or 0xB, or

· the ASI field, together with a field in a corresponding MMU entry, implies a
reference to real memory. (For example, when the Reference MMU is used,
physical address pass-through ASIs 0x20-2F refer to real memory.)

Real memory should not be accessed by any other ASI, be in a coprocessor regis-
ter, or be in an ancillary state register. The exact ASI assignments and MMU
implementation details that define a real memory access are implementation-
dependent.

A defining characteristic of real memory is that operations defined on it are free
of side-effects; that is, a load, store, or atomic load-store to a location in real
memory has no observable effect except on that location. All of the semantics of
operations defined on real memory are captured by the memory model.

Input/Output Locations I/O registers are locations that are not real memory. In contrast to operations on
real memory, load, store and atomic load-store operations on these locations may
have observable side-effects. The semantics of operations on I/O locations are
not defined by the memory model, since these semantics are typically
implementation-dependent. All of the axioms of the memory model that con-
strain the ordering of operations apply equally to operations on real memory and
I/O locations. In addition, the order in which operations to I/O locations by a
given processor are executed by memory must conform to the “program order” of
these operations for that processor. In other words, references to I/O locations
are “strongly ordered” among themselves, but behave like TSO or PSO (which-
ever is applicable) when compared with references to real memory. I/O locations

SPARC International, Inc.

Chapter 6 — Memory Model 61

include the following:

(1) Those memory locations accessed when the ASI field is not 8, 9, 0xA, 0xB,
or 0x20-2F

(2) Those memory locations accessed when the ASI field is 8, 9, 0xA, or 0xB
and a field in a corresponding MMU entry (such as the cacheable bit in the
Reference MMU described in Appendix H) identifies the access as an I/O
access

(3) Possibly coprocessor registers

(4) Possibly ancillary state registers

SPARC assumes that input/output registers are accessed via load/store alternate
instructions, normal load/store instructions, coprocessor instructions, or
read/write ancillary state register instructions (RDASR, WRASR). In the
load/store alternate instructions case, the I/O registers can only be accessed by
the supervisor. If coprocessor instructions are used, whether the I/O registers can
be accessed outside of supervisor code or not is implementation-dependent.

The contents and addresses of I/O registers are implementation-dependent.

Overview of Model Memory is byte-addressed, with halfword accesses aligned on 2-byte boundaries,
word accesses aligned on 4-byte boundaries, and doubleword accesses aligned on
8-byte boundaries. The largest datum that is atomically read or written by
memory hardware is a doubleword. Also, memory references to different bytes,
halfwords, and words in a given doubleword are treated for ordering purposes as
references to the same location. Thus the unit of ordering for memory is a dou-
bleword.

Memory is modeled as an N-port device (refer to Figure 6-1), where N is the
number of processors. A processor initiates memory operations via its port in
what is called the issuing order. Each port contains a Store Buffer used to hold
stores, FLUSHes, and atomic load-stores. A switch connects a single-port
memory to one of the ports at a time, for the duration of each memory operation.
The order in which this switch is thrown from one port to another is nondeter-
ministic and defines the memory order of operations.

SPARC International, Inc.

62 The SPARC Architecture Manual: Version 8

Figure 6-1 Model of Memory

..
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
..

memory order observed here

Single-Port Memory

. . .

Memory

Port 1 Port 2 Port 3 Port N

Switch

Buffer
Store

For purposes of the memory model, a processor consists of an Idealized Proces-
sor IP and an instruction buffer IBuf (refer to Figure 6-2). IP executes instruc-
tions one at a time as specified by the ISP, without overlap, in what is called pro-
gram order. For each instruction, IP fetches the instruction from IBuf and then
executes it, issuing any data loads and stores directly to the processor’s memory
port. For such a given instruction fetch, IBuf issues an instruction load via the
processor’s memory port if the instruction is not already in IBuf. The distinction
between instruction fetches and instruction loads is important; confusing the two
will lead to incorrect conclusions about the memory model. IBuf may also pre-
fetch instructions via the memory port. Thus IBuf models the effects of instruc-
tion pipelining, FIFO instruction buffering, and/or a non-consistent instruction
cache in a processor implementation. Note that the issuing order of data loads
and stores conforms to the order of the corresponding instructions in program
order. However, the issuing order of instruction loads in general does not con-
form to the order of instruction fetches, which defines program order. Also, the
interleaving of instruction loads relative to data loads and stores is in general not
known. The FLUSH instruction synchronizes instruction fetches with data loads
and stores: when a processor executes FLUSH A, the data corresponding to loca-
tion A is removed from the IBufs of all processors in the system some time after
the execution of the FLUSH. An implementation may choose to flush any por-
tion of IBuf as long as location A is included.

SPARC International, Inc.

Chapter 6 — Memory Model 63

Figure 6-2 Model of a Processor

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

..

program order observed here

issuing order observed here

data loads,
stores, and
atomic load-stores

All loads, stores,

to Memory Port

and atomic load-stores

Processor

Idealized Processor (IP)

instruction fetches

instruction loads

IBuf

SPARC International, Inc.

64 The SPARC Architecture Manual: Version 8

6.2. Total Store Ordering
(TSO)

Total Store Ordering guarantees that the store, FLUSH, and atomic load-store
instructions of all processors appear to be executed by memory serially in a sin-
gle order called the memory order. Furthermore, the sequence of store, FLUSH,
and atomic load-store instructions in the memory order for a given processor is
identical to the sequence in which they were issued by the processor. Figure 6-3
shows the ordering constraints for this model graphically. A complete formal
specification appears in Appendix K, “Formal Specification of the Memory
Model.”

Figure 6-3 Total Store Ordering Model of Memory

swaps,
ldstubs

stores,stores,

ldstubs
swaps,swaps,

ldstubs

stores,
swaps,
ldstubs

stores,

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Single-Port Memory

. . .

Memory

Port 1 Port 2 Port 3 Port N

loadsloadsloadsloads

Switch

Buffers
Store
FIFO

Stores, FLUSHes, and atomic load-stores issued by a processor are placed in its
dedicated Store Buffer, which is FIFO. Thus the order in which memory exe-
cutes these operations for a given processor is the same as the order in which the
processor issued them. The memory order of these operations corresponds to the
order in which the switch is thrown from one port to another.

A load by a processor first checks its Store Buffer to see if it contains a store to
the same location (atomic load-stores do not need to be checked for because they
block the processor). If it does, then the load returns the value of the most recent
such store; otherwise the load goes directly to memory. Since not all loads go to
memory, loads in general do not appear in the memory order. A processor is
blocked from issuing further memory operations until the load returns a value.

An atomic load-store (SWAP or LDSTUB) behaves like both a load and a store.
It is placed in the Store Buffer like a store, and it blocks the processor like a load.
In other words, the atomic load-store blocks until the store buffer is empty and
then proceeds to memory. A load therefore does not need to check for atomic
load-stores in the Store Buffer because this situation cannot arise. When memory

SPARC International, Inc.

Chapter 6 — Memory Model 65

services an atomic load-store, it does so atomically: no other operation may inter-
vene between the load and store parts of the load-store.

Programming Note In the definition of TSO, the term “processor” may be replaced everywhere by the term “process”
or “thread” as long as the process or thread switch sequence is written properly. See Appendix J,
“Programming with the Memory Model,” for the correct process switch sequence.

6.3. Partial Store Ordering
(PSO)

Partial Store Ordering guarantees that the store, FLUSH, and atomic load-store
instructions of all processors appear to be executed by memory serially in a sin-
gle order called the memory order. However, the memory order of store,
FLUSH, and atomic load-store instructions for a given processor is, in general,
not the same as the order in which they were issued by that processor. Confor-
mance between issuing order and memory order is provided by use of the
STBAR instruction: if two of the above instructions are separated by an STBAR
in the issuing order of a processor, or if they reference the same location, then the
memory order of the two instructions is the same as the issuing order. Figure 6-4
shows the ordering constraints for this model graphically. A complete formal
specification appears in Appendix K, “Formal Specification of the Memory
Model.”

Figure 6-4 Partial Store Ordering Model of Memory

swaps,
ldstubs

stores,stores,

ldstubs
swaps,swaps,

ldstubs

stores,
swaps,
ldstubs

stores,

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

SSSS

Single-Port Memory

. . .

Memory

Port 1 Port 2 Port 3 Port N

loadsloadsloadsloads

Switch

Buffers
Store

Stores, FLUSHes, and atomic load-stores issued by a processor are placed in its
dedicated Store Buffer. This buffer is not guaranteed to be FIFO as it was in
TSO; it does maintain the order of stores and atomic load-stores to the same loca-
tion, but otherwise it is partitioned only by the occurrence of STBAR instruc-
tions. These instructions are shown in the figure as S– s. Thus the order in which
memory executes two stores or atomic load-stores separated by an STBAR for a
given processor is the same as the order in which the processor issued them. The

SPARC International, Inc.

66 The SPARC Architecture Manual: Version 8

memory order of these operations corresponds to the order in which the switch is
thrown from one port to another.

Loads first check the Store Buffer for the processor to see if it contains a store to
the same location (atomic load-stores don’t need to be checked for because they
block the processor). If it does, then the load returns the value of the most recent
such store; otherwise the load goes directly to memory. Since not all loads go to
memory, loads in general do not appear in the memory order. A processor is
blocked from issuing further memory operations until the load returns a value.

An atomic load-store (SWAP or LDSTUB) behaves both like a load and a store.
It is placed in the Store Buffer like a store, and it blocks the processor like a load.
A load therefore does not need to check for atomic load-stores because this situa-
tion cannot arise. When memory services an atomic load-store, it does so atomi-
cally: no other operation may intervene between the load and store parts of an
atomic load-store.

Implementation Note The advantage of PSO over TSO is that it allows an implementation to have a higher-performance
memory system. PSO therefore should be thought of as a performance optimization over TSO.

Implementation Note See Appendix L, “Implementation Characteristics,” for information on which of the various
SPARC implementations support the PSO mode.

Programming Note In the definition of PSO, the term “processor” may be replaced everywhere by the term “process”
or “thread” as long as the process or thread switch sequence is written properly. See Figure J-4-2
in Appendix J, for the correct process switch sequence.

6.4. Mode Control The memory model seen by a processor is controlled by the PSO bit in the MMU
control register for that processor, if the processor has a SPARC Reference
MMU. PSO = 0 specifies Total Store Ordering, while PSO = 1 specifies Partial
Store Ordering. See Appendix H, “SPARC Reference MMU Architecture,” for
the location of this bit.

The STBAR instruction must execute as a NOP on machines that implement
strong consistency, machines that implement only TSO, and machines that
implement PSO but are running with PSO mode disabled.

Implementation Note A given SPARC implementation must provide TSO, but it may or may not provide PSO. In imple-
mentations that do not provide PSO, setting the PSO mode bit has no effect.

Programming Note Programs written for PSO will work automatically on a processor that is running in TSO mode.
However, programs written for TSO will not in general work on a processor that is running in PSO
mode. See Appendix J, “Programming with the Memory Model,” for a more detailed discussion of
portability.

6.5. FLUSH:
Synchronizing
Instruction Fetches
with Memory
Operations

The FLUSH instruction ensures that subsequent instruction fetches to the target
of the FLUSH by the processor executing the FLUSH appear to execute after any
loads, stores and atomic load-stores issued by that processor prior to the FLUSH.
In a multiprocessor, FLUSH also ensures that stores and atomic load-stores to the
target of the FLUSH issued by the processor executing the FLUSH prior to the
FLUSH become visible to the instruction fetches of all other processors some
time after the execution of the FLUSH. When a processor executes a sequence
of store or atomic load-stores interspersed with appropriate FLUSH and STBAR
instructions (the latter are needed only for PSO), the changes appear to the
instruction fetches of all processors to occur in the order in which they were

SPARC International, Inc.

Chapter 6 — Memory Model 67

made. Figure 6-5 shows the operation of FLUSH graphically, assuming Proces-
sor 1 is the one executing the FLUSH. A complete formal specification of
FLUSH appears in Appendix K, “Formal Specification of the Memory Model.”

Figure 6-5 Operation of a FLUSH Instruction, by Processor 1

IBuf dataIBuf data

..

...

.................

..........................
...
...

...

.............................
...
...

rflushrflushrflush

IBuf NIBuf 3

Processor NProcessor 3

Port 1

Buffer
Store

Single-Port Memory

. . .

Memory

Port 2 Port 3 Port N

Switch

IBuf 2

Processor 2

IBuf data

rflush
FIFO

IBuf data

lflush delay
5-instruction

Processor 1

(executes FLUSH)

IBuf 1

lflush rflush

The IBuf of each processor consists of three elements: a 5-instruction local flush
(lflush) delay that delays the execution of locally generated FLUSHes by at most
5 instructions; the IBuf data; and a remote flush (rflush) FIFO that contains
flushes generated by remote processors. Processor 1 executes a FLUSH A by
issuing a local flush (lflush) command to its IBuf and placing a remote flush

SPARC International, Inc.

68 The SPARC Architecture Manual: Version 8

(rflush) command in its store buffer and then proceeds to execute the next
instruction. Processor 1’s IBuf executes the lflush after at most a 5-instruction
delay by invalidating the contents of address A in IBuf1. The rflush placed in the
Store Buffer is treated exactly like a store for ordering purposes: it appears in the
global memory order by going through the single port to memory and is then
placed in the rflush FIFOs of processors other than the one executing the FLUSH.
The rflush does not have any effect on the contents of Memory. A remote
processor’s IBuf invalidates the contents of address A when the rflush comes to
the head of that processor’s rflush FIFO.

The lflush guarantees that an instruction fetch to address A issued 5 instructions
or more after the FLUSH A by Processor 1 will miss the IBuf and turn into an
instruction load that will appear in the issuing order defined at Processor 1’s
memory port. Given the guarantees provided by the memory model, the instruc-
tion fetch will observe the value of a store done to A before the FLUSH. Note
also, that the order of lflushes is preserved, so that if a processor executes the
sequence ST A, FLUSH A, STBAR, ST B, FLUSH B, the instruction fetches of
this processor will observe the two stores in the order in which they were issued.
In TSO mode the STBAR is superfluous.

The guarantee provided by rflush is weaker: copies of A in the IBufs of remote
processors are invalidated some time after the FLUSH is executed by Processor
1. In particular, Processor 1 may not assume that the remote IBufs have been
invalidated at the time when it starts the execution of the instruction just after the
FLUSH. Also note that since rflushes are ordered just like stores, the two stores
in the sequence ST A, FLUSH A, STBAR, ST B, FLUSH B are observed by the
instruction fetches of remote processors in the issuing order. In TSO mode the
STBAR is superfluous, of course.

SPARC International, Inc.

7��������������������
Traps

A trap is a vectored transfer of control to the supervisor through a special trap
table that contains the first 4 instructions of each trap handler. The base address
of the table is established by the supervisor, by writing the Trap Base Address
(TBA) field of an IU state register called the Trap Base Register (TBR). The dis-
placement within the table is determined by the type of trap. Half of the table is
reserved for hardware traps, and the other half is reserved for software traps as
generated by software trap (Ticc) instructions.

A trap is like an unexpected procedure call. It decrements the current window
pointer to the next register window and causes the hardware to write the trapped
program counters into two local registers of the new window. In general, the trap
handler saves the value of the PSR in another local register, and is free to use the
other 5 local registers in the new window.

A trap may be caused by an instruction-induced exception or an external inter-
rupt request not directly related to a particular instruction. Before it begins exe-
cuting each instruction, the IU selects the highest-priority exception or interrupt
request, and if there are any, causes a trap.

A “non-resumable machine-check error” exception is due to the detection of a
hardware malfunction from which, due to its nature, the state of the processor at
the time of the exception cannot be restored. Since the processor state cannot be
restored, execution after such an exception is not resumable. Non-resumable
machine-check errors are implementation-dependent. A possible example of
such an error is a bus parity error.

7.1. Trap Categories An exception or interrupt request can cause any of three categories of traps:

— A precise trap

— A deferred trap

— An interrupting trap

Precise Trap A precise trap is induced by a particular instruction and occurs before any
program-visible state has been changed by the trap-inducing instruction. When a
precise trap occurs, several conditions must hold:

(1) The PC saved in r[17] (local register 1) points to the instruction which
induced the trap, and the nPC saved in r[18] (local register 2) points at the

69 SPARC International, Inc.

70 The SPARC Architecture Manual: Version 8

instruction which was to be executed next.

(2) The instructions before the one which induced the trap have completed exe-
cution.

(3) The instructions after the one which induced the trap remain unexecuted.

Deferred Trap A deferred trap is also induced by a particular instruction, but unlike a precise
trap, a deferred trap may occur after program-visible state is changed. Such state
may have been changed by the execution of either the trap-inducing instruction
itself, or by one or more instructions that follow it.

A deferred trap may occur one or more instructions after the trap-inducing
instruction is executed. However, a deferred trap must occur before the execu-
tion of any instruction that depends on the trap-inducing instruction. That is, a
deferred trap may not be deferred past the execution of an instruction that
specifies source registers, destination registers, condition codes, or any software-
visible machine state that could be modified by the trap-inducing instruction.

A deferred trap may not be deferred past a precise trap, except for a floating-
point exception or coprocessor exception, which may be deferred past a precise
trap.

Associated with a particular deferred trap implementation there must exist:

(1) An instruction that provokes a potentially outstanding deferred-trap excep-
tion to be taken as a trap.

(2) The ability to resume execution of the trapped instruction stream.

(3) Privileged instructions that access the state required for the supervisor to
emulate a deferred-trap-inducing instruction, and resume execution of the
trapped instruction stream. (This state is referred to as deferred-trap
queue(s) in Chapter 4, “Registers.”)

Note that resumable execution may involve emulation of instructions that did not
complete execution by the time of the deferred trap (that is, those instructions in
the deferred-trap queue).

Whether any deferred traps (and associated deferred-trap queues) are present is
implementation-dependent. Note that to avoid deferred traps entirely, an imple-
mentation would need to execute all floating-point (and coprocessor, if any)
instructions and take any exceptions they generate synchronously with the execu-
tion of integer instructions. A deferred-trap queue (e.g. FQ or CQ) would be
superfluous in such an implementation.

Interrupting Trap An interrupting trap is neither a precise trap nor a deferred trap. Interrupting
traps are controlled by a combination of the Processor Interrupt Level (PIL) field
of the PSR and the Trap Enable (ET) field of the PSR.

An interrupting trap may be due to:

(1) An external interrupt request not directly related to a previously-executed
instruction,

SPARC International, Inc.

Chapter 7 — Traps 71

(2) An exception not directly related to a previously-executed instruction, or

(3) An exception caused by a previously-executed instruction.

The meaning of these causes is as follows:

Cause (1): An external interrupt request can be induced by the assertion of an
external signal not directly related to any particular processor or
memory state. An example of this is the assertion of an “I/O done”
signal.

Cause (2): An interrupting trap due to an exception not directly related to a
previously-executed instruction can be caused by the detection of
arbitrary implementation-dependent processor or system state. An
example of this is an exception generated by breakpoint logic that
depends on fetched but unexecuted instructions, or on processor exe-
cution history.

Cause (3): An interrupting trap due to an earlier instruction causing an excep-
tion, is similar to a deferred trap in that it occurs after instructions
following the trap-inducing instruction have modified the processor
or memory state. The difference is that an instruction that induces
such an interrupting trap cannot necessarily be emulated, since the
implementation does not preserve the necessary state. An example
of this is an ECC data access error reported after the corresponding
load instruction has completed.

7.2. Trap Models Since user application programs do not “see” traps unless they install user trap
handlers via supervisor software, and the treatment of implementation-dependent
“non-resumable machine-check” error exceptions can vary across systems,
SPARC allows an implementation to provide alternative trap models for a partic-
ular exception type.

Specifically, a particular exception may result in either a precise trap, a deferred
trap, or an interrupting trap, depending on the implementation. (Note that exter-
nal interrupt requests by definition always cause interrupting traps.)

However, in order to support user trap handlers and virtualizable instructions,
SPARC defines a default trap model that must be available in all implemen-
tations.

Default Trap Model The SPARC default trap model predicates that all traps must be precise, with
four exceptions:

(1) Floating-point and coprocessor exceptions (fp_exception, cp_exception)
may be deferred.

(2) Implementation-dependent “non-resumable machine-check” exceptions may
be deferred or interrupting.

(3) An exception caused after the primary access of a multiple-access load/store
instruction (load/store double, atomic load/store, and SWAP) may be inter-
rupting if it is due to a “non-resumable machine-check” exception. Thus, a

SPARC International, Inc.

72 The SPARC Architecture Manual: Version 8

trap due to the second memory access can occur after the processor or
memory state has been modified by the first access.

(4) An exception caused by an event unrelated to the instruction stream is an
interrupting trap, therefore is not precise.

These four cases are implementation-dependent.

If another floating-point exception is currently deferred, an attempt to execute a
floating-point instruction (FPop, FBfcc, or floating-point load/store) invokes or
causes the outstanding fp_exception trap. Likewise, if a coprocessor exception is
currently deferred, an attempt to execute another coprocessor instruction (CPop,
CBccc, or coprocessor load/store) invokes the outstanding cp_exception trap.

Implementation Note To provide the capability to terminate a user process on the occurrence of a “mnon-resumable
machine-check” exception that can cause a deferred or interrupting trap, an implementation should
provide one or more instructions that provoke an outstanding condition to be taken as a trap. For
example, an outstanding floating-point exception is provoked into causing an fp_exception trap by
execution of any FPop, load or store floating-point including STFSR), or FBfcc instruction.

Enhanced Trap Model User-application programs do not “see” traps unless they explicitly request to
handle them. Thus, SPARC provides an implementation-dependent performance
enhancement to the default model and allows for implementations with an
enhanced trap model, wherein certain traps may be deferred or interrupting
instead of precise.

Specifically, whether a particular trap must be precise or not depends on whether
a user application program requests of the supervisor the capability to handle the
particular exception that generates the trap. A user trap-handler registration
request implies that when a particular trap occurs, the supervisor will return con-
trol to the user application program at a predetermined address specified by the
program.

The SPARC enhanced trap model predicates that a particular trap must adhere
to the default model if a user application program installs a user trap
handler for that trap with the supervisor. Thus, an exception must be able to
trap in hardware as:

(1) A precise trap, or

(2) A deferred trap for floating-point or coprocessor exceptions, or

(3) A deferred or interrupting trap for an implementation-dependent “non-
resumable machine-check” exception.

If a user application program does not install a trap handler (via supervisor
software) for a given trap, that trap can be a deferred or an interrupting trap. The
type (precise, deferred, or interrupting) of a particular trap must remain constant
for all occurrences of the associated exception for a particular program or pro-
cess. Therefore, if a user program is to install its own trap handler for a given
trap, it must do so before the first occurrence of that trap in the program.

An instruction that accesses hardware state that controls whether a particular trap
is precise or not must be a privileged instruction (for example, load/store alter-
nate, privileged read/write ASR, read/write PSR ver field).

SPARC International, Inc.

Chapter 7 — Traps 73

Whether a particular trap is implemented according to the enhanced trap model is
supervisor- and implementation-dependent.

Programming Note A request to the supervisor to register a user trap handler can specify that the associated exception
will be handled by the user program in a non-resumable manner. In this case, the supervisor can
elect not to cause the associated trap to be precise.

Programming Note After a precise trap, the supervisor can:

(1) Return to the instruction that caused the trap and re-execute it
(PC ← old PC, nPC ← old nPC), or

(2) Emulate the instruction that caused the trap and return to the instruction (temporally)
following that instruction (PC ← old nPC, nPC ← old nPC + 4), or

(3) Terminate the program or process associated with the trap.

After a deferred trap, the supervisor can:

(1) Emulate the instruction that caused the exception, emulate or cause to execute any other
execution-deferred instructions that were in an associated deferred-trap state queue, and
return control to the instruction at which the deferred trap was invoked, or

(2) Terminate the program or process associated with the trap.

After an interrupting trap, the supervisor can:

(1) Return to the instruction at which the trap was invoked (PC ← old PC, nPC ← old nPC),
or

(2) Terminate the program or process associated with the trap.

In the presence of user trap handlers, the supervisor can pass a record to the user trap handler con-
taining the address of the trap-inducing instruction, the trapped PC and nPC addresses, and any
associated state required to emulate the instruction. The user trap handler can resume execution at
an alternate address or can return control to the supervisor. The supervisor can process any remain-
ing entries in an associated deferred-trap state queue and can eventually return to the instructions at
the trap PC and nPC.

7.3. Trap Control Traps are controlled by several registers: exception and interrupt requests via the
enable traps (ET) field in the PSR, interrupt requests via the processor interrupt
level (PIL) field in the PSR, and floating-point exceptions via the trap enable
mask (TEM) in the FSR.

ET and PIL Control The ET bit in the PSR must be 1 for traps to occur normally. While ET = 1, the
IU — between the execution of instructions — prioritizes the outstanding excep-
tions and interrupt requests according to Table 7-1. At a given time, only the
highest priority exception or interrupt request is taken as a trap. (When there are
multiple outstanding exceptions or interrupt requests, SPARC assumes that lower
priority interrupt requests will persist and lower priority exceptions will recur if
an exception-causing instruction is re-executed.)

For interrupt requests, the IU compares the interrupt request level (bp_IRL)
against the processor interrupt level (PIL) field of the PSR. If bp_IRL is greater
than PIL, or if bp_IRL = 15 (unmaskable), then the processor takes the interrupt
request trap — assuming that there are no higher priority exceptions outstanding.
How quickly a processor responds to an interrupt request, and the method by
which an interrupt request is removed, is implementation-dependent.

SPARC International, Inc.

74 The SPARC Architecture Manual: Version 8

While ET = 0:

� Interrupting traps cannot occur, and all interrupt requests are ignored,
even if bp_IRL = 15.

� If a precise trap occurs, or if there is an attempt to execute an instruction
that can invoke a deferred trap and there is a pending deferred-trap
exception, the processor halts execution and enters the error_mode state.

� If a deferred trap occurs which was caused by an instruction that began
execution while ET = 0, the deferred trap causes the processor to halt
execution and enter the error_mode state.

� Any deferred-trap exception that was caused by an instruction that
began execution while ET = 1 is ignored.

TEM Control The occurrence of floating-point IEEE_754_exceptions can be controlled via the
user-accessible trap enable mask (TEM) field of the FSR. If a particular bit of
TEM is 1, the associated IEEE_754_exception can cause an fp_exception trap.

If a particular bit of TEM is 0, the associated IEEE_754_exception does not
cause an fp_exception trap. Instead, the occurrence of the IEEE_754_exception
is recorded in the FSR’s accrued exception field (aexc).

If a floating-point exception of type IEEE_754_exception results in an
fp_exception trap, then the destination f register, fcc, and aexc fields remain
unchanged. However, if an IEEE_754_exception does not result in a trap, then
the f register, fcc, and aexc fields are updated to their new values.

7.4. Trap Identification The supervisor initializes the trap base address (TBA) field of the trap base regis-
ter (TBR) to the upper 20 bits of the trap table address.

Trap Type (tt) When a trap occurs (except for an external reset request), a value that uniquely
identifies the trap is written into the 8-bit tt field of the TBR by the hardware.
Control is then transferred into the supervisor trap table to the address contained
in the 32-bit TBR. Since the low 4 bits of the TBR are zero, each entry in the
trap table contains the first 16 bytes (4 words) of the corresponding trap handler.

The tt field allows for 256 distinct types of traps — half for hardware traps and
half for software traps. Values 0 to 0x7F are reserved for hardware traps. Values
0x80 to 0xFF are reserved for software traps (traps caused by execution of a Ticc
instruction). The assignment of tt values to traps is shown in Table 7-1. Note
that the tt field remains valid until another trap occurs.

Since the assignment of exceptions and interrupt requests to particular trap vector
addresses and the priority levels are not visible to a user application program,
implementations are allowed to define additional hardware traps.

Specifically, tt values 0x60 to 0x7F are reserved for implementation-dependent
exceptions. See Appendix L, “Implementation Characteristics.”

Values in the range 0 to 0x5F that are not assigned in Table 7-1 are reserved for
future versions of the architecture.

SPARC International, Inc.

Chapter 7 — Traps 75

Error Mode The processor enters error_mode state when a trap occurs while ET = 0. An
implementation should preserve as much processor state as possible when this
happens. Standard trap actions (such as decrementing CWP and saving state
information in locals) should not occur when entering error_mode. In particular,
the tt field of the TBR is only written during a transition into error_mode state in
the singular case of a RETT instruction that traps while ET = 0. In this case, tt is
written to indicate the type of exception that was induced by the RETT instruc-
tion.

What occurs after error_mode is entered is implementation-dependent; typically
the processor triggers an external reset, causing a reset trap (see below).

Reset Trap A reset trap is triggered by an external reset request, and causes a transfer of con-
trol to address 0.

Supervisor software may not assume that any particular processor or memory
state, except for the PSR’s ET and S bits, has been initialized after a reset trap.

When a reset trap occurs, the tt field is not written and reflects its value from the
last previous trap. In the case of an external reset request caused by power-up,
the value of the tt field is undefined.

Trap Priorities The following table shows the assignment of exceptions to tt values and the rela-
tive priority of exceptions and interrupt requests. Priority 1 is highest and prior-
ity 31 is lowest; that is, if X < Y, a pending exception or interrupt request of
priority X is taken instead of a pending exception or interrupt request of priority
Y.

Note that particular trap priorities are implementation-dependent, because a
future version of the architecture may define new traps, and implementations can
define implementation-dependent traps. However, the tt values for the excep-
tions and interrupt requests shown in Table 7-1 must remain the same for every
implementation.

SPARC International, Inc.

76 The SPARC Architecture Manual: Version 8

Table 7-1 Exception and Interrupt Request Priority and tt Values

Exception or Interrupt Request Priority tt
reset 1 (see text)
data_store_error 2 0x2B
instruction_access_MMU_miss 2 0x3C
instruction_access_error 3 0x21
r_register_access_error 4 0x20
instruction_access_exception 5 0x01
privileged_instruction 6 0x03
illegal_instruction 7 0x02
fp_disabled 8 0x04
cp_disabled 8 0x24
unimplemented_FLUSH 8 0x25
watchpoint_detected 8 0x0B
window_overflow 9 0x05
window_underflow 9 0x06
mem_address_not_aligned 10 0x07
fp_exception 11 0x08
cp_exception 11 0x28
data_access_error 12 0x29
data_access_MMU_miss 12 0x2C
data_access_exception 13 0x09
tag_overflow 14 0x0A
division_by_zero 15 0x2A

trap_instruction 16 0x80 − 0xFF

interrupt_level_15 17 0x1F
interrupt_level_14 18 0x1E
interrupt_level_13 19 0x1D
interrupt_level_12 20 0x1C
interrupt_level_11 21 0x1B
interrupt_level_10 22 0x1A
interrupt_level_9 23 0x19
interrupt_level_8 24 0x18
interrupt_level_7 25 0x17
interrupt_level_6 26 0x16
interrupt_level_5 27 0x15
interrupt_level_4 28 0x14
interrupt_level_3 29 0x13
interrupt_level_2 30 0x12
interrupt_level_1 31 0x11

impl.-dependent exception impl.-dep. 0x60 − 0x7F

SPARC International, Inc.

Chapter 7 — Traps 77

7.5. Trap Definition A trap causes the following to occur, if ET = 1:

� Traps are disabled: ET ← 0.

� The existing user/supervisor mode is preserved: PS ← S.

� The user/supervisor mode is changed to supervisor: S ← 1.

� The register window is advanced to a new window:
CWP ← ((CWP − 1) modulo NWINDOWS)
[note: without test for window overflow].

� The trapped program counters are saved in local registers 1 and 2 of the new
window: r[17] ← PC, r[18] ← nPC.

� The tt field is written to the particular value that identifies the exception or
interrupt request, except as defined for “Reset Trap” and “Error Mode”
above.

� If the trap is a reset trap, control is transferred to address 0:
PC ← 0, nPC ← 4.
If the trap is not a reset trap, control is transferred into the trap table:
PC ← TBR, nPC ← TBR + 4.

If ET=0 and a precise trap occurs, the processor enters the error_mode state and
halts execution. If ET=0 and an interrupt request or an interrupting or deferred
exception occurs, it is ignored.

Implementation Note When error_mode is entered, a minimum amount of processor state should be altered. From
error_mode, the processor can be restarted via an external reset request, which results in a reset
trap.

Programming Note A trap handler should alter the PSR fields in a reversible way (ET, CWP), or should not change
them until the PSR has been saved.

7.6. Exception/Interrupt
Descriptions

The following paragraphs describe the various exceptions and interrupt requests
and the conditions that cause them. Appendix B, “Instruction Definitions,” and
Appendix C, “ISP Descriptions,” also summarize which traps can be generated
by each instruction.

Since the precise conditions for some of these exceptions are implementation-
dependent, several of these definitions cannot be precise. In particular, the
definition of the terms “peremptory error exception” and “blocking error excep-
tion” are implementation-dependent. Further, whether a SPARC processor gen-
erates an exception of either of these types is implementation-dependent. Exam-
ple exception conditions are included for these cases.

reset
A reset trap is caused by an external reset request. It causes the processor to
begin executing at virtual address 0. Supervisor software cannot assume that
particular processor or memory state, except for the PSR’s ET and S bits,
has been initialized after a reset trap.

SPARC International, Inc.

78 The SPARC Architecture Manual: Version 8

data_store_error
A peremptory error exception occurred on a data store to memory (for exam-
ple, a bus parity error on a store from a store buffer).

instruction_access_MMU_miss
A miss in an MMU occurred on an instruction access from memory. For
example, a PDC or TLB did not contain a translation for the virtual
adddress.

instruction_access_error
A peremptory error exception occurred on an instruction access (for exam-
ple, a parity error on an instruction cache access).

r_register_access_error
A peremptory error exception occurred on an r register access (for example,
a parity error on an r register read).

instruction_access_exception
A blocking error exception occurred on an instruction access (for example,
an MMU indicated that the page was invalid or read-protected).

privileged_instruction
An attempt was made to execute a privileged instruction while S = 0.

illegal_instruction
An attempt was made to execute an instruction with an unimplemented
opcode, or an UNIMP instruction, or an instruction that would result in ille-
gal processor state (for example, writing an illegal CWP into the PSR). Note
that unimplemented FPop and unimplemented CPop instructions generate
fp_exception and cp_exception traps, and that an implementor may cause an
unimplemented FLUSH instruction to generate an unimplemented_FLUSH
trap instead of an illegal_instruction trap.

unimplemented_FLUSH
An attempt was made to execute a FLUSH instruction, the semantics of
which are not fully implemented in hardware. Use of this trap is
implementation-dependent. See the FLUSH Instruction page in Appendix
B.

SPARC International, Inc.

Chapter 7 — Traps 79

watchpoint_detected
An instruction fetch memory address or load/store data memory address
matched the contents of a pre-loaded implementation-dependent “watch-
point” register. Whether a SPARC processor generates watchpoint_detected
exceptions is implementation-dependent.

fp_disabled
An attempt was made to execute an FPop, FBfcc, or a floating-point
load/store instruction while EF = 0 or an FPU was not present.

cp_disabled
An attempt was made to execute an CPop, CBccc, or a coprocessor
load/store instruction while EC = 0 or a coprocessor was not present.

window_overflow
A SAVE instruction attempted to cause the CWP to point to a window
marked invalid in the WIM.

window_underflow
A RESTORE or RETT instruction attempted to cause the CWP to point to a
window marked invalid in the WIM.

mem_address_not_aligned
A load/store instruction would have generated a memory address that was
not properly aligned according to the instruction, or a JMPL or RETT
instruction would have generated a non-word-aligned address.

fp_exception
An FPop instruction generated an IEEE_754_exception and its correspond-
ing trap enable mask (TEM) bit was 1, or the FPop was unimplemented, or
the FPop did not complete, or there was a sequence or hardware error in the
FPU. The type of floating-point exception is encoded in the FSR’s ftt field.

cp_exception
A coprocessor instruction generated an exception.

data_access_error
A peremptory error exception occurred on a load/store data access from/to
memory (for example, a parity error on a data cache access, or an uncorrect-
able ECC memory error).

SPARC International, Inc.

80 The SPARC Architecture Manual: Version 8

data_access_MMU_miss
A miss in an MMU occurred on a load/store access from/to memory. For
example, a PDC or TLB did not contain a translation for the virtual
adddress.

data_access_exception
A blocking error exception occurred on a load/store data access. (for exam-
ple, an MMU indicated that the page was invalid or write-protected).

tag_overflow
A TADDccTV or TSUBccTV instruction was executed, and either arith-
metic overflow occurred or at least one of the tag bits of the operands was
nonzero.

division_by_zero
An integer divide instruction attempted to divide by zero.

trap_instruction
A Ticc instruction was executed and the trap condition evaluated to true.

interrupt_level_n
An external interrupt request level (bp_IRL) of value n was presented to the
IU, while ET = 1 and ((bp_IRL = 15) or (bp_IRL > PIL)).

SPARC International, Inc.

A��������������������
Suggested Assembly Language Syntax

This appendix supports Appendix B, “Instruction Definitions.” Each instruction
description in Appendix B includes a table that describes the suggested assembly
language format for that instruction. This appendix describes the notation used
in those assembly language syntax descriptions and lists some synthetic instruc-
tions that may be provided by a SPARC assembler for the convenience of assem-
bly language programmers.

A.1. Notation Used Understanding the use of type fonts is crucial to understanding the syntax
descriptions in Appendix B. Items in typewriter font are literals to be
written exactly as they appear. Items in italic font are metasymbols which are to
be replaced by numeric or symbolic values when actual SPARC assembly
language code is written. For example, “asi” would be replaced by a number in
the range 0 to 255 (the value of the asi bits in the binary instruction), or by a
symbol bound to such a number.

Subscripts on metasymbols further identify the placement of the operand in the
generated binary instruction. For example, reg

rs2
is a reg (register name) whose

binary value will be placed in the rs2 field of the resulting instruction.

Register Names

reg A reg is an integer register name. It can have one of the following
values † :

%r0 ... %r31
%g0 ... %g7 (global registers; same as %r0 ... %r7)
%o0 ... %o7 (out registers; same as %r8 ... %r15)
%l0 ... %l7 (local registers; same as %r16 ... %r23)
%i0 ... %i7 (in registers; same as %r24 ... %r31)
%fp (frame pointer; conventionally same as %i6)
%sp (stack pointer; conventionally same as %o6)

Subscripts further identify the placement of the operand in the
binary instruction as one of the following:

regrs1 (rs1 field)
regrs2 (rs2 field)
regrd (rd field)

��

† In actual usage, the %sp, %fp, %gn, %on, %ln, and %in forms are preferred over %rn.

81 SPARC International, Inc.

82 The SPARC Architecture Manual: Version 8

freg An freg is a floating-point register name. It can have one of the
following values:

%f0 ... %f31

Subscripts further identify the placement of the operand in the
binary instruction as one of the following:

fregrs1 (rs1 field)
fregrs2 (rs2 field)
fregrd (rd field)

creg A creg is a coprocessor register name. It can have one of the fol-
lowing values:

%c0 ... %c31

Subscripts further identify the placement of the operand in the
binary instruction as one of the following:

cregrs1 (rs1 field)
cregrs2 (rs2 field)
cregrd (rd field)

asr_reg
An asr_reg is an Ancillary State Register name. It can have one
of the following values:

%asr1 ... %asr31

Subscripts further identify the placement of the operand in the
binary instruction as one of the following:

asr_regrs1 (rs1 field)
asr_regrd (rd field)

Special Symbol Names
Certain special symbols appear in the syntax table in typewriter
font. They need to be written exactly as they are shown, including the
leading percent sign (%). The percent sign is part of the symbol name and
must appear literally.

The symbol names and the registers or operators to which they refer are
as follows:

%psr Processor State Register
%wim Window Invalid Mask register
%tbr Trap Base Register
%y Y register
%fsr Floating-Point State Register
%csr Coprocessor State Register
%fq Floating-Point Queue
%cq Coprocessor Queue

%hi Unary operator which extracts high 22 bits of its operand
%lo Unary operator which extracts low 10 bits of its operand

SPARC International, Inc.

Appendix A — Suggested Assembly Language Syntax 83

Immediate Values

imm7 An immediate constant in the range -64..127
(representable in 7 bits, signed or unsigned)

uimm7 An immediate constant in the range 0..127
(representable in 7 bits, unsigned)

simm13 An immediate constant in the range -4096..4095
(representable in 13 bits, signed)

const22 A constant that can be represented in 22 bits
asi An address space identifier; an immediate con-

stant in the range 0..255 (representable in 8 bits,
unsigned)

Labels
A label is a sequence of characters comprised of alphabetic letters (a−z,
A−Z [upper and lower case distinct]), underscores (_), dollar signs ($),
periods (.), and decimal digits (0-9). A label may contain decimal digits,
but cannot begin with one.

Other Operand Syntax
Some instructions use a variety of operand syntax. This syntax are
defined as follows:

address may be any of the following:
regrs1 (equivalent to: regrs1 + %g0)
regrs1 + regrs2
regrs1 + simm13
regrs1 − simm13
simm13 (equivalent to: %g0 + simm13)
simm13 + regrs1 (equivalent to: regrs1 + simm13)

regaddr (“register-only address”) may be any of the following:
regrs1 (equivalent to: regrs1 + %g0)
regrs1 + regrs2

reg_or_imm (“register or immediate value”) may be either of:
regrs2
simm13

software_trap# may be any of the following:
regrs1 (equivalent to: regrs1 + %g0)
regrs1 + regrs2
regrs1 + imm7
regrs1 − imm7
uimm7 (equivalent to: %g0 + uimm7)
imm7 + regrs1 (equivalent to: regrs1 + imm7)

The resulting operand value (software trap number) must be in
the range 0 ... 127, inclusive.

SPARC International, Inc.

84 The SPARC Architecture Manual: Version 8

Comments
Two types of comments are accepted by most SPARC assemblers: C-
style “/*...*/” comments (which may span multiple lines), and
“!...” comments, which extend from the “!” to the end of the line.

A.2. Syntax Design
The suggested SPARC assembly language syntax is designed so that:

· The destination operand (if any) is consistently specified as the last (right-
most) operand in an assembly language statement.

· A reference to the contents of a memory location (in a Load, Store, or SWAP
instruction) is always indicated by square brackets ([]). A reference to the
address of a memory location (such as in a JMPL, CALL, or SETHI) is
specified directly, without square brackets.

SPARC International, Inc.

Appendix A — Suggested Assembly Language Syntax 85

A.3. Synthetic Instructions The table shown below describes the mapping of a set of synthetic (or “pseudo”)
instructions to actual SPARC instructions. These synthetic instructions may be
provided in a SPARC assembler for the convenience of assembly language pro-
grammers.

Note that synthetic instructions should not be confused with “pseudo-ops”, which
typically provide information to the assembler but do not generate instructions.
Synthetic instructions always generate instructions; they provide more mnemonic
syntax for standard SPARC instructions.

Table A-1 Mapping of Synthetic Instructions to SPARC Instructions

Synthetic Instruction SPARC Instruction(s) Comment

cmp reg
rs1
,reg_or_imm subcc reg

rs1
,reg_or_imm,%g0 compare

jmp address jmpl address,%g0

call address jmpl address,%o7

tst reg
rs2

orcc %g0,reg
rs2
,%g0 test

ret jmpl %i7+8,%g0 return from subroutine

retl jmpl %o7+8,%g0 return from leaf subroutine

restore restore %g0,%g0,%g0 trivial restore

save save %g0,%g0,%g0 trivial save

(Warning: trivial save
should only be used in kernel
code!)

set value,reg
rd

sethi %hi(value),reg
rd

(when ((value&0x1fff) == 0))
or

or %g0,value,reg
rd

(when -4096 ≤ value ≤ 4095)
or

sethi %hi(value),reg
rd
; (otherwise)

or reg
rd
,%lo(value),reg

rd

Warning: do not use set in
the delay slot of a DCTI.

not reg
rs1
,reg

rd
xnor reg

rs1
,%g0,reg

rd
one’s complement

not reg
rd

xnor reg
rd
,%g0,reg

rd
one’s complement

neg reg
rs2
,reg

rd
sub %g0,reg

rs2
,reg

rd
two’s complement

neg reg
rd

sub %g0,reg
rd
,reg

rd
two’s complement

SPARC International, Inc.

86 The SPARC Architecture Manual: Version 8

Table A-1 Mapping of Synthetic Instructions to SPARC Instructions— Continued

Synthetic Instruction SPARC Instruction(s) Comment

inc reg
rd

add reg
rd
,1,reg

rd
increment by 1

inc const13,reg
rd

add reg
rd
,const13,reg

rd
increment by const13

inccc reg
rd

addcc reg
rd
,1,reg

rd
increment by 1 and set icc

inccc const13,reg
rd

addcc reg
rd
,const13,reg

rd
increment by const13 and set
icc

dec reg
rd

sub reg
rd
,1,reg

rd
decrement by 1

dec const13,reg
rd

sub reg
rd
,const13,reg

rd
decrement by const13

deccc reg
rd

subcc reg
rd
,1,reg

rd
decrement by 1 and set icc

deccc const13,reg
rd

subcc reg
rd
,const13,reg

rd
decrement by const13 and set
icc

btst reg_or_imm,reg
rs1

andcc reg
rs1
,reg_or_imm,%g0 bit test

bset reg_or_imm,reg
rd

or reg
rd
,reg_or_imm,reg

rd
bit set

bclr reg_or_imm,reg
rd

andn reg
rd
,reg_or_imm,reg

rd
bit clear

btog reg_or_imm,reg
rd

xor reg
rd
,reg_or_imm,reg

rd
bit toggle

clr reg
rd

or %g0,%g0,reg
rd

clear(zero) register

clrb [address] stb %g0,[address] clear byte

clrh [address] sth %g0,[address] clear halfword

clr [address] st %g0,[address] clear word

mov reg_or_imm,reg
rd

or %g0,reg_or_imm,reg
rd

mov %y,reg
rd

rd %y,reg
rd

mov %asrn,reg
rd

rd %asrn,reg
rd

mov %psr,reg
rd

rd %psr,reg
rd

mov %wim,reg
rd

rd %wim,reg
rd

mov %tbr,reg
rd

rd %tbr,reg
rd

mov reg_or_imm,%y wr %g0,reg_or_imm,%y

mov reg_or_imm,%asrn wr %g0,reg_or_imm,%asrn

mov reg_or_imm,%psr wr %g0,reg_or_imm,%psr

mov reg_or_imm,%wim wr %g0,reg_or_imm,%wim

mov reg_or_imm,%tbr wr %g0,reg_or_imm,%tbr

SPARC International, Inc.

B��������������������
Instruction Definitions

This Appendix includes a description of each SPARC instruction. More detailed
algorithmic definitions appear in Appendix C, “ISP Descriptions.”

Related instructions are grouped into subsections. Each subsection consists of
five parts:

(1) A table of the opcodes defined in the subsection with the values of the
field(s) which uniquely identify the instruction(s).

(2) An illustration of the applicable instruction format(s).

(3) A list of the suggested assembly language syntax. (The syntax notation is
described in Appendix A.)

(4) A description of the salient features, restrictions, and trap conditions.
Note that in these descriptions, the symbol �`�_ designates concatenation of bit
vectors. A comma ‘,’ on the left side of an assignment separates quantities
that are concatenated for the purpose of assignment. For example, if X, Y,
and Z are 1-bit vectors, and the 2-bit vector T equals 112 , then:

(X, Y, Z) ← 0 �`�_T
results in X=0, Y=1, and Z=1.

(5) A list of the traps that can occur as a consequence of attempting to execute
the instruction(s). Traps due to an instruction_access_error,
instruction_access_exception, or r_register_access_error, and interrupt
requests are not listed since they can occur on any instruction. Also, any
instruction may generate an illegal_instruction trap if it is not implemented
in hardware.

This Appendix does not include any timing information (in either cycles or clock
time) since timing is strictly implementation-dependent.

The following table summarizes the instruction set; the instruction definitions
follow the table.

87 SPARC International, Inc.

88 The SPARC Architecture Manual: Version 8

Table B-1 Instruction Set

Opcode Name

LDSB (LDSBA†) Load Signed Byte (from Alternate space)
LDSH (LDSHA†) Load Signed Halfword (from Alternate space)
LDUB (LDUBA†) Load Unsigned Byte (from Alternate space)
LDUH (LDUHA†) Load Unsigned Halfword (from Alternate space)
LD (LDA†) Load Word (from Alternate space)
LDD (LDDA†) Load Doubleword (from Alternate space)
LDF Load Floating-point
LDDF Load Double Floating-point
LDFSR Load Floating-point State Register
LDC Load Coprocessor
LDDC Load Double Coprocessor
LDCSR Load Coprocessor State Register
STB (STBA†) Store Byte (into Alternate space)
STH (STHA†) Store Halfword (into Alternate space)
ST (STA†) Store Word (into Alternate space)
STD (STDA†) Store Doubleword (into Alternate space)
STF Store Floating-point
STDF Store Double Floating-point
STFSR Store Floating-point State Register
STDFQ† Store Double Floating-point deferred-trap Queue
STC Store Coprocessor
STDC Store Double Coprocessor
STCSR Store Coprocessor State Register
STDCQ† Store Double Coprocessor deferred-trap Queue
LDSTUB (LDSTUBA†) Atomic Load-Store Unsigned Byte (in Alternate space)
SWAP (SWAPA†) Swap r Register with Memory (in Alternate space)

SETHI Set High 22 bits of r Register
NOP No Operation
AND (ANDcc) And (and modify icc)
ANDN (ANDNcc) And Not (and modify icc)
OR (ORcc) Inclusive-Or (and modify icc)
ORN (ORNcc) Inclusive-Or Not (and modify icc)
XOR (XORcc) Exclusive-Or (and modify icc)
XNOR (XNORcc) Exclusive-Nor (and modify icc)
SLL Shift Left Logical
SRL Shift Right Logical
SRA Shift Right Arithmetic
ADD (ADDcc) Add (and modify icc)
ADDX (ADDXcc) Add with Carry (and modify icc)
TADDcc (TADDccTV) Tagged Add and modify icc (and Trap on overflow)
SUB (SUBcc) Subtract (and modify icc)
SUBX (SUBXcc) Subtract with Carry (and modify icc)
TSUBcc (TSUBccTV) Tagged Subtract and modify icc (and Trap on overflow)

SPARC International, Inc.

Appendix B — Instruction Definitions 89

Table B-1 Instruction Set— Continued

Opcode Name

MULScc Multiply Step (and modify icc)
UMUL (UMULcc) Unsigned Integer Multiply (and modify icc)
SMUL (SMULcc) Signed Integer Multiply (and modify icc)
UDIV (UDIVcc) Unsigned Integer Divide (and modify icc)
SDIV (SDIVcc) Signed Integer Divide (and modify icc)
SAVE Save caller’s window
RESTORE Restore caller’s window

Bicc Branch on integer condition codes
FBfcc Branch on floating-point condition codes
CBccc Branch on coprocessor condition codes
CALL Call and Link
JMPL Jump and Link
RETT† Return from Trap
Ticc Trap on integer condition codes

RDASR‡ Read Ancillary State Register
RDY Read Y Register
RDPSR† Read Processor State Register
RDWIM† Read Window Invalid Mask Register
RDTBR† Read Trap Base Register
WRASR‡ Write Ancillary State Register
WRY Write Y Register
WRPSR† Write Processor State Register
WRWIM† Write Window Invalid Mask Register
WRTBR† Write Trap Base Register

STBAR Store Barrier
UNIMP Unimplemented
FLUSH Flush Instruction Memory

FPop Floating-point Operate: FiTO(s,d,q), F(s,d,q)TOi,
FsTOd, FsTOq, FdTOs, FdTOq, FqTOs, FqTOd,
FMOVs, FNEGs, FABSs,
FSQRT(s,d,q), FADD(s,d,q), FSUB(s,d,q), FMUL(s,d,q), FDIV(s,d,q),
FsMULd, FdMULq,
FCMP(s,d,q), FCMPE(s,d,q)

CPop Coprocessor Operate: implementation-dependent

† privileged instruction
‡ privileged instruction if the referenced ASR register is privileged

SPARC International, Inc.

90 The SPARC Architecture Manual: Version 8

B.1. Load Integer Instructions

opcode op3 operation

LDSB 001001 Load Signed Byte
LDSH 001010 Load Signed Halfword
LDUB 000001 Load Unsigned Byte
LDUH 000010 Load Unsigned Halfword
LD 000000 Load Word
LDD 000011 Load Doubleword
LDSBA† 011001 Load Signed Byte from Alternate space
LDSHA† 011010 Load Signed Halfword from Alternate space
LDUBA† 010001 Load Unsigned Byte from Alternate space
LDUHA† 010010 Load Unsigned Halfword from Alternate space
LDA† 010000 Load Word from Alternate space
LDDA† 010011 Load Doubleword from Alternate space

† privileged instruction

Format (3):

11 rd op3 rs1 i=0 asi rs2
31 29 24 18 13 12 4 0

11 rd op3 rs1 i=1 simm13
31 29 24 18 13 12 0

Suggested Assembly Language Syntax

ldsb [address], regrd
ldsh [address], regrd
ldub [address], regrd
lduh [address], regrd
ld [address], regrd
ldd [address], regrd

ldsba [regaddr] asi, regrd
ldsha [regaddr] asi, regrd
lduba [regaddr] asi, regrd
lduha [regaddr] asi, regrd
lda [regaddr] asi, regrd
ldda [regaddr] asi, regrd

SPARC International, Inc.

Appendix B — Instruction Definitions 91

Description:

The load integer instructions copy a byte, a halfword, or a word from
memory into r[rd]. A fetched byte or halfword is right-justified in destina-
tion register r[rd]; it is either sign-extended or zero-filled on the left, depend-
ing on whether or not the opcode specifies a signed or unsigned operation,
respectively.

The load doubleword integer instructions (LDD, LDDA) move a double-
word from memory into an r register pair. The more significant word at the
effective memory address is moved into the even r register. The less
significant word (at the effective memory address + 4) is moved into the fol-
lowing odd r register. (Note that a load doubleword with rd = 0 modifies
only r[1].) The least significant bit of the rd field is unused and should be set
to zero by software. An attempt to execute a load doubleword instruction
that refers to a mis-aligned (odd) destination register number may cause an
illegal_instruction trap.

The effective address for a load instruction is “r[rs1] + r[rs2]” if the i field is
zero, or “r[rs1] + sign_ext(simm13)” if the i field is one. Instructions that
load from an alternate address space contain the address space identifier to
be used for the load in the asi field, and must contain zero in the i field or an
illegal_instruction trap will occur. Load instructions that do not load from
an alternate address space access either a user data space or system data
space, according to the S bit of the PSR.

A successful load (notably, load doubleword) instruction operates atomi-
cally.

LD and LDA cause a mem_address_not_aligned trap if the effective address
is not word-aligned; LDUH, LDSH, LDUHA, and LDSHA trap if the
address is not halfword-aligned; and LDD and LDDA trap if the address is
not doubleword-aligned.

See Appendix L, “Implementation Characteristics,” for information on the
timing of the integer load instructions.

Implementation Note During execution of a load doubleword instruction, if an exception is generated during the memory
cycle in which the second word is being loaded, the destination register(s) may be modified before
the trap is taken. See Chapter 7, “Traps.”

Traps:

illegal_instruction (load alternate with i = 1; LDD, LDDA with odd rd)
privileged_instruction (load alternate space only)
mem_address_not_aligned (excluding LDSB, LDSBA, LDUB, LDUBA)
data_access_exception
data_access_error

SPARC International, Inc.

92 The SPARC Architecture Manual: Version 8

B.2. Load Floating-point
Instructions opcode op3 operation

LDF 100000 Load Floating-point Register
LDDF 100011 Load Double Floating-point Register
LDFSR 100001 Load Floating-point State Register

Format (3):

11 rd op3 rs1 i=0 unused(zero) rs2
31 29 24 18 13 12 4 0

11 rd op3 rs1 i=1 simm13
31 29 24 18 13 12 0

Suggested Assembly Language Syntax
ld [address], fregrd
ldd [address], fregrd
ld [address], %fsr

Description:

The load single floating-point instruction (LDF) moves a word from memory
into f[rd].

The load doubleword floating-point instruction (LDDF) moves a doubleword
from memory into an f register pair. The most significant word at the effec-
tive memory address is moved into the even f register. The least significant
word at the effective memory address + 4 is moved into the following odd f
register. The least significant bit of the rd field is unused and should always
be set to zero by software. If this bit is non-zero, it is recommended that
LDDF cause an fp_exception trap with FSR.ftt = invalid_fp_register.

The load floating-point state register instruction (LDFSR) waits for all FPop
instructions that have not finished execution to complete, and then loads a
word from memory into the FSR. If any of the three instructions that follow
(in time) a LDFSR is an FBfcc, the value of the fcc field of the FSR which is
seen by the FBfcc is undefined.

The effective address for the load instruction is “r[rs1] + r[rs2]” if the i field
is zero, or “r[rs1] + sign_ext(simm13)” if the i field is one.

LDF and LDFSR cause a mem_address_not_aligned trap if the effective
address is not word-aligned; LDDF traps if the address is not doubleword-
aligned. If the EF field of the PSR is 0, or if no FPU is present, a load
floating-point instruction causes an fp_disabled trap.

Implementation Note If a load floating-point instruction traps with a data access exception, the destination f register(s)
either remain unchanged or are set to an implementation-dependent predetermined constant value.
See Chapter 7, “Traps,” and Appendix L, “Implementation Characteristics.”

Traps:
fp_disabled
fp_exception (sequence_error, invalid_fp_register(LDDF))
data_access_exception

SPARC International, Inc.

Appendix B — Instruction Definitions 93

data_access_error
mem_address_not_aligned

SPARC International, Inc.

94 The SPARC Architecture Manual: Version 8

B.3. Load Coprocessor
Instructions opcode op3 operation

LDC 110000 Load Coprocessor Register
LDDC 110011 Load Double Coprocessor Register
LDCSR 110001 Load Coprocessor State Register

Format (3):

11 rd op3 rs1 i=0 unused(zero) rs2
31 29 24 18 13 12 4 0

11 rd op3 rs1 i=1 simm13
31 29 24 18 13 12 0

Suggested Assembly Language Syntax

ld [address], cregrd
ldd [address], cregrd
ld [address], %csr

Description:

The load single coprocessor instruction (LDC) moves a word from memory
into a coprocessor register. The load double coprocessor instruction
(LDDC) moves a doubleword from memory into a coprocessor register pair.
The load coprocessor state register instruction (LDCSR) moves a word from
memory into the Coprocessor State Register. The semantics of these
instructions depend on the implementation of the attached coprocessor.

The effective address for the load instruction is “r[rs1] + r[rs2]” if the i field
is zero, or “r[rs1] + sign_ext(simm13)” if the i field is one.

LDC and LDCSR cause a mem_address_not_aligned trap if the effective
address is not word-aligned; LDDC traps if the address is not doubleword-
aligned. If the EC field of the PSR is 0, or if no coprocessor is present, a
load coprocessor instruction causes a cp_disabled trap.

Implementation Note An implementation might cause a data_access_exception trap due to a “non-resumable machine-
check” error during an “effective address + 4” memory access, even though the corresponding
“effective address” access did not cause an error. Thus, the even destination CP register may be
changed in this case. (Note that this cannot happen across a page boundary because of the
doubleword-alignment restriction.) See Chapter 7, “Traps.”

Traps:

cp_disabled
cp_exception
mem_address_not_aligned
data_access_exception
data_access_error

SPARC International, Inc.

Appendix B — Instruction Definitions 95

B.4. Store Integer
Instructions opcode op3 operation

STB 000101 Store Byte
STH 000110 Store Halfword
ST 000100 Store Word
STD 000111 Store Doubleword
STBA† 010101 Store Byte into Alternate space
STHA† 010110 Store Halfword into Alternate space
STA† 010100 Store Word into Alternate space
STDA† 010111 Store Doubleword into Alternate space

† privileged instruction

Format (3):

11 rd op3 rs1 i=0 asi rs2
31 29 24 18 13 12 4 0

11 rd op3 rs1 i=1 simm13
31 29 24 18 13 12 0

Suggested Assembly Language Syntax

stb regrd, [address] (synonyms: stub, stsb)
sth regrd, [address] (synonyms: stuh, stsh)
st regrd, [address]
std regrd, [address]
stba regrd, [regaddr] asi (synonyms: stuba, stsba)
stha regrd, [regaddr] asi (synonyms: stuha, stsha)
sta regrd, [regaddr] asi
stda regrd, [regaddr] asi

Description:

The store integer instructions copy the word, the less significant halfword, or
the least significant byte from r[rd] into memory.

The store doubleword integer instructions (STD, STDA) copy a doubleword
from an r register pair into memory. The more significant word (in the
even-numbered r register) is written into memory at the effective address,
and the less significant word (in the following odd-numbered r register) is
written into memory at the “effective address + 4”. The least significant bit
of the rd field of a store doubleword instruction is unused and should always
be set to zero by software. An attempt to execute a store doubleword
instruction that refers to a mis-aligned (odd) rd may cause an
illegal_instruction trap.

The effective address for a store instruction is “r[rs1] + r[rs2]” if the i field is
zero, or “r[rs1] + sign_ext(simm13)” if the i field is one. Instructions that
store to an alternate address space contain the address space identifier to be

SPARC International, Inc.

96 The SPARC Architecture Manual: Version 8

used for the store in the asi field, and must contain zero in the i field or an
illegal_instruction trap will occur. Store instructions that do not store to an
alternate address space access either a user data space or system data space,
according to the S bit of the PSR.

A successful store (notably, store doubleword) instruction operates atomi-
cally.

ST and STA cause a mem_address_not_aligned trap if the effective address
is not word-aligned. STH and STHA trap if the effective address is not
halfword-aligned. STD and STDA trap if the effective address is not
doubleword-aligned.

See Chapter 6, “Memory Model,” for the definition of how stores by dif-
ferent processors are ordered relative to one another in a multiprocessor
environment.

Implementation Note An implementation might cause a data_access_exception trap due to a “non-resumable machine-
check” error during an “effective address + 4” memory access, even though the corresponding
“effective address” access did not cause an error. Thus, memory data at the effective memory
address may be changed in this case. Note that this cannot happen across a page boundary because
of the doubleword-alignment restriction. See Chapter 7, “Traps.”

Traps:

illegal_instruction (store alternate with i = 1; STD, STDA with odd rd)
privileged_instruction (store alternate only)
mem_address_not_aligned (excluding STB and STBA)
data_access_exception
data_access_error
data_store_error

SPARC International, Inc.

Appendix B — Instruction Definitions 97

B.5. Store Floating-point
Instructions opcode op3 operation

STF 100100 Store Floating-point
STDF 100111 Store Double Floating-point
STFSR 100101 Store Floating-point State Register
STDFQ† 100110 Store Double Floating-point deferred-trap Queue

† privileged instruction

Format (3):

11 rd op3 rs1 i=0 unused(zero) rs2
31 29 24 18 13 12 4 0

11 rd op3 rs1 i=1 simm13
31 29 24 18 13 12 0

Suggested Assembly Language Syntax

st fregrd,[address]
std fregrd,[address]
st %fsr,[address]
std %fq, [address]

Description:

The store single floating-point instruction (STF) copies f[rd] into memory.

The store double floating-point instruction (STDF) copies a doubleword
from an f register pair into memory. The more significant word (in the
even-numbered f register) is written into memory at the effective address,
and the less significant word (in the odd-numbered f register) is written into
memory at “effective address + 4”. The least significant bit of the rd field is
unused and should always be set to zero by software. If this bit is non-zero,
it is recommended that STDF cause an fp_exception trap with
FSR.ftt = invalid_fp_register.

The store floating-point deferred-trap queue instruction (STDFQ) stores the
front doubleword of the Floating-point Queue (FQ) into memory. An
attempt to execute STDFQ on an implementation without a floating-point
queue causes an fp_exception trap with FSR.ftt set to 4 (sequence_error).
On an implementation with a floating-point queue, an attempt to execute
STDFQ when the FQ is empty (FSR.qne = 0) should cause an fp_exception
trap with FSR.ftt set to 4 (sequence_error). Any additional semantics of this
instruction are implementation-dependent. See Appendix L, “Implementa-
tion Characteristics,” for information on the formats of the deferred-trap
queues.

The store floating-point state register instruction (STFSR) waits for any con-
currently executing FPop instructions that have not completed to complete,
and then writes the FSR into memory. STFSR may zero FSR.ftt after

SPARC International, Inc.

98 The SPARC Architecture Manual: Version 8

writing the FSR to memory.

The effective address for a store instruction is “r[rs1] + r[rs2]” if the i field is
zero, or “r[rs1] + sign_ext(simm13)” if the i field is one.

STF and STFSR cause a mem_address_not_aligned trap if the address is not
word-aligned and STDF and STDFQ trap if the address is not doubleword-
aligned. If the EF field of the PSR is 0, or if the FPU is not present, a store
floating-point instruction causes an fp_disabled trap.

See Chapter 6, “Memory Model,” for the definition of how stores by dif-
ferent processors are ordered relative to one another in a multiprocessor
environment.

Implementation Note An implementation might cause a data_access_exception trap due to a “non-resumable machine-
check” error during an “effective address + 4” memory access, even though the corresponding
“effective address” access did not cause an error. Thus, memory data at the effective memory
address may be changed in this case. (Note that this cannot happen across a page boundary because
of the doubleword-alignment restriction.) See Appendix L, “Implementation Characteristics.”

Traps:

fp_disabled
fp_exception (sequence_error(STDFQ),

invalid_fp_register(STDF, STDFQ))
privileged_instruction (STDFQ only)
mem_address_not_aligned
data_access_exception
data_access_error
data_store_error

SPARC International, Inc.

Appendix B — Instruction Definitions 99

B.6. Store Coprocessor
Instructions opcode op3 operation

STC 110100 Store Coprocessor
STDC 110111 Store Double Coprocessor
STCSR 110101 Store Coprocessor State Register
STDCQ† 110110 Store Double Coprocessor Queue

† privileged instruction

Format (3):

11 rd op3 rs1 i=0 unused(zero) rs2
31 29 24 18 13 12 4 0

11 rd op3 rs1 i=1 simm13
31 29 24 18 13 12 0

Suggested Assembly Language Syntax
st cregrd,[address]
std cregrd,[address]
st %csr,[address]
std %cq, [address]

Description:

The store single coprocessor instruction (STC) copies the contents of a
coprocessor register into memory.

The store double coprocessor instruction (STDC) copies the contents of a
coprocessor register pair into memory.

The store coprocessor state register instruction (STCSR) copies the contents
of the coprocessor state register into memory. The store doubleword copro-
cessor queue instruction (STDCQ) moves the front entry of the coprocessor
queue into memory. On an implementation without a coprocessor queue,
STDCQ may cause a cp_exception trap. The semantics of these instructions
depend on the implementation of the attached coprocessor, if any.

The effective address for a store instruction is “r[rs1] + r[rs2]” if the i field is
zero, or “r[rs1] + sign_ext(simm13)” if the i field is one.

STC and STCSR cause a mem_address_not_aligned trap if the address is not
word-aligned. STDC and STDCQ trap if the address is not doubleword-
aligned. A store coprocessor instruction causes a cp_disabled trap if the EC
field of the PSR is 0 or if no coprocessor is present.

See Chapter 6, “Memory Model,” for the definition of how stores by dif-
ferent processors are ordered relative to one another in a multiprocessor
environment.

SPARC International, Inc.

100 The SPARC Architecture Manual: Version 8

Traps:

cp_disabled
cp_exception
privileged_instruction (STDCQ only)
mem_address_not_aligned
data_access_exception
illegal_instruction (STDCQ only; implementation-dependent)
data_access_error
data_store_error

SPARC International, Inc.

Appendix B — Instruction Definitions 101

B.7. Atomic Load-Store
Unsigned Byte
Instructions

opcode op3 operation

LDSTUB 001101 Atomic Load-Store Unsigned Byte
LDSTUBA† 011101 Atomic Load-Store Unsigned Byte into Alternate space

† privileged instruction

Format (3):

11 rd op3 rs1 i=0 asi rs2
31 29 24 18 13 12 4 0

11 rd op3 rs1 i=1 simm13
31 29 24 18 13 12 0

Suggested Assembly Language Syntax

ldstub [address], regrd
ldstuba [regaddr] asi, regrd

Description:

The atomic load-store instructions copy a byte from memory into r[rd], then
rewrite the addressed byte in memory to all ones. The operation is per-
formed atomically, that is, without allowing intervening interrupts or
deferred traps. In a multiprocessor system, two or more processors execut-
ing atomic load-store unsigned byte, SWAP, or SWAPA instructions
addressing the same byte or word simultaneously are guaranteed to execute
them in an undefined, but serial order.

The effective address of an atomic load-store is “r[rs1] + r[rs2]” if the i field
is zero, or “r[rs1] + sign_ext(simm13)” if the i field is one. LDSTUBA must
contain zero in the i field, or an illegal_instruction trap will occur. The
address space identifier used for the memory accesses is taken from the asi
field. For LDSTUB, the address space is either a user or a system data space
access, according to the S bit in the PSR.

See Chapter 6, “Memory Model,” for the definition of how stores by dif-
ferent processors are ordered relative to one another in a multiprocessor
environment.

Implementation Note An implementation might cause a data_access_exception trap due to a “non-resumable machine-
check” error during the store memory access, even though there was no error during the
corresponding load access. In this case, the destination register may be changed. See Chapter 7,
“Traps.”

Traps:
illegal_instruction (LDSTUBA with i = 1 only)
privileged_instruction (LDSTUBA only)
data_access_exception
data_access_error
data_store_error

SPARC International, Inc.

102 The SPARC Architecture Manual: Version 8

B.8. SWAP Register with
Memory Instruction opcode op3 operation

SWAP 001111 SWAP register with memory
SWAPA† 011111 SWAP register with Alternate space memory

† privileged instruction

Format (3):

11 rd op3 rs1 i=0 asi rs2
31 29 24 18 13 12 4 0

11 rd op3 rs1 i=1 simm13
31 29 24 18 13 12 0

Suggested Assembly Language Syntax

swap [address], regrd
swapa [regaddr] asi, regrd

Description:

The SWAP and SWAPA instructions exchange r[rd] with the contents of the
word at the addressed memory location. The operation is performed atomi-
cally, that is, without allowing intervening interrupts or deferred traps. In a
multiprocessor system, two or more processors executing SWAP, SWAPA,
or atomic load-store unsigned byte instructions addressing the same word or
byte simultaneously are guaranteed to execute them in an undefined, but
serial order.

The effective address of a SWAP instruction is “r[rs1] + r[rs2]” if the i field
is zero, or “r[rs1] + sign_ext(simm13)” if the i field is one. SWAPA must
contain zero in the i field, or an illegal_instruction trap will occur. The
address space identifier used for the memory accesses is taken from the asi
field. For SWAP, the address space is either a user or a system data space,
according to the S bit in the PSR.

These instructions cause a mem_address_not_aligned trap if the effective
address is not word-aligned.

See Chapter 6, “Memory Model,” for the definition of how stores by dif-
ferent processors are ordered relative to one another in a multiprocessor
environment.

Programming Note See Appendix G, “SPARC ABI Software Considerations,” regarding use of SWAP instructions in
SPARC ABI software.

Implementation Note An implementation might cause a data_access_exception trap due to a “non-resumable machine-
check” error during the store memory access, but not during the load access. In this case, the desti-
nation register can be changed. See Chapter 7, “Traps.”

Implementation Note See Appendix L, “Implementation Characteristics,” for information on the presence of hardware
support for these instructions in the various SPARC implementations.

SPARC International, Inc.

Appendix B — Instruction Definitions 103

Traps:

illegal instruction (when i = 1, SWAPA only)
privileged_instruction (SWAPA only)
mem_address_not_aligned
data_access_exception
data_access_error
data_store_error

SPARC International, Inc.

104 The SPARC Architecture Manual: Version 8

B.9. SETHI Instruction
opcode op op2 operation

SETHI 00 100 Set High-Order 22 bits

Format (2):

00 rd 100 imm22
31 29 24 21 0

Suggested Assembly Language Syntax

sethi const22, regrd
sethi %hi(value), regrd

Description:

SETHI zeroes the least significant 10 bits of “r[rd]”, and replaces its high-
order 22 bits with the value from its imm22 field.

SETHI does not affect the condition codes.

A SETHI instruction with rd = 0 and imm22 = 0 is defined to be a NOP
instruction. See the NOP instruction page in Section B.10.

Traps:

(none)

SPARC International, Inc.

Appendix B — Instruction Definitions 105

B.10. NOP Instruction
opcode op op2 operation

NOP 00 100 No Operation

Format (2):

00 00000 100 — 0 —
31 29 24 21 0

Suggested Assembly Language Syntax

nop

Description:

The NOP instruction changes no program-visible state (except the PC and
nPC).

Note that NOP is a special case of the SETHI instruction, with imm22 = 0
and rd = 0.

Traps:

(none)

SPARC International, Inc.

106 The SPARC Architecture Manual: Version 8

B.11. Logical Instructions opcode op3 operation
AND 000001 And
ANDcc 010001 And and modify icc
ANDN 000101 And Not
ANDNcc 010101 And Not and modify icc
OR 000010 Inclusive Or
ORcc 010010 Inclusive Or and modify icc
ORN 000110 Inclusive Or Not
ORNcc 010110 Inclusive Or Not and modify icc
XOR 000011 Exclusive Or
XORcc 010011 Exclusive Or and modify icc
XNOR 000111 Exclusive Nor
XNORcc 010111 Exclusive Nor and modify icc

Format (3):

10 rd op3 rs1 i=0 unused(zero) rs2
31 29 24 18 13 12 4 0

10 rd op3 rs1 i=1 simm13
31 29 24 18 13 12 0

Suggested Assembly Language Syntax
and regrs1, reg_or_imm, regrd
andcc regrs1, reg_or_imm, regrd
andn regrs1, reg_or_imm, regrd
andncc regrs1, reg_or_imm, regrd
or regrs1, reg_or_imm, regrd
orcc regrs1, reg_or_imm, regrd
orn regrs1, reg_or_imm, regrd
orncc regrs1, reg_or_imm, regrd
xor regrs1, reg_or_imm, regrd
xorcc regrs1, reg_or_imm, regrd
xnor regrs1, reg_or_imm, regrd
xnorcc regrs1, reg_or_imm, regrd

Description:
These instructions implement the bitwise logical operations. They compute
“r[rs1] operation r[rs2]” if the i field is zero, or “r[rs1] operation
sign_ext(simm13)” if the i field is one, and write the result into r[rd].

ANDcc, ANDNcc, ORcc, ORNcc, XORcc, and XNORcc modify the integer
condition codes (icc).

ANDN, ANDNcc, ORN, and ORNcc logically negate their second operand
before applying the main (AND or OR) operation.

Programming Note: XNOR and XNORcc logically implement XOR-Not and XOR-Not-cc, respectively.

Traps: (none)

SPARC International, Inc.

Appendix B — Instruction Definitions 107

B.12. Shift Instructions
opcode op3 operation

SLL 100101 Shift Left Logical
SRL 100110 Shift Right Logical
SRA 100111 Shift Right Arithmetic

Format (3):

10 rd op3 rs1 i=0 unused(zero) rs2
31 29 24 18 13 12 4 0

10 rd op3 rs1 i=1 unused(zero) shcnt
31 29 24 18 13 12 4 0

Suggested Assembly Language Syntax

sll regrs1, reg_or_imm, regrd
srl regrs1, reg_or_imm, regrd
sra regrs1, reg_or_imm, regrd

Description:

The shift count for these instructions is the least significant five bits of r[rs2]
if the i field is zero, or the value in shcnt if the i field is one.

When i is 0, the most significant 27 bits of the value in r[rs2] are ignored.
When i is 1, bits 5 through 12 of the shift instruction are reserved and should
be supplied as zero by software.

SLL shifts the value of r[rs1] left by the number of bits given by the shift
count.

SRL and SRA shift the value of r[rs1] right by the number of bits implied by
the shift count.

SLL and SRL replace vacated positions with zeroes, whereas SRA fills
vacated positions with the most significant bit of r[rs1]. No shift occurs
when the shift count is zero.

All of these instructions write the shifted result into r[rd].

These instructions do not modify the condition codes.

Programming Note “Arithmetic left shift by 1 (and calculate overflow)” can be effected with an ADDcc instruction.

Implementation Note shcnt in shift instructions corresponds to the least significant five bits of simm13 in other Format 3
instructions. However, bits 12 through 5 in shift instructions must be zero.

Traps:

(none)

SPARC International, Inc.

108 The SPARC Architecture Manual: Version 8

B.13. Add Instructions
opcode op3 operation

ADD 000000 Add
ADDcc 010000 Add and modify icc
ADDX 001000 Add with Carry
ADDXcc 011000 Add with Carry and modify icc

Format (3):

10 rd op3 rs1 i=0 unused(zero) rs2
31 29 24 18 13 12 4 0

10 rd op3 rs1 i=1 simm13
31 29 24 18 13 12 0

Suggested Assembly Language Syntax

add regrs1, reg_or_imm, regrd
addcc regrs1, reg_or_imm, regrd
addx regrs1, reg_or_imm, regrd
addxcc regrs1, reg_or_imm, regrd

Description:

ADD and ADDcc compute “r[rs1] + r[rs2]” if the i field is zero, or “r[rs1] +
sign_ext(simm13)” if the i field is one, and write the sum into r[rd].

ADDX and ADDXcc (“ADD eXtended”) also add the PSR’s carry (c) bit;
that is, they compute “r[rs1] + r[rs2] + c” or “r[rs1] + sign_ext(simm13) + c”
and write the sum into r[rd].

ADDcc and ADDXcc modify the integer condition codes (icc). Overflow
occurs on addition if both operands have the same sign and the sign of the
sum is different.

Traps:

(none)

SPARC International, Inc.

Appendix B — Instruction Definitions 109

B.14. Tagged Add
Instructions opcode op3 operation

TADDcc 100000 Tagged Add and modify icc
TADDccTV 100010 Tagged Add, modify icc and Trap on Overflow

Format (3):

10 rd op3 rs1 i=0 unused(zero) rs2
31 29 24 18 13 12 4 0

10 rd op3 rs1 i=1 simm13
31 29 24 18 13 12 0

Suggested Assembly Language Syntax

taddcc regrs1, reg_or_imm, regrd
taddcctv regrs1, reg_or_imm, regrd

Description:

These instructions compute a sum that is “r[rs1] + r[rs2]” if the i field is
zero, or “r[rs1] + sign_ext(simm13)” if the i field is one.

TADDcc modifies the integer condition codes (icc), and TADDccTV does so
also if it does not trap.

A tag_overflow occurs if bit 1 or bit 0 of either operand is nonzero, or if the
addition generates an arithmetic overflow (both operands have the same sign
and the sign of the sum is different).

If a TADDccTV causes a tag_overflow, a tag_overflow trap is generated and
r[rd] and the condition codes remain unchanged. If a TADDccTV does not
cause a tag_overflow, the integer condition codes are updated (in particular,
the overflow bit (v) is set to 0) and the sum is written into r[rd].

If a TADDcc causes a tag_overflow, the overflow bit (v) of the PSR is set; if
it does not cause a tag_overflow, the overflow bit is cleared. In either case,
the remaining integer condition codes are also updated and the sum is writ-
ten into r[rd].

See Appendix D, “Software Considerations,” for a suggested tagging
scheme.

Traps:

tag_overflow (TADDccTV only)

SPARC International, Inc.

110 The SPARC Architecture Manual: Version 8

B.15. Subtract Instructions
opcode op3 operation

SUB 000100 Subtract
SUBcc 010100 Subtract and modify icc
SUBX 001100 Subtract with Carry
SUBXcc 011100 Subtract with Carry and modify icc

Format (3):

10 rd op3 rs1 i=0 unused(zero) rs2
31 29 24 18 13 12 4 0

10 rd op3 rs1 i=1 simm13
31 29 24 18 13 12 0

Suggested Assembly Language Syntax

sub regrs1, reg_or_imm, regrd
subcc regrs1, reg_or_imm, regrd
subx regrs1, reg_or_imm, regrd
subxcc regrs1, reg_or_imm, regrd

Description:

These instructions compute “r[rs1] − r[rs2]” if the i field is zero, or “r[rs1] −
sign_ext(simm13)” if the i field is one, and write the difference into r[rd].

SUBX and SUBXcc (“SUBtract eXtended”) also subtract the PSR’s carry (c)
bit; that is, they compute “r[rs1] − r[rs2] − c” or “r[rs1] − sign_ext(simm13)
− c”, and write the difference into r[rd].

SUBcc and SUBXcc modify the integer condition codes (icc). Overflow
occurs on subtraction if the operands have different signs and the sign of the
difference differs from the sign of r[rs1].

Programming Note A SUBcc with rd = 0 can be used to effect a signed or unsigned integer comparison. See the cmp
synthetic instruction in Appendix A.

Traps:

(none)

SPARC International, Inc.

Appendix B — Instruction Definitions 111

B.16. Tagged Subtract
Instructions opcode op3 operation

TSUBcc 100001 Tagged Subtract and modify icc
TSUBccTV 100011 Tagged Subtract, modify icc and Trap on Overflow

Format (3):

10 rd op3 rs1 i=0 unused(zero) rs2
31 29 24 18 13 12 4 0

10 rd op3 rs1 i=1 simm13
31 29 24 18 13 12 0

Suggested Assembly Language Syntax

tsubcc regrs1, reg_or_imm, regrd
tsubcctv regrs1, reg_or_imm, regrd

Description:

These instructions compute “r[rs1] − r[rs2]” if the i field is zero, or “r[rs1] −
sign_ext(simm13)” if the i field is one.

TSUBcc modifies the integer condition codes (icc) and TSUBccTV does so
also if it does not trap.

A tag_overflow occurs if bit 1 or bit 0 of either operand is nonzero, or if the
subtraction generates an arithmetic overflow (the operands have different
signs and the sign of the difference differs from the sign of r[rs1]).

If a TSUBccTV causes a tag_overflow, a tag_overflow trap is generated and
the destination register and condition codes remain unchanged. If a
TSUBccTV does not cause a tag_overflow condition, the integer condition
codes are updated (in particular, the overflow bit (v) is set to 0) and the
difference is written into r[rd].

If a TSUBcc causes a tag_overflow, the overflow bit (v) of the PSR is set; if
it does not cause a tag_overflow, the overflow bit is cleared. In either case,
the remaining integer condition codes are also updated and the difference is
written into r[rd].

See Appendix D, “Software Considerations.” for a suggested tagging
scheme.

Traps:

tag_overflow (TSUBccTV only)

SPARC International, Inc.

112 The SPARC Architecture Manual: Version 8

B.17. Multiply Step
Instruction opcode op3 operation

MULScc 100100 Multiply Step and modify icc

Format (3):

10 rd op3 rs1 i=0 reserved rs2
31 29 24 18 13 12 4 0

10 rd op3 rs1 i=1 simm13
31 29 24 18 13 12 0

Suggested Assembly Language Syntax

mulscc regrs1, reg_or_imm, regrd

Description:
MULScc treats r[rs1] and the Y register as a single 64-bit, right-shiftable
doubleword register. The least significant bit of r[rs1] is treated as if it were
adjacent to the most significant bit of the Y register. The MULScc instruc-
tion conditionally adds, based on the least significant bit of Y.

Multiplication assumes that the Y register initially contains the multiplier,
r[rs1] contains the most significant bits of the product, and r[rs2] contains
the multiplicand. Upon completion of the multiplication, the Y register con-
tains the least significant bits of the product.

Note that a standard MULScc instruction has rs1 = rd. See Appendix E,
“Example Integer Multiplication and Division Routines,” for a 32 × 32 → 64
signed multiplication example program based on MULScc.

MULScc operates as follows:

(1) The multiplier is established as r[rs2] if the i field is zero, or
sign_ext(simm13) if the i field is one.

(2) A 32-bit value is computed by shifting r[rs1] right by one bit with
“N xor V” from the PSR replacing the high-order bit. (This is the
proper sign for the previous partial product.)

(3) If the least significant bit of the Y register = 1, the shifted value from
step (2) is added to the multiplier.
If the LSB of the Y register = 0, then 0 is added to the shifted value
from step (2).

(4) The sum from step (3) is written into r[rd].

(5) The integer condition codes, icc, are updated according to the addition
performed in step (3).

(6) The Y register is shifted right by one bit, with the LSB of the unshifted
r[rs1] replacing the MSB of Y.

Traps:
(none)

SPARC International, Inc.

Appendix B — Instruction Definitions 113

B.18. Multiply Instructions

opcode op3 operation

UMUL 001010 Unsigned Integer Multiply
SMUL 001011 Signed Integer Multiply
UMULcc 011010 Unsigned Integer Multiply and modify icc
SMULcc 011011 Signed Integer Multiply and modify icc

Format (3):

10 rd op3 rs1 i=0 unused(zero) rs2
31 29 24 18 13 12 4 0

10 rd op3 rs1 i=1 simm13
31 29 24 18 13 12 0

Suggested Assembly Language Syntax

umul regrs1, reg_or_imm, regrd
smul regrs1, reg_or_imm, regrd
umulcc regrs1, reg_or_imm, regrd
smulcc regrs1, reg_or_imm, regrd

Description:

The multiply instructions perform 32-bit by 32-bit multiplications, produc-
ing 64-bit results. They compute “r[rs1] × r[rs2]” if the i field is zero, or
“r[rs1] × sign_ext(simm13)” if the i field is one. They write the 32 most
significant bits of the product into the Y register and the 32 least significant
bits into r[rd].

An unsigned multiply (UMUL, UMULcc) assumes unsigned integer word
operands and computes an unsigned integer doubleword product. A signed
multiply (SMUL, SMULcc) assumes signed integer word operands and com-
putes a signed integer doubleword product.

UMUL and SMUL do not affect the condition code bits. UMULcc and
SMULcc write the integer condition code bits, icc, as follows. Note that
negative (N) and zero (Z) are set according to the less significant word of the
product.

icc bit UMULcc SMULcc
N Set if product[31] = 1 Set if product[31] = 1
Z Set if product[31:0] = 0 Set if product[31:0] = 0
V Zero † Zero †
C Zero † Zero †

† Specification of this condition code may change in a future revision to the architecture.
Software should not test this condition code.

SPARC International, Inc.

114 The SPARC Architecture Manual: Version 8

Programming Note 32-bit overflow after UMUL/UMULcc is indicated by Y != 0.
32-bit overflow after SMUL/SMULcc is indicated by Y != (r[rd] >> 31).

Programming Note See Appendix G, “SPARC ABI Software Considerations,” regarding use of multiply instructions in
SPARC ABI software.

Implementation Note An implementation may assume that the smaller operand will typically be in r[rs2] or simm13.

Implementation Note See Appendix L, “Implementation Characteristics,” for information on whether these instructions
are executed in hardware or software in the various SPARC implementations.

Traps:

(none)

SPARC International, Inc.

Appendix B — Instruction Definitions 115

B.19. Divide Instructions
opcode op3 operation

UDIV 001110 Unsigned Integer Divide
SDIV 001111 Signed Integer Divide
UDIVcc 011110 Unsigned Integer Divide and modify icc
SDIVcc 011111 Signed Integer Divide and modify icc

Format (3):

10 rd op3 rs1 i=0 unused(zero) rs2
31 29 24 18 13 12 4 0

10 rd op3 rs1 i=1 simm13
31 29 24 18 13 12 0

Suggested Assembly Language Syntax

udiv regrs1, reg_or_imm, regrd
sdiv regrs1, reg_or_imm, regrd
udivcc regrs1, reg_or_imm, regrd
sdivcc regrs1, reg_or_imm, regrd

Description:

The divide instructions perform 64-bit by 32-bit division, producing a 32-bit
result. If the i field is zero, they compute “(Y �`�_ r[rs1]) ÷ r[rs2]”. Otherwise
(the i field is one), the divide instructions compute “(Y �`�_ r[rs1]) ÷
sign_ext(simm13)”. In either case, the 32 bits of the integer quotient are
written into r[rd]. The remainder (if generated) is discarded.

An unsigned divide (UDIV, UDIVcc) assumes an unsigned integer double-
word dividend (Y �`�_ r[rs1]) and an unsigned integer word divisor (r[rs2]) and
computes an unsigned integer word quotient (r[rd]). A signed divide (SDIV,
SDIVcc) assumes a signed integer doubleword dividend (Y �`�_ r[rs1]) and a
signed integer word divisor (r[rs2] or sign_ext(simm13)) and computes a
signed integer word quotient (r[rd]).

Signed division rounds an inexact quotient toward zero if there is a nonzero
remainder; for example, −3 ÷ 2 equals −1 with a remainder of −1 (not −2
with a remainder of 1). An implementation may choose to strictly adhere to
this rounding, in which case overflow for a negative result must be detected
using method [A] below. Or, it may choose to make an exception for round-
ing with the maximum negative quotient, in which case overflow for a nega-
tive result must be detected using method [B].

The result of a divide instruction can overflow the 32-bit destination register
r[rd] under certain conditions. When overflow occurs (whether or not the
instruction sets the condition codes in icc), the largest appropriate integer is
returned as the quotient in r[rd]. The conditions under which overflow
occurs and the value returned in r[rd] under those conditions are specified in

SPARC International, Inc.

116 The SPARC Architecture Manual: Version 8

the following table.

Divide Overflow Detection and Value Returned

Condition under which overflow occurs Value
returnedInstruction

(“result” refers to quotient + remainder)
in r[rd]

232−1
UDIV, UDIVcc result > (232−1 with a remainder of divisor−1)

(0xffffffff)

SDIV, SDIVcc 231−1
(positive result)

result > (231−1 with a remainder of |divisor|−1)
(0x7fffffff)

either †
[A] result < (− 231 with a remainder of − (|divisor|−1))
or †
[B] result < (− 231 with a remainder of 0)

SDIV, SDIVcc
(negative result)

− 231

(0x80000000)

† which of these two overflow-detection conditions is used is implementation-
dependent, but must be consistent within an implementation.

UDIV and SDIV do not affect condition code bits. UDIVcc and SDIVcc
write the integer condition code bits as follows. Note that negative(N) and
zero(Z) are set according to the value of the quotient (after it has been set to
reflect overflow, if any), and that UDIVcc and SDIVcc set overflow(V) dif-
ferently.

icc
bit

UDIVcc SDIVcc

N Set if quotient[31] = 1 Set if quotient[31] = 1
Z Set if quotient[31:0] = 0 Set if quotient[31:0] = 0
V Set if overflow (per above table) Set if overflow (per above table)
C Zero Zero

For future compatibility, software should assume that the contents of the Y
register are not preserved by the divide instructions.

Programming Note See Appendix G, “SPARC ABI Software Considerations,” regarding use of divide instructions in
SPARC ABI software.

Implementation Note The integer division instructions may generate a remainder. If they do, it is recommended that the
remainder be stored in the Y register.

Implementation Note See Appendix L, “Implementation Characteristics,” for information on whether these instructions
are executed in hardware or software, and the condition which triggers signed overflow for negative
quotients in the various SPARC implementations.

Traps:

division_by_zero

SPARC International, Inc.

Appendix B — Instruction Definitions 117

B.20. SAVE and
RESTORE
Instructions

opcode op3 operation

SAVE 111100 Save caller’s window
RESTORE 111101 Restore caller’s window

Format (3):

10 rd op3 rs1 i=0 unused(zero) rs2
31 29 24 18 13 12 4 0

10 rd op3 rs1 i=1 simm13
31 29 24 18 13 12 0

Suggested Assembly Language Syntax

save regrs1, reg_or_imm, regrd
restore regrs1, reg_or_imm, regrd

Description:

The SAVE instruction subtracts one from the CWP (modulo NWINDOWS)
and compares this value (new_CWP) against the Window Invalid Mask
(WIM) register. If the WIM bit corresponding to the new_CWP is 1, that is,
(WIM and 2new_CWP) = 1, then a window_overflow trap is generated. If the
WIM bit corresponding to the new_CWP is 0, then no window_overflow
trap is generated and new_CWP is written into CWP. This causes the
current window to become the CWP−1 window, thereby saving the caller’s
window.

The RESTORE instruction adds one to the CWP (modulo NWINDOWS) and
compares this value (new_CWP) against the Window Invalid Mask (WIM)
register. If the WIM bit corresponding to the new_CWP is 1, that is, (WIM
and 2new_CWP) = 1, then a window_underflow trap is generated. If the WIM
bit corresponding to the new_CWP = 0, then no window_underflow trap is
generated and new_CWP is written into CWP. This causes the CWP+1 win-
dow to become the current window, thereby restoring the caller’s window.

Furthermore, if and only if an overflow or underflow trap is not generated,
SAVE and RESTORE behave like normal ADD instructions, except that the
source operands r[rs1] and/or r[rs2] are read from the old window (that is,
the window addressed by the original CWP) and the sum is written into r[rd]
of the new window (that is, the window addressed by new_CWP).

Note that CWP arithmetic is performed modulo the number of implemented
windows, NWINDOWS.

Programming Note The SAVE instruction can be useed to atomically allocate a new window in the register file and a
new software stack frame in main memory. See Appendix D, “Software Considerations,” for
details.

Programming Note Typically, if a SAVE (RESTORE) instruction traps, the overflow (underflow) trap handler returns
to the trapped instruction to reexecute it. So, although the ADD operation is not performed the first
time (when the instruction traps), it is performed the second time.

SPARC International, Inc.

118 The SPARC Architecture Manual: Version 8

Traps:
window_overflow (SAVE only)
window_underflow (RESTORE only)

SPARC International, Inc.

Appendix B — Instruction Definitions 119

B.21. Branch on Integer Condition Codes Instructions

opcode cond operation icc test
BA 1000 Branch Always 1
BN 0000 Branch Never 0
BNE 1001 Branch on Not Equal not Z
BE 0001 Branch on Equal Z
BG 1010 Branch on Greater not (Z or (N xor V))
BLE 0010 Branch on Less or Equal Z or (N xor V)
BGE 1011 Branch on Greater or Equal not (N xor V)
BL 0011 Branch on Less N xor V
BGU 1100 Branch on Greater Unsigned not (C or Z)
BLEU 0100 Branch on Less or Equal Unsigned (C or Z)
BCC 1101 Branch on Carry Clear (Greater than or Equal, Unsigned) not C
BCS 0101 Branch on Carry Set (Less than, Unsigned) C
BPOS 1110 Branch on Positive not N
BNEG 0110 Branch on Negative N
BVC 1111 Branch on Overflow Clear not V
BVS 0111 Branch on Overflow Set V

Format (2):

00 a cond 010 disp22
31 29 28 24 21 0

Suggested Assembly Language Syntax
ba{,a} label
bn{,a} label
bne{,a} label (synonym: bnz)
be{,a} label (synonym: bz)
bg{,a} label
ble{,a} label
bge{,a} label
bl{,a} label
bgu{,a} label
bleu{,a} label
bcc{,a} label (synonym: bgeu)
bcs{,a} label (synonym: blu)
bpos{,a} label
bneg{,a} label
bvc{,a} label
bvs{,a} label

Note To set the “annul” bit for Bicc instructions, append “,a” to the opcode mnemonic. For example,
use “bgu,a label”. The preceding table indicates that the “,a” is optional by enclosing it in
braces ({}).

SPARC International, Inc.

120 The SPARC Architecture Manual: Version 8

Description:

Unconditional Branches (BA, BN)

If its annul field is 0, a BN (Branch Never) instruction acts like a
“NOP”. If its annul field is 1, the following (delay) instruction is
annulled (not executed). In neither case does a transfer of control take
place.

BA (Branch Always) causes a PC-relative, delayed control transfer to
the address “PC + (4 × sign_ext(disp22))”, regardless of the values of
the integer condition code bits. If the annul field of the branch instruc-
tion is 1, the delay instruction is annulled (not executed). If the annul
field is 0, the delay instruction is executed.

Icc-Conditional Branches

Conditional Bicc instructions (all except BA and BN) evaluate the
integer condition codes (icc), according to the cond field of the instruc-
tion. Such evaluation produces either a “true” or “false” result. If
“true”, the branch is taken, that is, the instruction causes a PC-relative,
delayed control transfer to the address “PC + (4 × sign_ext(disp22))”. If
“false”, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed
regardless of the value of the annul field. If a conditional branch is not
taken and the a (annul) field is 1, the delay instruction is annulled (not
executed). (Note that the annul bit has a different effect on conditional
branches than it does on unconditional branches.)

Annulment, delay instructions, and delayed control transfers are described
further in Chapter 5, “Instructions.” In particular, note that a Bicc should not
be placed in the delay slot of a conditional branch instruction.

See Appendix L, “Implementation Characteristics,” for information on the
timing of the Bicc instructions.

Traps:

(none)

SPARC International, Inc.

Appendix B — Instruction Definitions 121

B.22. Branch on Floating-
point Condition
Codes Instructions

opcode cond operation fcc test
FBA 1000 Branch Always 1
FBN 0000 Branch Never 0
FBU 0111 Branch on Unordered U
FBG 0110 Branch on Greater G
FBUG 0101 Branch on Unordered or Greater G or U
FBL 0100 Branch on Less L
FBUL 0011 Branch on Unordered or Less L or U
FBLG 0010 Branch on Less or Greater L or G
FBNE 0001 Branch on Not Equal L or G or U
FBE 1001 Branch on Equal E
FBUE 1010 Branch on Unordered or Equal E or U
FBGE 1011 Branch on Greater or Equal E or G
FBUGE 1100 Branch on Unordered or Greater or Equal E or G or U
FBLE 1101 Branch on Less or Equal E or L
FBULE 1110 Branch on Unordered or Less or Equal E or L or U
FBO 1111 Branch on Ordered E or L or G

Format (2):

00 a cond 110 disp22
31 29 28 24 21 0

Suggested Assembly Language Syntax
fba{,a} label
fbn{,a} label
fbu{,a} label
fbg{,a} label
fbug{,a} label
fbl{,a} label
fbul{,a} label
fblg{,a} label
fbne{,a} label (synonym: fbnz)
fbe{,a} label (synonym: fbz)
fbue{,a} label
fbge{,a} label
fbuge{,a} label
fble{,a} label
fbule{,a} label
fbo{,a} label

Note To set the “annul” bit for FBfcc instructions, append “,a” to the opcode mnemonic. For example,
use “fbl,a label”. The preceding table indicates that the “,a” is optional by enclosing it in
braces ({}).

SPARC International, Inc.

122 The SPARC Architecture Manual: Version 8

Description:

Unconditional Branches (FBA, FBN)

If its annul field is 0, a FBN (Branch Never) instruction acts like a
“NOP”. If its annul field is 1, the following (delay) instruction is
annulled (not executed). In neither case does a transfer of control take
place.

FBA (Branch Always) causes a PC-relative, delayed control transfer to
the address “PC + (4 × sign_ext(disp22))”, regardless of the value of the
floating-point condition code bits. If the annul field of the branch
instruction is 1, the delay instruction is annulled (not executed). If the
annul field is 0, the delay instruction is executed.

Fcc-Conditional Branches

Conditional FBfcc instructions (all except FBA and FBN) evaluate the
floating-point condition codes (fcc), according to the cond field of the
instruction. Such evaluation produces either a “true” or “false” result.
If “true”, the branch is taken, that is, the instruction causes a PC-
relative, delayed control transfer to the address “PC + (4 ×
sign_ext(disp22))”. If “false”, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed
regardless of the value of the annul field. If a conditional branch is not
taken and the a (annul) field is 1, the delay instruction is annulled (not
executed). (Note that the annul bit has a different effect on conditional
branches than it does on unconditional branches.)

Annulment, delay instructions, and delayed control transfers are described
further in Chapter 5, “Instructions.” In particular, note that an FBfcc should
not be placed in the delay slot of a conditional branch instruction.

If the PSR’s EF bit is 0, or if an FPU is not present, an FBfcc instruction
does not branch, does not annul the following instruction, and generates an
fp_disabled trap.

If the instruction executed immediately before an FBfcc is an FPop2 instruc-
tion, the result of the FBfcc is undefined. Therefore, at least one non-FPop2
instruction should be executed between an FPop2 and a subsequent FBfcc.

If any of the three instructions that follow (in time) an LDFSR is an FBfcc,
the value of the fcc field of the FSR that is seen by the FBfcc is undefined.

See Appendix L, “Implementation Characteristics,” for information on the
timing of the FBfcc instructions.

Traps:

fp_disabled
fp_exception

SPARC International, Inc.

Appendix B — Instruction Definitions 123

B.23. Branch on
Coprocessor
Condition Codes
Instructions

opcode cond bp_CP_cc[1:0] test
CBA 1000 Always
CBN 0000 Never
CB3 0111 3
CB2 0110 2
CB23 0101 2 or 3
CB1 0100 1
CB13 0011 1 or 3
CB12 0010 1 or 2
CB123 0001 1 or 2 or 3
CB0 1001 0
CB03 1010 0 or 3
CB02 1011 0 or 2
CB023 1100 0 or 2 or 3
CB01 1101 0 or 1
CB013 1110 0 or 1 or 3
CB012 1111 0 or 1 or 2

Format (2):

00 a cond 111 disp22
31 29 28 24 21 0

Suggested Assembly Language Syntax
cba{,a} label
cbn{,a} label
cb3{,a} label
cb2{,a} label
cb23{,a} label
cb1{,a} label
cb13{,a} label
cb12{,a} label
cb123{,a} label
cb0{,a} label
cb03{,a} label
cb02{,a} label
cb023{,a} label
cb01{,a} label
cb013{,a} label
cb012{,a} label

Note To set the “annul” bit for CBccc instructions, append “,a” to the opcode mnemonic. For example,
use “cb12,a label”. The preceding table indicates that the “,a” is optional by enclosing it in
braces ({}).

SPARC International, Inc.

124 The SPARC Architecture Manual: Version 8

Description:

Unconditional Branches (CBA, CBN)

If its annul field is 0, a CBN (Branch Never) instruction acts like
“NOP”. If its annul field is 1, the following (delay) instruction is
annulled (not executed). In neither case does a transfer of control take
place.

CBA (Branch Always) causes a PC-relative, delayed control transfer to
the address “PC + (4 × sign_ext(disp22))”, regardless of the value of the
condition code bits. If the annul field of the branch instruction is 1, the
delay instruction is annulled (not executed). If the annul field is 0, the
delay instruction is executed.

Ccc-Conditional Branches

Conditional CBccc instructions (all except CBA and CBN) evaluate the
coprocessor condition codes (ccc), according to the cond field of the
instruction. Such evaluation produces either a “true” or “false” result.
If “true”, the branch is taken; that is, the instruction causes a PC-
relative, delayed control transfer to the address “PC + (4 ×
sign_ext(disp22))”. If “false”, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed
regardless of the value of the annul field. If a conditional branch is not
taken and the a (annul) field is 1, the delay instruction is annulled (not
executed). (Note that the annul bit has a different effect on conditional
branches than it does on unconditional branches.)

Annulment, delay instructions, and delayed control transfers are described
further in Chapter 5, “Instructions.” In particular, note that a CBccc should
not be placed in the delay slot of a conditional branch instruction.

If the PSR’s EC bit is 0, or if a coprocessor is not present, a CBccc instruc-
tion does not branch, does not annul the following instruction, and generates
a cp_disabled trap.

See Appendix L, “Implementation Characteristics,” for information on the
timing of the CBccc instructions.

Traps:

cp_disabled
cp_exception

SPARC International, Inc.

Appendix B — Instruction Definitions 125

B.24. Call and Link
Instruction opcode op operation

CALL 01 Call and Link

Format (1):

01 disp30
31 29 0

Suggested Assembly Language Syntax

call label

Description:

The CALL instruction causes an unconditional, delayed, PC-relative control
transfer to address “PC + (4 × disp30)”. Since the word displacement
(disp30) field is 30 bits wide, the target address can be arbitrarily distant.
The PC-relative displacement is formed by appending two low-order zeros
to the instruction’s 30-bit word displacement field.

The CALL instruction also writes the value of PC, which contains the
address of the CALL, into r[15] (out register 7).

Traps:

(none)

SPARC International, Inc.

126 The SPARC Architecture Manual: Version 8

B.25. Jump and Link
Instruction opcode op3 operation

JMPL 111000 Jump and Link

Format (3):

10 rd op3 rs1 i=0 unused(zero) rs2
31 29 24 18 13 12 4 0

10 rd op3 rs1 i=1 simm13
31 29 24 18 13 12 0

Suggested Assembly Language Syntax

jmpl address, regrd

Description:

The JMPL instruction causes a register-indirect delayed control transfer to
the address given by “r[rs1] + r[rs2]” if the i field is zero, or “r[rs1] +
sign_ext(simm13)” if the i field is one.

The JMPL instruction copies the PC, which contains the address of the
JMPL instruction, into register r[rd].

If either of the low-order two bits of the jump address is nonzero, a
mem_address_not_aligned trap occurs.

Programming Note A JMPL instruction with rd = 15 functions as a register-indirect call using the standard link regis-
ter. JMPL with rd = 0 can be used to return from a subroutine. The typical return address is
“r[31]+8”, if a non-leaf (uses SAVE instruction) subroutine is entered by a CALL instruction, or
“r[15]+8” if a leaf (doesn’t use SAVE instruction) subroutine is entered by a CALL instruction.

Implementation Note When a RETT instruction appears in the delay slot of a JMPL, the target of the JMPL must be
fetched from the address space implied by the new (i.e. post-RETT) value of the PSR’s S bit. In
particular, this applies to a return from trap to a user address space.

Traps:

mem_address_not_aligned

SPARC International, Inc.

Appendix B — Instruction Definitions 127

B.26. Return from Trap
Instruction opcode op3 operation

RETT† 111001 Return from Trap

† privileged instruction

Format (3):

unused10 (zero) op3 rs1 i=0 unused(zero) rs2

31 29 24 18 13 12 4 0

unused10 (zero) op3 rs1 i=1 simm13

31 29 24 18 13 12 0

Suggested Assembly Language Syntax
rett address

Description:

RETT is used to return from a trap handler. Under some circumstances,
RETT may itself cause a trap. If a RETT instruction does not cause a trap, it
(1) adds 1 to the CWP (modulo NWINDOWS), (2) causes a delayed control
transfer to the target address, (3) restores the S field of the PSR from the PS
field, and (4) sets the ET field of the PSR to 1. The target address is “r[rs1]
+ r[rs2]” if the i field is zero, or “r[rs1] + sign_ext(simm13)” if the i field is
one.

One of several traps may occur when an RETT is executed. These are
described in priority order (highest priority first):
� If traps are enabled (ET=1) and the processor is in user mode (S=0), a

privileged_instruction trap occurs.
� If traps are enabled (ET=1) and the processor is in supervisor mode

(S=1), an illegal_instruction trap occurs.
� If traps are disabled (ET=0), and (a) the processor is in user mode (S=0),

or (b) a window_underflow condition is detected (WIM and 2new_CWP)
= 1, or (c) either of the low-order two bits of the target address is
nonzero, then the processor indicates a trap condition of (a)
privileged_instruction, (b) window_underflow, or (c)
mem_address_not_aligned (respectively) in the tt field of the TBR
register, and enters the error_mode state.

The instruction executed immediately before an RETT must be a JMPL
instruction. (If not, one or more instruction accesses following the RETT
may be to an incorrect address space.)

Programming Note To reexecute the trapped instruction when returning from a trap handler use the sequence:

jmpl %r17,%r0 ! old PC
rett %r18 ! old nPC

To return to the instruction after the trapped instruction (for example, after emulating an instruc-
tion) use the sequence:

jmpl %r18,%r0 ! old nPC

SPARC International, Inc.

128 The SPARC Architecture Manual: Version 8

rett %r18+4 ! old nPC + 4

Traps:

illegal_instruction
privileged_instruction
privileged_instruction (may cause processor to enter error_mode)
mem_address_not_aligned (may cause processor to enter error_mode)
window_underflow (may cause processor to enter error_mode)

SPARC International, Inc.

Appendix B — Instruction Definitions 129

B.27. Trap on Integer Condition Codes Instruction

opcode cond operation icc test

TA 1000 Trap Always 1
TN 0000 Trap Never 0
TNE 1001 Trap on Not Equal not Z
TE 0001 Trap on Equal Z
TG 1010 Trap on Greater not (Z or (N xor V))
TLE 0010 Trap on Less or Equal Z or (N xor V)
TGE 1011 Trap on Greater or Equal not (N xor V)
TL 0011 Trap on Less N xor V
TGU 1100 Trap on Greater Unsigned not (C or Z)
TLEU 0100 Trap on Less or Equal Unsigned (C or Z)
TCC 1101 Trap on Carry Clear (Greater than or Equal, Unsigned) not C
TCS 0101 Trap on Carry Set (Less Than, Unsigned) C
TPOS 1110 Trap on Positive not N
TNEG 0110 Trap on Negative N
TVC 1111 Trap on Overflow Clear not V
TVS 0111 Trap on Overflow Set V

Format (3):

10 reserved cond 111010 rs1 i=0 reserved rs2
31 29 28 24 18 13 12 4 0

10 reserved cond 111010 rs1 i=1 reserved imm7
31 29 28 24 18 13 12 6 0

Suggested Assembly Language Syntax

ta software_trap#
tn software_trap#
tne software_trap# (synonym: tnz)
te software_trap# (synonym: tz)
tg software_trap#
tle software_trap#
tge software_trap#
tl software_trap#
tgu software_trap#
tleu software_trap#
tcc software_trap# (synonym: tgeu)
tcs software_trap# (synonym: tlu)
tpos software_trap#
tneg software_trap#
tvc software_trap#
tvs software_trap#

SPARC International, Inc.

130 The SPARC Architecture Manual: Version 8

Description:

A Ticc instruction evaluates the integer condition codes (icc) according to
the cond field of the instruction, producing either a “true” or “false” result.
If “true” and no higher priority exceptions or interrupt requests are pending,
then a trap_instruction trap is generated. If “false”, a trap_instruction trap
does not occur and the instruction behaves like a NOP.

If a trap_instruction trap is generated, the tt field of the Trap Base Register
(TBR) is written with 128 plus the least significant seven bits of “r[rs1] +
r[rs2]” if the i field is zero, or 128 plus the least significant seven bits of
“r[rs1] + sign_ext(software_trap#)” if the i field is one.

After a taken Ticc, the processor enters supervisor mode, disables traps,
decrements the CWP (modulo NWINDOWS), and saves PC and nPC into
r[17] and r[18] (local registers 1 and 2) of the new window. See Chapter 7,
“Traps.”

Programming Note Ticc can be used to implement breakpointing, tracing, and calls to supervisor software. It can also
be used for run-time checks, such as out-of-range array indexes, integer overflow, etc.

Traps:

trap_instruction

SPARC International, Inc.

Appendix B — Instruction Definitions 131

B.28. Read State Register Instructions

opcode op3 rs1 operation

RDY 101000 0 Read Y Register
RDASR‡ 101000 1 − 15 Read Ancillary State Register (reserved)
RDASR‡ 101000 16 − 31 (implementation-dependent)
RDPSR† 101001 reserved Read Processor State Register
RDWIM† 101010 reserved Read Window Invalid Mask Register
RDTBR† 101011 reserved Read Trap Base Register

† privileged instruction
‡ privileged instruction if source register is privileged

Format (3):

unused10 rd op3 rs1 (zero) unused(zero)

31 29 24 18 13 12 0

Suggested Assembly Language Syntax

rd %y, regrd
rd asr_regrs1, regrd
rd %psr, regrd
rd %wim, regrd
rd %tbr, regrd

Description:

These instructions read the specified IU state register into r[rd].

Note that RDY is distinguished from RDASR only by the rs1 field. The rs1
field must be zero and op3 = 0x28 to read the Y register.

If rs1 ≠ 0 and op3 = 0x28, then an implementation-dependent ancillary state
register is read. Values of rs1 in the range 1...14 are reserved for future ver-
sions of the architecture; values 16...31 are available for implementations to
use. An RDASR instruction with rs1 = 15 and rd = 0 is defined to be an
STBAR instruction (see Section B.30 for its description). RDASR with rs1
= 15 and rd ≠ 0 is reserved for future versions of the architecture.

An rs1 value of 1...14 in an RDASR instruction produces undefined results,
but does not cause an illegal_instruction trap.

For an RDASR instruction with rs1 in the range 16...31, the following are
implementation-dependent: the interpretation of bits 13:0 and 29:25 in the
instruction, whether the instruction is privileged or not, and whether the
instruction causes an illegal_instruction trap or not.

Implementation Note Ancillary state registers may include (for example) timer, counter, diagnostic, self-test, and trap-
control registers. See Appendix L, “Implementation Characteristics,” for information on imple-
mented ancillary state registers.

Traps:

SPARC International, Inc.

132 The SPARC Architecture Manual: Version 8

privileged_instruction (except RDY)
illegal_instruction (RDASR only; implementation-dependent)

SPARC International, Inc.

Appendix B — Instruction Definitions 133

B.29. Write State Register Instructions

opcode op3 rd operation

WRY 110000 0 Write Y Register
WRASR‡ 110000 1 − 15 Write Ancillary State Register (reserved)
WRASR‡ 110000 16 − 31 (implementation-dependent)
WRPSR† 110001 reserved Write Processor State Register
WRWIM† 110010 reserved Write Window Invalid Mask Register
WRTBR† 110011 reserved Write Trap Base Register

† privileged instruction
‡ privileged instruction if destination register is privileged

Format (3):

10 rd op3 rs1 i=0 unused(zero) rs2
31 29 24 18 13 12 4 0

10 rd op3 rs1 i=1 simm13
31 29 24 18 13 12 0

Suggested Assembly Language Syntax

wr regrs1, reg_or_imm,%y
wr regrs1, reg_or_imm, asr_regrd
wr regrs1, reg_or_imm,%psr
wr regrs1, reg_or_imm,%wim
wr regrs1, reg_or_imm,%tbr

Description:

WRY, WRPSR, WRWIM, and WRTBR write “r[rs1] xor r[rs2]” if the i
field is zero, or “r[rs1] xor sign_ext(simm13)” if the i field is one, to the
writable fields of the specified IU state register. (Note the exclusive-or
operation.)

Note that WRY is distinguished from WRASR only by the rd field. The rd
field must be zero and op3 = 0x30 to write the Y register.

WRASR writes a value to the ancillary state register (ASR) indicated by rd.
The operation performed to generate the value written may be rd-dependent
or implementation-dependent (see below). A WRASR instruction is indi-
cated by rd ≠ 0 and op3 = 0x30.

WRASR instructions with rd in the range 1...15 are reserved for future ver-
sions of the architecture; executing a WRASR instruction with rd in that
range produces undefined results.

WRASR instructions with rd in the range 16...31 are available for
implementation-dependent uses. For a WRASR instruction with rd in the
range 16...31, the following are implementation-dependent: the interpreta-
tion of bits 18:0 in the instruction, the operation(s) performed (for example,

SPARC International, Inc.

134 The SPARC Architecture Manual: Version 8

xor) to generate the value written to the ASR, whether the instruction is
privileged or not, and whether the instruction causes an illegal_instruction
trap or not. In some existing implementations, WRASR instructions may
write the Y register (see Appendix L, “Implementation Characteristics”).
WRASR in new implementations must not write the Y register.

If the result of a WRPSR instruction would cause the CWP field of the PSR
to point to an unimplemented window, it causes an illegal_instruction trap
and does not write the PSR.

The write state register instructions are delayed-write instructions. That is,
they may take until completion of the third instruction following the write
instruction to consummate their write operation. The number of delay
instructions (0 to 3) is implementation-dependent.

WRPSR appears to write the ET and PIL fields immediately with respect to
interrupts.

The following paragraphs define the relationship between the writing of a
field of a state register and that field’s being simultaneously or subsequently
accessed:

1. If any of the three instructions after a write state register instruction
writes any field of the same state register, the subsequent contents of that
field are undefined. The exception to this is that another instance of the
same write state register instruction (e.g. a WRPSR following within
three instructions of another WRPSR) will write the field as intended.

Programming Note
Many instructions implicitly write the CWP or icc fields of the PSR. For example,
SAVE, RESTORE, traps, and RETT write CWP, and many instructions write icc.

2. If any of the three instructions after a write state register instruction
reads any field that was changed by the original write state register
instruction, the contents of that field read by that instruction are
undefined.

Programming Note
Many instructions implicitly read CWP or icc. For example, CALL implicitly reads
CWP; instructions that reference an integer non-global (windowed) register impli-
citly read CWP; SAVE, RESTORE, RETT, and traps (including Ticc) read CWP,
and Bicc and Ticc read the icc field.

Programming Note
SAVE, RESTORE and RETT implicitly read WIM. If any of them executes within
three instructions after a WRWIM which changes the contents of the WIM, the
occurrence of window_overflow and window_underflow traps is unpredictable.

Programming Note
MULScc, RDY, SDIV, SDIVcc, UDIV, and UDIVcc implicitly read the Y register.
If any of these instructions execute within three instructions after a WRY which
changed the contents of the Y register, its results are undefined.

3. In some implementations, if a WRPSR instruction updates the PSR’s
PIL field to a new value and simultaneously sets ET to 1, an interrupt
trap at a level equal to the old value of the PIL may result.

SPARC International, Inc.

Appendix B — Instruction Definitions 135

Programming Note
A pair of WRPSR instructions should be used when enabling traps and changing
the value of the PIL. The first WRPSR should specify ET=0 with the new PIL
value, and the second WRPSR should specify ET=1 and the new PIL value.

Programming Note
If traps are enabled (ET=1), care must be taken if software is to disable them
(ET=0). Since the “RDPSR, WRPSR” sequence is interruptible — allowing the
PSR to be changed between the two instructions — this sequence is not a reliable
mechanism to disable traps. Two alternatives are:
1) Generate a Ticc trap, the handler for which disables traps. The trap handler

should verify that it was indeed “called” from supervisor mode (by examining
the PS bit of the PSR) before returning from the trap to the supervisor.

2) Use the “RDPSR, WRPSR” sequence, but write all the interrupt and trap
handlers so that before they return to the supervisor, they restore the PSR to the
value it had when the interrupt handler was entered.

4. If any of the three instructions that follow a WRPSR causes a trap, the
values of the S and CWP fields read from the PSR while taking the trap
may be either the old or the new values.

5. If any of the three instructions that follow a WRTBR causes a trap, the
trap base address (TBA) used may be either the old or the new value.

6. If any of the three instructions after any write state register instruction
causes a trap, a subsequent read state register instruction in the trap
handler will get the state register’s new value.

Implementation Note Ancillary state registers may include (for example) timer, counter, diagnostic, self-test, and trap-
control registers. See Appendix L, “Implementation Characteristics,” for information on imple-
mented ancillary state registers.

Implementation Note Two possible ways to cause WRPSR to appear to write ET and PIL immediately with respect to
interrupts are:

· Write ET and PIL immediately (propagating forward through the pipeline as needed)
· Disable interrupts during the subsequent three instructions

Traps:

privileged_instruction (except WRY)
illegal_instruction (WRPSR, if CWP ≥ NWINDOWS)
illegal_instruction (WRASR; implementation-dependent)

SPARC International, Inc.

136 The SPARC Architecture Manual: Version 8

B.30. STBAR Instruction
opcode op3 operation

STBAR 101000 Store Barrier

Format (3):

10 0 op3 01111 0 unused(zero)
31 29 24 18 13 12 0

Suggested Assembly Language Syntax

stbar

Description:

The store barrier instruction (STBAR) forces all store and atomic load-store
operations issued by the processor prior to the STBAR to complete before
any store or atomic load-store operations issued by the processor subsequent
to the STBAR are executed by memory.

STBAR executes as a no-op on a machine that implements only the Strong
Consistency memory model or the Total Store Ordering (TSO) memory
model, and on a machine that implements the Partial Store Ordering (PSO)
memory model but is running with the PSO mode disabled.

Note that the encoding of STBAR is identical to that of the RDASR instruc-
tion, except that rs1 = 15 and rd = 0.

Implementation Note
For correctness, it is sufficient for the processor to stop issuing new store and atomic load-
store operations when an STBAR is encountered and resume after all stores have completed
and are observed in memory by all processors. More efficient implementations may take
advantage of the fact that the processor is allowed to issue store and load-store operations
after the STBAR, as long as these operations are guaranteed not to be executed by memory
before all the earlier stores and atomic load-stores have been executed by memory.

Traps:

(none)

SPARC International, Inc.

Appendix B — Instruction Definitions 137

B.31. Unimplemented
Instruction opcode op op2 operation

UNIMP 00 000 Unimplemented

Format (2):

00 reserved 000 const22
31 29 24 21 0

Suggested Assembly Language Syntax

unimp const22

Description:

The UNIMP instruction causes an illegal_instruction trap. The const22
value is ignored by the hardware; specifically, its values are not reserved by
the architecture for any future use.

Programming Note This instruction can be used as part of the protocol for calling a function that is expected to return
an aggregate value, such as a C-language struct or union or Pascal record. See Appendix D,
“Software Considerations,” for an example.

a) An UNIMP instruction is placed after (not in) the delay slot of the CALL instruction in
the calling function.

b) If the called function is expecting to return a structure, it will find the size of the struc-
ture that the caller expects to be returned as the const22 operand of the UNIMP instruc-
tion. The called function can check the opcode to make sure it is indeed UNIMP.

c) If the function is not going to return a structure, upon returning it attempts to execute the
UNIMP instruction rather than skipping over it as it should. This causes the program to
terminate. This behavior adds some run-time type checking to an interface that cannot
be checked properly at compile time.

Traps:

illegal_instruction

SPARC International, Inc.

138 The SPARC Architecture Manual: Version 8

B.32. Flush Instruction
Memory opcode op3 operation

FLUSH 111011 Flush Instruction Memory

Format (3):

unused10 (zero) op3 rs1 i=0 unused(zero) rs2

31 29 24 18 13 12 4 0

unused10 (zero) op3 rs1 i=1 simm13

31 29 24 18 13 12 0

Suggested Assembly Language Syntax
flush address

Description:

The FLUSH instruction ensures that subsequent instruction fetches to the
target of the FLUSH by the processor executing the FLUSH appear to exe-
cute after any loads, stores, and atomic load-stores issued by that processor
prior to the FLUSH.

In a multiprocessor system, FLUSH also ensures that stores and atomic
load-stores to the target of the FLUSH, issued prior to the FLUSH by the
processor executing the FLUSH, become visible to the instruction fetches of
all other processors some time after the execution of the FLUSH.

When a processor executes a sequence of store or atomic load-stores inter-
spersed with appropriate FLUSH and STBAR instructions, (the latter needed
only for the PSO memory model), the changes appear to the instruction
fetches of all processors to occur in the order in which they were made. See
Chapter 6, “Memory Model,” and Appendix K, “Formal Specification of the
Memory Model” for a definition of what constitutes appropriate FLUSH and
STBAR instructions in such a sequence.

FLUSH operates on the doubleword containing the addressed location.

A FLUSH is needed only between a store and a subsequent instruction
access to the modified location. The memory model guarantees that data
loads observe the results of the most recent store even if there is no interven-
ing FLUSH. See Chapter 6, “Memory Model.”

The effective virtual address operand for the FLUSH instruction is "r[rs1] +
r[rs2]" if the i field is zero, or "r[rs1] + sign_ext(simm13)" if the i field is
one. The least significant two address bits of the result are unused and
should be supplied as zero by software. Bit 2 of the address is ignored.

By the time five instructions subsequent to a FLUSH have executed, any
internal copy of the addressed location in the issuing processor will contain

SPARC International, Inc.

Appendix B — Instruction Definitions 139

the same value as the one which would be seen if read from memory. For
example, the processor pipeline or instruction buffers might contain an inter-
nal copy of the addressed location. See IBuf in Chapter 6, “Memory
Model.” FLUSH does not necessarily affect such internal copies in other
processors attached to the memory system.

Programming Notes (1) FLUSH is typically used in self-modifying code.

(2) Although FLUSH provides support for self-modifying code, the use of self-modifying code is
not encouraged. FLUSH may be a time-consuming operation on some implementations.

Implementation Notes (1) FLUSH may operate on more than just the doubleword implied by the effective address. In
particular, it may flush one or more containing cache lines or blocks.

(2) In a uniprocessor system with a combined I and D cache (or no cache) and a total pipeline
(store buffer plus IBuf) depth of no more than five instructions, FLUSH may not need to per-
form any operation.

In a uniprocessor system with split I and D caches, FLUSH ensures that if both caches contain
a copy of the contents of the addressed location, those cached copies eventually become con-
sistent.

In a multiprocessor system with caches, FLUSH ensures that all cached copies of the contents
of the addressed location are consistent.

Cache consistency may be implemented by any combination of invalidation, write-back of
cached data, or other implementation-dependent consistency mechanisms.

(3) If FLUSH is not implemented in hardware as described above, FLUSH causes an
unimplemented_FLUSH (or illegal_instruction) trap, and the function of FLUSH is performed
by system software. Whether FLUSH traps or not is implementation-dependent. If it does
trap, it causes an unimplemented_FLUSH or illegal_instruction trap. On implementations
where unimplemented_FLUSH supports faster software emulation of FLUSH than does
illegal_instruction, use of unimplemented_FLUSH is preferred. An implementation may select
the trapping behavior of the FLUSH instruction based on a pin or an implementation-
dependent bit in a control register.

(4) In a given implementation, FLUSH may need to flush the processor’s IBuf and/or pipeline to
fulfill the requirement that the IBuf and pipeline will be consistent with the cache within five
instructions.

(5) The number of instructions which must execute after a FLUSH before its effect is complete is
implementation-dependent, but is at most 5.

(6) See Appendix L, “Implementation Characteristics,” for implementation-specific information
about the FLUSH instruction.

Traps:

unimplemented_FLUSH (implementation-dependent) illegal_instruction
(implementation-dependent)

SPARC International, Inc.

140 The SPARC Architecture Manual: Version 8

B.33. Floating-point
Operate (FPop)
Instructions

opcode op3 operation
FPop1 110100 Floating-point operate
FPop2 110101 Floating-point operate

Format (3):

10 rd 110100 rs1 opf rs2
31 29 24 18 13 4 0

10 rd 110101 rs1 opf rs2
31 29 24 18 13 4 0

Description:

The Floating-point Operate (FPop) instructions are encoded using two type 3
formats: FPop1 and FPop2. The particular floating-point operation is indi-
cated by opf field. Note that the load/store floating-point instructions are not
FPop instructions.

FPop1 instructions do not affect the floating-point condition codes. FPop2
instructions may affect the floating-point condition codes.

The FPop instructions support operations between integer words and single-,
double-, and quad-precision floating-point operands in f register(s).

All FPop instructions operate according to ANSI/IEEE Std. 754-1985 on
single, double, and quad formats. See Chapter 3, “Data Formats,” for
definitions of the floating-point data types.

The least significant bit of an f register address is unused by double-
precision FPops, and the least significant 2 bits of an f register address are
unused by quad-precision FPop instructions. The unused register address
bits are reserved and, for future compatibility, should be supplied as zeros by
software. If these bits are non-zero in an FPop with a double- or quad-
precision operand, it is recommended that the FPop cause an fp_exception
trap with FSR.ftt = invalid_fp_register.

If an FPop2 (for example, FCMP, FCMPE) instruction sets the floating-point
condition codes, then at least one non-FPop2 (non-floating-point-operate2)
instruction must be executed between the FPop2 and a subsequent FBfcc
instruction. Otherwise, the result of the FBfcc is undefined.

An FPop instruction causes an fp_disabled trap if either the EF field of the
PSR is 0 or no FPU is present.

Floating-point exceptions may cause either precise or deferred traps. See
Chapter 7, “Traps.”

Programming Note See Appendix G, “SPARC ABI Software Considerations,” regarding use of FSQRT, FsMULd, and
quad-precision floating-point instructions in SPARC ABI software.

Implementation Note See Appendix L, “Implementation Characteristics,” for information on whether FsMULd,
FdMULq, and the quad-precision instructions are executed in hardware or software in the various
SPARC implementations.

SPARC International, Inc.

Appendix B — Instruction Definitions 141

Convert Integer to Floating
point Instructions opcode opf operation

FiTOs 011000100 Convert Integer to Single
FiTOd 011001000 Convert Integer to Double
FiTOq 011001100 Convert Integer to Quad

Format (3):

10 rd 110100 unused(zero) opf rs2
31 29 24 18 13 4 0

Suggested Assembly Language Syntax
fitos fregrs2, fregrd
fitod fregrs2, fregrd
fitoq fregrs2, fregrd

Description:

These instructions convert the 32-bit integer word operand in f[rs2] into a
floating-point number in the destination format. They write the result into
the f register(s) specified by rd.

FiTOs rounds according to the RD field of the FSR.

Programming Note See Appendix G, “SPARC ABI Software Considerations,” regarding use of the FiTOq instruction
in SPARC ABI software.

Traps:

fp_disabled
fp_exception (NX (FiTOs only), invalid_fp_register(FiTOd, FiTOq))

SPARC International, Inc.

142 The SPARC Architecture Manual: Version 8

Convert Floating point to
Integer Instructions opcode opf operation

FsTOi 011010001 Convert Single to Integer
FdTOi 011010010 Convert Double to Integer
FqTOi 011010011 Convert Quad to Integer

Format (3):

10 rd 110100 unused(zero) opf rs2
31 29 24 18 13 4 0

Suggested Assembly Language Syntax

fstoi fregrs2, fregrd
fdtoi fregrs2, fregrd
fqtoi fregrs2, fregrd

Description:

These instructions convert the floating-point operand in the f register(s)
specified by rs2 into a 32-bit integer word in f[rd].

The result is always rounded toward zero (the RD field of the FSR register is
ignored).

Programming Note See Appendix G, “SPARC ABI Software Considerations,” regarding use of the FqTOi instruction
in SPARC ABI software.

Traps:

fp_disabled
fp_exception (NV, NX, invalid_fp_register(FdTOi, FqTOi))

SPARC International, Inc.

Appendix B — Instruction Definitions 143

Convert Between Floating-
point Formats Instructions opcode opf operation

FsTOd 011001001 Convert Single to Double
FsTOq 011001101 Convert Single to Quad
FdTOs 011000110 Convert Double to Single
FdTOq 011001110 Convert Double to Quad
FqTOs 011000111 Convert Quad to Single
FqTOd 011001011 Convert Quad to Double

Format (3):

10 rd 110100 unused(zero) opf rs2
31 29 24 18 13 4 0

Suggested Assembly Language Syntax

fstod fregrs2, fregrd
fstoq fregrs2, fregrd
fdtos fregrs2, fregrd
fdtoq fregrs2, fregrd
fqtos fregrs2, fregrd
fqtod fregrs2, fregrd

Description:

These instructions convert the floating-point operand in the f register(s)
specified by rs2 to a floating-point number in the destination format. They
write the result into the f register(s) specified by rd.

Rounding is performed according to the RD field of the FSR.

FqTOd, FqTOs, and FdTOs (the “narrowing” conversion instructions) can
raise OF, UF, and NX exceptions. FdTOq, FsTOq, and FsTOd (the “widen-
ing” conversion instructions) cannot.

Any of these six instructions can trigger an NV exception if the source operand is
a signaling NaN.

Programming Note See Appendix G, “SPARC ABI Software Considerations,” regarding use of the FsTOq, FdTOq,
FqTOs, and FqTOd instructions in SPARC ABI software.

Traps:

fp_disabled
fp_exception (OF, UF, NV, NX, invalid_fp_register)

SPARC International, Inc.

144 The SPARC Architecture Manual: Version 8

Floating-point Move
Instructions opcode opf operation

FMOVs 000000001 Move
FNEGs 000000101 Negate
FABSs 000001001 Absolute Value

Format (3):

10 rd 110100 unused(zero) opf rs2
31 29 24 18 13 4 0

Suggested Assembly Language Syntax

fmovs fregrs2, fregrd
fnegs fregrs2, fregrd
fabss fregrs2, fregrd

Description:

FMOVs copies the contents of f[rs2] to f[rd].

FNEGs copies the contents of f[rs2] to f[rd] with the sign bit complemented.

FABSs copies the contents of f[rs2] to f[rd] with the sign bit cleared.

These instructions do not round.

Programming Note To transfer a multiple-precision value between f registers, one FMOVs instruction is required per
word to be transferred.

Programming Note If the source and destination registers (fregrs2 and fregrd) are the same, a single FNEGs
(FABSs) instruction performs negation (absolute-value) for any operand precision, including dou-
ble and quad.

If the source and destination registers are different, a double-precision negation (absolute value) is
performed by an FNEGs (FABSs) and an FMOVs instruction. Similarly, a quad-precision negation
(absolute value) requires an FNEGs (FABSs) and three FMOVs instructions.

See Section 3, “Data Formats,” for the formats of the floating-point data types.

Traps:

fp_disabled

SPARC International, Inc.

Appendix B — Instruction Definitions 145

Floating-point Square Root
Instructions opcode opf operation

FSQRTs 000101001 Square Root Single
FSQRTd 000101010 Square Root Double
FSQRTq 000101011 Square Root Quad

Format (3):

10 rd 110100 unused(zero) opf rs2
31 29 24 18 13 4 0

Suggested Assembly Language Syntax

fsqrts fregrs2, fregrd
fsqrtd fregrs2, fregrd
fsqrtq fregrs2, fregrd

Description:

These instructions generate the square root of the floating-point operand in
the f register(s) specified by the rs2 field. They place the result in the desti-
nation f register(s) specified by the rd field.

Rounding is performed according to the rd field of the FSR.

Programming Note See Appendix G, “SPARC ABI Software Considerations,” regarding use of FSQRT instructions in
SPARC ABI software.

Implementation Note See Appendix L, “Implementation Characteristics,” for information on whether the FSQRT instruc-
tions are executed in hardware or in software in the various SPARC implementations.

Traps:

fp_disabled
fp_exception (NV, NX, invalid_fp_register(FSQRTd, FSQRTq))

SPARC International, Inc.

146 The SPARC Architecture Manual: Version 8

Floating-point Add and
Subtract Instructions opcode opf operation

FADDs 001000001 Add Single
FADDd 001000010 Add Double
FADDq 001000011 Add Quad
FSUBs 001000101 Subtract Single
FSUBd 001000110 Subtract Double
FSUBq 001000111 Subtract Quad

Format (3):

10 rd 110100 rs1 opf rs2
31 29 24 18 13 4 0

Suggested Assembly Language Syntax

fadds fregrs1, fregrs2, fregrd
faddd fregrs1, fregrs2, fregrd
faddq fregrs1, fregrs2, fregrd

fsubs fregrs1, fregrs2, fregrd
fsubd fregrs1, fregrs2, fregrd
fsubq fregrs1, fregrs2, fregrd

Description:

The floating-point add instructions add the f register(s) specified by the rs1
field and the f register(s) specified by the rs2 field, and write the sum into the
f register(s) specified by the rd field.

The floating-point subtract instructions subtract the f register(s) specified by
the rs2 field from the f register(s) specified by the rs1 field, and write the
difference into the f register(s) specified by the rd field.

Programming Note See Appendix G, “SPARC ABI Software Considerations,” regarding use of the FADDq and
FSUBq instructions in SPARC ABI software.

Traps:

fp_disabled
fp_exception (OF, UF, NX, NV (∞ − ∞),

invalid_fp_register(all except FADDs and FSUBs))

SPARC International, Inc.

Appendix B — Instruction Definitions 147

Floating-point Multiply and Divide Instructions

opcode opf operation
FMULs 001001001 Multiply Single
FMULd 001001010 Multiply Double
FMULq 001001011 Multiply Quad
FsMULd 001101001 Multiply Single to Double
FdMULq 001101110 Multiply Double to Quad
FDIVs 001001101 Divide Single
FDIVd 001001110 Divide Double
FDIVq 001001111 Divide Quad

Format (3):

10 rd 110100 rs1 opf rs2
31 29 24 18 13 4 0

Suggested Assembly Language Syntax
fmuls fregrs1, fregrs2, fregrd
fmuld fregrs1, fregrs2, fregrd
fmulq fregrs1, fregrs2, fregrd

fsmuld fregrs1, fregrs2, fregrd
fdmulq fregrs1, fregrs2, fregrd

fdivs fregrs1, fregrs2, fregrd
fdivd fregrs1, fregrs2, fregrd
fdivq fregrs1, fregrs2, fregrd

Description:

The floating-point multiply instructions multiply the f register(s) specified by
the rs1 field by the f register(s) specified by the rs2 field, and write the pro-
duct into the f register(s) specified by the rd field.

The FsMULd instruction provides the exact double-precision product of two
single-precision operands, without underflow, overflow, or rounding error.
Similarly, FdMULq provides the exact quad-precision product of two
double-precision operands.

The floating-point divide instructions divide the f register(s) specified by the
rs1 field by the f register(s) specified by the rs2 field, and write the quotient
into the f register(s) specified by the rd field.

Programming Note See Appendix G, “SPARC ABI Software Considerations,” regarding use of the FMULq, FDIVq,
FsMULd, and FdMULq instructions in SPARC ABI software.

Traps:

fp_disabled
fp_exception (OF, UF, DZ (FDIV only), NV, NX,

invalid_fp_register(all except FMULs and FDIVs))

SPARC International, Inc.

148 The SPARC Architecture Manual: Version 8

Floating-point Compare Instructions

opcode opf operation
FCMPs 001010001 Compare Single
FCMPd 001010010 Compare Double
FCMPq 001010011 Compare Quad
FCMPEs 001010101 Compare Single and Exception if Unordered
FCMPEd 001010110 Compare Double and Exception if Unordered
FCMPEq 001010111 Compare Quad and Exception if Unordered

Format (3):

10 unused(zero) 110101 rs1 opf rs2
31 29 24 18 13 4 0

Suggested Assembly Language Syntax
fcmps fregrs1, fregrs2
fcmpd fregrs1, fregrs2
fcmpq fregrs1, fregrs2

fcmpes fregrs1, fregrs2
fcmped fregrs1, fregrs2
fcmpeq fregrs1, fregrs2

Description:

These instructions compare the f register(s) specified by the rs1 field with
the f register(s) specified by the rs2 field, and set the floating-point condition
codes according to the following table:

Table B-2 Floating-point Condition Codes (fcc)

fcc Relation
0 fregrs1 = fregrs2
1 fregrs1 < fregrs2
2 fregrs1 > fregrs2
3 fregrs1 ? fregrs2 (unordered)

The “compare and cause exception if unordered” (FCMPEs, FCMPEd, and
FCMPEq) instructions cause an invalid (NV) exception if either operand is a
signaling NaN or a quiet NaN. FCMP causes an invalid (NV) exception if
either operand is a signaling NaN.

A non-FPop2 (non-floating-point-operate2) instruction must be executed
between an FPop2 (FCMP or FCMPE) instruction and a subsequent FBfcc
instruction. Otherwise, the result of the FBfcc is unpredictable.

Programming Note See Appendix G, “SPARC ABI Software Considerations,” regarding use of the FCMPq and
FCMPEq instructions in SPARC ABI software.

Traps:
fp_disabled
fp_exception (NV, invalid_fp_register(all except FCMPs and FCMPEs))

SPARC International, Inc.

Appendix B — Instruction Definitions 149

B.34. Coprocessor Operate
Instructions opcode op3 operation

CPop1 110110 Coprocessor Operate
CPop2 110111 Coprocessor Operate

Format (3):

10 rd 110110 rs1 opc rs2
31 29 24 18 13 4 0

10 rd 110111 rs1 opc rs2
31 29 24 18 13 4 0

Suggested Assembly Language Syntax

cpop1 opc, cregrs1, cregrs2, cregrd
cpop2 opc, cregrs1, cregrs2, cregrd

Note The above is a suggested “generic” assembly language syntax for these instructions, which may be
used in an implementation-independent SPARC assembler. It is expected that assemblers support-
ing specific coprocessor implementations will (also) support syntaxes with more mnemonic instruc-
tion names and fewer operands.

Description:

The Coprocessor Operate (CPop) instructions are encoded via two type 3
formats: CPop1 and CPop2. Interpretation of the rd, rs1, opc, and rs2 fields
is coprocessor-dependent. Note that the load/store coprocessor instructions
are not “CPop” instructions.

CPop1 instructions do not affect the coprocessor condition codes. CPop2
instructions may affect the coprocessor condition codes.

All CPop instructions take all operands from and return all results to copro-
cessor registers. The data types supported by a coprocessor are
coprocessor-dependent. Operand alignment within the coprocessor is
coprocessor-dependent.

If the EC field of the PSR is 0 or if no coprocessor is present, a CPop
instruction causes a cp_disabled trap.

The conditions under which execution of a CPop instruction causes a
cp_exception trap are coprocessor-dependent.

Implementation Note Typically, the particular coprocessor operation is indicated by the opc field.

Traps:

cp_disabled
cp_exception (coprocessor-dependent)

SPARC International, Inc.

C��������������������
ISP Descriptions

This Appendix provides a description of the SPARC architecture using
instruction-set processor (ISP) notation, the semantics of which are summarized
below. The ISP description assumes a sequential execution model with no
instruction concurrency (except delayed branches) and all traps are precise. As
pointed out elsewhere, an implementation need not conform to this model. See
Chapter 7, “Traps.”

C.1. ISP Notation The ISP notation used in this Appendix is a modified version of Bell and
Newell’s ISP notation, which was designed in 1971 to accurately describe ISAs
and their implementations. While the semantics are intuitive, the following
guidelines provide important details:

� The only data type is the bit vector. Variables are defined as bit vectors of
particular widths, declared as variable<n:m>. Variable subfields can be
defined, also with the <n:m> notation. The value of a vector is a number in
a base indicated by its subscript. The default base is decimal. Arrays of
vectors are declared as array[n:m].

� The notation ← indicates variable assignment, and := indicates a macro
definition.

� When a bit vector is assigned to another of greater length, the operand is
right-justified in the destination vector and the high-order positions are
zero-filled. The macro zero_extend is sometimes used to make this clear.
Conversely, the macro sign_extend causes the high-order positions of the
result to be filled with the highest-order (sign) bit of its operand.

� The semicolon ‘;’ separates statements. Parentheses ‘()’ group statements
and expressions that could otherwise be interpreted ambiguously.

151 SPARC International, Inc.

152 The SPARC Architecture Manual: Version 8

� All statements are generally executed ‘‘simultaneously’’. However, if the
term next appears, it indicates that the statement or statements that follow
the next are executed after those that appear before the next. Thus, all state-
ments between next phrases are executed concurrently. More precisely, this
means that all expressions on the right hand sides of assignments located
between next’s are evaluated first, after which the variables on the left hand
sides are updated. (This convention emulates synchronous, clocked
hardware.)

For example, if A=0 and B=0, execution of the following two statements,

A ← B+1;
B ← A+1;

results in A=1 and B=1. However,

A ← B+1;
next;
B ← A+1;

results in A=1 and B=2.

� The symbol �`�_ designates concatenation of vectors. A comma ‘,’ on the left
side of an assignment separates quantities that are concatenated for the pur-
pose of assignment. For example, if the 2-bit vector T2 equals 3, and X, Y,
and Z are 1-bit vectors, then:

(X, Y, Z) ← 0 �`�_T2

results in X=0, Y=1, and Z=1.

� The operators ‘+’ and ‘−’ perform two’s complement arithmetic.

� The major difference between the notation used here and Bell & Newell’s
ISP notation is that the notation used here uses the more common:

if cond then S1 else S2

notation, whereas Bell & Newell used:

(cond → S1, ¬ cond → S2)

For the logical symbols, or, and, xor, and not are used instead of Bell &
Newell’s \/, /\, �+ , and ¬.

C.2. Processor External
Interface Definition

The ISP description requires some signals and macros that portray a processor’s
external interface as it might appear in an implementation. This Appendix
assumes the following macros and signals only for definitional purposes. The
appearance of these, or any other variable in the ISP notation, does not neces-
sarily imply their presence in a particular implementation or visibility to a user-
application program.

SPARC International, Inc.

Appendix C — ISP Descriptions 153

Interface Macros The macros memory_read and memory_write define a memory interface
without assuming any particular implementation-specific signals:

(load_data, MAE) ← memory_read(addr_space, address)

MAE ← memory_write(addr_space, address, byte_mask,
store_data)

memory_read accesses the word in memory selected by both the 32-bit
address address and the 8-bit address space identifier addr_space, and
writes the 32-bit value into load_data. If a memory_read generates an
exception, the 1-bit string MAE is written to 1, otherwise it is written to 0.

memory_write is defined as follows:

memory_write(addr_space, address, byte_mask, store_data) := (
sync := store_barrier_pending or (not PSO_mode);
MAE ← external_memory_write(sync, addr_space, address,

byte_mask, store_data)
store_barrier_pending ← 0;

);

external_memory_write stores all or part of the argument store_data
into the word selected by address and address space identifier
addr_space. byte_mask is a 4-bit string that encodes which of the 4
bytes are to be written into the addressed word. (The MSB corresponds to byte 0
and the LSB to byte 3). If its parameter sync is true,
external_memory_write ensures that the current write to memory will be
allowed to complete only after all previous writes have been completed by
memory.

If a memory_read generates an exception, the 1-bit string MAE is written to
1, otherwise it is written to 0. If there is an exception, memory_write does
not change the memory or an MMU, except possibly in the case of a "non-
resumable machine-check error", as allowed by the default trap model.

Interface Signals The interface signals described in this section are logically (if not physically)
present in a SPARC implementation.

The naming convention used identifies signals logically sent from the bus to the
processor (that is, IU) with a “bp_” prefix, and identifies those logically sent from
the processor to the bus with a “pb_” prefix.

bp_IRL<3:0> This external signal presents an asynchronous inter-
rupt request to the processor. Level 0 indicates that
no interrupt is being requested, and levels 1 through
15 request interrupts, with level 15 having the
highest priority. Level 15 is non-maskable, unless
all traps are disabled.

bp_reset_in This signal indicates that the external system is
requesting a reset. The processor responds by enter-
ing reset_mode and clearing pb_error.

SPARC International, Inc.

154 The SPARC Architecture Manual: Version 8

pb_error The processor asserts this signal when it is in
error_mode.

pb_block_ldst_word The processor asserts this signal to ensure that the
memory system will not process another SWAP or
LDSTUB operation to the same memory word.

pb_block_ldst_byte The processor asserts this signal to ensure that the
memory system will not process another SWAP or
LDSTUB operation to the same memory byte.

bp_FPU_present This signal indicates that an FPU is present.

bp_FPU_exception The floating-point unit asserts this signal to cause an
fp_exception trap.

bp_FPU_cc<1:0> These are the condition codes for the floating-point
branch instruction (FBfcc), from the fcc field of the
floating-point status register (FSR).

bp_CP_present This signal indicates that a coprocessor is present.

bp_CP_exception The coprocessor asserts this signal to cause a
cp_exception trap.

bp_CP_cc<1:0> The coprocessor supplies these condition codes for
the coprocessor branch instruction (CBccc).

C.3. Register Field
Definitions

PSR<31:0>; { Processor State Register }

impl := PSR<31:28>;

ver := PSR<27:24>;

icc := PSR<23:20>;

N := PSR<23>;

Z := PSR<22>;

V := PSR<21>;

C := PSR<20>;

reserved_PSR := PSR<19:14>;

EC := PSR<13>;

EF := PSR<12>;

PIL := PSR<11:8>;

S := PSR<7>;

PS := PSR<6>;

ET := PSR<5>;

CWP := PSR<4:0>;

TBR<31:0>; { Trap Base Register }

TBA := TBR<31:12>;

tt := TBR<11:4>;

zero := TBR<3:0>;

FSR<31:0>; { Floating-Point State Register }

SPARC International, Inc.

Appendix C — ISP Descriptions 155

RD := FSR<31:30>;

unused0 := FSR<29:28>;

TEM := FSR<27:23>;

NVM := FSR<27>;

OFM := FSR<26>;

UFM := FSR<25>;

DZM := FSR<24>;

NXM := FSR<23>;

NS := FSR<22>;

reserved_FSR := FSR<21:20>;

ver := FSR<19:17>;

ftt := FSR<16:14>;

qne := FSR<13>;

unused1 := FSR<12>;

fcc := FSR<11:10>;

aexc := FSR<9:5>;

nva := FSR<9>;

ofa := FSR<8>;

ufa := FSR<7>;

dza := FSR<6>;

nxa := FSR<5>;

cexc := FSR<4:0>;

nvc := FSR<4>;

ofc := FSR<3>;

ufc := FSR<2>;

dzc := FSR<1>;

nxc := FSR<0>;

G[1:7]<31:0>; { Global Registers }

R[0:(16 ×NWINDOWS)−1]<31:0>; { Windowed Registers }

f[0:31]<31:0>; { Floating-Point Registers }

WIM<31:0>; { Window Invalid Mask Register }

Y<31:0>; { Y Register }

PC<31:0>; { Program Counter }

nPC<31:0>; { Next Program Counter }

SPARC International, Inc.

156 The SPARC Architecture Manual: Version 8

r[n] := if (n = 0)

then 0

else if (1 ≤ n ≤ 7)

then G[n] { globals }

else R[((n−8)+(CWP×16)) modulo (16×NWINDOWS)] ; { windowed registers }

ASR[1:15]<31:0>; { Implementation-independent Ancillary State Registers }

ASR[16:31]<31:0>; { Implementation-dependent Ancillary State Registers }

IEEE_754_exception := 1; { Floating-point trap types }

unfinished_FPop := 2;

unimplemented_FPop := 3;

sequence_error := 4;

hardware_error := 5;

invalid_fp_register := 6;

C.4. Instruction Field
Definitions The numbers in braces are the widths of the fields in bits.

instruction<31:0> ;

op {2} := instruction<31:30>;

op2 {3} := instruction<24:22>;

op3 {6} := instruction<24:19>;

opf {9} := instruction<13:5>;

opc {9} := instruction<13:5>;

asi {8} := instruction<12:5>;

i {1} := instruction<13>;

rd {5} := instruction<29:25>;

a {1} := instruction<29>;

cond {4} := instruction<28:25>;

rs1 {5} := instruction<18:14>;

rs2 {5} := instruction<4:0>;

simm13 {13} := instruction<12:0>;

shcnt {5} := instruction<4:0>;

disp30 {30} := instruction<29:0>;

disp22 {22} := instruction<21:0>;

software_trap# {7} := instruction<6:0>;

C.5. Processor States and
Instruction Dispatch

According to this description, the processor can be in one of three states:
execute_mode, reset_mode, or error_mode. (Note that the IU or
FPU could have more states depending on the degree of instruction concurrency
and the presence of deferred or interrupting traps.)

The processor is defined to be in reset_mode when bp_reset_in is
asserted. The processor remains in reset_mode until bp_reset_in is
reset, at which point it enters execute_mode and begins executing at address
0 with addr_space = 9.

While in execute_mode, the processor checks for interrupt requests and
exception traps before reading the instruction given by the program counter. If

SPARC International, Inc.

Appendix C — ISP Descriptions 157

the previous instruction was not an annulling control transfer, the instruction is
dispatched. A dispatched instruction is either executed or raises an exception.

The processor can enter the error_mode state from any state except
reset_mode if an exception trap is generated while traps are disabled (ET =
0).

According to this description, the processor remains in error_mode until
bp_reset_in is asserted. (An implementation can assert bp_reset_in
whenever pb_error is detected in order to cause a reset trap.)

while (reset_mode = 1) (

if (bp_reset_in = 0) then (

reset_mode ← 0;

execute_mode ← 1;

trap ← 1;

reset_trap ← 1

)

);

while (error_mode = 1) (

if (bp_reset_in = 1) then (

error_mode ← 0;

reset_mode ← 1;

pb_error ← 0

)

);

SPARC International, Inc.

158 The SPARC Architecture Manual: Version 8

while (execute_mode = 1) (

if (bp_reset_in = 1) then (

execute_mode ← 0;

reset_mode ← 1;

break { out of while (execute_mode = 1) loop }

) else if ((ET = 1) and ((bp_IRL = 15) or (bp_IRL > PIL))) then (

trap ← 1;

interrupt_level ← bp_IRL

);

next;

if (trap = 1) then execute_trap; { See Section C.8 }

if (execute_mode = 1) then ({ execute_trap may have set execute_mode to 0 }

{ the following code emulates the delayed nature of the write-state-register instructions }

PSR ← PSR’; PSR’ ← PSR’’; PSR’’ ← PSR’’’; PSR’’’ ← PSR’’’’;

ASR ← ASR’; ASR’ ← ASR’’; ASR’’ ← ASR’’’; ASR’’’ ← ASR’’’’;

TBR ← TBR’; TBR’ ← TBR’’; TBR’’ ← TBR’’’; TBR’’’ ← TBR’’’’;

WIM ← WIM’; WIM’ ← WIM’’; WIM’’ ← WIM’’’; WIM’’’ ← WIM’’’’;

Y ← Y’; Y’ ← Y’’; Y’’ ← Y’’’; Y’’’ ← Y’’’’;

next;

addr_space := (if (S = 0) then 8 else 9);

(instruction, MAE) ← memory_read(addr_space, PC);

next;

if ((MAE = 1) and (annul = 0)) then (

trap ← 1;

instruction_access_exception ← 1

) else (

if (annul = 0) then (

dispatch_instruction ; { See Section C.6 }

next;

if (FPop1 or FPop2) then (

complete_fp_execution { See Section C.7 }

)

next;

if ((trap = 0) and

not (CALL or RETT or JMPL or

Bicc or FBfcc or CBccc or Ticc)) then (

PC ← nPC;

nPC← nPC + 4

)

) else { annul ≠ 0 } (

annul ← 0;

PC ← nPC;

nPC ← nPC + 4

)

)

)

);

SPARC International, Inc.

Appendix C — ISP Descriptions 159

C.6. Instruction Dispatch The dispatch_instruction macro determines if the instruction is an
FPop or CPop and generates an fp_disabled or cp_disabled trap if appropriate.
Otherwise, the instruction is executed according to the ISP definitions given
below.

Unused bit patterns in the op, op2, op3, opf, and i fields of instructions cause
illegal_instruction traps. Other fields that are defined to be unused are ignored
and do not cause traps.

illegal_IU_instr := (

if (((op = 002) and (op2 = 0002)) { UNIMP instruction }

or

(((op=112) or (op=102)) and (op3= unassigned))

) then 1 else 0

);

dispatch_instruction := (

if (illegal_IU_instr = 1) then (

trap ← 1;

illegal_instruction ← 1

);

if ((FPop1 or FPop2 or FBfcc) and ((EF = 0) or (bp_FPU_present = 0))) then (

trap ← 1;

fp_disabled ← 1

);

if (CPop1 or CPop2 or CBccc) and ((EC = 0) or (bp_CP_present = 0))) then (

trap ← 1;

cp_disabled ← 1

);

next;

if (trap = 0) then (

{ code for specific instruction, defined below }

);

);

SPARC International, Inc.

160 The SPARC Architecture Manual: Version 8

C.7. Floating-point
Execution

The complete_fp_execution macro checks for floating-point traps and
maintains the Floating-point State Register (FSR).

complete_fp_execution := (

if (trap = 0) then ({ no traps so far }

if (bp_FPU_present = 0) then ({ no FPU is present }

trap ← 1;

fp_exception ← 1;

ftt ← unimplemented_FPop;

) else if (c = 0) then ({ not finished }

trap ← 1;

fp_exception ← 1;

ftt ← unfinished_FPop;

) else ({ FPU present; FPop executed and finished }

if ((texc and TEM) ≠ 0) then ({ floating-point trap }

cexc ← most_significant_bit_of(texc and TEM);

trap ← 1;

fp_exception ← 1;

ftt ← IEEE_754_exception;

) else ({ no floating-point trap }

cexc ← texc;

aexc ← (aexc or texc);

if (single_result = 1) then (

f[rd] ← sresult;

)

if (double_result = 1) then (

(f[rd<4:1> �`�_02], f[rd<4:1> �`�_12]) ← dresult;

)

if (quad_result = 1) then (

(f[rd<4:2> �`�_002], f[rd<4:2> �`�_012],
f[rd<4:2> �`�_102], f[rd<4:2> �`�_112]) ← qresult;

)

if (compare = 1) then (

fcc ← tfcc;

)

ftt ← 0;

)

)

)

);

SPARC International, Inc.

Appendix C — ISP Descriptions 161

C.8. Traps The execute_trap macro selects the highest-priority trap and then causes a
trap. See Chapter 7, “Traps.”

execute_trap := (

select_trap; { see below }

next;

if (error_mode = 0) then (

ET ← 0;

PS ← S;

CWP ← (CWP - 1) modulo NWINDOWS;

next;

if (annul = 0) then (

r[17] ← PC;

r[18] ← nPC;

) else { annul ≠ 0 } (

r[17] ← nPC;

r[18] ← nPC + 4;

annul ← 0;

)

next;

S ← 1;

if (reset_trap = 0) then (

PC ← TBR;

nPC ← TBR + 4

) else { reset_trap = 1 } (

PC ← 0;

nPC ← 4;

reset_trap ← 0;

)

)

);

select_trap := (

if (reset_trap = 1) then { ignore ET, and leave tt unchanged }

else if (ET = 0) then (

execute_mode ← 0;

error_mode ← 1)

else if (data_store_error = 1) then tt ← 001010112
else if (instruction_access_error = 1) then tt ← 001000012
else if (r_register_access_error = 1) then tt ← 001000002
else if (instruction_access_exception = 1) then tt ← 000000012
else if (privileged_instruction = 1) then tt ← 000000112
else if (illegal_instruction = 1) then tt ← 000000102
else if (fp_disabled = 1) then tt ← 000001002
else if (cp_disabled = 1) then tt ← 001001002

SPARC International, Inc.

162 The SPARC Architecture Manual: Version 8

else if (unimplemented_FLUSH = 1) then tt ← 001001012
else if (window_overflow = 1) then tt ← 000001012
else if (window_underflow = 1) then tt ← 000001102
else if (mem_address_not_aligned = 1) then tt ← 000001112
else if (fp_exception = 1) then tt ← 000010002;

else if (cp_exception = 1) then tt ← 001010002;

else if (data_access_error = 1) then tt ← 001010012
else if (data_access_exception = 1) then tt ← 000010012
else if (tag_overflow = 1) then tt ← 000010102
else if (division_by_zero = 1) then tt ← 001010102
else if (trap_instruction = 1) then tt ← 12 �`�_ticc_trap_type
else if (interrupt_level > 0) then tt ← 00012 �`�_interrupt_level;

next;

trap ← 0;

instruction_access_exception ← 0;

illegal_instruction ← 0;

privileged_instruction ← 0;

fp_disabled ← 0;

cp_disabled ← 0;

window_overflow ← 0;

window_underflow ← 0;

mem_address_not_aligned ← 0;

fp_exception ← 0;

cp_exception ← 0;

data_access_exception ← 0;

tag_overflow ← 0;

division_by_zero ← 0;

trap_instruction ← 0;

interrupt_level ← 0

);

SPARC International, Inc.

Appendix C — ISP Descriptions 163

C.9. Instruction Definitions This section contains the ISP definitions of the SPARC architecture instructions.
These complement the instruction descriptions in Appendix B, “Instruction
Definitions.”

Load Instructions
if (LDD or LD or LDSH or LDUH or LDSB or LDUB

or LDDF or LDF or LDFSR or LDDC or LDC or LDCSR) then (

address ← r[rs1] + (if (i = 0) then r[rs2] else sign_extend(simm13));

addr_space ← (if (S = 0) then 10 else 11)

) else if (LDDA or LDA or LDSHA or LDUHA or LDSBA or LDUBA) then (

if (S = 0) then (

trap ← 1;

privileged_instruction ← 1

) else if (i = 1) then (

trap ← 1;

illegal_instruction ← 1

) else (

address ← r[rs1] + r[rs2];

addr_space ← asi

)

)

next;

if (trap = 0) then (

if ((LDF or LDDF or LDFSR) and ((EF = 0) or (bp_FPU_present = 0)) then (

trap ← 1;

fp_disabled ← 1

) else if ((LDC or LDDC or LDCSR) and ((EC = 0) or (bp_CP_present = 0)) then (

trap ← 1;

cp_disabled ← 1

) else if (((LDD or LDDA or LDDF or LDDC) and (address<2:0> ≠ 0)) or

((LD or LDA or LDF or LDFSR or LDC or LDCSR) and (address<1:0> ≠ 0)) or

((LDSH or LDSHA or LDUH or LDUHA) and address<0> ≠ 0)) then (

trap ← 1;

mem_address_not_aligned ← 1

) else if (LDDF and (rd<0> ≠ 0)) then (

trap ← 1;

fp_exception ← 1;

ftt ← invalid_fp_register

) else if ((LDF or LDDF or LDFSR) and (an FPU sequence error is detected)) then (

trap ← 1;

fp_exception ← 1;

ftt ← sequence_error

) else if ((LDC or LDDC or LDCSR) and (a CP sequence error is detected)) then (

trap ← 1;

cp_exception ← 1;

{ possibly additional implementation-dependent actions }

)

);

next;

if (trap = 0) then (

(data, MAE) ← memory_read(addr_space, address);

next;

if (MAE = 1) then (

SPARC International, Inc.

164 The SPARC Architecture Manual: Version 8

trap ← 1;

data_access_exception ← 1

) else (

if (LDSB or LDSBA or LDUB or LDUBA) then (

if (address<1:0> = 0) then byte ← data<31:24>

else if (address<1:0> = 1) then byte ← data<23:16>

else if (address<1:0> = 2) then byte ← data<15: 8>

else if (address<1:0> = 3) then byte ← data< 7: 0>;

next;

if (LDSB or LDSBA) then

word0 ← sign_extend_byte(byte)

else

word0 ← zero_extend_byte(byte)

) else if (LDSH or LDSHA or LDUH or LDUHA) then (

if (address<1:0> = 0) then halfword ← data<31:16>

else if (address<1:0> = 2) then halfword ← data<15: 0>;

next;

if (LDSH or LDSHA) then

word0 ← sign_extend_halfword(halfword)

else

word0 ← zero_extend_halfword(halfword)

) else

word0 ← data

)

);

next;

if (trap = 0) then (

if ((rd ≠ 0) and (LD or LDA or LDSH or LDSHA

or LDUHA or LDUH or LDSB or LDSBA or LDUB or LDUBA)) then

r[rd] ← word0

else if (LDF) then f[rd] ← word0

else if (LDC) then { implementation-dependent actions }

else if (LDFSR) then FSR ← word0

else if (LDCSR) then CSR ← word0

else if (LDD or LDDA) then r[rd and 111102] ← word0

else if (LDDF) then f[rd and 111102] ← word0

else if (LDDC) then { implementation-dependent actions }

);

next;

if ((trap = 0) and (LDD or LDDA or LDDF or LDDC)) then (

(word1, MAE) ← memory_read(addr_space, address + 4);

next;

if (MAE = 1) then ({ MAE = 1 only due to a “non-resumable machine-check error” }

trap ← 1;

data_access_exception ← 1)

else if (LDD or LDDA) then r[rd or 1] ← word1

else if (LDDF) then f[rd or 1] ← word1

else if (LDDC) then { implementation-dependent actions }

);

SPARC International, Inc.

Appendix C — ISP Descriptions 165

Store Instructions if ((S = 0) and (STDA or STA or STHA or STBA or STDFQ or STDCQ)) then (

trap ← 1;

privileged_instruction ← 1

) else if ((i = 1) and (STDA or STA or STHA or STBA)) then (

trap ← 1;

illegal_instruction ← 1

);

next;

if (trap = 0) then (

if (STD or ST or STH or STB or STF or STDF

or STFSR or STDFQ or STCSR or STC or STDC or STDCQ) then (

address ← r[rs1] + (if (i = 0) then r[rs2] else sign_extend(simm13));

addr_space ← (if (S = 0) then 10 else 11)

) else if (STDA or STA or STHA or STBA) then (

address ← r[rs1] + r[rs2];

addr_space ← asi

);

if ((STF or STDF or STFSR or STDFQ) and

((EF = 0) or (bp_FPU_present = 0))) then (

trap ← 1;

fp_disabled ← 1

);

if ((STC or STDC or STCSR or STDCQ) and

((EC = 0) or (bp_CP_present = 0))) then (

trap ← 1;

cp_disabled ← 1

)

);

next;

if (trap = 0) then (

if ((STH or STHA) and (address<0> ≠ 0)) then (

trap ← 1; { misaligned half-word address }

mem_address_not_aligned ← 1

);

if ((STorSTAorSTForSTFSRorSTCorSTCSR) and (address<1:0> ≠ 0)) then (

trap ← 1; { misaligned full-word address }

mem_address_not_aligned ← 1

);

if ((STDorSTDAorSTDForSTDFQorSTDCorSTDCQ) and (address<2:0>≠0)) then (

trap ← 1; { misaligned double-word address }

mem_address_not_aligned ← 1

) else (

if (STDFQ and ((implementation has no floating-point queue) or (FSR.qne=0))) then (

trap ← 1;

fp_exception ← 1;

ftt ← sequence_error;

);

if (STDCQ and (implementation has no coprocessor queue)) then (

trap ← 1;

cp_exception ← 1;

{ possibly additional implementation-dependent actions }

);

SPARC International, Inc.

166 The SPARC Architecture Manual: Version 8

if (STDF and (rd<0> ≠ 0)) then (

trap ← 1;

fp_exception ← 1;

ftt ← invalid_fp_register

)

)

);

next;

if (trap = 0) then (

if (STF) then (byte_mask ← 11112; data0 ← f[rd])

else if (STC) then (byte_mask ← 11112; data0 ← implementation_dependent_value)

else if (STDF) then (byte_mask ← 11112; data0 ← f[rd and 111102])

else if (STDC) then (byte_mask ← 11112; data0 ← implementation_dependent_value)

else if (STD or STDA) then (byte_mask ← 11112; data0 ← r[rd and 111102])

else if (STDFQ) then (byte_mask ← 11112; data0 ← implementation_dependent_value)

else if (STDCQ) then (byte_mask ← 11112; data0 ← implementation_dependent_value)

else if (STFSR) then (

while ((FSR.qne = 1) and (trap = 0)) (

{ wait for pending floating-point instructions to complete }

)

next;

byte_mask ← 11112; data0 ← FSR

) else if (STCSR) then (

{ implementation-dependent actions }

byte_mask ← 11112; data0 ← CSR

) else if (ST or STA) then (byte_mask ← 11112; data0 = r[rd])

else if (STH or STHA) then (

if (address<1:0> = 0) then (

byte_mask ← 11002; data0 ← shift_left_logical(r[rd], 16))

else if (address<1:0> = 2) then (

byte_mask ← 00112; data0 ← r[rd])

) else if (STB or STBA) then (

if (address<1:0> = 0) then (

byte_mask ← 10002; data0 ← shift_left_logical(r[rd], 24))

else if (address<1:0> = 1) then (

byte_mask ← 01002; data0 ← shift_left_logical(r[rd], 16))

else if (address<1:0> = 2) then (

byte_mask ← 00102; data0 ← shift_left_logical(r[rd], 8))

else if (address<1:0> = 3) then (

byte_mask ← 00012; data0 ← r[rd])

);

);

next;

if (trap = 0) then (

MAE ← memory_write(addr_space, address, byte_mask, data0);

next;

if (MAE = 1) then (

trap ← 1;

data_access_exception ← 1

)

);

next;

if ((trap = 0) and (STD or STDA or STDF or STDC or STDFQ or STDCQ)) then (

SPARC International, Inc.

Appendix C — ISP Descriptions 167

if (STD or STDA) then (data1 ← r[rd or 000012])

else if (STDF) then (data1 ← f[rd or 000012])

else if (STDC) then (data1 ← implementation_dependent_value)

else if (STDFQ) then (data1 ← implementation_dependent_value)

else if (STDCQ) then (data1 ← implementation_dependent_value)

next;

MAE ← memory_write(addr_space, address + 4, 11112, data1);

next;

if (MAE = 1) then ({ MAE = 1 only due to a “non-resumable machine-check error” }

trap ← 1;

data_access_exception ← 1

)

);

SPARC International, Inc.

168 The SPARC Architecture Manual: Version 8

Atomic Load-Store Unsigned
Byte Instructions

SPARC International, Inc.

Appendix C — ISP Descriptions 169

if (LDSTUB) then (

address ← r[rs1] + (if (i = 0) then r[rs2] else sign_extend(simm13));

addr_space ← (if (S = 0) then 10 else 11)

) else if (LDSTUBA) then (

if (S = 0) then (

trap ← 1;

privileged_instruction ← 1

) else if (i = 1) then (

trap ← 1;

illegal_instruction ← 1

) else (

address ← r[rs1] + r[rs2];

addr_space ← asi

)

);

next;

if (trap = 0) then (

while ((pb_block_ldst_byte = 1) or (pb_block_ldst_word = 1)) (

{ wait for lock(s) to be lifted }

{ an implementation actually need only block when another LDSTUB or SWAP

is pending on the same byte in memory as the one addressed by this LDSTUB }

);

next;

pb_block_ldst_byte ← 1;

next;

(data, MAE) ← memory_read(addr_space, address);

next;

if (MAE = 1) then (

trap ← 1;

data_access_exception ← 1

)

)

next;

if (trap = 0) then (

if (address<1:0> = 0) then (byte_mask ← 10002)

else if (address<1:0> = 1) then (byte_mask ← 01002)

else if (address<1:0> = 2) then (byte_mask ← 00102)

else if (address<1:0> = 3) then (byte_mask ← 00012)

;

next;

MAE ← memory_write(addr_space, address, byte_mask, FFFFFFFF16);

next;

pb_block_ldst_byte ← 0;

if (MAE = 1) then ({ MAE = 1 only due to a “non-resumable machine-check error” }

trap ← 1;

data_access_exception ← 1

) else (

if (address<1:0> = 0) then word ← zero_extend_byte(data<31:24>)

else if (address<1:0> = 1) then word ← zero_extend_byte(data<23:16>)

else if (address<1:0> = 2) then word ← zero_extend_byte(data<15:8>)

else if (address<1:0> = 3) then word ← zero_extend_byte(data<7:0>);

next;

SPARC International, Inc.

170 The SPARC Architecture Manual: Version 8

if (rd ≠ 0) then r[rd] ← word

)

);

SPARC International, Inc.

Appendix C — ISP Descriptions 171

Swap Register with Memory
Instructions

if (SWAP) then (

address ← r[rs1] + (if (i = 0) then r[rs2] else sign_extend(simm13));

addr_space ← (if (S = 0) then 10 else 11)

) else if (SWAPA) then (

if (S = 0) then (

trap ← 1;

privileged_instruction ← 1

) else if (i = 1) then (

trap ← 1;

illegal_instruction ← 1

) else (

address ← r[rs1] + r[rs2];

addr_space ← asi

)

);

next;

if (trap = 0) then (

temp ← r[rd];

while ((pb_block_ldst_byte = 1) or (pb_block_ldst_word = 1)) (

{ wait for lock(s) to be lifted }

{ an implementation actually need only block when another SWAP is pending on

the same word in memory as the one addressed by this SWAP, or a LDSTUB is

pending on any byte of the word in memory addressed by this SWAP }

);

next;

pb_block_ldst_word ← 1;

next;

(word, MAE) ← memory_read(addr_space, address);

next;

if (MAE = 1) then (

trap ← 1;

data_access_exception ← 1

)

next;

if (trap = 0) then (

MAE ← memory_write(addr_space, address, 11112, temp);

next;

pb_block_ldst_word ← 0;

if (MAE = 1) then ({ MAE = 1 only due to a “non-resumable machine-check error” }

trap ← 1;

data_access_exception ← 1

) else (

if (rd ≠ 0) then r[rd] ← word

)

);

SPARC International, Inc.

172 The SPARC Architecture Manual: Version 8

Logical Instructions operand2 := if (i = 0) then r[rs2] else sign_extend(simm13);

if (AND or ANDcc) then result ← r[rs1] and operand2

else if (ANDN or ANDNcc) then result ← r[rs1] and not operand2

else if (OR or ORcc) then result ← r[rs1] or operand2

else if (ORN or ORNcc) then result ← r[rs1] or not operand2

else if (XOR or XORcc) then result ← r[rs1] xor operand2

else if (XNOR or XNORcc) then result ← r[rs1] xor not operand2;

next;

if (rd ≠ 0) then r[rd] ← result;

if (ANDcc or ANDNcc or ORcc or ORNcc or XORcc or XNORcc) then (

N ← result<31>;

Z ← if (result = 0) then 1 else 0;

V ← 0;

C ← 0

);

SETHI Instruction if (rd ≠ 0) then (

r[rd]<31:10> ← imm22;

r[rd]<9:0> ← 0

)

NOP Instruction { No Operation }

Shift Instructions shift_count := if (i = 0) then r[rs2]<4:0> else shcnt;

if (SLL and (rd ≠ 0)) then

r[rd] ← shift_left_logical(r[rs1], shift_count)

else if (SRL and (rd ≠ 0)) then

r[rd] ← shift_right_logical(r[rs1], shift_count)

else if (SRA and (rd ≠ 0)) then

r[rd] ← shift_right_arithmetic(r[rs1], shift_count)

SPARC International, Inc.

Appendix C — ISP Descriptions 173

Add Instructions operand2 := if (i = 0) then r[rs2] else sign_extend(simm13);

if (ADD or ADDcc) then

result ← r[rs1] + operand2;

else if (ADDX or ADDXcc) then

result ← r[rs1] + operand2 + C;

next;

if (rd ≠ 0) then

r[rd] ← result;

if (ADDcc or ADDXcc) then (

N ← result<31>;

Z ← if (result = 0) then 1 else 0;

V ← (r[rs1]<31> and operand2<31> and (not result<31>)) or

((not r[rs1]<31>) and (not operand2<31>) and result<31>);

C ← (r[rs1]<31> and operand2<31>) or

((not result<31>) and (r[rs1]<31> or operand2<31>))

);

Tagged Add Instructions operand2 := if (i = 0) then r[rs2] else sign_extend(simm13);

result ← r[rs1] + operand2;

next;

temp_V ← (r[rs1]<31> and operand2<31> and (not result<31>)) or

((not r[rs1]<31>) and (not operand2<31>) and result<31>) or

(r[rs1]<1:0> ≠ 0 or operand2<1:0> ≠ 0);

next;

if (TADDccTV and (temp_V = 1)) then (

trap ← 1;

tag_overflow ← 1

) else (

N ← result<31>;

Z ← if (result = 0) then 1 else 0;

V ← temp_V;

C ← (r[rs1]<31> and operand2<31>) or

((not result<31>) and (r[rs1]<31> or operand2<31>));

if (rd ≠ 0) then

r[rd] ← result;

);

SPARC International, Inc.

174 The SPARC Architecture Manual: Version 8

Subtract Instructions operand2 := if (i = 0) then r[rs2] else sign_extend(simm13);

if (SUB or SUBcc) then

result ← r[rs1] - operand2;

else if (SUBX or SUBXcc) then

result ← r[rs1] - operand2 - C;

next;

if (rd ≠ 0) then

r[rd] ← result;

if (SUBcc or SUBXcc) then (

N ← result<31>;

Z ← if (result = 0) then 1 else 0;

V ← (r[rs1]<31> and (not operand2<31>) and (not result<31>)) or

((not r[rs1]<31>) and operand2<31> and result<31>);

C ← ((not r[rs1]<31>) and operand2<31>) or

(result<31> and ((not r[rs1]<31>) or operand2<31>))

);

Tagged Subtract Instructions operand2 := if (i = 0) then r[rs2] else sign_extend(simm13);

result ← r[rs1] - operand2;

next;

temp_V ← (r[rs1]<31> and (not operand2<31>) and (not result<31>)) or

((not r[rs1]<31>) and operand2<31> and result<31>) or

(r[rs1]<1:0> ≠ 0 or operand2<1:0> ≠ 0);

next;

if (TSUBccTV and (temp_V = 1)) then (

trap ← 1;

tag_overflow ← 1

) else (

N ← result<31>;

Z ← if (result = 0) then 1 else 0;

V ← temp_V;

C ← ((not r[rs1]<31>) and operand2<31>) or

(result<31> and ((not r[rs1]<31>) or operand2<31>));

if (rd ≠ 0) then

r[rd] ← result;

);

SPARC International, Inc.

Appendix C — ISP Descriptions 175

Multiply Step Instruction operand1 := (N xor V) �`�_ (r[rs1]<31:1>);

operand2 := (

if (Y<0> = 0) then 0

else if (i = 0) then r[rs2] else sign_extend(simm13)

);

result ← operand1 + operand2;

Y ← r[rs1]<0> �`�_Y<31:1>;
next;

if (rd ≠ 0) then (

r[rd] ← result;

)

N ← result<31>;

Z ← if (result = 0) then 1 else 0;

V ← (operand1<31> and operand2<31> and (not result<31>)) or

((not operand1<31>) and (not operand2<31>) and result<31>);

C ← (operand1<31> and operand2<31>) or

((not result<31>) and (operand1<31> or operand2<31>))

Multiply Instructions operand2 := if (i = 0) then r[rs2] else sign_extend(simm13);

if (UMUL or UMULcc) then (Y, result) ← multiply_unsigned(r[rs1], operand2)

else if (SMUL or SMULcc) then (Y, result) ← multiply_signed(r[rs1], operand2)

next;

if (rd ≠ 0) then (

r[rd] ← result;

)

if (UMULcc or SMULcc) then (

N ← result<31>;

Z ← if (result = 0) then 1 else 0;

V ← 0

C ← 0

);

SPARC International, Inc.

176 The SPARC Architecture Manual: Version 8

Divide Instructions operand2 := if (i = 0) then r[rs2] else sign_extend(simm13);

next;

if (operand2 = 0) then (

trap ← 1;

division_by_zero ← 1

) else (

if (UDIV or UDIVcc) then (

temp_64bit ← divide_unsigned(Y �`�_r[rs1], operand2);

next;

result ← temp_64bit<31:0>;

temp_V ← if (temp_64bit<63:32> = 0) then 0 else 1;

) else if (SDIV or SDIVcc) then (

temp_64bit ← divide_signed(Y �`�_r[rs1], operand2)

next;

result ← temp_64bit<31:0>;

temp_V ← if ((temp_64bit<63:31> = 0) or

(temp_64bit<63:31> = (233 − 1))) then 0 else 1;

) ;

next;

if (temp_V) then (

{ result overflowed 32 bits; return largest appropriate integer }

if (UDIV or UDIVcc) then result ← 232 − 1;

else if (SDIV or SDIVcc) then (

if (temp_64bit > 0) then result ← 231 − 1;

else result ← −231

)

);

next;

if (rd ≠ 0) then (

r[rd] ← result

) ;

if (UDIVcc or SDIVcc) then (

N ← result<31>;

Z ← if (result = 0) then 1 else 0;

V ← temp_V;

C ← 0

)

);

SPARC International, Inc.

Appendix C — ISP Descriptions 177

SAVE and RESTORE
Instructions

operand2 := if (i = 0) then r[rs2] else sign_extend(simm13);

if (SAVE) then (

new_cwp ← (CWP - 1) modulo NWINDOWS;

next;

if ((WIM and 2new_cwp) ≠ 0) then (

trap ← 1;

window_overflow ← 1

) else (

result ← r[rs1] + operand2; { operands from old window }

CWP ← new_cwp

)

) else if (RESTORE) then (

new_cwp ← (CWP + 1) modulo NWINDOWS;

next;

if ((WIM and 2new_cwp) ≠ 0) then (

trap ← 1;

window_underflow ← 1

) else (

result ← r[rs1] + operand2; { operands from old window }

CWP ← new_cwp

)

);

next;

if ((trap = 0) and (rd ≠ 0)) then

r[rd] ← result { destination in new window }

SPARC International, Inc.

178 The SPARC Architecture Manual: Version 8

Branch on Integer Condition
Instructions

eval_icc := (

if (BNE) then (if (Z = 0) then 1 else 0);

if (BE) then (if (Z = 1) then 1 else 0);

if (BG) then (if ((Z or (N xor V)) = 0) then 1 else 0);

if (BLE) then (if ((Z or (N xor V)) = 1) then 1 else 0);

if (BGE) then (if ((N xor V) = 0) then 1 else 0);

if (BL) then (if ((N xor V) = 1) then 1 else 0);

if (BGU) then (if ((C = 0) and (Z = 0)) then 1 else 0);

if (BLEU) then (if ((C = 1) or (Z = 1)) then 1 else 0);

if (BCC) then (if (C = 0) then 1 else 0);

if (BCS) then (if (C = 1) then 1 else 0);

if (BPOS) then (if (N = 0) then 1 else 0);

if (BNEG) then (if (N = 1) then 1 else 0);

if (BVC) then (if (V = 0) then 1 else 0);

if (BVS) then (if (V = 1) then 1 else 0);

if (BA) then 1;

if (BN) then 0

);

PC ← nPC;

if (eval_icc = 1) then (

nPC ← PC + sign_extend(disp22 �`�_002);
if (BA and (a = 1)) then

annul ← 1 { only for annulling Branch-Always }

) else (

nPC ← nPC + 4;

if (a = 1) then

annul ← 1 { only for annulling branches other than BA }

)

SPARC International, Inc.

Appendix C — ISP Descriptions 179

Floating-Point Branch on
Condition Instructions

E := if (fcc = 0) then 1 else 0;

L := if (fcc = 1) then 1 else 0;

G := if (fcc = 2) then 1 else 0;

U := if (fcc = 3) then 1 else 0;

eval_fcc := (

if (FBU) then (if (U) then 1 else 0);

if (FBG) then (if (G) then 1 else 0);

if (FBUG) then (if (G or U) then 1 else 0);

if (FBL) then (if (L) then 1 else 0);

if (FBUL) then (if (L or U) then 1 else 0);

if (FBLG) then (if (L or G) then 1 else 0);

if (FBNE) then (if (L or G or U) then 1 else 0);

if (FBE) then (if (E) then 1 else 0);

if (FBUE) then (if (E or U) then 1 else 0);

if (FBGE) then (if (E or G) then 1 else 0);

if (FBUGE) then (if (E or G or U) then 1 else 0);

if (FBLE) then (if (E or L) then 1 else 0);

if (FBULE) then (if (E or L or U) then 1 else 0);

if (FBO) then (if (E or L or G) then 1 else 0);

if (FBA) then 1;

if (FBN) then 0

);

PC ← nPC;

if (eval_fcc = 1) then (

nPC ← PC + sign_extend(disp22 �`�_ 002);

if (FBA and (a = 1)) then

annul ← 1 { only for annulling F.P. Branch-Always }

) else (

nPC ← nPC + 4;

if (a = 1) then

annul ← 1 { only for annulling branches other than FBA }

)

SPARC International, Inc.

180 The SPARC Architecture Manual: Version 8

Coprocessor Branch on
Condition Instructions

C0 := if (bp_CP_cc<1:0> = 0) then 1 else 0;

C1 := if (bp_CP_cc<1:0> = 1) then 1 else 0;

C2 := if (bp_CP_cc<1:0> = 2) then 1 else 0;

C3 := if (bp_CP_cc<1:0> = 3) then 1 else 0;

eval_bp_CP_cc := (

if (CB3) then (if (C3) then 1 else 0);

if (CB2) then (if (C2) then 1 else 0);

if (CB23) then (if (C2 or C3) then 1 else 0);

if (CB1) then (if (C1) then 1 else 0);

if (CB13) then (if (C1 or C3) then 1 else 0);

if (CB12) then (if (C1 or C2) then 1 else 0);

if (CB123) then (if (C1 or C2 or C3) then 1 else 0);

if (CB0) then (if (C0) then 1 else 0);

if (CB03) then (if (C0 or C3) then 1 else 0);

if (CB02) then (if (C0 or C2) then 1 else 0);

if (CB023) then (if (C0 or C2 or C3) then 1 else 0);

if (CB01) then (if (C0 or C1) then 1 else 0);

if (CB013) then (if (C0 or C1 or C3) then 1 else 0);

if (CB012) then (if (C0 or C1 or C2) then 1 else 0);

if (CBA) then 1;

if (CBN) then 0

);

PC ← nPC;

if (eval_bp_CP_cc = 1) then (

nPC ← PC + sign_extend(disp22 �`�_002);
if (CBA and (a = 1)) then

annul ← 1 { only for annulling C.P. Branch-Always }

) else (

nPC ← nPC + 4;

if (a = 1) then

annul ← 1 { only for annulling branches other than CBA }

)

CALL Instruction r[15] ← PC;

PC ← nPC;

nPC ← PC + disp30 �`�_002

Jump and Link Instruction jump_address ← r[rs1] + (if (i = 0) then r[rs2] else sign_extend(simm13));

next;

if (jump_address<1:0> ≠ 0) then (

trap ← 1;

mem_address_not_aligned ← 1

) else (

if (rd ≠ 0) then r[rd] ← PC;

PC ← nPC;

nPC ← jump_address

)

SPARC International, Inc.

Appendix C — ISP Descriptions 181

Return from Trap Instruction new_cwp ← (CWP + 1) modulo NWINDOWS;

address ← r[rs1] + (if (i = 0) then r[rs2] else sign_extend(simm13));

next;

if (ET = 1) then (

trap ← 1;

if (S = 0) then privileged_instruction ← 1

else { S ≠ 0 } illegal_instruction ← 1

) else if (S = 0) then (

trap ← 1;

privileged_instruction ← 1;

tt ← 000000112; { trap type for privileged_instruction }

execute_mode ← 0;

error_mode ← 1

) else if ((WIM and 2new_cwp) ≠ 0) then (

trap ← 1;

window_underflow ← 1;

tt ← 000001102; { trap type for window_underflow }

execute_mode ← 0;

error_mode ← 1

) else if (address<1:0> ≠ 0) then (

trap ← 1;

mem_address_not_aligned ← 1;

tt ← 000001112; { trap type for mem_address_not_aligned }

execute_mode ← 0;

error_mode ← 1

) else (

ET ← 1;

PC ← nPC;

nPC ← address;

CWP ← new_cwp;

S ← PS

)

SPARC International, Inc.

182 The SPARC Architecture Manual: Version 8

Trap on Integer Condition
Instructions

trap_eval_icc := (

if (TNE) then (if (Z = 0) then 1 else 0);

if (TE) then (if (Z = 1) then 1 else 0);

if (TG) then (if ((Z or (N xor V)) = 0) then 1 else 0);

if (TLE) then (if ((Z or (N xor V)) = 1) then 1 else 0);

if (TGE) then (if ((N xor V) = 0) then 1 else 0);

if (TL) then (if ((N xor V) = 1) then 1 else 0);

if (TGU) then (if ((C = 0) and (Z = 0)) then 1 else 0);

if (TLEU) then (if ((C = 1) or (Z = 1)) then 1 else 0);

if (TCC) then (if (C = 0) then 1 else 0);

if (TCS) then (if (C = 1) then 1 else 0);

if (TPOS) then (if (N = 0) then 1 else 0);

if (TNEG) then (if (N = 1) then 1 else 0);

if (TVC) then (if (V = 0) then 1 else 0);

if (TVS) then (if (V = 1) then 1 else 0);

if (TA) then 1;

if (TN) then 0

);

trap_number := r[rs1] + (if (i = 0) then r[rs2] else sign_extend(software_trap#));

if (Ticc) then (

if (trap_eval_icc = 1) then (

trap ← 1;

trap_instruction ← 1;

ticc_trap_type ← trap_number<6:0>

) else (

PC ← nPC;

nPC ← nPC + 4

)

);

Read State Register
Instructions

if ((RDPSR or RDWIM or RDTBR

or (RDASR and (privileged_ASR(rs1) = 1))) and (S = 0)) then (

trap ← 1;

privileged_instruction ← 1

) else if (illegal_instruction_ASR(rs1) = 1) then (

trap ← 1;

illegal_instruction ← 1

) else if (rd ≠ 0) then (

if (RDY) then r[rd] ← Y

else if (RDASR) then r[rd] ← ASR[rs1]

else if (RDPSR) then r[rd] ← PSR

else if (RDWIM) then r[rd] ← WIM

else if (RDTBR) then r[rd] ← TBR;

);

SPARC International, Inc.

Appendix C — ISP Descriptions 183

Write State Register
Instructions

operand2 := if (i = 0) then r[rs2] else sign_extend(simm13);

result := r[rs1] xor operand2;

if (WRY) then (

Y’’’’ ← result

) else if (WRASR) then (

if ((privileged_ASR(rd) = 1) and (S = 0)) then (

trap ← 1;

privileged_instruction ← 1

) else if (illegal_instruction_ASR(rd) = 1) then (

trap ← 1;

illegal_instruction ← 1

) else (

ASR[rd]’’’’ ← result

)

) else if (WRPSR) then (

if (S = 0) then (

trap ← 1;

privileged_instruction ← 1

) else if (result<4:0> ≥ NWINDOWS) then (

trap ← 1;

illegal_instruction ← 1

) else (

PSR’’’’ ← result

{ but ET and PIL appear to be written immediately,

with respect to interrupts}

)

) else if (WRWIM) then (

if (S = 0) then (

trap ← 1;

privileged_instruction ← 1

) else (

WIM’’’’ ← result

{ but don’t write bits corresponding to non-existent windows }

)

) else if (WRTBR) then

if (S = 0) then (

trap ← 1;

privileged_instruction ← 1

) else (

TBR’’’’<31:12> ← result<31:12>

)

);

Store Barrier Instruction store_barrier_pending ← 1 ;

next ;

Unimplemented Instruction trap ← 1 ;

illegal_instruction ← 1

SPARC International, Inc.

184 The SPARC Architecture Manual: Version 8

Flush Instruction Memory address := r[rs1] + (if (i = 0) then r[rs2] else sign_extend(simm13));

flush_cache_line(address); { See Appendix L for definition}

flush_Ibuf_and_pipeline(address); { See Appendix L for definition}

{ If the FLUSH instruction is unimplemented, one of either illegal_instruction trap

or unimplemented_FLUSH trap (at the implementer’s discretion) will result. }

C.10. Floating-Point
Operate Instructions

The multiple-precision FPops use the following notation to indicate f register
alignment. The recommended (but not required) practice of trapping on FPop’s
with misaligned registers is assumed below:

misaligned_fp_reg_trap := (

trap ← 1;

fp_exception ← 1;

ftt ← invalid_fp_register

);

{ double precision }
rs1E := if (rs1<0> = 0) then rs1<4:1> �`�_02 else misaligned_fp_reg_trap;

rs1O := if (rs1<0> = 0) then rs1<4:1> �`�_12 else misaligned_fp_reg_trap;

rs2E := if (rs1<0> = 0) then rs2<4:1> �`�_02 else misaligned_fp_reg_trap;

rs2O := if (rs1<0> = 0) then rs2<4:1> �`�_12 else misaligned_fp_reg_trap;

rdE := if (rs1<0> = 0) then rd<4:1> �`�_02 else misaligned_fp_reg_trap;

rdO := if (rs1<0> = 0) then rd<4:1> �`�_12 else misaligned_fp_reg_trap;

{ quad precision }
rs1EE := if (rs1<1:0> = 0) then rs1<4:2> �`�_002 else misaligned_fp_reg_trap;

rs1EO := if (rs1<1:0> = 0) then rs1<4:2> �`�_012 else misaligned_fp_reg_trap;

rs1OE := if (rs1<1:0> = 0) then rs1<4:2> �`�_102 else misaligned_fp_reg_trap;

rs1OO := if (rs1<1:0> = 0) then rs1<4:2> �`�_112 else misaligned_fp_reg_trap;

rs2EE := if (rs1<1:0> = 0) then rs2<4:2> �`�_002 else misaligned_fp_reg_trap;

rs2EO := if (rs1<1:0> = 0) then rs2<4:2> �`�_012 else misaligned_fp_reg_trap;

rs2OE := if (rs1<1:0> = 0) then rs2<4:2> �`�_102 else misaligned_fp_reg_trap;

rs2OO := if (rs1<1:0> = 0) then rs2<4:2> �`�_112 else misaligned_fp_reg_trap;

rdEE := if (rs1<1:0> = 0) then rd<4:2> �`�_002 else misaligned_fp_reg_trap;

rdEO := if (rs1<1:0> = 0) then rd<4:2> �`�_012 else misaligned_fp_reg_trap;

rdOE := if (rs1<1:0> = 0) then rd<4:2> �`�_102 else misaligned_fp_reg_trap;

rdOO := if (rs1<1:0> = 0) then rd<4:2> �`�_112 else misaligned_fp_reg_trap;

Most of the floating-point routines defined below (or not defined since they are
implementation-dependent) return:

(1) A single, double, or quad result (sresult, dresult, qresult)

(2) A 5-bit exception vector (texc) similar to the cexc field of the FSR, or a 2-
bit condition code vector (tfcc) identical to the fcc field of the FSR

(3) A completion status bit (c), which indicates whether the arithmetic unit was
able to complete the operation

SPARC International, Inc.

Appendix C — ISP Descriptions 185

Convert Integer to Floating-
Point Instructions

if (FiTOs) then

(sresult, texc, c) ← cvt_int_to_single(f[rs2])

else if (FiTOd) then

(dresult, texc, c) ← cvt_int_to_double(f[rs2])

else if (FiTOq) then

(qresult, texc, c) ← cvt_int_to_quad(f[rs2]) ;

Convert Floating-Point to
Integer

if (FsTOi) then

(result, texc, c) ← cvt_single_to_int(f[rs2])

else if (FdTOi) then

(result, texc, c) ← cvt_double_to_int(f[rs2E] �`�_f[rs2O])
else if (FqTOi) then

(result, texc, c) ← cvt_quad_to_int(

f[rs2EE] �`�_f[rs2EO] �`�_f[rs2OE] �`�_f[rs2OO]) ;

Convert Between Floating-
Point Formats Instructions

if (FsTOd) then

(dresult, texc, c) ← cvt_single_to_double(f[rs2])

else if (FsTOq) then

(qresult, texc, c) ← cvt_single_to_quad(f[rs2])

else if (FdTOs) then

(sresult, texc, c) ← cvt_double_to_single(f[rs2E] �`�_f[rs2O])
else if (FdTOq) then

(qresult, texc, c) ← cvt_double_to_quad(f[rs2E] �`�_f[rs2O])
else if (FqTOs) then

(sresult, texc, c) ← cvt_quad_to_sgl(

f[rs2EE] �`�_f[rs2EO] �`�_f[rs2OE] �`�_f[rs2OO])
else if (FqTOd) then

(dresult, texc, c) ← cvt_quad_to_dbl(

f[rs2EE] �`�_f[rs2EO] �`�_f[rs2OE] �`�_f[rs2OO]);

Floating-Point Move
Instructions

if (FMOVs) then

sresult ← f[rs2]

else if (FNEGs) then

sresult ← f[rs2] xor 8000000016
else if (FABSs) then

sresult ← f[rs2] and 7FFFFFFF16 ;

texc ← 0;

c ← 1

Floating-Point Square Root
Instructions

if (FSQRTs) then

(sresult, texc, c) ← sqrt_single(f[rs2])

else if (FSQRTd) then

(dresult, texc, c) ← sqrt_double(f[rs2E] �`�_f[rs2O])
else if (FSQRTq) then

(qresult, texc, c) ← sqrt_quad(f[rs2EE] �`�_f[rs2EO] �`�_f[rs2OE] �`�_f[rs2OO]) ;

SPARC International, Inc.

186 The SPARC Architecture Manual: Version 8

Floating-Point Add and
Subtract Instructions

if (FADDs) then

(sresult, texc, c) ← add_single(f[rs1], f[rs2])

else if (FSUBs) then

(sresult, texc, c) ← sub_single(f[rs1], f[rs2])

else if (FADDd) then

(dresult, texc, c) ← add_double(f[rs1E] �`�_f[rs1O], f[rs2E] �`�_f[rs2O])
else if (FSUBd) then

(dresult, texc, c) ← sub_double(f[rs1E] �`�_f[rs1O], f[rs2E] �`�_f[rs2O])
else if (FADDq) then

(qresult, texc, c) ← add_quad(f[rs1EE] �`�_f[rs1EO] �`�_f[rs1OE] �`�_f[rs1OO],
f[rs2EE] �`�_f[rs2EO] �`�_f[rs2OE] �`�_f[rs2OO])

else if (FSUBq) then

(qresult, texc, c) ← sub_quad(f[rs1EE] �`�_f[rs1EO] �`�_f[rs1OE] �`�_f[rs1OO],
f[rs2EE] �`�_f[rs2EO] �`�_f[rs2OE] �`�_f[rs2OO]) ;

Floating-Point Multiply and
Divide Instructions

if (FMULs) then

(sresult, texc, c) ← mul_single(f[rs1], f[rs2])

else if (FDIVs) then

(sresult, texc, c) ← div_single(f[rs1], f[rs2])

else if (FMULd) then

(dresult, texc, c) ← mul_double(f[rs1E] �`�_f[rs1O], f[rs2E] �`�_f[rs2O])
else if (FsMULd) then

(dresult, texc, c) ← mul_single_to_double(f[rs1], f[rs2])

else if (FDIVd) then

(dresult, texc, c) ← div_double(f[rs1E] �`�_f[rs1O], f[rs2E] �`�_f[rs2O])
else if (FMULq) then

(qresult, texc, c) ← mul_quad(f[rs1EE] �`�_f[rs1EO] �`�_f[rs1OE] �`�_f[rs1OO],
f[rs2EE] �`�_f[rs2EO] �`�_f[rs2OE] �`�_f[rs2OO])

else if (FdMULq) then

(qresult, texc, c) ← mul_double_to_quad(f[rs1E] �`�_f[rs1O],
f[rs2E] �`�_f[rs2O])

else if (FDIVq) then

(qresult, texc, c) ← div_quad(f[rs1EE] �`�_f[rs1EO] �`�_f[rs1OE] �`�_f[rs1OO],
f[rs2EE] �`�_f[rs2EO] �`�_f[rs2OE] �`�_f[rs2OO]) ;

SPARC International, Inc.

Appendix C — ISP Descriptions 187

Floating-Point Compare
Instructions

if (FCMPs) then

(tfcc, texc, c) ← compare_single(f[rs1], f[rs2])

else if (FCMPd) then

(tfcc, texc, c) ← compare_double(f[rs1E] �`�_f[rs1O], f[rs2E] �`�_f[rs2O])
else if (FCMPq) then

(tfcc, texc, c) ← compare_quad(f[rs1EE] �`�_f[rs1EO] �`�_f[rs1OE] �`�_f[rs1OO],
f[rs2EE] �`�_f[rs2EO] �`�_f[rs2OE] �`�_f[rs2OO])

else if (FCMPEs) then

(tfcc, texc, c) ← compare_e_single(f[rs1], f[rs2]);

else if (FCMPEd) then

(tfcc, texc, c) ← compare_e_double(f[rs1E]�`�_f[rs1O], f[rs2E] �`�_f[rs2O])
else if (FCMPEq) then

(tfcc, texc, c) ← compare_e_quad(

f[rs1EE] �`�_f[rs1EO] �`�_f[rs1OE] �`�_f[rs1OO],
f[rs2EE] �`�_f[rs2EO] �`�_f[rs2OE] �`�_f[rs2OO]) ;

SPARC International, Inc.

D��������������������
Software Considerations

This appendix describes how software can use the SPARC architecture effec-
tively. It describes software conventions that have proven useful, assump-
tions that compilers may make about the resources available, and how com-
pilers can use those resources. It does not discuss how supervisor software (an
operating system) may use the architecture.

The goal of minimizing average procedure-call overhead is a prime motivation
for many of the software conventions described in this appendix.

D.1. Registers Register usage is typically a critical resource allocation issue for compilers. The
SPARC architecture provides windowed integer registers (in, out, local), global
integer registers, floating-point registers, and (in some implementations) copro-
cessor registers.

In and Out Registers The in and out registers are used primarily for passing parameters to subroutines
and receiving results from them, and for keeping track of the memory stack.
When a procedure is called, the caller’s outs become the callee’s ins.

One of a procedure’s out registers (%o6) is used as its stack pointer, %sp. It
points to an area in which the system can store %r16 ...%r31 (%l0 ...%l7 and
%i0 ...%i7) when the register file overflows (window_overflow trap), and is
used to address most values located on the stack. See Figure D-2. A trap2 can
occur at any time, which may precipitate a subsequent window_overflow trap,
during which the contents of the user’s register window at the time of the original
trap are spilled to the memory to which its %sp points.

A procedure may store temporary values in its out registers, with the exception of
%sp, with the understanding that those values are volatile across procedure calls.
%sp cannot be used for temporary values for the reasons described in the Regis-
ter Windows and %sp section below.

Up to six parameters3 may be passed by placing them in out registers %o0...%o5;
��

2 E.g., due to an error in executing an instruction (for example, a mem_address_not_aligned trap), or due to
any type of external interrupt.

3 Six is more than adequate, since the overwhelming majority of procedures in system code take fewer than
six parameters. According to the studies cited by Weicker (Weicker, R.P., Dhrystone: A Synthetic

189 SPARC International, Inc.

190 The SPARC Architecture Manual: Version 8

additional parameters are passed in the memory stack. The stack pointer is
implicitly passed in %o6, and a CALL instruction places its own address in
%o74.

When an argument is a data aggregate5 being passed by value, the caller first
makes a temporary copy of the data aggregate in its stack frame, then passes a
pointer to the copy in the argument out register (or on the stack, if it is the 7th or
later argument).

After a callee is entered and its SAVE instruction has been executed, the caller’s
out registers are accessible as the callee’s in registers.

The caller’s stack pointer %sp (%o6) automatically becomes the current
procedure’s frame pointer %fp (%i6) when the SAVE instruction is executed.

The callee finds its first six parameters in %i0 ...%i5, and the remainder (if any)
on the stack.

For each passed-by-value data aggregate, the callee finds a pointer to a copy of
the aggregate in its argument list. The compiler must arrange for an extra dere-
ferencing operation each time such an argument is referenced in the callee.

If the callee is passed fewer than six parameters, it may store temporary values in
the unused in registers.

If a register parameter (in %i0 ...%i5) has its address taken in the called pro-
cedure, the callee stores that parameter’s value on the memory stack. The param-
eter is then accessed in that memory location for the lifetime of the pointer(s)
which contains its address (or for the lifetime of the procedure, if the compiler
doesn’t know the pointer’s lifetime).

The six words available on the stack for saving the first six parameters are deli-
berately contiguous in memory with those in which additional parameters may be
passed. This supports constructs such as C’s varargs 6, for which the callee
copies to the stack the register parameters which must be addressable.

A function returns a scalar integer value by writing it into its ins (which are the
caller’s outs), starting with %i0. A scalar floating-point value is returned in the
floating-point registers, starting with %f0. Aggregate values are returned using
the mechanism described in the Functions Returning Aggregate Values section of
this appendix.
��

Systems Programming Benchmark, CACM 27:10, October 1984), at least 97% (measured statically) take
fewer than six parameters. The average number of parameters did not exceed 2.1, measured either
statically or dynamically, in any of these studies.

4 If a JMPL instruction is used in place of a CALL for consistency it can (explicitly) place its address in
%o7.

5 Some examples of data aggregates are C language structs and unions, and Pascal records.
6 Varargs is the means by which variable-length argument lists are passed to C procedures.

SPARC International, Inc.

Appendix D — Software Considerations 191

A procedure’s return address, normally the address of the instruction just after
the CALL’s delay-slot instruction, is simply calculated as %i7+ 8 7.

Local Registers The locals are used for automatic8 variables, and for most temporary values. For
access efficiency, a compiler may also copy parameters (i.e. those past the sixth)
from the memory stack into the locals and use them from there.

If an automatic variable’s address is taken, the variable’s value must be stored in
the memory stack, and be accessed there for the lifetime of the pointer(s) which
contains its address (or for the lifetime of the procedure, if the compiler doesn’t
know the pointer’s lifetime).

See Section D.7 for methods of allocating more or fewer than 8 registers for local
values.

Register Windows and %sp
Some caveats about the use of %sp and the SAVE and RESTORE instructions
are appropriate. It is essential that:

· %sp always contain the correct value, so that when (and if) a register window
overflow/underflow trap occurs, the register window can be correctly stored
to or reloaded from memory 9.

· User (non-supervisor) code uses SAVE and RESTORE instructions carefully.
In particular, “walking” the call chain through the register windows using
RESTOREs, expecting to be able to return to where one started using SAVEs
does not work as one might suppose. This fails because the “next” register
window (in the “SAVE direction”) is reserved for use by trap handlers. Since
non-supervisor code cannot disable traps, a trap could write over the contents
of a user register window which has “temporarily” been RESTORE’d10. The
safe method is to flush the register windows out to user memory (the stack) in
supervisor state using a software trap designed for that purpose. Then, user
code can safely “walk” the call chain through user memory, instead of
through the register windows.

The rule-of-thumb which will avoid such problems is to consider all memory
below %sp on the user’s stack, and the contents of all register windows “below”
the current one to be volatile.

��
7 For convenience, SPARC assemblers may provide a “ret” (return) synthetic instruction which generates a

“jmpl %i7+8,%g0” hardware instruction.
8 In the C language, “auto” is the storage class of a local variable whose lifetime is no longer than that of

its containing procedure.
9 The SAVE instruction is typically used to generate a new %sp while shifting to a new register window, all

in one atomic operation. When SAVE is used this way, synchronization of the two operations should not
be a problem.

10 Another reason this fails is that user code has no way to determine how many register windows are
implemented by the hardware.

SPARC International, Inc.

192 The SPARC Architecture Manual: Version 8

Global Registers Unlike the ins, locals, and outs, the globals are not part of any register window.
The globals are a set of eight registers with global scope, like the register sets of
more traditional processor architectures. The globals (except %g0) are conven-
tionally assumed to be volatile across procedure calls. However, if they were
used on a per-procedure basis and expected to be nonvolatile across procedure
calls, either the caller or the callee would have to take responsibility for saving
and restoring their contents.

Global register %g0 has a “hardwired” value of zero. It always reads as zero, and
writes to it have no effect.

The global registers, other than %g0, can be used for temporaries, global vari-
ables, or global pointers — either user variables, or values maintained as part of
the program’s execution environment.

For example, one could use globals in the execution environment by establishing
a convention that global scalars are addressed via offsets from a global base
register. In the general case, memory accessed at an arbitrary address requires
two instructions, e.g.:

sethi %hi(address),reg
ld [reg+%lo(address)],reg

Use of a global base register for frequently accessed global values would provide
faster (single-instruction) access to 213 bytes of those values, e.g.:

ld [%gn+offset],reg

Additional global registers could be conscripted to provide single-instruction
access to correspondingly more global values.

The current convention is that the global registers (except %g0) are assumed to
be volatile across procedure calls. The convention used by the SPARC Applica-
tion Binary Interface (ABI) is that %g1 is assumed to be volatile across pro-
cedure calls, %g2 ...%g4 are reserved for use by the application program (for
example, as global register variables), and %g5 ...%g7 are assumed to be nonvo-
latile and reserved for (as-yet-undefined) use by the execution environment.

Floating-Point Registers There are thirty-two 32-bit floating-point registers. Floating-point registers are
accessed with different instructions than the integer registers; their contents can
be moved among themselves, and to or from memory.

Like the global registers, the floating-point registers must be managed by
software. Compilers use the floating-point registers for user variables and com-
piler temporaries and return floating-point function values in them. Existing
compilers do not pass parameters in them.

Across a procedure call, either the caller must save its live floating-point regis-
ters, or the callee must save the ones it is going to use and restore them before
returning. Current compilers use the “caller-save” convention.

SPARC International, Inc.

Appendix D — Software Considerations 193

%i7 (%r31) return address − 8 †
%fp, %i6 (%r30) frame pointer †

%i5 (%r29) incoming param 6 †
in %i4 (%r28) incoming param 5 †

%i3 (%r27) incoming param 4 †
%i2 (%r26) incoming param 3 †
%i1 (%r25) incoming param 2 †
%i0 (%r24) incoming param 1 / return value to caller †
%l7 (%r23) local 7 †
%l6 (%r22) local 6 †
%l5 (%r21) local 5 †

local %l4 (%r20) local 4 †
%l3 (%r19) local 3 †
%l2 (%r18) local 2 †
%l1 (%r17) local 1 †
%l0 (%r16) local 0 †
%o7 (%r15) temporary value / address of CALL instruction ‡

%sp, %o6 (%r14) stack pointer †
%o5 (%r13) outgoing param 6 ‡

out %o4 (%r12) outgoing param 5 ‡
%o3 (%r11) outgoing param 4 ‡
%o2 (%r10) outgoing param 3 ‡
%o1 (%r9) outgoing param 2 ‡
%o0 (%r8) outgoing param 1 / return value from callee ‡
%g7 (%r7) global 7 (SPARC ABI: use reserved)
%g6 (%r6) global 6 (SPARC ABI: use reserved)
%g5 (%r5) global 5 (SPARC ABI: use reserved)

global %g4 (%r4) global 4 (SPARC ABI: global register variable §)
%g3 (%r3) global 3 (SPARC ABI: global register variable §)
%g2 (%r2) global 2 (SPARC ABI: global register variable §)
%g1 (%r1) temporary value ‡
%g0 (%r0) 0

state %y Y register (used in multiplication/division) ‡
(icc field of %psr) Integer condition codes ‡
(fcc field of %fsr) Floating-point condition codes ‡
(ccc field of %csr) Coprocessor condition codes ‡
%f31 floating-point value ‡

floating : :
point : :

%f0 floating-point value ‡

† assumed by caller to be preserved across a procedure call

‡ assumed by caller to be destroyed (volatile) across a procedure call

§ should not be used in SPARC ABI library code

Figure D-1 SPARC Register Set, as Seen by a User-Mode Procedure

SPARC International, Inc.

194 The SPARC Architecture Manual: Version 8

D.2. The Memory Stack Space on the memory stack, called a “stack frame”, is normally allocated for
each procedure.

Under certain conditions, optimization may enable a leaf11 procedure to use its
caller’s stack frame instead of one of its own. In that case, the procedure allo-
cates no space of its own for a stack frame. The following description of the
memory stack applies to all procedures, except leaf procedures which have been
optimized in this way.

The following are always allocated at compile time in every procedure’s stack
frame:

· 16 words, always starting at %sp, for saving the procedure’s in and local
registers, should a register window overflow occur

The following are allocated at compile time in the stack frames of non-leaf pro-
cedures:

· One word, for passing a “hidden” (implicit) parameter. This is used when the
caller is expecting the callee to return a data aggregate by value; the hidden
word contains the address of stack space allocated (if any) by the caller for
that purpose See Section D.4.

· Six words, into which the callee may store parameters that must be address-
able

Space is allocated as needed in the stack frame for the following at compile time:

· Outgoing parameters beyond the sixth

· All automatic arrays, automatic data aggregates, automatic scalars which
must be addressable, and automatic scalars for which there is no room in
registers

· Compiler-generated temporary values (typically when there are too many for
the compiler to keep them all in registers)

· Floating-point registers being saved across calls (occurs if floating-point
instructions are used by a procedure)

Space can be allocated dynamically (at runtime) in the stack frame for the fol-
lowing:

· Memory allocated using the alloca() function of the C library

Addressable automatic variables on the stack are addressed with negative offsets
relative to %fp; dynamically allocated space is addressed with positive offsets
from the pointer returned by alloca(); everything else in the stack frame is
addressed with positive offsets relative to %sp.
��

11 See Section D.5, Leaf Procedure Optimization.

SPARC International, Inc.

Appendix D — Software Considerations 195

The stack pointer %sp must always be doubleword-aligned. This allows window
overflow and underflow trap handlers to use the more efficient STD and LDD
instructions to store and reload register windows.

When a non-leaf procedure is active, its stack frame appears as in Figure D-2.

Previous Stack Frame

%fp (old %sp) → ——

%fp − offset → Space (if needed) for automatic
arrays, aggregates, and addressable
scalar automatics

——
Space dynamically allocated via
alloca(), if any

alloca() → ——

%sp + offset →
Space (if needed) for compiler tem-
poraries and saved floating-point
registers

%sp + offset → Outgoing parameters past the sixth,
if any

Current Stack Frame

%sp + offset → 6 words into which callee may
store register arguments

%sp + offset →
One-word hidden parameter
(address at which callee should
store aggregate return value)

%sp + offset → 16 words in which to save register
window (in and local registers)

%sp → ——
↓

Stack Growth Next Stack Frame
(decreasing memory addresses) (not yet allocated)

Figure D-2 The User Stack Frame

SPARC International, Inc.

196 The SPARC Architecture Manual: Version 8

D.3. Functions Returning
Aggregate Values

Some programming languages, including C, some dialects of Pascal, and
Modula-2, allow the user to define a function returning an aggregate value.
Examples include a C struct or union, or a Pascal record. Since such a
value may not fit into the registers, another value-returning protocol must be
defined to return the result in memory.

Reentrancy and efficiency considerations require that the memory used to hold
such a return value be allocated by the function’s caller. The address of this
memory area is passed as the one-word hidden parameter mentioned in the sec-
tion The Memory Stack above.

Because of the lack of type safety in the C language, a function should not
assume that its caller is expecting an aggregate return value and has provided a
valid memory address. Thus, some additional handshaking is required.

When a procedure expecting an aggregate return value from a called function is
compiled, an UNIMP instruction is placed after the delay-slot instruction follow-
ing the CALL to the function in question. The immediate field in this UNIMP
instruction contains the low-order twelve bits of the size (in bytes) of the area
allocated by the caller for the aggregate value expected to be returned.

When the aggregate-returning function is about to store its value in the memory
allocated by its caller, it first tests for the presence of this UNIMP instruction in
its caller’s instruction stream. If it is found, the callee assumes the hidden
parameter to be valid, stores its return value at the given address, and returns
control to the instruction following the caller’s UNIMP instruction. If the
UNIMP instruction is not found, the hidden parameter is assumed not to be valid
and no value is returned.

On the other hand, if a scalar-returning function is called when an aggregate
return value is expected (which is clearly a software error), the function returns
as usual, executing the UNIMP instruction, which causes an unimplemented-
instruction trap.

SPARC International, Inc.

Appendix D — Software Considerations 197

D.4. Tagged Arithmetic The tagged add/subtract instructions assume tagged-format data, in which a tag
occupies the two low-order bits of each operand. If either of the two operands
has a nonzero tag, or if arithmetic overflow occurs, the operation sets the PSR’s
overflow bit. Some variants of the tagged arithmetic instructions cause a
tag_overflow exception instead of setting the overflow bit.

Tagged arithmetic operations are used regularly in languages with dynamically
typed data, such as Lisp and Smalltalk.

One possible model for tagging is to use a tag value of 0 for integers, and a tag
value of 3 for pointers to pairs of words (that is, list cells). Using this model,
suppose that p is a tagged pointer to a list cell (that is, p has “3” in its low-order
two bits). Since load/store instructions execute successfully only with properly
aligned addresses, if p is a list cell with a tag of “3” (a pointer), a load/store word
instruction with an address specifier of “p-3” or “p+1” will succeed, access-
ing the first or second word (respectively) of the list cell. If p is not a pointer
(that is, contains a tag other than 3), such a load/store will cause a
mem_address_not_aligned trap. This scheme can be used to test for unexpected
data types.

The non-trapping versions of the tagged arithmetic instructions typically incur
the overhead of a following “branch on overflow” instruction, plus execution of
code to deal with the overflow when the overflow condition occurs. The trapping
versions incur no per-instruction overhead, but have the overhead of a
tag_overflow trap when overflow occurs. So, the choice of whether to use the
trapping or non-trapping versions of the tagged arithmetic instructions depends
on two factors:

· The overhead of a tag_overflow trap

· The relative frequency of overflow in tagged arithmetic operations

If the trapping overhead is small and tag overflow occurs infrequently, the trap-
ping versions of the tagged arithmetic instructions provide the best performance.
If trapping overhead is high and tag overflow occurs frequently enough, use of
the non-trapping tagged arithmetic instructions is recommended.

SPARC International, Inc.

198 The SPARC Architecture Manual: Version 8

D.5. Leaf Procedure
Optimization

A leaf procedure is one that is a “leaf” in the program’s call graph; that is, one
that does not call (e.g. via CALL or JMPL) any other procedures.

Each procedure, including leaf procedures, normally uses a SAVE instruction to
allocate a stack frame and obtain a register window for itself, and a correspond-
ing RESTORE instruction to deallocate it. The time costs associated with this
are:

· Possible generation of register-window overflow/underflow traps at runtime.
This only happens occasionally12, but when either underflow or overflow
does occur, it costs dozens of machine cycles to process.

· The two cycles expended by the SAVE and RESTORE instructions them-
selves

There are also space costs associated with this convention, the cumulative cache
effects of which may not be negligible. The space costs include:

· The space occupied on the stack by the procedure’s stack frame

· The two words occupied by the SAVE and RESTORE instructions

Of the above costs, the trap-processing cycles are typically the most significant.

Some leaf procedures can be made to operate without their own register window
or stack frame, using their caller’s instead. This can be done when the candidate
leaf procedure meets all of the following conditions13:

· Contains no references to %sp, except in its SAVE instruction

· Contains no references to %fp

· Refers to (or can be made to refer to) no more than 8 of the 32 integer regis-
ters14, inclusive of %o7 (the “return address”).

If a procedure conforms to the above conditions, it can be made to operate using
its caller’s stack frame and registers — an optimization that saves both time and
space. When optimized, such a procedure is known as an optimized leaf pro-
cedure. It may only safely use registers that its caller already assumes to be
volatile across a procedure call, namely, %o0 ...%o5, %o7, and %g115.

��
12 The frequency of overflow and underflow traps depends on the software application, and upon the number

of register windows (NWINDOWS) implemented in hardware. In a multitasking UNIX workstation
environment, SPARC processors with 7 register windows in hardware have been observed to spend
approximately 3% of total cycles in register-window overflow and underflow trap handling. Simulations
indicate that the frequency of such traps approximately halve with the availability of each of the next few
additional register windows in hardware, e.g. a processor with 8 register windows in hardware should
spend about 1.5% of its cycles in overflow/underflow handling.

13 Although slightly less restrictive conditions could be used, the optimization would become more complex
to perform and the incremental gain would usually be small.

14 Or 14 of the 32 registers, if SPARC ABI compliance isn’t required.
15 %g1 ...%g7 if SPARC ABI compliance isn’t required.

SPARC International, Inc.

Appendix D — Software Considerations 199

The optimization can be performed at the assembly language level using the fol-
lowing steps:

· Change all references to registers in the procedure to registers that the caller
assumes volatile across the call:

– Leave references to %o7 unchanged.

– Leave any references to %g0 ...%g7 unchanged.

– Change %i0 ...%i5 to %o0 ...%o5, respectively. If an in register is
changed to an out register that was already referenced in the original
unoptimized version of the procedure, all original references to that
out register must be changed to refer to an unused out or global
register.

– Change references to each local register into references to any regis-
ter among %o0 ...%o5 or %g116 that remains unused.

· Delete the SAVE instruction. If it was in a delay slot, replace it with a NOP
instruction. If its destination register was not %g0 or %sp, convert the SAVE
into the corresponding ADD instruction instead of deleting it.

· If the RESTORE’s implicit addition operation is used for a productive pur-
pose (such as setting up the procedure’s return value), convert the RESTORE
to the corresponding ADD instruction. Otherwise, the RESTORE is only
used for stack and register-window deallocation; replace it with a NOP
instruction (it is probably in the delay slot of the RET, and so cannot be
deleted).

· Change the RET (return) synthetic instruction to RETL (return-from-leaf-
procedure synthetic instruction).

· Perform any optimizations newly made possible, such as combining instruc-
tions, or filling the delay slot of the RETL with a productive instruction.

After the above changes, there should be no SAVE or RESTORE instructions,
and no references to in or local registers in the procedure body. All original
references to ins are now to outs. All other register references are to either
%g116, or other outs.

Costs of optimizing leaf procedures in this way include:

· Additional intelligence in the peephole optimizer to recognize and optimize
candidate leaf procedures.

· Additional intelligence in debuggers to properly report the call chain and the
stack traceback for optimized leaf procedures17.

��
16 %g1 ...%g7 if SPARC ABI compliance isn’t required.
17 A debugger can recognize an optimized leaf procedure by scanning it, noting the absence of a SAVE

instruction. Compilers often constrain the SAVE, if present, to appear within the first few instructions of
a procedure; in such a case, only those instruction positions need be examined.

SPARC International, Inc.

200 The SPARC Architecture Manual: Version 8

D.6. Example Code This section illustrates common parameter-passing conventions and gives a sim-
ple example of leaf-procedure optimization.

The following code fragment shows a simple procedure call with a value
returned, and the procedure itself:

! CALLER:

! int i; /* compiler assigns "i" to register %l7 */

! i = sum3(1, 2, 3);

...

mov 1, %o0 ! first arg to sum3 is 1

mov 2, %o1 ! second arg to sum3 is 2

call sum3 ! the call to sum3

mov 3, %o2 ! last parameter to sum3 in delay slot

mov %o0, %l7 ! copy return value to %l7 (variable "i")

...

#define SA(x) (((x)+7)&(˜0x07)) /* rounds "x" up to doubleword boundary */

#define MINFRAME ((16+1+6)*4) /* minimum size frame */

! CALLEE:

! int sum3(a, b, c)

! int a, b, c; /* args received in %i0, %i1, and %i2 */

! {

! return a+b+c;

! }

sum3:

save %sp,-SA(MINFRAME),%sp ! set up new %sp; alloc min. stack frame

add %i0, %i1, %l7 ! compute sum in local %l7

add %l7, %i2, %l7 ! (or %i0 could have been used directly)

ret ! return from sum3, and...

restore %l7, 0, %o0 ! move result into output reg & restore

Since “sum3” does not call any other procedures (i.e., it is a “leaf” procedure), it
can be optimized to become:

sum3:

add %o0, %o1, %o0 !

retl ! (must use RETL, not RET,

add %o0, %o2, %o0 ! to return from leaf procedure)

SPARC International, Inc.

Appendix D — Software Considerations 201

D.7. Register Allocation
Within a Window

The usual SPARC software convention is to allocate eight registers (%l0−%l7)
for local values. A compiler could allocate more registers for local values at the
expense of having fewer outs/ins available for argument passing.

For example, if instead of assuming that the boundary between local values and
input arguments is between r[23] and r[24] (%l7 and %i0), software could by
convention assume that the boundary is between r[25] and r[26] (%i1 and %i2).
This would provide 10 registers for local values and 6 “in”/“out” registers.

The following table illustrates this:

Standard “10-Local” Arbitrary
Register Register Register
Model Model Model

registers for local values 8 10 n

“in”/“out” registers:
reserved for %sp/%fp 1 1 1
reserved for return address 1 1 1
available for arg passing 6 4 14 − n
total “ins”/“outs” 8 6 16 − n

SPARC International, Inc.

202 The SPARC Architecture Manual: Version 8

D.8. Other Register
Window Usage Models

So far, this appendix has described SPARC software conventions that are
appropriate for use in a general-purpose multitasking computer system. How-
ever, SPARC is used in many other applications, notably those that are embed-
ded and/or provide real-time capabilities. In such applications, other schemes for
allocation of SPARC’s register windows might be more nearly optimal than the
one described above in this appendix.

The intent of this section is not to enumerate all possible register-window organi-
zation schemes, but to trigger the reader’s imagination by providing a few exam-
ples of modifications that could be made to the standard SPARC software con-
ventions. Readers can then design register-usage schemes appropriate to the
specific needs of their applications of SPARC processors.

In the general-purpose computer system application of SPARC discussed above
in this appendix18, procedure calls are assumed to be frequent relative to both
context switches and User-Supervisor state transitions. A primary goal in this
application is to minimize total overhead, which includes time spent in both con-
text switches and procedure calls. As more register windows are shared among
competing processes, total procedure call time decreases (due to execution of
fewer window overflow and underflow traps), while total context-switch time
may increase (the average number of register windows saved during a context
switch increases). The task is to strike a balance to minimize the sum of these
two factors19.

In other applications, different software conventions for use of memory and
SPARC’s windowed registers might be more nearly optimal. Such situations
may occur, for example, where any of the following are of high importance:

· Minimal average context-switch time

· A constant (or small worst-case deterministic) context-switch time

· A constant (or small worst-case deterministic) procedure-call time

· A large number of register windows (say, ≥14) available in a given SPARC
implementation

To better meet goals such as the above, modifications could be made to the
software conventions described above. These employ creative uses of SPARC’s
flexible procedure-calling mechanism20 and its windowed register set. A few
possible modifications to the software conventions follow.

��
18 For example, most UNIX-based systems.
19 Since existing SPARC implementations (as of early 1990) have only 7 or 8 register windows, context-

switch time has not yet become a significant factor. With 20 or more register windows available in some
future SPARC implementations, the optimal allocation of register window resources under UNIX will no
longer be to share all windows among all processes and the kernel.

20 The procedure-calling mechanism is flexible because the procedure-calling and return instructions, CALL
(or JMPL) and RET, are distinct from the stack and register-window management instructions, SAVE and
RESTORE.

SPARC International, Inc.

Appendix D — Software Considerations 203

[A] Divide the register file into "supervisor state" register windows and "user
state" register windows. In cases in which user/supervisor state transitions
are frequent, this would reduce register-window overflow/underflow over-
head.

To be effective, this would require a SPARC implementation with ≥ 14
register windows in hardware (a minimum of 7 windows each for user and
supervisor code). Empirical measurements show that the number of win-
dow overflow and underflow traps in typical user code approximately halves
for each window added, up to about 12 windows. In a UNIX system, sys-
tem calls (supervisor code) often involve deep (sometimes ≥ 20) and “nar-
row” (few instructions between CALLs) call chains. Such behavior is atypi-
cal of user code. This suggests that if a SPARC implementation running
UNIX has more than 14 windows, additional windows might be most effec-
tively allocated for supervisor use21.

[B] Using multiple 1’s in the Window Invalid Mask (WIM), partition the regis-
ter file into groups of (at least two) windows each. Assign each group of
register windows to an executing task. This would be useful for real-time
processing, where extremely fast context switches are desired; a context
switch would mainly consist of loading a new stack pointer, resetting the
CWP to the new task’s block of register windows, and saving/restoring
whatever subset of the global registers is assumed to be nonvolatile. In par-
ticular, note that no window registers would need to be loaded or stored dur-
ing a context switch.

This method assumes that only a few tasks are present and, in the simplest
case, that all tasks share one address space22. The number of hardware
register windows required is a function of the number of windows reserved
for the supervisor, the number of windows reserved for each task, and the
number of tasks. Register windows could be allocated to tasks unequally, if
appropriate.

[C] Avoid using the normal register-window mechanism, by not using SAVE
and RESTORE instructions. Software would effectively see 32 general-
purpose registers instead of SPARC’s usual windowed register file. In this
mode, SPARC would operate like processors with more traditional (flat)
register architectures. Procedure call times would be more deterministic
(due to lack of underflow/overflow traps), but for most types of software,
average procedure call time would significantly increase, due to increased
memory traffic for parameter passing and saving/restoring local variables.

Existing SPARC compilers would require modification to produce code to
make use of this register organization.

��
21 Use of a preemptable kernel may complicate this.
22 Either the processor uses physical addressing (no MMU), or all tasks’ user address spaces are mapped

identically.

SPARC International, Inc.

204 The SPARC Architecture Manual: Version 8

It would be awkward, at best, to attempt to mix (link) code using the
SAVE/RESTORE convention with code not using it in the same process. If
both conventions were used in the same system, two versions of each library
would be required.

It would be possible to run user code with one register-usage convention and
supervisor code with another. With sufficient intelligence in the supervisor, user
processes with different register conventions could be run simultaneously23.

��
23 Although technically possible, this is not to suggest that there would be significant utility in mixing user

processes with differing register-usage conventions.

SPARC International, Inc.

E��������������������
Example Integer Multiplication and

Division Routines

This appendix contains routines a SPARC system might use to perform integer
multiplication, division, and remaindering in the absence of the implementation
of multiply (SMUL, SMULcc, UMUL, UMULcc) or divide (SDIV, SDIVcc,
UDIV, UDIVcc) instructions in hardware. These routines are written in the
assembly language accepted by Sun Microsystems’ SPARC assembler24.

Programming Note These sample routines do not set the integer condition codes identically to the integer multiply and
divide instructions. They require modification to do so.

Programming Note The routines in this appendix were written prior to definition of the SPARC ABI. See Appendix G,
“SPARC ABI Software Considerations.” They may or may not implement SPARC ABI-compliant
versions of .mul, .umul, .div, .udiv, .rem, and .urem; their compliance has not been
verified.

If they are compliant with the SPARC ABI, software which calls them and which is desired to
remain ABI-compliant should only rely on the ABI-defined interfaces to these routines. For exam-
ple, a caller should ignore the state of the condition codes upon return from .mul.

��
24 For details, see Sun’s Sun-4 Assembly Language Reference Manual.

205 SPARC International, Inc.

206 The SPARC Architecture Manual: Version 8

E.1. Signed Multiplication

/*

* Procedure to perform a 32-bit by 32-bit multiply.

* Pass the multiplicand in %o0, and the multiplier in %o1.

* The least significant 32 bits of the result are returned in %o0,

* and the most significant in %o1.

*

* This code has an optimization built-in for short (less than 13-bit)

* multiplies. Short multiplies require 26 or 27 instruction cycles, and

* long ones require 47 to 51 instruction cycles. For two nonnegative numbers

* (the most common case) a long multiply takes 47 instruction cycles.

*

* This code indicates that overflow has occurred by clearing the Z condition

* code upon return [note that this is different from condition codes set

* by the SMULcc and UMULcc instructions]. The following call sequence

* would be used if one wished to deal with overflow (and did not require

* the calling software to be SPARC ABI-compliant):

*

* call .mul

* nop ! (or set up last parameter here)

* bnz overflow_code ! (or tnz to overflow handler)

*

* Note that this is a leaf routine; i.e. it calls no other routines and does

* all of its work in the out registers. Thus, the usual SAVE and RESTORE

* instructions are not needed.

*/

.global .mul

.mul:

mov %o0, %y ! multiplier to Y register

andncc %o0, 0xfff, %g0! mask out lower 12 bits

be mul_shortway ! can do it the short way

andcc %g0, %g0, %o4 ! zero the partial product and clear N and V conditions

!

! long multiply

!

mulscc %o4, %o1, %o4 ! first iteration of 33

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

SPARC International, Inc.

Appendix E — Example Integer Multiplication and Division Routines 207

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4 ! 32nd iteration

mulscc %o4, %g0, %o4 ! last iteration only shifts

!

! If %o0 (multiplier) was negative, the result is:

! (%o0 * %o1) + %o1 * (2**32)

! We fix that here.

!

tst %o0

rd %y, %o0

bge 1f

tst %o0 ! for when we check for overflow

sub %o4, %o1, %o4 ! bit 33 and up of the product are in

! %o4, so we don’t have to shift %o1

!

! We haven’t overflowed if:

! low-order bits are nonnegative and high-order bits are 0

! low-order bits are negative and high-order bits are all 1

!

! If you are not interested in detecting overflow,

! replace the four following instructions (bge, addcc, retl, subcc) with:

! 1: retl

! mov %o4, %o1

!

1:

bge 2f ! if low-order bits were nonnegative.

addcc %o4, %g0, %o1 ! return most sig. bits of prod and set

! Z appropriately (for nonnegative product)

retl ! leaf-routine return

subcc %o4, -1, %g0 ! set Z if high order bits are -1 (for negative product)

2:

retl ! leaf-routine return

nop

!

! short multiply

!

mul_shortway:

mulscc %o4, %o1, %o4 ! first iteration of 13

SPARC International, Inc.

208 The SPARC Architecture Manual: Version 8

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4 ! 12th iteration

mulscc %o4, %g0, %o4 ! last iteration only shifts

rd %y, %o5

sll %o4, 12, %o0 ! left shift middle bits by 12 bits

srl %o5, 20, %o5 ! right shift low bits by 20 bits

!

! We haven’t overflowed if:

! low-order bits are nonnegative and high-order bits are 0

! low-order bits are negative and high-order bits are -1

!

! if you are not interested in detecting overflow,

! replace the following code with:

!

! or %o5, %o0, %o0

! retl

! mov %o4, %o1

!

orcc %o5, %o0, %o0 ! merge for true product

bge 3f ! if low-order bits were nonnegative.

sra %o4, 20, %o1 ! right shift high bits by 20 bits

! and put into %o1

retl ! leaf-routine return

subcc %o1, -1, %g0 ! set Z if high order bits are -1 (for

! negative product)

3:

retl ! leaf-routine return

addcc %o1, %g0, %g0 ! set Z if high order bits are 0

SPARC International, Inc.

Appendix E — Example Integer Multiplication and Division Routines 209

E.2. Unsigned Multiplication

/*

* Procedure to perform a 32 by 32 unsigned multiply.

* Pass the multiplier in %o0, and the multiplicand in %o1.

* The least significant 32 bits of the result will be returned in %o0,

* and the most significant in %o1.

*

* This code has an optimization built-in for short (less than 13 bit)

* multiplies. Short multiplies require 25 instruction cycles, and long ones

* require 46 or 48 instruction cycles.

*

* This code indicates that overflow has occurred, by leaving the Z condition

* code clear. The following call sequence would be used if you wish to

* deal with overflow:

*

* call .umul

* nop ! (or set up last parameter here)

* bnz overflow_code ! (or tnz to overflow handler)

*

* Note that this is a leaf routine; i.e. it calls no other routines and does

* all of its work in the out registers. Thus, the usual SAVE and RESTORE

* instructions are not needed.

*/

.global .umul

.umul:

or %o0, %o1, %o4 ! logical or of multiplier and multiplicand

mov %o0, %y ! multiplier to Y register

andncc %o4, 0xfff, %o5! mask out lower 12 bits

be mul_shortway ! can do it the short way

andcc %g0, %g0, %o4 ! zero the partial product and clear N and V conditions

!

! long multiply

!

mulscc %o4, %o1, %o4 ! first iteration of 33

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

SPARC International, Inc.

210 The SPARC Architecture Manual: Version 8

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4 ! 32nd iteration

mulscc %o4, %g0, %o4 ! last iteration only shifts

/*

* Normally, with the shift and add approach, if both numbers are

* nonnegative, you get the correct result. With 32-bit twos-complement

* numbers, -x can be represented as ((2 - (x/(2**32))) mod 2) * 2**32.

* To avoid a lot of 2**32’s, we can just move the radix point up to be

* just to the left of the sign bit. So:

*

* x * y = (xy) mod 2

* -x * y = (2 - x) mod 2 * y = (2y - xy) mod 2

* x * -y = x * (2 - y) mod 2 = (2x - xy) mod 2

* -x * -y = (2 - x) * (2 - y) = (4 - 2x - 2y + xy) mod 2

*

* For signed multiplies, we subtract (2**32) * x from the partial

* product to fix this problem for negative multipliers (see .mul in

* Section 1.

* Because of the way the shift into the partial product is calculated

* (N xor V), this term is automatically removed for the multiplicand,

* so we don’t have to adjust.

*

* But for unsigned multiplies, the high order bit wasn’t a sign bit,

* and the correction is wrong. So for unsigned multiplies where the

* high order bit is one, we end up with xy - (2**32) * y. To fix it

* we add y * (2**32).

*/

tst %o1

bge 1f

nop

add %o4, %o0, %o4

1:

rd %y, %o0 ! return least sig. bits of prod

retl ! leaf-routine return

addcc %o4, %g0, %o1 ! delay slot; return high bits and set

! zero bit appropriately

!

! short multiply

!

mul_shortway:

mulscc %o4, %o1, %o4 ! first iteration of 13

mulscc %o4, %o1, %o4

SPARC International, Inc.

Appendix E — Example Integer Multiplication and Division Routines 211

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4

mulscc %o4, %o1, %o4 ! 12th iteration

mulscc %o4, %g0, %o4 ! last iteration only shifts

rd %y, %o5

sll %o4, 12, %o4 ! left shift partial product by 12 bits

srl %o5, 20, %o5 ! right shift product by 20 bits

or %o5, %o4, %o0 ! merge for true product

!

! The delay instruction (addcc) moves zero into %o1,

! sets the zero condition code, and clears the other conditions.

! This is the equivalent result to a long umultiply which doesn’t overflow.

!

retl ! leaf-routine return

addcc %g0, %g0, %o1

SPARC International, Inc.

212 The SPARC Architecture Manual: Version 8

E.3. Division Integer division implemented in software or microcode is usually done by a
method such as the non-restoring algorithm, which provides one digit of quotient
per step. A W-by-W digit division of radix-B digits is most easily achieved using
2×W-digit arithmetic. This section develops the recommended division algorithm
in steps. Program 6 is the final version.

Program 1 A binary-radix, 16-digit version of this method is illustrated by the C language
function in Program 1, which performs an unsigned division producing the quo-
tient in Q and the remainder in R.

#include <stdio.h>

#include <assert.h>

#define W 16 /* maximum number of bits in the dividend & divisor */

unsigned short

divide(dividend, divisor)

unsigned short dividend, divisor;

{

long int R; /* partial remainder -- need 2*W bits */

unsigned short Q; /* partial quotient */

int iter;

R = dividend;

Q = 0;

for (iter = W; iter >= 0; iter -= 1)

{

assert(((Q*divisor)+R) == dividend);

if (R >= 0)

{

R -= divisor <<iter;

Q += 1<<iter;

}

else /* R < 0 */

{

R += divisor <<iter;

Q -= 1<<iter;

}

}

if (R < 0)

{

R += divisor;

Q -= 1;

}

return Q;

}

SPARC International, Inc.

Appendix E — Example Integer Multiplication and Division Routines 213

Program 2 In the simple form shown above, this method has two drawbacks:

� It requires an accumulator 2×W bits wide.

� It always requires W steps.

These problems may be overcome by estimating the quotient before the actual
division is carried out. This can cut the time required for a division from O(W) to
O(logB (quotient)). Program 2 illustrates how this estimate may be used to
reduce the number of divide steps required and the size of the accumulator.

#include <stdio.h>

#include <assert.h>

#define W 32 /* maximum number of bits in a divisor or dividend */

#define Big_value (unsigned)(1<<(W-2)) /* 2 ˆ (W-1) */

int

estimate_log_quotient(dividend, divisor)

unsigned dividend, divisor;

{

unsigned log_quotient;

for (log_quotient = 0; log_quotient < W; log_quotient += 1)

{

if (((divisor << log_quotient) > Big_value) ||

((divisor << log_quotient) >= dividend))

{

break;

}

}

return log_quotient;

}

unsigned

divide(dividend, divisor)

unsigned dividend, divisor;

{

int R; /* remainder */

unsigned int Q; /* quotient */

int iter;

R = dividend;

Q = 0;

for (iter = estimate_log_quotient(dividend, divisor);

iter >= 0; iter -= 1)

{

assert(((Q*divisor)+R) == dividend);

if (R >= 0)

{

SPARC International, Inc.

214 The SPARC Architecture Manual: Version 8

R -= divisor <<iter;

Q += 1<<iter;

}

else /* R < 0 */

{

R += divisor <<iter;

Q -= 1<<iter;

}

}

if (R < 0)

{

R += divisor;

Q -= 1;

}

return Q;

}

SPARC International, Inc.

Appendix E — Example Integer Multiplication and Division Routines 215

Program 3 Another way to reduce the number of division steps required is to choose a larger
base, B’. This is only feasible if the cost of the radix-B’ inner loop does not
exceed the cost of the radix-B inner loop by more than logB (B’). When B’ =
B N for some integer N, a radix-B’ inner loop can easily be constructed from the
radix-B inner loop by arranging an N-high, B-ary decision tree. Programs 3 and
4 illustrate how this can be done. Program 3 uses N-level recursion to show the
principle, but the overhead of recursion in this example far outweighs the loop
overhead saved by reducing the number of steps required. Program 4 shows how
run-time recursion can be eliminated if N is fixed at two.

#include <stdio.h>

#include <assert.h>

#define W 32 /* bits in a word */

int B, /* number base of division (must be a power of 2) */

N; /* log2(B) */

#define WB (W/N) /* base B digits in a word */

#define Big_value (unsigned)(B<<(WB-2)) /* B ˆ (WB-1) */

int Q, /* partial quotient */

R, /* partial remainder */

V; /* multiple of the divisor */

int

estimate_log_quotient(dividend, divisor)

unsigned dividend, divisor;

{

unsigned log_quotient;

for (log_quotient = 0; log_quotient < WB; log_quotient += 1)

{

if (((divisor << (log_quotient*N)) > Big_value) ||

((divisor << (log_quotient*N)) >= dividend))

{

break;

}

}

return log_quotient;

}

int

compute_digit(level, quotient_digit)

int level, quotient_digit;

{

if (R >= 0)

{

R -= V << level;

quotient_digit += 1<<level;

}

else /* R < 0 */

{

SPARC International, Inc.

216 The SPARC Architecture Manual: Version 8

R += V << level;

quotient_digit -= 1<<level;

}

if (level > 0)

{

return compute_digit(level-1, quotient_digit);

}

else return quotient_digit;

}

unsigned

divide(dividend, divisor)

unsigned dividend, divisor;

{

int iter;

B = (1<<(N));

R = dividend;

Q = 0;

for (iter = estimate_log_quotient(dividend, divisor);

iter >= 0; iter -= 1)

{

assert(((Q*divisor)+R) == dividend);

V = divisor << (iter*N);

Q += compute_digit(N-1, 0) << (iter*N);

}

if (R < 0)

{

R += divisor;

Q -= 1;

}

return Q;

}

SPARC International, Inc.

Appendix E — Example Integer Multiplication and Division Routines 217

Program 4 #include <stdio.h>

#include <assert.h>

#define W 32 /* bits in a word */

#define B 4 /* number base of division (must be a power of 2) */

#define N 2 /* log2(B)*/

#define WB (W/N) /* base B digits in a word */

#define Big_value (unsigned)(B<<(WB-2)) /* B ˆ WB-1 */

int

estimate_log_quotient(dividend, divisor)

unsigned dividend, divisor;

{

unsigned log_quotient;

for (log_quotient = 0; log_quotient < WB; log_quotient += 1)

{

if (((divisor << (log_quotient*N)) > Big_value) ||

((divisor << (log_quotient*N)) >= dividend))

{

break;

}

}

return log_quotient;

}

int

unsigned

divide(dividend, divisor)

unsigned dividend, divisor;

{

int Q, /* partial quotient */

R, /* partial remainder */

V; /* multiple of the divisor */

int iter;

R = dividend;

Q = 0;

for (iter = estimate_log_quotient(dividend, divisor);

iter >= 0; iter -= 1)

{

assert(((Q*divisor)+R) == dividend);

V = divisor << (iter*N);

/* N-deep, B-wide decision tree */

if (R >= 0)

{

R -= V<<1;

SPARC International, Inc.

218 The SPARC Architecture Manual: Version 8

if (R >= 0)

{

R -= V;

Q += 3 <<(N*iter);

}

else /* R < 0 */

{

R += V;

Q += 1 <<(N*iter);

}

}

else /* R < 0 */

{

R += V<<1;

if (R >= 0)

{

R -= V;

Q -= 1 <<(N*iter);

}

else /* R < 0 */

{

R += V;

Q -= 3 <<(N*iter);

}

}

}

if (R < 0)

{

R += divisor;

Q -= 1;

}

return Q;

}

SPARC International, Inc.

Appendix E — Example Integer Multiplication and Division Routines 219

Program 5 At the risk of losing even more clarity, several of the bookkeeping operations can
be optimized away, as shown in Program 5.

#include <stdio.h>

#include <assert.h>

#define W 32 /* bits in a word */

#define B 4 /* number base of division (must be a power of 2) */

#define N 2 /* log2(B)*/

#define WB (W/N) /* base B digits in a word */

#define Big_value (unsigned)(B<<(WB-2)) /* B ˆ WB-1 */

int

unsigned

divide(dividend, divisor)

unsigned dividend, divisor;

{

int Q, /* partial quotient */

R, /* partial remainder */

V; /* multiple of the divisor */

int iter;

R = dividend;

Q = 0;

V = divisor;

for (iter = 0; (V <= Big_value) && (V <= dividend); iter += 1)

{

V <<= N;

}

for (V <<= (N-1); iter >= 0; iter -= 1)

{

Q <<= N;

assert(((Q*(1<<(iter*N))*divisor)+R) == dividend);

/* N-deep, B-wide decision tree */

if (R >= 0)

{

R -= V;

V >>= 1;

if (R >= 0)

{

R -= V;

V >>= 1;

Q += 3 ;

}

else /* R < 0 */

{

R += V;

SPARC International, Inc.

220 The SPARC Architecture Manual: Version 8

V >>= 1;

Q += 1 ;

}

}

else /* R < 0 */

{

R += V;

V >>= 1;

if (R >= 0)

{

R -= V;

V >>= 1;

Q -= 1;

}

else /* R < 0 */

{

R += V;

V >>= 1;

Q -= 3;

}

}

}

if (R < 0)

{

R += divisor;

Q -= 1;

}

return Q;

}

SPARC International, Inc.

Appendix E — Example Integer Multiplication and Division Routines 221

Program 6 Program 6 is the recommended method for software division on SPARC (in the
absence of hardware divide instructions).

The depth of the decision tree — two in the preceding examples — is controlled
by the constant N, and is currently set to three, based on empirical evidence. The
decision tree is not explicitly coded, but defined by the recursive m4 macro
DEVELOP_QUOTIENT_BITS. Other differences include:

� Handling of signed and unsigned operands

� More care taken to avoid overflow for very large quotients or divisors

� Special tests made for division by zero and zero quotient

� Provision for conditional compilation for either division or remaindering

Note that this routine sets the condition codes differently from those set by any of
the SDIV or UDIV instructions.

Assembly language code suitable for input to a SPARC assembler can be
obtained by processing this code with the m4 and cpp preprocessors, in turn.

/*

* Division/Remainder

*

* Input is:

* dividend -- the thing being divided

* divisor -- how many ways to divide it

* Important parameters:

* N -- how many bits per iteration we try to get

* as our current guess: define(N, 3)

* WORDSIZE -- how many bits altogether we’re talking about:

* obviously: define(WORDSIZE, 32)

* A derived constant:

* TOPBITS -- how many bits are in the top "decade" of a number:

* define(TOPBITS, eval(WORDSIZE - N*((WORDSIZE-1)/N)))

* Important variables are:

* Q -- the partial quotient under development -- initially 0

* R -- the remainder so far -- initially == the dividend

* ITER -- number of iterations of the main division loop which will

* be required. Equal to CEIL(lg2(quotient)/N)

* Note that this is log_base_(2ˆN) of the quotient.

* V -- the current comparand -- initially divisor*2ˆ(ITER*N-1)

* Cost:

* current estimate for non-large dividend is

* CEIL(lg2(quotient) / N) x (10 + 7N/2) + C

* a large dividend is one greater than 2ˆ(31-TOPBITS) and takes a

* different path, as the upper bits of the quotient must be developed

* one bit at a time.

* This uses the m4 and cpp macro preprocessors.

*/

#include "sw_trap.h"

define(dividend, ‘%i0’)

define(divisor,‘%i1’)

SPARC International, Inc.

222 The SPARC Architecture Manual: Version 8

define(Q, ‘%i2’)

define(R, ‘%i3’)

define(ITER, ‘%l0’)

define(V, ‘%l1’)

define(SIGN, ‘%l2’)

define(T, ‘%l3’) ! working variable

define(SC,‘%l4’)

/*

* This is the recursive definition of how we develop quotient digits.

* It takes three important parameters:

* $1 -- the current depth, 1<=$1<=N

* $2 -- the current accumulation of quotient bits

* N -- max depth

* We add a new bit to $2 and either recurse or insert the bits in the quotient.

* Dynamic input:

* R -- current remainder

* Q -- current quotient

* V -- current comparand

* cc -- set on current value of R

* Dynamic output:

* R’, Q’, V’, cc’

*/

define(DEVELOP_QUOTIENT_BITS,

‘ !depth $1, accumulated bits $2

bl L.$1.eval(2ˆN+$2)

srl V,1,V

! remainder is nonnegative

subcc R,V,R

ifelse($1, N,

‘ b 9f

add Q, ($2*2+1), Q

’,‘ DEVELOP_QUOTIENT_BITS(incr($1), ‘eval(2*$2+1)’)

’)

L.$1.eval(2ˆN+$2): ! remainder is negative

addcc R,V,R

ifelse($1, N,

‘ b 9f

add Q, ($2*2-1), Q

’,‘ DEVELOP_QUOTIENT_BITS(incr($1), ‘eval(2*$2-1)’)

’)

ifelse($1, 1, ‘9:’)

’)

ifelse(ANSWER, ‘quotient’, ‘

.global .div, .udiv

.udiv: ! UNSIGNED DIVIDE

save %sp,-64,%sp

b divide

mov 0,SIGN ! result always nonnegative

.div: ! SIGNED DIVIDE

save %sp,-64,%sp

orcc divisor,dividend,%g0 ! are either dividend or divisor negative

SPARC International, Inc.

Appendix E — Example Integer Multiplication and Division Routines 223

bge divide ! if not, skip this junk

xor divisor,dividend,SIGN ! record sign of result in sign of SIGN

tst divisor

bge 2f

tst dividend

! divisor < 0

bge divide

neg divisor

2:

! dividend < 0

neg dividend

! FALL THROUGH

’,‘

.global .rem, .urem

.urem: ! UNSIGNED REMAINDER

save %sp,-64,%sp ! do this for debugging

b divide

mov 0,SIGN ! result always nonnegative

.rem:! SIGNED REMAINDER

save %sp,-64,%sp ! do this for debugging

orcc divisor,dividend,%g0 ! are either dividend or divisor negative

bge divide ! if not, skip this junk

mov dividend,SIGN ! record sign of result in sign of SIGN

tst divisor

bge 2f

tst dividend

! divisor < 0

bge divide

neg divisor

2:

! dividend < 0

neg dividend

! FALL THROUGH

’)

divide:

! Compute size of quotient, scale comparand.

orcc divisor,%g0,V ! movcc divisor,V

te ST_DIV0 ! if divisor = 0

mov dividend,R

mov 0,Q

sethi %hi(1<<(WORDSIZE-TOPBITS-1)),T

cmp R,T

blu not_really_big

mov 0,ITER

!

! Here, the dividend is >= 2ˆ(31-N) or so. We must be careful here,

! as our usual N-at-a-shot divide step will cause overflow and havoc.

! The total number of bits in the result here is N*ITER+SC, where

! SC <= N.

! Compute ITER in an unorthodox manner: know we need to Shift V into

SPARC International, Inc.

224 The SPARC Architecture Manual: Version 8

! the top decade: so don’t even bother to compare to R.

1:

cmp V,T

bgeu 3f

mov 1,SC

sll V,N,V

b 1b

inc ITER

!

! Now compute SC

!

2: addcc V,V,V

bcc not_too_big ! bcc not_too_big

add SC,1,SC

!

! We’re here if the divisor overflowed when Shifting.

! This means that R has the high-order bit set.

! Restore V and subtract from R.

sll T,TOPBITS,T ! high order bit

srl V,1,V ! rest of V

add V,T,V

b do_single_div

dec SC

not_too_big:

3: cmp V,R

blu 2b

nop

be do_single_div

nop

! V > R: went too far: back up 1 step

! srl V,1,V

! dec SC

! do single-bit divide steps

!

! We have to be careful here. We know that R >= V, so we can do the

! first divide step without thinking. BUT, the others are conditional,

! and are only done if R >= 0. Because both R and V may have the high-

! order bit set in the first step, just falling into the regular

! division loop will mess up the first time around.

! So we unroll slightly...

do_single_div:

deccc SC

bl end_regular_divide

nop

sub R,V,R

mov 1,Q

b end_single_divloop

nop

single_divloop:

sll Q,1,Q

bl 1f

srl V,1,V

! R >= 0

SPARC International, Inc.

Appendix E — Example Integer Multiplication and Division Routines 225

sub R,V,R

b 2f

inc Q

1: ! R < 0

add R,V,R

dec Q

2:

end_single_divloop:

deccc SC

bge single_divloop

tst R

b end_regular_divide

nop

not_really_big:

1:

sll V,N,V

cmp V,R

bleu 1b

inccc ITER

be got_result

dec ITER

do_regular_divide:

! Do the main division iteration

tst R

! Fall through into divide loop

divloop:

sll Q,N,Q

DEVELOP_QUOTIENT_BITS(1, 0)

end_regular_divide:

deccc ITER

bge divloop

tst R

bge got_result

nop

! non-restoring fixup here

ifelse(ANSWER, ‘quotient’,

‘ dec Q

’,‘ add R,divisor,R

’)

got_result:

tst SIGN

bge 1f

restore

! answer < 0

retl ! leaf-routine return

ifelse(ANSWER, ‘quotient’,

‘ neg %o2,%o0 ! quotient <- -Q

’,‘ neg %o3,%o0 ! remainder <- -R

’)

SPARC International, Inc.

226 The SPARC Architecture Manual: Version 8

1: retl ! leaf-routine return

ifelse(ANSWER, ‘quotient’,

‘ mov %o2,%o0 ! quotient <- Q

’,‘ mov %o3,%o0 ! remainder <- R

’)

SPARC International, Inc.

F��������������������
Opcodes and Condition Codes

This Appendix lists the SPARC instruction opcodes and condition codes.

Table F-1 op[1:0]

op [1:0]
0 1 2 3

See Table F-2 CALL See Table F-3 See Table F-4

Table F-2 op2[2:0] (op=0, empty columns eliminated)

op2 [2:0]
0 2 4 6 7

UNIMP Bicc SETHI FBfcc CBccc
See Table F-7 NOP† See Table F-7 See Table F-7

† rd=0, imm22=0

227 SPARC International, Inc.

228 The SPARC Architecture Manual: Version 8

Table F-3 op3[5:0] (op=2)

op3 [5:4]
0 1 2 3

ADD ADDcc TADDcc WRASR†
0

WRY‡

1 AND ANDcc TSUBcc WRPSR

2 OR ORcc TADDccTV WRWIM

3 XOR XORcc TSUBccTV WRTBR

SUB SUBcc MULScc FPop1
4

See Table F-5

ANDN ANDNcc SLL FPop2
5

See Table F-6

6 ORN ORNcc SRL CPop1

7 XNOR XNORcc SRA CPop2

ADDX ADDXcc RDASR* JMPL
RDY**8

STBAR***

9 RDPSR RETT

UMUL UMULcc RDWIM Ticc
A

See Table F-7

B SMUL SMULcc RDTBR FLUSH

C SUBX SUBXcc SAVE

D RESTORE

E UDIV UDIVcc

F SDIV SDIVcc

op3
[3:0]

† rd ≠ 0
‡ rd = 0
* rs1 ≠ 0
** rs1 = 0
*** rs1 = 15, rd = 0

SPARC International, Inc.

Appendix F — Opcodes and Condition Codes 229

Table F-4 op3[5:0] (op=3)

op3 [5:4]
0 1 2 3

0 LD LDA LDF LDC

1 LDUB LDUBA LDFSR LDCSR

2 LDUH LDUHA

3 LDD LDDA LDDF LDDC

4 ST STA STF STC

5 STB STBA STFSR STCSR

6 STH STHA STDFQ STDCQ

7 STD STDA STDF STDC

8

9 LDSB LDSBA

A LDSH LDSHA

B

C

D LDSTUB LDSTUBA

E

F SWAP SWAPA

op3
[3:0]

SPARC International, Inc.

230 The SPARC Architecture Manual: Version 8

Table F-5 opf[8:0] (op=2, op3=0x34=FPop1, empty rows eliminated)

01 FMOVs

05 FNEGs

09 FABSs

29 FSQRTs

2A FSQRTd

2B FSQRTq

41 FADDs

42 FADDd

43 FADDq

45 FSUBs

46 FSUBd

47 FSUBq

49 FMULs

4A FMULd

4B FMULq

4D FDIVs

4E FDIVd

4F FDIVq

69 FsMULd

6E FdMULq

C4 FiTOs

C6 FdTOs

C7 FqTOs

C8 FiTOd

C9 FsTOd

CB FqTOd

CC FiTOq

CD FsTOq

CE FdTOq

D1 FsTOi

D2 FdTOi

D3 FqTOi

opf
[8:0]

SPARC International, Inc.

Appendix F — Opcodes and Condition Codes 231

Table F-6 opf[8:0] (op=2, op3=0x35=FPop2, empty rows eliminated)

51 FCMPs

52 FCMPd

53 FCMPq

55 FCMPEs

56 FCMPEd

57 FCMPEq

opf
[8:0]

Table F-7 cond[3:0]

Bicc FBfcc CBccc Ticc
op=0 op=0 op=0 op=2
op2=2 op2=6 op2=7 op3=0x3A

0 BN FBN CBN TN

1 BE FBNE CB123 TE

2 BLE FBLG CB12 TLE

3 BL FBUL CB13 TL

4 BLEU FBL CB1 TLEU

5 BCS FBUG CB23 TCS

6 BNEG FBG CB2 TNEG

7 BVS FBU CB3 TVS

8 BA FBA CBA TA

9 BNE FBE CB0 TNE

A BG FBUE CB03 TG

B BGE FBGE CB02 TGE

C BGU FBUGE CB023 TGU

D BCC FBLE CB01 TCC

E BPOS FBULE CB013 TPOS

F BVC FBO CB012 TVC

cond
[3:0]

SPARC International, Inc.

G��������������������
SPARC ABI Software Considerations

The SPARC Application Binary Interface (ABI) is a software specification
developed by SPARC International and AT&T. SPARC International’s SCD 2.0
is a superset of the SPARC ABI. Software that conforms to this specification
will produce the same results on every SPARC ABI-compliant computer system.
This enables the distribution of “shrink-wrapped” software for SPARC systems.

G.1. SPARC International,
Inc.

SPARC International is committed to directing the evolution of SPARC
microprocessor architecture and systems operating environments. This is accom-
plished by establishing and publishing SPARC Compliance Definitions (SCD)
and migration guidelines. SCDs allow system vendor and ISV members to
accelerate development of binary compatible SPARC/UNIX(R) systems and
software.

G.2. SCD 1.0 and SCD 2.0 SCD 1.0 and SCD 2.0 provide openly agreed-upon standard definitions. This
makes it possible for SPARC International members to design compliant pro-
ducts with a minimum time to market.

SCD 1.0 compliance is the formal beginning of migration to SCD 2.0, which is
based on the industry-standard UNIX System V Release 4 operating system from
AT&T. Smooth migration results in many benefits including increased market
opportunity for participating vendors.

The SPARC ABI standard applies to SPARC systems that are designed to exe-
cute wide-distribution software application packages. Other types of SPARC-
based systems (e.g. real-time systems, embedded systems, systems running
proprietary operating systems) may borrow software conventions from the ABI,
but have no need to conform to it.

The ABI specifies for application software, among other things:

· The instruction set that the application may use.

· The system call and general library routines that the application may assume
are available (for dynamic linking) on the system on which it is executed.

· Numerous software conventions, such as data alignment, usage of registers,
stack frame layout, parameter-passing methods, and function call/return
sequences (with which those described in Appendix D, “Software Considera-
tions,” are compatible).

233 SPARC International, Inc.

234 The SPARC Architecture Manual: Version 8

Those interested in the complete specification of the SPARC ABI should refer to
two documents available from Prentice Hall: System V Application Binary Inter-
face 25 (ISBN 0-13-877598-2) and System V Application Binary Interface,
SPARC Processor Supplement (ISBN 0-13-877630-x).

G.3. SPARC ABI Software ABI software, by its nature, is intended to be run on the full range of systems that
are SPARC ABI-compliant. This range may encompass machines with vastly
different performance characteristics, leading to tradeoffs in how code is gen-
erated for such software. This appendix describes factors to be considered when
generating code for SPARC ABI software.

Note that the word “systems” in this appendix refers to SPARC-based computer
systems (counted by installed base in the field, totaling in the hundreds of
thousands), not to SPARC processor implementations (which total one or two
dozen so far).

G.4. Register Usage Register usage in SPARC ABI software is described in System V Application
Binary Interface, SPARC Processor Supplement. Register usage specified in this
document’s Appendix D, “Software Considerations,” (excluding Section D.8,
“Other Register Window Usage Models”) conforms to the ABI. ABI-conformant
software may not use the “alternative” methods of configuring register windows
and of allocating registers within windows mentioned in Section D.8.

G.5. The Memory Stack The stack layout expected in SPARC ABI software is described in System V
Application Binary Interface, SPARC Processor Supplement. The stack-frame
layout specified in this document’s Appendix D, “Software Considerations,” con-
forms to the SPARC ABI.

G.6. Instruction Set The SPARC ABI is based on the full SPARC instruction set, per this version of
the SPARC Architecture manual. An ABI-compliant system correctly executes
any (non-privileged) SPARC instruction in a user application program. Other
than execution speed, it is transparent to the user application program whether
instructions are executed in hardware or trapped and emulated in software.

There is a group of instructions that are relatively new to the SPARC architec-
ture; their frequent use in ABI software should be considered with care. These
instructions are being implemented in hardware in some new SPARC implemen-
tations, although they are emulated in software in some systems currently in the
field26. These instructions are:

· SWAP

· Integer multiply instructions (SMUL, SMULcc, UMUL, UMULcc)

��
25 Note that despite the document title, the ABI only requires a target system to provide a subset of UNIX

System V functionality.
26 This is the case as of mid-1990. It will change over time, as more systems in which these instructions are

implemented in hardware are shipped.

SPARC International, Inc.

Appendix G — SPARC ABI Software Considerations 235

· Integer divide instructions (SDIV, SDIVcc, UDIV, UDIVcc)

· Floating-point square-root instructions (FSQRTs, FSQRTd, FSQRTq)

· FsMULd

· All quad-precision floating-point instructions, including FdMULq

Plus, there is one new SPARC instruction which (correctly) executes as a no-op
on systems currently in the field. On some future systems, it will not be a no-op:

· Store Barrier (STBAR)

Consult Appendix L, “Implementation Characteristics,” to determine which
SPARC implementations support these instructions in hardware, and their
instruction timings.

Programmers who write in SPARC assembly language and designers of SPARC
code generators for compilers explicitly choose which SPARC instructions they
will use. When choosing instructions for use in an ABI program, the tradeoffs
involved in using the above SPARC instructions should be considered.

Note that the presence or absence of these instructions in most SPARC ABI
applications will have little effect on the applications’ performance since
most applications use them infrequently. This section offers recommendations
on how these instructions can be most effectively utilized in current SPARC ABI
applications.

Explicit use of these instructions in ABI code can obtain higher performance
from SPARC machines that implement them in hardware, at the expense of per-
formance degradation on machines that implement them in software. Con-
versely, avoiding use of these instructions will prevent performance degradation
on machines that implement them in software 26, and obtain good but not-quite-
optimal performance from SPARC machines that implement them in hardware.

The history of the new SPARC instructions is described below, along with
recommendations for their use in SPARC ABI software.

SWAP instruction The SWAP instruction was added in Version 7 of the SPARC architecture.
Some systems in the field do not implement this instruction in hardware.

When an atomic synchronization primitive is needed in ABI code, LDSTUB
should be used in preference to SWAP.

SPARC International, Inc.

236 The SPARC Architecture Manual: Version 8

MUL instructions The integer multiply instructions (SMUL, SMULcc, UMUL, UMULcc) are new
in Version 8 of the SPARC architecture. Some SPARC systems in the field emu-
late these instructions in software.

Recommended use of MUL instructions in SPARC ABI programs:

� To obtain good integer multiplication performance across all systems:
Call the multiplication library routines .mul and .umul (which are dynam-
ically linked from the host’s libraries at execution time) for signed and
unsigned multiplication, respectively. On systems with multiplication
implemented in hardware, those routines should make use of the hardware
multiply instructions. On systems with multiplication not implemented in
hardware, those routines should use MULScc to perform efficient stepwise
multiplication. This imposes no performance degradation on most systems
in the field, and only slight degradation (a few cycles per multiplication) for
machines that implement the multiply instructions in hardware.

� In the rare application that is integer-multiply-intensive, for which optimal
performance on systems which implement multiply instructions in hardware
is desired at the cost of performance degradation on most systems:
Use in-line multiply instructions (SMUL, SMULcc, UMUL, and UMULcc).
Such code may test the N or Z condition codes after SMULcc or UMULcc
instructions but should not test the V or C condition codes, as their
specification may change in a future revision to the architecture.

DIV instructions The integer divide instructions (SDIV, SDIVcc, UDIV, UDIVcc) are new in Ver-
sion 8 of the SPARC architecture. Some SPARC systems in the field emulate
these instructions in software.

Recommended use of DIV instructions in SPARC ABI programs:

� To obtain good integer division performance across all systems:
Call the division library routines .div and .udiv (which are dynamically
linked from the host’s libraries at execution time) for signed and unsigned
division, respectively. On systems with division implemented in hardware,
those routines should make use of the hardware divide instructions. On sys-
tems with division not implemented in hardware, those routines should per-
form stepwise division in software. This would impose no performance
degradation on most systems in the field, and only slight degradation (a few
cycles per division) for machines which implement the divide instructions in
hardware.

� In the rare application which is integer-divide-intensive, for which optimal
performance on systems which implement divide instructions in hardware is
desired, at the cost of performance degradation on most systems:
Use in-line divide instructions (SDIV, SDIVcc, UDIV, and UDIVcc).

SPARC International, Inc.

Appendix G — SPARC ABI Software Considerations 237

FSQRTs, FSQRTd
instructions

The single and double-precision floating-point square root instructions (FSQRTs,
FSQRTd) were added in Version 7 of the SPARC architecture. Some SPARC
systems in the field emulate these instructions in software, but most systems
implement them in hardware.

It is recommended that SPARC ABI programs use the FSQRTs and FSQRTd
instructions directly.

FsMULd instruction The floating-point multiply single-to-double instruction (FsMULd) is new in
Version 8 of the SPARC architecture. Some SPARC systems in the field emulate
this instruction in software.

Recommended use of FsMULd instruction in SPARC ABI programs:

� If FsMULd is used infrequently (on a dynamic basis):
Use the FsMULd instruction in-line.

� If FsMULd is used heavily (on a dynamic basis), and reasonable perfor-
mance across all systems is preferred over optimal performance on the
fastest systems:
Convert the operands to double precision in scratch registers, then calculate
the result with the FMULd instruction.
For example,

fsmuld %f20,%f21,%f8
might be replaced by:

fstod %f20,%f0
fstod %f23,%f2
fmuld %f0,%f2,%f8

This provides reasonable performance on machines with hardware support
for FsMULd, while not penalizing those without it with the overhead of trap-
ping and emulating the instructions in supervisor software.

� If FsMULd is used heavily (on a dynamic basis), and optimal performance
on systems which implement FsMULd in hardware is desired at the cost of
performance degradation on most systems:
Use the FsMULd instruction in-line.

Quad-precision floating-point
instructions

The quad-precision floating-point instructions are new in Version 8 of the
SPARC architecture. Most SPARC systems in the field emulate these instruc-
tions in software.

It is recommended that SPARC ABI programs use double-precision floating-
point instructions when execution speed is critical and double precision provides
sufficient accuracy.

When full quad-precision arithmetic is required, the following choices are recom-
mended:

SPARC International, Inc.

238 The SPARC Architecture Manual: Version 8

� To obtain good quad-precision performance across all systems:
Call the quad-precision library routines (which are dynamically linked from
the host’s libraries at execution time). The correspondence between quad-
precision instructions and quad-precision library routines is presented in the
following table. See the AT&T System V Application Binary Interface,
SPARC Processor Supplement document for detailed routine descriptions.

Table G-1 Quad-Precision Instruction - ABI routine Correspondence

SPARC
Instruction(s) Corresponding SPARC ABI routine(s)

FiTOq _Q_itoq
FqTOi _Q_qtoi
FsTOq _Q_stoq
FqTOs _Q_qtos
FdTOq _Q_dtoq
FqTOd _Q_qtod
FSQRTq _Q_sqrt
FADDq _Q_add
FSUBq _Q_sub
FMULq _Q_mul
FdMULq —
FDIVq _Q_div
FCMPq _Q_cmp, _Q_feq, _Q_fne
FCMPEq _Q_cmpe, _Q_fgt, _Q_fge, _Q_flt, _Q_fle
FNEGs + 3 FMOVs _Q_neg
— _Q_utoq
— _Q_qtou

On systems with quad-precision arithmetic implemented in hardware, these
routines can make use of the hardware quad-precision instructions. On sys-
tems with quad-precision arithmetic not implemented in hardware, these
routines emulate quad-precision arithmetic in software. This imposes no
performance degradation on most systems in the field, and only slight degra-
dation (a few cycles per instruction) for machines which implement quad-
precision instructions in hardware.

� In the rare application which uses quad-precision floating-point arithmetic
intensively and for which optimal performance on systems which implement
quad-precision instructions in hardware is desired at the cost of perfor-
mance degradation on most systems:
Use in-line quad-precision floating-point instructions.

Coprocessor instructions By their nature, coprocessor instructions are implementation-dependent. There-
fore, they may not be explicitly used in SPARC ABI application code.

Note that application code may still benefit from the presence of a specialized
coprocessor, because dynamically linked library code on the run-time host sys-
tem may make use of coprocessor instructions.

SPARC International, Inc.

Appendix G — SPARC ABI Software Considerations 239

Read/Write ASR instructions The operation of RDASR and WRASR instructions on ASR registers 1...15 is not
currently defined. The operation of RDASR and WRASR instructions on ASR
registers 16...31 is defined to be implementation-dependent. Therefore, none of
the RDASR or WRASR instructions may be explicitly used in SPARC ABI
application code.

If some of these instructions are supported in a particular SPARC-based system
implementation, dynamically linked ABI library code could make use of these
instructions (transparently to ABI application code), but ABI application code
cannot.

STBAR instruction The STBAR instruction may be used in SPARC ABI software. On existing sys-
tems which implement the Strong Consistency memory model, STBAR
(correctly) executes as a no-op. Since STBAR doesn’t trap when executed on
machines currently in the field, there is no performance penalty for its execution
on those machines.

STBAR instructions are superfluous in SPARC ABI software, since the memory
model for the 1990 SPARC ABI is TSO. See Chapter 6, “Memory Model.”
However, SPARC ABI software intended to execute correctly under both the
TSO and PSO memory models must use STBAR where needed. See Appendix
J, “Programming with the Memory Model.”

G.7. Self-Modifying Code Code which writes into its own instruction space or the instruction space of
another process (e.g. via shared memory) is called “self-modifying code”. For
each word stored in ABI software which may later be executed as an instruction,
a FLUSH instruction must be issued referencing that location after the word is
stored and before it is executed.

Although FLUSH provides support for self-modifying code, the use of self-
modifying code is strongly discouraged. However, some operations (such as
current implementations of dynamic linking) rely upon self-modifying code.

Note that FLUSH may be a time-consuming operation on some implementations.

See Appendix J, “Programming with the Memory Model” and the FLUSH
instruction page in Appendix B for more information.

Note that if a FLUSH instruction causes an invalid-address fault, supervisor
software will handle it; ABI user software will never see a SIGSEGV or SIGBUS
signal from execution of a FLUSH instruction.

G.8. Non-Standard
Floating-Point
Operation

By definition, use of the non-standard mode of floating-point operation by
software will likely produce results which will vary across implementations.
Therefore, ABI-compliant software must not enable it (that is, must not set
FSR.NS to 1 via a LDFSR instruction).

SPARC International, Inc.

240 The SPARC Architecture Manual: Version 8

G.9. Instruction
Scheduling

Instruction scheduling is the process of (re-)ordering instructions in the instruc-
tion stream to improve performance. This function is typically performed in an
optimization phase of compilation.

Any architecturally valid sequence of instructions executes correctly on any
SPARC implementation. However, the performance obtained from a particular
processor may be enhanced (sometimes substantially) by reordering instructions
to take advantage of that processor’s microarchitecture. Such a reordering may
cause a degree of performance degradation on some other implementations.

Use of instruction scheduling strategies that obtain optimal performance on
specific SPARC-based systems, at the expense of other SPARC-based systems,
would be contrary to the spirit of the SPARC ABI. However, there are some
basic instruction scheduling strategies that improve performance across almost
all SPARC implementations, with little or no cost on those that do not benefit
from them.
The most important strategies are:

� Filling Delay Slots
Replace NOP’s in the delay slots of control-transfer instructions with useful
instructions.

� Spacing Out Floating-Point Instructions
Intersperse integer instructions in sequences of floating-point instructions,
where possible, to take advantage of the asynchronous execution of integer
and floating-point instructions in most SPARC implementations.

Secondary strategies which may be helpful include:

� Making Consecutive Instructions Independent
It is preferable for each instruction to be independent of the instruction that
executes immediately before it. Rearrangement of instructions can often
increase the occurrence of consecutive instructions that are independent. It
can be especially helpful to separate instruction pairs where the first instruc-
tion is a load, and the following instruction reads the register that is the des-
tination of the load.

� Avoiding Consecutive Stores
Rearrange code to reduce the incidence of consecutive store operations. On
machines in which the memory system has shallow store buffers, this can
increase throughput.

Note that all instruction scheduling strategies can be made more effective by
code generation and global optimization policies, such as loop unrolling, that
increase the size of basic blocks (that is, reduce the frequency of control
transfers).

SPARC International, Inc.

H��������������������
SPARC Reference MMU Architecture

H.1. Introduction This appendix describes the SPARC Reference MMU Architecture, a memory
management architecture for use with SPARC processors. The architecture is
designed so that single-chip MMU implementations can provide general-purpose
memory management that efficiently supports a large number of processes run-
ning a wide variety of applications.

The Reference MMU Architecture serves as a guideline for system implemen-
tors, describing how a preferred MMU for SPARC-based systems should behave.
Actual Reference MMU implementations may employ different pinouts and dif-
ferent internal organizations. The Reference MMU Architecture primarily
describes (for software) a common architecture for memory management. This
appendix is not a data sheet for hardware engineering purposes, but is a guide to
implementors and users.

One goal of the Reference MMU Architecture is to promote standardization. Use
of a standard MMU architecture by manufacturers will reduce the time taken to
port an operating system to new hardware and reduce the likelihood of introduc-
ing new hardware bugs. The portability of user-level and application programs is
not affected by the MMU design.

H.2. Overview The Reference MMU Architecture can be implemented as a single chip in
CMOS, Bi-CMOS, ECL, or GaAs, or even on the same chip as the CPU in some
technologies. The MMU uses three levels of page tables in main memory to
store full translation information, and page table entries are cached in the MMU
to provide quick translation. Among the features offered by the MMU are:

� 32-bit virtual address

� 36-bit physical address

� Fixed 4K-byte page size

� Support for sparse address spaces with 3-level map

� Support for large linear mappings (4K, 256K, 16M, 4G bytes)

� Support for multiple contexts

� Page-level protections

� Hardware miss processing

241 SPARC International, Inc.

242 The SPARC Architecture Manual: Version 8

The Reference MMU Architecture specifies both the behavior of the MMU
hardware and the organization and contents of the tables in main memory
required to support it.

H.3. Software Architecture A SPARC Reference MMU provides three primary functions:

1) It performs address translation from the virtual addresses of each running
process to physical addresses in main memory. This mapping is done in units
of 4K-byte pages so that, for example, an 8-megabyte process does not need
to be located in a contiguous section of main memory. Any virtual page can
be mapped into any available physical page.

2) It provides memory protection, so a process cannot read or write the address
space of another process. This is necessary for most operating systems to
allow multiple processes to safely reside in physical memory at the same
time.

3) It implements virtual memory. The page tables track which pages are in
main memory; the MMU signals a page fault if a memory reference occurs to
a page not currently resident.

Figure H-1 Block Diagram of System with MMU

CPU
MMU

virtual

address

physical

address

data

Main
Memory

The MMU translates virtual addresses from the CPU into physical addresses, as
shown above in Figure H-1. A 32-bit virtual address is translated to a 36-bit phy-
sical address, providing for a 64-gigabyte physical address space to support large
physical memories and memory mapping of 32-bit busses (for example, VME or
MultiBus II). A physical address is logically composed of an offset into a 4K-
byte page and a Physical Page Number as follows:

Figure H-2 Composition of a Physical Address

Physical Page Number
35 12

Page Offset
11 0

Pages are always aligned on 4K-byte boundaries; hence, the lower-order 12 bits
of a physical address are always the same as the low-order 12 bits of the virtual
address, and do not require translation. For every valid virtual page resident in
memory there is a corresponding Page Table Entry that contains the physical

SPARC International, Inc.

Appendix H — SPARC Reference MMU Architecture 243

page number for that virtual page. Translating a virtual address to a physical
address replaces the virtual page number with the physical page number.

All the address translation information required by the SPARC Reference MMU
resides in physically addressed data structures in main memory. The MMU
fetches translations from these data structures, as required, by accessing main
memory. Mapping a virtual address space is accomplished by up to three levels
of page tables, in order to efficiently support sparse addressing. The first and
second levels of these tables typically (though not necessarily) contain descrip-
tors (called Page Table Descriptors) which point to the next-level tables. A
third-level table entry is always a Page Table Entry (PTE) which points to a phy-
sical page. A first- or second-level entry may also be a PTE. A representation of
the full three levels of mapping is shown below:

Figure H-3 Reference MMU three-level mapping

Page Table Desc.

Root Pointer

Page Table Desc

Level-1 Table

256 Entries

.

.

.

Page Table Desc

Level-2 Table

64 Entries

.

.

.

Page Table Entry

Level-3 Table

64 Entries

.

.

.

The Root Pointer Page Table Descriptor is unique to each context and is found in
the Context Table. See Section H.3.1, “Contexts.”

A virtual address is divided into fields as follows:

Figure H-4 Composition of a Virtual Address

Index 1
31 24

Index 2
23 18

Index 3
17 12

Page Offset
11 0

Each index field provides an offset into the corresponding level of page table. A
full set of tables is rarely required, as the virtual address space is usually sparsely
populated. In some cases, the full three levels of page tables are not required to
obtain the Page Table Entry. This happens when a 256K, 16M, or 4G-byte sec-
tion of linear memory is mapped with a single Page Table Entry. See the
description of Page Table Entries in Section H.3.3 for details.

SPARC International, Inc.

244 The SPARC Architecture Manual: Version 8

CPU memory references would be too slow if each one required following the
three levels of page tables in main memory in order to translate a virtual address
to a physical address. Consequently, Page Table Entries are cached in the
MMU’s Page Descriptor Cache, or PDC (often called a translation lookaside
buffer, or TLB). The cached entries are usually all that is needed to perform a
translation, reducing significantly the need to fetch translation information from
main memory.

SPARC International, Inc.

Appendix H — SPARC Reference MMU Architecture 245

Figure H-5 Block Diagram of Reference MMU

Physical Addr [35:12]

Physical Addr [11:0]
Virtual Address LatchVA[31:0]

Page OffsetVirtual Page #

:
:

Tags
Tags

Context

Page Table Entry n

Page Table Entry 2
Page Table Entry 1
Page Table Entry 0

Address
Virtual

Page Descriptor Cache

Context Register

Context Table Pointer Register

Fault Status Register

Fault Address Register

Control Register

MMU Register File

Memory
Data

CPU
Data

Figure H-5 is a simplified block diagram of the major components of a possible
MMU implementation. The virtual address comes in to the MMU and is latched
in an internal register. It is then compared with the virtual address tags stored in
the PDC. A match against one of the tags indicates that the correct Page Table
Entry is already stored in the MMU, and the physical address is generated
directly.

SPARC International, Inc.

246 The SPARC Architecture Manual: Version 8

If there is no match, miss processing occurs. During miss processing, the MMU
automatically takes over the address and data busses from the CPU, and fetches
Page Table Descriptors until it reaches the needed Page Table Entry, or incurs an
error. That Page Table Entry is then cached in the MMU, translation occurs, and
the original memory request continues from the latched address. Memory access
permissions are checked for each translation; if the requested access violates
those permissions, a trap is generated. If an error occurs, the appropriate status
information is stored in the Fault Status Register and the Fault Address Regsiter,
and a fault is generated to the processor.

Contexts The SPARC Reference MMU can retain translations for several process address
spaces at the same time. This speeds up context switching between processes.
Each address space is identified by a ‘‘context’’ number, which may also be used
by the system to maintain several processes in a virtual cache. The management
of multiple contexts, including the assignment of contexts to processes, the recla-
mation of unused contexts and the reassignment of contexts, is the responsibility
of the memory management software. Context numbers are used to index into
the Context Table in main memory to find the root of the page table hierarchy
(Root Pointer Page Table Descriptor) of Figure H-3 for a process, as follows:

Figure H-6 Reference MMU Context Table

Context Table Ptr.

Context Table Ptr. Register

Level-1 Page Table Desc.

Context Table

.

.

.

At any one time only one address space is active. The current active address
space is identified by its context number. This provides the offset into the Con-
text Table used to retrieve the pointer to the Level-1 Page Table for the address
space.

The size of the context table is implementation-dependent. See the discussion of
the Context Register in the following text.

Page Table Descriptors A Page Table Descriptor (PTD) contains the physical address of a page table, and
defines the format of entries in the Context Table, Level-1 Page Tables, and
Level-2 Page Tables. A PTD is defined as follows:

SPARC International, Inc.

Appendix H — SPARC Reference MMU Architecture 247

Figure H-7 Composition of a Page Table Descriptor

PTP
31 2

ET
1 0

Field definitions:

PTP Page Table Pointer — Physical address of the base of a next-level page
table. The PTP appears on bits 35 through 6 of the physical address bus
during miss processing. The page table pointed to by a PTP must be
aligned on a boundary equal to the size of the page table. The sizes of the
three levels of page tables are summarized below:

Page Table
Level

Size (bytes)
1 1024
2 256
3 256

ET Entry Type — This field differentiates a PTD from a PTE. For a PTD, it
must contain the value 1.

The possible values in the ET field and their meanings are as follows:

ET Entry Type
0 Invalid
1 Page Table Descriptor
2 Page Table Entry
3 Reserved

“Invalid” means that the corresponding range of virtual addresses is not
currently mapped to physical addresses.

Page Table Entry A Page Table Entry (PTE) specifies both the physical address of a page and its
access permissions. A PTE is defined as follows:

Figure H-8 Composition of a Page Table Entry

PPN
31 8

C
7

M
6

R
5

ACC
4 2

ET
1 0

Field definitions:

PPN Physical Page Number — The high-order 24 bits of the 36-bit physical
address of the page. The PPN appears on bits 35 through 12 of the physi-
cal address bus when a translation completes.

SPARC International, Inc.

248 The SPARC Architecture Manual: Version 8

C Cacheable — If this bit is one, the page is cacheable by an instruction
and/or data cache.

Programming Note
All Input/Output (I/O) locations mapped by the MMU should have the C bit in their
corresponding PTEs set to 0.

M Modified — This bit is set to one by the MMU when the page is accessed
for writing (except when the access is via a Reference MMU Pass-
Through ASI. See Appendix I, “Suggested ASI Assignments for SPARC
Systems.”)

R Referenced — This bit is set to one by the MMU when the page is
accessed (except when the access is via a Reference MMU Pass-Through
ASI. See Appendix I, “Suggested ASI Assignments for SPARC Sys-
tems.”)

ACC Access Permissions — These bits indicate whether access to this page is
allowed for the transaction being attempted. The Address Space
Identifier used in an access determines whether it is a data access or an
instruction access, and whether the access is being attempted by user or
supervisor software. The ACC field has the following interpretation:

Accesses Allowed
User access Supervisor access

ACC (ASI = 0x8 or ASI = 0xA) (ASI = 0x9 or ASI = 0xB)
0 Read Only Read Only
1 Read/Write Read/Write
2 Read/Execute Read/Execute
3 Read/Write/Execute Read/Write/Execute
4 Execute Only Execute Only
5 Read Only Read/Write
6 No Access Read/Execute
7 No Access Read/Write/Execute

ET Entry Type — This field differentiates a PTE from a PTD. See Section
H.3.2, “Page Table Descriptors,” above. For a PTE, it must contain the
value 2.

If a PTE is found in the Context Table or a Level-1 or Level-2 Page Table, the
address translation process stops and that PTE is used. Virtual addresses, from
the first virtual address corresponding to the PTE through the last virtual address
corresponding to the PTE, are mapped linearly to physical addresses as specified
by the PPN. The physical address specified by the PPN must be aligned on a
boundary equal to the size of the region mapped by the PTE. For example, given
a virtual address as follows:

SPARC International, Inc.

Appendix H — SPARC Reference MMU Architecture 249

I1
31 24

I2
23 18

I3
17 12

offset
11 0

and given that the I2 entry of the appropriate Level-2 Page Table is a PTE (rather
than a PTD) with a physical page number field containing the value PPN, the
corresponding physical address is the bit-wise or of:

0
35 32

0
31 24

0
23 18

I3
17 12

offset
11 0

and

PPN
35 12

0
11 0

Note that the low-order 6 bits of PPN must all be zeros, to satisfy the alignment
requirement on the region mapped by the PTE.

The sizes of the regions mapped by different levels in the page tables are sum-
marized in the following table:

Table H-1 Size of Region Mapped by MMU, by Page Table Level

Level Mapping Size
3 4 Kilobytes
2 256 Kilobytes
1 16 Megabytes

Root 4 Gigabytes

Implementation Note A Page Table Entry with an ACC field value of 6 or 7 represents a supervisor page. Translating
supervisor addresses is more efficient if the Page Descriptor Cache ignores the context number used
to fetch the PTE when matching cache tags for such references.

Implementation Note The MMU should use one PDC entry for a Level-1 or Level-2 PTE to provide a large linear address
mapping for busses, coprocessors, and kernels without requiring many translation cache entries.

MMU Flush and Probe Model The privileged load and store alternate instructions are used to flush entries from
the MMU’s Page Descriptor Cache (PDC) and to probe for entries in the MMU.
In an alternate address space used for flushing and probing, an address is com-
posed as follows:

Figure H-9 Flush/Probe Address, in Alternate Space

VFPA
31 12

Type
11 8

reserved
7 0

Field definitions:

SPARC International, Inc.

250 The SPARC Architecture Manual: Version 8

VFPA Virtual flush or probe address.

Type The Type field indicates either the object(s) to be flushed from the PDC,
or the object to be probed. Encoding of the Type field is described in
the following table. (Note that Types 5-0xF are ignored. Probe Types
0-3, marked with a dagger in the table, are optional.)

Type Probe Object Flush PDC Object(s)
0 (page) Level-3 entry † Level-3 PTE
1 (segment) Level-2 entry † Level-2 & 3 PTE/PTDs
2 (region) Level-1 entry † Level-1, 2 & 3 PTE/PTDs
3 (context) Level-0 entry † Level-0, 1, 2, & 3 PTE/PTDs
4 (entire) Level-n entry All PTEs/PTDs
5 − 0xF none (reserved) ‡ none (reserved) ‡

† implementation is optional for this probe type.

‡ this probe/flush should be ignored in current MMU implementations.

reserved
This field is reserved and should be supplied as zero by software.

Flush Operations A flush operation removes from the PDC a PTE or PTD that matches the criteria
implied by the Type field 27. A flush is accomplished by executing a store alter-
nate instruction to the appropriate address (given by the VFPA field), with the
appropriate type (given by the Type field), with the appropriate context (given by
the Context register), and with the appropriate address space identifier (ASI),
which is implementation-dependent. The data supplied by the store alternate
instruction is ignored.

A flush operation removes the object(s) specified by the Type field from the
PDC. The following paragraphs delineate the flush criteria. Since a flush opera-
tion in a particular implementation may remove more entries from the PDC than
specified by the Type field, a “precise” flush is defined as one that removes the
minimum number of entries implied by the Type field.

A page, segment, or region flush (Types 0-2) removes a PTE if the PTE’s access
code indicates a supervisor page (PTE.ACC = 6 or 7). A precise page, segment,
or region flush removes a user page (PTE.ACC = 0 through 5) if the PTE’s con-
text tag equals the Context Register. Furthermore, a precise page, segment, or
region flush removes a PTE if the PTE’s address tag equals the corresponding
bits of the VFPA field. Also, a precise page flush removes a PTE if the level tag
indicates that the PTE was fetched from a level-3 page table; a precise segment
flush removes a PTE with a level-2 or 3 tag; and a precise region flush removes a
PTE with a level-1, 2, or 3 tag.

A precise context flush (Type 3) removes a PTE if its context tag equals the Con-
text Register and the PTE’s access code indicates a user page (PTE.ACC = 0-5).
An imprecise context flush may also remove a supervisor entry. The PTE’s
address and level tags are ignored.
��

27 It may remove more than one PTE or PTD, as long as it removes the indicated one.

SPARC International, Inc.

Appendix H — SPARC Reference MMU Architecture 251

An entire flush (Type 4) removes PTEs regardless of the values of their address
tags, context tags, level tags, and ACC codes. In other words, the entire PDC is
flushed.

A PTD is flushed if its context tag equals the Context Register and the level tag
corresponds to the flush type. A precise segment flush removes a PTD with a
Level-2 tag. A precise region flush removes a PTD with a Level-1 or 2 tag. A
precise context flush removes a PTD with a Level-0, 1, or 2 tag. An entire flush
removes all PTDs from the PDC.

The PTE flush match criteria are summarized in the following table.

Table H-2 Page Table Entry Flush Match Criteria

VA[11:8] Flush Type Precise PTE Flush Match Criteria
0 Page ((ACC≥6) or Contexts_equal) and VA[31:12]_equal
1 Segment ((ACC≥6) or Contexts_equal) and VA[31:18]_equal
2 Region ((ACC≥6) or Contexts_equal) and VA[31:24]_equal
3 Context (ACC≤5) and Contexts_equal
4 Entire —

5 − 0xF reserved —

The PTD flush match criteria are summarized in the following table. Note that
these criteria are the same as those for PTE’s, except there are no access code
checks.

Table H-3 Page Table Descriptor Flush Match Criteria

VA[11:8] Flush Type Precise PTD Flush Match Criteria
0 Page Contexts_equal and VA[31:12]_equal
1 Segment Contexts_equal and VA[31:18]_equal
2 Region Contexts_equal and VA[31:24]_equal
3 Context Contexts_equal
4 Entire —

5 − 0xF reserved —

Probe Operations A probe returns an entry from either the PDC or from a page table in main
memory, or generates an error. A probe is accomplished by executing a
privileged load alternate instruction with the appropriate address (given by the
VFPA field), type (given by the Type field), context (given by the Context regis-
ter), and address space identifier (ASI) — the last of which is implementation-
dependent.

Two classes of errors may occur during a probe operation:

· An entry with ET ≠ 1(PTD) is encountered before the level being probed is
reached.

· A memory error occurs. See Section H.5. No memory access exception is
signaled to the processor, but the fault registers are updated.

SPARC International, Inc.

252 The SPARC Architecture Manual: Version 8

If either of the preceding errors occurs, the probe operation returns a zero value.
If the probe operation succeeds, it returns the corresponding entry from a page
table at the level implied by the Type field.

The value returned by a probe operation is specified in the following table. For a
given probe type, the table is read left-to-right. “0” indicates that a zero is
returned, “·” indicates that the page table entry itself is returned, and “⇒” indi-
cates that the next-level page table entry is examined.

Table H-4 Return Value from Reference MMU Probe

If No Memory Errors Occur

Level-0 Level-1 Level-2 Level-3
Entry Type Entry Type Entry Type Entry Type

2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1

PTE res inv PTD PTE res inv PTD PTE res inv PTD PTE res inv PTD

Probe Type

Upon
a
Mem-
ory
Error

0 (page) 0 0 0 0 ⇒ 0 0 0 ⇒ 0 0 0 ⇒ · 0 · 0

1 (segment) 0 0 0 0 ⇒ 0 0 0 ⇒ · 0 · · —

2 (region) 0 0 0 0 ⇒ · 0 · · — —

3 (context) 0 · 0 · · — — —

4 (entire) 0 · 0 0 ⇒ · 0 0 ⇒ · 0 0 ⇒ · 0 0 0

5−0XF (undefined)

Page, segment, and region probes should not update a PTE’s Referenced bit,
although an implementation can set the PTE.R bit for a Type 4 (entire) probe.

Probe types 5−0xF are reserved for future use. They return an undefined value.
Also, the presence of page, segment, region, and context probes is
implementation-dependent; that is, an implementation may not provide these
probe operations. If not implemented, the value returned is undefined.

Implementation Note It is recommended that probe operations check the PDC before walking the page tables in main
memory. Also, it is recommended that a Type 4 (entire) probe bring the accessed PTE into the
PDC. Updating the PDC is not recommended for probe Types 0 through 3.

H.4. Hardware
Architecture

This subsection describes the hardware architecture for the reference MMU.

Accessing MMU Registers Five internal registers are defined in the Reference MMU. The Control Register
contains general MMU control and status flags. The current process identifier is
stored in the Context Register, and a pointer to the base of the context table in
memory is stored in the Context Table Pointer Register. If an MMU fault occurs,
the address causing the fault is placed in the Fault Address Register and the cause
of the fault can be determined from the Fault Status Register. All the internal
MMU registers can be accessed directly by the CPU through peripheral accesses.
The peripheral address map for the MMU is as follows. Note that the least
significant 8 bits of the virtual address, VA[7:0], are unused; software should set
these bits to zero.

SPARC International, Inc.

Appendix H — SPARC Reference MMU Architecture 253

Table H-5 Reference MMU Internal Register Virtual Addresses

VA[31:0] Register
0X000000xx Control Register
0X000001xx Context Table Pointer Register
0X000002xx Context Register
0X000003xx Fault Status Register
0X000004xx Fault Address Register
0X000005xx

to Reserved
0X00000Fxx
0X000010xx

to Unassigned
0XFFFFFFxx

It is intended that the MMU be mapped via an Alternate Address Space of the
CPU. See Appendix I, “Suggested ASI Assignments for SPARC Systems.”
However, the MMU definition only assumes the existence of a chip-select signal
indicating that a peripheral access to the MMU is in progress.

Control Register The MMU Control Register is defined as follows:

Figure H-10 Reference MMU Control Register

IMPL
31 28

VER
27 24

SC
23 8

PSO
7

reserved
6 2

NF
1

E
0

IMPL This field identifies the specific implementation of the MMU. It is
hardwired into the implementation and is read-only.

VER This field identifies a particular version of this MMU implementation,
and is typically a mask number. It is hardwired into the implementation
and is read-only.

SC The System Control bits are implementation-defined. They may be
reflected in a variable number of signals external to the MMU and need
not all be implemented. If a bit is not implemented, it reads as zero and
writes to it are ignored.

PSO The PSO bit controls whether the memory model seen by the processor
is Partial Store Ordering (PSO=1) or Total Store Ordering (PSO=0).

reserved
This field is reserved and must be zero.

NF NF is the “No Fault” bit. When NF = 0, any fault detected by the MMU
causes FSR and FAR to be updated and causes a fault to be generated to
the processor. When NF = 1, a fault on an access to ASI 9 is handled as
when NF = 0; a fault on an access to any other ASI causes FSR and FAR
to be updated but no fault is generated to the processor.

SPARC International, Inc.

254 The SPARC Architecture Manual: Version 8

If a fault on access to an ASI other than 9 occurs while NF = 1, subse-
quently resetting NF from 1 to 0 does not cause a fault to the processor
(even though FSR.FT ≠ 0 at that time).

A change in value of the NF bit takes effect as soon as the bit is written;
a subsequent access to ASI 9 will be evaluated according to the new
value of the NF bit.

E The Enable bit enables or disables the MMU and is defined as:

E bit MMU State
1 Enabled
0 Disabled

When the MMU is disabled:

· All virtual addresses pass through the MMU untranslated and appear as phy-
sical addresses

· The upper 4 of the 36 bits of the physical address are zero

· The MMU indicates that all virtual addresses are non-cacheable

· The E bit reads as 0

On MMU reset, the MMU is disabled and the PSO bit is set to 0.

Context Table Pointer
Register

The Context Table Pointer Register is defined as follows:

Figure H-11 Reference MMU Context Table Pointer Register

Context Table Pointer
31 2

reserved

1 0

The Context Table Pointer points to the Context Table in physical memory. The
table is indexed by the contents of the Context register (see below). The Context
Table Pointer appears on bits 35 through 6 of the physical address bus during the
first fetch occurring during miss processing. The context table pointed to by the
Context Table Pointer must be aligned on a boundary equal to the size of the
table.

For example, if number of bits used in the context register is 8, then the table
must be aligned on a 1024-byte (that is, 28+2-byte) boundary.

The reserved field is reserved and must be zero.

Context Register The Context Register is defined as follows:

SPARC International, Inc.

Appendix H — SPARC Reference MMU Architecture 255

Figure H-12 Reference MMU Context Register

Context Number
31 0

The Context Register defines which of the possible process virtual address spaces
is considered the current address space. Subsequent accesses to memory through
the MMU are translated for the current address space, until the Context Register
is changed. Each MMU implementation may specify a maximum context
number, which must be one less than a power of 2.

Diagnostic Registers A SPARC Reference MMU may provide access to diagnostic registers through
an alternate address space See Appendix I, “Suggested ASI Assignments for
SPARC Systems.” If present, their operation is implementation-dependent; the
following describes a suggested operation.

Accessing an MMU Diagnostic Register reads or writes a PDC entry or performs
a diagnostic PDC hit/miss operation. Suggested decoding of the virtual address
VA[31:0] presented to the MMU follows:

Table H-6 Reference MMU Diagnostic Register Address Decoding

Bits Decode as
VA[31:12] Virtual address
VA[11: 4] PDC entry
VA[3: 2] Register (See Table H-7)

Suggested further decoding of VA[3:2] follows:

Table H-7 Reference MMU Diagnostic Register Selection

VA[3:2] Register

0 D[31:20]: context
D[19: 0]: address tag

1 PTE
2 control bits (e.g.: V, Level, LRU)
3 Load: Start compare in every PDC entry;

if hit, return the PTE; if miss, return 0.
Store: For each PDC entry: if the contents of its

LRU counter is less than the ‘‘stored’’ data
value, increment its counter. Otherwise,
leave the LRU counter unchanged. In any
case, zero the LRU counter of the addressed
PDC entry.

SPARC International, Inc.

256 The SPARC Architecture Manual: Version 8

H.5. Fault Status Register The Fault Status Register provides information on exceptions (faults) issued by
the MMU. Since the CPU is pipelined, several faults may occur before a trap is
taken. The faults are grouped into three classes: instruction access faults, data
access faults and translation table access faults. If another instruction access
fault occurs before the fault status of a previous instruction access fault has been
read by the CPU, the MMU writes the status of the latest fault into the Fault
Status Register, writes the faulting address into the Fault Address Register, and
sets the OW bit (see below) to indicate that the previous fault status has been
lost.

The MMU and CPU must ensure that if multiple data access faults can occur,
only the status of the one taken by the CPU is latched into the Fault Status Regis-
ter. If data fault status overwrites previous instruction fault status, the overwrite
bit (OW) is cleared, since the fault status is represented correctly. An instruction
access fault may not overwrite a data access fault.

A translation table access fault occurs if an MMU page table access causes an
external system error. If a translation table access fault overwrites a previous
instruction or data access fault, the OW bit is cleared. An instruction or data
access fault may not overwrite a translation table access fault.

The MMU Fault Status Register is defined as follows:

Figure H-13 Reference MMU Fault Status Register

reserved
31 18

EBE
17 10

L
9 8

AT
7 5

FT
4 2

FAV
1

OW
0

reserved
This field is reserved and must be zero.

EBE Bits in the External Bus Error field are set when a system error occurs
during a memory access. The meanings of the individual bits are
implementation-dependent. Examples of system errors are: timeout,
uncorrectable error, and parity error. The MMU need not implement all
the bits in EBE. Unimplemented bits read as zeros.

L The Level field is set to the page table level of the entry which caused the
fault. If an external bus error is encountered while fetching a PTE or
PTD, the Level field records the page table level of the page table con-
taining the entry. The Level field is defined as follows:

L Level
0 Entry in Context Table
1 Entry in Level-1 Page Table
2 Entry in Level-2 Page Table
3 Entry in Level-3 Page Table

AT The Access Type field defines the type of access which caused the fault.
(Loads and stores to user/supervisor instruction space can be caused by
load/store alternate instructions with ASI = 8 or 9). The AT field is

SPARC International, Inc.

Appendix H — SPARC Reference MMU Architecture 257

defined as follows:

AT Access Type
0 Load from User Data Space
1 Load from Supervisor Data Space
2 Load/Execute from User Instruction Space
3 Load/Execute from Supervisor Instruction Space
4 Store to User Data Space
5 Store to Supervisor Data Space
6 Store to User Instruction Space
7 Store to Supervisor Instruction Space

FT The Fault Type field defines the type of the current fault. It is defined as fol-
lows:

FT Fault Type
0 None
1 Invalid address error
2 Protection error
3 Privilege violation error
4 Translation error
5 Access bus error
6 Internal error
7 Reserved

Invalid address, protection, and privilege violation errors depend on the Access
Type field of the Fault Status Register and the ACC field of the corresponding
PTE. The errors are set as follows:

FT Value
PTE.V = 1

PTE.ACC =
AT

PTE.V = 0
0 1 2 3 4 5 6 7

0 1 − − − − 2 − 3 3
1 1 − − − − 2 − − −
2 1 2 2 − − − 2 3 3
3 1 2 2 − − − 2 − −
4 1 2 − 2 − 2 2 3 3
5 1 2 − 2 − 2 − 2 −
6 1 2 2 2 − 2 2 3 3
7 1 2 2 2 − 2 2 2 −

A translation error is indicated if an external bus error occurs while the MMU is
fetching an entry from a page table, a PTD is found in a level-3 page table, or a
PTE has ET=3. The L field records the page table level at which the error
occurred, and the EBE field records the type of bus error (if any). Access bus
error is set when an external bus error occurs during memory access that is not a

SPARC International, Inc.

258 The SPARC Architecture Manual: Version 8

page table walk access. The EBE field records the type of bus error.

Internal error indications are set when the MMU detects an internal incon-
sistency. This should be considered a fatal error by software, requiring system
reset.

FAV The Fault Address Valid bit is set to one if the contents of the Fault
Address Register are valid. The Fault Address Register need not be valid
for instruction faults. The Fault Address Register must be valid for data
faults and translation errors.

OW The Overwrite bit is set to one if the Fault Status Register has been writ-
ten more than once by faults of the same class since the last time it was
read. If an instruction access fault occurs and the OW bit is set, system
software must determine the cause by probing the MMU and/or memory.

If a single access causes multiple errors, the faults are recognized in the follow-
ing order (from highest to lowest):

Table H-8 Reference MMU Fault Priorities

Priority Error
1 Internal error
2 Translation error
3 Invalid address error
4 Privilege violation error
5 Protection error
6 Access bus error

The highest priority fault is recorded in the Fault Type field. Reading the Fault
Status Register clears it. Writes to the Fault Status Register are ignored.

H.6. Fault Address
Register

The Fault Address Register is defined as follows:

Figure H-14 Reference MMU Fault Address Register

Fault Address
31 0

The Fault Address Register contains the virtual memory address of the fault
recorded in the Fault Status Register. Fault addresses are overwritten according
to the same priority used for the Fault Status Register. Writes to the Fault
Address Register are ignored.

Implementation Note It is not required that the MMU latch the full address. It need only latch the Virtual Page Number
for which the fault occurred. In this case, the low-order address bits are set to zero.

In the case of a Translation Error, the contents of the Fault Address Register will
be the original virtual memory address for which translation was requested.

Programming Note After a Translation Error, the table can be walked by software to find the entry which triggered the
fault.

SPARC International, Inc.

Appendix H — SPARC Reference MMU Architecture 259

H.7. Operation This subsection describes the operation of the reference MMU.

Reset Upon detection of a reset, the MMU sets the Enable and PSO bits in the Control
Register to zero (that is, the MMU is disabled and Total Store Ordering is in
effect). All other MMU state is unaffected.

Miss Processing
If the MMU does not have the required information to perform a requested trans-
lation in the PDC, it initiates miss processing to retrieve the required Page Table
Entry from the page tables. The retrieved Page Table Entry is then cached in the
MMU, and the MMU completes the permission checking and address translation.

Referenced and Modified Bit
Updates

A successful translation, of any kind, results in the Referenced bit in the Page
Table Entry being examined. If the Referenced bit (R) is zero, the MMU sets the
Referenced bit of both the cached Page Table Entry and the Page Table Entry in
memory to one.

A successful translation of a write operation results in the Modified bit in the
Page Table Entry being examined. If the Modified bit (M) is zero, the MMU sets
the Modified bit of both the cached Page Table Entry and the Page Table Entry in
memory to one.

Implementation Note The MMU must provide signals that make it possible for the Referenced and Modified bits in
memory to be atomically updated with respect to other system accesses to the page tables. In addi-
tion, updating these bits must be synchronous with the access that caused the update.

Specifically, the Modified bit must be set before a store to a location in a page becomes visible.
This applies equally to store, LDSTUB, LDSTUBA, SWAP, and SWAPA instructions.

SPARC International, Inc.

I��������������������
Suggested ASI Assignments for SPARC

Systems

I.1. Introduction The SPARC architecture defines 4 of the 256 address space identifiers: user
instruction, user data, supervisor instruction, and supervisor data. The remaining
alternate spaces — only accessible via the privileged load/store alternate space
instructions — are not explicitly assigned by the SPARC architecture.

This appendix suggests an Address Space Identifier (ASI) assignment for
SPARC-based systems. Its goal is to discourage designers of SPARC-based sys-
tems from partitioning the ASI space into disjointed or overlapping regions that
would lead to incompatible hardware or an unnecessarily large number of operat-
ing system/hardware interfaces. For example, a particular vendor could map its
devices into the upper 4 ASI bits, restricting other companies to the lower 4 bits.

Ideally, all systems with similar architectures should conform to this assignment.
As that may not be practical, these assignments are a suggestion only. However,
the underlying philosophy is that ASIs should not be thoughtlessly consumed. In
particular, half of the ASI space is reserved for future use.

ASIs are assigned herein for MMU operations, cache data/tag read/write opera-
tions and, in the case of a write-back cache, flush operations. Two ASIs have
been selected for systems with memory block-copy and fill operations. The
assignments also include a short description of how each space can be optionally
subdivided.

It is a goal for the Reference MMU assignments that operating system routines
that manipulate the MMU should be able to run properly, without change, on all
systems based upon the Reference MMU.

Since SPARC only handles one fault or trap at a time, systems based on separate
instruction and data caches with separate MMU chips should still present a single
MMU interface to the operating system. Thus, separate alternate spaces have not
been defined for separate instruction and data MMUs (except for diagnostic func-
tions).

When new systems are designed with different functions than suggested below, it
is not mandatory for the designer to assign new spaces for the new functions, par-
ticularly as an operating system cannot reasonably support all possible SPARC
systems. Alternate spaces can be recycled, and assignments within a particular
space can change. For future portability, all systems should decode all 8 ASI
bits.

261 SPARC International, Inc.

262 The SPARC Architecture Manual: Version 8

I.2. ASI Summary The following table summarizes suggested ASI assignments, and the text that
follows discusses each assignment separately. Note that in the case of a separate
or split instruction and data cache system, the following terms apply:

Term Description
Data PDC (TLB) Data-stream MMU functions
Instruction PDC (TLB) Instruction-stream MMU functions
Combined MMU MMU that services both the instruction and data streams
Reserved Reserved for future use
Unassigned ASI that system designers are free to use

SPARC International, Inc.

Appendix I — Suggested ASI Assignments for SPARC Systems 263

Table I-1 Suggested ASI Assignments

ASI Function
0 reserved
1 unassigned
2 unassigned (system registers)
3 MMU flush/probe ‡
4 MMU register ‡
5 MMU diagnostic for instruction PDC (TLB) ‡
6 MMU diagnostic for data or combined-I&D PDC ‡
7 MMU diagnostic for I/O PDC (TLB) ‡
8 user instruction space † ‡
9 supervisor instruction space † ‡
A user data space † ‡
B supervisor data space † ‡
C cache tag for instruction cache
D cache data for instruction cache
E cache tag for data cache or combined-I&D cache
F cache data for data cache or combined-I&D cache

10 flush combined-I&D cache line (page)
11 flush combined-I&D cache line (segment)
12 flush combined-I&D cache line (region)
13 flush combined-I&D cache line (context)
14 flush combined-I&D cache line (user)
15 reserved
16 reserved
17 block-copy
18 flush instruction cache line (page)
19 flush instruction cache line (segment)
1A flush instruction cache line (region)
1B flush instruction cache line (context)
1C flush instruction cache line (user)
1D reserved
1E reserved
1F block-fill

20 − 2F MMU physical address pass−through ‡
30 − 7F unassigned
80 − FF reserved

† Address Space Identifier required by SPARC architecture

‡ Address Space Identifier recognized by the MMU.

SPARC International, Inc.

264 The SPARC Architecture Manual: Version 8

I.3. Detailed Descriptions The following text presents a short summary of the function provided by each
suggested alternate space assignment.

ASI = 0 (reserved) Reserved

This space is reserved and should not be used by the system designer.

ASI = 1 (Unassigned) Unassigned

This space is unassigned and can be used by the system designer.

ASI = 2 (Unassigned sys regs) Unassigned (system registers)

This space can be used to read or write a system status register. The assignments
in this space are specific to a particular implementation.

ASI = 3 (MMU flush/probe) MMU flush/probe

This space is used for a flush or probe operation. Virtual Address bits VA[11:8]
are decoded to determine the type of flush or probe. A flush is caused by a single
STA instruction and a probe by a single LDA instruction. A flush results in the
entire Page Descriptor Cache (PDC) being purged of the specified object.

In a system with separate instruction and data cache PDCs (TLBs), the applicable
PDC should respond to a probe operation. Both PDCs should perform a flush
operation.

An object is flushed if it meets certain comparison criteria. See Appendix H,
“SPARC Reference MMU Architecture,” for more detailed information about
MMU flush and probe operations.

ASI = 4 (MMU registers) MMU registers

This space is used to read or write an internal MMU register, which is selected by
decoding VA[11:8]. In a system with separate instruction and data cache PDC’s,
the applicable PDC should respond to a register read operation. Both PDCs
should perform a register write operation. For example, the Fault Status Regis-
ters should be written to the same value in both PDCs.

Byte, halfword, and doubleword accesses can return undefined data (and should
be flagged as an error). VA[7:0] are ignored.

See Appendix H, “SPARC Reference MMU Architecture,” for further informa-
tion.

SPARC International, Inc.

Appendix I — Suggested ASI Assignments for SPARC Systems 265

ASI = 5 (MMU I diagnostic) MMU diagnostic for Instruction PDC

This space is used to read or write a PDC entry or perform a diagnostic PDC
hit/miss operation in an I-cache’s PDC in a split-cache system. This alternate
space is not to be used by normal supervisor software, only by diagnostic code.
See Appendix H, “SPARC Reference MMU Architecture,” for a suggested
decoding of the virtual address presented to the MMU.

ASI = 6 (MMU D/I&D diag) MMU diagnostic for Data PDC or Combined MMU

This space is used to read or write a PDC entry or perform a diagnostic PDC
hit/miss operation in a D-cache’s PDC in a split-cache system, or in the single
MMU in a combined cache system. This alternate space is not to be used by nor-
mal supervisor software, only diagnostic code. See Appendix H, “SPARC Refer-
ence MMU Architecture,” for a suggested decoding of the virtual address
presented to the MMU.

ASI = 7 (MMU I/O diagnostic) MMU diagnostic for I/O PDC

This space is used to read or write a PDC entry or perform a diagnostic PDC
hit/miss operation in a DMA or I/O PDC. This alternate space is not be used by
normal supervisor software, only by diagnostic code.

ASI = 8 (User I) User instruction

This space is defined and reserved by the SPARC architecture as the address
space in which user instructions are accessed.

ASI = 9 (Supervisor I) Supervisor instruction

This space is defined and reserved by the SPARC architecture as the address
space in which supervisor instructions are accessed.

ASI = 0xA (User D) User data

This space is defined and reserved by the SPARC architecture as the address
space in which user data is accessed.

ASI = 0xB (Supervisor D) Supervisor data

This space is defined and reserved by the SPARC architecture as the address
space in which supervisor data is accessed.

ASI = 0xC (I-Cache tag) Cache tag for instruction cache

This space is used to read or write a tag entry from an I-cache in a split cache
system.

Implementation Note
If the width of the attached data bus does not equal the width of the tag entry, VA[3:2] can be
used to select a tag subfield. Also, VA[31] can be used to select a dual physical address tag.

SPARC International, Inc.

266 The SPARC Architecture Manual: Version 8

ASI = 0xD (I-Cache data) Cache data for instruction cache

This space is used to read or write an I-cache entry in a split-cache system.

ASI = 0xE (D/I&D-Cache tag) Cache tag for data cache or combined I&D cache

This space is used for a cache tag, data PDC or combined MMU. It is used to
read or write a tag entry from a D-cache in a split-cache system, or from a com-
bined cache.

Implementation Note
If the width of the attached data bus does not equal the width of the tag entry, VA[3:2] can be
used to select a tag subfield. Also, VA[31] can be used to select a dual physical address tag.

ASI=0xF (D/I&D-Cache data) Cache data for data cache or combined−−I&D cache

This space is for cache data in a system data PDC or with a combined MMU. It
can be used to read or write a data cache entry from a D-cache in a split-cache
system, or from a combined cache.

ASI = 0x10-0x14 (Flush I&D) Flush I&D cache line; page, segment, region, context and user

These spaces are used to flush single cache lines. A cache line flush is caused by
a single STA instruction to one of these spaces, and results in a single line (possi-
bly across multiple sets) being removed from both the instruction and data
caches, or from the combined cache.

Spaces 0x10-0x14 apply to both the I-cache and the D-cache in a split-cache
system, or to the combined I&D cache in a combined-cache system.

A cache line is flushed if it meets the minimum criteria given in the following
table, where “S” is the supervisor tag bit, “U” = “not S”, “CTX” is a comparison
based on the context register, and VA[31:xx] is a comparison based on the virtual
address tag.

Table I-2 Flush Compare Criteria for ASI’s 0x10 - 0x14 and 0x18 - 0x1C

ASI[2:0] Flush Type Compare Criterion
0 Page (S or CTX) and VA[31:12]
1 Segment (S or CTX) and VA[31:18]
2 Region (S or CTX) and VA[31:24]
3 Context U and CTX
4 User U

5,6 reserved —

ASI = 0x17 (Block copy) Block copy

This space is used for block-copy read and block-copy write operations. A
block-copy operation is a block-copy read, followed by a block-copy write that
moves a source line to a destination line. The choice of instructions (e.g. LDA,
STA, SWAPA) used to accomplish these operations is implementation-
dependent.

SPARC International, Inc.

Appendix I — Suggested ASI Assignments for SPARC Systems 267

The source line for a block-copy read can be either main memory, or a line from
a cache (possibly from a separate D-cache in a split-cache system). The destina-
tion line of a block-copy write is always main memory, although a destination
line in a data cache might need to be invalidated also.

ASI = 0x18 - 0x1C (Flush I) Flush I-cache line; page, segment, region, context and user

These spaces are used for a cache line flush which is caused by a single STA
instruction. A cache line flush results in a single line, possibly across multiple
sets, being removed from the Instruction cache in a split-cache system.

In a split-cache system, spaces 0x18 - 0x1C apply only to an instruction cache.
The type of flush is specified the same as for ASIs 0x10 - 0x14.

Implementation Note
A split cache can be implemented on top of a combined I&D bus. For example, I/O can be
routed through a data cache that is separate from an instruction cache.

ASI = 0x1F (Block fill) Block fill

This space is for a block-fill operation, which is caused by a single instruction
(typically STA or STDA). A “block-fill” causes a line to be written to a given
value in main memory, and either written to that value or invalidated in a data
cache.

ASI = 0x20 - 0x2F (Pass-
through)

MMU physical address pass-through

These 16 spaces can be used to access an arbitrary physical address. They are
particularly useful before the MMU or main memory have been initialized.

The low-order 32 physical address bits are set to the 32 virtual address bits, and
the upper 4 physical bits are set to the low-order 4 bits of the ASI value:
PA[35:32] ← ASI[3:0], PA[31:0] ← VA[31:0] .

Note that when one of these ASI’s are used, the MMU’s Referenced and
Modified bits in the Page Table Entry for the accessed location are not updated.

ASI = 0x30−−0x7F (Unassigned) Unassigned

These spaces are unassigned, and may be used by system designers. Designers
are encouraged to coordinate their use of these spaces through SPARC Interna-
tional.

Implementation Note
Several existing implementations use ASI = 0x36 for a flash I-cache flush and ASI = 0x37 for
a flash D-cache flush. At least one implementation uses ASI = 0x31 for flushing internal
instruction buffers.

ASI = 0x80−−0xFF (Reserved) Reserved

These spaces are reserved, and should not be used by system designers.

SPARC International, Inc.

J��������������������
Programming with the Memory Model

This appendix describes how to program with the SPARC Memory Model. An
intuitive description of the model is provided in Chapter 6, “Memory Model.” A
complete formal specification appears in Appendix K, “Formal Specification of
the Memory Model.” In this section, general guidelines are given first, followed
by specific examples showing how low-level synchronization can be imple-
mented in TSO and PSO.

Note that all ‘‘Code for PSO’’ examples in this appendix will execute correctly
at all times, on all SPARC implementations. ‘‘Code for TSO’’ examples will
execute correctly only on machines that do not implement PSO, or on machines
that implement PSO but have PSO execution mode disabled.

J.1. Memory Operations Programmers access memory via five operations: load, store, LDSTUB, SWAP,
and STBAR. Load copies a value from a location into a register. Store copies a
value from a register into a memory location. LDSTUB and SWAP are atomic
load-store instructions that store a value into a memory location and return the
old value in a register. STBAR ensures that all previous stores have been com-
pleted before subsequent stores and atomic load-stores are executed by memory.

FLUSH is not a memory operation, but it is relevant here in the context of syn-
chronizing stores to instructions. When a processor wants to modify an instruc-
tion at address A, it does a store A followed by a FLUSH A. The FLUSH ensures
that the change made by the store will become visible to the instruction units of
all processors in the system some time later.

J.2. Processors and
Processes

In the SPARC Memory Model, the term “processor” may be replaced systemati-
cally by the term “process” or “thread,” as long as the code for switching
processes or threads is written properly. The correct process switch sequence is
given in Section J.6. If an operating system implements this process switch
sequence, application programmers may ignore the difference between a
process/thread and a processor entirely.

J.3. Portability and
Recommended
Programming Style

Whether a program is portable across various memory models depends on how it
synchronizes access to shared read-write data. Two aspects of a program’s style
are relevant to portability: Good semantics refers to whether the synchronization
primitives chosen and the way in which they are used is such that changing the
memory model does not involve making any changes to the code that uses the

269 SPARC International, Inc.

270 The SPARC Architecture Manual: Version 8

primitives. Good structure refers to whether the code for synchronization is
encapsulated through the use of primitives such that when the memory model is
changed, required changes to the code are confined to the primitives. Good
semantics are a prerequisite for portability, while good structure makes porting
even easier.

Programs that use single-writer-multiple-readers locks to protect all access to
shared read/write data are portable across PSO, TSO, and Strong Consistency.
The code that implements the lock primitives themselves is portable across all
three models only if it is written to run correctly on PSO. If the lock primitives
are collected into a library, then at worst only the library routines need to be
changed. Note that mutual exclusion (mutex) locks are a degenerate type of
single-writer-multiple-readers lock.

Programs that use write locks to protect write accesses but read without locking
are portable across PSO, TSO, and Strong Consistency only if writes to shared
data are separated by STBAR instructions. If the STBAR instructions are omit-
ted, then the code is portable only across TSO and Strong Consistency, but it will
not in general work with PSO. The code that implements the lock primitives is
portable across all three models only if it is written to run correctly on PSO. If
the lock routines are collected into a library, the only possible changes that are
not confined to the library routines are the STBAR instructions needed to
separate writes in user code.

Programs that do synchronization without using single-writer-multiple-readers
locks, write locks or their equivalent are, in general, not portable across PSO,
TSO, and Strong Consistency. More precisely, programs written for PSO work
on TSO or Strong Consistency; programs written for TSO work on Strong Con-
sistency, but may not work on PSO; programs written for Strong Consistency
may not work either on TSO or PSO. Thus programs written for PSO are the
most portable, those written for TSO are less so, and those written for Strong
Consistency are the least portable. This general relationship between the three
models is shown graphically in Figure J-1. Programs written for PSO are
represented by the innermost area, those written for TSO by the next larger
enclosing area, and those written for Strong Consistency by the outermost area.

Figure J-1 Portability relations between PSO, TSO, and Strong Consistency

PSO
TSO

Strong Consistency

SPARC International, Inc.

Appendix J — Programming with the Memory Model 271

The style recommendations may be summarized as follows: Programs should
use single-writer-multiple-readers locks, or their equivalent, when possible. If
write locks must be used, writes should be separated by STBAR instructions.
Other lower-level forms of synchronization (such as Dekker’s algorithm for lock-
ing) should be avoided when possible. When use of such low-level primitives is
unavoidable, it is recommended that the code be written to work on the PSO
model to ensure portability. Additionally, lock primitives should be collected
together into a library and be written for PSO to ensure portability.

J.4. Spin Locks A spin lock is a lock for which the “lock held” condition is handled by busy wait-
ing. Figure J-2 shows how spin locks can be implemented using LDSTUB. A
nonzero value for the lock represents the locked condition, while a value of
zero means that the lock is free. Note that the code busy waits by doing loads to
avoid generating expensive stores to a potentially shared location. The STBAR
in UnLock ensures that pending user stores are completed before the store that
frees the lock.

Figure J-2 Lock and Unlock using LDSTUB

Code for PSO Code for TSO
LockWithLDSTUB(lock) LockWithLDSTUB(lock)
retry: ldstub [lock],%l0 retry: ldstub [lock],%l0

tst %l0 tst %l0
be out be out
nop nop

loop: ldub [lock],%l0 loop: ldub [lock],%l0
tst %l0 tst %l0
bne loop bne loop
nop nop
ba,a retry ba,a retry

out: nop out: nop

UnLockWithLDSTUB(lock) UnLockWithLDSTUB(lock)
stbar stub %g0,[lock]
stub %g0,[lock]

Figure J-3 shows how spin locks can be implemented using SWAP. Again, a
nonzero value for the lock represents the locked condition, while a value of zero
means the lock is free (the advantage of this encoding is that the lock owner’s
name can be kept in the lock). Also, note that the code busy waits by doing
loads, not SWAPs.

SPARC International, Inc.

272 The SPARC Architecture Manual: Version 8

Figure J-3 Lock and Unlock using SWAP

Code for PSO Code for TSO
LockWithSWAP(lock, old) LockWithSWAP(lock, old)
retry: mov -1,%l0 retry: mov -1,%l0

swap [lock],%l0 swap [lock],%l0
tst %l0 tst %l0
be out be out
nop nop

loop: ld [lock],%l0 loop: ld [lock],%l0
tst %l0 tst %l0
bne loop bne loop
nop nop
ba,a retry ba,a retry

out: st %l0,[old] out: st %l0,[old]

UnLockWithSWAP(lock, new) UnLockWithSWAP(lock, new)
ld [new],%l0 ld [new],%l0
stbar st %l0,[lock]
st %l0,[lock]

J.5. Producer-Consumer
Relationship

In a producer-consumer relationship, a producer process generates data and puts
it into a buffer, while a consumer process takes data from the buffer and uses it.
If the buffer is full, the producer process stalls when trying to put data into the
buffer. If the buffer is empty, the consumer process stalls when trying to remove
data.

Figures J-4 and J-5 show the buffer data structure and the producer and consumer
code for PSO and TSO. The code assumes the existence of two procedures Incr-
Head and IncrTail which increment the head and tail pointers of the buffer in a
wraparound manner and return the incremented value. Note that these routines
do not modify the pointers in the buffer.

Figure J-4 Data Structure for Producer and Consumer code

Buffer data structure:

..

.
buffer full condition:

buffer empty condition:

IncrTail(buffer) = bufhead

bufhead = buftail

+12

+8

+4

bufdata

buflast

buftail

bufhead
buffer

SPARC International, Inc.

Appendix J — Programming with the Memory Model 273

Figure J-5 Producer and Consumer code

Register usage:

%i0 and %i1: parameters
%l0 and %l1: local values

%o0: result

Code for PSO Code for TSO
Produce(buffer, data) Produce(buffer, data)

mov %i0,%o0 mov %i0,%o0
call incrTail call IncrTail

full: ld [%i0],%l0 full: ld [%i0],%l0
cmp %l0,%o0 cmp %l0,%o0
be full be full
ld [%i0+4],%l0 ld [%i0+4],%l0
st %i1,[%l0] st %i1,[%l0]
stbar st %o0,[%i0+4]
st %o0,[%i0+4]

Consume(buffer) Consume(buffer)
ld [%i0],%l0 ld [%i0],%l0

empty: ld [%i0+4],%l1 empty: ld [%i0+4],%l1
cmp %l0,%l1 cmp %l0,%l1
be empty be empty
mov %i0,%o0 mov %i0,%o0
call IncrHead call IncrHead
ld [%i0],%l0 ld [%i0],%l0
st %o0,[%i0] st %o0,[%i0]
mov %l0,%i0 mov %l0,%i0

J.6. Process Switch
Sequence

This section provides code that must be used during process or thread switching
to ensure that the memory model as seen by a process or thread is the same as
that seen by a processor. The HeadSequence must be inserted at the beginning
of a process or thread when it starts execution on a processor. The TailSequence
must be inserted at the end of a process or thread when it relinquishes a proces-
sor.

Figure J-6 shows the head and tail sequences. The two sequences refer to a per-
process variable tailDone. The value 0 for tailDone means that the process is
running, while the value -1 (all ones) means that the process has completed its
tail sequence and may be migrated to another processor if the process is runn-
able. The SWAP in the HeadSequence is required to be able to provide a switch-
ing sequence that ensures that the state observed by a process at its source pro-
cessor will also be seen by the process at its destination processor. Note that
since FLUSHes and stores are totally ordered, the head sequence does not need to
do anything special to ensure that FLUSHes performed prior to the switch are
visible at the new processor. Also note that the switch sequence works for
FLUSHes when the new processor is the same as the old processor only because

SPARC International, Inc.

274 The SPARC Architecture Manual: Version 8

there are more than 5 instructions in the head sequence.

Figure J-6 Process or Thread Switch Sequence

Code for PSO Code for TSO
HeadSequence(tailDone) HeadSequence(tailDone)
nrdy: ld [tailDone],%l0 nrdy: ld [tailDone],%l0

cmp %l0,-1 cmp %l0,-1
bne nrdy bne nrdy
mov 0,%l0 mov 0,%l0
swap [tailDone],%l0 swap [tailDone],%l0
cmp %l0,-1 cmp %l0,-1
bne,a nrdy bne,a nrdy

TailSequence(tailDone) TailSequence(tailDone)
mov -1,%l0 mov -1,%10
stbar st %l0,[tailDone]
st %l0,[tailDone]

J.7. Dekker’s Algorithm Dekker’s algorithm is the classical sequence for synchronization entry into a crit-
ical section using just loads and stores. The reason for showing this example
here is to illustrate how one may ensure that a store followed by a load in issuing
order will be executed by the memory system in that order. Dekker’s algorithm
is not a recommended synchronization primitive, because it requires a Strongly
Consistent memory model to work. Dekker’s algorithm (and similar synchroni-
zation sequences) can be coded on PSO and TSO simply by replacing all stores
by SWAPs. The value returned by each SWAP is ignored.

Figure J-7 shows the entry and exit sequences for Dekker’s algorithm. The loca-
tions A and B are used for synchronization; A = 0 means that process P1 is out-
side its critical section, while any other value means that P1 is inside it; similarly,
B = 0 means that P2 is outside its critical section, and any other value means that
P2 is inside it.

SPARC International, Inc.

Appendix J — Programming with the Memory Model 275

Figure J-7 Simplified Dekker’s Algorithm

Code for PSO Code for TSO
P1Entry() P1Entry()

mov -1,%l0 mov -1,%l0
busy: swap [A],%l0 busy: swap [A],%l0

ld [B],%l0 ld [B],%l0
cmp %l0,0 cmp %l0,0
bne,a busy bne,a busy
st %g0,[A] st %g0,[A]

P1Exit() P1Exit()
stbar st %g0,[A]
st %g0,[A]

P2Entry() P2Entry()
mov -1,%l0 mov -1,%l0

busy: swap [B],%l0 busy: swap [B],%l0
ld [A],%l0 ld [A],%l0
cmp %l0,0 cmp %l0,0
bne,a busy bne,a busy
st %g0,[B] st %g0,[B]

P2Exit() P2Exit()
stbar st %g0,[B]
st %g0,[B]

J.8. Code Patching The code patching example illustrates how to modify code that is potentially
being executed at the time of modification. Two common uses of code patching
are in debuggers and dynamic linking.

Code patching involves a modifying process Pm, and one or more target
processes Pt. For simplicity, assume that the sequence to be modified is four
instructions long: the old sequence is (Old1, Old2, Old3, Old4), and the new
sequence is (New1, New2, New3, New4). There are two examples: non-
cooperative modification, in which the changes are made without cooperation
from Pt; and cooperative modification, in which the changes require explicit
cooperation from Pt.

In non-cooperative modification, changes are made in reverse execution order.
The three partially modified sequences (Old1, Old2, Old3, New4), (Old1, Old2,
New3, New4), and (Old1, New2, New3, New4) must be legal sequences for Pt,
in that Pt must do the right thing if it executes any of them. Additionally, none
of the locations to be modified, except the first, may be the target of a branch.
Figure J-8 shows the code for PSO and TSO. The code assumes that %i0 con-
tains the starting address of the area to be patched and %i1, %i2, %i3, %i4 con-
tain New1, New2, New3, and New4.

SPARC International, Inc.

276 The SPARC Architecture Manual: Version 8

Figure J-8 Non-Cooperative Code Patching

Code for PSO Code for TSO
NonCoopPatch(addr, instructions...) NonCoopPatch(addr, instructions...)

st %i4,[%i0+12] st %i4,[%i0+12]
flush %i0+12 flush %i0+12
stbar st %i3,[%i0+8]
st %i3,[%i0+8] flush %i0+8
flush %i0+8 st %i2,[%i0+4]
stbar flush %i0+4
st %i2,[%i0+4] st %i1,[%i0]
flush %i0+4 flush %i0
stbar
st %i1,[%i0]
flush %i0

Note that the FLUSH instructions in the above code do not need to be followed
by 5 delay instructions because the only assumption is that the modifications
done by Pm happen in the correct order “some time later”. This order is
guaranteed even if a 5-instruction delay is not inserted after each flush.

The constraint that all partially modified sequences must be legal is quite restric-
tive. When this constraint cannot be satisfied, non-cooperative code patching
may require the target processor to execute FLUSH instructions. One method of
triggering such FLUSHes would be to send an interrupt to the target processor.

In cooperative code patching, changes to instructions can be made in any order.
When Pm is done with the changes, it writes into a shared variable done to notify
Pt. Pt waits for done to change from 0 to some other value as a signal that the
changes have been completed. Figure J-9 shows the code for PSO and TSO. The
code assumes that %i0 contains the starting address of the area to be patched,
%i1, %i2, %i3, %i4 contain New1, New2, New3, and New4, and %g1 contains
the address of done. The FLUSH instructions in Pt ensure that the instruction
buffer of Pt’s processor is flushed so that the old instructions are not executed.

SPARC International, Inc.

Appendix J — Programming with the Memory Model 277

Figure J-9 Cooperative Code Patching

Code for PSO Code for TSO
CoopPatch(addr, instructions...) CoopPatch(addr, instructions...)

st %i1,[%i0] st %i1,[%i0]
st %i2,[%i0+4] st %i2,[%i0+4]
st %i3,[%i0+8] st %i3,[%i0+8]
st %i4,[%i0+12] st %i4,[%i0+12]
mov -1,%l0 mov -1,%l0
stbar st %l0,[%g1]
st %l0,[%g1]

TargetCode() TargetCode()
wait: ld [%g1],%l0 wait: ld [%g1],%l0

cmp %l0,0 cmp %l0,0
be wait be wait
flush A flush A
flush A+4 flush A+4
flush A+8 flush A+8
flush A+12 flush A+12
nop nop
nop nop
nop nop
nop nop
nop nop

A: Old1 A: Old1
Old2 Old2
Old3 Old3
Old4 Old4
... ...

J.9. Fetch and Add Fetch and Add performs the sequence a = a + b atomically with respect to other
Fetch and Add’s to location a. Two versions of Fetch and Add are shown. The
first uses the routine LockWithLDSTUB described earlier, while the second uses
LockWithSwapOnes, a version of LockWithSwap that uses the encoding all ones
to mean lock held, and any other value to mean lock free. Note that index cannot
have the value -1 since the lock routine uses this value to encode the lock-held
state. The code for PSO and TSO is identical, so only one version is shown for
the two models.

SPARC International, Inc.

278 The SPARC Architecture Manual: Version 8

Figure J-10 Fetch and Add using LDSTUB and SWAP

/*Fetch and Add using LDSTUB*/
int Fetch_And_Add(Index, Increment, Lock)

int *Index;
int Increment;
int *Lock;
{

int old_value;
LockWithLDSTUB(Lock);

old_value = *Index;
*Index = old_value + Increment;

UnlockWithLdstUB(Lock);
return(old_value);

}

/*Fetch and Add using SWAP*/
int Fetch_And_Add(Index,Increment)

int *Index;
int Increment;
{

int old_value;
int new_value;
LockWithSwapOnes(Index,&old_value);

new_value = old_value + Increment;
UnlockWithSwapOnes(Index,&new_value);
return(old_value);

}

LockWithSwapOnes(lock, old)
loop: ld [lock],%l0

cmp %l0,-1
be loop
mov -1,%l0
swap [lock],%l0
cmp %l0,-1
be loop
st %l0,[old]

UnLockWithSwapOnes(lock, new)
ld [new],%l0
stbar
st %l0,[lock]

SPARC International, Inc.

Appendix J — Programming with the Memory Model 279

J.10. Barrier
Synchronization

Barrier Synchronization ensures that each of N processes is blocked until all of
them reach a given state. The point in the flow of control at which this state is
reached is called the Barrier, hence the name Barrier Synchronization. The code
uses the variable Count initialized to N. As each process reaches its desired state,
it decrements Count and waits for Count to reach 0 before proceeding further.
Two versions are shown, one that uses LockWithLDSTUB, and the other that
uses LockWithSwapOnes. The code for PSO and TSO is identical, so only one
version is shown for the two models.

Figure J-11 Barrier Synchronization using LDSTUB and SWAP

/*Barrier Synchronization using LDSTUB*/
Barrier(Count,Lock)

int *Count;
int *Lock;
{

LockWithLDSTUB(Lock);
*Count = *Count - 1;

UnlockWithLdstUB(Lock);
while(*Count > 0) {;/*busy-wait*/}

}

/*Barrier Synchronization using SWAP*/
Barrier(Count)

int *Count;
{

int current_value;
LockWithSwapOnes(Count,¤t_value);

current_value--;
UnlockWithSwapOnes(Count,¤t_value);
while(*Count > 0) { ; /*busy-wait*/ }

}

SPARC International, Inc.

K��������������������
Formal Specification of the Memory

Model

This Appendix provides a formal description of the SPARC Memory Model.
The formal description is more complete and more precise than the intuitive
description in Chapter 6, “Memory Model.” It therefore represents the definitive
specification. Implementations must conform to this model, and programmers
must use this description in the case of ambiguity in the intuitive description.

The formal description specifies an interface between programs and hardware
implementations that captures all information relevant to the functioning of
memory operations. The goal of this specification is to allow programs and
hardware implementations to be developed independently, while still allowing
any program to run on any SPARC implementation. The axiomatic nature of the
specification permits programmers to reason formally about whether critical pro-
gram fragments satisfy desired properties. It also lets hardware designers use for-
mal techniques to determine whether a given implementation conforms to the
memory model.

K.1. Notation Data loads and stores are denoted by L and S , respectively. Atomic load-stores
are denoted by [L ; S], where [] represents atomicity. The instruction STBAR is
denoted by S– , and the instruction FLUSH by F. Instruction fetches are denoted
by IF, and instruction loads by IL . Note that L specifically excludes instruction
loads. Superscripts on L , S , S– , F, IF, and IL refer to processor numbers, while
subscripts on L , S , F, IF, and IL refer to memory locations. S– does not carry
subscripts because conceptually it applies to all memory locations. A #n after
an S refers to the value written by the S . Thus, for example,

Sa
i # 0 denotes a store of 0 to location a by processor P i .

La
i denotes a doubleword load from location a by processor P i .

[La
i ; Sa

i # 1] denotes an atomic load-store of 1 to location a by P i .

S– i denotes an STBAR by processor P i .

In the axioms that follow, L ’s and S ’s refer both to ordinary data loads and
stores and those done as parts of atomic load-stores. The value returned by an L ,
IF, or IL , or stored by an S is denoted by Val[]. Val is not defined for [L ; S]
as a whole, or for S– . Thus,

281 SPARC International, Inc.

282 The SPARC Architecture Manual: Version 8

Val [La
i] denotes the doubleword value returned by La

i .

Val [Sa
i] denotes the doubleword value in location a immediately after Sa

i .

SOp is used as shorthand for S or F. Op is used as shorthand for L , S , or F.
Note that Op specifically does not denote an atomic load-store. Finally,

(Op;)∞ denotes the infinite sequence of Op.

A memory location is a container for a doubleword. Accesses to different bytes,
halfwords, and words of a given doubleword are considered for ordering pur-
poses as accesses to the same location.

Order relationships are fundamental to the formalism, so it is useful to define
order.
A relation → is an order over a set S if it is

(i) transitive (a → b and b → c ⇒ a → c)
(ii) reflexive (a → a)

and (iii) antisymmetric (a → b and b → a ⇒ a = b).
Here a, b, and c are elements of S . The order is total if for all pairs (a, b) in S
either a → b or b → a; otherwise, it is partial.

The formalism uses two types of orders defined over the set of operations
{ L , S , F, IF, IL , S– } :

· A single partial order ≤ called the memory order. This order may be
understood intuitively to conform to the order in which operations are per-
formed by memory in real time. The order is partial because not all opera-
tions can be compared.

· A per-processor total order ;i that denotes the sequence in which processor i
executes instructions. This is called the program order. The order is total
because the instructions corresponding to all L ’s, S ’s, F’s, IF’s, and S– ’s of
processor i are related by ;i . Note that a ; b does not mean that a and b
are necessarily consecutive. Also note that unlike ≤ , this order is not
defined directly over { L , S , F, IF, IL , S– } but over the instructions
corresponding to these operations. Thus, the notation

Sa
i ; S– i

means P i executed Instruction[Sa
i] before it executed Instruction[S– i]. The

superscript on ; is dropped when i is obvious from context.

SPARC International, Inc.

Appendix K — Formal Specification of the Memory Model 283

K.2. Total Store Ordering Total Store Ordering (TSO) is the standard SPARC memory model. All imple-
mentations must support it. Programs written assuming TSO must not set the
PSO mode bit in the MMU control register, because this may result in incorrect
operation.

TSO guarantees that the store, FLUSH, and atomic load-store instructions of all
processors appear to be executed by memory serially in a single order called the
memory order ≤ . It further guarantees that the sequence of these instructions
for each processor i is the same in the orders ;i and ≤ .

The complete semantics of TSO are captured by six axioms: Order, Atomicity,
Termination, Value, LoadOp, and StoreStore. Note that the Value axiom applies
only to those locations that behave like ordinary memory. The semantics of
loads and stores to I/O locations are machine-dependent and therefore not
covered by TSO. However, their ordering is as specified below. Additionally,
loads and stores to I/O locations must be strongly ordered among themselves
(this fact is, of course, not refelcted in the TSO axioms).

Order states that there exists a partial order ≤ over { L , S , F, IF, S– } that is
total for all S ’s and F’s; that is, all S ’s and F’s must appear somewhere in this
order.

(SOpa
i ≤ SOpb

j) \/ (SOpb
j ≤ SOpa

i)

Atomicity states that an atomic load-store issues the load before the store, that
the L part of an [L ; S] appears before S in ≤ , and that between the L and the
S there can be no other S ’s in the memory order. Note that the axiom implies
that the L part of an atomic load-store is totally ordered with respect to SOp’s.

[La
i ; Sa

i] ⇒ (La
i ≤ Sa

i) /\ (\/- SOpb
j : SOpb

j ≤ La
i \/ Sa

i ≤ SOpb
j)

Termination states that all stores and atomic load-stores eventually terminate.
This is formalized by saying that if one processor does an S , and another proces-
sor repeatedly does L ’s to the same location, then there is an L that will be after
the S .

Sa
i /\ (La

j ;)∞ ⇒ –––| an La
j in (La

j ;)∞ such that Sa
i ≤ La

j

Value states that the value of a data load is the value written by the most recent
store to that location. Two terms combine to define the most recent store. The
first corresponds to stores by other processors, while the second corresponds to
stores by the processor that issued the load.

Val[La
i] = Val[Sa

j | Sa
j =

≤
Max [{Sa

k | Sa
k ≤ La

i } ∪ {Sa
i | Sa

i ; La
i }]]

LoadOp states that any operation issued after an L is later in the order ≤ . This
reflects the fact that a processor waits for a load to complete before issuing any
subsequent operation.

La
i ; Opb

i ⇒ La
i ≤ Opb

i

StoreStore states that S ’s and F’s issued by a processor appear in the same order
in ≤ . This reflects the fact that memory executes stores and FLUSHes in the
order in which a processor issued them.

SPARC International, Inc.

284 The SPARC Architecture Manual: Version 8

SOpa
i ; SOpb

i ⇒ SOpa
i ≤ SOpb

i

Figure K-1 shows the intuitive model for comparison with the axiomatic
specification.

Figure K-1 Total Store Ordering Model of Memory

swaps,
ldstubs

stores,stores,

ldstubs
swaps,swaps,

ldstubs

stores,
swaps,
ldstubs

stores,

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Single-Port Memory

. . .

Memory

Port 1 Port 2 Port 3 Port N

loadsloadsloadsloads

Switch

Buffers
Store
FIFO

SPARC International, Inc.

Appendix K — Formal Specification of the Memory Model 285

K.3. Partial Store
Ordering

Partial Store Ordering (PSO) is a performance-enhanced version of TSO which
may be available via the PSO mode bit in the MMU control register. An imple-
mentation is not required to implement PSO, although use of this model is
encouraged in high-performance machines. Programs written assuming PSO
cannot detect any semantic difference between running with the PSO mode bit
set to 1 or 0, although they may perceive significant differences in execution
speed.

PSO guarantees that the store, FLUSH, and atomic load-store instructions of all
processors appear to be executed by the memory serially in the memory order
≤ . It further guarantees that the sequence of two SOp’s issued by any processor
i is the same in the orders ;i and ≤ if the SOp’s are separated by S– in ;i or if
the two SOp’s are to the same location.

The complete semantics of PSO are captured by seven axioms: Order, Atomicity,
Termination, Value, LoadOp, StoreStore, and StoreStoreEq. The first five
axioms are identical to those for TSO, so they are not repeated here. Note that
the Value axiom applies only to those locations that behave like ordinary
memory. The semantics of loads and stores to I/O locations are machine-
dependent and therefore not covered by PSO. However, their ordering is as
specified below. Additionally, loads and stores to I/O locations must be strongly
ordered among themselves (this fact is, of course, not reflected in the PSO
axioms).

StoreStore states that SOp’s separated by S– in the execution order of a proces-
sor appear in the same order in ≤ . This reflects the fact that memory executes
stores and FLUSHes in the same order as a processor issues them only if the pro-
cessor separates them by an S– .

SOpa
i ; S– ; SOpb

i ⇒ SOpa
i ≤ SOpb

i

StoreStoreEq states that S ’s and F’s issued to a given location by a processor
appear in the same order in ≤ . This reflects the fact that memory executes
stores to the same location in the order in which they were issued by a proces-
sor, even if the processor did not separate them by an S– .

SOpa
i ; SOp′a

i ⇒ SOpa
i ≤ SOp′a

i

Figure K-2 shows the intuitive model for comparison with the axiomatic
specification.

SPARC International, Inc.

286 The SPARC Architecture Manual: Version 8

Figure K-2 Partial Store Ordering Model of Memory

swaps,
ldstubs

stores,stores,

ldstubs
swaps,swaps,

ldstubs

stores,
swaps,
ldstubs

stores,

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

SSSS

Single-Port Memory

. . .

Memory

Port 1 Port 2 Port 3 Port N

loadsloadsloadsloads

Switch

Buffers
Store

SPARC International, Inc.

Appendix K — Formal Specification of the Memory Model 287

K.4. FLUSH:
Synchronizing
Instruction Fetches
with Memory
Operations

The FLUSH instruction synchronizes the instruction fetches of the processor
issuing the FLUSH to the loads, stores, and atomic load-stores of that processor,
and forces the instruction fetches of all other processors to observe any store
done to the FLUSH target prior to the FLUSH.

The semantics of FLUSH are expressed by three axioms: IFetchValue, FlushTer-
mination, and IFetchIFetch. In IFetchValue, the symbol “<5>” is used to denote
an arbitrary sequence of 5 or more instructions.

IFetchValue states that the value of an instruction fetch is the value written by
the most recent (S ; F) sequence to that location. Two terms combine to define
the most recent such sequence. The first corresponds to sequences by other pro-
cessors, while the second corresponds to sequences by the processor that issued
the load. Note that in the first set of sequences, the store and the FLUSH may be
issued by different processors. Also note that in the second set of sequences, the
FLUSH must be followed by 5 arbitrary instructions before the instruction fetch
to the FLUSH’s target.

Val[IFa
i] = Val[Sa

j | Sa
j =

≤
Max [{Sa

k | Sa
k ≤ Fa

l ≤ IFa
i } ∪{Sa

i | Sa
i ; Fa

i ; <5>; IFa
i }]]

FlushTermination states that an S ; F sequence done by one processor will
eventually be observed by the instruction fetches of all processors.

(Sa
i ; Fa

i) /\ (IFa
j)∞ ⇒ –––| an IFa

j in (IFa
j)∞ such that Sa

i ≤ IFa
j

IFetchIFetch states that two instruction fetches issued by a processor appear in
the same order in ≤ .

IFa
i ; IFb

i ⇒ IFa
i ≤ IFb

i

Figure K-3 shows the intuitive model for comparison with the axiomatic
specification.

SPARC International, Inc.

288 The SPARC Architecture Manual: Version 8

Figure K-3 Operation of the FLUSH Instruction

IBuf dataIBuf data

..

...

.................

..........................
...
...

...

.............................
...
...

rflushrflushrflush

IBuf NIBuf 3

Processor NProcessor 3

Port 1

Buffer
Store

Single-Port Memory

. . .

Memory

Port 2 Port 3 Port N

Switch

IBuf 2

Processor 2

IBuf data

rflush
FIFO

IBuf data

lflush delay
5-instruction

Processor 1

(executes FLUSH)

IBuf 1

lflush rflush

SPARC International, Inc.

L��������������������
Implementation Characteristics

This appendix discusses implementation-dependent aspects of SPARC chip sets
that are software visible. The appendix covers only IU and FPU implementations
existing before December 1990. MMU implementations and ASI assignments
are not covered. It is divided into three sections: (1) Processor State Register
(PSR) impl and ver field values; (2) Floating-point State Register (FSR) ver field
values; and (3) characteristics and limitations that are specific to the generally
known IU and FPU implementations. Electrical characteristics and the timing
constraints of the various implementations are available from the chip producers
themselves. The third section also summarizes the cycle timing of the integer
instructions, since this can affect the code generated by compilers.

L.1. PSR impl and ver
Values

The Processor State Register’s (PSR) 4-bit PSR_implementation (impl) and 4-bit
PSR_version (ver) fields are defined as “hardwired” values that are established
when an IU implementation is designed and manufactured. A WRPSR instruc-
tion does not change or affect either of these fields.

Historically, a new PSR_implementation value was assigned when an IU imple-
mentation was significantly different from previous implementations. Such a
difference might be due to additional instructions, a new instruction timing, new
pipeline, etc. A new PSR_version value was assigned when a less significant
change was made to the chip, such as a bug fix.

Table L-1 shows the assignment of PSR_implementation and PSR_version
values to the five implementations publicly announced by December 1990. For
the purposes of this appendix, the five implementations are labeled Fujitsu0,
Cypress0, Cypress1, BIT0, and Matsushita0.

Parts that are second-sourced or cross-licensed typically follow the assignment of
the original implementation. Thus, the L64801 and L64811 have the same
PSR_implementation and PSR_version values as the MB86901A and CY7C601,
respectively. Note that the CY7C611 is architecturally equivalent to the
CY7C601, except for pinout differences. The implementation-dependent details
of these chips are listed below.

289 SPARC International, Inc.

290 The SPARC Architecture Manual: Version 8

Table L-1 PSR impl and vers Assignments to Processors

PSR PSR
impl ver Company - Part Number Label Used

0 0 Fujitsu - MB86900/1A & LSIL - L64801 Fujitsu0
1 0,1 Cypress - CY7C601 & LSIL - L64811 Cypress0
1 3 Cypress - CY7C611 Cypress1
2 0 BIT - B5010 BIT0
5 0 Matsushita - MN10501 Matsushita0

The current practice with respect to the assignment of PSR_implementation
values is that a unique value is assigned to one or more sanctioned SPARC
implementors by SPARC International. That value is then applied to all of its
(their) future implementations. (Also, if necessary, a given licensee may request
more than one PSR_implementation value.)

Each implementor or set of implementors, given its PSR_implementation
number, has the freedom to assign the 16 possible PSR_version values as it
deems necessary. PSR_version values can represent radically different IU imple-
mentations, or only minor changes. Note that the PSR_version field, however,
must not be implemented as a general-purpose, read/write field.

Through December 1990, PSR_implementation values have been assigned to
SPARC implementors according to Table L-2.

Table L-2 PSR impl Assignments to SPARC Licensees

PSR impl Implementor
0 Fujitsu Microelectronics, Inc.
1 Cypress Semiconductor Corp. & Ross Technology, Inc.
2 Bipolar Integrated Technology (BIT)
3 LSI Logic Corp. (LSIL)
4 Texas Instruments, Inc. (TI)
5 Matsushita Semiconductor, Inc. & Solbourne Computer, Inc.
6 Philips Corp.
7 Harvest VLSI Design Center, Inc.
8 Systems and Processes Engineering Corporation (SPEC)
9 Weitek

A-0xF reserved

L.2. FSR ver Values In addition to the PSR’s impl and ver fields, the user-accessible Floating-point
State Register (FSR) has a 3-bit FSR_version (ver) field. The FSR_version field
is defined as a “hardwired” value that is established when an FPU implementa-
tion is designed and manufactured. An LDFSR instruction does not change or
affect this field.

FSR_version values are interpreted relative to the IU implementation, given by
the PSR_implementation and PSR_version fields. Thus, the interpretation of a

SPARC International, Inc.

Appendix L — Implementation Characteristics 291

particular FSR_version value depends on which IU implementation is involved.

A new FSR_version value is assigned when an FPU implementation differs from
previous implementations. Such a difference might be due to additional instruc-
tions, new instruction timings, a new pipeline, or less significant changes such as
bug fixes.

Through June, 1990, FSR_version values have been assigned to SPARC imple-
mentors according to Table L-3. Cypress0 and Cypress1 are equivalent in this
table. Note that FSR_version = 7 always implies that there is no FPU hardware
attached to the IU. (The operating system supplies this value when emulating an
STFSR instruction that traps due to the lack of the FPU.) Note that the L64814,
TMS390C602A, and WTL3171 FPU’s are architecturally (and pin-) equivalent
implementations.

Table L-3 FSR ver Assignments

FSR PSR.impl=0 PSR.impl=1 PSR.impl=2 PSR.impl=5
ver (Fujitsu0) (Cypress0/1) (BIT0) (Matsushita0)

0 Fujitsu MB86910 (1-4) LSIL L64812 BIT B5010 MN10501
Weitek WTL1164/5 TI ACT8847 BIT B5110/20

BIT B5210

1 Fujitsu MB86911 (5-6) LSIL L64814 reserved reserved
Weitek WTL1164/5

2 LSIL L64802 TI TMS390- reserved reserved
TI ACT8847 C602A

3 Weitek WTL3170/2 Weitek reserved reserved
WTL3171

Cypress 7C602

4 LSIL/Meiko L64804 reserved reserved reserved

5 reserved reserved reserved reserved

6 reserved reserved reserved reserved

7 No FPU No FPU No FPU No FPU

L.3. Characteristics of
Existing
Implementations

This section discusses how the existing implementations identified in Table L-1
handle some of the implementation-dependent aspects of the architecture. Imple-
mentations are referred to as they were in Table L-1: Fujitsu0, Cypress0,
Cypress1, BIT0, and Matsushita0. This section is arranged according to the par-
ticular implementation-dependent architectural feature.

SPARC International, Inc.

292 The SPARC Architecture Manual: Version 8

Unimplemented Instructions Table L-5 shows which instructions are not implemented in the various IU’s. An
attempt to execute an instruction marked “unimp” in the table will cause an
illegal_instruction trap on that implementation. An attempt to execute an
instruction marked “cp_dis” in the table will cause a coprocessor_disabled trap
on that implementation. Instructions marked “√” in the table are fully imple-
mented in hardware in that implementation.

Table L-4 Instructions Unimplemented in SPARC IUs

Instructions Fujitsu0 Cypress0 Cypress1 BIT0 Matsushita0
SWAP(A) unimp √ √ √ unimp
(U/S)MUL(cc) unimp unimp unimp unimp √
(U/S)DIV(cc) unimp unimp unimp unimp unimp
STDFQ(A) √ √ √ √ √
Coprocessor √ √ cp_dis √ cp_dis

FSQRTs and FSQRTd are not implemented by the Fujitsu MB86910 and
MB86911 (WTL 1164/5), but are implemented by the remaining FPU’s. None
of the FPU implementations implements the quadruple-precision floating-point
instructions, FsMULd, or FdMULq. An attempt to execute an instruction
marked “unimp” in Table L-6 will set FSR.ftt to unimplemented_FPop and cause
an fp_exception trap on that implementation. Instructions marked “√” in the
table are fully implemented in hardware in that implementation.

Table L-5 Instructions Unimplemented in SPARC FPUs

Instruction Fujitsu0 Cypress0,1 BIT0 Matsushita0
FSQRTs, FSQRTd unimp √ √ √
FsMULd, FdMULq unimp unimp unimp unimp
Quad-precision unimp unimp unimp unimp
all other f.p. instructions √ √ √ √

FLUSH Instruction The FLUSH instruction acts as a NOP in the Cypress1 implementation. In the
Fujitsu0 and Cypress0 implementations, FLUSH either acts as a NOP or causes
an illegal_instruction trap, based on a signal from an external pin. In the BIT
implementation, FLUSH either acts as a NOP or causes an illegal_instruction
trap, based on the value of the IFT (Instruction Flush Trap) bit in its XCR regis-
ter. FLUSH always causes an illegal_instruction trap in Matsushita0.

FLUSH does not clear the IU’s pipeline in any of these five implementations.
However, in each implementation the pipeline is clear of pre-FLUSH instructions
by the time 5 instructions subsequent to the FLUSH have executed. See the
FLUSH instruction description in Appendix B.

SPARC International, Inc.

Appendix L — Implementation Characteristics 293

Integer Deferred-Trap Queue None of the existing implementations uses an Integer Deferred-Trap Queue.

Floating-point Deferred-Trap
Queue (FQ) and STDFQ
Instruction

A Floating-point Deferred-Trap Queue (FQ) exists and, except for the number of
entries it may contain, is implemented identically in all five implementations.

The implemented FQ is a queue of doublewords that records the FPops that are
pending completion by the FPU when an fp_exception occurs. After an
fp_exception trap occurs, the first entry in the queue is the address of the FPop
that caused the exception, together with the FPop instruction itself. Any remain-
ing entries in the queue represent FPops that had not finished execution when the
fp_exception trap occurred.

The store floating-point queue instruction (STDFQ) stores the front entry of the
FQ into memory. The address part of the front entry is stored into memory at the
effective address, and the instruction part of the front entry at the effective
address + 4. The queue is then advanced to the next entry, or it becomes empty
(as indicated by the qne bit in the FSR).

FSR_nonstandard_fp The Fujitsu MB86910 and MB86911 (WTL 1164/5) and BIT B5010 imple-
ment the FSR_nonstandard_fp (NS or “fast”) mode bit in the FSR. The
MN10501 implements NS, but ignores it. The other implentations do not imple-
ment FSR.NS .

FPU Exceptions A data_access_exception trap that occurs for a load floating-point instruction
causes the destination f registers to be set to the constant value of all ones.

All five implementations implement deferred fp_exception traps. They delay the
taking of an fp_exception trap until the next floating-point instruction is encoun-
tered in the instruction stream. The FPU implementations can be modeled as
having 3 states: fp_execute, fp_exception_pending, and
fp_exception.

Normally the FPU is in fp_execute state. It moves from fp_execute to
fp_exception_pending when an FPop generates a floating-point excep-
tion. It moves from fp_exception_pending to fp_exception when
the IU attempts to execute any floating-point instruction. At this time it also
loads the FQ with the FPop and its address and generates an fp_exception trap.
A fp_exception trap can only be caused while the FPU is moving from the
fp_exception_pending state to the fp_exception state.

While in fp_exception state, only floating-point store instructions are exe-
cuted (particularly, STDFQ and STFSR), which can not cause an fp_exception
trap. The FPU remains in the fp_exception state until a STDFQ instruction
is executed and the FQ becomes empty. At that time, it returns to the fp_execute
state. If an FPop, floating-point load instruction, or floating-point branch instruc-
tion is executed while the FPU is in fp_exception state, the FPU returns to
fp_exception_pending state and also sets the FSR ftt field to
sequence_error. The instruction that caused the sequence_error is not entered
into the FQ.

SPARC International, Inc.

294 The SPARC Architecture Manual: Version 8

Trap Model and Trap Types None of the five implementations implements an enhanced trap model. They all
implement the default trap model only.

Only BIT0 implements the instruction_access_error, r_register_access_error, and
data_access_error traps. These correspond to a cache parity error on an instruc-
tion access, r register read, and load access, respectively. None of the chips
implement the division_by_zero, data_store_error, unimplemented_FLUSH, or
implementation-dependent exception (0x60-0x7F) traps.

The trap priorities of privileged_instruction and illegal_instruction traps are
reversed in the Fujitsu0 implementation.

The data_access_MMU_miss, instruction_access_MMU_miss, and
watchpoint_detected traps are implemented only by Matsushita0.

Matsushita0 causes error_mode to generate a reset trap with tt = 0x20 instead of
tt = 0x00. In that implementation, the reset trap at tt = 0x0 is caused only by an
external reset.

Memory Model and STBAR
Instruction

All of the five implementations are capable of supporting a Strong Consistency
memory model, depending on system implementation. Existing systems all
implement a Strong Consistency memory model, thus support programs written
assuming either Total (TSO) or Partial Store Ordering (PSO) memory models.
However, none of these implementations has been designed to explicitly support
either TSO or PSO memory systems.

All five implementations treat the store barrier instruction (STBAR) as a RDY
with rd = 0.

Ancillary State Registers None of the five implementations implements any user or privileged ancillary
state registers. A WRASR instruction executed on any of them acts as a WRY
instruction; the rd field is ignored.

Width of Load/Store Effective
Address

Cypress1 only supplies to the memory the low-order 3 bits of the address space
identifier (ASI[2:0]) and the low-order 24 bits of load/store and instruction access
addresses. Matsushita0 supplies only the low-order 7 bits of the address space
identifier (ASI[6:0]). The other four implementations supply the complete 8-bit
ASI and 32-bit effective address to memory.

Number of Windows Fujitsu0 and BIT0 implement 7 register windows. Cypress0, Cypress1, and
Matsushita0 implement 8 register windows.

SPARC International, Inc.

Appendix L — Implementation Characteristics 295

Instruction Timing This section deals only with integer instruction timings, as measured in “cycles”,
or single ticks of an implementation’s clock. These values assume a 0-wait state
cache or memory system. Floating-point instruction timing is beyond the scope
of this appendix.

Fujitsu0 is implemented for an external combined instruction and data
cache/memory. Integer instruction timings are as follows:

Table L-6 Integer Instruction Timings for Fujitsu0 Implementation

Cycles Instructions
1 all integer instructions except those listed below
2 load single, untaken branch, taken Ticc, JMPL, RETT
3 load double, store single, untaken Ticc
4 store double, LDSTUB, SWAP

Cypress0 and Cypress1 are also implemented for an external combined instruc-
tion and data cache/memory. Their integer instruction timings are equivalent to
Fujitsu0 except that an untaken branch costs a single cycle, as follows:

Table L-7 Integer Instruction Timings for Cypress0 and Cypress1 Implementations

Cycles Instructions
1 all integer instructions except those listed below
2 load single, taken Ticc, JMPL, RETT
3 load double, store single, untaken Ticc
4 store double, LDSTUB, SWAP

BIT0 is implemented for an external combined instruction and data
cache/memory with a 64-bit bus, allowing it to normally execute a load single or
load double in a single cycle. There are instruction-sequence-dependent excep-
tions to the following timings which are beyond the scope of this appendix.

Table L-8 Integer Instruction Timings for BIT0 Implementation

Cycles Instructions
1 all integer instructions except those listed below
2 load double, store single, JMPL, RETT
3 store double
5 taken Ticc

SPARC International, Inc.

296 The SPARC Architecture Manual: Version 8

Matsushita0 is implemented with internal, separate instruction and data caches
with 64-bit busses. Note that the 64 bit internal cache busses on Matsushita0
allow loads and stores of any size to normally execute in a single cycle. The
instruction-sequence dependent exceptions to the following timings are beyond
the scope of this appendix.

Table L-9 Integer Instruction Timings for Matsushita0 Implementation

Cycles Instructions
1 all integer instructions except those listed below
2 a store with the [rs1 + rs2] addressing mode
2 RETT, STDFQ, taken Ticc
5 UMUL, UMULcc, SMUL, SMULcc

SPARC International, Inc.

M��������������������
Instruction Set Summary

This appendix provides a summary of the SPARC instruction set. Bold letters
indicate the architectural names of instructions; for example, the architectural
name of the “Floating-point convert from Single TO Double” is FSTOD.

Note that not all possible combinations in this summary map to actual instruc-
tions. For example, there is no “LoaD single Coprocessor Queue” instruction.

· Data Transfer

�
�
� STore

LoaD �
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
� Double

single �
�
�

�
�
� Coprocessor

Floating−point �
�
�

�
�
�
�
� Queue

Status Register
register

�
�
�
�
�

�
�
�
�
�
�
�

�
�
� Double word

word �
�
�

�
�
� Unsigned

Signed �
�
�

�
�
� Halfword

Byte �
�
�

�
�
�
�
�
�
�

�
�
� Alternate

normal �
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
� SWAP

Atomic LoaD−STore Unsigned Byte �
�
�

�
�
� Alternate

normal �
�
�

· Arithmetic & Logical Operations
�
�
� SUBtract

ADD �
�
�

�
�
� eXtended

normal �
�
�

�
�
� and set integer Condition Codes

normal �
�
�

�
�
� Unsigned

Signed �
�
�

�
�
� DIV

MUL �
�
�

�
�
� and set integer Condition Codes

normal �
�
�

�
�
�
�
� XOR

OR
AND

�
�
�
�
�

�
�
� Not second operand

normal �
�
�

�
�
� and set integer Condition Codes

normal �
�
�

Tagged
�
�
� SUBtract

ADD �
�
�

and set integer Condition Codes
�
�
� and Trap on oVerflow

normal �
�
�

Shift
�
�
� Right

Left �
�
�

�
�
� Arithmetic

Logical �
�
�

297 SPARC International, Inc.

298 The SPARC Architecture Manual: Version 8

· Control Transfer

Coprocessor Branch on coprocessor condition codes
Floating−point Branch on floating−point condition codes
Branch on integer condition codes
Trap on integer condition codes
RETurn from Trap
JuMP and Link
CALL

· Miscellaneous

STore BARrier
FLUSH instruction memory
MULtiply Step and set integer Condition Codes
SETHI
No OPeration

�
�
� RESTORE

SAVE �
�
�

register window

�
�
� WRite

ReaD �
�
�

�
�
�
�
�
�
� Window Invalid Mask

Y register
Trap Base Register
Processor Status Register
Ancillary State Register �

�
�
�
�
�
�

UNIMPlemented (illegal) instruction

· Floating-point Operations

Floating-point convert from

�
�
�
�
�
�
�

Quad
Double
Single
Integer

�
�
�
�
�
�
�

TO

�
�
�
�
�
�
�

Quad
Double
Single
Integer

�
�
�
�
�
�
�

Floating-point

�
�
�
�
�
�
�
�
�
�
� Exception

CoMParewith
CoMPare
DIVide
MULtiply
SUBtract
ADD
SQuare RooT

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
� Quad

Double
Single

�
�
�
�
�

Floating-point

�
�
�
�
�
�
� ABSsolute value of Single

NEGate Single
MOVe Single
Double MULtiply to Quad
Single MULtiply to Double �

�
�
�
�
�
�

SPARC International, Inc.

N��������������������
SPARC IEEE 754 Implementation

Recommendations

A number of details in ANSI/IEEE 754 floating-point standard are left to be
defined by implementations, and so are not specified in this document. In order
to promote increased portability among new SPARC implementations of pro-
grams such as instruction set test vectors, the following recommendations are
designed to eliminate many uncertainties, especially with regard to exceptional
situations. These recommendations, perhaps modified slightly in the light of sub-
sequent experience, are intended to be incorporated as requirements in a future
SPARC revision.

N.1. Misaligned floating-
point data registers

The effect of executing an instruction that refers to a misaligned floating-point
register operand (double-precision operand in a register whose number is not 0
mod 2, or quadruple-precision operand in a register whose number is not 0 mod
4) is undefined in Section 4.3, “FPU f Registers.” An fp_exception trap with
FSR.ftt = 6 (invalid_fp_register) should occur in this case.

N.2. Reading an empty FQ The effect of reading an empty floating-point queue is not specified in Chapter 4,
“Registers.” A trap handler which attempts to read such a queue contains a
software error. A sequence_error fp_exception trap occurs in this case.

N.3. Traps inhibit results To summarize what happens when a floating-point trap occurs, as described in
Section 4.4, “FPU Control/Status Registers”, and elsewhere:

· The destination f register is unchanged

· The FSR fcc (floating-point condition codes) field is unchanged

· The FSR aexc (accrued exceptions) field is unchanged

· The FSR cexc (current exceptions) field is unchanged except for
IEEE_754_exceptions; in that case, cexc contains exactly one bit which is 1,
corresponding to the exception that caused the trap

These restrictions are designed to ensure a consistent state for user software.
Instructions causing an fp_exception trap due to unfinished or unimplemented
FPops execute as if by hardware; that a hardware trap was taken to supervisor
software is undetectable by user software except possibly by timing considera-
tions. A user-mode trap handler invoked for an IEEE 754 exception, whether as
a direct result of a hardware IEEE_754_exception or as an indirect result of
supervisor handling of an unfinished_FPop or unimplemented_FPop, can rely on

299 SPARC International, Inc.

300 The SPARC Architecture Manual: Version 8

the following:

· Supervisor software will pass it the address of the instruction which caused
the exception, extracted from a deferred trap queue or elsewhere

· The destination f register is unchanged from its state prior to that
instruction’s execution

· The FSR fcc field is unchanged

· The FSR aexc field is unchanged

· The FSR cexc field contains one bit set to “1” for the exception that caused
the trap

· The FSR ftt, qne, u, and res fields are zero

Supervisor software is responsible for enforcing these requirements if the
hardware trap mechanism does not.

N.4. NaN operand and
result definitions

An untrapped floating-point result can be in a format which is either the same as,
or different from, the format of the source operands. These two cases are
described separately, below.

Untrapped floating-point
result in different format from
operands

F[sdq]TO[sdq], with quiet NaN operand: no exception caused; result is a quiet
NaN. The operand is transformed as follows:

NaN transformation: The most significant bits of the operand fraction are
copied to the most significant bits of the result fraction. When converting to
a narrower format, excess low order bits of the operand fraction are dis-
carded. When converting to a wider format, excess low order bits of the
result fraction are set to 0. The quiet bit (the most significant bit of the result
fraction) is always set to 1, so the NaN transformation always produces a
quiet NaN.

F[sdq]TO[sdq], signaling NaN operand: invalid exception, result is the signaling
NaN operand processed by the NaN transformation above to produce a quiet
NaN.

FCMPE[sdq] with any NaN operand: invalid exception, unordered fcc.

FCMP[sdq] with any signaling NaN operand: invalid exception, unordered fcc.

FCMP[sdq] with any quiet NaN operand but no signaling NaN operand: no
exception, unordered fcc.

Untrapped floating-point
result in same format as
operands

No NaN operand: for an invalid exception such as sqrt(−1.0) or 0.0 ÷ 0.0, the
result is the quiet NaN with sign = 0, exponent = all 1’s, and fraction = all 1’s.
The sign is 0 to distinguish such results from storage initialized to all ‘1’ bits.

One operand, quiet NaN: no exception, result is the quiet NaN operand.

One operand, signaling NaN: invalid exception, result is the signaling NaN with
its quiet bit (most significant bit of fraction field) set to 1.

SPARC International, Inc.

Appendix N — SPARC IEEE 754 Implementation Recommendations 301

Two operands, both quiet: no exception, result is the rs2 (second source)
operand.

Two operands, both signaling: invalid exception, result is the rs2 operand with
the quiet bit set to 1.

Two operands, just one a signaling NaN: invalid exception, result is the signaling
NaN operand with the quiet bit set to 1.

Two operands, neither signaling NaN, just one a quiet NaN: no exception, result
is the quiet NaN operand.

In the following tabular representation of the untrapped results, NaNn means the
NaN in rsn, Q means quiet, S signaling:

rs2 operand
number QNaN2 SNaN2

none IEEE 754 QNaN2 QSNaN2
rs1 number IEEE 754 QNaN2 QSNaN2

operand QNaN1 QNaN1 QNaN2 QSNaN2
SNaN1 QSNaN1 QSNaN1 QSNaN2

QSNaNn means a quiet NaN produced by the NaN transformation on a signal-
ing NaN from rsn; the invalid exception is always indicated. The QNaNn results
in the table never generate an exception, but IEEE 754 specifies a number of
cases of invalid exceptions and QNaN results from operands that are both
numbers.

N.5. Trapped Underflow
definition (UFM=1)

Underflow occurs if the correct unrounded result has magnitude between zero
and the smallest normalized number in the destination format. In terms of IEEE
754, this means “tininess detected before rounding”.

Note that the wrapped exponent results intended to be delivered on trapped
underflows and overflows in IEEE 754 aren’t relevant to SPARC at the
hardware/supervisor levels; if they are created at all, it would be by user software
in a user-mode trap handler.

N.6. Untrapped underflow
definition (UFM=0)

Underflow occurs if the correct unrounded result has magnitude between zero
and the smallest normalized number in the destination format, and the correctly
rounded result in the destination format is inexact; that result may be zero, sub-
normal, or the smallest normalized number. In terms of IEEE 754, this means
“tininess detected before rounding” and “loss of accuracy detected as inexact”.

Note that floating-point overflow is defined to be detected after rounding; the
foregoing underflow definition simplifies hardware implementation and testing.

The following table summarizes what happens when an exact unrounded value
u satisfying

0 ≤ | u | ≤ smallest normalized number
would round, if no trap intervened, to a rounded value r which might be zero,
subnormal, or the smallest normalized value. “UF” means underflow trap (with
ufc set in cexc), “NX” means inexact trap (with nxc set in cexc), “uf” means
untrapped underflow exception (ufc set in cexc and ufa in aexc), and “nx” means

SPARC International, Inc.

302 The SPARC Architecture Manual: Version 8

untrapped inexact exception (nxc set in cexc and nxa in aexc).

underflow trap UFM=1 UFM=0 UFM=0
inexact trap NXM=? NXM=1 NXM=0
r is minimum normal none none none

u = r r is subnormal UF none none
r is zero none none none
r is minimum normal UF NX uf nx

u ≠ r r is subnormal UF NX uf nx
r is zero UF NX uf nx

N.7. Integer overflow
definition

F[sdq]TOi: when a NaN, infinity, large positive argument ≥ 2147483648.0, or
large negative argument ≤ −2147483649.0, is converted to integer, the resulting
exception is invalid. If no trap occurs and the sign bit of the operand is positive
(i.e., is 0), the numerical result is 2147483647. If no trap occurs and the sign bit
of the operand is negative (i.e., is 1), the numerical result is −2147483648.

N.8. Nonstandard mode SPARC implementations are permitted but not encouraged to deviate from
SPARC requirements when the nonstandard mode bit of the FSR is 1. Some
implementations use that bit to provide alternative handling of subnormal
floating-point operands and results that avoids unfinished_FPop traps with conse-
quent poor performance on programs that underflow frequently.

Such traps could be avoided by proper system design. Cache misses in the CPU
cause holds in the FPU, in order for extra cycles to occur to refill the cache, so
that their occurrence is invisible to software and doesn’t degrade performance in
the normal cache hit case. Similarly “subnormal misses” in the FPU can be
avoided by any of several better implementation techniques that avoid causing an
unfinished_FPop trap or degrading performance in the normal case. One way is
to cause subnormal misses in the FPU to hold the CPU, so that operand or result
alignment can take a few extra cycles without any other effect on software.
Another way to avoid extra cycles is to provide extra normalization hardware for
operands and results.

So, the best implementation of nonstandard mode is for it to run identically to the
standard SPARC mode. In such implementations the NS bit of the FSR always
reads as 0, even after a 1 is written to it.

The next-preferred implementation of nonstandard mode is for subnormal
operands and results to behave as outlined below (so that implementations
operate uniformly):

Subnormal operands
In nonstandard mode, operands are replaced by zeros with the same
sign. An inexact exception always arises if no other exception would,
and so traps if NXM=1.

Untrapped subnormal results
In nonstandard mode, operands are replaced by zeros with the same
sign. Underflow and inexact exceptions always arise. In terms of the
previous table:

SPARC International, Inc.

Appendix N — SPARC IEEE 754 Implementation Recommendations 303

underflow trap UFM=1 UFM=0 UFM=0
inexact trap NXM=? NXM=1 NXM=0
r is minimum normal none none none

u = r
r is zero none none none
r is minimum normal UF NX uf nx

u ≠ r
r is zero UF NX uf nx

SPARC International, Inc.

	1. Introduction
	2. Overview
	3. Data Formats
	4. Registers
	4.1. IU r Registers
	4.2. IU Control/Status Registers
	4.3. FPU f registers
	4.4. FPU Control/Status registers
	4.5. CP Registers

	5. Instructions
	6. Memory Model
	6.1. Basic Definitions
	6.2. Total Store Ordering (TSO)
	6.3. Partial Store Ordering (PSO)
	6.4. Mode Control
	6.5. FLUSH

	7. Traps
	7.1. Trap Categories
	7.2. Trap Models
	7.3. Trap Control
	7.4. Trap Identification
	7.5. Trap Definition
	7.6. Exceptions/Interrupt Descriptions

	A. Suggested Assembly Language Syntax
	A.1. Notation Used
	A.2. Syntax Design
	A.3. Synthetic Instructions

	B. Instruction Definitions
	B.1. Load Integer Instructions
	B.2. Load Floating-point Instructions
	B.3. Load Coprocessor Instructions
	B.4. Integer Store Instructions
	B.5. Store Floating-point Instructions
	B.6. Store Coprocessor Instructions
	B.7. Atomic Load-Store Unsigned Byte Instructions
	B.8. SWAP Register with Memory Instruction
	B.9. SETHI Instruction
	B.10. NOP Instruction
	B.11. Logical Instructions
	B.12. Shift Instructions
	B.13. Add Instructions
	B.14. Tagged Add Instructions
	B.15. Subtract Instructions
	B.16. Tagged Subtract Instructions
	B.17. Multiply Step Instruction
	B.18. Multiply Instructions
	B.19. Divide Instructions
	B.20. SAVE and RESTORE Instructions
	B.21. Branch on Integer Condition Codes Instructions
	B.22. Branch on Floating-point Condition Codes Instructions
	B.23. Branch on Coprocessor Condition Codes Instructions
	B.24. Call and Link Instruction
	B.25. Jump and Link Instruction
	B.26. Return from Trap Instruction
	B.27. Trap on Integet Condition Codes Instruction
	B.28. Read State Register Instructions
	B.29. Write State Register Instructions
	B.30. STBAR Instruction
	B.31. Unimplemented Instruction
	B.32. Flush Memory Instruction
	B.33. Floating-point Operate (FPop) Instructions
	B.34. Coprocessor Operate Instructions

	C. ISP Descriptions
	C.1. ISP Notation
	C.2. Processor External Interface Definition
	C.3. Register Field Definition
	C.4. Instruction Field Definition
	C.5. Processor States and Instruction Dispatch
	C.6. Instruction Dispatch
	C.7. Floating-point Exception
	C.8. Traps
	C.9. Instruction Definitions

	D. Software Considerations
	D.1. Registers
	D.2. The Memory Stack
	D.3. Functions Returning Aggregate Values
	D.4. Tagged Arithmetic
	D.5. Leaf Procedure Optimization
	D.6. Example Code
	D.7. Register Allocation Within a Window
	D.8. Other Register Window Usage Models

	E. Example Integer Multiplication and Division Routines
	E.1. Signed Multiplication
	E.2. Unsigned Multiplication
	E.3. Division

	F. Opcodes and Condition Codes
	G. SPARC ABI Software Considerations
	H. SPARC Reference MMU Architecture
	H.1. Introduction
	H.2. Overview
	H.3. Software Architecture
	H.4. Hardware Architecture Accessing MMU Registers
	H.5. Fault Status Register
	H.6. Fault Address Register
	H.7. Operation

	I. Suggested ASI Assignments for SPARC Systems
	I.1. Introduction
	I.2. ASI Summary
	I.3. Detailed Descriptions

	J. Programming with the Memory Model
	J.1. Memory Operations
	J.2. Processors and Processes
	J.3. Portability and Recommended Programming Style
	J.4. Spin Locks
	J.5. Producer-Consumer Relationship
	J.6. Process Switch Sequence
	J.7. Dekker's Algorithm
	J.8. Code Patching
	J.9. Fetch and Add
	J.10. Barrier Syncronization

	K. Formal Specification of the Memory Model
	K.1. Notation
	K.2. Total Store Ordering
	K.3. Partial Store Ordering
	K.4. FLUSH: Synchronizing Instruction Fetches with Memory Operations

	L. Implementation Characteristics
	L.1. PSR impl and ver Values
	L.2. FSR ver Values
	L.3. Charachteristics of Existing Implementations

	M. Instruction Set Summary
	N. SPARC IEEE 754 Implementation Recommendations
	N.1. Misaligned floating-point Data Registers
	N.2. Reading an Empty FQ
	N.3. Traps Inhibit Results
	N.4. NaN Operand and Result Definitions
	N.5. Trapped Underflow Definition (UFM = 1)
	N.6. Untrapped Underflow Definition (UFM = 0)
	N.7. Integer Overflow Definition
	N.8. Nonstandard Mode

