
GRLIB IP Core
GRLIB VHDL IP Core Library

2018 User’s Manual

The most important thing we build is trust

GRIP, Sep 2018, Version 2018.3 www.cobham.com/gaisler

GRLIB IP Core User’s Manual

Sep 2018, Version 2018.3

GRLIB IP Core

Table of contents

1 Introduction.. 6
2 AHB2AHB - Uni-directional AHB/AHB bridge ... 18
3 AHBM2AXI - AHB Master to AXI Adapter ... 36
4 AHB2AXIB - AHB to AXI Bridge .. 43
5 AHBBRIDGE - Bi-directional AHB/AHB bridge... 52
6 AHBCTRL - AMBA AHB controller with plug&play support ... 57
7 AHBJTAG - JTAG Debug Link with AHB Master Interface .. 65
8 AHBRAM - Single-port RAM with AHB interface .. 71
9 AHBDPRAM - Dual-port RAM with AHB interface.. 74
10 AHBROM - Single-port ROM with AHB interface .. 76
11 AHBSTAT - AHB Status Registers.. 79
12 AHBTRACE - AHB Trace buffer .. 84
13 AHBUART- AMBA AHB Serial Debug Interface... 92
14 AMBAMON - AMBA Bus Monitor .. 98
15 APBCTRL - AMBA AHB/APB bridge with plug&play support .. 104
16 APBPS2 - PS/2 host controller with APB interface... 108
17 APBUART - AMBA APB UART Serial Interface... 118
18 APBVGA - VGA controller with APB interface ... 128
19 CAN_OC - GRLIB wrapper for OpenCores CAN Interface core 132
20 CLKGEN - Clock generation... 151
21 DDRSPA - 16-, 32- and 64-bit DDR266 Controller .. 174
22 DDR2SPA - 16-, 32- and 64-bit Single-Port Asynchronous DDR2 Controller 188
23 DIV32 - Signed/unsigned 64/32 divider module ... 207
24 DSU3 - LEON3 Hardware Debug Support Unit ... 210
25 DSU4 - LEON4 Hardware Debug Support Unit ... 226
26 FTAHBRAM - On-chip SRAM with EDAC and AHB interface 244
27 FTMCTRL - 8/16/32-bit Memory Controller with EDAC ... 251
28 FTSDCTRL - 32/64-bit PC133 SDRAM Controller with EDAC 282
29 FTSRCTRL - Fault Tolerant 32-bit PROM/SRAM/IO Controller 295
30 FTSRCTRL8 - 8-bit SRAM/16-bit IO Memory Controller with EDAC 314
31 GPTIMER - General Purpose Timer Unit ... 329
32 GR1553B - MIL-STD-1553B / AS15531 Interface... 338
33 GRTIMER - General Purpose Timer Unit ... 380
34 GRACECTRL - AMBA System ACE Interface Controller ... 381
GRIP, Sep 2018, Version 2018.3 2 www.cobham.com/gaisler

GRLIB IP Core

35 GRAES - Advanced Encryption Standard ... 386
36 GRAES_DMA - Advanced Encryption Standard with DMA.. 392
37 GRCAN - CAN 2.0 Controller with DMA.. 401
38 GRCANFD - CAN Flexible Data-Rate Controller .. 425
39 GRCLKGATE / GRCLKGATE2X - Clock gating unit ... 453
40 GRDMAC - DMA Controller with internal AHB/APB bridge ... 460
41 GRECC - Elliptic Curve Cryptography ... 481
42 GRETH - Ethernet Media Access Controller (MAC) with EDCL support 496
43 GRETH_GBIT - Gigabit Ethernet Media Access Controller (MAC) w. EDCL.................. 516
44 GRFIFO - FIFO Interface .. 538
45 GRADCDAC - ADC / DAC Interface... 562
46 GRFPU - High-performance IEEE-754 Floating-point unit.. 575
47 GRFPC - GRFPU Control Unit ... 582
48 GRFPU Lite - IEEE-754 Floating-Point Unit.. 584
49 GRLFPC - GRFPU Lite Floating-point unit Controller .. 587
50 GRGPIO - General Purpose I/O Port... 589
51 GRGPREG - General Purpose Register... 600
52 GRIOMMU - AHB/AHB bridge with access protection and address translation 603
53 GRPCI2 - 32-bit PCI(Initiator/Target) / AHB(Master/Slave) bridge................................... 648
54 GRPULSE - General Purpose Input Output .. 677
55 GRPWM - Pulse Width Modulation Generator ... 684
56 GRRT - MIL-STD-1553B / AS15531 Remote Terminal Back-End.................................... 697
57 GRSPW - SpaceWire codec with AHB host Interface and RMAP target............................ 704
58 GRSPW2 - SpaceWire codec with AHB host Interface and RMAP target.......................... 748
59 GRSPW2_GEN - GRSPW2 wrapper with Std_Logic interface.. 821
60 GRSPW2_PHY - GRSPW2 Receiver Physical Interface.. 828
61 GRSPW_CODEC - SpaceWire encoder-decoder .. 834
62 GRSPW_CODEC_GEN - GRSPW_CODEC wrapper with Std_Logic interface............... 852
63 GRSPWROUTER - SpaceWire router... 859
64 SPWTDP - SpaceWire - Time Distribution Protocol... 916
65 GRSPFI_CODEC - SpaceFibre encoder/decoder.. 947
66 GRSRIO - Serial RapidIO endpoint with AHB or AXI4 bus master interface.................... 961
67 GRSYSMON - AMBA Wrapper for Xilinx System Monitor .. 1017
68 GRUSBDC - USB Device controller... 1025
69 GRUSB_DCL - USB Debug Communication Link .. 1051
GRIP, Sep 2018, Version 2018.3 3 www.cobham.com/gaisler

GRLIB IP Core

70 GRUSBHC - USB 2.0 Host Controller.. 1058
71 GRVERSION - Version and Revision information register... 1075
72 I2C2AHB - I2C to AHB bridge ... 1077
73 I2CMST - I2C-master .. 1087
74 I2CSLV - I2C slave .. 1098
75 IRQMP - Multiprocessor Interrupt Controller ... 1106
76 IRQ(A)MP - Multiprocessor Interrupt Controller with extended ASMP support 1116
77 L2C - Level 2 Cache controller.. 1131
78 L3STAT - LEON3 Statistics Unit .. 1155
79 L4STAT - LEON4 Statistics Unit .. 1163
80 LEON_DSU_STAT_BASE - LEON3/4 SUBSYSTEM.. 1171
81 LEON3/FT - High-performance SPARC V8 32-bit Processor .. 1177
82 LEON4 - High-performance SPARC V8 32-bit Processor.. 1226
83 LOGAN - On-chip Logic Analyzer ... 1270
84 MCTRL - Combined PROM/IO/SRAM/SDRAM Memory Controller 1277
85 MEMSCRUB - AHB Memory Scrubber and Status Register ... 1297
86 MMA - Memory Mapped AMBA bridge... 1308
87 MUL32 - Signed/unsigned 32x32 multiplier module .. 1313
88 MULTLIB - High-performance multipliers ... 1317
89 NANDFCTRL - NAND Flash Memory Controller ... 1319
90 PHY - Ethernet PHY simulation model ... 1344
91 RGMII - Reduced Ethernet Media Access Controller ... 1347
92 REGFILE_3P 3-port RAM generator (2 read, 1 write) ... 1357
93 RSTGEN - Reset generation .. 1359
94 GR(2^4)(68, 60, 8, T=1) - QEC/QED error correction code encoder/decoder.................. 1363
95 RS(24, 16, 8, E=1) - Reed-Solomon encoder/decoder... 1367
96 RS(48, 32, 16, E=1+1) - Reed-Solomon encoder/decoder - interleaved 1370
97 RS(40, 32, 8, E=1) - Reed-Solomon encoder/decoder... 1372
98 RS(48, 32, 16, E=2) - Reed-Solomon encoder/decoder... 1375
99 SDCTRL - 32/64-bit PC133 SDRAM Controller.. 1379
100 SPI2AHB - SPI to AHB bridge.. 1389
101 SPICTRL - SPI Controller ... 1398
102 SPIMCTRL - SPI Memory Controller... 1419
103 SPIMASTER - SPI Master Device .. 1427
104 SPISLAVE - Dual Port SPI Slave .. 1436
GRIP, Sep 2018, Version 2018.3 4 www.cobham.com/gaisler

GRLIB IP Core

105 SRCTRL- 8/32-bit PROM/SRAM Controller ... 1454
106 SSRCTRL- 32-bit SSRAM/PROM Controller .. 1462
107 SVGACTRL - VGA Controller Core... 1472
108 SYNCIOTEST - Test block for synchronous I/O interfaces.. 1480
109 SYNCRAM - Single-port RAM generator .. 1482
110 SYNCRAMBW - Single-port RAM generator with byte enables 1486
111 SYNCRAM_2P - Two-port RAM generator ... 1490
112 SYNCRAM_DP - Dual-port RAM generator.. 1494
113 SYNCRAMFT - Single-port RAM generator with EDAC.. 1497
114 TAP - JTAG TAP Controller .. 1499
115 GRTM - CCSDS/ECSS Telemetry Encoder .. 1503
116 GRTM_DESC - CCSDS/ECSS Telemetry Encoder - Descriptor...................................... 1530
117 GRTM_VC - CCSDS/ECSS Telemetry Encoder - Virtual Channel Generation 1533
118 GRTM_PAHB - CCSDS/ECSS Telemetry Encoder -

Virtual Channel Generation Input - AMBA... 1535
119 GRTM_PW - CCSDS/ECSS Telemetry Encoder -

Virtual Channel Generation Input - PacketWire .. 1539
120 GRTM_UART - CCSDS/ECSS Telemetry Encoder -

Virtual Channel Generation Input - UART.. 1541
121 GEFFE - CCSDS/ECSS Telemetry Encoder - Geffe Generator .. 1544
122 GRTMRX - CCSDS/ECSS Telemetry Receiver.. 1550
123 GRCE/GRCD - CCSDS/ECSS Convolutional Encoder and Quicklook Decoder............. 1564
124 GRTC - CCSDS/ECSS Telecommand Decoder .. 1569
125 TCAU - Telecommand Decoder Authentication Unit.. 1595
126 GRTC_HW - CCSDS/ECSS Telecommand Decoder - Hardware Commands.................. 1606
127 GRTC_UART - CCSDS/ECSS Telecommand Decoder - UART...................................... 1613
128 GRTCTX - CCSDS/ECSS Telecommand Transmitter .. 1616
129 GRCTM - CCSDS Time Manager ... 1626
130 SPWCUC - SpaceWire - CCSDS Unsegmented Code Transfer Protocol 1658
131 GRPW - PacketWire Interface ... 1674
132 GRPWRX - PacketWire Receiver ... 1681
133 GRPWTX - PacketWire Transmitter ... 1690
134 PW2APB - PacketWire receiver to AMBA APB Interface.. 1697
135 APB2PW - AMBA APB to PacketWire Transmitter Interface .. 1703
136 AHB2PP - AMBA AHB to Packet Parallel Interface... 1709
137 GRRM - Reconfiguration Module ... 1714
GRIP, Sep 2018, Version 2018.3 5 www.cobham.com/gaisler

GRLIB IP Core

1 Introduction

1.1 Scope

This document describes specific IP cores provided with the GRLIB IP library. When applicable, the
cores use the GRLIP plug&play configuration method as described in the ‘GRLIB User’s Manual’.

1.2 Other resources

There are several documents that together describe the GRLIB IP Library and Cobham Gaisler’s IP
cores:
• GRLIB IP Library User’s Manual (grlib.pdf) - Main GRLIB document that describes the library

infrastructure, organization, tool support and on-chip bus.
• GRLIB-FT User’s Manual (grlib-ft.pdf) - Describes the FT and FT-FPGA versions of the GRLIB

IP library. The document is an addendum to the GRLIB IP Library User’s Manual. This docu-
ment is only available in the FT and FT-FPGA distributions of GRLIB.

• GRLIB FT-FPGA Xilinx Add-on User’s Manual (grlib-ft-fpga-xilinx.pdf) - Describes function-
ality of the Virtex5-QV and Xilinx TMRTool add-on package to the FT-FPGA version of the
GRLIP IP library. The document should be read as an addendum to the ‘GRLIB IP Library
User’s Manual’ and to the GRLIB FT-FPGA User’s Manual. This document is only available as
part of the add-on package for FT-FPGA.

• LEON/GRLIB Configuration and Development Guide (guide.pdf) - This configuration and
development guide is intended to aid designers when developing systems based on LEON/
GRLIB. The guide complements the GRLIB IP Library User’s Manual and the GRLIB IP Core
User’s Manual. While the IP Library user’s manual is suited for RTL designs and the IP Core
user’s manual is suited for instantiation and usage of specific cores, this guide aims to help
designers make decisions in the specification stage.

1.3 Reference documents

[AMBA] AMBATM Specification, Rev 2.0, ARM IHI 0011A, 1999, Issue A, ARM Limited
[GRLIB] GRLIB IP Library User's Manual, Cobham Gaisler, www.gaisler.com
[AS1553] AS15531 - Digital Time Division Command/Response Multiplex Data Bus, SAE

International, November 1995
[MIL1553] MIL-STD-1553B, Digital Time Division Command/Response Multiplex Data Bus,

US Department of Defence, September 1978
[MIL1553N2] MIL-STD-1553B Notice 2, US Department of Defence, September 1986
[ECSS1553] Interface and Communication Protocol for MIL-STD-1553B Data Bus Onboard
Spacecraft, ECSS-E-ST-50-13C. November 2008

1.4 IP core overview

The tables below lists the provided IP cores and their AMBA plug&play device ID. The columns on
the right indicate in which GRLIB distributions a core is available. GPL is the GRLIB GNU GPL
(free) distribution, COM is the commercial distribution, FT the full fault-tolerant distribution and FT-
FPGA is the GRLIB release targeted for raditation-tolerant programmable devices. Distributions pre-
fixed with L4- contain the LEON4 processor. Some cores can only be licensed separately or as addi-
tions to existing releases, this is marked in the Notes column. Contact Cobham Gaisler for licensing
details.
Note: The open-source version of GRLIB includes only cores marked with “Yes” in the GPL column.
GRIP, Sep 2018, Version 2018.3 6 www.cobham.com/gaisler

GRLIB IP Core

Note: IP core FT features are only supported in FT or FT-FPGA distributions. This includes protec-
tion of Level-1 cache and register files for the LEON3 and LEON4 processors and fault-tolerance fea-
tures for other IP cores such as the PCI, Ethernet and SpaceWire controllers.
Note: For encrypted RTL, contact Cobham Gaisler to ensure that your EDA tool is supported by
GRLIB for encrypted RTL. Supported tools are listed in the GRLIB IP Library user’s manual.

Table 1. Processors and support functions

Name Function Vendor:Device G
PL

C
O

M

FT FT
-F

PG
A

L4
-C

O
M

L4
-F

T

N
ot

es

LEON3 SPARC V8 32-bit processor 0x01 : 0x003 Yes Yes Yes Yes No No 5)
LEON3FT Fault-tolerant SPARC V8 32-bit Proces-

sor
0x01 : 0x053 No No Yes Yes No No 2),

5)
DSU3 Multi-processor Debug support unit

(LEON3)
0x01 : 0x004 Yes Yes Yes Yes No No

L3STAT LEON3 statistics unit 0x01 : 0x098 Yes Yes Yes Yes No No
LEON4 SPARC V8 32-bit processor 0x01 : 0x048 No No No No Yes No 1,

4),
5)

LEON4FT Fault-tolerant SPARC V8 32-bit Proces-
sor

0x01 : 0x048 No No No No No Yes 1,
4),
5)

L4STAT LEON4 statistics unit 0x01 : 0x047 No No No No Yes Yes 1)
DSU4 Multi-processor Debug support unit

(LEON4)
0x01 : 0x049 No No No No Yes Yes 1)

LEON3/4
CLK2x

LEON processor double clocking
(includes special LEON entity, interrupt
controller and qualifier unit)

- No Yes Yes Yes Yes Yes

CLKGEN Clock generation - Yes Yes Yes Yes Yes Yes
DIV32 Divider module - Yes Yes Yes Yes Yes Yes
GPTIMER General purpose timer unit 0x01 : 0x011 Yes Yes Yes Yes Yes Yes
GRCLKGATE Clock gate unit 0x01 : 0x02C No Yes Yes Yes Yes Yes
GRDMAC DMA controller with AHB/APB bridge 0x01 : 0x095 Yes Yes Yes Yes Yes Yes
GRTIMER General purpose timer unit 0x01 : 0x038 No Yes Yes Yes Yes Yes
GRFPU /
GRFPC

High-performance IEEE-754 Floating-
point unit with floating-point controller
to interface LEON

- No No No No No No 1),
2)

GRFPU-Lite /
GRFPC-lite

Low-area IEEE-754 Floating-point unit
with floating point controller to interface
LEON

- No No No No No No 1),
2)

IRQMP Multi-processor Interrupt controller 0x01 : 0x00D Yes Yes Yes Yes Yes Yes
IRQ(A)MP Multi-processor Interrupt controller 0x01 : 0x00D Yes Yes Yes Yes Yes Yes
MUL32 32x32 multiplier module - Yes Yes Yes Yes Yes Yes
MULTLIB High-performance multipliers - Yes Yes Yes Yes Yes Yes
1) Available as separate package or as addition to existing releases.
2) Delivered as encrypted RTL or in netlist format
3) Requires PHY for selected target technology. Please see IP core documentation for supported technologies.
4) Fault-tolerance (LEON4-FT functionality) is only supported in GRLIB-FT distributions.
5) The LEON3 and LEON3FT cores are functionally equivalent with the addition that fault-tolerance features can be
enabled for the LEON3FT core. The functional behaviour of the LEON4 core is the same in all distributions wiht the addi-
tion that fault-tolerance features for the LEON4 core can be enabled in GRLIB FT distributions.
GRIP, Sep 2018, Version 2018.3 7 www.cobham.com/gaisler

GRLIB IP Core

Table 2. Memory controllers and supporting cores

Name Function Vendor:Device G
PL

C
O

M

FT FT
-F

PG
A

L4
-C

O
M

L4
-F

T

N
ot

e

DDRSPA Single-port 16/32/64 bit DDR controller 0x01 : 0x025 Yes Yes Yes Yes Yes Yes 3)
DDR2SPA Single-port 16/32/64-bit DDR2 control-

ler
0x01 : 0x02E Yes Yes Yes Yes Yes Yes 3)

MCTRL 8/16/32-bit PROM/SRAM/SDRAM
controller

0x04 : 0x00F Yes Yes Yes Yes Yes Yes

SDCTRL 32-bit PC133 SDRAM controller 0x01 : 0x009 Yes Yes Yes Yes Yes Yes
SRCTRL 8/32-bit PROM/SRAM controller 0x01 : 0x008 Yes Yes Yes Yes Yes Yes
SSRCTRL 32-bit Synchronous SRAM (SSRAM)

controller
0x01 : 0x00A No Yes Yes Yes Yes Yes

FTMCTRL 8//32-bit PROM/SRAM/SDRAM con-
troller w. RS/BCH EDAC

0x01 : 0x054 No No Yes Yes No Yes

FTSDCTRL 32/64-bit PC133 SDRAM Controller
with EDAC

0x01 : 0x055 No No Yes Yes No Yes

FTSDCTRL64 64-bit PC133 SDRAM controller with
EDAC

0x01 : 0x058 No No No No No No 4)

FTSRCTRL 8/32-bit PROM/SRAM/IO Controller w.
BCH EDAC

0x01 : 0x051 No No Yes Yes No Yes

FTSRCTRL8 8-bit SRAM / 16-bit IO Memory Con-
troller with EDAC

0x01 : 0x056 No No Yes Yes No Yes

NANDFCTRL NAND Flash memory controller 0x01 : 0x059 No Yes Yes Yes Yes Yes
SPIMCTRL SPI Memory controller 0x01 : 0x045 Yes Yes Yes Yes Yes Yes
AHBSTAT AHB status register 0x01 : 0x052 Yes Yes Yes Yes Yes Yes
MEMSCRUB Memory scrubber 0x01 : 0x057 No No Yes Yes No Yes
1) Available as separate package or as addition to existing releases.
2) Delivered as encrypted RTL or in netlist format
3) Requires PHY for selected target technology. Please see IP core documentation for supported technologies.
4) Deprecated

Table 3. AMBA Bus control

Name Function Vendor:Device G
PL

C
O

M

FT FT
-F

PG
A

L4
-C

O
M

L4
-F

T

N
ot

e

AHB2AHB Uni-directional AHB/AHB Bridge 0x01 : 0x020 No Yes Yes Yes Yes Yes
AHB2AVLA Asynchronous AHB to Avalon Bridge 0x01 : 0x096 Yes Yes No No Yes No
AHB2AXI AHB to AXI bridge 0x01 : 0x09F Yes Yes Yes Yes Yes Yes
AHBBRIDGE Bi-directional AHB/AHB Bridge 0x01 : 0x020 No Yes Yes Yes Yes Yes
AHBCTRL AMBA AHB bus controller with

plug&play
- Yes Yes Yes Yes Yes Yes

APBCTRL AMBA APB Bridge with plug&play 0x01 : 0x006 Yes Yes Yes Yes Yes Yes
AHBTRACE AMBA AHB Trace buffer 0x01 : 0x017 Yes Yes Yes Yes Yes Yes
GRIOMMU I/O Memory management unit 0x01 : 0x04F No No No No Yes Yes 1)
1) Available as separate package or as addition to existing releases.
GRIP, Sep 2018, Version 2018.3 8 www.cobham.com/gaisler

GRLIB IP Core

Table 4. PCI interface

Name Function Vendor:Device G
PL

C
O

M

FT FT
-F

PG
A

L4
-C

O
M

L4
-F

T

N
ot

e

GRPCI2 Advanced 32-bit PCI bridge 0x01 : 0x07C Yes Yes Yes Yes Yes Yes
PCITARGET 32-bit target-only PCI interface (depre-

cated)
0x01 : 0x012 No No No No No No

PCIMTF/GRPCI 32-bit PCI master/target interface with
FIFO (deprecated)

0x01 : 0x014 No No No No No No

PCITRACE 32-bit PCI trace buffer (deprecated) 0x01 : 0x015 No No No No No No
PCIDMA DMA controller for PCIMTF (depre-

cated)
0x01 : 0x016 No No No No No No

PCIARB PCI Bus arbiter 0x04 : 0x010 Yes Yes Yes Yes Yes Yes

Table 5. On-chip memory functions

Name Function Vendor:Device G
PL

C
O

M

FT FT
-F

PG
A

L4
-C

O
M

L4
-F

T

N
ot

e

AHBRAM Single-port RAM with AHB interface 0x01 : 0x00E Yes Yes Yes Yes Yes Yes
AHBDPRAM Dual-port RAM with AHB and user

back-end interface
0x01 : 0x00F Yes Yes Yes Yes Yes Yes

AHBROM ROM generator with AHB interface 0x01 : 0x01B Yes Yes Yes Yes Yes Yes
FTAHBRAM RAM with AHB interface and EDAC

protection
0x01 : 0x050 No No Yes Yes No Yes

L2CACHE Level-2 cache controller 0x01 : 0x04B No No No No Yes Yes 1)
REGFILE_3P Parametrizable 3-port register file - Yes Yes Yes Yes Yes Yes
SYNCRAM Parametrizable 1-port RAM - Yes Yes Yes Yes Yes Yes
SYNCRAM_2P Parametrizable 2-port RAM - Yes Yes Yes Yes Yes Yes
SYNCRAM_DP Parametrizable dual-port RAM - Yes Yes Yes Yes Yes Yes
1) Available as separate package or as addition to existing releases.
GRIP, Sep 2018, Version 2018.3 9 www.cobham.com/gaisler

GRLIB IP Core

Table 6. Serial communication

Name Function Vendor:Device G
PL

C
O

M

FT FT
-F

PG
A

L4
-C

O
M

L4
-F

T

N
ot

e

AHBUART Serial/AHB debug interface 0x01 : 0x007 Yes Yes Yes Yes Yes Yes
AHBJTAG JTAG/AHB debug interface 0x01 : 0x01C Yes Yes Yes Yes Yes Yes
APBPS2 PS/2 host controller with APB inter-

face
0x01 : 0x060 Yes Yes Yes Yes Yes Yes

APBUART Programmable UART with APB inter-
face

0x01 : 0x00C Yes Yes Yes Yes Yes Yes

CAN_OC Opencores CAN 2.0 MAC with AHB
interface

0x01 : 0x019 Yes Yes Yes Yes Yes Yes

GRCAN CAN 2.0 Controller with DMA 0x01 : 0x03D No Yes Yes Yes Yes Yes
GRCANFD CAN Flexible Data Rate Controller 0x01 : 0x0B5 No No No No No No 1)
GRSPW SpaceWire link with RMAP and AHB

interface
0x01 : 0x01F No No No No No No 1),

2)
GRSPW2 SpaceWire link with RMAP and AHB

interface
0x01 : 0x029 No No No No No No 1),

2)
GRSPW_CODEC SpaceWire Codec N/A No No No No No No 1),

2)

GRSPW_PHY Receiver Physical layer for GRSPW N/A No No No No No No 1),
2)

GRSPW2_PHY Receiver Physical layer N/A No No No No No No 1),
2)

GRSPWROUTER SpaceWire routing switch 0x01 : 0x03E No No No No No No 1),
2),
3)

GRSPWTDP SpaceWire - Time Distribution Proto-
col

0x01 : 0x097 No No No No No No 1)

GRSRIO Serial Rapid IO 0x01 : 0x0A8 No No No No No No 1)
GRSPFI_CODEC SpaceFibre Codec N/A No No No No No No 1)
I2C2AHB I2C (slave) to AHB bridge 0x01 : 0x00B Yes Yes Yes Yes Yes Yes
I2CMST I2C Master with APB interface 0x01 : 0x028 Yes Yes Yes Yes Yes Yes
I2CSLV I2C Slave with APB interface 0x01 : 0x03E Yes Yes Yes Yes Yes Yes
SPI2AHB SPI (slave) to AHB bridge 0x01 : 0x05C Yes Yes Yes Yes Yes Yes
SPICTRL SPI Controller with APB interface 0x01 : 0x02D Yes Yes Yes Yes Yes Yes
SPIMASTER SPI master device 0x01 : 0x0A6 No No No No No No 1)
SPISLAVE Dual port SPI slave 0x01 : 0x0A7 No No No No No No 1)
TAP JTAG TAP controller - No Yes Yes Yes Yes Yes
1) Available as separate package or as addition to existing releases.
2) Delivered as encrypted RTL or in netlist format
3) The GRSPWROUTER is only licensed together with a complete LEON system.
GRIP, Sep 2018, Version 2018.3 10 www.cobham.com/gaisler

GRLIB IP Core
Table 7. Ethernet interface

Name Function Vendor:Device G
PL

C
O

M

FT FT
-F

PG
A

L4
-C

O
M

L4
-F

T

N
ot

e

GRETH Cobham Gaisler 10/100 Mbit Ethernet
MAC with AHB I/F

0x01 : 0x01D Yes Yes Yes Yes Yes Yes

GRETH_GBIT Cobham Gaisler 10/100/1000 Mbit
Ethernet MAC with AHB

0x01 : 0x01D No Yes Yes Yes Yes Yes

RGMII Cobham Gaisler RGMII<-> GMII
adapter

0x01 : 0x093 Yes Yes Yes Yes Yes Yes

Table 8. USB interface

Name Function Vendor:Device G
PL

C
O

M

FT FT
-F

PG
A

L4
-C

O
M

L4
-F

T

N
ot

e

GRUSBHC USB-2.0 Host controller (UHCI/EHCI)
with AHB I/F

0x01 : 0x027 No No No No No No 1)

GRUSBDC /
GRUSB_DCL

USB-2.0 device controller / AHB debug
communication link

0x01 : 0x022 No No No No No No 1)

1) Available as separate package or as addition to existing releases.

Table 9. MIL-STD-1553 Bus interface

Name Function Device ID G
PL

C
O

M

FT FT
-F

PG
A

L4
-C

O
M

L4
-F

T

N
ot

e

GR1553B Advanced MIL-ST-1553B / AS15551
Interface

0x01 : 0x04D No No No No No No 1),
2),
3)

GRRT MIL-STD-1553B / AS15531 Remote
Terminal Back-End

- No No No No No No 1),
2),
3)

1) Available as separate package or as addition to existing releases.
2) Delivered as encrypted RTL or in netlist format.
3) Both BR1553B and GRRT are covered by the same IP core license and are delivered in the same package.

Table 10. Encryption

Name Function Vendor:Device G
PL

C
O

M

FT FT
-F

PG
A

L4
-C

O
M

L4
-F

T

N
ot

e

GRAES 128-bit AES Encryption/Decryption
Core

0x01 : 0x073 No No No No No No 1)

GRAES_DMA Advanced Encryption Standard with
DMA

0x01 : 0x07B No No No No No No 1)

GRECC Elliptic Curve Cryptography Core 0x01 : 0x074 No No No No No No 1)
1) Available as separate package or as addition to existing releases.
GRIP, Sep 2018, Version 2018.3 11 www.cobham.com/gaisler

GRLIB IP Core
Table 11. Simulation and debugging

Name Function Vendor:Device G
PL

C
O

M

FT FT
-F

PG
A

L4
-C

O
M

L4
-F

T

N
ot

e

SRAM SRAM simulation model with srecord
pre-load

- Yes Yes Yes Yes Yes Yes

MT48LC16M16 Micron SDRAM model with srecord
pre-load

- Yes Yes Yes Yes Yes Yes

MT46V16M16 Micron DDR model - Yes Yes Yes Yes Yes Yes
CY7C1354B Cypress ZBT SSRAM model with sre-

cord pre-load
- Yes Yes Yes Yes Yes Yes

AHBMSTEM AHB master simulation model with
scripting (deprecated)

0x01 : 0x040 Yes Yes Yes Yes Yes Yes

AHBSLVEM AHB slave simulation model with script-
ing (deprecated)

0x01 : 0x041 Yes Yes Yes Yes Yes Yes

AMBAMON AHB and APB protocol monitor - No Yes Yes Yes Yes Yes
ATF AMBA test framework consisting of

master, slave and arbiter.
0x01 :
0x068 - 0x06A

No Yes Yes Yes Yes Yes

LOGAN On-chip Logic Analyzer 0x01 : 0x062 Yes Yes Yes Yes Yes Yes

Table 12. Graphics functions

Name Function Vendor:Device G
PL

C
O

M

FT FT
-F

PG
A

L4
-C

O
M

L4
-F

T

N
ot

e

APBVGA VGA controller with APB interface 0x01 : 0x061 Yes Yes Yes Yes Yes Yes
SVGACTRL VGA controller core with DMA 0x01 : 0x063 Yes Yes Yes Yes Yes Yes

Table 13. Auxiliary functions

Name Function Vendor:Device G
PL

C
O

M

FT FT
-F

PG
A

L4
-C

O
M

L4
-F

T

N
ot

e

GRACECTRL AMBA SystemACE interface controller 0x01 : 0x067 Yes Yes Yes Yes Yes Yes
GRADCDAC Combined ADC / DAC Interface 0x01 : 0x036 No Yes Yes Yes Yes Yes
GRFIFO External FIFO Interface with DMA 0x01 : 0x035 No Yes Yes Yes Yes Yes
GRGPIO General purpose I/O port 0x01 : 0x01A Yes Yes Yes Yes Yes Yes
GRGPREG General purpose Register 0x01 : 0x087 Yes Yes Yes Yes Yes Yes
GRPULSE General purpose I/O with pulses 0x01 : 0x037 No Yes Yes Yes Yes Yes
GRPWM PWM generator 0x01 : 0x04A No Yes Yes Yes Yes Yes
GRSYSMON AMBA Wrapper for Xilinx System

Monitor
0x01 : 0x066 Yes Yes Yes Yes Yes Yes

GRVERSION Version and revision register 0x01 : 0x03A Yes Yes Yes Yes Yes Yes
GRIP, Sep 2018, Version 2018.3 12 www.cobham.com/gaisler

GRLIB IP Core
Table 14. Error detection and correction functions

Name Function G
PL

C
O

M

FT FT
-F

PG
A

L4
-C

O
M

L4
-F

T

N
ot

e

RS(24, 16, 8, E=1) 16 bit data, 8 check bits, corrects 4-bit error in 1 nib-
ble

No No Yes Yes No Yes

RS(40, 32, 8, E=1) 32 bit data, 8 check bits, corrects 4-bit error in 1 nib-
ble

No No Yes Yes No Yes

RS(48, 32, 16, E=1+1) 32 bit data, 16 check bits, corrects 4-bit error in 2
nibbles

No No Yes Yes No Yes

RS(48, 32, 16, E=2) 32 bit data, 16 check bits, corrects 4-bit error in 2
nibbles

No No Yes Yes No Yes

GR(2^4)(68, 60, 8, T=1) QEC/QED error correction code encoder/decoder No No Yes Yes No Yes

Table 15. Test functions

Name Function G
PL

C
O

M

FT FT
-F

PG
A

L4
-C

O
M

L4
-F

T

N
ot

e

SYNCIOTEST Test block for synchronous I/O interfaces Yes Yes Yes Yes Yes Yes
GRIP, Sep 2018, Version 2018.3 13 www.cobham.com/gaisler

GRLIB IP Core

1.5 Spacecraft data handling IP cores

The Spacecraft Data Handling IP cores represent a collection of cores that have been developed spe-
cifically for the space sector.
These IP cores implement functions commonly used in spacecraft data handling and management sys-
tems. They implement international standards from organizations such as Consultative Committee for
Space Data Systems (CCSDS), European Cooperation on Space Standardization (ECSS), and the for-
mer Procedures, Standards and Specifications (PSS) from the European Space Agency (ESA).
The table below lists the existing CCSDS/ECSS IP cores and AMBA plug&play device identifiers.
The columns on the right indicate in which GRLIB distributions a core is available. GPL is the
GRLIB GNU GPL (free) distribution, COM is the commercial distribution, FT the full fault-tolerant
distribution and FT-FPGA is the GRLIB release targeted for radiation-tolerant programmable devices.
Distributions prefixed with L4- contain the LEON4 processor.
The TMTC license covers IP cores, with the upper TM and TC layers implemented in software, hard-
ware and also cores for implementing TM and TC test equipment. It can be provided as a separate
package or as an add-on to other GRLIB distributions.

Note 1) Available as separate package or as addition to existing releases.
Note 2) There is no user manual for these simple cores.

Table 16. Spacecraft data handling functions

Name Function Vendor : Device G
PL

C
O

M

FT FT
-F

PG
A

L4
-C

O
M

L4
.F

T

TM
TC

N
ot

e

GRTM CCSDS Telemetry Encoder 0x01 : 0x030 No No No No No No Yes

GRTM_DESC CCSDS Telemetry Encoder - Descriptor 0x01 : 0x084 No No No No No No Yes

GRTM_VC CCSDS Telemetry Encoder - Virtual Channel Generation 0x01 : 0x085 No No No No No No Yes

GRTM_PAHB CCSDS Telemetry Encoder - VC Generation Input - AMBA 0x01 : 0x088 No No No No No No Yes

GRTM_PW CCSDS Telemetry Encoder - VC Generation Input - PacketWire N/A No No No No No No Yes

GRTM_UART CCSDS Telemetry Encoder - VC Generation Input - UART N/A No No No No No No Yes

GRTM_CLCWRX CCSDS Telemetry Encoder - CLCW Receiver N/A No No No No No No Yes 2)

GRTM_CLCWMUX CCSDS Telemetry Encoder - CLCW Multiplexer N/A No No No No No No Yes 2)

GRGEFFE CCSDS Telemetry Encoder - Geffe Generator 0x01 : 0x086 No No No No No No Yes

GRCE/GRCD CCSDS Convolutional Encoder and Quicklook Decoder N/A No No No No No No Yes

GRTMRX CCSDS Telemetry Receiver 0x01 : 0x082 No No No No No No Yes

GRTC CCSDS Telecommand Decoder - Coding Layer 0x01 : 0x031 No No No No No No Yes

TCAU ESA PSS Telecommand Decoder Authentication Unit N/A No No No No No No Yes

GRTC_HW CCSDS Telecommand Decoder - Hardware Commands N/A No No No No No No Yes

GRTC_UART CCSDS Telecommand Decoder - UART N/A No No No No No No Yes

GRTC_CLCWTX CCSDS Telecommand Decoder - CLCW Transmitter N/A No No No No No No Yes 2)

GRTCTX CCSDS Telecommand Transmitter 0x01 : 0x083 No No No No No No Yes

GRCTM CCSDS Time manager 0x01 : 0x033 No No No No No No Yes

SPWCUC SpaceWire - CCSDS Unsegmented Code Transfer Protocol 0x01 : 0x089 No No No No No No Yes

GRPW PacketWire receiver with AHB interface 0x01 : 0x032 No No No No No No Yes

GRPWRX PacketWire Receiver (rev 1) 0x01 : 0x03C No No No No No No Yes

GRPWTX PacketWire Transmitter (rev 1) 0x01 : 0x03B No No No No No No Yes

APB2PW PacketWire Transmitter Interface (rev 0) 0x01 : 0x03B No No No No No No Yes

PW2APB PacketWire Receiver Interface (rev 0) 0x01 : 0x03C No No No No No No Yes

AHB2PP Packet Parallel Interface 0x01 : 0x039 No No No No No No Yes

GRRM Reconfiguration Module 0x01 : 0x09A No No No No No No No 1)
GRIP, Sep 2018, Version 2018.3 14 www.cobham.com/gaisler

GRLIB IP Core

1.6 Supported technologies

Technology support and instructions for extending GRLIB with support for additional technologies is
documented in the ‘GRLIB User’s Manual’. The table below shows the technology maps available
from Cobham Gaisler for GRLIB and in which GRLIB distributions these technology maps are
included.

Vendor Technology G
PL

C
O

M

FT FT
-

C
om

m
en

t

Actel /
Microsemi

ProASIC3, ProASIC3e, ProASIC3l,
Axcelerator, Axcelerator DSP, Fusion,
IGLOO2

No Yes Yes Yes

Actel /
Microsemi

RTG4 No No * * RTG4 support is distributed as a sep-
arate add-on package.

Altera Cyclone2 - 4, Stratix - StratixV Yes Yes Yes Yes Note that several parts of the FT and
FT-FPGA versions are distributed as
encrypted RTL. Encrypted RTL is
not provided for the Quartus II tool.

Lattice - Yes Yes No No
Xilinx Unisim (Virtex2 - 7-series) Yes Yes Yes Yes Xilinx Sirf (Virtex-5QV) and TMR-

Tool support is distributed as a sepa-
rate add-on package.

Other ASIC - No - - No Contact Cobham Gaisler for details.
See also GRLIB IP Library User’s
Manual.
GRIP, Sep 2018, Version 2018.3 15 www.cobham.com/gaisler

GRLIB IP Core

1.7 Implementation characteristics

Implementation characteristics are available in the GRLIB area spreadsheet:
http://www.gaisler.com/products/grlib/grlib_area.xls

The spreadsheet is also included in GRLIB packages together with this document.

1.8 Definitions

This section and the following subsections define the typographic and naming conventions used
throughout this document.

1.8.1 Bit numbering

The following conventions are used for bit numbering:
• The most significant bit (MSb) of a data type has the leftmost position
• The least significant bit of a data type has the rightmost position
• Unless otherwise indicated, the MSb of a data type has the highest bit number and the LSb the

lowest bit number

1.8.2 Radix

The following conventions is used for writing numbers:
• Binary numbers are indicated by the prefix "0b", e.g. 0b1010.
• Hexadecimal numbers are indicated by the prefix "0x", e.g. 0xF00F
• Unless a radix is explicitly declared, the number should be considered a decimal.

1.8.3 Data types

Byte (BYTE) 8 bits of data
Halfword (HWORD) 16 bits of data
Word (WORD) 32 bits of data
Double word (DWORD) 64 bits of data
Quad word (4WORD) 128-bits of data
GRIP, Sep 2018, Version 2018.3 16 www.cobham.com/gaisler

http://www.gaisler.com/products/grlib/grlib_area.xls

GRLIB IP Core

1.9 Register descriptions

An example register, showing the register layout used throughout this document, can be seen in table
17. The values used for the reset value fields are described in table 18, and the values used for the
field type fields are described in table 19. Fields that are named RESERVED, RES, or R are read-only
fields. These fields can be written with zero or with the value read from the same register field.

Table 17. <Address> - <Register acronym> - <Register name>
31 24 23 16 15 8 7 0

EF3 EF2 EF1 EF0

<Reset value for EF3> <Reset value for EF2> <Reset value for EF1> <Reset value for EF0>

<Field type for EF3> <Field type for EF2> <Field type for EF1> <Field type for EF0>

31: 24 Example field 3 (EF3) - <Field description>
23: 16 Example field 2 (EF2) - <Field description>
15: 8 Example field 1 (EF1) - <Field description>
7: 0 Example field 0 (EF0) - <Field description>

Table 18. Reset value definitions

Value Description
0 Reset value 0.
1 Reset value 1. Used for single-bit fields.
0xNN Hexadecimal representation of reset value. Used for multi-bit fields.
0bNN Binary representation of reset value. Used for multi-bit fields.
NR Field not reset. Fields marked with NR will be reset to 0 if full reset of all registers have been

enabled in the global GRLIB configuration options (see GRLIB user manual for more information).
* Special reset condition, described in textual description of the field. Used for example when reset

value is taken from a pin.
- Don’t care / Not applicable

Table 19. Field type definitions

Value Description
r Read-only. Writes have no effect.
w Write-only. Used for a writable field in a register where the field’s read-value has no meaning.
rw Readable and writable.
rw* Readable and writable. Special condition for write, described in textual description of field.
wc Write-clear. Readable, and cleared when written with a 1
cas Readable, and writable through compare-and-swap. Only applies to SpaceWire Plug-and-Play regis-

ters.
GRIP, Sep 2018, Version 2018.3 17 www.cobham.com/gaisler

GRLIB IP Core

2 AHB2AHB - Uni-directional AHB/AHB bridge

2.1 Overview

The uni-directional AHB/AHB bridge is used to connect two AMBA AHB buses clocked by synchro-
nous clocks with any frequency ratio. The bridge is connected through a pair consisting of an AHB
slave and an AHB master interface. AHB transfer forwarding is performed in one direction, where
AHB transfers to the slave interface are forwarded to the master interface. Applications of the uni-
directional bridge include system partitioning, clock domain partitioning and system expansion.
Features offered by the uni-directional AHB to AHB bridge are:
• Single and burst AHB transfers
• Data buffering in internal FIFOs
• Efficient bus utilization through (optional) use of SPLIT response and data prefetching. NOTE:

SPLIT responses require an AHB arbiter that allows assertion of HSPLIT during second cycle of
SPLIT response. This is supported by GRLIB’s AHBCTRL IP core.

• Posted writes
• Read and write combining, improves bus utilization and allows connecting cores with differing

AMBA access size restrictions.
• Deadlock detection logic enables use of two uni-directional bridges to build a bi-directional

bridge (one example is the bi-directional AHB/AHB bridge core (AHBBRIDGE))

2.2 Operation

2.2.1 General

The address space occupied by the AHB/AHB bridge on the slave bus is configurable and determined
by Bank Address Registers in the slave interface’s AHB Plug&Play configuration record.
The bridge is capable of handling single and burst transfers of all burst types. Supported transfer sizes
(HSIZE) are BYTE, HALF-WORD, WORD, DWORD, 4WORD and 8WORD.

BUS
CONTROL

 SLAVE 1

AHB Bus 0

Figure 1. Two AHB buses connected with (uni-directional) AHB/AHB bridge

 SLAVE 2

 MASTER 1 MASTER 2 MASTER N

BUS
CONTROL

 SLAVE 1

AHB Bus 1

 SLAVE 2

 MASTER 1 MASTER N

SLAVE I/F

AHB/AHB
BRIDGE

MASTER I/F
GRIP, Sep 2018, Version 2018.3 18 www.cobham.com/gaisler

GRLIB IP Core

For AHB write transfers write data is always buffered in an internal FIFO implementing posted
writes. For AHB read transfers the bridge uses GRLIB’s AMBA Plug&Play information to determine
whether the read data will be prefetched and buffered in an internal FIFO. If the target address for an
AHB read burst transfer is a prefetchable location the read data will be prefetched and buffered.
The bridge can be implemented to use SPLIT responses or to insert wait states when handling an
access. With SPLIT responses enabled, an AHB master initiating a read transfer to the bridge is
always splitted on the first transfer attempt to allow other masters to use the slave bus while the bridge
performs read transfer on the master bus.The descriptions of operation in the sections below assume
that the bridge has been implemented with support for AMBA SPLIT responses. The effects of dis-
abling support for AMBA SPLIT responses are described in section 2.2.11.
If interrupt forwarding is enabled the interrupts on the slave bus interrupt lines will be forwarded to
the master bus and vice versa.

2.2.2 AHB read transfers

When a read transfer is registered on the slave interface the bridge gives a SPLIT response. The mas-
ter that initiated the transfer will be de-granted allowing other bus masters to use the slave bus while
the bridge performs a read transfer on the master side. The master interface then requests the bus and
starts the read transfer on the master side. Single transfers on the slave side are normally translated to
single transfers with the same AHB address and control signals on the master side, however read com-
bining can translate one access into several smaller accesses. Translation of burst transfers from the
slave to the master side depends on the burst type, burst length, access size and the AHB/AHB bridge
configuration.
If the read FIFO is enabled and the transfer is a burst transfer to a prefetchable location, the master
interface will prefetch data in the internal read FIFO. If the splitted burst on the slave side was an
incremental burst of unspecified length (INCR), the length of the burst is unknown. In this case the
master interface performs an incremental burst up to a specified address boundary (determined by the
VHDL generic rburst). The bridge can be configured to recognize an INCR read burst marked as
instruction fetch (indicated on HPROT signal). In this case the prefetching on the master side is com-
pleted at the end of a cache line (the cache line size is configurable through the VHDL generic iburst).
When the burst transfer is completed on the master side, the splitted master that initiated the transfer
(on the slave side) is allowed in bus arbitration by asserting the appropriate HSPLIT signal to the
AHB controller. The splitted master re-attempts the transfer and the bridge will return data with zero
wait states.
If the read FIFO is disabled, or the burst is to non-prefetchable area, the burst transfer on the master
side is performed using sequence of NONSEQ, BUSY and SEQ transfers. The first access in the burst
on the master side is of NONSEQ type. Since the master interface can not decide whether the splitted
burst will continue on the slave side or not, the master bus is held by performing BUSY transfers. On
the slave side the splitted master that initiated the transfer is allowed in bus arbitration by asserting the
HSPLIT signal to the AHB controller. The first access in the transfer is completed by returning read
data. The next access in the transfer on the slave side is extended by asserting HREADY low. On the
master side the next access is started by performing a SEQ transfer (and then holding the bus using
BUSY transfers). This sequence is repeated until the transfer is ended on the slave side.
In case of an ERROR response on the master side the ERROR response will be given for the same
access (address) on the slave side. SPLIT and RETRY responses on the master side are re-attempted
until an OKAY or ERROR response is received.

2.2.3 AHB write transfers

The AHB/AHB bridge implements posted writes. During the AHB write transfer on the slave side the
data is buffered in the internal write FIFO and the transfer is completed on the slave side by always
giving an OKAY response. The master interface requests the bus and performs the write transfer when
the master bus is granted. If the burst transfer crosses the write burst boundary (defined by VHDL
GRIP, Sep 2018, Version 2018.3 19 www.cobham.com/gaisler

GRLIB IP Core

generic wburst), a SPLIT response is given. When the bridge has written the contents of the FIFO out
on the master side, the bridge will allow the master on the slave side to perform the remaining
accesses of the write burst transfer.
Writes are accepted with zero wait states if the bridge is idle and the incoming access is not locked. If
the incoming access is locked, each access will have one wait state. If write combining is disabled a
non-locked BUSY cycle will lead to a flush of the write FIFO. If write combining is enabled or if the
incoming access is locked, the bridge will not flush the write FIFO during the BUSY cycle.

2.2.4 Deadlock conditions

When two bridges are used to form a bi-drectional bridge, a deadlock situation can occur if the
bridges are simultaneously accessed from both buses. The bridge that has been configured as a slave
contains deadlock detection logic which will resolve a deadlock condition by giving a RETRY
response, or by issuing SPLIT complete followed by a new SPLIT response. When the core resolves a
deadlock while prefetching data, any data in the prefetch buffer will be dropped when the core’s slave
interface issues the AMBA RETRY response. When the access is retried it may lead to the same
memory locations being read twice.
Deadlock detection logic for bi-directional configurations may lead to deadlocks in other parts of the
system. Consider the case where a processor on bus A on one side of the bidirectional bridge needs to
perform an instruction fetch over the bridge before it can release a semaphore located in memory on
bus A. Another processor on bus B, on the other side of the bridge, may spin on the semaphore wating
for its release. In this scenario, the accesses from the processor on bus B could, depending on system
configuration, continuously trigger a deadlock condition where the core will drop data in, or be pre-
vented from initiating, the instruction fetch for the processor on bus A. Due to scenarios of this kind
the bridge should not be used in bi-directional configurations where dependencies as the one
described above exist between the buses connected by the bridge.
Other deadlock conditions exist with locked transfers, see section 2.2.5.

2.2.5 Locked transfers

The AHB/AHB bridge supports locked transfers. The master bus will be locked when the bus is
granted and remain locked until the transfer completes on the slave side. Locked transfers can lead to
deadlock conditions, the core’s VHDL generic lckdac determines if and how the deadlock conditions
are resolved.
With the VHDL generic lckdac set to 0, locked transfers may not be made after another read access
which received SPLIT until the first read access has received split complete. This is because the
bridge will return split complete for the first access first and wait for the first master to return. This
will cause deadlock since the arbiter is not allowed to change master until a locked transfer has been
completed. The AMBA specification requires that the locked transfer is handled before the previous
transfer, which received a SPLIT response, is completed.
With lckdac set to 1, the core will respond with an AMBA ERROR response to locked access that is
made while an ongoing read access has received a SPLIT response. With lckdac set to 2 the bridge
will save state for the read access that received a SPLIT response, allow the locked access to com-
plete, and then complete the first access. All non-locked accesses from other masters will receive
SPLIT responses until the saved data has been read out.
If the core is used to create a bi-directional bridge there is one more deadlock condition that may arise
when locked accesses are made simultaneously in both directions. If the VHDL generic lckdac is set
to 0 the core will deadlock. If lckdac is set to a non-zero value the slave bridge will resolve the dead-
lock condition by issuing an AMBA ERROR response to the incoming locked access.
GRIP, Sep 2018, Version 2018.3 20 www.cobham.com/gaisler

GRLIB IP Core

2.2.6 Read and write combining

Read and write combining allows the bridge to assemble or split AMBA accesses on the bridge’s
slave interface into one or several accesses on the master interface. This functionality can improve bus
utilization and also allows cores that have differing AMBA access size restrictions to communicate
with each other. The functionality attained by read and write combining depends on the VHDL gener-
ics rdcomb (defines type of read combining), wrcomb (defines type of write combining), slvmstaccsz
(defines maximum AHB access size supported by the bridge’s slave interface) and mstmaccsz
(defines maximum AHB access size that can be used by bridge’s master interface). These VHDL
generics are described in section 2.6. The table below shows the effect of different settings. BYTE
and HALF-WORD accesses are special cases. The table does not list illegal combinations, for
instance mstmaccsz /= slvmaccsz requires that wrcomb /= 0 and rdcomb /= 0.

Table 20. Read and write combining

Access on slave interface Access size wrcomb rdcomb Resulting access(es) on master interface
BYTE or HALF-WORD sin-
gle read access to any area

- - - Single access of same size

BYTE or HALF-WORD
read burst to prefetchable
area

- - - Incremental read burst of same access size as on
slave interface, the length is the same as the
number of 32-bit words in the read buffer, but
will not cross the read burst boundary.

BYTE or HALF-WORD
read burst to non-prefetch-
able area

- - - Incremental read burst of same access size as on
slave interface, the length is the same as the
length of the incoming burst. The master inter-
face will insert BUSY cycles between the
sequential accesses.

BYTE or HALF-WORD sin-
gle write

- - - Single access of same size

BYTE or HALF-WORD
write burst

- - - Incremental write burst of same size and length,
the maximum length is the number of 32-bit
words in the write FIFO.

Single read access to any
area

Access size <=
mstmaccsz

- - Single access of same size

Single read access to any
area

Access size >
mstmaccsz

- 1 Sequence of single accesses of mstmaccsz. Num-
ber of accesses: (access size)/mstmaccsz

Single read access to any
area

Access size >
mstmaccsz

- 2 Burst of accesses of size mstmaccsz. Length of
burst: (access size)/mstmaccsz

Read burst to prefetchable
area

- - 0 Burst of accesses of incoming access size up to
address boundary defined by rburst.

Read burst to prefetchable
area

- - 1 or 2 Burst of accesses of size mstmaccsz up to
address boundary defined by rburst.

Read burst to non-prefetch-
able area

Access size <=
mstmaccsz

- - Incremental read burst of same access size as on
slave interface, the length is the same as the
length of the incoming burst. The master inter-
face will insert BUSY cycles between the
sequential accesses.

Read burst to non-prefetch-
able area

Access size >
mstmaccsz

- 1 or 2 Burst of accesses of size mstmaccsz. Length of
burst:
(incoming burst length)*(access size)/mstmaccsz

Single write Access size <=
mstmaccsz

- - Single write access of same size

Single write Access size >
mstmaccsz

1 - Sequence of single access of mstmaccsz. Num-
ber of accesses: (access size)/mstmaccsz.

Single write Access size >
mstmaccsz

2 - Burst of accesses of mstmaccsz. Length of burst:
(access size)/mstmaccsz.
GRIP, Sep 2018, Version 2018.3 21 www.cobham.com/gaisler

GRLIB IP Core
Read and write combining prevents the bridge from propagating fixed length bursts and wrapping
bursts. See section 2.2.7 for a discussion on burst operation.
Read and write combining with VHDL generics wrcomb/rdcomb set to 1 cause the bridge to use sin-
gle accesses when divding an incoming access into several smaller accesses. This means that another
master on the bus may write or read parts of the memory area to be accessed by the bridge before the
bridge has read or written all the data. In bi-directional configurations, an incoming access on the
master bridge may cause a collision that aborts the operation on the slave bridge. This may cause the
bridge to read the same memory locations twice. This is normally not a problem when accessing
memory areas. The same issues apply when using an AHB arbiter that performs early burst termina-
tion. The standard GRLIB AHBCTRL core does not perform early burst termination.
To ensure that the bridge does not re-read an address, and that all data in an access from the bridge’s
slave interface is propagated out on the master interface without interruption the VHDL generics
rdcomb and wrcomb should both be set to 0 or 2. In addition to this, the AHB arbiter may not perform
early burst termination (early burst termination is not performed by the GRLIB AHBCTRL arbiter).
Read and write combining can be limited to specified address ranges. See description of the comb-
mask VHDL generic for more information. Note that if the core is implemented with support for
prefetch and read combining, it will not obey combmask for prefetch operations (burst read to
prefetchable areas). Prefetch operations will always be performed with the maximum allowed size on
the master interface.

2.2.7 Burst operation

The core can be configured to support all AMBA 2.0 burst types (single access, incrementing burst of
unspecified length, fixed length incrementing bursts and wrapping bursts). Single accesses and incre-
menting bursts of unspecified length have previously been discussed in this document. An incoming
single access will lead to one access, or multiple accesses for some cases with read/write combining,
on the other side of the bridge. An incoming incrementing burst of unspecified length to a prefetch-
able area will lead to the prefetch buffer (if available) being filled using the same access size, or the
maximum allowed access size if read/write combining is enabled, on the master interface.
If the core is used in a system where no fixed length bursts or incremental bursts will be used in
accesses to the bridge, then set the allbrst generic to 0 and skip the remainder of this section.
The VHDL generic allbrst controls if the core will support fixed length and wrapping burst accesses.
If allbrst is set to 0, the core will treat all burst accesses as incrementing of unspecified length. For
fixed length and wrapping bursts this can lead to performance penalties and malfunctions. Support for
fixed length and wrapping bursts is enabled by setting allbrst to 1 or 2. Table 21 describes how the
core will handle different burst types depending on the setting of allbrst.

Write burst - 0 - Burst of same size as incoming burst, up to
address boundary defined by VHDL generic
wburst.

Write burst - 1 or 2 - Burst write of maximum possible size. The
bridge will use the maximum size (up to mst-
maccsz) that it can use to empty the writebuffer.

Table 20. Read and write combining

Access on slave interface Access size wrcomb rdcomb Resulting access(es) on master interface
GRIP, Sep 2018, Version 2018.3 22 www.cobham.com/gaisler

GRLIB IP Core
Table 21. Burst handling

Value of
allbrst
generic

Access type* Undefined length
incrementing burst
INCR

Fixed length incrementing
burst
INCR{4,8,16}

Wrapping burst
WRAP{4,8,16}

0 Reads to
non-
prefetchable
area

Incrementing burst with
BUSY cycles inserted.
Same behaviour with
read and write combin-
ing.

Fixed length burst with
BUSY cycles inserted. If the
burst is short then the burst
may end with a BUSY cycle.
If access combining is used
the HBURST signal will get
incorrect values.

Malfunction. Not supported

Reads to
prefetchable
area

Incrementing burst of maximum allowed size, filling
prefetch buffer, starting at address boundary defined by
prefetch buffer.

Malfunction. Not supported

Write burst Incrementing burst Incrementing burst, if write
combining is enabled, and
triggered, the burst will be
translated to an increment-
ing burst of undefined
length. VHDL generic
wrcomb should not be set to
1 (but to 0 or 2) in this case

Write combining is not sup-
ported. Same access size will be
used on both sides of the bridge.

1 Reads to
non-
prefetchable
area

Incrementing burst with
BUSY cycles inserted.
Same behaviour with
read and write combin-
ing.

Same burst type with BUSY
cycles inserted. If read com-
bining is enabled, and trig-
gered by the incoming access
size, an incremental burst of
unspecified length will be
used. If the burst is short then
the burst may end with a
BUSY cycle.

Same burst type with BUSY
cycles inserted. If read combin-
ing is enabled, and triggered by
the incoming access size, an
incremental burst of unspecified
length will be used. This will
cause AMBA violations if the
wrapping burst does not start
from offset 0.

Reads to
prefetchable
area

Incrementing burst of
maximum allowed size,
filling prefetch buffer.

For reads, the core will perform full (or part that fits in prefetch
buffer) fixed/wrapping burst on master interface and then
respond with data. No BUSY cycles are inserted.
If the access made to the slave interface is larger than the maxi-
mum supported access size on the master interface then a incre-
menting burst of unspecified length will be used to fill the
prefetch buffer. This (read combining) is not supported for wrap-
ping bursts.

Write burst Same as for allbrst = 0
2 Reads to

non-
prefetchable
area

Incrementing burst with
BUSY cycles inserted.
Same behaviour with
read and write combin-
ing.

Reads are treated as a prefetchable burst. See below.

Reads to
prefetchable
area

Incrementing burst of
maximum allowed size,
filling prefetch buffer,
starting at address
boundary defined by
prefetch buffer.

Core will perform full (or part that fits in prefetch buffer) fixed/
wrapping burst on master interface and then respond with data.
No BUSY cycles are inserted.
If the access made to the slave interface is larger than the maxi-
mum supported access size on the master interface then a incre-
menting burst of unspecified length will be used to fill the
prefetch buffer. This (read combining) is not supported for wrap-
ping bursts.

Write burst Same as for allbrst = 0
* Access to prefetchable area where the core’s prefetch buffer is ised (VHDL generic pfen /= 0).
GRIP, Sep 2018, Version 2018.3 23 www.cobham.com/gaisler

GRLIB IP Core

2.2.8 Transaction ordering, starvation and AMBA arbitration schemes

The bridge is configured at implementation to use one of two available schemes to handle incoming
accesses. The bridge will issue SPLIT responses when it is busy and on incoming read accesses. If the
bridge has been configured to use first-come, first-served ordering it will keep track of the order of
incoming accesses and serve the requests in the same order. If first-come, first-served ordering is dis-
abled the bridge will give some advantage to the master it has a response for and then allow all mas-
ters in to arbitration simultaneously, moving the decision on which master that should be allowed to
access the bridge to the bus arbitration.
When designing a system containing a bridge the expected traffic patterns should be analyzed. The
designer must be aware how SPLIT responses affect arbitration and how the selected transaction
ordering in the bridge will affect the system. The two different schemes are further described in sec-
tions 2.2.9 and 2.2.10.

2.2.9 First-come, first-served ordering

First-come, first served ordering is used when the VHDL generic fcfs is non-zero.
With first-come, first-served ordering the bridge will keep track of the order of incoming accesses.
The accesses will then be served in the same order. For instance, if master 0 initiates an access to the
bridge, followed by master 3 and then master 5, the bridge will propagate the access from master 0
(and respond with SPLIT on a read access) and then respond with SPLIT to the other masters. When
the bridge has a response for master 0, this master will be allowed in arbitration again by the bridge
asserting HSPLIT. When the bridge has finished serving master 0 it will allow the next queued master
in arbitration, in this case master 3. Other incoming masters will receive SPLIT responses and will not
be allowed in arbitration until all previous masters have been served.
An incoming locked access will always be given precedence over any other masters in the queue.
A burst that has initiated a pre-fetch operation will receive SPLIT and be inserted last in the master
queue if the burst is longer than the maximum burst length that the bridge has been configured for.
It should be noted that first-come, first-served ordering may not work well in systems where an AHB
master needs to have higher priority compared to the other masters. The bridge will not prioritize any
master, except for masters performing locked accesses.

2.2.10 Bus arbiter ordering

Bus arbiter ordering is used when VHDL generic fcfs is set to zero.
When several masters have received SPLIT and the bridge has a response for one of these masters, the
master with the queued response will be allowed in to bus arbitration by the bridge asserting the corre-
sponding HSPLIT signal. In the following clock cycle, all other masters that have received SPLIT
responses will also be allowed in bus arbitration as the bridge asserts their HSPLIT signals simultane-
ously. By doing this the bridge defers the decision on the master to be granted next to the AHB arbiter.
The bridge does not show any preference based on the order in which it issued SPLIT responses to
masters, except to the master that initially started a read or write operation. Care has been taken so
that the bridge shows a consistent behavior when issuing SPLIT responses. For instance, the bridge
could be simplified if it could issue a SPLIT response just to be able to change state, and not initiate a
new operation, to an access coming after an access that read out prefetched data. When the bridge
entered its idle state it could then allow all masters in bus arbitration and resume normal operation.
That solution could lead to starvation issues such as:
T0: Master 1 and Master 2 have received SPLIT responses, the bridge is prefetching data for Master 1
T1: Master 1 is allowed in bus arbitration by setting the corresponding HSPLIT
T2: Master 1 reads out prefetch data, Master 2 HSPLIT is asserted to let Master 2 in to bus arbitration
GRIP, Sep 2018, Version 2018.3 24 www.cobham.com/gaisler

GRLIB IP Core

T3: Master 2 performs an access, receives SPLIT, however the bridge does not initiate an access, it
just stalls in order to enter its idle state.
T4: Master 2 is allowed in to bus arbitration, Master 1 initiates an access that leads to a prefetch and
Master 1 receives a SPLIT response
T5: Master 2 performs an access, receives SPLIT since the bridge is prefetching data for master 1
T6: Go back to T0
This pattern will repeat until Master 1 backs away from the bus and Master 2 is able to make an access
that starts an operation over the bridge. In most systems it is unlikely that this behavior would intro-
duce a bus lock. However, the case above could lead to an unexpectedly long time for Master 2 to
complete its access. Please note that the example above is illustrative and the problem does not exist
in the core as the core does not issue SPLIT responses to (non-locked) accesses in order to just change
state but a similar pattern could appear as a result of decisions taken by the AHB arbiter if Master 1 is
given higher priority than Master 2.
In the case of write operations the scenario is slightly different. The bridge will accept a write imme-
diately and will not issue a SPLIT response. While the bridge is busy performing the write on the mas-
ter side it will issue SPLIT responses to all incoming accesses. When the bridge has completed the
write operation on the master side it will continue to issue SPLIT responses to any incoming access
until there is a cycle where the bridge does not receive an access. In this cycle the bridge will assert
HSPLIT for all masters that have received a SPLIT response and return to its idle state. The first mas-
ter to access the bridge in the idle state will be able to start a new operation. This can lead to the fol-
lowing behavior:
T0: Master 1 performs a write operation, does NOT receive a SPLIT response
T1: Master 2 accesses the bridge and receives a SPLIT response
T2: The bridge now switches state to idle since the write completed and asserts HSPLIT for Master 2.
T3: Master 1 is before Master 2 in the arbitration order and we are back at T0.
In order to avoid this last pattern the bridge would have to keep track of the order in which it has
issued SPLIT responses and then assert HSPLIT in the same order. This is done with first-come, first-
served ordering described in section 2.2.9.

2.2.11 AMBA SPLIT support

Support for AMBA SPLIT responses is enabled/disabled through the VHDL generic split. SPLIT sup-
port should be enabled in most systems. The benefits of using SPLIT responses is that the bus on the
bridge’s slave interface side can be free while the bridge is performing an operation on the master
side. This will allow other masters to access the bus and generally improve system performance. The
use of SPLIT responses also allows First-come, first-served transaction ordering.
For configurations where the bridge is the only slave interface on a bus, it can be beneficial to imple-
ment the bridge without support for AMBA SPLIT responses. Removing support for SPLIT responses
reduces the area used by the bridge and may also reduce the time required to perform accesses that
traverse the bridge. It should be noted that building a bi-directional bridge without support for SPLIT
responses will increase the risk of access collisions.
If SPLIT support is disabled the bridge will insert wait states where it would otherwise issue a SPLIT
response to a master initiating an access. This means that the arbitration ordering will be left to the bus
arbiter and the bridge cannot be implemented with the First-come, first-served transaction ordering
scheme. The bridge will still issue RETRY responses to resolve dead lock conditions, to split up long
burst and also when the bridge is busy emptying it’s write buffer on the master side.
GRIP, Sep 2018, Version 2018.3 25 www.cobham.com/gaisler

GRLIB IP Core

2.2.12 Core latency

The delay incurred when performing an access over the core depends on several parameters such as
core configuration, the operating frequency of the AMBA buses, AMBA bus widths and memory
access patterns. Table 22 below shows core behavior in a system where both AMBA buses are run-
ning at the same frequency and the core has been configured to use AMBA SPLIT responses. Table
23 further down shows core behavior in the same system without support for SPLIT responses.

While the transitions shown in tables 22 and 23 are simplified they give an accurate view of the core
delay. If the master interface needs to wait for a bus grant or if the read operation receives wait states,
these cycles must be added to to the cycle count in the tables. The behavior of the core with a fre-

Table 22. Example of single read with FFACT = 1, and SPLIT support

Clock cycle Core slave side activity Core master side activity
0 Discovers access and transitions from idle state Idle
1 Slave side waits for master side, SPLIT response

is given to incoming access, any new incoming
accesses also receive SPLIT responses.

Discovers slave side transition. Master interface output
signals are assigned.

2 If bus access is granted, perform address phase. Other-
wise wait for bus grant.

3 Register read data and transition to data ready state.
4 Discovers that read data is ready, assign read

data output and assign SPLIT complete
Idle

5 SPLIT complete output is HIGH
6 Typically a wait cycle for the SPLIT:ed master to

be allowed into arbitration. Core waits for master
to return. Other masters receive SPLIT
responses.

7 Master has been allowed into arbitration and per-
forms address phase. Core keeps HREADY high

8 Access data phase. Core has returned to idle
state.

Table 23. Example of single read with FFACT = 1, without SPLIT support

Clock cycle Core slave side activity Core master side activity
0 Discovers access and transitions from idle state Idle
1 Slave side waits for master side, wait states are

inserted on the AMBA bus.
Discovers slave side transition. Master interface output
signals are assigned.

2 Bus access is granted, perform address phase.
3 Register read data and transition to data ready state.
4 Discovers that read data is ready, assign

HREADY output register and data output regis-
ter.

Idle

5 HREADY is driven on AMBA bus. Core has
returned to idle state
GRIP, Sep 2018, Version 2018.3 26 www.cobham.com/gaisler

GRLIB IP Core

quency factor of two between the buses is shown in tables 24 and 25 (best case, delay may be larger
depending on on which slave clock cycle an access is made to the core).

Table 26 below lists the delays incurred for single operations that traverse the bridge while the bridge
is in its idle state. The second column shows the number of cycles it takes the master side to perform
the requested access, this column assumes that the master slave gets access to the bus immediately
and that each access is completed with zero wait states. The table only includes the delay incurred by
traversing the core. For instance, when the access initiating master reads the core’s prefetch buffer,
each additional read will consume one clock cycle. However, this delay would also have been present
if the master accessed any other slave.
Write accesses are accepted with zero wait states if the bridge is idle, this means that performing a
write to the idle core does not incur any extra latency. However, the core must complete the write
operation on the master side before it can handle a new access on the slave side. If the core has not
transitioned into its idle state, pending the completion of an earlier access, the delay suffered by an
access be longer than what is shown in the tables in this section. Accesses may also suffer increased
delays during collisions when the core has been instantiated to form a bi-directional bridge. Locked
accesses that abort on-going read operations will also mean additional delays.

Table 24. Example of single read with FFACT = 2, Master freq. > Slave freq, without SPLIT support

Slave side
clock cycle

Core slave side activity Master side
clock cycle

Core master side activity

0 Discovers access and transitions from idle
state

0 Discovers slave side transition. Master inter-
face output signals are assigned.

1 Slave side waits for master side, wait states
are inserted on the AMBA bus.2 1 Bus access is granted, perform address

phase.3
4 2 Register read data and transition to data

ready state.5
6 Discovers that read data is ready, assign

HREADY output register and data output
register.

3 Idle

7 HREADY is driven on AMBA bus. Core
has returned to idle state

Table 25. Example of single read with FFACT = 2, Master freq. > Slave freq, without SPLIT support

Slave side
clock cycle

Core slave side activity Master side
clock cycle

Core master side activity

0 Discovers access and transitions from idle
state

0 Idle
1

1 Slave side waits for master side, wait states
are inserted on the AMBA bus.

2 Discovers slave side transition. Master inter-
face output signals are assigned.

3 Bus access is granted, perform address
phase.

2 Discovers that read data is ready, assign
HREADY output register and data output
register.

4 Register read data and transition to data
ready state.

5 Idle
3 HREADY is driven on AMBA bus. Core

has returned to idle state
6
7

GRIP, Sep 2018, Version 2018.3 27 www.cobham.com/gaisler

GRLIB IP Core

If the core has been implemented to use AMBA SPLIT responses there will be an additional delay
where, typically, one cycle is required for the arbiter to react to the assertion of HSPLIT and one clock
cycle for the repetition of the address phase.
Note that if the core has support for read and/or write combining, the number of cycles required for
the master will change depending on the access size and length of the incoming burst access. For
instance, in a system where the bus in the core’s master side is wider than the bus on the slave side,
write combining will allow the core to accept writes with zero wait states and then combine several
accesses into one or several larger access. Depending on memory controller implementation this
could reduce the time required to move data to external memory, and will reduce the load on the mas-
ter side bus.

2.2.13 Endianness

The core is designed for big-endian systems.

2.3 Registers

The core does not implement any registers.

2.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x020. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

2.5 Implementation

2.5.1 Technology mapping

The uni-directional AHB to AHB bridge has two technology mapping generics memtech and fcfsm-
tech. memtech selects which memory technology that will be used to implement the FIFO memories.
fcfsmtech selects the memory technology to be used to implement the First-come, first-served buffer,
if FCFS is enaled.

2.5.2 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core does not support grlib_async_reset_enable. All registers that react on the reset signal will
have a synchronous reset.

Table 26. Access latencies

Access Master acc. cycles Slave cycles Delay incurred by performing access over core
Single read 3 1 1 * clkslv + 3 * clkmst

Burst read with prefetch 2 + (burst length)x 2 2 * clkslv + (2 + burst length)* clkmst

Single writexx (2) 0 0

Burst writexx (2 + (burst length)) 0 0

x A prefetch operation ends at the address boundary defined by the prefetch buffer’s size
xx The core implements posted writes, the number of cycles taken by the master side can only affect the next access.
GRIP, Sep 2018, Version 2018.3 28 www.cobham.com/gaisler

GRLIB IP Core

2.5.3 RAM usage

The uni-directional AHB to AHB bridge instantiates one or several syncram_2p blocks from the tech-
nology mapping library (TECHMAP). If prefetching is enabled max(mstmaccsz, slvaccsz)/32 syn-
cram_2p block(s) with organization (max(rburst,iburst)-max(mstmaccsz, slvaccsz)/32) x 32 is used to
implement read FIFO (max(rburst,iburst) is the size of the read FIFO in 32-bit words). max(mst-
maccsz, slvaccsz)/32 syncram_2p block(s) with organization (wburst - max(mstmaccsz, slvaccsz)/32)
x 32, is always used to implement the write FIFO (where wburst is the size of the write FIFO in 32-bit
words).
If the core has support for first-come, first-served ordering then one fcfs x 4 syncram_2p block will be
instantiated, using the technology specified by the VHDL generic fcfsmtech.

2.6 Configuration options

Table 27 shows the configuration options of the core (VHDL generics).

Table 27. Configuration options (VHDL generics)

Generic Function Allowed range Default
memtech Memory technology
hsindex Slave I/F AHB index 0 to NAHBMAX-1 0
hmindex Master I/F AHB index 0 to NAHBMAX-1 0
dir 0 - clock frequency on the master bus is lower than or

equal to the frequency on the slave bus
1 - clock frequency on the master bus is higher than or
equal to the frequency on the slave bus
(for VHDL generic ffact = 1 the value of dir does not
matter)

0 - 1 0

ffact Frequency scaling factor between AHB clocks on master
and slave buses.

1 - 15 2

slv Slave bridge. Used in bi-directional bridge configuration
where slv is set to 0 for master bridge and 1 for slave
bridge. When a deadlock condition is detected slave
bridge (slv=1) will give RETRY response to current
access, effectively resolving the deadlock situation.
This generic must only be set to 1 for a bridge where the
frequency of the bus connecting the master interface is
higher or equal to the frequency of the AHB bus con-
necting to the bridge’s slave interface. Otherwise a race
condition during access collisions may cause the bridge
to deadlock.

0 - 1 0

pfen Prefetch enable. Enables read FIFO. 0 - 1 0
irqsync Interrupt forwarding. Forward interrupts from slave

interface to master interface and vice versa.
0 - no interrupt forwarding, 1 - forward interrupts 1 - 15,
2 - forward interrupts 0 - 31.
3 - forward interrupts 0 - 31.
Since interrupts are forwarded in both directions, inter-
rupt forwarding should be enabled for one bridge only in
a bi-directional AHB/AHB bridge.

0 - 3 0

wburst Length of write bursts in 32-bit words. Determines write
FIFO size and write burst address boundary. If the
wburst generic is set to 2 the bridge will not perform
write bursts over a 2x4=8 byte boundary. This generic
must be set so that the buffer can contain two of the max-
imum sized accesses that the bridge can handle.

2 - 32 8
GRIP, Sep 2018, Version 2018.3 29 www.cobham.com/gaisler

GRLIB IP Core
iburst Instruction fetch burst length. This value is only used if
the generic ibrsten is set to 1. Determines the length of
prefetching instruction read bursts on the master side.
The maximum of (iburst,rburst) determines the size of
the core’s read buffer FIFO.

4 - 8 8

rburst Incremental read burst length. Determines the maximum
length of incremental read burst of unspecified length
(INCR) on the master interface. The maximum of rburst
and iburst determine the read burst boundary. As an
example, if the maximum value of these generics is 8 the
bridge will not perform read bursts over a 8x4=32 byte
boundary.
This generic must be set so that the buffer can contain
two of the maximum sized accesses that the bridge can
handle.
For systems where AHB masters perform fixed length
burst (INCRx , WRAPx) rburst should not be less than
the length of the longest fixed length burst.

4 - 32 8

bar0 Address area 0 decoded by the bridge’s slave interface.
Appears as memory address register (BAR0) on the
slave interface. The generic has the same bit layout as
bank address registers with bits [19:18] suppressed (use
functions ahb2ahb_membar and ahb2ahb_iobar in gais-
ler.misc package to generate this generic).

0 - 1073741823 0

bar1 Address area 1 (BAR1) 0 - 1073741823 0
bar2 Address area 2 (BAR2) 0 - 1073741823 0
bar3 Address area 3 (BAR2) 0 - 1073741823 0
sbus The number of the AHB bus to which the slave interface

is connected. The value appears in bits [1:0] of the user-
defined register 0 in the slave interface configuration
record and master configuration record.

0-3 0

mbus The number of the AHB bus to which the master inter-
face is connected. The value appears in bits [3:2] of the
user-defined register 0 in the slave interface configura-
tion record and master configuration record.

0-3 0

ioarea Address of the I/O area containing the configuration area
for AHB bus connected to the bridge’s master interface.
This address appears in the bridge’s slave interface user-
defined register 1. In order for a master on the slave
interface’s bus to access the configuration area on the
bus connected to the bridge’s master interface, the I/O
area must be mapped on one of the bridge’s BARs.
If this generic is set to 0, some tools, such as Cobham
Gaisler’s GRMON debug monitor, will not perform
Plug’n’Play scanning over the bridge.

0 - 16#FFF# 0

ibrsten Instruction fetch burst enable. If set, the bridge will per-
form bursts of iburst length for opcode access
(HPROT[0] = ‘0’), otherwise bursts of rburst length will
be used for both data and opcode accesses.

0 - 1 0

Table 27. Configuration options (VHDL generics)

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 30 www.cobham.com/gaisler

GRLIB IP Core
lckdac Locked access error detection and correction. Locked
accesses may lead to deadlock if a locked access is made
while an ongoing read access has received a SPLIT
response. The value of lckdac determines how the core
handles this scenario:
0: Core will deadlock
1: Core will issue an AMBA ERROR response to the
locked access
2: Core will allow both accesses to complete.
If the core is used to create a bidirectional bridge, a dead-
lock condition may arise when locked accesses are made
simultaneously in both directions. With lckdac set to 0
the core will deadlock. With lckdac set to a non-zero
value the slave bridge will issue an ERROR response to
the incoming locked access.

0 - 2 0

slvmaccsz The maximum size of accesses that will be made to the
bridge’s slave interface. This value must equal mst-
maccsz unless rdcomb /= 0 and wrcomb /= 0.

32 - 256 32

mstmaccsz The maximum size of accesses that will be performed by
the bridge’s master interface. This value must equal mst-
maccsz unless rdcomb /= 0 and wrcomb /= 0.

32 - 256 32

rdcomb Read combining. If this generic is set to a non-zero value
the core will use the master interface’s maximum AHB
access size when prefetching data and allow data to be
read out using any other access size supported by the
slave interface.
If slvmaccsz > 32 and mstmaccsz > 32 and an incoming
single access, or access to a non-prefetchable area, is
larger than the size supported by the master interface the
bridge will perform a series of small accesses in order to
fetch all the data. If this generic is set to 2 the core will
use a burst of small fetches. If this generic is set to 1 the
bridge will not use a burst unless the incoming access
was a burst.
Read combining is only supported for single accesses
and incremental bursts of unspecified length.

0 - 2 0

wrcomb Write combining. If this generic is set to a non-zero
value the core may assemble several small write accesses
(that are part of a burst) into one or more larger accesses
or assemble one or more accesses into several smaller
accesses. The settings are as follows:
0: No write combining
1: Combine if burst can be preserved
2: Combine if burst can be preserved and allow single
accesses to be converted to bursts (only applicable if
slvmaccsz > 32)
Only supported for single accesses and incremental
bursts of unspecified length

0 - 2 0

Table 27. Configuration options (VHDL generics)

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 31 www.cobham.com/gaisler

GRLIB IP Core
combmask Read/write combining mask. This generic determines
which ranges that the core can perform read/write com-
bining to (only available when rdcomb respectively
wrcomb are non-zero). The value given for combmask is
treated as a 16-bit vector with LSB bit (right-most) indi-
cating address 0x0 - 0x10000000. Making an access to
an address in an area marked as ‘0’ in combmask is
equivalent to making an access over a bridge with
rdcomb = 0 and wrcomb = 0. However, combmask is not
taken into account when the core performs a prefetch
operation (see pfen generic). When a prefetch operation
is initiated, the core will always use the maximum sup-
ported access size (when rdcomb /= 0).

0 - 16#FFFF# 16#FFFF#

allbrst Support all burst types
2: Support all types of burst and always prefetch for
wrapping and fixed length bursts.
1: Support all types of bursts
0: Only support incremental bursts of unspecified length
See section 2.2.7 for more information.
When allbrst is enabled, the core’s read buffer (size set
via rburst/iburst generics) must have at least 16 slots.

0 - 2 0

ifctrlen Interface control enable. When this generic is set to 1 the
input signals ifctrl.mstifen and ifctrl.slvifen can be used
to force the AMBA slave respectively master interface
into an idle state. This functionality is intended to be
used when the clock of one interface has been gated-off
and any stimuli on one side of the bridge should not be
propagated to the interface on the other side of the
bridge.
When this generic is set to 0, the ifctrl.* input signals are
unused.

0 - 1 0

fcfs First-come, first-served operation. When this generic is
set to a non-zero value, the core will keep track of the
order of incoming accesses and handle the requests in the
same order. If this generic is set to zero the bridge will
not preserve the order and leave this up to bus arbitra-
tion. If FCFS is enabled the value of this generic must be
higher or equal to the number of masters that may per-
form accesses over the bridge.

0 - NAHBMST 0

fcfsmtech Memory technology to use for FCFS buffer. When
VHDL generic fcfs is set to a non-zero value, the core
will instantiate a 4 bit x fcfs buffer to keep track of the
incoming master indexes. This generic decides the mem-
ory technology to use for the buffer.

0 - NTECH 0 (inferred)

scantest Enable scan support 0 - 1 0
split Use AMBA SPLIT responses. When this generic is set to

1 the core will issue AMBA SPLIT responses. When this
generic is set to 0 the core will insert waitstates instead
and may also issue AMBA RETRY responses. If this
generic is set to 0, the fcfs generic must also be set to 0,
otherwise a simulation failure will be asserted.

0 - 1 1

Table 27. Configuration options (VHDL generics)

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 32 www.cobham.com/gaisler

GRLIB IP Core
pipe This setting controls the insertion of pipeline registers
between the master and slave side of the bridge.
pipe set to 0 does not include any extra pipeline registers
and the incurred delays for accesses over the bridge is as
described in this documentation.
pipe set to 1 includes extra registers on all signals
between the master and slave side.
pipe set to 2 includes pipeline registers on all signals
going from the slave interface to the master interface and
does NOT insert extra registers on signals going from the
master interface to the slave interface.
pipe set to 3 includes pipeline registers on all signals
going from the master interface to the slave interface and
does NOT insert extra registers on signals going from the
slave interface to the master interface.
pipe set to 128 includes signals on a subset of the signals
to prevent direct paths from the slave clock to the master
side bus and from the master clock to the slave side bus.

0, 1, 128

Table 27. Configuration options (VHDL generics)

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 33 www.cobham.com/gaisler

GRLIB IP Core

2.7 Signal descriptions

Table 28 shows the interface signals of the core (VHDL ports).

Table 28. Signal descriptions (VHDL ports)

Signal name Field Type Function Active
RST Input Reset Low
HCLKM Input AHB master bus clock -
HCLKS Input AHB slave bus clock -
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
AHBMI * Input AHB master input signals -
AHBMO * Output AHB master output signals -
AHBSO2 * Input AHB slave input vector signals (on master i/f

side). Used to decode cachability and prefetch-
ability Plug&Play information on bus connected
to the bridge’s master interface.

-

LCKI slck
blck
mlck

Input Used in systems with multiple AHB/AHB
bridges (e.g. bi-directional AHB/AHB bridge) to
detect deadlock conditions. Tie to “000” in sys-
tems with only uni-directional AHB/AHB bus.

High

LCKO slck
blck
mlck

Output Indicates possible deadlock condition High

IFCTRL mstifen Input Enable master interface. This input signal is
unused if the VHDL generic ifctrlen is 0. If
VHDL generic ifctrlen is 1 this signal must be
set to ‘1’ in order to enable the core’s AMBA
master interface, otherwise the master interface
will always be idle and will not respond to stim-
uli on the core’s AMBA slave interface. This sig-
nal is intended to be used to keep the core’s
master interface in a good state when the core’s
slave interface clock has been gated off. Care
should be taken to ensure that the bridge is idle
when the master interface is disabled.

High

slvifen Input Enable slave interface. This input signal is
unused if the VHDL generic ifctrlen is 0. If
VHDL generic ifctrlen is 1 this signal must be
set to ‘1’ in order to enable the core’s AMBA
slave interface, otherwise the interface will
always be ready and the bridge will not propa-
gate stimuli on the core’s AMBA slave interface
to the core’s AMBA master interface. This signal
is intended to be used to keep the slave interface
in a good state when the core’s master interface
clock has been gated off. Care should be taken to
ensure that the bridge is idle when the slave
interface is disabled.

High

* see GRLIB IP Library User’s Manual
GRIP, Sep 2018, Version 2018.3 34 www.cobham.com/gaisler

GRLIB IP Core

2.8 Library dependencies

Table 29 shows the libraries used when instantiating the core (VHDL libraries).

2.9 Instantiation

GRLIB contains two example designs with AHB2AHB and LEON processors: designs/leon3-
ahb2ahb (only available in commercial distributions) and designs/leon4-ahb2ahb (only in distribu-
tions that include LEON4 processor). The LEON/GRLIB Configuration and Development Guide con-
tains more information on how to use the bridge to create multi-bus systems.

Table 29. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER MISC Component Component declaration
GRIP, Sep 2018, Version 2018.3 35 www.cobham.com/gaisler

GRLIB IP Core

3 AHBM2AXI - AHB Master to AXI Adapter

3.1 Overview

The AHBM2AXI adapter allows a single AHB master to be used as an AXI3 or AXI4 master. The
adapter has an AHB slave interface on the AHB side and AXI3 or AXI4 master interface on the AXI
side (see Fig. 2). The adapter has optional read prefetching and write buffering features in order to
improve the latency of burst operations. The adapter is not compatible with AHB2AHB and GRD-
MAC components which is a part of GRLIB IP library.

3.1.1 AHB support

The AHBM2AXI adapter currently supports the following features of the AHB protocol:
Transfer Type: IDLE, NONSEQ, SEQ
Burst Operation: SINGLE, INCR, INCR4, INCR8, INCR16
Data-width: 32-bit, 64-bit, 128-bit, 256-bit
Transfer Size: All possible transfer sizes up to the selected data-width are supported.
Response: AXI read and write error responses are translated to AHB read and write errors.

Unsupported AHB Features:
The following features of AHB protocol are not supported by the AHBM2AXI adapter.
• BUSY transfer type : Behavior of the AHBM2AXI adapter is unpredictable when a BUSY trans-

action is received hence the AHBM2AXI adapter can not be used with the AHB2AHB bridge
which is a part of GRLIB IP library.

• Locked transfers : Locked transfers are ignored by the AHBM2AXI adapter.

Unused AHB Features:
• RETRY and SPLIT responses : The adapter does not generate these response types.

3.2 Special Considerations

There is a combinatorial path between the incoming HTRANS signal and outgoing HREADY signal
on the AHB side of the adapter, in order to allow write-buffering and write response propagation at
the same time. As a result, this component is only intended to connect to a single IP core with an AHB
master interface in which HTRANS output does not depend on the incoming HREADY signal combi-
natorially. Propagating the write response correctly is important to make sure that the intended trans-
action ordering has been met, meaning the AHB master that is connected to the adapter receives the
acknowledgment for the last write beat in the burst when the write response has been received on the

Figure 2. A standalone AHB master is connected to an AXI slave through AHBM2AXI adapter

 AHBM2AXI

AHB
MASTER

AXI
SLAVE
GRIP, Sep 2018, Version 2018.3 36 www.cobham.com/gaisler

GRLIB IP Core

AXI side. Being able to propagate correct write response can also simplify the software development.
The AHBM2AXI adapter can not be used with the GRDMAC IP core which is a part of GRLIB IP
library.

3.3 Operation

3.3.1 Read Prefetching and Write Buffering

The adapter has the feature of read prefetching and write buffering for the AHB bursts in which the
transfer size (HSIZE) is equal to the selected data-width. For the transfer sizes that are narrower than
the data-width each beat in the burst treated as a single transaction on the AXI side. Read prefetching
and write buffering reduces the latency of undefined length burst operations since otherwise each beat
in an undefined length burst has to be treated as an independent AXI transaction with a length of one.

3.3.2 Read Prefetching

Read prefetch number that is set through rprefetch_num generic determines the length of the AXI
transaction(s) that is generated when an undefined length AHB read burst is encountered. When an
undefined length AHB read burst is encountered, an AXI transaction is generated with a length of
rprefetch_num. If the AHB read burst has less beats than rprefetch_num then dummy reads are gener-
ated on the AXI side to complete the AXI transaction. If the AHB read burst has more beats than
rprefetch_num then a new AXI transaction is generated with a number of beats equal to rprefetch_-
num and this scheme continuous until the AHB burst ends. If the start address of a burst is not aligned
to the prefetch boundary then the initial prefetch has less number of beats in order to align the upcom-
ing prefetches. For example given a 32-bit (4 Byte) data-width and a rprefetch_num of 16 (16*4=64
Bytes) if the least significant bits of the initial burst address corresponds to byte 48, then the initial
prefetch length is 4 ((64-48)/4). This way the upcoming prefetches are always aligned to 64 Byte
boundary. If a new AHB burst is encountered during dummy read operations on the AXI side, the
AHB burst is stalled until the current AXI transaction ends.
The maximum read prefetch number depends on the AXI protocol. For AXI3 the maximum number is
16, and for AXI4 it can be up to 256 depending on the selected data-width. Prefetch length can only
be a power of two and if it is not set to be a power of two then the number is floored to the closest
power of two automatically. For fixed length AHB bursts (single, INCR4, INCR8, INCR16) the
length of the AXI burst is equal to the AHB burst length since in those cases the burst length is known
at the beginning of the burst. The adapter will not issue a new AXI transaction while dummy cycles
are inserted hence there is a trade-off for performance when selecting the read prefetch number.

3.3.3 Write Buffering

Write buffering gathers a number of consecutive beats in a AHB write burst and initiates an AXI
transaction. A generic called wbuffer_num determines the maximum number of AHB write burst
beats that will be gathered before an AXI write burst transaction is generated. If the number of beats
in the AHB write burst is less than wbuffer_num then the AXI write transaction starts after detecting
the last beat in the burst (transition from SEQ to IDLE). If the number of beats are higher than
wbuffer_num then the first AXI transaction is generated once wbuffer_num number of beats are buff-
ered. It should be noted that once an AXI write transaction is generated and AHB burst still continues
then AXI transaction and buffering for the next write batch happens in parallel to minimize the
latency. This scheme continuous until the AHB burst is ended. When the last data beat of the burst is
reached the HREADY on the AHB side is asserted once the write response is received from the AXI
side. The write buffering feature is used for the fixed size burst also in the same way as undefined
length bursts.
GRIP, Sep 2018, Version 2018.3 37 www.cobham.com/gaisler

GRLIB IP Core

Write buffer length can only be a power of two, and if it is not set to be a power of two then the num-
ber is floored to the closest power of two automatically. The maximum number has the same con-
straints as the read prefetch number. A synchronous memory width one read and write port is
generated for write buffering. The size of the memory is determined by the write buffer length. The
type of the memory can be configured with a generic also. The first AXI write transaction will not
start until the buffer is filled or the AHB transaction has written the last beat in the burst. As a result
there is a trade-off for performance while selecting the write buffer length which depends on the AXI
slave behavior.

3.3.4 Endianness

The AHB side of the AHB2AXIB bridge is always assumed to be big-endian. The endianness on the
AXI side is configurable through the endianness_mode generic.
When endianness_mode generic is set to zero a byte-invariant big-endian endianness mode is used on
the AXI side. In order to translate big-endian AHB to byte-invariant big-endian AXI the byte order is
reversed (see Fig. 3). No address translation occurs inside the adapter in this mode.

When endianness_mode generic is set to one then big-endian AHB is translated to little-endian AXI.
In order to achieve this the byte order is preserved but the address is translated from big-endian repre-
sentation to little-endian representation when a narrow sized transaction is encountered (See Fig. 4 for
an example with 32-bit data-bus width.).
The address translation formula for 32-bit, 64-bit, 128-bit and 256-bit data-bus widths are following:
32-bit data bus width:
if HSIZE < “010” :

axi_address(1:0) = (“100” - “1”<<“HSIZE” - ahb_address(1:0))(1:0)
otherwise:

axi_address(1:0) = ahb_address(1:0)
64-bit data bus width:
if HSIZE < “011” :

axi_address(2:0) = (“1000” - “1”<<“HSIZE” - ahb_address(2:0))(2:0)
otherwise:

axi_address(2:0) = ahb_address(2:0)

Figure 3. Big-endian AHB to byte-invariant Big-endian AXI translation (32-bit data-width)

B2B3 B0B1

(31) (0)

AHB DATA-BUS

B1B0 B3B2
(0)

AXI DATA-BUS

(31)

(Bit position)

MSB

MSB

(Bit position)
GRIP, Sep 2018, Version 2018.3 38 www.cobham.com/gaisler

GRLIB IP Core

128-bit data bus width:
if HSIZE < “100” :

axi_address(3:0) = (“10000” - “1”<<“HSIZE” - ahb_address(3:0))(3:0)
otherwise:

axi_address(3:0) = ahb_address(3:0)
256-bit data bus width:
if HSIZE < “101” :

axi_address(4:0) = (“100000” - “1”<<“HSIZE” - ahb_address(4:0))(4:0)
otherwise:

axi_address(4:0) = ahb_address(4:0)

3.4 AXI AxPROT and AxCACHE Translations

The AxPROT and AxCACHE signals are translated partly according to the HPROT signal of AHB
transactions. The full list of translation can be seen from Table 30.

Table 30. AxPROT and AxCACHE translations

AXI signal Assignment
AxCACHE[3] always logic ‘0’
AxCACHE[2] always logic ‘0’
AxCACHE[1] HPROT[3]
AxCACHE[0] HPROT[2]
AxPROT[2] not (HPROT[0])
AxPROT[1] See configuration

options (Table. 31)
AxPROT[0] HPROT[1]

Figure 4. Big-endian AHB to little-endian AXI through address translation (32-bit data-width)

 B2B3 B0B1

(31) (0)

AHB DATA-BUS

B2B3 B0B1
(0)

AXI DATA-BUS

(31)

(Bit position)

MSB

(Bit position)

MSB

Address translation for 32-bit data-bus width

When HSIZE = “010” no translation

When HSIZE = “001”
AHB-side “00” -> AXI-side “10”
AHB-side “10” -> AXI-side “00”

When HSIZE = “000”

 (address bits 1 and 0 is translated)

AHB-side “00” -> AXI-side “11”
AHB-side “01” -> AXI-side “10”
AHB-side “10” -> AXI-side “01”
AHB-side “00” -> AXI-side “00”
GRIP, Sep 2018, Version 2018.3 39 www.cobham.com/gaisler

GRLIB IP Core
3.5 Configuration Options

Table 31. Configuration options (both AHBM2AXI3 and AHBM2AXI4)

Generic Function Allowed range Default
aximid AXI master ID used for Read and Write transactions 0 - 15 0
always_secure When set to 1 the AxPROT[1] bit is tied to logic ‘0’

(always secure access), when set to 0 the AxPROT[1] bit
is tied to logic ‘1’ (always unsecure access).

0-1 1

endianness_mode Determines the endianness mode (see section 3.3.4 for
more detail)
0 -> Big-endian AHB to byte-invariant big-endian AXI
1 -> Big-endian AHB to little-endian AXI

0-1 0

Table 32. Configuration options specific for AXI3 (AHBM2AXI3)

Generic Function Allowed range Default
wbuffer_num Write-buffer length which determines the memory size

also.
1-16 8

rprefetch_num Read prefetch length. 1-16 8

Table 33. Configuration options specific for AXI4 (AHBM2AXI4)

Generic Function Allowed range Default
wbuffer_num Write-buffer length which determines the memory size

also.
1-256 for data-width of
32-bit,
1-128 for data-width of
64-bit
1-64 for data-width of
128-bit
1-32 for data-width of
256-bit

8

rprefetch_num Read prefetch length. 1-256 for data-width of
32-bit,
1-128 for data-width of
64-bit
1-64 for data-width of
128-bit
1-32 for data-width of
256-bit

8

GRIP, Sep 2018, Version 2018.3 40 www.cobham.com/gaisler

GRLIB IP Core

3.6 Signal descriptions

Table 34 shows the interface signals of the core (VHDL ports).

3.7 Library dependencies

Table 35 shows the libraries used when instantiating the core (VHDL libraries).

3.8 Instantiation

The instantiation of the AHBM2AXI adapter depends on the AXI protocol type. There are two com-
ponents called AHBM2AXI3 which is built for AXI3 protocl and AHBM2AXI4 which is built for
AXI4 protocol. The difference between these two components are the AXI master output signals and
the maximum values that can be set for read prefetching and write buffering.

Since AHBM2AXI adapter is intended to be used for only a single core, a transaction is sampled and
evaluated directly on the rising edge of the clock, the “hsel” and “hready” inputs are ignored by the
AHBM2AXI adapter. The grant signal for the AHB master that is connected to the adapter should be
hardwired to logic 1.

Following is an example in which a component with an ahb master interface called “ahbm_ex” is con-
nected to the AHBM2AXI4 adapter which can act as an master for AXI4 protocol.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.axi.all;

entity ahbm2axi4_ex is
 port (
 rstn : in std_logic;

Table 34. Signal descriptions (VHDL ports)

Signal name Field Type Function Active
RST Input Reset Low
CLK Input AHB & AXI bus clock -
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
AXIMI * Input AXI3/4 master input signals -
AXIMO * Output AXI3/4 master output signals -
* see GRLIB IP Library User’s Manual

Table 35. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA & AXI signal definitions
GAISLER AXI Component Component declaration
GRIP, Sep 2018, Version 2018.3 41 www.cobham.com/gaisler

GRLIB IP Core

 clk : in std_logic;
 aximi : in axi_somi_type;
 aximo : out axi4_mosi_type
);
end;

architecture rtl of ahbm2axi4_ex is

signal ahbsi : in ahb_slave_in_type;
signal ahbso : out ahb_slave_out_type;
signal ahbmi : in ahb_mst_in_type;
signal ahbmo : out ahb_mst_out_type;

component ahbm_ex is
 port (
 signal rstn : in std_logic;
 signal clk : in std_logic;
 signal ahbmi : in ahb_mst_in_type;
 signal ahbmo : out ahb_mst_out_type);
end component;

begin

adapter:ahbm2axi4
 generic map (
 memtech => 0,
 aximid => 0,
 wbuffer_num => 16,
 rprefetch_num=> 16,
 always_secure => 1

)
 port map (

 rstn => rstn,
 clk => clk,
 ahbsi => ahbsi,
 ahbso => ahbso,

 aximi => aximi,
 aximo => aximo);

ahbmaster:ahbm_ex
port map (
 rstn => rstn,
 clk => clk,
 ahbmi => ahbmi,
 ahbmo => ahbmo);

ahbsi.haddr <= ahbmo.hadddr;
ahbsi.hwrite <= ahbmo.hwrite;
ahbsi.htrans <= ahbmo.htrans;
ahbsi.hsize <= ahbmo.hsize;
ahbsi.hburst <= ahbmo.hburst;
ahbsi.hwdata <= ahbmo.hwdata;
ahbsi.hprot <= ahbmo.hprot;

ahbmi.hgrant <= (others=> ‘1’);
ahbmi.hready <= ahbso.hready;
ahbmi.hresp <= ahbso.hresp;
ahbmi.hrdata <= ahbso.hrdata;
--Remaining ahb master inputs are implementation dependent
GRIP, Sep 2018, Version 2018.3 42 www.cobham.com/gaisler

GRLIB IP Core

4 AHB2AXIB - AHB to AXI Bridge

4.1 Overview

The AHB2AXIB bridge allows to access an AXI3 or AXI4 slave from an AHB bus through an AHB
slave interface (see Fig. 5). It can also be used to connect a standalone AHB master to an AXI slave
(see Fig. 6). The bridge has an AHB slave interface on the AHB side and AXI3 or AXI4 master inter-
face on the AXI side. The bridge has optional read prefetching and write buffering features in order to
improve the latency of burst operations. The AHB2AXIB bridge is not compatible with the
AHB2AHB bridge which is a part of GRLIB IP library.

4.1.1 AHB support

The AHB2AXIB bridge currently supports the following features of the AHB protocol:
Transfer Type: IDLE, NONSEQ, SEQ
Burst Operation: SINGLE, INCR, INCR4, INCR8, INCR16
Data-width: 32-bit, 64-bit, 128-bit, 256-bit
Transfer Size: All possible transfer sizes up to the selected data-width are supported.
Response: AXI read error response is translated to AHB read error.

Unsupported AHB Features:
The following features of AHB protocol are not supported by the AHB2AXIB bridge.

Figure 5. An AXI slave connected to the AHB bus through AHB2AXIB bridge

AHB2AXIB

AHB
Controller

AXI
SLAVE

AHB
MASTER-0

AHB
MASTER-N

AHB BUS

Figure 6. A standalone AHB master is connected to an AXI slave through AHB2AXIB bridge

 AHB2AXIB

AHB
MASTER

AXI
SLAVE
GRIP, Sep 2018, Version 2018.3 43 www.cobham.com/gaisler

GRLIB IP Core

• BUSY transfer type : Behavior of the AHB2AXIB bridge is unpredictable when a BUSY trans-

action is received hence the AHB2AXIB bridge can not be used with the AHB2AHB bridge
which is a part of GRLIB IP library.

• Locked transfers : Locked transfers are ignored by the AHB2AXIB bridge.

Unused AHB Features:
• RETRY and SPLIT responses ; AHB2AXIB bridge does not generate these response types.
• Write error response : Due to the difference between the write error handling of AXI and AHB

protocol the write errors received from the AXI side is not propagated.

4.2 Operation

4.2.1 Read Prefetching and Write Buffering and Postponed Writes

The bridge has the feature of read prefetching and write buffering for the AHB bursts in which the
transfer size (HSIZE) is equal to the selected data-width. For the transfer sizes that are narrower than
the data-width it can still support read prefetching and write buffering if byte invariant big endian
mode is used. Otherwise each beat in the burst treated as a single transaction on the AXI side. Read
prefetching and write buffering reduces the latency of undefined length burst operations since other-
wise each beat in an undefined length burst has to be treated as an independent AXI transaction with a
length of one.

4.2.2 Read Prefetching

Read prefetch number that is set through rprefetch_num generic determines the length of the AXI
transaction(s) that is generated when an undefined length AHB read burst is encountered. When an
undefined length AHB read burst is encountered, an AXI transaction is generated with a length of
rprefetch_num. If the AHB read burst has less beats than rprefetch_num then dummy reads are gener-
ated on the AXI side to complete the AXI transaction. If the AHB read burst has more beats than
rprefetch_num then a new AXI transaction is generated with a number of beats equal to rprefetch_-
num and this scheme continuous until the AHB burst ends. If the start address of a burst is not aligned
to the prefetch boundary then the initial prefetch has less number of beats in order to align the upcom-
ing prefetches. For example given a 32-bit (4 Byte) data-width and a rprefetch_num of 16 (16*4=64
Bytes) if the least significant bits of the initial burst address corresponds to byte 48, then the initial
prefetch length is 4 ((64-48)/4). This way the upcoming prefetches are always aligned to 64 Byte
boundary. If a new AHB burst is encountered during dummy read operations on the AXI side, the
AHB burst is stalled until the current AXI transaction ends.
The maximum read prefetch number depends on the AXI protocol. For AXI3 the maximum number is
16, and for AXI4 it can be up to 256 depending on the selected data-width. Prefetch length can only
be a power of two and if it is not set to be a power of two then the number is floored to the closest
power of two automatically. For fixed length AHB bursts (single, INCR4, INCR8, INCR16) the
length of the AXI burst is equal to the AHB burst length since in those cases the burst length is known
at the beginning of the burst. The bridge will not issue a new AXI transaction while dummy cycles are
inserted hence there is a trade-off for performance when selecting the read prefetch number.

4.2.3 Write Buffering

Write buffering gathers a number of consecutive beats in a AHB write burst and initiates an AXI
transaction. A generic called wbuffer_num determines the maximum number of AHB write burst
beats that will be gathered before an AXI write burst transaction is generated. If the number of beats
GRIP, Sep 2018, Version 2018.3 44 www.cobham.com/gaisler

GRLIB IP Core

in the AHB write burst is less than wbuffer_num then the AXI write transaction starts after detecting
the last beat in the burst (transition from SEQ to IDLE). If the number of beats are higher than
wbuffer_num then the first AXI transaction is generated once wbuffer_num number of beats are buff-
ered. It should be noted that once an AXI write transaction is generated and AHB write burst still con-
tinues then AXI transaction and buffering of the next write batch happens in parallel to improve the
latency. This scheme continuous until the AHB burst is ended. The last data beat in the burst is always
acknowledged with OKAY response immediately when it is buffered in the bridge. See section 4.2.5
for more detailed information.

Write buffer length can only be a power of two, and if it is not set to be a power of two then the num-
ber is floored to the closest power of two automatically. The maximum number has the same con-
straints as the read prefetch number. A synchronous memory width one read and write port is
generated for write buffering. The size of the memory is determined by the write buffer length. The
type of the memory can be configured with a generic also. The first AXI write transaction will not
start until the buffer is filled or the AHB transaction has written the last beat in the burst. As a result
there is a trade-off for performance while selecting the write buffer length which depends on the AXI
slave behavior.

4.2.4 Narrow Sized Transactions

When an AHB transaction is encountered which has a narrower size (HSIZE) than the data-width of
the AHB2AXIB bridge, the behavior is configurable through the generics depending on the selected
endianness on the AXI side. When the endianness mode on the AXI side is set as little-endian than
each beat in the narrow sized AXI transaction is treated as single transaction on the AXI side. When
the endinness mode on the AXI side is set as byte invariant big-endian than the narrow_acc_mode
generic determines the behaviour. If the narrow_acc_mode generic is set as zero than each beat in the
narrow sized AXI transaction is treated as single transaction on the AXI side. If it is set to 1 then a
corresponding narrow sized AXI burst is generated with read prefetching and write buffering. But it
should be noted that the length of the narrow sized burst will be determined by rprefetch_num and
wbuffer_num generics and it is same as for all access sizes. When the endianness on the AXI side is
set ass little-endian then narrow_acc_mode generic must be set to zero. See sec. 4.2.6 for more
detailed information about endianness modes.

4.2.5 Postponed Writes

Since the write response from AXI is not propagated to AHB side the last beat in the AHB write trans-
action is acknowledged immediately when it is buffered in the bridge. Hence the corresponding AXI
write transaction will finish after the AHB write transaction is completed. The transaction order on the
AHB bus side will be preserved because the bridge will block an AHB read, if there is an AXI write
transaction is ongoing, until the AXI write response is received. But if a transaction order has to be
preserved between the AHB side of a AHB2AXIB bridge and an independent AXI master that
accesses to the same AXI slave then special considerations in software might be needed. If the
AHB2AXIB bridge is intended to be used for a single AHB master without an AHB bus then it is pos-
sible to use the AHBM2AXI adapter that is a part of GRLIB IP library if the AHB master is compati-
ble. The AHBM2AXI adapter propagates the AXI write response.

4.2.6 Endianness

The AHB side of the AHB2AXIB bridge is always assumed to be big-endian. The endianness on the
AXI side is configurable through the endianness_mode generic.
GRIP, Sep 2018, Version 2018.3 45 www.cobham.com/gaisler

GRLIB IP Core

When endianness_mode generic is set to zero a byte-invariant big-endian endianness mode is used on
the AXI side. In order to translate big-endian AHB to byte-invariant big-endian AXI the byte order is
reversed (see Fig. 7). No address translation occurs inside the adapter in this mode.

When endianness_mode generic is set to one then big-endian AHB is translated to little-endian AXI.
In order to achieve this the byte order is preserved but the address is translated from big-endian repre-
sentation to little-endian representation when a narrow sized transaction is encountered (See Fig. 8 for
an example with 32-bit data-bus width.).
The address translation formula for 32-bit, 64-bit, 128-bit and 256-bit data-bus widths are following:
32-bit data bus width:
if HSIZE < “010” :

axi_address(1:0) = (“100” - “1”<<“HSIZE” - ahb_address(1:0))(1:0)
otherwise:

axi_address(1:0) = ahb_address(1:0)
64-bit data bus width:
if HSIZE < “011” :

axi_address(2:0) = (“1000” - “1”<<“HSIZE” - ahb_address(2:0))(2:0)
otherwise:

axi_address(2:0) = ahb_address(2:0)
128-bit data bus width:
if HSIZE < “100” :

axi_address(3:0) = (“10000” - “1”<<“HSIZE” - ahb_address(3:0))(3:0)
otherwise:

axi_address(3:0) = ahb_address(3:0)
256-bit data bus width:
if HSIZE < “101” :

axi_address(4:0) = (“100000” - “1”<<“HSIZE” - ahb_address(4:0))(4:0)
otherwise:

axi_address(4:0) = ahb_address(4:0)

Figure 7. Big-endian AHB to byte-invariant Big-endian AXI translation (32-bit data-width)

B2B3 B0B1

(31) (0)

AHB DATA-BUS

B1B0 B3B2
(0)

AXI DATA-BUS

(31)

(Bit position)

MSB

MSB

(Bit position)
GRIP, Sep 2018, Version 2018.3 46 www.cobham.com/gaisler

GRLIB IP Core
4.3 AXI AxPROT and AxCACHE Translations

The AxPROT and AxCACHE signals are translated partly according to the HPROT signal of AHB
transactions. The full list of translation can be seen from Table 36.

Table 36. AxPROT and AxCACHE translations

AXI signal Assignment
AxCACHE[3] always logic ‘0’
AxCACHE[2] always logic ‘0’
AxCACHE[1] HPROT[3]
AxCACHE[0] HPROT[2]
AxPROT[2] not (HPROT[0])
AxPROT[1] See configuration

options (Table. 37)
AxPROT[0] HPROT[1]

Figure 8. Big-endian AHB to little-endian AXI through address translation (32-bit data-width)

 B2B3 B0B1

(31) (0)

AHB DATA-BUS

B2B3 B0B1
(0)

AXI DATA-BUS

(31)

(Bit position)

MSB

(Bit position)

MSB

Address translation for 32-bit data-bus width

When HSIZE = “010” no translation

When HSIZE = “001”
AHB-side “00” -> AXI-side “10”
AHB-side “10” -> AXI-side “00”

When HSIZE = “000”

 (address bits 1 and 0 is translated)

AHB-side “00” -> AXI-side “11”
AHB-side “01” -> AXI-side “10”
AHB-side “10” -> AXI-side “01”
AHB-side “00” -> AXI-side “00”
GRIP, Sep 2018, Version 2018.3 47 www.cobham.com/gaisler

GRLIB IP Core

4.4 Configuration Options

Table 37. Configuration options (both AHB2AXI3B and AHB2AXI4B)

Generic Function Allowed range Default
aximid AXI master ID used for Read and Write transactions 0 - 15 0
always_secure When set to 1 the AxPROT[1] bit is tied to logic ‘0’

(always secure access), when set to 0 the AxPROT[1] bit
is tied to logic ‘1’ (always unsecure access).

0-1 1

endianness_mode Determines the endianness mode (see section 4.2.6 for
more detail)
0 -> Big-endian AHB to byte-invariant big-endian AXI
1 -> Big-endian AHB to little-endian AXI

0-1 0

narrow_acc_mode Determines if bursts with narrow access size than the
data-bus width should be directly translated to narrow
access size AXI bursts or single AXI transactions with
narrow access size. (see section 4.2.4 for more detail)
0-> Each beat in the narrow sized AHB burst is treated as
single transaction on the AXI side.
1-> Narrow sized AHB bursts are translated to narrow
sized AXI bursts. (supported only when endianness_-
mode generic is 0)
Note: This generic must be set to 0 if endianness_mode
is set to 1.

0-1 0

vendor GRLIB plug&play vendor ID GAISLER
device GRLIB plug&play device ID AHB2AXI
bar0 Address area 0 decoded by the bridge’s slave interface.

Appears as memory address register (BAR0) on the
slave interface. The generic has the same bit layout as
bank address registers with bits [19:18] suppressed (use
functions ahb2ahb_membar and ahb2ahb_iobar in gais-
ler.misc package to generate this generic).

0 - 1073741823 0

bar1 Address area 1 (BAR1) 0 - 1073741823 0
bar2 Address area 2 (BAR2) 0 - 1073741823 0
bar3 Address area 3 (BAR2) 0 - 1073741823 0

Table 38. Configuration options specific for AXI3 (AHB2AXI3B)

Generic Function Allowed range Default
wbuffer_num Write-buffer length which determines the memory size

also.
1-16 8

rprefetch_num Read prefetch length. 1-16 8
GRIP, Sep 2018, Version 2018.3 48 www.cobham.com/gaisler

GRLIB IP Core
4.5 Signal descriptions

Table 40 shows the interface signals of the core (VHDL ports).

4.6 Library dependencies

Table 41 shows the libraries used when instantiating the core (VHDL libraries).

Table 39. Configuration options specific for AXI4 (AHB2AXI4B)

Generic Function Allowed range Default
wbuffer_num Write-buffer length which determines the memory size

also.
1-256 for data-width of
32-bit,
1-128 for data-width of
64-bit
1-64 for data-width of
128-bit
1-32 for data-width of
256-bit

8

rprefetch_num Read prefetch length. 1-256 for data-width of
32-bit,
1-128 for data-width of
64-bit
1-64 for data-width of
128-bit
1-32 for data-width of
256-bit

8

Table 40. Signal descriptions (VHDL ports)

Signal name Field Type Function Active
RST Input Reset Low
CLK Input AHB & AXI bus clock -
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
AXIMI * Input AXI3/4 master input signals -
AXIMO * Output AXI3/4 master output signals -
* see GRLIB IP Library User’s Manual

Table 41. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA & AXI signal definitions
GAISLER AXI Component Component declaration
GRIP, Sep 2018, Version 2018.3 49 www.cobham.com/gaisler

GRLIB IP Core

4.7 Instantiation

The instantiation of the AHB2AXIB bridge depends on the AXI protocol type. There are two compo-
nents called AHB2AXI3B which is built for AXI3 protocol and AHB2AXI4B which is built for AXI4
protocol. The difference between these two components are the AXI master output signals and the
maximum values that can be set for read prefetching and write buffering.

4.7.1 AHB2AXIB bridge is used to connect an AXI slave to an AHB bus
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.axi.all;

entity ahb2axib_ex is
 port (
 rstn : in std_logic;
 clk : in std_logic;
 .
 .
 .
 aximi : in axi_somi_type;
 aximo : out axi4_mosi_type;
);
end;

architecture rtl of ahb2axib_ex is

.

.
constant hindex_ahb2axi4b : integer := 2;

begin

.

.

ahbctrl & other components

.

.

bridge:ahb2axi4b
 generic map (
 hindex => hindex_ahb2axi4b,
 aximid => 0

)
 port map (

 rstn => rstn,
 clk => clk,
 ahbsi => ahbsi,
 ahbso => ahbso(hindex_ahb2axi4b),

 aximi => aximi,
 aximo => aximo);
GRIP, Sep 2018, Version 2018.3 50 www.cobham.com/gaisler

GRLIB IP Core

4.7.2 AHB2AXIB bridge is used to connect a standalone AHB master to an AXI slave.

If AHB2AXIB bridge is intended to be used to connect a standalone AHB master to an AXI slave
then the following assignments are needed for correct operations:
The hsel input of the AHB2AXIB must be assigned to an array of (others=>’1’) so that it works
regardless of the assigned hindex value.
The hready input of the AHB2AXIB must be connected to the hready output of the AHB2AXIB.
The hgrant input of the AHB master must be assigned to an array of (others=>’1’) so that it works
regardless of the assigned hindex value.
GRIP, Sep 2018, Version 2018.3 51 www.cobham.com/gaisler

GRLIB IP Core

5 AHBBRIDGE - Bi-directional AHB/AHB bridge

5.1 Overview

A pair of uni-directional bridges (AHB2AHB) can be instantiated to form a bi-directional bridge. The
bi-directional AHB/AHB bridge (AHBBRIDGE) instantiates two uni-directional bridges that are con-
figured to suit the bus architecture shown in figure 9. The bus architecture consists of two AHB buses:
a high-speed AHB bus hosting LEON3 CPU(s) and an external memory controller and a low-speed
AHB bus hosting communication IP-cores.
Note: For other architectures, a more general bi-directional bridge that is more suitable can be created
by instantiating two uni-directional AHB to AHB bridges (see AHB2AHB core). AHBBRIDGE is not
suitable for LEON4 systems and for other systems with wide AHB buses.

5.2 Operation

5.2.1 General

The AHB/AHB bridge is connected to each AHB bus through a pair consisting of an AHB master and
an AHB slave interface. The address space occupied by the AHB/AHB bridge on each bus is deter-
mined by Bank Address Registers which are configured through VHDL generics. The bridge is capa-
ble of handling single and burst transfers in both directions. Internal FIFOs are used for data
buffering. The bridge implements the AMBA SPLIT response to improve AHB bus utilization. For
more information on AHB transfers please refer to the documentation for the uni-directional AHB/
AHB bridge (AHB2AHB).
The requirements on the two bus clocks are that they are synchronous. The two uni-directional
bridges forming the bi-directional AHB/AHB bridge are configured asymmetrically. Configuration of
the bridge connecting high-speed bus with the low-speed bus (down bus) is optimized for the bus traf-
fic generated by the LEON3 CPU since the CPU is the only master on the high-speed bus (except for
the bridge itself). Read transfers generated by the CPU are single read transfers generated by single
load instructions (LD), read bursts of length two generated by double load instructions (LDD) or
incremental read bursts of maximal length equal to cache line size (4 or 8 words) generated during
instruction cache line fill. The size of the read FIFO for the down bridge is therefore configurable to 4
or 8 entries which is the maximal read burst length. If a read burst is an instruction fetch (indicated on
AHB HPROT signal) to a prefetchable area the bridge will prefetch data to the end of a instruction

Figure 9. LEON3 system with a bi-directional AHB/AHB bridge

Timers IrqCtrl

I/O

LEON3

SRAM AHB/APB
Bridge

UARTS

Serial
Dbg Link

JTAG
Dbg Link

LEON3 DSU3

SDRAM
Controller

AHB/AHB
Bridge

High-speed bus

Low-speed bus
Async Mem
ControllerPROM

SDRAM

AHB
CTRL

Ethernet
MAC

AHB
CTRL

PCI
GRIP, Sep 2018, Version 2018.3 52 www.cobham.com/gaisler

GRLIB IP Core

cache line. If a read burst to a prefetchable area is a data access, two words will be prefetched (this
transfer is generated by the LDD instruction). The write FIFO has two entries capable of buffering the
longest write burst (generated by the STD instruction). The down bridge also performs interrupt for-
warding, interrupt lines 1-15 on both buses are monitored and an interrupt on one bus is forwarded to
the other one.
Since the low-speed bus does not host a LEON3 CPU, all AHB transfers forwarded by the uni-direc-
tional bridge connecting the low-speed bus and the high-speed bus (up bridge) are data transfers.
Therefore the bridge does not make a distinction between instruction and data transfers. The size of
the read and write FIFOs for this bridge is configurable and should be set by the user to suite burst
transfers generated by the cores on the low-speed bus.
Note that the bridge has been optimized for a LEON3 system with a specific set of masters and a spe-
cific bus topology. Therefore the core may not be suitable for a design containing later versions of the
LEON processor or other masters. In general it is not recommended instantiate the AHBBRIDGE
core and instead instantiate two uni-directional AHB to AHB bridges (AHB2AHB cores) with config-
urations tailored for a specific design.

5.2.2 Deadlock conditions

A deadlock situation can occur if the bridge is simultaneously accessed from both buses. The bridge
contains deadlock detection logic which will resolve a deadlock condition by giving a RETRY
response on the low-speed bus.
There are several deadlock conditions that can occur with locked accesses. If the VHDL generic lck-
dac is 0, the bridge will deadlock if two simultaneous accesses from both buses are locked, or if a
locked access is made while the bridge has issued a SPLIT response to a read access and the splitted
access has not completed. If lckdac is greater than 0, the bridge will resolve the deadlock condition
from two simultaneous locked accesses by giving an ERROR response on the low-speed bus. If lck-
dac is 1 and a locked access is made while the bridge has issued a SPLIT response to a read access,
the bridge will respond with ERROR to the incoming locked access. If lckdac is 2 the bridge will
allow both the locked access and the splitted read access to complete. Note that with lckdac set to 2
and two incoming locked accesses, the access on the low-speed bus will still receive an ERROR
response.

5.2.3 Read and write combining

The bridge can be configured to support read and write combining so that prefetch operations and
write bursts are always performed with the maximum access size possible on the master interface.
Please see the documentation for the uni-directional AHB/AHB bridge (AHB2AHB) for a description
of read and write combining and note that the same VHDL generics are used to specify both the max-
imum master and maximum slave access size on the bi-directional AHB/AHB bridge.

5.2.4 Endianness

The core is designed for big-endian systems

5.3 Registers

The core does not implement any registers.

5.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x020. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.
GRIP, Sep 2018, Version 2018.3 53 www.cobham.com/gaisler

GRLIB IP Core

5.5 Implementation

See documentation for AHB2AHB.

5.6 Configuration options

Table 42 shows the configuration options of the core (VHDL generics).

Table 42. Configuration options

Generic Function Allowed range Default
memtech Memory technology - 0
ffact Frequency ratio 1 - 2
hsb_hsindex AHB slave index on the high-speed bus 0 to NAHBMAX-1 0
hsb_hmindex AHB master index on the high-speed bus 0 to NAHBMAX-1 0
hsb_iclsize Cache line size (in number of 32-bit words) for CPUs on

the high-speed bus. Determines the number of the words
that are prefetched by the bridge when CPU performs
instruction bursts.

4, 8 8

hsb_bank0 Address area 0 mapped on the high-speed bus and
decoded by the bridge’s slave interface on the low-speed
bus. Appears as memory address register (BAR0) on the
bridge’s low-speed bus slave interface. The generic has
the same bit layout as bank address registers with bits
[19:18] suppressed (use functions ahb2ahb_membar and
ahb2ahb_iobar in gaisler.misc package to generate this
generic).

0 - 1073741823 0

hsb_bank1 Address area 1 mapped on the high-speed bus 0 - 1073741823 0
hsb_bank2 Address area 2 mapped on the high-speed bus 0 - 1073741823 0
hsb_bank3 Address area 3 mapped on the high-speed bus 0 - 1073741823 0
hsb_ioarea Address of high-speed bus I/O area that contains the

high-speed bus configuration area. Will appear in the
bridge’s user-defined register 1 on the low-speed bus.
Note that to allow low-speed bus masters to read the
high-speed bus configuration area, the area must be
mapped on one of the hsb_bank generics.

0 - 16#FFF# 0

lsb_hsindex AHB slave index on the low-speed bus 0 to NAHBMAX-1 0
lsb_hmindex AHB master index on the low-speed bus 0 to NAHBMAX-1 0
lsb_rburst Size of the prefetch buffer for read transfers initiated on

the low-speed-bus and crossing the bridge.
16, 32 16

lsb_wburst Size of the write buffer for write transfers initiated on the
low-speed bus and crossing the bridge.

16, 32 16

lsb_bank0 Address area 0 mapped on the low-speed bus and
decoded by the bridge’s slave interface on the high-speed
bus. Appears as memory address register (BAR0) on the
bridge’s high-speed bus slave interface. The generic has
the same bit layout as bank address registers with bits
[19:18] suppressed (use functions ahb2ahb_membar and
ahb2ahb_iobar in gaisler.misc package to generate this
generic).

0 - 1073741823 0

lsb_bank1 Address area 1 mapped on the low-speed bus 0 - 1073741823 0
lsb_bank2 Address area 2 mapped on the low-speed bus 0 - 1073741823 0
lsb_bank3 Address area 3 mapped on the low-speed bus 0 - 1073741823 0
GRIP, Sep 2018, Version 2018.3 54 www.cobham.com/gaisler

GRLIB IP Core
lsb_ioarea Address of low-speed bus I/O area that contains the low-
speed bus configuration area. Will appear in the bridge’s
user-defined register 1 on the high-speed bus. Note that
to allow high-speed bus masters to read the low-speed
bus configuration area, the area must be mapped on one
of the lsb_bank generics.

0 - 16#FFF# 0

lckdac Locked access error detection and correction. This
generic is mapped to the generic with the same name on
the two AHB2AHB cores instantiated by AHBBRIDGE.
Please see the documentation for the AHB2AHB core’s
VHDL generics for more information.

0 - 2 0

maccsz This generic is propagated to the slvmaccsz and mst-
maccsz VHDL generics on the two AHB2AHB cores
instantiated by AHBBRIDGE. The generic determines
the maximum AHB access size supported by the bridge.
Please see the documentation for the AHB2AHB core’s
VHDL generics for more information.

32 - 256 32

rdcomb Read combining, this generic is mapped to the generic
with the same name on the two AHB2AHB cores instan-
tiated by AHBBRIDGE. Please see the documentation
for the AHB2AHB core’s VHDL generics for more
information.

0 - 2 0

wrcomb Write combining, this generic is mapped to the generic
with the same name on the two AHB2AHB cores instan-
tiated by AHBBRIDGE. Please see the documentation
for the AHB2AHB core’s VHDL generics for more
information.

0 - 2 0

combmask Read/Write combining mask, this generic is mapped to
the generic with the same name on the two AHB2AHB
cores instantiated by AHBBRIDGE. Please see the docu-
mentation for the AHB2AHB core’s VHDL generics for
more information.

0 - 16#FFFF# 16#FFFF#

allbrst Support all burst types, this generic is mapped to the
generic with the same name on the two AHB2AHB cores
instantiated by AHBBRIDGE. Please see the documen-
tation for the AHB2AHB core’s VHDL generics for
more information.

0 - 2 0

fcfs First-come, first-served operation, this generic is mapped
to the generic with the same name on the two
AHB2AHB cores instantiated by AHBBRIDGE. Please
see the documentation for the AHB2AHB core’s VHDL
generics for more information.

0 - NAHBMST 0

scantest Enable scan support 0 - 1 0

Table 42. Configuration options

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 55 www.cobham.com/gaisler

GRLIB IP Core

5.7 Signal descriptions

Table 43 shows the interface signals of the core (VHDL ports).

5.8 Library dependencies

Table 44 shows the libraries used when instantiating the core (VHDL libraries).

Table 43. Signal descriptions

Signal name Type Function Active
RST Input Reset Low
HSB_HCLK Input High-speed AHB clock -
LSB_HCLK Input Low-speed AHB clock -
HSB_AHBSI Input High-speed bus AHB slave input signals -
HSB_AHBSO Output High-speed bus AHB slave output signals -
HSB_AHBSOV Input High-speed bus AHB slave input signals -
HSB_AHBMI Input High-speed bus AHB master input signals -
HSB_AHBMO Output High-speed bus AHB master output signals -
LSB_AHBSI Input Low-speed bus AHB slave input signals -
LSB_AHBSO Output Low-speed bus AHB slave output signals -
LSB_AHBSOV Input Low-speed bus AHB slave input signals -
LSB_AHBMI Input Low-speed bus AHB master input signals -
LSB_AHBMO Output Low-speed bus AHB master output signals -

Table 44. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER MISC Component Component declaration
GRIP, Sep 2018, Version 2018.3 56 www.cobham.com/gaisler

GRLIB IP Core

6 AHBCTRL - AMBA AHB controller with plug&play support

6.1 Overview

The AMBA AHB controller is a combined AHB arbiter, bus multiplexer and slave decoder according
to the AMBA 2.0 standard.
The controller supports up to 16 AHB masters, and 16 AHB slaves. The maximum number of masters
and slaves are defined in the GRLIB.AMBA package, in the VHDL constants NAHBSLV and
NAHBMST. It can also be set with the nahbm and nahbs VHDL generics.

Figure 10. AHB controller block diagram

6.2 Operation

6.2.1 Arbitration

The AHB controller supports two arbitration algorithms: fixed-priority and round-robin. The selection
is done by the VHDL generic rrobin. In fixed-priority mode (rrobin = 0), the bus request priority is
equal to the master’s bus index, with index 0 being the lowest priority. If no master requests the bus,
the master with bus index 0 (set by the VHDL generic defmast) will be granted.
In round-robin mode, priority is rotated one step after each AHB transfer. If no master requests the
bus, the last owner will be granted (bus parking). The VHDL generic mprio can be used to specify one
or more masters that should be prioritized when the core is configured for round-robin mode.
Note that there are AHB slaves that implement split-like functionality by giving AHB retry responses
until the access has finished and the original master tries again. All masters on the bus accessing such
slaves must be round-robin arbitrated without prioritization to avoid deadlock situations. For GRLIB
this applies to the GRPCI and GRPCI2 cores.
During incremental bursts, the AHB master should keep the bus request asserted until the last access
as recommended in the AMBA 2.0 specification, or it might loose bus ownership. For fixed-length
burst, the AHB master will be granted the bus during the full burst, and can release the bus request
immediately after the first access has started. For this to work however, the VHDL generic fixbrst
should be set to 1.

6.2.2 Decoding

Decoding (generation of HSEL) of AHB slaves is done using the plug&play method explained in the
GRLIB User’s Manual. A slave can occupy any binary aligned address space with a size of 1 - 4096
Mbyte. A specific I/O area is also decoded, where slaves can occupy 256 byte - 1 Mbyte. The default
address of the I/O area is 0xFFF00000, but can be changed with the ioaddr and iomask VHDL gener-
ics. Access to unused addresses will cause an AHB error response.

MASTER MASTER

SLAVESLAVE

ARBITER/
DECODER

AHBCTRL
GRIP, Sep 2018, Version 2018.3 57 www.cobham.com/gaisler

GRLIB IP Core

The I/O area can be placed within a memory area occupied by a slave. The slave will not be selected
when the I/O area is accessed.

6.2.3 Plug&play information

GRLIB devices contain a number of plug&play information words which are included in the AHB
records they drive on the bus (see the GRLIB user’s manual for more information). These records are
combined into an array which is connected to the AHB controller unit.
The plug&play information is mapped on a read-only address area, defined by the cfgaddr and cfg-
mask VHDL generics, in combination with the ioaddr and iomask VHDL generics. By default, the
area is mapped on address 0xFFFFF000 - 0xFFFFFFFF. The master information is placed on the first
2 kbyte of the block (0xFFFFF000 - 0xFFFFF800), while the slave information is placed on the sec-
ond 2 kbyte block. Each unit occupies 32 bytes, which means that the area has place for 64 masters
and 64 slaves. The address of the plug&play information for a certain unit is defined by its bus index.
The address for masters is thus 0xFFFFF000 + n*32, and 0xFFFFF800 + n*32 for slaves.

Figure 11. AHB plug&play information record

6.3 AHB split support

AHB SPLIT functionality is supported if the split VHDL generic is set to 1. In this case, all slaves
must drive the AHB SPLIT signal.
It is important to implement the split functionality in slaves carefully since locked splits can otherwise
easily lead to deadlocks. A locked access to a slave which is currently processing (it has returned a
split response but not yet split complete) an access which it returned split for to another master must
be handled first. This means that the slave must either be able to return an OKAY response to the
locked access immediately or it has to split it but return split complete to the master performing the
locked transfer before it has finished the first access which received split.

6.4 Locked accesses

The GRLIB AHB controller treats HLOCK as coupled to a specific access. If a previous access by a
master received a SPLIT/RETRY response then the arbiter will disregard the current value of
HLOCK. This is done as opposed to always treating HLOCK as being valid for the next access which
can result in a previously non-locked access being treated as locked when it is retried. Consider the
following sequence:

VENDOR ID DEVICE ID VERSION IRQ

31 24 23 12 11 5 4 0

31 20 19 16 15 4 3 0

Identification Register IRQ

10 9

HADDR P MASK TYPEC0 0ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

Bank Address Registers

USER-DEFINED

USER-DEFINED

USER-DEFINED

00

04

08

10

14

18

1C

0C

18 17

BAR0

BAR1

BAR2

BAR3

C = Cacheable
P = Prefetchable TYPE

0010 = AHB Memory space
0011 = AHB I/O space

0001 = APB I/O space
GRIP, Sep 2018, Version 2018.3 58 www.cobham.com/gaisler

GRLIB IP Core

T0: MSTx write 0
T1: MSTx write 1, HLOCK asserted as next access performed by master will be locked
T2: MSTx locked read
If (the non-locked) write 0 access at T0 receives a RETRY or SPLIT response (given at time T1), then
the next access to be performed may be a retry of write 0. In this case the arbiter will disregard the
HLOCK setting and the retried access will not have HMASTLOCK set.

6.5 AHB bus monitor

An AHB bus monitor is integrated into the core. It is enabled with the enbusmon generic. It has the
same functionality as the AHB and arbiter parts in the AMBA monitor core (AMBAMON). For more
information on which rules are checked se the AMBAMON documentation.

6.6 Registers

The core does not implement any registers.

6.7 Implementation

6.7.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core will use asynchronous reset for all registers if the GRLIB config package setting grlib_asyn-
c_reset_enable is set.

6.8 Configuration options

Table 45 shows the configuration options of the core (VHDL generics).

Table 45. Configuration options

Generic Function Allowed range Default
ioaddr The MSB address of the I/O area. Sets the 12 most sig-

nificant bits in the 32-bit AHB address (i.e. 31 downto
20)

0 - 16#FFF# 16#FFF#

iomask The I/O area address mask. Sets the size of the I/O area
and the start address together with ioaddr.

0 - 16#FFF# 16#FFF#

cfgaddr The MSB address of the configuration area. Sets 12 bits
in the 32-bit AHB address (i.e. 19 downto 8).

0 - 16#FFF# 16#FF0#

cfgmask The address mask of the configuration area. Sets the size
of the configuration area and the start address together
with cfgaddr. If set to 0, the configuration will be dis-
abled.

0 - 16#FFF# 16#FF0#

rrobin Selects between round-robin (1) or fixed-priority (0) bus
arbitration algorithm.

0 - 1 0

split Enable support for AHB SPLIT response 0 - 1 0
defmast Default AHB master 0 - NAHBMST-1 0
ioen AHB I/O area enable. Set to 0 to disable the I/O area 0 - 1 1
disirq Set to 1 to disable interrupt routing 0 - 1 0
nahbm Number of AHB masters 1 - NAHBMST NAHBMST
nahbs Number of AHB slaves 1 - NAHBSLV NAHBSLV
GRIP, Sep 2018, Version 2018.3 59 www.cobham.com/gaisler

GRLIB IP Core
timeout Perform bus timeout checks (NOT IMPLEMENTED). 0 - 1 0
fixbrst Enable support for fixed-length bursts 0 - 1 0
debug Print configuration (0=none, 1=short, 2=all cores) 0 - 2 2
fpnpen Enables full decoding of the PnP configuration records.

When disabled the user-defined registers in the PnP con-
figuration records are not mapped in the configuration
area.

0 - 1 0

icheck Check bus index 0 - 1 1
devid Assign unique device identifier readable from plug and

play area.
N/A 0

enbusmon Enable AHB bus monitor 0 - 1 0
assertwarn Enable assertions for AMBA recommendations. Viola-

tions are asserted with severity warning.
0 - 1 0

asserterr Enable assertions for AMBA requirements. Violations
are asserted with severity error.

0 - 1 0

hmstdisable Disable AHB master rule check. To disable a master rule
check a value is assigned so that the binary representa-
tion contains a one at the position corresponding to the
rule number, e.g 0x80 disables rule 7.

N/A 0

hslvdisable Disable AHB slave tests. Values are assigned as for
hmstdisable.

N/A 0

arbdisable Disable Arbiter tests. Values are assigned as for hmstdis-
able.

N/A 0

mprio Master(s) with highest priority. This value is converted
to a vector where each position corresponds to a master.
To prioritize masters x and y set this generic to 2x + 2y.

N/A 0

mcheck Check if there are any intersections between core mem-
ory areas. If two areas intersect an assert with level fail-
ure will be triggered (in simulation). mcheck = 1 does
not report intersects between AHB IO areas and AHB
memory areas (as IO areas are allowed to override mem-
ory areas). mcheck = 2 triggers on all overlaps.
See also documentation of VHDL generic shadow
below.

0 - 2 1

ccheck Perform sanity checks on PnP configuration records (in
simulation).

0 - 1 1

acdm AMBA compliant data multiplexing (for HSIZE >
word). If this generic is set to 1, and the AMBA bus data
width in the system exceeds 32-bits, the core will ensure
AMBA compliant data multiplexing for access sizes
(HSIZE) over 32-bits. GRLIB cores have an optimiza-
tion where they drive the same data on all lanes. Read
data is always taken from the lowest lanes. If an AMBA
compliant core from another vendor is introduced in the
design, that core may not always place valid data on the
low part of the bus. By setting this generic to 1, the
AHBCTRL core will replicate the data, allowing the
non-GRLIB cores to be instantiated without modifica-
tion.

0 - 1 0

index AHB index for trace print-out, currently unused N/A 0
ahbtrace AHB trace print-out to simulator console in simulation. 0 - 1 0

Table 45. Configuration options

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 60 www.cobham.com/gaisler

GRLIB IP Core
6.9 Signal descriptions

Table 46 shows the interface signals of the core (VHDL ports).

hwdebug Enable hardware debug registers. If this generic is set to
1 the configuration area will include to diagnostic regis-
ters at offsets 0xFF4 and 0xFF8.
Offset 0xFF4 will show a 32-bit register where bit n
shows the current status of AHB master n’s HBUSREQ
signal.
Offset 0xFF8 will show a 32-bit register where bit n
shows the current SPLIT status of AHB master n. The bit
will be set when AHB master n receives a SPLIT reply
and will be re-set to ‘0’ when HSPLIT for AHB master n
has been asserted.
This functionality is not intended to be used in produc-
tion systems but can provide valuable information while
debugging systems with cores that have problems with
AMBA SPLIT replies.

0 - 1 0

fourgslave Allow and optimize for case with one single slave that
has one 4 GiB bar

0 - 1 0

shadow Allow memory areas to shadow other memory areas. If
this generic is set to 0 and two slaves map the same
memory area then HSEL/HMBSEL signals will be
asserted for both memory bars / slaves.
This may lead to system malfunctions and causes a simu-
lation failure if the mcheck VHDL generic is set to a
non-zero value. If the shadow generic is set to 1 then
memory area intersects are allowed and only the lowest
HSEL and HMBSEL (HSEL has priority) will be
asserted - only the slave or bar with the lowest index will
be selected instead of both slaves / bars. The mcheck
simulation failure will instead be asserted as a note about
intersecting memory areas.
Also note that intersections of cacheable and noncache-
able areas will be treated as cacheable by GRLB cores
that decode the plug&play information. If a non-cache-
able area is placed in a cacheable area then it is recom-
mended to use fixed cacheability.

0 - 1 0

unmapslv If this generic is non-zero then accesses to unmapped
address space (address space not occupied by any slave)
will be redirected to the slave and bar selected via:
256+bar*32+slv.

0

Table 46. Signal descriptions

Signal name Field Type Function Active
RST N/A Input AHB reset Low
CLK N/A Input AHB clock -
MSTI * Output AMBA AHB master interface record array -
MSTO * Input AMBA AHB master interface record array -
SLVI * Output AMBA AHB slave interface record array -
SLVO * Input AMBA AHB slave interface record array -
* see GRLIB IP Library User’s Manual

Table 45. Configuration options

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 61 www.cobham.com/gaisler

GRLIB IP Core

6.10 Library dependencies

Table 47 shows libraries used when instantiating the core (VHDL libraries).

6.11 Component declaration
library grlib;
use grlib.amba.all;

component ahbctrl
 generic (
 defmast : integer := 0;-- default master
 split : integer := 0;-- split support
 rrobin : integer := 0;-- round-robin arbitration
 timeout : integer range 0 to 255 := 0; -- HREADY timeout
 ioaddr : ahb_addr_type := 16#fff#; -- I/O area MSB address
 iomask : ahb_addr_type := 16#fff#; -- I/O area address mask
 cfgaddr : ahb_addr_type := 16#ff0#; -- config area MSB address
 cfgmask : ahb_addr_type := 16#ff0#; -- config area address maskk
 nahbm : integer range 1 to NAHBMST := NAHBMST; -- number of masters
 nahbs : integer range 1 to NAHBSLV := NAHBSLV; -- number of slaves
 ioen : integer range 0 to 15 := 1; -- enable I/O area
 disirq : integer range 0 to 1 := 0; -- disable interrupt routing
 fixbrst : integer range 0 to 1 := 0; -- support fix-length bursts
 debug : integer range 0 to 2 := 2; -- print configuration to consolee
 fpnpen : integer range 0 to 1 := 0; -- full PnP configuration decoding
 icheck : integer range 0 to 1 := 1
 devid : integer := 0; -- unique device ID
 enbusmon : integer range 0 to 1 := 0; --enable bus monitor
 assertwarn : integer range 0 to 1 := 0; --enable assertions for warnings
 asserterr : integer range 0 to 1 := 0; --enable assertions for errors
 hmstdisable : integer := 0; --disable master checks
 hslvdisable : integer := 0; --disable slave checks
 arbdisable : integer := 0; --disable arbiter checks
 mprio : integer := 0; --master with highest priority
 enebterm : integer range 0 to 1 := 0 --enable early burst termination
);
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 msti : out ahb_mst_in_type;
 msto : in ahb_mst_out_vector;
 slvi : out ahb_slv_in_type;
 slvo : in ahb_slv_out_vector;
 testen : in std_ulogic := ’0’;
 testrst : in std_ulogic := ’1’;
 scanen : in std_ulogic := ’0’;
 testoen : in std_ulogic := ’1’
);
 end component;

6.12 Instantiation

This example shows the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;

Table 47. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Types AMBA signal type definitions
GRIP, Sep 2018, Version 2018.3 62 www.cobham.com/gaisler

GRLIB IP Core

.
.

 -- AMBA signals
 signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

begin

-- ARBITER

ahb0 : ahbctrl -- AHB arbiter/multiplexer
 generic map (defmast => CFG_DEFMST, split => CFG_SPLIT,
rrobin => CFG_RROBIN, ioaddr => CFG_AHBIO, nahbm => 8, nahbs => 8)
 port map (rstn, clkm, ahbmi, ahbmo, ahbsi, ahbso);

-- AHB slave

sr0 : srctrl generic map (hindex => 3)
port map (rstn, clkm, ahbsi, ahbso(3), memi, memo, sdo3);

-- AHB master

e1 : eth_oc
 generic map (mstndx => 2, slvndx => 5, ioaddr => CFG_ETHIO, irq => 12, memtech =>
memtech)
 port map (rstn, clkm, ahbsi, ahbso(5), ahbmi => ahbmi,
ahbmo => ahbmo(2), ethi1, etho1);
...
end;

6.13 Debug print-out

If the debug generic is set to 2, the plug&play information of all attached AHB units are printed to the
console during the start of simulation. Reporting starts by scanning the master interface array from 0
to NAHBMST - 1 (defined in the grlib.amba package). It checks each entry in the array for a valid
vendor-id (all nonzero ids are considered valid) and if one is found, it also retrieves the device-id. The
descriptions for these ids are obtained from the GRLIB.DEVICES package, and are then printed on
standard out together with the master number. If the index check is enabled (done with a VHDL
generic), the report module also checks if the hindex number returned in the record matches the array
number of the record currently checked (the array index). If they do not match, the simulation is
aborted and an error message is printed.
This procedure is repeated for slave interfaces found in the slave interface array. It is scanned from 0
to NAHBSLV - 1 and the same information is printed and the same checks are done as for the master
interfaces. In addition, the address range and memory type is checked and printed. The address infor-
mation includes type, address, mask, cacheable and pre-fetchable fields. From this information, the
report module calculates the start address of the device and the size of the range. The information
finally printed is type, start address, size, cacheability and pre-fetchability. The address ranges cur-
rently defined are AHB memory, AHB I/O and APB I/O. APB I/O ranges are ignored by this module.

vsim -c -quiet leon3mp
VSIM 1> run
LEON3 MP Demonstration design
GRLIB Version 1.0.7
Target technology: inferred, memory library: inferred
ahbctrl: AHB arbiter/multiplexer rev 1
ahbctrl: Common I/O area disabled
ahbctrl: Configuration area at 0xfffff000, 4 kbyte
ahbctrl: mst0: Cobham Gaisler Leon3 SPARC V8 Processor
ahbctrl: mst1: Cobham Gaisler AHB Debug UART
ahbctrl: slv0: European Space Agency Leon2 Memory Controller
GRIP, Sep 2018, Version 2018.3 63 www.cobham.com/gaisler

GRLIB IP Core

ahbctrl: memory at 0x00000000, size 512 Mbyte, cacheable, prefetch
ahbctrl: memory at 0x20000000, size 512 Mbyte
ahbctrl: memory at 0x40000000, size 1024 Mbyte, cacheable, prefetch
ahbctrl: slv1: Cobham Gaisler AHB/APB Bridge
ahbctrl: memory at 0x80000000, size 1 Mbyte
apbctrl: APB Bridge at 0x80000000 rev 1
apbctrl: slv0: European Space Agency Leon2 Memory Controller
apbctrl: I/O ports at 0x80000000, size 256 byte
apbctrl: slv1: Cobham Gaisler Generic UART
apbctrl: I/O ports at 0x80000100, size 256 byte
apbctrl: slv2: Cobham Gaisler Multi-processor Interrupt Ctrl.
apbctrl: I/O ports at 0x80000200, size 256 byte
apbctrl: slv3: Cobham Gaisler Modular Timer Unit
apbctrl: I/O ports at 0x80000300, size 256 byte
apbctrl: slv7: Cobham Gaisler AHB Debug UART
apbctrl: I/O ports at 0x80000700, size 256 byte
apbctrl: slv11: Cobham Gaisler General Purpose I/O port
apbctrl: I/O ports at 0x80000b00, size 256 byte
grgpio11: 8-bit GPIO Unit rev 0
gptimer3: GR Timer Unit rev 0, 8-bit scaler, 2 32-bit timers, irq 8
irqmp: Multi-processor Interrupt Controller rev 3, #cpu 1
apbuart1: Generic UART rev 1, fifo 4, irq 2
ahbuart7: AHB Debug UART rev 0
leon3_0: LEON3 SPARC V8 processor rev 0
leon3_0: icache 1*8 kbyte, dcache 1*8 kbyte

VSIM 2>
GRIP, Sep 2018, Version 2018.3 64 www.cobham.com/gaisler

GRLIB IP Core

7 AHBJTAG - JTAG Debug Link with AHB Master Interface

7.1 Overview

The JTAG debug interface provides access to on-chip AMBA AHB bus through JTAG. The JTAG
debug interface implements a simple protocol which translates JTAG instructions to AHB transfers.
Through this link, a read or write transfer can be generated to any address on the AHB bus.

7.2 Operation

7.2.1 Transmission protocol

The JTAG Debug link decodes two JTAG instructions and implements two JTAG data registers: the
command/address register and data register. A read access is initiated by shifting in a command con-
sisting of read/write bit, AHB access size and AHB address into the command/address register. The
AHB read access is performed and data is ready to be shifted out of the data register. Write access is
performed by shifting in command, AHB size and AHB address into the command/data register fol-
lowed by shifting in write data into the data register. Sequential transfers can be performed by shifting
in command and address for the transfer start address and shifting in SEQ bit in data register for fol-
lowing accesses. The SEQ bit will increment the AHB address for the subsequent access. Sequential
transfers should not cross a 1 kB boundary. Sequential transfers are always word based.

Table 48. JTAG debug link Command/Address register
34 33 32 31 0

W SIZE AHB ADDRESS

34 Write (W) - ‘0’ - read transfer, ‘1’ - write transfer
33 32 AHB transfer size - “00” - byte, “01” - half-word, “10” - word, “11”- reserved
31 30 AHB address

Table 49. JTAG debug link Data register
32 31 0

SEQ AHB DATA

32 Sequential transfer (SEQ) - If ‘1’ is shifted in this bit position when read data is shifted out or write
data shifted in, the subsequent transfer will be to next word address. When read out from the device,
this bit is ‘1’ if the AHB access has completed and ‘0’ otherwise.

31 30 AHB Data - AHB write/read data. For byte and half-word transfers data is aligned according to big-
endian order where data with address offset 0 data is placed in MSB bits.

Figure 12. JTAG Debug link block diagram

AHB master interface

AMBA AHB

JTAG Communication
Interface

JTAG TAP
Controller

TCK
TMS

TDI

TDO
GRIP, Sep 2018, Version 2018.3 65 www.cobham.com/gaisler

GRLIB IP Core

As of version 1 of the JTAG debug link the core will signal AHB access completion by setting bit 32
of the data register. In previous versions the debug host could not determine if an AHB accesses had
finished when the read data was shifted out of the JTAG debug link data register. As of version 1 a
debug host can look at bit 32 of the received data to determine if the access was successful. If bit 32 is
‘1’ the access completed and the data is valid. If bit 32 is ‘0’, the AHB access was not finished when
the host started to read data. In this case the host can repeat the read of the data register until bit 32 is
set to ‘1’, signaling that the data is valid and that the AMBA AHB access has completed.
It should be noted that while bit 32 returns ‘0’, new data will not be shifted into the data register. The
debug host should therefore inspect bit 32 when shifting in data for a sequential AHB access to see if
the previous command has completed. If bit 32 is ‘0’, the read data is not valid and the command just
shifted in has been dropped by the core.
Inspection of bit 32 should not be done for JTAG Debug links with version number 0.

7.2.2 Endianness

The core is designed for big-endian systems.

7.3 Implementation

7.3.1 Clocking

Except for the TAP state machine and instruction register, the JTAG debug link operates in the
AMBA clock domain. To detect when to shift the address/data register, the JTAG clock and TDI are
resynchronized to the AMBA domain. The JTAG clock must be less than 1/3 of the AHB clock fre-
quency for the debug link commands to work when nsync=2, and less than 1/2 of the AHB frequency
when nsync=1.

7.3.2 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). Registers in the JTAG clock domain have asynchronous reset connected
to the JTAG trst. Registers in the system clock domain have synchronous reset.

7.4 Registers

The core does not implement any registers mapped in the AMBA AHB or APB address space.

7.5 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x01C. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

7.6 Implementation

7.6.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers, except synchronization registers, if the GRLIB config pack-
age setting grlib_sync_reset_enable_all is set.
The core does not support the GRLIB config package setting grlib_async_reset_enable.
GRIP, Sep 2018, Version 2018.3 66 www.cobham.com/gaisler

GRLIB IP Core

7.7 Configuration options

Table 50 shows the configuration options of the core (VHDL generics).

Table 50. Configuration options

Generic Function Allowed range Default
tech Target technology 0 - NTECH 0
hindex AHB master index 0 - NAHBMST-1 0
nsync Number of synchronization registers between clock

regions
1 - 2 1

idcode JTAG IDCODE instruction code (generic tech only) 0 - 255 9
manf Manufacturer id. Appears as bits 11-1 in TAP controllers

device identification register. Used only for generic tech-
nology. Default is Cobham Gaisler manufacturer id.

0 - 2047 804

part Part number (generic tech only). Bits 27-12 in device id.
reg.

0 - 65535 0

ver Version number (generic tech only). Bits 31-28 in device
id. reg.

0 - 15 0

ainst Code of the JTAG instruction used to access JTAG
Debug link command/address register.
For Actel TAPs (tech VHDL generic is set to an Actel
technology) this generic should be set to 16, for all other
technologies the default value (2) can be used.

0 - 255 2

dinst Code of the JTAG instruction used to access JTAG
Debug link data register
For Actel TAPs (tech VHDL generic is set to an Actel
technology) this generic should be set to 17, for all other
technologies the default value (3) can be used.

0 - 255 3

scantest Enable scan test support 0 - 1 0
oepol Output enable polarity for TDOEN 0 - 1 1
tcknen Support externally inverted TCK (generic tech only) 0 - 1 0
GRIP, Sep 2018, Version 2018.3 67 www.cobham.com/gaisler

GRLIB IP Core

7.8 Signal descriptions

Table 51 shows the interface signals of the core (VHDL ports).

7.9 Signal definitions and reset values

The signals and their reset values are described in table 52.

Table 51. Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input System clock (AHB clock domain) -
TCK N/A Input JTAG clock* -
TMS N/A Input JTAG TMS signal* High
TDI N/A Input JTAG TDI signal* High
TDO N/A Output JTAG TDO signal* High
AHBI *** Input AHB Master interface input -
AHBO *** Output AHB Master interface output -
TAPO_TCK N/A Output TAP Controller User interface TCK signal** High
TAPO_TDI N/A Output TAP Controller User interface TDI signal** High
TAPO_INST[7:0] N/A Output TAP Controller User interface INSTsignal** High
TAPO_RST N/A Output TAP Controller User interface RST signal** High
TAPO_CAPT N/A Output TAP Controller User interface CAPT signal** High
TAPO_SHFT N/A Output TAP Controller User interface SHFT signal** High
TAPO_UPD N/A Output TAP Controller User interface UPD signal** High
TAPI_TDO N/A Input TAP Controller User interface TDO signal** High
TRST N/A Input JTAG TRST signal Low
TDOEN N/A Output Output-enable for TDO See oepol
TCKN N/A Input Inverted JTAG clock* (if tcknen is set) -
TAPO_TCKN N/A Output TAP Controller User interface TCKN signal** High
TAPO_NINST N/A Output TAP Controller User interface NINSTsignal** High
TAPO_IUPD N/A Output TAP Controller User interface IUPD signal** High
*) If the target technology is Xilinx or Altera the cores JTAG signals TCK, TCKN, TMS, TDI and TDO are not used.
Instead the dedicated FPGA JTAG pins are used. These pins are implicitly made visible to the core through TAP controller
instantiation.
**) User interface signals from the JTAG TAP controller. These signals are used to interface additional user defined JTAG
data registers such as boundary-scan register. For more information on the JTAG TAP controller user interface see JTAG
TAP Controller IP-core documentation. If not used tie TAPI_TDO to ground and leave TAPO_* outputs unconnected.
***) see GRLIB IP Library User’s Manual

Table 52. Signal definitions and reset values

Signal name Type Function Active Reset value
dsutck Input JTAG clock - -
dsutms Input JTAG TMS High -
dsutdi Input JTAG TDI High -
dsutdo Output JTAG TDO High undefined
GRIP, Sep 2018, Version 2018.3 68 www.cobham.com/gaisler

GRLIB IP Core

7.10 Timing

The timing waveforms and timing parameters are shown in figure 13 and are defined in table 53.

7.11 Library dependencies

Table 54 shows libraries used when instantiating the core (VHDL libraries).

7.12 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.jtag.all;

entity ahbjtag_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- JTAG signals
 tck : in std_ulogic;
 tms : in std_ulogic;
 tdi : in std_ulogic;
 tdo : out std_ulogic
);
end;

architecture rtl of ahbjtag_ex is

Table 53. Timing parameters

Name Parameter Reference edge Min Max Unit
tAHBJTAG0 clock period - TBD - ns

tAHBJTAG1 clock low/high period - TBD - ns

tAHBJTAG2 data input to clock setup rising dsutck edge TBD - ns

tAHBJTAG3 data input from clock hold rising dsutck edge TBD - ns

tAHBJTAG4 clock to data output delay falling dsutck edge - TBD ns

Table 54. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER JTAG Signals, component Signals and component declaration

Figure 13. Timing waveforms

dsutdi, dsutms

dsutck

dsutdo
tAHBJTAG3tAHBJTAG4

tAHBJTAG2

tAHBJTAG0 tAHBJTAG1
GRIP, Sep 2018, Version 2018.3 69 www.cobham.com/gaisler

GRLIB IP Core

 -- AMBA signals
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);
signal gnd : std_ulogic;

constant clkperiod : integer := 100;

begin

gnd <= ‘0’;

 -- AMBA Components are instantiated here
 ...

-- AHB JTAG
 ahbjtag0 : ahbjtag generic map(tech => 0, hindex => 1)
 port map(rstn, clkm, tck, tckn, tms, tdi, tdo, ahbmi, ahbmo(1),
 open, open, open, open, open, open, open, gnd);

jtagproc : process
 begin
wait;
 jtagcom(tdo, tck, tms, tdi, 100, 20, 16#40000000#, true);
 wait;
 end process;

end;

7.13 Simulation

DSU communication over the JTAG debug link can be simulated using jtagcom procedure. The jtag-
com procedure sends JTAG commands to the AHBJTAG on JTAG signals TCK, TMS, TDI and TDO.
The commands read out and report the device identification code, optionally put the CPU(s) in debug
mode, perform three write operations to the memory and read out the data from the memory. The
JTAG test works if the generic JTAG tap controller is used and will not work with built-in TAP mac-
ros (such as Altera and Xilinx JTAG macros) since these macros don’t have visible JTAG pins. The
jtagcom procedure is part of jtagtst package in gaisler library and has following declaration:
procedure jtagcom(signal tdo : in std_ulogic;
 signal tck, tms, tdi : out std_ulogic;
 cp, start, addr : in integer;

 -- cp - TCK clock period in ns
 -- start - time in us when JTAG test is started
 -- addr - read/write operation destination address

 haltcpu : in boolean);
GRIP, Sep 2018, Version 2018.3 70 www.cobham.com/gaisler

GRLIB IP Core

8 AHBRAM - Single-port RAM with AHB interface

8.1 Overview

AHBRAM implements on-chip RAM with an AHB slave interface. Memory size is configurable in
binary steps through a VHDL generic. Minimum size is 1KiB and maximum size is dependent on tar-
get technology and physical resources. Read accesses have zero or one waitstate (configured at imple-
mentation time), write access have one waitstate. The RAM supports byte- and half-word accesses, as
well as all types of AHB burst accesses.
Internally, the AHBRAM instantiates a SYNCRAM block with byte writes. Depending on the target
technology map, this will translate into memory with byte enables or to multiple 8-bit wide SYN-
CRAM blocks.
The size of the RAM implemented within AHBRAM can be read via the core’s AMBA plug&play
version field. The version field will display log2(number of bytes), for a 1 KiB SYNCRAM the ver-
sion field will have the value 10, where 210 = 1024 bytes = 1 KiB.

8.1.1 Endianness

The core is designed for big-endian systems.

8.2 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x00E. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

8.3 Implementation

8.3.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core does not support grlib_async_reset_enable. All registers that react on the reset signal will
have a synchronous reset.
GRIP, Sep 2018, Version 2018.3 71 www.cobham.com/gaisler

GRLIB IP Core

8.4 Configuration options

Table 55 shows the configuration options of the core (VHDL generics).

8.5 Signal descriptions

Table 56 shows the interface signals of the core (VHDL ports).

Table 55. Configuration options

Generic Function Allowed range Default
hindex AHB slave bus index 0 - NAHBSLV-1 0
haddr The MSB address of the AHB area. Sets the 12 most sig-

nificant bits in the 32-bit AHB address.
0 - 16#FFF# 16#FFF#

hmask The AHB area address mask. Sets the size of the AHB
area and the start address together with haddr.

0 - 16#FFF# 16#FF0#

tech Technology to implement on-chip RAM 0 - NTECH 0
kbytes RAM size in KiB. The size of the RAM implemented

will be the minumum size that will hold the size speci-
fied by kbytes. A value of 1 here will instantiate a 1 KiB
SYNCRAM, a value of 3 will instantiate a 4 KiB SYN-
CRAM. The actual RAM usage on the target technology
then depends on the available RAM resources and the
technology map.

target-dependent 1

pipe Add registers on data outputs. If set to 0 the AMBA data
outputs will be connected directly to the core’s internal
RAM. If set to 1 the core will include registers on the
data outputs. Settings this generic to 1 makes read
accesses have one waitstate, otherwise the core will
respond to read accesses with zero waitstates.

0 - 1 0

maccsz Maximum access size supported. This generic restricts
the maximum AMBA access size supported by the core
and selects the width of the SYNCRAMBW RAM used
internally. The default value is assigned from AHBDW,
which sets the maximum bus width for the GRLIB
design.

32, 64, 128, 256 AHBDW

scantest Enable scan test support (passed on to syncram) 0 - 1 0
endianness Select endianness. Big endian if set to 0 and little endian

if set to 1.
0 - 1 0

Table 56. Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
AHBSI * Input AMB slave input signals -
AHBSO * Output AHB slave output signals -
* see GRLIB IP Library User’s Manual
GRIP, Sep 2018, Version 2018.3 72 www.cobham.com/gaisler

GRLIB IP Core

8.6 Library dependencies

Table 57 shows libraries used when instantiating the core (VHDL libraries).

8.7 Component declaration
library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

component ahbram
generic (hindex : integer := 0; haddr : integer := 0; hmask : integer := 16#fff#;
tech : integer := 0; kbytes : integer := 1);
port (
rst : in std_ulogic;
clk : in std_ulogic;
ahbsi : in ahb_slv_in_type;
ahbso : out ahb_slv_out_type
);
end component;

8.8 Instantiation

This example shows how the core can be instantiated.

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

.

.

ahbram0 : ahbram generic map (hindex => 7, haddr => CFG_AHBRADDR,
tech => CFG_MEMTECH, kbytes => 8)
 port map (rstn, clkm, ahbsi, ahbso(7));

Table 57. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Types AMBA signal type definitions
GAISLER MISC Component Component declaration
GRIP, Sep 2018, Version 2018.3 73 www.cobham.com/gaisler

GRLIB IP Core

9 AHBDPRAM - Dual-port RAM with AHB interface

9.1 Overview

AHBDPRAM implements a 32-bit wide on-chip RAM with one AHB slave interface port and one
back-end port for a user application. The AHBDPRAM is therefore useful as a buffer memory
between the AHB bus and a custom IP core with a RAM interface
The memory size is configurable in binary steps through the abits VHDL generic. The minimum size
is 1kB while maximum size is dependent on target technology and physical resources. Read accesses
are zero-waitstate, write access have one waitstate. The RAM optionally supports byte- and half-word
accesses, as well as all types of AHB burst accesses. Internally, the AHBRAM instantiates one 32-bit
or four 8-bit wide SYNCRAM_DP blocks. The target technology must have support for dual-port
RAM cells.
The back-end port consists of separate clock, address, datain, dataout, enable and write signals. All
these signals are sampled on the rising edge of the back-end clock (CLKDP), implementing a syn-
chronous RAM interface. Read-write collisions between the AHB port and the back-end port are not
handled and must be prevented by the user. If byte write is enabled, the WRITE(0:3) signal controls
the writing of each byte lane in big-endian fashion. WRITE(0) controls the writing of
DATAIN(31:24) and so on. If byte write is disabled, WRITE(0) controls writing to the complete 32-
bit word.

9.1.1 Endianness

The core is designed for big-endian systems.

9.2 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x00F. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

9.3 Implementation

9.3.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset.

9.4 Configuration options

Table 58 shows the configuration options of the core (VHDL generics).

Table 58. Configuration options

Generic Function Allowed range Default
hindex AHB slave bus index 0 - NAHBSLV-1 0
haddr The MSB address of the AHB area. Sets the 12 most sig-

nificant bits in the 32-bit AHB address.
0 - 16#FFF# 16#FFF#

hmask The AHB area address mask. Sets the size of the AHB
area and the start address together with haddr.

0 - 16#FFF# 16#FF0#

tech Technology to implement on-chip RAM 0 - NTECH 2
abits Address bits. The RAM size in Kbytes is equal to

2**(abits +2)
8 - 19 8

bytewrite If set to 1, enabled support for byte and half-word writes 0 - 1 0
GRIP, Sep 2018, Version 2018.3 74 www.cobham.com/gaisler

GRLIB IP Core

9.5 Signal descriptions

Table 59 shows the interface signals of the core (VHDL ports).

9.6 Library dependencies

Table 60 shows libraries used when instantiating the core (VHDL libraries).

9.7 Component declaration
library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

component ahbdpram
 generic (
 hindex : integer := 0;
 haddr : integer := 0;
 hmask : integer := 16#fff#;
 tech : integer := 2;
 abits : integer range 8 to 19 := 8;
 bytewrite : integer range 0 to 1 := 0
);
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 ahbsi : in ahb_slv_in_type;
 ahbso : out ahb_slv_out_type;
 clkdp : in std_ulogic;
 address : in std_logic_vector((abits -1) downto 0);
 datain : in std_logic_vector(31 downto 0);
 dataout : out std_logic_vector(31 downto 0);
 enable : in std_ulogic;-- active high chip select
 write : in std_logic_vector(0 to 3)-- active high byte write enable
);
 end component;

Table 59. Signal descriptions

Signal name Field Type Function Active
RST N/A Input AHB Reset Low
CLK N/A Input AHB Clock -
AHBSI * Input AMB slave input signals -
AHBSO * Output AHB slave output signals -
CLKDP Input Clock for back-end port -
ADDRESS(abits-1:0) Input Address for back-end port -
DATAIN(31 : 0) Input Write data for back-end port -
DATAOUT(31 : 0) Output Read data from back-end port -
ENABLE Input Chip select for back-end port High
WRITE(0 : 3) Input Write-enable byte select for back-end port High
* see GRLIB IP Library User’s Manual

Table 60. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Types AMBA signal type definitions
GAISLER MISC Component Component declaration
GRIP, Sep 2018, Version 2018.3 75 www.cobham.com/gaisler

GRLIB IP Core

10 AHBROM - Single-port ROM with AHB interface

10.1 Overview

The AHBROM core implements a 32/64/128-bit wide on-chip ROM with an AHB slave interface.
Read accesses take zero waitstates, or one waitstate if the pipeline option is enabled. The ROM sup-
ports byte- and half-word accesses, as well as all types of AHB burst accesses.

10.2 PROM generation

The AHBPROM is automatically generated by the make utility in GRLIB. The input format is a
sparc-elf binary file, produced by the BCC cross-compiler (sparc-elf-gcc). To create a PROM, first
compile a suitable binary and the run the make utility:

bash$ sparc-elf-gcc prom.S -o prom.exe
bash$ make ahbrom.vhd

Creating ahbrom.vhd : file size 272 bytes, address bits 9

The default binary file for creating a PROM is prom.exe. To use a different file, run make with the
FILE parameter set to the input file:

bash$ make ahbrom.vhd FILE=myfile.exe

The created PROM is realized in synthesizable VHDL code, using a CASE statement. For FPGA tar-
gets, most synthesis tools will map the CASE statement on a block RAM/ROM if available. For ASIC
implementations, the ROM will be synthesized as gates. It is then recommended to use the pipe option
to improve the timing.
The default is to build a 32-bit wide ahbrom, to instead build 64-bit or 128-bit wide ahbrom versions,
use the flow described above but with the “make ahbrom64.vhd” and “make ahbrom128.vhd” make
targets.

10.2.1 Endianness

The core is designed for big-endian systems.

10.3 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x01B. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

10.4 Implementation

10.4.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core does not support the GRLIB config package setting grlib_async_reset_enable.
GRIP, Sep 2018, Version 2018.3 76 www.cobham.com/gaisler

GRLIB IP Core

10.5 Configuration options

Table 61 shows the configuration options of the core (VHDL generics).

10.6 Signal descriptions

Table 62 shows the interface signals of the core (VHDL ports).

10.7 Library dependencies

Table 63 shows libraries used when instantiating the core (VHDL libraries).

10.8 Component declaration
component ahbrom
generic (hindex : integer := 0; haddr : integer := 0; hmask : integer := 16#fff#;
pipe : integer := 0; tech : integer := 0);
port (
rst : in std_ulogic;
clk : in std_ulogic;
ahbsi : in ahb_slv_in_type;
ahbso : out ahb_slv_out_type
);
end component;

Table 61. Configuration options

Generic Function Allowed range Default
hindex AHB slave bus index 0 - NAHBSLV-1 0
haddr The MSB address of the AHB area. Sets the 12 most sig-

nificant bits in the 32-bit AHB address.
0 - 16#FFF# 16#FFF#

hmask The AHB area address mask. Sets the size of the AHB
area and the start address together with haddr.

0 - 16#FFF# 16#FF0#

tech Not used
pipe Add a pipeline stage on read data 0 0
kbytes Not used
Only on ahbrom64 and ahbrom128:
wideonly Removes muxing logic needed to properly support 32-bit

masters on wide bus
0 - 1 0

Table 62. Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
AHBSI * Input AMB slave input signals -
AHBSO * Output AHB slave output signals -
* see GRLIB IP Library User’s Manual

Table 63. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Types AMBA signal type definitions
GRIP, Sep 2018, Version 2018.3 77 www.cobham.com/gaisler

GRLIB IP Core

10.9 Instantiation

This example shows how the core can be instantiated.

library grlib;
use grlib.amba.all;
.
.

brom : entity work.ahbrom
 generic map (hindex => 8, haddr => CFG_AHBRODDR, pipe => CFG_AHBROPIP)
 port map (rstn, clkm, ahbsi, ahbso(8));
GRIP, Sep 2018, Version 2018.3 78 www.cobham.com/gaisler

GRLIB IP Core

11 AHBSTAT - AHB Status Registers

11.1 Overview

The status registers store information about AMBA AHB accesses triggering an error response. There
is a status register and a failing address register capturing the control and address signal values of a
failing AMBA bus transaction, or the occurrence of a correctable error being signaled from a another
peripheral in the system.
The status register and the failing address register are accessed from the AMBA APB bus.

11.2 Operation

11.2.1 Errors

The registers monitor AMBA AHB bus transactions and store the current HADDR, HWRITE,
HMASTER and HSIZE internally. The monitoring are always active after startup and reset until an
error response (HRESP = “01”) is detected. When the error is detected, the status and address register
contents are frozen and the New Error (NE) bit is set to one. At the same time an interrupt is gener-
ated, as described hereunder.
Note that many of the fault tolerant units containing EDAC signal an un-correctable error as an
AMBA error response, so that it can be detected by the processor as described above.

11.2.2 Correctable errors

Not only error responses on the AHB bus can be detected. Many of the fault tolerant units containing
EDAC have a correctable error signal which is asserted each time a correctable error is detected.
When such an error is detected, the effect will be the same as for an AHB error response. The only dif-
ference is that the Correctable Error (CE) bit in the status register is set to one when a correctable
error is detected.
When the CE bit is set the interrupt routine can acquire the address containing the correctable error
from the failing address register and correct it. When it is finished it resets the NE bit and the monitor-
ing becomes active again. Interrupt handling is described in detail hereunder.
The correctable error signals from the fault tolerant units should be connected to the stati.cerror input
signal vector of the AHB status register core, which is or-ed internally and if the resulting signal is
asserted, it will have the same effect as an AHB error response.

11.2.3 Interrupts

The interrupt is generated on the line selected by the pirq VHDL generic.
The interrupt is connected to the interrupt controller to inform the processor of the error condition.
The normal procedure is that an interrupt routine handles the error with the aid of the information in
the status registers. When it is finished it resets the NE bit and the monitoring becomes active again.
Interrupts are generated for both AMBA error responses and correctable errors as described above.

11.2.4 Filtering and multiple error detection

The status register can optionally be implemented with two sets of status and failing address register.
In this case the core also supports filtering on errors and has a status bit that gets set in case additional
errors are detected when the New Error (NE) bit is set. The core will only react to the first error in a
burst operation. After the first error has been detected, monitoring of the burst is suspended. An error
event will only be recorded by the first status register that should react based on filter settings. If reg-
ister set 1 has reacted then register 2 will not be set for the same error event.
GRIP, Sep 2018, Version 2018.3 79 www.cobham.com/gaisler

GRLIB IP Core

The extra register set, filtering, and multiple error detection is available in revision 1 of the status reg-
ister. The functionality is enabled through the ver VHDL generic. The value of this generic also
affects the core version in the GRLIB plug&play information.

11.3 Registers

The core is programmed through registers mapped into APB address space.

Table 64. AHB Status registers

APB address offset Registers
0x00 AHB Status register
0x04 AHB Failing address register
0x08 AHB Status register 2 (optional)
0x0C AHB Failing Address register 2 (optional)
GRIP, Sep 2018, Version 2018.3 80 www.cobham.com/gaisler

GRLIB IP Core

11.3.1

Table 65. 0x00, 0x08- AHBS - AHB Status register

AHB Status register

11.3.2

Table 66. 0x04, 0x0C - AHBFAR - AHB Failing address register

AHB Failing address register

11.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x052. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

11.5 Implementation

11.5.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). When reset is asserted the new error and correctable error registers are
reset to zero.

31 14 13 12 11 10 9 8 7 6 3 2 0

RESERVED ME FW CF AF CE NE HWRITE HMASTER HSIZE

0 0 0 0 0 0 0 NR NR NR

r rw* w* rw* rw* rw rw r r r

31: 14 RESERVED
13 Multiple Error detection (ME) - This field is set to 1 when the New Error bit is set and one more

error is detected. Filtering is considered when setting the ME bit.
This field is only available in version 1 of the core (version is selected at implementation).

12 Filter Write (FW) - This bit needs to be set to ‘1’ during a write operation for CF and AF fields to be
updated in the same write operation. Always reads as zero.
This field is only available in version 1 of the core (version is selected at implementation).

11 Correctable Error Filter (CF) - If this bit is set to 1 then this status register will ignore correctable
errors. This field will only be written if the FW bit is set.
This field is only available in version 1 of the core (version is selected at implementation).

10 AMBA ERROR Filter (AF) - If this bit is set to 1 then this status register will ignore AMBA
ERROR. This field will only be written if the FW bit is set.
This field is only available in version 1 of the core (version is selected at implementation).

9 Correctable Error (CE) - Set if the detected error was caused by a correctable error and zero other-
wise.

8 New Error (NE) - Deasserted at start-up and after reset. Asserted when an error is detected. Reset by
writing a zero to it.

7 The HWRITE signal of the AHB transaction that caused the error.
6: 3 The HMASTER signal of the AHB transaction that caused the error.
2: 0 The HSIZE signal of the AHB transaction that caused the error

31 0

AHB FAILING ADDRESS

NR

t

31: 0 The HADDR of the AHB transaction that caused the error.
GRIP, Sep 2018, Version 2018.3 81 www.cobham.com/gaisler

GRLIB IP Core

11.6 Configuration options

Table 67 shows the configuration options of the core (VHDL generics).

11.7 Signal descriptions

Table 68 shows the interface signals of the core (VHDL ports).

11.8 Library dependencies

Table 69 shows libraries used when instantiating the core (VHDL libraries).

11.9 Instantiation

This example shows how the core can be instantiated.
The example design contains an AMBA bus with a number of AHB components connected to it
including the status register. There are three Fault Tolerant units with EDAC connected to the status
register cerror vector. The connection of the different memory controllers to external memory is not
shown.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;

Table 67. Configuration options

Generic Function Allowed range Default
pindex APB slave index 0 - NAHBSLV-1 0
paddr APB address 0 - 16#FFF# 0
pmask APB address mask 0 - 16#FFF# 16#FFF#
pirq Interrupt line driven by the core 0 - 16#FFF# 0
nftslv Number of FT slaves connected to the cerror vector 1 - NAHBSLV-1 3
ver Selects version of the core. Setting this value to 1 imple-

ments the two sets of registers, multiple error detection,
and filter functionality.

0 - 1 0

Table 68. Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
AHBMI * Input AHB slave input signals -
AHBSI * Input AHB slave output signals -
STATI CERROR Input Correctable Error Signals High
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
* see GRLIB IP Library User’s Manual

Table 69. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB signal definitions
GAISLER MISC Component Component declaration
GRIP, Sep 2018, Version 2018.3 82 www.cobham.com/gaisler

GRLIB IP Core

use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.misc.all;

entity mctrl_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;
 --other signals

);
end;

architecture rtl of mctrl_ex is

 -- AMBA bus (AHB and APB)
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

 -- signals used to connect memory controller and memory bus
 signal memi : memory_in_type;
 signal memo : memory_out_type;

 signal sdo, sdo2: sdctrl_out_type;

 signal sdi : sdctrl_in_type;

-- correctable error vector
 signal stati : ahbstat_in_type;
 signal aramo : ahbram_out_type;

begin

 -- AMBA Components are defined here ...

-- AHB Status Register
 astat0 : ahbstat generic map(pindex => 13, paddr => 13, pirq => 11,
 nftslv => 3)
 port map(rstn, clkm, ahbmi, ahbsi, stati, apbi, apbo(13));
 stati.cerror(3 to NAHBSLV-1) <= (others => ‘0’);

--FT AHB RAM
 a0 : ftahbram generic map(hindex => 1, haddr => 1, tech => inferred,
 kbytes => 64, pindex => 4, paddr => 4, edacen => 1, autoscrub => 0,
 errcnt => 1, cntbits => 4)
 port map(rst, clk, ahbsi, ahbso, apbi, apbo(4), aramo);
 stati.cerror(0) <= aramo.ce;
-- SDRAM controller
 sdc : ftsdctrl generic map (hindex => 3, haddr => 16#600#, hmask => 16#F00#,
 ioaddr => 1, fast => 0, pwron => 1, invclk => 0, edacen => 1, errcnt => 1,
 cntbits => 4)
 port map (rstn, clk, ahbsi, ahbso(3), sdi, sdo);
 stati.cerror(1) <= sdo.ce;

-- Memory controller
 mctrl0 : ftsrctrl generic map (rmw => 1, pindex => 10, paddr => 10,
 edacen => 1, errcnt => 1, cntbits => 4)
 port map (rstn, clk, ahbsi, ahbso(0), apbi, apbo(10), memi, memo, sdo2);
 stati.cerror(2) <= memo.ce;
end;
GRIP, Sep 2018, Version 2018.3 83 www.cobham.com/gaisler

GRLIB IP Core

12 AHBTRACE - AHB Trace buffer

12.1 Overview

The trace buffer consists of a circular buffer that stores AMBA AHB data transfers. The address, data
and various control signals of the AHB bus are stored and can be read out for later analysis.

When the trace buffer is configured in 32-bit bus mode, it is 128 bits wide. The information stored is
indicated in the table below:

In addition to the AHB signals, a 32-bit counter is also stored in the trace as time tag.
When the trace buffer is configured in 64-bit or 128-bit bus mode, its contents are extended according
to the table below.

Table 70. AHB Trace buffer data allocation

Bits Name Definition
127:96 Time tag The value of the time tag counter
95 AHB breakpoint hit Set to ‘1’ if a DSU AHB breakpoint hit occurred.
94:80 - Not used
79 Hwrite AHB HWRITE
78:77 Htrans AHB HTRANS
76:74 Hsize AHB HSIZE
73:71 Hburst AHB HBURST
70:67 Hmaster AHB HMASTER
66 Hmastlock AHB HMASTLOCK
65:64 Hresp AHB HRESP
63:32 Load/Store data AHB HRDATA[31:0] or HWDATA[31:0]
31:0 Load/Store address AHB HADDR

Bits Name Definition
223:160 128-bit extended load/store data AHB HRDATA[127:64] or HWDATA[127:64]
159:128 64-bit extended load/store data AHB HRDATA[63:32] or HWDATA[63:32]

Figure 14. Block diagram

AHB slave interface

AMBA AHB

Trace buffer RAMTrace control

AHB Trace Buffer

IRQ
GRIP, Sep 2018, Version 2018.3 84 www.cobham.com/gaisler

GRLIB IP Core

12.2 Operation

12.2.1 Overview

The trace buffer is enabled by setting the enable bit (EN) in the trace control register. Each AMBA
AHB transfer is then stored in the buffer in a circular manner. The address to which the next transfer is
written is held in the trace buffer index register, and is automatically incremented after each transfer.
Tracing is stopped when the EN bit is reset, or when a AHB breakpoint is hit. An interrupt is gener-
ated when a breakpoint is hit.
Note: the LEON3 and LEON4 Debug Support Units (DSU3/DSU4) also includes an AHB trace buf-
fer. The standalone trace buffer is intended to be used in system without a processor or when the
DSU3 is not present.
The size of the trace buffer is configured by means of the kbytes VHDL generic, defining the size of the
complete buffer in kbytes.

The number of lines in the trace buffer is kbytes * 1024 / 16 bytes.
The total size of the trace buffer depends on the bwidth generic. When the ahb trace buffer is in 32-bit
bus mode, the size of the buffer is simply kbytes kbytes.
When the ahb trace buffer is configured in 64-bit or 128-bit bus mode, the kbytes generic will not
reflect the exact amount of memory used in the core. You will have to multiply each line, calculated as
above, for 20 bytes or 28 bytes, for 64-bit bus mode or 128-bit bus mode respectively. Therefore the
total size for the buffer when in 64-bit mode is kbytes * 1.25 kbytes, and for the buffer in 128-bit bus
mode it is kbytes * 1.75 kbytes.

12.2.2 AHB statistics

The core can be implemented to generate statistics from the traced AHB bus. When statistics collec-
tion is enabled the core will assert outputs that are suitable to connect to a LEON statistics unit
(L3STAT and L4STAT). The statistical outputs can be filtered by the AHB trace buffer filters, this is
controlled by the Performance counter Filter bit (PF) in the AHB trace buffer control register. The
core can collect data for the events listed in table 71 below.

Table 71. AHB events

Event Description Note
idle HTRANS=IDLE Active when HTRANS IDLE is driven on the AHB slave inputs and

slave has asserted HREADY.
busy HTRANS=BUSY Active when HTRANS BUSY is driven on the AHB slave inputs and

slave has asserted HREADY.
nseq HTRANS=NONSEQ Active when HTRANS NONSEQ is driven on the AHB slave inputs

and slave has asserted HREADY.
seq HTRANS=SEQ Active when HTRANS SEQUENTIAL is driven on the AHB slave

inputs and slave has asserted HREADY.
read Read access Active when HTRANS is SEQUENTIAL or NON-SEQUENTIAL,

slave has asserted HREADY and the HWRITE input is low.
write Write access Active when HTRANS is SEQUENTIAL or NON-SEQUENTIAL,

slave has asserted HREADY and the HWRITE input is high.
hsize[5:0] Transfer size Active when HTRANS is SEQUENTIAL or NON-SEQUENTIAL,

slave has asserted HREADY and HSIZE is BYTE (hsize[0]),
HWORD (HSIZE[1]), WORD (hsize[2]), DWORD (hsize[3]),
4WORD hsize[4], or 8WORD (hsize[5]).

ws Wait state Active when HREADY input to AHB slaves is low and AMBA
response is OKAY.

retry RETRY response Active when master receives RETRY response
GRIP, Sep 2018, Version 2018.3 85 www.cobham.com/gaisler

GRLIB IP Core
12.3 Registers

12.3.1 Register address map

The trace buffer occupies 128 KiB of address space in the AHB I/O area. The address mapping in
parentheses is only available when the core is in 64-bit or 128-bit bus mode. Only 32-bit single-
accesses to the area are supported. The following register addresses are decoded:

split SPLIT response Active when master receives SPLIT response
spdel SPLIT delay Active during the time a master waits to be granted access to the bus

after reception of a SPLIT response. The core will only keep track of
one master at a time. This means that when a SPLIT response is
detected, the core will save the master index. This event will then be
active until the same master is re-allowed into bus arbitration and is
granted access to the bus. This also means that the delay measured
will include the time for re-arbitration, delays from other ongoing
transfers and delays resulting from other masters being granted
access to the bus before the SPLIT:ed master is granted again after
receiving SPLIT complete.
If another master receives a SPLIT response while this event is
active, the SPLIT delay for the second master will not be measured.

locked Locked access Active while the HMASTLOCK signal is asserted on the AHB slave
inputs. (Currently not used by L3STATand L4STAT)

Table 72. Trace buffer address space

Address Register
0x000000 Trace buffer control register
0x000004 Trace buffer index register
0x000008 Time tag counter
0x00000C Trace buffer master/slave filter register
0x000010 AHB break address 1
0x000014 AHB mask 1
0x000018 AHB break address 2
0x00001C AHB mask 2
0x010000 - 0x020000 Trace buffer
...0 Trace bits 127 - 96
...4 Trace bits 95 - 64
...8 Trace bits 63 - 32
...C Trace bits 31 - 0
(...10) Trace bits 159 - 128, when in 64- or 128-bit bus mode
(...14) Trace bits 223 - 192, when in 128-bit bus mode
(...18) Trace bits 191 - 160, when in 128-bit bus mode
(...1C) Zero

Table 71. AHB events

Event Description Note
GRIP, Sep 2018, Version 2018.3 86 www.cobham.com/gaisler

GRLIB IP Core

12.3.2 Trace buffer control register

The trace buffer is controlled by the trace buffer control register:

12.3.3 Trace buffer index register

The trace buffer index register indicates the address of the next 128-bit line to be written.

Table 73. 0x000000 - CTRL - Trace buffer control register
31 16 15 14 12 11 9 8 7 6 5 4 3 2 1 0

DCNT BA BSEL RESERVED PF BW RF AF FR FW DM EN

0 * 0 0 0 * 0 0 0 0 0 *

rw r rw r rw r rw rw rw rw r rw

31: 16 Trace buffer delay counter (DCNT) - Note that the number of bits actually implemented depends on
the size of the trace buffer.

15 Bus select Available (BA) - If this field is set to ‘1’, the core has several buses connected. The bus to
trace is selected via the BSEL field. If this field is ‘0’, the core is only capable of tracing one AHB
bus.

14: 12 Bus select (BSEL) - If the BA field is ‘1’ this field selects the bus to trace. If the BA field is ‘0’, this
field is not writable.

11: 9 RESERVED
8 Performance counter Filter (PF) - If this bit is set to ‘1’, the cores performance counter (statistical)

outputs will be filtered using the same filter settings as used for the trace buffer. If a filter inhibits a
write to the trace buffer, setting this bit to ‘1’ will cause the same filter setting to inhibit the pulse on
the statistical output.

7: 6 Bus width (BW) - This value corresponds to log2(Supported bus width / 32)
5 Retry filter (RF) - If this bit is set to ‘1’, AHB retry responses will not be included in the trace buffer.

This bit can only be set of the core has been implemented with support for filtering
4 Address Filter (AF) - If this bit is set to ‘1’, only the address range defined by AHB trace buffer

breakpoint 2’s address and mask will be included in the trace buffer. This bit can only be set of the
core has been implemented with support for filtering

3 Filter Reads (FR) - If this bit is set to ‘1’, read accesses will not be included in the trace buffer. This
bit can only be set of the core has been implemented with support for filtering.

2 Filter Writes (FW) - If this bit is set to ‘1’, write accesses will not be included in the trace buffer.
This bit can only be set of the core has been implemented with support for filtering.

1 Delay counter mode (DM) - Indicates that the trace buffer is in delay counter mode.
0 Trace enable (EN) - Enables the trace buffer

Table 74. 0x000004 - INDEX - Trace buffer index register
31 4 3 0

INDEX 0x0

NR 0

rw r

31: 4 Trace buffer index counter (INDEX). Note that the number of bits actually implemented depends on
the size of the trace buffer

3: 0 Read as 0x0
GRIP, Sep 2018, Version 2018.3 87 www.cobham.com/gaisler

GRLIB IP Core

12.3.4 Trace buffer time tag register

The time tag register contains a 32-bit counter that increments each clock when the trace buffer is
enabled. The value of the counter is stored in the trace to provide a time tag.

12.3.5 Trace buffer master/slave filter register

The master/slave filter register allows filtering out specified master and slaves from the trace. This
register can only be assigned if the trace buffer has been implemented with support for filtering.

12.3.6 Trace buffer breakpoint registers

The DSU contains two breakpoint registers for matching AHB addresses. A breakpoint hit is used to
freeze the trace buffer by clearing the enable bit. Freezing can be delayed by programming the DCNT
field in the trace buffer control register to a non-zero value. In this case, the DCNT value will be dec-
remented for each additional trace until it reaches zero and after two additional entries, the trace buf-
fer is frozen. A mask register is associated with each breakpoint, allowing breaking on a block of
addresses. Only address bits with the corresponding mask bit set to ‘1’ are compared during break-
point detection. To break on AHB load or store accesses, the LD and/or ST bits should be set.

Table 75. 0x000008 - TIMETAG - Trace buffer time tag counter
31 0

TIME TAG VALUE

0

r

Table 76. Trace buffer master/slave filter register
31 16 15 0

SMASK[15:0] MMASK[15:0]

0 0

rw rw

31: 16 Slave Mask (SMASK) - If SMASK[n] is set to ‘1’, the trace buffer will not save accesses performed
to slave n.

15: 0 Master Mask (MMASK) - If MMASK[n] is set to ‘1’, the trace buffer will not save accesses per-
formed by master n.

Table 77. Trace buffer AHB breakpoint address register
31 2 1 0

BADDR[31:2] 0b00

NR 0

rw r

31: 2 Breakpoint address (BADDR) - Bits 31:2 of breakpoint address
1: 0 Reserved, read as 0

Table 78. Trace buffer AHB breakpoint mask register
31 2 1 0

BMASK[31:2] LD ST

NR 0 0

rw rw rw

31: 2 Breakpoint mask (BMASK) - Bits 31:2 of breakpoint mask
1 Load (LD) - Break on data load address
0 Store (ST) - Break on data store address
GRIP, Sep 2018, Version 2018.3 88 www.cobham.com/gaisler

GRLIB IP Core

12.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x017. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

12.5 Implementation

12.5.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

12.6 Configuration options

Table 79 shows the configuration options of the core (VHDL generics).

Table 79. Configuration options

Generic Function Allowed range Default
hindex AHB slave bus index 0 - NAHBSLV-1 0
ioaddr The MSB address of the I/O area. Sets the 12 most sig-

nificant bits in the 20-bit I/O address.
0 - 16#FFF# 16#000#

iomask The I/O area address mask. Sets the size of the I/O area
and the start address together with ioaddr.

0 - 16#FFF# 16#E00#

irq Interrupt number 0 - NAHBIRQ-1 0
tech Technology to implement on-chip RAM 0 - NTECH 0
kbytes Trace buffer size in kbytes 1 - 64 1
bwidth Traced AHB bus width 32, 64, 128 64
ahbfilt If this generic is set to 1 the core will be implemented

with support for AHB trace buffer filters. If ahbpf is
larger than 1 then the core’s statistical outputs will be
enabled.

0 - 2 0

ntrace Number of buses to trace. This generic is only available
if the entity ahbtrace_mmb is instantiated.

1 - 8 1

scantest Support scan test and memory BIST 0 - 1 0
exttimer If set to 1 then the time tag value will be taken from the

core’s timer signal input. Otherwise the core will use an
internal timer.

0 - 1 0
GRIP, Sep 2018, Version 2018.3 89 www.cobham.com/gaisler

GRLIB IP Core

12.7 Signal descriptions

Table 80 shows the interface signals of the core (VHDL ports).

12.8 Library dependencies

Table 81 shows libraries used when instantiating the core (VHDL libraries).

12.9 Component declaration
library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

component ahbtrace is
 generic (
 hindex : integer := 0;
 ioaddr : integer := 16#000#;
 iomask : integer := 16#E00#;
 tech : integer := 0;
 irq : integer := 0;
 kbytes : integer := 1;
 exttimer : integer range 0 to 1 := 0);
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 ahbmi : in ahb_mst_in_type;
 ahbsi : in ahb_slv_in_type;
 ahbso : out ahb_slv_out_type;
 timer : in std_logic_vector(30 downto 0) := (others => ‘0’));
end component;

-- Tracebuffer that can trace separate bus:
component ahbtrace_mb is
 generic (
 hindex : integer := 0;
 ioaddr : integer := 16#000#;
 iomask : integer := 16#E00#;

Table 80. Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
AHBMI * Input AHB master input signals -
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
TIMER[30:0] N/A Input External timestamp (only used when VHDL

generic exttimer is nonzero). Suitable for con-
nection to dbgo.timer signal from debug support
unit (DSU IP Core)

-

ASTAT * Output AHB statistics outputs. Intended to be connected
to L3STAT and L4STAT core.

-

* see GRLIB IP Library User’s Manual

Table 81. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Types AMBA signal type definitions
GAISLER MISC Component Component declaration
GRIP, Sep 2018, Version 2018.3 90 www.cobham.com/gaisler

GRLIB IP Core

 tech : integer := DEFMEMTECH;
 irq : integer := 0;
 kbytes : integer := 1;
 exttimer : integer range 0 to 1 := 0);
 port (
 rst : in std_ulogic; clk : in std_ulogic;
 ahbsi : in ahb_slv_in_type; -- Register interface
 ahbso : out ahb_slv_out_type;
 tahbmi : in ahb_mst_in_type; tahbsi : in ahb_slv_in_type -- Trace
 timer : in std_logic_vector(30 downto 0) := (others => ‘0’));
 end component;

-- Tracebuffer that can trace several separate buses:
component ahbtrace_mmb is
 generic (
 hindex : integer := 0;
 ioaddr : integer := 16#000#;
 iomask : integer := 16#E00#;
 tech : integer := DEFMEMTECH;
 irq : integer := 0;
 kbytes : integer := 1;
 ntrace : integer range 1 to 8 := 1;
 exttimer : integer range 0 to 1 := 0);
 port (
 rst : in std_ulogic; clk : in std_ulogic;
 ahbsi : in ahb_slv_in_type; -- Register interface
 ahbso : out ahb_slv_out_type;
 tahbmiv : in ahb_mst_in_vector_type(0 to ntrace-1);
 tahbsiv : in ahb_slv_in_vector_type(0 to ntrace-1) -- Trace
 timer : in std_logic_vector(30 downto 0) := (others => ‘0’));
 end component;
GRIP, Sep 2018, Version 2018.3 91 www.cobham.com/gaisler

GRLIB IP Core

13 AHBUART- AMBA AHB Serial Debug Interface

13.1 Overview

The interface consists of a UART connected to the AMBA AHB bus as a master. A simple communi-
cation protocol is supported to transmit access parameters and data. Through the communication link,
a read or write transfer can be generated to any address on the AMBA AHB bus.

13.2 Operation

13.2.1 Transmission protocol

The interface supports a simple protocol where commands consist of a control byte, followed by a 32-
bit address, followed by optional write data. Write access does not return any response, while a read
access only returns the read data. Data is sent on 8-bit basis as shown below.

Block transfers can be performed be setting the length field to n-1, where n denotes the number of
transferred words. For write accesses, the control byte and address is sent once, followed by the num-
ber of data words to be written. The address is automatically incremented after each data word. For

Figure 15. Block diagram

RX TXReceiver shift register Transmitter shift register

AHB master interface AHB data/response

AMBA AHB

Serial port
Controller

8*bitclkBaud-rate
generator AMBA APB

Figure 16. Data frame

Start D0 StopD6D5D4D3D2D1 D7

Figure 17. Commands

Write Command

11 Length -1 Addr[31:24] Addr[7:0]Addr[15:8]Addr[23:16] Data[31:24] Data[7:0]Data[15:8]Data[23:16]Send

10 Length -1 Addr[31:24] Addr[7:0]Addr[15:8]Addr[23:16]Send

Read command

Receive Data[31:24] Data[7:0]Data[15:8]Data[23:16]
GRIP, Sep 2018, Version 2018.3 92 www.cobham.com/gaisler

GRLIB IP Core

read accesses, the control byte and address is sent once and the corresponding number of data words is
returned.

13.2.2 Baud rate generation

The UART contains a 18-bit down-counting scaler to generate the desired baud-rate. The scaler is
clocked by the system clock and generates a UART tick each time it underflows. The scaler is
reloaded with the value of the UART scaler reload register after each underflow. The resulting UART
tick frequency should be 8 times the desired baud-rate.
If not programmed by software, the baud rate will be automatically discovered. This is done by
searching for the shortest period between two falling edges of the received data (corresponding to two
bit periods). When three identical two-bit periods has been found, the corresponding scaler reload
value is latched into the reload register, and the BL and RXEN bits are set in the UART control regis-
ter. If the BL bit is reset by software, the baud rate discovery process is restarted. The baud-rate dis-
covery is also restarted when a ‘break’ or framing error is detected by the receiver, allowing to change
to baudrate from the external transmitter. For proper baudrate detection, the value 0x55 should be
transmitted to the receiver after reset or after sending break.
The best scaler value for manually programming the baudrate can be calculated as follows:
scaler = (((system_clk*10)/(baudrate*8))-5)/10

13.3 Registers

The core is programmed through registers mapped into APB address space.

Table 82. AHB UART registers

APB address offset Register
0x4 AHB UART status register
0x8 AHB UART control register
0xC AHB UART scaler register
GRIP, Sep 2018, Version 2018.3 93 www.cobham.com/gaisler

GRLIB IP Core

13.3.1 AHB UART control register

Table 83. 0x08 - CTRL - AHB UART control register

13.3.2

Table 84. 0x04 - STAT - AHB UART status register

AHB UART status register

13.3.3

Table 85. 0x0C - SCALER - AHB UART scaler register

AHB UART scaler register

13.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x007. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

13.5 Implementation

13.5.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).

31 2 1 2

RESERVED BL EN

0 0 0

r rw rw

0: Receiver enable (EN) - if set, enables both the transmitter and receiver. Reset value: ‘0’.
1: Baud rate locked (BL) - is automatically set when the baud rate is locked. Reset value: ‘0’.

31 10 9 8 7 6 5 4 3 2 1 0

RESERVED RX FE R OV BR TH TS DR

0 MR 0 0 0 0 1 1 0

r r rw r rw rw r r r

0: Data ready (DR) - indicates that new data has been received by the AMBA AHB master interface.
Read only. Reset value: ‘0’.

1: Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty. Read only.
Reset value: ‘1’

2: Transmitter hold register empty (TH) - indicates that the transmitter hold register is empty. Read only.
Reset value: ‘1

3: Break (BR) - indicates that a BREAKE has been received. Reset value: ‘0’

4: Overflow (OV) - indicates that one or more character have been lost due to receiver overflow. Reset
value: ‘0’

6: Frame error (FE) - indicates that a framing error was detected. Reset value: ‘0’

31 18 17 0

RESERVED SCALER RELOAD VALUE

0 0x3FFFB

r rw

17: 0 Baudrate scaler reload value = (((system_clk*10)/(baudrate*8))-5)/10. Reset value: “3FFFF“.
GRIP, Sep 2018, Version 2018.3 94 www.cobham.com/gaisler

GRLIB IP Core

The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core does not support grlib_async_reset_enable. All registers that react on the reset signal will
have a synchronous reset.

13.6 Configuration options

Table 86 shows the configuration options of the core (VHDL generics).

13.7 Signal descriptions

Table 87 shows the interface signals of the core (VHDL ports)..

13.8 Signal definitions and reset values

The signals and their reset values are described in table 88.

13.9 Timing

The timing waveforms and timing parameters are shown in figure 18 and are defined in table 89.

Table 86. Configuration options

Generic Function Allowed range Default
hindex AHB master index 0 - NAHBMST-1 0
pindex APB slave index 0 - NAPBSLV-1 0
paddr ADDR field of the APB BAR. 0 - 16#FFF# 0
pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

Table 87. Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
UARTI RXD Input UART receiver data High

CTSN Input UART clear-to-send High
EXTCLK Input Use as alternative UART clock -

UARTO RTSN Output UART request-to-send High
TXD Output UART transmit data High

APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
AHBI * Input AMB master input signals -
AHBO * Output AHB master output signals -
* see GRLIB IP Library User’s Manual

Table 88. Signal definitions and reset values

Signal name Type Function Active Reset value
dsutx Output UART transmit data line - Logical 1
dsurx Input UART receive data line - -
GRIP, Sep 2018, Version 2018.3 95 www.cobham.com/gaisler

GRLIB IP Core
Note: The dsurx input is re-synchronized internally. The signal does not have to meet any setup or
hold requirements.

13.10 Library dependencies

Table 90 shows libraries used when instantiating the core (VHDL libraries).

13.11 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.uart.all;

entity ahbuart_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- UART signals
 ahbrxd : in std_ulogic;
 ahbtxd : out std_ulogic
);
end;

architecture rtl of ahbuart_ex is

Table 89. Timing parameters

Name Parameter Reference edge Min Max Unit
tAHBUART0 clock to output delay rising clk edge TBD TBD ns

tAHBUART1 input to clock hold rising clk edge - - ns

tAHBUART2 input to clock setup rising clk edge - - ns

Table 90. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER UART Signals, component Signals and component declaration

Figure 18. Timing waveforms

tAHBUART0dsutx

clk

tAHBUART0

tAHBUART1dsurx tAHBUART2
GRIP, Sep 2018, Version 2018.3 96 www.cobham.com/gaisler

GRLIB IP Core

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

 -- UART signals
 signal ahbuarti : uart_in_type;
 signal ahbuarto : uart_out_type;

begin

 -- AMBA Components are instantiated here
 ...

 -- AHB UART
 ahbuart0 : ahbuart
 generic map (hindex => 5, pindex => 7, paddr => 7)
 port map (rstn, clk, ahbuarti, ahbuarto, apbi, apbo(7), ahbmi, ahbmo(5));

 -- AHB UART input data
 ahbuarti.rxd <= ahbrxd;

 -- connect AHB UART output to entity output signal
 ahbtxd <= ahbuarto.txd;

end;
GRIP, Sep 2018, Version 2018.3 97 www.cobham.com/gaisler

GRLIB IP Core

14 AMBAMON - AMBA Bus Monitor

14.1 Overview

The AMBA bus monitor checks the AHB and APB buses for violations against a set of rules. When
an error is detected a signal is asserted and error message is (optionally) printed.

14.2 Rules

This section lists all rules checked by the AMBA monitor. The rules are divided into four different
tables depending on which type of device they apply to.
Some requirements of the AMBA specification are not adopted by the GRLIB implementation (on a
system level). These requirements are listed in the table below.

Table 91. Requirements not checked in GRLIB

Rule
Number Description References
1 A slave which issues RETRY must only be accessed by one master at a

time.
AMBA Spec. Rev 2.0 3-38.

Table 92. AHB master rules.

Rule
Number Description References
1 Busy can only occur in the middle of bursts. That is only after a NON-

SEQ, SEQ or BUSY.
AMBA Spec. Rev 2.0 3-9.
http://www.arm.com/support/faqip/
492.html

2 Busy can only occur in the middle of bursts. It can be the last access of
a burst but only for INCR bursts.

AMBA Spec. Rev 2.0 3-9.
http://www.arm.com/support/faqip/
492.html

3 The address and control signals must reflect the next transfer in the
burst during busy cycles.

AMBA Spec. Rev 2.0 3-9.

4 The first transfer of a single access or a burst must be NONSEQ (this is
ensured together with rule 1).

AMBA Spec. Rev 2.0 3-9.

5 HSIZE must never be larger than the bus width. AMBA Spec. Rev 2.0 3-43.
6 HADDR must be aligned to the transfer size. AMBA Spec. Rev 2.0 3-12, 3-25.

http://www.arm.com/support/faqip/
582.html

7 Address and controls signals can only change when hready is low if
the previous HTRANS value was IDLE, BUSY or if an ERROR,
SPLIT or RETRY response is given.

http://www.arm.com/support/faqip/
487.html
http://www.arm.com/support/faqip/
579.html

8 Address and control signals cannot change between consecutive
BUSY cycles.

AMBA Spec. Rev 2.0 3-9.

9 Address must be related to the previous access according to HBURST
and HSIZE and control signals must be identical for SEQUENTIAL
accesses.

AMBA Spec. Rev 2.0 3-9.

10 Master must cancel the following transfer when receiving an RETRY
response.

AMBA Spec. Rev 2.0 3-22.

11 Master must cancel the following transfer when receiving an SPLIT
response.

AMBA Spec. Rev 2.0 3-22.
GRIP, Sep 2018, Version 2018.3 98 www.cobham.com/gaisler

GRLIB IP Core
12 Master must reattempt the transfer which received a RETRY response. AMBA Spec. Rev 2.0 3-21.
http://www.arm.com/support/faqip/
603.html.

13 Master must reattempt the transfer which received a SPLIT response. AMBA Spec. Rev 2.0 3-21.
http://www.arm.com/support/faqip/
603.html.

14 Master can optionally cancel the following transfer when receiving an
ERROR response. Only a warning is given if assertions are enabled if
it does not cancel the following transfer.

AMBA Spec. Rev 2.0 3-23.

15 Master must hold HWDATA stable for the whole data phase when wait
states are inserted. Only the appropriate byte lanes need to be driven
for subword transfers.

AMBA Spec. Rev 2.0 3-7. AMBA
Spec. Rev 2.0 3-25.

16 Bursts must not cross a 1 kB address boundary. AMBA Spec. Rev 2.0 3-11.
17 HMASTLOCK indicates that the current transfer is part of a locked

sequence. It must have the same timing as address/control.
AMBA Spec. Rev 2.0 3-28.

18 HLOCK must be asserted at least one clock cycle before the address
phase to which it refers.

AMBA Spec. Rev 2.0 3-28.

19 HLOCK must be asserted for the duration of a burst and can only be
deasserted so that HMASTLOCK is deasserted after the final address
phase.

http://www.arm.com/support/faqip/
597.html

20 HLOCK must be deasserted in the last address phase of a burst. http://www.arm.com/support/faqip/
588.html

21 HTRANS must be driven to IDLE during reset. http://www.arm.com/support/faqip/
495.html

22 HTRANS can only change from IDLE to NONSEQ or stay IDLE
when HREADY is deasserted.

http://www.arm.com/support/faqip/
579.html

Table 93. AHB slave rules.

Rule
Number Description References
1 AHB slave must respond with a zero wait state OKAY response to

BUSY cycles in the same way as for IDLE.
AMBA Spec. Rev 2.0 3-9.

2 AHB slave must respond with a zero wait state OKAY response to
IDLE.

AMBA Spec. Rev 2.0 3-9.

3 HRESP should be set to ERROR, SPLIT or RETRY only one cycle
before HREADY is driven high.

AMBA Spec. Rev 2.0 3-22.

4 Two-cycle ERROR response must be given. AMBA Spec. Rev 2.0 3-22.
5 Two-cycle SPLIT response must be given. AMBA Spec. Rev 2.0 3-22.
6 Two-cycle RETRY response must be given. AMBA Spec. Rev 2.0 3-22.
7 SPLIT complete signalled to master which did not have pending

access.
AMBA Spec. Rev 2.0 3-36.

8 Split complete must not be signalled during same cycle as SPLIT. http://www.arm.com/support/faqip/
616.html

9 It is recommended that slaves drive HREADY high and HRESP to
OKAY when not selected. A warning will be given if this is not fol-
lowed.

http://www.arm.com/support/faqip/
476.html

Table 92. AHB master rules.

Rule
Number Description References
GRIP, Sep 2018, Version 2018.3 99 www.cobham.com/gaisler

GRLIB IP Core
10 It is recommended that slaves do not insert more than 16 wait states. If
this is violated a warning will be given if assertions are enabled.

AMBA Spec. Rev 2.0 3-20.

11 Slaves should not assert the HSPLIT (Split complete) signal for more
than one cycle for each SPLIT response. If a slave asserts HSPLIT for
more than one cycle it will not cause the system to malfunction. It can
however be a indication that a core does not perform as expected.
Therefore assertion of HSPLIT during more than one cycle for a
SPLIT response is reported as a warning.

No reference

Table 94. APB slave rules.

Rule
Number Description References
1 The bus must move to the SETUP state or remain in the IDLE state

when in the IDLE state.
AMBA Spec. Rev 2.0 5-4.

2 The bus must move from SETUP to ENABLE in one cycle. AMBA Spec. Rev 2.0 5-4.
3 The bus must move from ENABLE to SETUP or IDLE in one cycle. AMBA Spec. Rev 2.0 5-5.
4 The bus must never be in another state than IDLE, SETUP, ENABLE. AMBA Spec. Rev 2.0 5-4.
5 PADDR must be stable during transition from SETUP to ENABLE. AMBA Spec. Rev 2.0 5-5.
6 PWRITE must be stable during transition from SETUP to ENABLE. AMBA Spec. Rev 2.0 5-5.
7 PWDATA must be stable during transition from SETUP to ENABLE. AMBA Spec. Rev 2.0 5-5.
8 Only one PSEL must be enabled at a time. AMBA Spec. Rev 2.0 5-4.
9 PSEL must be stable during transition from SETUP to ENABLE. AMBA Spec. Rev 2.0 5-5.

Table 95. Arbiter rules

Rule
Number Description References
1 HreadyIn to slaves and master must be driven by the currently selected

device.
http://www.arm.com/support/faqip/
482.html

2 A master which received a SPLIT response must not be granted the
bus until the slave has set the corresponding HSPLIT line.

AMBA Spec. Rev 2.0 3-35.

3 The dummy master must be selected when a SPLIT response is
received for a locked transfer.

http://www.arm.com/support/faqip/
14307.html

Table 93. AHB slave rules.

Rule
Number Description References
GRIP, Sep 2018, Version 2018.3 100 www.cobham.com/gaisler

GRLIB IP Core

14.3 Configuration options

Table 96 shows the configuration options of the core (VHDL generics).

14.4 Signal descriptions

Table 97 shows the interface signals of the core (VHDL ports).

Table 96. Configuration options

Generic Function Allowed range Default
asserterr Enable assertions for AMBA requirements. Violations

are asserted with severity error.
0 - 1 1

assertwarn Enable assertions for AMBA recommendations. Viola-
tions are asserted with severity warning.

0 - 1 1

hmstdisable Disable AHB master rule check. To disable a master rule
check a value is assigned so that the binary representa-
tion contains a one at the position corresponding to the
rule number, e.g 0x80 disables rule 7.

- 0

hslvdisable Disable AHB slave tests. Values are assigned as for
hmstdisable.

- 0

pslvdisable Disable APB slave tests. Values are assigned as for hmst-
disable.

- 0

arbdisable Disable Arbiter tests. Values are assigned as for hmstdis-
able.

- 0

nahbm Number of AHB masters in the system. 0 - NAHBMST NAHBMST
nahbs Number of AHB slaves in the system. 0 - NAHBSLV NAHBSLV
napb Number of APB slaves in the system. 0 - NAPBSLV NAPBSLV
ebterm Relax rule checks to allow use in systems with early

burst termination. This generic should be set to 0 for sys-
tems that use GRLIB’s AHBCTRL core.

0 - 1 0

Table 97. Signal descriptions

Signal name Field Type Function Active
RST N/A Input AHB reset Low
CLK N/A Input AHB clock -
AHBMI * Input AHB master interface input record -
AHBMO * Input AHB master interface output record array -
AHBSI * Input AHB slave interface input record -
AHBSO * Input AHB slave interface output record array -
APBI * Input APB slave interface input record
APBO * Input APB slave interface output record array
ERR N/A Output Error signal (error detected) High
* see GRLIB IP Library User’s Manual
GRIP, Sep 2018, Version 2018.3 101 www.cobham.com/gaisler

GRLIB IP Core

14.5 Library dependencies

Table 98 shows libraries used when instantiating the core (VHDL libraries).

14.6 Instantiation

This example shows how the core can be instantiated.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.sim.all;

entity ambamon_ex is
 port (
 clk : in std_ulogic;
 rst : in std_ulogic
end;

architecture rtl of ambamon_ex is
-- APB signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);

 -- APB signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);

begin
 -- AMBA Components are instantiated here
 ...
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.sim.all;

entity ambamon_ex is
 port (
 clk : in std_ulogic;
 rst : in std_ulogic;
 err : out std_ulogic
end;

architecture rtl of ambamon_ex is
 -- AHB signals
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => apb_none);

 -- AHB signals
 signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => apb_none);

 -- APB signals

Table 98. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Types AMBA signal type definitions
GAISLER SIM Component Component declaration
GRIP, Sep 2018, Version 2018.3 102 www.cobham.com/gaisler

GRLIB IP Core

 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);

begin

 mon0 : ambamon
 generic map(
 assert_err => 1,
 assert_war => 0,
 nahbm => 2,
 nahbs => 2,
 napb => 1
)
 port map(
 rst => rst,
 clk => clk,
 ahbmi => ahbmi,
 ahbmo => ahbmo,
 ahbsi => ahbsi,
 ahbso => ahbso,
 apbi => apbi,
 apbo => apbo,
 err => err);

end;
GRIP, Sep 2018, Version 2018.3 103 www.cobham.com/gaisler

GRLIB IP Core

15 APBCTRL - AMBA AHB/APB bridge with plug&play support

15.1 Overview

The AMBA AHB/APB bridge is a APB bus master according the AMBA 2.0 standard.
The controller supports up to 16 slaves. The actual maximum number of slaves is defined in the
GRLIB.AMBA package, in the VHDL constant NAPBSLV. The number of slaves can also be set
using the nslaves VHDL generic.

Figure 19. AHB/APB bridge block diagram

15.2 Operation

15.2.1 Decoding

Decoding (generation of PSEL) of APB slaves is done using the plug&play method explained in the
GRLIB IP Library User’s Manual. A slave can occupy any binary aligned address space with a size of
256 bytes - 1 Mbyte. Writes to unassigned areas will be ignored, while reads from unassigned areas
will return an arbitrary value. AHB error response will never be generated.

15.2.2 Plug&play information

GRLIB APB slaves contain two plug&play information words which are included in the APB records
they drive on the bus (see the GRLIB IP Library User’s Manual for more information). These records
are combined into an array which is connected to the APB bridge.
The plug&play information is mapped on a read-only address area at the top 4 kbytes of the bridge
address space. Each plug&play block occupies 8 bytes. The address of the plug&play information for
a certain unit is defined by its bus index. If the bridge is mapped on AHB address 0x80000000, the
address for the plug&play records is thus 0x800FF000 + n*8.

Figure 20. APB plug&play information

APB SLAVE

APB SLAVEAHB Slave

AHB/APB Bridge

Interface

•••

AHB BUS

APBI

APBO[0]

APBO[n]
AHBSI

AHBSO[n]

VENDOR ID DEVICE ID VERSION IRQ

31 24 23 12 11 45 0

ADDR C/P MASK TYPE

31 20 19 16 15 4 3 0

BAR

Configuration wordAPB Plug&play record
0x00

0x04

10 9

IRQ
GRIP, Sep 2018, Version 2018.3 104 www.cobham.com/gaisler

GRLIB IP Core

15.3 APB bus monitor

An APB bus monitor is integrated into the core. It is enabled with the enbusmon generic. It has the
same functionality as the APB parts in the AMBA monitor core (AMBAMON). For more information
on which rules are checked se the AMBAMON documentation.

15.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x006. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

15.5 Implementation

15.5.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core will use asynchronous reset for all registers if the GRLIB config package setting grlib_asyn-
c_reset_enable is set.

15.6 Configuration options

Table 99 shows the configuration options of the core (VHDL generics).

Table 99. Configuration options

Generic Function Allowed range Default
hindex AHB slave index 0 - NAHBSLV-1 0
haddr The MSB address of the AHB area. Sets the 12 most sig-

nificant bits in the 32-bit AHB address.
0 - 16#FFF# 0

hmask The AHB area address mask. Sets the size of the AHB
area and the start address together with haddr.

0 - 16#FFF# 16#FFF#

nslaves The maximum number of slaves 1 - NAPBSLV NAPBSLV
debug Print debug information during simulation 0 - 2 2
icheck Enable bus index checking (PINDEX) 0 - 1 1
enbusmon Enable APB bus monitor 0 - 1 0
asserterr Enable assertions for AMBA requirements. Violations

are asserted with severity error.
0 - 1 0

assertwarn Enable assertions for AMBA recommendations. Viola-
tions are asserted with severity warning.

0 - 1 0

pslvdisable Disable APB slave rule check. To disable a slave rule
check a value is assigned so that the binary representa-
tion contains a one at the position corresponding to the
rule number, e.g 0x80 disables rule 7.

N/A 0

mcheck Check if there are any intersections between APB slave
memory areas. If two areas intersect an assert with level
failure will be triggered (in simulation).

0 - 1 1

ccheck Perform sanity checks on PnP configuration records (in
simulation).

0 - 1 1
GRIP, Sep 2018, Version 2018.3 105 www.cobham.com/gaisler

GRLIB IP Core

15.7 Signal descriptions

Table 100 shows the interface signals of the core (VHDL ports).

15.8 Library dependencies

Table 101 shows libraries used when instantiating the core (VHDL libraries).

15.9 Component declaration
library grlib;
use grlib.amba.all;

component apbctrl
 generic (
 hindex : integer := 0;
 haddr : integer := 0;
 hmask : integer := 16#fff#;
 nslaves : integer range 1 to NAPBSLV := NAPBSLV;
 debug : integer range 0 to 2 := 2; -- print config to console
 icheck : integer range 0 to 1 := 1
);
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 ahbi : in ahb_slv_in_type;
 ahbo : out ahb_slv_out_type;
 apbi : out apb_slv_in_type;
 apbo : in apb_slv_out_vector
);
 end component;

15.10 Instantiation

This example shows how an APB bridge can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use work.debug.all;

.

.

Table 100.Signal descriptions

Signal name Field Type Function Active
RST N/A Input AHB reset Low
CLK N/A Input AHB clock -
AHBI * Input AHB slave input -
AHBO * Output AHB slave output -
APBI * Output APB slave inputs -
APBO * Input APB slave outputs -
* see GRLIB IP Library User’s Manual

Table 101.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Types AMBA signal type definitions
GRIP, Sep 2018, Version 2018.3 106 www.cobham.com/gaisler

GRLIB IP Core
 -- AMBA signals

 signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);

signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector := (others => apb_none);

begin

-- APB bridge

apb0 : apbctrl-- AHB/APB bridge
 generic map (hindex => 1, haddr => CFG_APBADDR)
 port map (rstn, clk, ahbsi, ahbso(1), apbi, apbo);

-- APB slaves

uart1 : apbuart
 generic map (pindex => 1, paddr => 1, pirq => 2)
 port map (rstn, clk, apbi, apbo(1), u1i, u1o);

irqctrl0 : irqmp
 generic map (pindex => 2, paddr => 2)
 port map (rstn, clk, apbi, apbo(2), irqo, irqi);

...
end;

15.11 Debug print-out

The APB bridge can print-out the plug-play information from the attached during simulation. This is
enabled by setting the debug VHDL generic to 2. Reporting starts by scanning the array from 0 to
NAPBSLV - 1 (defined in the grlib.amba package). It checks each entry in the array for a valid ven-
dor-id (all nonzero ids are considered valid) and if one is found, it also retrieves the device-id. The
description for these ids are obtained from the GRLIB.DEVICES package, and is printed on standard
out together with the slave number. If the index check is enabled (done with a VHDL generic), the
report module also checks if the pindex number returned in the record matches the array number of
the record currently checked (the array index). If they do not match, the simulation is aborted and an
error message is printed.
The address range and memory type is also checked and printed. The address information includes
type, address and mask. The address ranges currently defined are AHB memory, AHB I/O and APB I/
O. All APB devices are in the APB I/O range so the type does not have to be checked. From this infor-
mation, the report module calculates the start address of the device and the size of the range. The
information finally printed is start address and size.
GRIP, Sep 2018, Version 2018.3 107 www.cobham.com/gaisler

GRLIB IP Core

16 APBPS2 - PS/2 host controller with APB interface

16.1 Introduction

The PS/2 interface is a bidirectional synchronous serial bus primarily used for keyboard and mouse
communications. The APBPS2 core implements the PS2 protocol with a APB back-end. Figure 21
shows a model of APBPS2 and the electrical interface.

PS/2 data is sent in 11 bits frames. The first bit is a start bit followed by eight data bits, one odd parity
bit and finally one stop bit. Figure 22 shows a typical PS/2 data frame.

16.2 Receiver operation

The receiver of APBPS2 receives the data from the keyboard or mouse, and converts it to 8-bit data
frames to be read out via the APB bus. It is enabled through the receiver enable (RE) bit in the PS/2
control register. If a parity error or framing error occurs, the data frame will be discarded. Correctly
received data will be transferred to a 16 byte FIFO. The data ready (DR) bit in the PS/2 status register
will be set, and retained as long as the FIFO contains at least one data frame. When the FIFO is full,
the receiver buffer full (RF) bit in the status register is set. The keyboard will be inhibited and buffer
data until the FIFO gets read again. Interrupt is sent when a correct stop bit is received then it’s up to
the software to handle any resend operations if the parity bit is wrong. Figure 23 shows a flow chart
for the operations of the receiver state machine.

Figure 21. APBPS2 electrical interface

Clock

Data
Keyboard

Vcc
FPGA/ASIC

PS2Data

PS2Data_out

PS2Clk

PS2Clk_out

0

0

APBPS2

Figure 22. PS/2 data frame

Start D0 D6D5D4D3D2D1 D7 StopParityData frame with parity:
GRIP, Sep 2018, Version 2018.3 108 www.cobham.com/gaisler

GRLIB IP Core
16.3 Transmitter operations

The transmitter part of APBPS2 is enabled for through the transmitter enable (TE) bit in the PS/2 con-
trol register. The PS/2 interface has a 16 byte transmission FIFO that stores commands sent by the
CPU. Commands are used to set the LEDs on the keyboard, and the typematic rate and delay. Type-
matic rate is the repeat rate of a key that is held down, while the delay controls for how long a key has
to be held down before it begins automatically repeating. Typematic repeat rates, delays and possible
other commands are listed in table 113.
If the TE bit is set and the transmission FIFO is not empty a transmission of the command will start.
The host will pull the clock line low for at least 100 us and then transmit a start bit, the eight bit com-
mand, an odd parity bit, a stop bit and wait for an acknowledgement bit by the device. When this hap-
pens an interrupt is generated. Figure 24 shows the flow chart for the transmission state machine.

16.4 Clock generation

A PS/2 interface should generate a clock of 10.0 - 16.7 kHz. To transmit data, a PS/2 host must inhibit
communication by pulling the clock low for at least 100 microseconds. To do this, APBPS2 divides
the APB clock with either a fixed or programmable division factor. The divider consist of a 17-bit
down-counter and can divide the APB clock with a factor of 1 - 131071. The division rate, and the
reset value of the timer reload register, is set to the fKHz generic divided by 10 in order to generate the
100 microsecond clock low time. If the VHDL generic fixed is 0, the division rate can be programmed
through the timer reload register and should be programmed with the system frequency in kHz
divided by ten. The reset value of the reload register is always set to the fKHz value divided by ten.
However, the register will not be readable via the APB interface unless the fixed VHDL generic has
been set to 0.

Figure 23. Flow chart for the receiver state machine

Idle

Start

Data

ps2_data_sync

rx_en
0

1

1

0

ps2_clk_fall

ps2_data_sync
1

0

1

Parity

Stop

ps2_clk_fall

update shift register

shift_reg(0)
shift_reg = 1111 1111

ps2_clk_fall

update parity flag

0

1

ps2_clk_fall

ps2_data_sync

Frame_error = 1 rx_irq = 1

output buffer full

parity_error

Idle

0

1

0

1

1

0

1

0

update FIFO0

0

1

1

0

GRIP, Sep 2018, Version 2018.3 109 www.cobham.com/gaisler

GRLIB IP Core
16.5 Registers

The core is controlled through registers mapped into APB address space.

16.5.1 PS/2 Data Register

Table 103.0x00 - DATA - PS/2 data register

Table 102.APB PS/2 registers

APB address offset Register
0x00 PS/2 Data register
0x04 PS/2 Status register
0x08 PS/2 Control register
0x0C PS/2 Timer reload register

31 8 7 0

RESERVED DATA

0 NR

r rw

7: 0 Receiver holding FIFO (read access) and Transmitter holding FIFO (write access). If the receiver
FIFO is not empty, read accesses retrieve the next byte from the FIFO. Bytes written to this field are
stored in the transmitter holding FIFO if it is not full.

Waitrequest

Figure 24. Flow chart for the transmitter state machine

Idle Start

fifo_empty

tx_en
0

1

1

0

timer < 5000

ps2_data_sync

1

0

Parity

Stop

ps2_clk_fall

read FIFO

shift_reg empty

timer = timer + 1

ps2_clk_fall

ps2data = parity bit

0

1

ps2_clk_fall

ps2dataoe = 1

Idle

0

1

0

1

ps2clk = 1, ps2data = 0
timer = 0

ps2clk = 0

ps2data = 1

ps2clkoe = 1

Data

0

ps2data = shift_reg(0)
update shift_reg

1

0

1

ps2data = 1

Ack

ps2_clk_fall

0

1

tx_irq = 1, ps2data = 1
ps2dataoe = 1,

ps2dataoe = 0

ps2clkoe = 0
GRIP, Sep 2018, Version 2018.3 110 www.cobham.com/gaisler

GRLIB IP Core

16.5.2 PS/2 Status Register

Table 104.0x04 - STAT - PS/2 status register

16.5.3 PS/2 Control Register

Table 105.0x08 - CTRL - PS/2 control register

16.5.4 PS/2 Timer Reload Register

Table 106.0x0C - TIMER - PS/2 reload register

16.6 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x060. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

16.7 Implementation

16.7.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

31 27 26 22 6 5 4 3 2 1 0

RCNT TCNT RESERVED TF RF KI FE PE DR

0 0 0 0 0 0 0 0 0

r r r r r rw rw rw r

0: Data ready (DR) - indicates that new data is available in the receiver holding register (read only).
1: Parity error (PE) - indicates that a parity error was detected
2: Framing error (FE) - indicates that a framing error was detected.
3: Keyboard inhibit (KI) - indicates that the keyboard is inhibited.
4: Receiver buffer full (RF) - indicates that the output buffer (FIFO) is full (read only).
5: Transmitter buffer full (TF) - indicates that the input buffer (FIFO) is full (read only).
26: 22 Transmit FIFO count (TCNT) - shows the number of data frames in the transmit FIFO (read only).
31: 27 Receiver FIFO count (RCNT) - shows the number of data frames in the receiver FIFO (read only).

31 4 3 2 1 0

RESERVED TI RI TE RE

0 0 0 0 0

r rw rw rw rw

0: Receiver enable (RE) - if set, enables the receiver.
1: Transmitter enable (TE) - if set, enables the transmitter.
2: Keyboard interrupt enable (RI) - if set, interrupts are generated when a frame is received.
3: Host interrupt enable (TI) - if set, interrupts are generated when a frame is transmitted.

31 17 16 0

RESERVED TIMER RELOAD REG

0 *

r rw*

16: 0 PS/2 timer reload register - Reset value determined by fktlz VHDL generic. Register only present it
“fixed” VHDL generic is zero.
GRIP, Sep 2018, Version 2018.3 111 www.cobham.com/gaisler

GRLIB IP Core

16.8 Configuration options

Table 107 shows the configuration options of the core (VHDL generics).

16.9 Signal descriptions

Table 108 shows the interface signals of the core (VHDL ports).

16.10 Library dependencies

Table 109 shows libraries used when instantiating the core (VHDL libraries).

16.11 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;

Table 107.Configuration options

Generic Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0
paddr ADDR field of the APB BAR. 0 - 16#FFF# 0
pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#
pirq Index of the interrupt line. 0 - NAHBIRQ-1 0
fKHz Frequency of APB clock in KHz. This value divided by

10 is the reset value of the timer reload register.
1 - 1310710 50000

fixed Used fixed clock divider to generate PS/2 clock. 0 - 1 0
oepol Output enable polarity 0 - 1 0

Table 108.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
PS2I PS2_CLK_I Input PS/2 clock input -

PS2_DATA_I Input PS/2 data input -
PS2O PS2_CLK_O Output PS/2 clock output -

PS2_CLK_OE Output PS/2 clock output enable Low
PS2_DATA_O Output PS/2 data output -
PS2_DATA_OE Output PS/2 data output enable Low

* see GRLIB IP Library User’s Manual

Table 109.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals APB signal definitions
GAISLER MISC Signals, component PS/2 signal and component declaration
GRIP, Sep 2018, Version 2018.3 112 www.cobham.com/gaisler

GRLIB IP Core

use grlib.amba.all;
use grlib.gencomp.all;

library gaisler;
use gaisler.misc.all;

entity apbps2_ex is
 port (
 rstn : in std_ulogic;
 clk : in std_ulogic;

 -- PS/2 signals
 ps2clk : inout std_ulogic;
 ps2data : inout std_ulogic
);
end;

architecture rtl of apbuart_ex is

 -- APB signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);

 -- PS/2 signals
 signal kbdi : ps2_in_type;
 signal kbdo : ps2_out_type;

begin

ps20 : apbps2 generic map(pindex => 5, paddr => 5, pirq => 4)
 port map(rstn, clkm, apbi, apbo(5), kbdi, kbdo);

kbdclk_pad : iopad generic map (tech => padtech)
 port map (ps2clk,kbdo.ps2_clk_o, kbdo.ps2_clk_oe, kbdi.ps2_clk_i);

kbdata_pad : iopad generic map (tech => padtech)
 port map (ps2data, kbdo.ps2_data_o, kbdo.ps2_data_oe, kbdi.ps2_data_i);

end;
GRIP, Sep 2018, Version 2018.3 113 www.cobham.com/gaisler

GRLIB IP Core

16.12 Keboard

Table 110.Scan code set 2, 104-key keyboard

scan codes

KEY MAKE BREAK
-
- KEY MAKE BREAK

-
- KEY MAKE BREAK

A 1C F0,1C

9 46 F0,46

[54 FO,54
B 32 F0,32 `0E F0,0E INSERT E0,70 E0,F0,70
C 21 F0,21 - 4E F0,4E HOME E0,6C E0,F0,6C
D 23 F0,23 = 55 FO,55 PG UP E0,7D E0,F0,7D
E 24 F0,24 \ 5D F0,5D DELETE E0,71 E0,F0,71
F 2B F0,2B BKSP 66 F0,66 END E0,69 E0,F0,69
G 34 F0,34 SPACE 29 F0,29 PG DN E0,7A E0,F0,7A
H 33 F0,33 TAB 0D F0,0D U

ARROW
E0,75 E0,F0,75

I 43 F0,43 CAPS 58 F0,58 L
ARROW

E0,6B E0,F0,6B

J 3B F0,3B L SHFT 12 FO,12 D
ARROW

E0,72 E0,F0,72

K 42 F0,42 L CTRL 14 FO,14 R
ARROW

E0,74 E0,F0,74

L 4B F0,4B L GUI E0,1F E0,F0,1F NUM 77 F0,77
M 3A F0,3A L ALT 11 F0,11 KP / E0,4A E0,F0,4A
N 31 F0,31 R SHFT 59 F0,59 KP * 7C F0,7C
O 44 F0,44 R CTRL E0,14 E0,F0,14 KP - 7B F0,7B
P 4D F0,4D R GUI E0,27 E0,F0,27 KP + 79 F0,79
Q 15 F0,15 R ALT E0,11 E0,F0,11 KP EN E0,5A E0,F0,5A
R 2D F0,2D APPS E0,2F E0,F0,2F KP . 71 F0,71
S 1B F0,1B ENTER 5A F0,5A KP 0 70 F0,70
T 2C F0,2C ESC 76 F0,76 KP 1 69 F0,69
U 3C F0,3C F1 5 F0,05 KP 2 72 F0,72
V 2A F0,2A F2 6 F0,06 KP 3 7A F0,7A
W 1D F0,1D F3 4 F0,04 KP 4 6B F0,6B
X 22 F0,22 F4 0C F0,0C KP 5 73 F0,73
Y 35 F0,35 F5 3 F0,03 KP 6 74 F0,74
Z 1A F0,1A F6 0B F0,0B KP 7 6C F0,6C
0 45 F0,45 F7 83 F0,83 KP 8 75 F0,75
1 16 F0,16 F8 0A F0,0A KP 9 7D F0,7D
2 1E F0,1E F9 1 F0,01] 5B F0,5B
3 26 F0,26 F10 9 F0,09 ; 4C F0,4C
4 25 F0,25 F11 78 F0,78 52 F0,52
5 2E F0,2E F12 7 F0,07 , 41 F0,41
6 36 F0,36 PRNT

SCRN
E0,12,
E0,7C

E0,F0,
7C,E0,
F0,12

. 49 F0,49

7 3D F0,3D SCROLL 7E F0,7E / 4A F0,4A
8 3E F0,3E PAUSE E1,14,77,

E1,F0,14,
F0,77

-NONE-
GRIP, Sep 2018, Version 2018.3 114 www.cobham.com/gaisler

GRLIB IP Core
Table 111.Windows multimedia scan codes

KEY MAKE BREAK
Next Track E0, 4D E0, F0, 4D
Previous Track E0, 15 E0, F0, 15
Stop E0, 3B E0, F0, 3B
Play/Pause E0, 34 E0, F0, 34
Mute E0, 23 E0, F0, 23
Volume Up E0, 32 E0, F0, 32
Volume Down E0, 21 E0, F0, 21
Media Select E0, 50 E0, F0, 50
E-Mail E0, 48 E0, F0, 48
Calculator E0, 2B E0, F0, 2B
My Computer E0, 40 E0, F0, 40
WWW Search E0, 10 E0, F0, 10
WWW Home E0, 3A E0, F0, 3A
WWW Back E0, 38 E0, F0, 38
WWW Forward E0, 30 E0, F0, 30
WWW Stop E0, 28 E0, F0, 28
WWW Refresh E0, 20 E0, F0, 20
WWW Favor-
ites

E0, 18 E0, F0, 18

Table 112.ACPI scan codes (Advanced Configuration and Power Interface)

KEY MAKE BREAK
Power E0, 37 E0, F0, 37
Sleep E0, 3F E0, F0, 3F
Wake E0, 5E E0, F0, 5E
GRIP, Sep 2018, Version 2018.3 115 www.cobham.com/gaisler

GRLIB IP Core

16.13 Keyboard commands

Table 113.Transmit commands:

Command Description
0xED Set status LED’s - keyboard will reply with ACK (0xFA). The host follows this command with an

argument byte*
0xEE Echo command - expects an echo response
0xF0 Set scan code set - keyboard will reply with ACK (0xFA) and wait for another byte. 0x01-0x03

which determines the scan code set to use. 0x00 returns the current set.
0xF2 Read ID - the keyboard responds by sending a two byte device ID of 0xAB 0x83
0xF3 Set typematic repeat rate - keyboard will reply with ACK (0xFA) and wait for another byte which

determines the typematic rate.
0xF4 Keyboard enable - clears the keyboards output buffer, enables keyboard scanning and returns an

acknowledgement.
0xF5 Keyboard disable - resets the keyboard, disables keyboard scanning and returns an acknowledge-

ment.
0xF6 Set default - load default typematic rate/delay (10.9cps/500ms) and scan code set 2
0xFE Resend - upon receipt of the resend command the keyboard will retransmit the last byte
0xFF Reset - resets the keyboard
* bit 0 controls the scroll lock, bit 1 the num lock, bit 2 the caps lock, bit 3-7 are ignored

Table 114.Receive commands:

Command Description
0xFA Acknowledge
0xAA Power on self test passed (BAT completed)
0xEE Echo respond
0xFE Resend - upon receipt of the resend command the host should retransmit the last byte
0x00 Error or buffer overflow
0xFF Error of buffer overflow

Table 115.The typematic rate/delay argument byte

MSB LSB
0 DELAY DELAY RATE RATE RATE RATE RATE
GRIP, Sep 2018, Version 2018.3 116 www.cobham.com/gaisler

GRLIB IP Core
Table 116.Typematic repeat rates

Bits 0-
4

Rate
(cps)

Bits 0-
4

Rate
(cps)

Bits 0-
4

Rate
(cps)

Bits 0-
4

Rate
(cps)

00h 30

08h 15

10h 7.5

18h 3.7
01h 26.7 09h 13.3 11h 6.7 19h 3.3
02h 24 0Ah 12 12h 6 1Ah 3
03h 21.8 0Bh 10.9 13h 5.5 1Bh 2.7
04h 20.7 0Ch 10 14h 5 1Ch 2.5
05h 18.5 0Dh 9.2 15h 4.6 1Dh 2.3
06h 17.1 0Eh 8.6 16h 4.3 1Eh 2.1
07h 16 0Fh 8 17h 4 1Fh 2

Table 117.Typematic delays

Bits 5-6 Delay (seconds)
00b 0.25
01b 0.5
10b 0.75
11b 1
GRIP, Sep 2018, Version 2018.3 117 www.cobham.com/gaisler

GRLIB IP Core

17 APBUART - AMBA APB UART Serial Interface

17.1 Overview

The interface is provided for serial communications. The UART supports data frames with 8 data bits,
one optional parity bit and one or two stop bits. To generate the bit-rate, each UART has a program-
mable 12-bit clock divider. Two FIFOs are used for data transfer between the APB bus and UART,
when fifosize VHDL generic > 1. Two holding registers are used data transfer between the APB bus
and UART, when fifosize VHDL generic = 1. Hardware flow-control is supported through the RTSN/
CTSN hand-shake signals, when flow VHDL generic is set. Parity is supported, when parity VHDL
generic is set.

17.2 Operation

17.2.1 Transmitter operation

The transmitter is enabled through the TE bit in the UART control register. Data that is to be trans-
ferred is stored in the FIFO/holding register by writing to the data register. This FIFO is configurable
to different sizes via the fifosize VHDL generic. When the size is 1, only a single holding register is
used but in the following discussion both will be referred to as FIFOs. When ready to transmit, data is
transferred from the transmitter FIFO/holding register to the transmitter shift register and converted to
a serial stream on the transmitter serial output pin (TXD). It automatically sends a start bit followed
by eight data bits, an optional parity bit, and one stop bit (figure 26). The least significant bit of the
data is sent first. It is also possible to use two stop bits, this is configured via the control register.

Figure 25. Block diagram

RXD TXD

CTSN

RTSN

Receiver shift register Transmitter shift register

APB

Serial port
Controller8*bitclkBaud-rate

generator

Transmitter FIFO or
holding register

Receiver FIFO or
holding register
GRIP, Sep 2018, Version 2018.3 118 www.cobham.com/gaisler

GRLIB IP Core
Following the transmission of the stop bit, if a new character is not available in the transmitter FIFO,
the transmitter serial data output remains high and the transmitter shift register empty bit (TS) will be
set in the UART status register. Transmission resumes and the TS is cleared when a new character is
loaded into the transmitter FIFO. When the FIFO is empty the TE bit is set in the status register. If the
transmitter is disabled, it will immediately stop any active transmissions including the character cur-
rently being shifted out from the transmitter shift register. The transmitter holding register may not be
loaded when the transmitter is disabled or when the FIFO (or holding register) is full. If this is done,
data might be overwritten and one or more frames are lost.
The discussion above applies to any FIFO configurations including the special case with a holding
register (VHDL generic fifosize = 1). If FIFOs are used (VHDL generic fifosize > 1) some additional
status and control bits are available. The TF status bit (not to be confused with the TF control bit) is
set if the transmitter FIFO is currently full and the TH bit is set as long as the FIFO is less than half-
full (less than half of entries in the FIFO contain data). The TF control bit enables FIFO interrupts
when set. The status register also contains a counter (TCNT) showing the current number of data
entries in the FIFO.
When flow control is enabled, the CTSN input must be low in order for the character to be transmit-
ted. If it is deasserted in the middle of a transmission, the character in the shift register is transmitted
and the transmitter serial output then remains inactive until CTSN is asserted again. If the CTSN is
connected to a receivers RTSN, overrun can effectively be prevented.

17.2.2 Receiver operation

The receiver is enabled for data reception through the receiver enable (RE) bit in the UART control
register. The receiver looks for a high to low transition of a start bit on the receiver serial data input
pin. If a transition is detected, the state of the serial input is sampled a half bit clocks later. If the serial
input is sampled high the start bit is invalid and the search for a valid start bit continues. If the serial
input is still low, a valid start bit is assumed and the receiver continues to sample the serial input at
one bit time intervals (at the theoretical centre of the bit) until the proper number of data bits and the
parity bit have been assembled and one stop bit has been detected. The serial input is shifted through
an 8-bit shift register where all bits have to have the same value before the new value is taken into
account, effectively forming a low-pass filter with a cut-off frequency of 1/8 system clock.
The receiver also has a configurable FIFO which is identical to the one in the transmitter. As men-
tioned in the transmitter part, both the holding register and FIFO will be referred to as FIFO.
During reception, the least significant bit is received first. The data is then transferred to the receiver
FIFO and the data ready (DR) bit is set in the UART status register as soon as the FIFO contains at
least one data frame. The parity, framing and overrun error bits are set at the received byte boundary,
at the same time as the data ready bit would have been set. The data frame is not stored in the FIFO if
an error is detected. Also, the new error status bits are or:ed with the old values before they are stored
into the status register. Thus, they are not cleared until written to with zeros from the AMBA APB
bus. If both the receiver FIFO and shift registers are full when a new start bit is detected, then the

Figure 26. UART data frames

Start D0 StopD6D5D4D3D2D1 D7

Start D0 D6D5D4D3D2D1 D7 StopParity

Data frame, no parity:

Data frame with parity:
GRIP, Sep 2018, Version 2018.3 119 www.cobham.com/gaisler

GRLIB IP Core

character held in the receiver shift register will be lost and the overrun bit will be set in the UART sta-
tus register. A break received (BR) is indicated when a BREAK has been received, which is a framing
error with all data received being zero.
If flow control is enabled, then the RTSN will be negated (high) when a valid start bit is detected and
the receiver FIFO is full. When the holding register is read, the RTSN will automatically be reasserted
again.
When the VHDL generic fifosize > 1, which means that holding registers are not considered here,
some additional status and control bits are available. The RF status bit (not to be confused with the RF
control bit) is set when the receiver FIFO is full. The RH status bit is set when the receiver FIFO is
half-full (at least half of the entries in the FIFO contain data frames). The RF control bit enables
receiver FIFO interrupts when set. A RCNT field is also available showing the current number of data
frames in the FIFO.

17.3 Baud-rate generation

Each UART contains a 12-bit down-counting scaler to generate the desired baud-rate, the number of
scaler bits can be increased with VHDL generic sbits. The scaler is clocked by the system clock and
generates a UART tick each time it underflows. It is reloaded with the value of the UART scaler
reload register after each underflow. The resulting UART tick frequency should be 8 times the desired
baud-rate. One appropriate formula to calculate the scaler value for a desired baud rate, using integer
division where the remainder is discarded, is:
scaler value = (system_clock_frequency) / (baud_rate * 8 + 7).
To calculate the exact required scaler value use:
scaler value = (system_clock_frequency) / (baud_rate * 8) - 1

If the EC bit is set, the ticks will be generated with the same frequency as the external clock input
instead of at the scaler underflow rate. In this case, the frequency of external clock must be less than
half the frequency of the system clock.

17.4 Loop back mode

If the LB bit in the UART control register is set, the UART will be in loop back mode. In this mode,
the transmitter output is internally connected to the receiver input and the RTSN is connected to the
CTSN. It is then possible to perform loop back tests to verify operation of receiver, transmitter and
associated software routines. In this mode, the outputs remain in the inactive state, in order to avoid
sending out data.

17.5 FIFO debug mode

FIFO debug mode is entered by setting the debug mode bit in the control register. In this mode it is
possible to read the transmitter FIFO and write the receiver FIFO through the FIFO debug register.
The transmitter output is held inactive when in debug mode. A write to the receiver FIFO generates an
interrupt if receiver interrupts are enabled.
FIFO debug mode requires that the hardware implementation supports flow control (VHDL generic
flow = 1).

17.6 Interrupt generation

Interrupts are generated differently when a holding register is used (VHDL generic fifosize = 1) and
when FIFOs are used (VHDL generic fifosize > 1). When holding registers are used, the UART will
generate an interrupt under the following conditions: when the transmitter is enabled, the transmitter
interrupt is enabled and the transmitter holding register moves from full to empty; when the receiver
is enabled, the receiver interrupt is enabled and the receiver holding register moves from empty to
GRIP, Sep 2018, Version 2018.3 120 www.cobham.com/gaisler

GRLIB IP Core

full; when the receiver is enabled, the receiver interrupt is enabled and a character with either parity,
framing or overrun error is received.
For FIFOs, two different kinds of interrupts are available: normal interrupts and FIFO interrupts. For
the transmitter, normal interrupts are generated when transmitter interrupts are enabled (TI), the trans-
mitter is enabled and the transmitter FIFO goes from containing data to being empty. FIFO interrupts
are generated when the FIFO interrupts are enabled (TF), transmissions are enabled (TE) and the
UART is less than half-full (that is, whenever the TH status bit is set). This is a level interrupt and the
interrupt signal is continuously driven high as long as the condition prevails. The receiver interrupts
work in the same way. Normal interrupts are generated in the same manner as for the holding register.
FIFO interrupts are generated when receiver FIFO interrupts are enabled, the receiver is enabled and
the FIFO is half-full. The interrupt signal is continuously driven high as long as the receiver FIFO is
half-full (at least half of the entries contain data frames). Note that when using any of the LEON inter-
rupt controllers, the processor acknowledges and clears the corresponding interrupt pending register
but as the interrupt signal is continuously driven high another instance of interrupt pending is set in
the interrupt controller.
To reduce interrupt occurrence a delayed receiver interrupt is available. It is enabled using the delayed
interrupt enable (DI) bit. When enabled a timer is started each time a character is received and an
interrupt is only generated if another character has not been received within 4 character + 4 bit times.
If receiver FIFO interrupts are enabled a pending character interrupt will be cleared when the FIFO
interrupt is active since the character causing the pending irq state is already in the FIFO and is
noticed by the driver through the FIFO interrupt. In order to not take one additional interrupt (due to
the interrupt signal being driven continuously high as described above), software should clear the cor-
responding pending bit in the interrupt controller after the FIFO has been emptied.
There is also a separate interrupt for break characters. When enabled an interrupt will always be gen-
erated immediately when a break character is received even when delayed receiver interrupts are
enabled. When break interrupts are disabled no interrupt will be generated for break characters when
delayed interrupts are enabled.
When delayed interrupts are disabled the behavior is the same for the break interrupt bit except that an
interrupt will be generated for break characters if receiver interrupt enable is set even if break inter-
rupt is disabled.
An interrupt can also be enabled for the transmitter shift register. When enabled the core will generate
an interrupt each time the shift register goes from a non-empty to an empty state.

17.7 Registers

The core is controlled through registers mapped into APB address space.

Table 118.UART registers

APB address offset Register
0x0 UART Data register
0x4 UART Status register
0x8 UART Control register
0xC UART Scaler register
0x10 UART FIFO debug register
GRIP, Sep 2018, Version 2018.3 121 www.cobham.com/gaisler

GRLIB IP Core

17.7.1 UART Data Register

Table 119. 0x00 - DATA - UART data register

17.7.2 UART Status Register

Table 120. 0x04 - STAT - UART status register

31 8 7 0

RESERVED DATA

NR

rw

7: 0 Receiver holding register or FIFO (read access)
7: 0 Transmitter holding register or FIFO (write access)

31 26 25 20 19 11 10 9 8 7 6 5 4 3 2 1 0

RCNT TCNT RESERVED RF TF RH TH FE PE OV BR TE TS DR

0 0 0 0 0 0 0 0 0 0 0 1 1 0

r r r r r r r rw rw rw rw r r r

31: 26 Receiver FIFO count (RCNT) - shows the number of data frames in the receiver FIFO. Reset: 0
25: 20 Transmitter FIFO count (TCNT) - shows the number of data frames in the transmitter FIFO. Reset: 0
10 Receiver FIFO full (RF) - indicates that the Receiver FIFO is full. Reset: 0
9 Transmitter FIFO full (TF) - indicates that the Transmitter FIFO is full. Reset: 0
8 Receiver FIFO half-full (RH) -indicates that at least half of the FIFO is holding data. Reset: 0
7 Transmitter FIFO half-full (TH) - indicates that the FIFO is less than half-full. Reset: 0
6 Framing error (FE) - indicates that a framing error was detected. Reset: 0
5 Parity error (PE) - indicates that a parity error was detected. Reset: 0
4 Overrun (OV) - indicates that one or more character have been lost due to overrun. Reset: 0
3 Break received (BR) - indicates that a BREAK has been received. Reset: 0
2 Transmitter FIFO empty (TE) - indicates that the transmitter FIFO is empty. Reset: 1
1 Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty. Reset: 1
0 Data ready (DR) - indicates that new data is available in the receiver holding register. Reset: 0
GRIP, Sep 2018, Version 2018.3 122 www.cobham.com/gaisler

GRLIB IP Core

17.7.3 UART Control Register

Table 121. UART control register

17.7.4 UART Scaler Register

Table 122.0x0C - SCALER - UART scaler reload register

31 30 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FA RESERVED NS SI DI BI DB RF TF EC LB FL PE PS TI RI TE RE

0 0 NR NR NR NR NR NR NR 0 NR 0 NR NR NR NR 0 0

r rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

31 FIFOs available (FA) - Set to 1 when receiver and transmitter FIFOs are available. When 0, only
holding register are available.

30: 16 RESERVED
15 Number of stop bits (NS) - When set to ‘1’ then two stop bits will be used, otherwise one stop bit

will be used.
14 Transmitter shift register empty interrupt enable (SI) - When set, an interrupt will be generated when

the transmitter shift register becomes empty. See section 17.6 for more details.
13 Delayed interrupt enable (DI) - When set, delayed receiver interrupts will be enabled and an inter-

rupt will only be generated for received characters after a delay of 4 character times + 4 bits if no
new character has been received during that interval. This is only applicable if receiver interrupt
enable is set. See section 17.6 for more details.

12 Break interrupt enable (BI) - When set, an interrupt will be generated each time a break character is
received. See section 16.6 for more details.

11 FIFO debug mode enable (DB) - when set, it is possible to read and write the FIFO debug register.
10 Receiver FIFO interrupt enable (RF) - when set, Receiver FIFO level interrupts are enabled.
9 Transmitter FIFO interrupt enable (TF) - when set, Transmitter FIFO level interrupts are enabled.
8 External Clock (EC) - if set, the UART scaler will be clocked by UARTI.EXTCLK.
7 Loop back (LB) - if set, loop back mode will be enabled.
6 Flow control (FL) - if set, enables flow control using CTS/RTS (when implemented).
5 Parity enable (PE) - if set, enables parity generation and checking (when implemented).
4 Parity select (PS) - selects parity polarity (0 = even parity, 1 = odd parity) (when implemented).
3 Transmitter interrupt enable (TI) - if set, interrupts are generated when characters are transmitted

(see section 17.6 for details).
2 Receiver interrupt enable (RI) - if set, interrupts are generated when characters are received (see sec-

tion 17.6 for details).
1 Transmitter enable (TE) - if set, enables the transmitter.
0 Receiver enable (RE) - if set, enables the receiver.

31 sbits sbits-1 0

RESERVED SCALER RELOAD VALUE

0 NR

r rw

sbits-1:0 Scaler reload value
GRIP, Sep 2018, Version 2018.3 123 www.cobham.com/gaisler

GRLIB IP Core

17.7.5 UART FIFO Debug Register

Table 123. 0x10 - DEBUG - UART FIFO debug register

17.8 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x00C. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

17.9 Implementation

17.9.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core does not support grlib_async_reset_enable. All registers that react on the reset signal will
have a synchronous reset.

17.10 Configuration options

Table 124 shows the configuration options of the core (VHDL generics).

31 8 7 0

RESERVED DATA

0 NR

r rw

7: 0 Transmitter holding register or FIFO (read access)
7: 0 Receiver holding register or FIFO (write access)

Table 124.Configuration options

Generic Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0
paddr ADDR field of the APB BAR. 0 - 16#FFF# 0
pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#
console Prints output from the UART on console during VHDL

simulation and speeds up simulation by always returning
‘1’ for Data Ready bit of UART Status register. Does not
affect synthesis.

0 - 1 0

pirq Index of the interrupt line. 0 - NAHBIRQ-1 0
parity Enables parity 0 - 1 1
flow Enables flow control. Flow control must be implemented

for FIFO debug mode to be supported. Setting this
generic to 0 also disables FIFO debug mode.

0 - 1 1

fifosize Selects the size of the Receiver and Transmitter FIFOs 1, 2, 4, 8, 16, 32 1
abits Selects the number of APB address bits used to decode

the register addresses
3 - 8 8

sbits Selects the number of bits in the scaler 12-32 12
GRIP, Sep 2018, Version 2018.3 124 www.cobham.com/gaisler

GRLIB IP Core

17.11 Signal descriptions

Table 125 shows the interface signals of the core (VHDL ports).

17.12 Signal definitions and reset values

The signals and their reset values are described in table 126.

Table 125.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
UARTI RXD Input UART receiver data -

CTSN Input UART clear-to-send Low
EXTCLK Input Use as alternative UART clock -

UARTO RTSN Output UART request-to-send Low
TXD Output UART transmit data -
SCALER Output UART scaler value -
TXEN Output Output enable for transmitter High
FLOW Output Unused -
RXEN Output Receiver enable High

* see GRLIB IP Library User’s Manual

Table 126.Signal definitions and reset values

Signal name Type Function Active Reset value
txd[] Output UART transmit data line - Logical 1
rtsn[] Output Ready To Send Low Logical 1
rxd[] Input UART receive data line - -
ctsn[] Input Clear To Send Low -
GRIP, Sep 2018, Version 2018.3 125 www.cobham.com/gaisler

GRLIB IP Core

17.13 Timing

The timing waveforms and timing parameters are shown in figure 27 and are defined in table 127.

Note: The ctsn[] and rxd[] inputs are re-synchronized internally. These signals do not have to meet
any setup or hold requirements.

17.14 Library dependencies

Table 128 shows libraries that should be used when instantiating the core.

17.15 Instantiation

This example shows how the core can be instantiated.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.uart.all;

entity apbuart_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- UART signals
 rxd : in std_ulogic;
 txd : out std_ulogic
);
end;

architecture rtl of apbuart_ex is

Table 127.Timing parameters

Name Parameter Reference edge Min Max Unit
tAPBUART0 clock to output delay rising clk edge TBD TBD ns

tAPBUART1 input to clock hold rising clk edge - - ns

tAPBUART2 input to clock setup rising clk edge - - ns

Table 128.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals APB signal definitions
GAISLER UART Signals, component Signal and component declaration

Figure 27. Timing waveforms

tAPBUART0txd[], rtsn[]

clk

tAPBUART0

tAPBUART1rxd[], ctsn[] tAPBUART2
GRIP, Sep 2018, Version 2018.3 126 www.cobham.com/gaisler

GRLIB IP Core

 -- APB signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);

 -- UART signals
 signal uarti : uart_in_type;
 signal uarto : uart_out_type;

begin

 -- AMBA Components are instantiated here
 ...

 -- APB UART
 uart0 : apbuart
 generic map (pindex => 1, paddr => 1, pirq => 2,
console => 1, fifosize => 1)
 port map (rstn, clk, apbi, apbo(1), uarti, uarto);

 -- UART input data
 uarti.rxd <= rxd;

 -- APB UART inputs not used in this configuration
 uarti.ctsn <= ’0’; uarti.extclk <= ’0’;

 -- connect APB UART output to entity output signal
 txd <= uarto.txd;

end;
GRIP, Sep 2018, Version 2018.3 127 www.cobham.com/gaisler

GRLIB IP Core

18 APBVGA - VGA controller with APB interface

18.1 Introduction

The APBVGA core is a text-only video controller with a resolution of 640x480 pixels, creating a dis-
play of 80x37 characters. The controller consists of a video signal generator, a 4 Kbyte text buffer, and
a ROM for character pixel information. The video controller is controlled through an APB interface.
A block diagram for the data path is shown in figure 28.

18.2 Operation

The video timing of APBVGA is fixed to generate a 640x480 display with 60 Hz refresh rate. The text
font is encoded using 8x13 pixels. The display is created by scanning a segment of 2960 characters of
the 4 Kbyte text buffer, rasterizing the characters using the character ROM, and sending the pixel data
to an external video DAC using three 8-bit color channels. The required pixel clock is 25.175 MHz,
which should be provided on the VGACLK input.
Writing to the video memory is made through the VGA data register. Bits [7:0] contains the character
to be written, while bits [19:8] defines the text buffer address. Foreground and background colours are
set through the background and foreground registers. These 24 bits corresponds to the three pixel col-
ors, RED, GREEN and BLUE. The eight most significant bits defines the red intensity, the next eight
bits defines the green intensity and the eight least significant bits defines the blue intensity. Maximum
intensity for a color is received when all eight bits are set and minimum intensity when none of the
bits are set. Changing the foreground color results in that all characters change their color, it is not
possible to just change the color of one character. In addition to the color channels, the video control-
ler generates HSYNC, VSYNC, CSYNC and BLANK. Togetherm the signals are suitable to drive an
external video DAC such as ADV7125 or similar.
APBVGA implements hardware scrolling to minimize processor overhead. The controller monitors
maintains a reference pointer containing the buffer address of the first character on the top-most line.
When the text buffer is written with an address larger than the reference pointer + 2960, the pointer is
incremented with 80. The 4 Kbyte text buffer is sufficient to buffer 51 lines of 80 characters. To sim-
plify hardware design, the last 16 bytes (4080 - 4095) should not be written. When address 4079 has
been written, the software driver should wrap to address 0. Sofware scrolling can be implemented by
only using the first 2960 address in the text buffer, thereby never activating the hardware scolling
mechanism.

Figure 28. APBVGA block diagram

APB

Video
GeneratorVideo memory

Character ROM

HSYNC
VSYNC
COMP_SYNC
BLANK
RED[7:0]
GREEN[7:0]
BLUE[7:0]
GRIP, Sep 2018, Version 2018.3 128 www.cobham.com/gaisler

GRLIB IP Core

18.3 Registers

The APB VGA is controlled through three registers mapped into APB address space.

18.3.1 VGA Data Register

Table 130. 0x00 - DATA - VGA data register

18.3.2 VGA Background Color

Table 131. 0x04 - BGCOL - VGA background register

18.3.3 VGA Foreground Color

Table 132. 0x00 - FGCOL - VGA foreground register

18.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x061. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

Table 129.APB VGA registers

APB address offset Register
0x0 VGA Data register (write-only, reads will return 0x00000000).
0x4 VGA Background color (write-only, reads will return 0x00000000).
0x8 VGA Foreground color (write-only, reads will return 0x00000000).

31 20 19 8 7 0

RESERVED ADDRESS DATA

0 0 0

r w w

19: 8 Video memory address (write access)
7: 0 Video memory data (write access)

31 24 23 16 15 8 7 0

RESERVED RED GREEN BLUE

0

r w w w

23: 16 Video background color red.
15: 8 Video background color green.
7: 0 Video background color blue.

31 24 23 16 15 8 7 0

RESERVED RED GREEN BLUE

0

r w w w

23: 16 Video foreground color red.
15: 8 Video foreground color green.
7: 0 Video foreground color blue.
GRIP, Sep 2018, Version 2018.3 129 www.cobham.com/gaisler

GRLIB IP Core

18.5 Implementation

18.5.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

18.6 Configuration options

Table 133 shows the configuration options of the core (VHDL generics).

18.7 Signal descriptions

Table 134 shows the interface signals of the core (VHDL ports).

18.8 Library dependencies

Table 135 shows libraries used when instantiating the core (VHDL libraries).

Table 133.Configuration options

Generic Function Allowed range Default
memtech Technology to implement on-chip RAM 0 - NTECH 2
pindex APB slave index 0 - NAPBSLV-1 0
paddr ADDR field of the APB BAR. 0 - 16#FFF# 0
pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

Table 134.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
VGACLK N/A Input VGA Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
VGAO HSYNC Output Horizontal synchronization High

VSYNC Vertical synchronization High
COMP_SYNC Composite synchronization Low
BLANK Blanking Low
VIDEO_OUT_R[7:0] Video out, color red -
VIDEO_OUT_G[7:0] Video out, color green -
VIDEO_OUT_B[7:0] Video out, color blue -
BITDEPTH[1:0] Constant High -

* see GRLIB IP Library User’s Manual

Table 135.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals APB signal definitions
GAISLER MISC Signals, component VGA signal and component declaration
GRIP, Sep 2018, Version 2018.3 130 www.cobham.com/gaisler

GRLIB IP Core

18.9 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

.

.

architecture rtl of apbuart_ex is

signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
signal vgao : apbvga_out_type;

begin
 -- AMBA Components are instantiated here
 ...

 -- APB VGA
 vga0 : apbvga
 generic map (memtech => 2, pindex => 6, paddr => 6)
 port map (rstn, clk, vgaclk, apbi, apbo(6), vgao);
end;
GRIP, Sep 2018, Version 2018.3 131 www.cobham.com/gaisler

GRLIB IP Core

19 CAN_OC - GRLIB wrapper for OpenCores CAN Interface core

19.1 Overview

CAN_OC is GRLIB wrapper for the CAN core from Opencores. It provides a bridge between AMBA
AHB and the CAN Core registers. The AHB slave interface is mapped in the AHB I/O space using the
GRLIB plug&play functionality. The CAN core interrupt is routed to the AHB interrupt bus, and the
interrupt number is selected through the irq generic. The FIFO RAM in the CAN core is implemented
using the GRLIB parametrizable SYNCRAM_2P memories, assuring portability to all supported
technologies.
This CAN interface implements the CAN 20.A and 2.0B protocols. It is based on the Philips SJA1000
and has a compatible register map with a few exceptions.

19.2 Opencores CAN controller overview

This CAN controller is based on the Philips SJA1000 and has a compatible register map with a few
exceptions. It also supports both BasicCAN (PCA82C200 like) and PeliCAN mode. In PeliCAN
mode the extended features of CAN 2.0B is supported. The mode of operation is chosen through the
Clock Divider register.
This document will list the registers and their functionality. The Philips SJA1000 data sheet can be
used as a reference if something needs clarification. See also the Design considerations chapter for
differences between this core and the SJA1000.
The register map and functionality is different between the two modes of operation. First the Basic-
CAN mode will be described followed by PeliCAN. Common registers (clock divisor and bus timing)
are described in a separate chapter. The register map also differs depending on whether the core is in
operating mode or in reset mode. When reset the core starts in reset mode awaiting configuration.
Operating mode is entered by clearing the reset request bit in the command register. To re-enter reset
mode set this bit high again.

19.3 AHB interface

All registers are one byte wide and the addresses specified in this document are byte addresses. Byte
reads and writes should be used when interfacing with this core. The read byte is duplicated on all
byte lanes of the AHB bus. The wrapper is big endian so the core expects the MSB at the lowest
address.
The bit numbering in this document uses bit 7 as MSB and bit 0 as LSB.
The core is designed for big-endian systems.

Figure 29. Block diagram

AHB slave interface

AMBA AHB

Syncram_2pCAN Core
CAN_RXI

CAN_TXO

CAN_OC Wrapper

IRQ
GRIP, Sep 2018, Version 2018.3 132 www.cobham.com/gaisler

GRLIB IP Core

19.4 BasicCAN mode

19.4.1 BasicCAN register map

Table 136.BasicCAN address allocation

Address Operating mode Reset mode

Read Write Read Write
0 Control Control Control Control
1 (0xFF) Command (0xFF) Command
2 Status - Status -
3 Interrupt - Interrupt -
4 (0xFF) - Acceptance code Acceptance code
5 (0xFF) - Acceptance mask Acceptance mask
6 (0xFF) - Bus timing 0 Bus timing 0
7 (0xFF) - Bus timing 1 Bus timing 1
8 (0x00) - (0x00) -
9 (0x00) - (0x00) -
10 TX id1 TX id1 (0xFF) -
11 TX id2, rtr, dlc TX id2, rtr, dlc (0xFF) -
12 TX data byte 1 TX data byte 1 (0xFF) -
13 TX data byte 2 TX data byte 2 (0xFF) -
14 TX data byte 3 TX data byte 3 (0xFF) -
15 TX data byte 4 TX data byte 4 (0xFF) -
16 TX data byte 5 TX data byte 5 (0xFF) -
17 TX data byte 6 TX data byte 6 (0xFF) -
18 TX data byte 7 TX data byte 7 (0xFF) -
19 TX data byte 8 TX data byte 8 (0xFF) -
20 RX id1 - RX id1 -
21 RX id2, rtr, dlc - RX id2, rtr, dlc -
22 RX data byte 1 - RX data byte 1 -
23 RX data byte 2 - RX data byte 2 -
24 RX data byte 3 - RX data byte 3 -
25 RX data byte 4 - RX data byte 4 -
26 RX data byte 5 - RX data byte 5 -
27 RX data byte 6 - RX data byte 6 -
28 RX data byte 7 - RX data byte 7 -
29 RX data byte 8 - RX data byte 8 -
30 (0x00) - (0x00) -
31 Clock divider Clock divider Clock divider Clock divider
GRIP, Sep 2018, Version 2018.3 133 www.cobham.com/gaisler

GRLIB IP Core

19.4.2 Control register

The control register contains interrupt enable bits as well as the reset request bit.

19.4.3 Command register

Writing a one to the corresponding bit in this register initiates an action supported by the core.

A transmission is started by writing 1 to CMR.0. It can only be aborted by writing 1 to CMR.1 and
only if the transfer has not yet started. If the transmission has started it will not be aborted when set-
ting CMR.1 but it will not be retransmitted if an error occurs.
Giving the Release receive buffer command should be done after reading the contents of the receive
buffer in order to release this memory. If there is another message waiting in the FIFO a new receive
interrupt will be generated (if enabled) and the receive buffer status bit will be set again.
To clear the Data overrun status bit CMR.3 must be written with 1.

Table 137.Bit interpretation of control register (CR) (address 0)

Bit Name Description
CR.7 - reserved
CR.6 - reserved
CR.5 - reserved (reads as 1)
CR.4 Overrun Interrupt Enable 1 - enabled, 0 - disabled
CR.3 Error Interrupt Enable 1 - enabled, 0 - disabled
CR.2 Transmit Interrupt Enable 1 - enabled, 0 - disabled
CR.1 Receive Interrupt Enable 1 - enabled, 0 - disabled
CR.0 Reset request Writing 1 to this bit aborts any ongoing transfer and enters reset mode. Writ-

ing 0 returns to operating mode.

Table 138.Bit interpretation of command register (CMR) (address 1)

Bit Name Description
CMR.7 - reserved
CMR.6 - reserved
CMR.5 - reserved
CMR.4 - not used (go to sleep in SJA1000 core)
CMR.3 Clear data overrun Clear the data overrun status bit
CMR.2 Release receive buffer Free the current receive buffer for new reception
CMR.1 Abort transmission Aborts a not yet started transmission.
CMR.0 Transmission request Starts the transfer of the message in the TX buffer
GRIP, Sep 2018, Version 2018.3 134 www.cobham.com/gaisler

GRLIB IP Core

19.4.4 Status register

The status register is read only and reflects the current status of the core.

Receive buffer status is cleared when the Release receive buffer command is given and set high if
there are more messages available in the fifo.
The data overrun status signals that a message which was accepted could not be placed in the fifo
because not enough space left. NOTE: This bit differs from the SJA1000 behavior and is set first
when the fifo has been read out.
When the transmit buffer status is high the transmit buffer is available to be written into by the CPU.
During an on-going transmission the buffer is locked and this bit is 0.
The transmission complete bit is set to 0 when a transmission request has been issued and will not be
set to 1 again until a message has successfully been transmitted.

19.4.5 Interrupt register

The interrupt register signals to CPU what caused the interrupt. The interrupt bits are only set if the
corresponding interrupt enable bit is set in the control register.

This register is reset on read with the exception of IR.0. Note that this differs from the SJA1000
behavior where all bits are reset on read in BasicCAN mode. This core resets the receive interrupt bit
when the release receive buffer command is given (like in PeliCAN mode).
Also note that bit IR.5 through IR.7 reads as 1 but IR.4 is 0.

Table 139.Bit interpretation of status register (SR) (address 2)

Bit Name Description
SR.7 Bus status 1 when the core is in bus-off and not involved in bus activities
SR.6 Error status At least one of the error counters have reached or exceeded the CPU warning

limit (96).
SR.5 Transmit status 1 when transmitting a message
SR.4 Receive status 1 when receiving a message
SR.3 Transmission complete 1 indicates the last message was successfully transferred.
SR.2 Transmit buffer status 1 means CPU can write into the transmit buffer
SR.1 Data overrun status 1 if a message was lost because no space in fifo.
SR.0 Receive buffer status 1 if messages available in the receive fifo.

Table 140.Bit interpretation of interrupt register (IR) (address 3)

Bit Name Description
IR.7 - reserved (reads as 1)
IR.6 - reserved (reads as 1)
IR.5 - reserved (reads as 1)
IR.4 - not used (wake-up interrupt of SJA1000)
IR.3 Data overrun interrupt Set when SR.1 goes from 0 to 1.
IR.2 Error interrupt Set when the error status or bus status are changed.
IR.1 Transmit interrupt Set when the transmit buffer is released (status bit 0->1)
IR.0 Receive interrupt This bit is set while there are more messages in the fifo.
GRIP, Sep 2018, Version 2018.3 135 www.cobham.com/gaisler

GRLIB IP Core

19.4.6 Transmit buffer

The table below shows the layout of the transmit buffer. In BasicCAN only standard frame messages
can be transmitted and received (EFF messages on the bus are ignored).

If the RTR bit is set no data bytes will be sent but DLC is still part of the frame and must be specified
according to the requested frame. Note that it is possible to specify a DLC larger than 8 bytes but
should not be done for compatibility reasons. If DLC > 8 still only 8 bytes can be sent.

19.4.7 Receive buffer

The receive buffer on address 20 through 29 is the visible part of the 64 byte RX FIFO. Its layout is
identical to that of the transmit buffer.

19.4.8 Acceptance filter

Messages can be filtered based on their identifiers using the acceptance code and acceptance mask
registers. The top 8 bits of the 11 bit identifier are compared with the acceptance code register only
comparing the bits set to zero in the acceptance mask register. If a match is detected the message is
stored to the fifo.

Table 141.Transmit buffer layout

Addr Name Bits

7 6 5 4 3 2 1 0
10 ID byte 1 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5 ID.4 ID.3
11 ID byte 2 ID.2 ID.1 ID.0 RTR DLC.3 DLC.2 DLC.1 DLC.0
12 TX data 1 TX byte 1
13 TX data 2 TX byte 2
14 TX data 3 TX byte 3
15 TX data 4 TX byte 4
16 TX data 5 TX byte 5
17 TX data 6 TX byte 6
18 TX data 7 TX byte 7
19 TX data 8 TX byte 8
GRIP, Sep 2018, Version 2018.3 136 www.cobham.com/gaisler

GRLIB IP Core

19.5 PeliCAN mode

19.5.1 PeliCAN register map

Table 142.PeliCAN address allocation

The transmit and receive buffers have different layout depending on if standard frame format (SFF) or
extended frame format (EFF) is to be transmitted/received. See the specific section below.

#

Operating mode Reset mode

Read Write Read Write
0 Mode Mode Mode Mode
1 (0x00) Command (0x00) Command
2 Status - Status -
3 Interrupt - Interrupt -
4 Interrupt enable Interrupt enable Interrupt enable Interrupt enable
5 reserved (0x00) - reserved (0x00) -
6 Bus timing 0 - Bus timing 0 Bus timing 0
7 Bus timing 1 - Bus timing 1 Bus timing 1
8 (0x00) - (0x00) -
9 (0x00) - (0x00) -
10 reserved (0x00) - reserved (0x00) -
11 Arbitration lost capture - Arbitration lost capture -
12 Error code capture - Error code capture -
13 Error warning limit - Error warning limit Error warning limit
14 RX error counter - RX error counter RX error counter
15 TX error counter - TX error counter TX error counter
16 RX FI SFF RX FI EFF TX FI SFF TX FI EFF Acceptance code 0 Acceptance code 0
17 RX ID 1 RX ID 1 TX ID 1 TX ID 1 Acceptance code 1 Acceptance code 1
18 RX ID 2 RX ID 2 TX ID 2 TX ID 2 Acceptance code 2 Acceptance code 2
19 RX data 1 RX ID 3 TX data 1 TX ID 3 Acceptance code 3 Acceptance code 3
20 RX data 2 RX ID 4 TX data 2 TX ID 4 Acceptance mask 0 Acceptance mask 0
21 RX data 3 RX data 1 TX data 3 TX data 1 Acceptance mask 1 Acceptance mask 1
22 RX data 4 RX data 2 TX data 4 TX data 2 Acceptance mask 2 Acceptance mask 2
23 RX data 5 RX data 3 TX data 5 TX data 3 Acceptance mask 3 Acceptance mask 3
24 RX data 6 RX data 4 TX data 6 TX data 4 reserved (0x00) -
25 RX data 7 RX data 5 TX data 7 TX data 5 reserved (0x00) -
26 RX data 8 RX data 6 TX data 8 TX data 6 reserved (0x00) -
27 FIFO RX data 7 - TX data 7 reserved (0x00) -
28 FIFO RX data 8 - TX data 8 reserved (0x00) -
29 RX message counter - RX msg counter -
30 (0x00) - (0x00) -
31 Clock divider Clock divider Clock divider Clock divider
GRIP, Sep 2018, Version 2018.3 137 www.cobham.com/gaisler

GRLIB IP Core

19.5.2 Mode register

Table 143.Bit interpretation of mode register (MOD) (address 0)

Writing to MOD.1-3 can only be done when reset mode has been entered previously.
In Listen only mode the core will not send any acknowledgements. Note that unlike the SJA1000 the
Opencores core does not become error passive and active error frames are still sent!
When in Self test mode the core can complete a successful transmission without getting an acknowl-
edgement if given the Self reception request command. Note that the core must still be connected to a
real bus, it does not do an internal loopback.

19.5.3 Command register

Writing a one to the corresponding bit in this register initiates an action supported by the core.

A transmission is started by writing 1 to CMR.0. It can only be aborted by writing 1 to CMR.1 and
only if the transfer has not yet started. Setting CMR.0 and CMR.1 simultaneously will result in a so
called single shot transfer, i.e. the core will not try to retransmit the message if not successful the first
time.
Giving the Release receive buffer command should be done after reading the contents of the receive
buffer in order to release this memory. If there is another message waiting in the FIFO a new receive
interrupt will be generated (if enabled) and the receive buffer status bit will be set again.
The Self reception request bit together with the self test mode makes it possible to do a self test of the
core without any other cores on the bus. A message will simultaneously be transmitted and received
and both receive and transmit interrupt will be generated.

Bit Name Description
MOD.7 - reserved
MOD.6 - reserved
MOD.5 - reserved
MOD.4 - not used (sleep mode in SJA1000)
MOD.3 Acceptance filter mode 1 - single filter mode, 0 - dual filter mode
MOD.2 Self test mode If set the controller is in self test mode
MOD.1 Listen only mode If set the controller is in listen only mode
MOD.0 Reset mode Writing 1 to this bit aborts any ongoing transfer and enters reset mode. Writ-

ing 0 returns to operating mode

Table 144.Bit interpretation of command register (CMR) (address 1)

Bit Name Description
CMR.7 - reserved
CMR.6 - reserved
CMR.5 - reserved
CMR.4 Self reception request Transmits and simultaneously receives a message
CMR.3 Clear data overrun Clears the data overrun status bit
CMR.2 Release receive buffer Free the current receive buffer for new reception
CMR.1 Abort transmission Aborts a not yet started transmission.
CMR.0 Transmission request Starts the transfer of the message in the TX buffer
GRIP, Sep 2018, Version 2018.3 138 www.cobham.com/gaisler

GRLIB IP Core

19.5.4 Status register

The status register is read only and reflects the current status of the core.

Receive buffer status is cleared when there are no more messages in the fifo. The data overrun status
signals that a message which was accepted could not be placed in the fifo because not enough space
left. NOTE: This bit differs from the SJA1000 behavior and is set first when the fifo has been read
out.
When the transmit buffer status is high the transmit buffer is available to be written into by the CPU.
During an on-going transmission the buffer is locked and this bit is 0.
The transmission complete bit is set to 0 when a transmission request or self reception request has
been issued and will not be set to 1 again until a message has successfully been transmitted.

19.5.5 Interrupt register

The interrupt register signals to CPU what caused the interrupt. The interrupt bits are only set if the
corresponding interrupt enable bit is set in the interrupt enable register.

This register is reset on read with the exception of IR.0 which is reset when the fifo has been emptied.

Table 145.Bit interpretation of command register (SR) (address 2)

Bit Name Description
SR.7 Bus status 1 when the core is in bus-off and not involved in bus activities
SR.6 Error status At least one of the error counters have reached or exceeded the error warning

limit.
SR.5 Transmit status 1 when transmitting a message
SR.4 Receive status 1 when receiving a message
SR.3 Transmission complete 1 indicates the last message was successfully transferred.
SR.2 Transmit buffer status 1 means CPU can write into the transmit buffer
SR.1 Data overrun status 1 if a message was lost because no space in fifo.
SR.0 Receive buffer status 1 if messages available in the receive fifo.

Table 146.Bit interpretation of interrupt register (IR) (address 3)

Bit Name Description
IR.7 Bus error interrupt Set if an error on the bus has been detected
IR.6 Arbitration lost interrupt Set when the core has lost arbitration
IR.5 Error passive interrupt Set when the core goes between error active and error passive
IR.4 - not used (wake-up interrupt of SJA1000)
IR.3 Data overrun interrupt Set when data overrun status bit is set
IR.2 Error warning interrupt Set on every change of the error status or bus status
IR.1 Transmit interrupt Set when the transmit buffer is released
IR.0 Receive interrupt Set while the fifo is not empty.
GRIP, Sep 2018, Version 2018.3 139 www.cobham.com/gaisler

GRLIB IP Core

19.5.6 Interrupt enable register

In the interrupt enable register the separate interrupt sources can be enabled/disabled. If enabled the
corresponding bit in the interrupt register can be set and an interrupt generated.

19.5.7 Arbitration lost capture register

Table 148.Bit interpretation of arbitration lost capture register (ALC) (address 11)

When the core loses arbitration the bit position of the bit stream processor is captured into arbitration
lost capture register. The register will not change content again until read out.

19.5.8 Error code capture register

Table 149.Bit interpretation of error code capture register (ECC) (address 12)

When a bus error occurs the error code capture register is set according to what kind of error occurred,
if it was while transmitting or receiving and where in the frame it happened. As with the ALC register
the ECC register will not change value until it has been read out. The table below shows how to inter-
pret bit 7-6 of ECC.

Table 147.Bit interpretation of interrupt enable register (IER) (address 4)

Bit Name Description
IR.7 Bus error interrupt 1 - enabled, 0 - disabled
IR.6 Arbitration lost interrupt 1 - enabled, 0 - disabled
IR.5 Error passive interrupt 1 - enabled, 0 - disabled
IR.4 - not used (wake-up interrupt of SJA1000)
IR.3 Data overrun interrupt 1 - enabled, 0 - disabled
IR.2 Error warning interrupt 1 - enabled, 0 - disabled.
IR.1 Transmit interrupt 1 - enabled, 0 - disabled
IR.0 Receive interrupt 1 - enabled, 0 - disabled

Bit Name Description
ALC.7-5 - reserved
ALC.4-0 Bit number Bit where arbitration is lost

Bit Name Description
ECC.7-6 Error code Error code number
ECC.5 Direction 1 - Reception, 0 - transmission error
ECC.4-0 Segment Where in the frame the error occurred

Table 150.Error code interpretation

ECC.7-6 Description
0 Bit error
1 Form error
2 Stuff error
3 Other
GRIP, Sep 2018, Version 2018.3 140 www.cobham.com/gaisler

GRLIB IP Core

Bit 4 downto 0 of the ECC register is interpreted as below

19.5.9 Error warning limit register

This registers allows for setting the CPU error warning limit. It defaults to 96. Note that this register is
only writable in reset mode.

19.5.10 RX error counter register (address 14)

This register shows the value of the rx error counter. It is writable in reset mode. A bus-off event
resets this counter to 0.

19.5.11 TX error counter register (address 15)

This register shows the value of the tx error counter. It is writable in reset mode. If a bus-off event
occurs this register is initialized as to count down the protocol defined 128 occurrences of the bus-free
signal and the status of the bus-off recovery can be read out from this register. The CPU can force a
bus-off by writing 255 to this register. Note that unlike the SJA1000 this core will signal bus-off
immediately and not first when entering operating mode. The bus-off recovery sequence starts when
entering operating mode after writing 255 to this register in reset mode.

Table 151.Bit interpretation of ECC.4-0

ECC.4-0 Description
0x03 Start of frame
0x02 ID.28 - ID.21
0x06 ID.20 - ID.18
0x04 Bit SRTR
0x05 Bit IDE
0x07 ID.17 - ID.13
0x0F ID.12 - ID.5
0x0E ID.4 - ID.0
0x0C Bit RTR
0x0D Reserved bit 1
0x09 Reserved bit 0
0x0B Data length code
0x0A Data field
0x08 CRC sequence
0x18 CRC delimiter
0x19 Acknowledge slot
0x1B Acknowledge delimiter
0x1A End of frame
0x12 Intermission
0x11 Active error flag
0x16 Passive error flag
0x13 Tolerate dominant bits
0x17 Error delimiter
0x1C Overload flag
GRIP, Sep 2018, Version 2018.3 141 www.cobham.com/gaisler

GRLIB IP Core

19.5.12 Transmit buffer

The transmit buffer is write-only and mapped on address 16 to 28. Reading of this area is mapped to
the receive buffer described in the next section. The layout of the transmit buffer depends on whether
a standard frame (SFF) or an extended frame (EFF) is to be sent as seen below.

TX frame information (this field has the same layout for both SFF and EFF frames)

Bit 7 - FF selects the frame format, i.e. whether this is to be interpreted as an extended or standard frame. 1 = EFF, 0 = SFF.
Bit 6 - RTR should be set to 1 for an remote transmission request frame.
Bit 5:4 - are don’t care.
Bit 3:0 - DLC specifies the Data Length Code and should be a value between 0 and 8. If a value greater than 8 is used 8 bytes

will be transmitted.

TX identifier 1 (this field is the same for both SFF and EFF frames)

Bit 7:0 - The top eight bits of the identifier.

TX identifier 2, SFF frame

Bit 7:5 - Bottom three bits of an SFF identifier.
Bit 4:0 - Don’t care.

Table 152.

Write (SFF) Write(EFF)
16 TX frame information TX frame information
17 TX ID 1 TX ID 1
18 TX ID 2 TX ID 2
19 TX data 1 TX ID 3
20 TX data 2 TX ID 4
21 TX data 3 TX data 1
22 TX data 4 TX data 2
23 TX data 5 TX data 3
24 TX data 6 TX data 4
25 TX data 7 TX data 5
26 TX data 8 TX data 6
27 - TX data 7
28 - TX data 8

Table 153.TX frame information address 16

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
FF RTR - - DLC.3 DLC.2 DLC.1 DLC.0

Table 154.TX identifier 1 address 17

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.28 ID.27 ID.26 ID.25 ID.24 ID.23 ID.22 ID.21

Table 155.TX identifier 2 address 18

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.20 ID.19 ID.18 - - - - -
GRIP, Sep 2018, Version 2018.3 142 www.cobham.com/gaisler

GRLIB IP Core
TX identifier 2, EFF frame

Bit 7:0 - Bit 20 downto 13 of 29 bit EFF identifier.

TX identifier 3, EFF frame

Bit 7:0 - Bit 12 downto 5 of 29 bit EFF identifier.

TX identifier 4, EFF frame

Bit 7:3 - Bit 4 downto 0 of 29 bit EFF identifier
Bit 2:0 - Don’t care

Data field
For SFF frames the data field is located at address 19 to 26 and for EFF frames at 21 to 28. The data is
transmitted starting from the MSB at the lowest address.

Table 156.TX identifier 2 address 18

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.20 ID.19 ID.18 ID.17 ID.16 ID.15 ID.14 ID.13

Table 157.TX identifier 3 address 19

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.12 ID.11 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5

Table 158.TX identifier 4 address 20

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.4 ID.3 ID.2 ID.1 ID.0 - - -
GRIP, Sep 2018, Version 2018.3 143 www.cobham.com/gaisler

GRLIB IP Core

19.5.13 Receive buffer

Table 159.

RX frame information (this field has the same layout for both SFF and EFF frames)

Bit 7 - Frame format of received message. 1 = EFF, 0 = SFF.
Bit 6 - 1 if RTR frame.
Bit 5:4 - Always 0.
Bit 3:0 - DLC specifies the Data Length Code.

RX identifier 1(this field is the same for both SFF and EFF frames)

Bit 7:0 - The top eight bits of the identifier.

RX identifier 2, SFF frame

Bit 7:5 - Bottom three bits of an SFF identifier.
Bit 4 - 1 if RTR frame.
Bit 3:0 - Always 0.

Read (SFF) Read (EFF)
16 RX frame information RX frame information
17 RX ID 1 RX ID 1
18 RX ID 2 RX ID 2
19 RX data 1 RX ID 3
20 RX data 2 RX ID 4
21 RX data 3 RX data 1
22 RX data 4 RX data 2
23 RX data 5 RX data 3
24 RX data 6 RX data 4
25 RX data 7 RX data 5
26 RX data 8 RX data 6
27 RX FI of next message in fifo RX data 7
28 RX ID1 of next message in fifo RX data 8

Table 160.RX frame information address 16

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
FF RTR 0 0 DLC.3 DLC.2 DLC.1 DLC.0

Table 161.RX identifier 1 address 17

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.28 ID.27 ID.26 ID.25 ID.24 ID.23 ID.22 ID.21

Table 162.RX identifier 2 address 18

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.20 ID.19 ID.18 RTR 0 0 0 0
GRIP, Sep 2018, Version 2018.3 144 www.cobham.com/gaisler

GRLIB IP Core

RX identifier 2, EFF frame

Bit 7:0 - Bit 20 downto 13 of 29 bit EFF identifier.

RX identifier 3, EFF frame

Bit 7:0 - Bit 12 downto 5 of 29 bit EFF identifier.

RX identifier 4, EFF frame

Bit 7:3 - Bit 4 downto 0 of 29 bit EFF identifier
Bit 2- 1 if RTR frame
Bit 1:0 - Don’t care

Data field
For received SFF frames the data field is located at address 19 to 26 and for EFF frames at 21 to 28.

19.5.14 Acceptance filter

The acceptance filter can be used to filter out messages not meeting certain demands. If a message is
filtered out it will not be put into the receive fifo and the CPU will not have to deal with it.
There are two different filtering modes, single and dual filter. Which one is used is controlled by bit 3
in the mode register. In single filter mode only one 4 byte filter is used. In dual filter two smaller fil-
ters are used and if either of these signals a match the message is accepted. Each filter consists of two
parts the acceptance code and the acceptance mask. The code registers are used for specifying the pat-
tern to match and the mask registers specify don’t care bits. In total eight registers are used for the
acceptance filter as shown in the table below. Note that they are only read/writable in reset mode.

Table 163.RX identifier 2 address 18

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.20 ID.19 ID.18 ID.17 ID.16 ID.15 ID.14 ID.13

Table 164.RX identifier 3 address 19

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.12 ID.11 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5

Table 165.RX identifier 4 address 20

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID.4 ID.3 ID.2 ID.1 ID.0 RTR 0 0
GRIP, Sep 2018, Version 2018.3 145 www.cobham.com/gaisler

GRLIB IP Core

Single filter mode, standard frame
When receiving a standard frame in single filter mode the registers ACR0-3 are compared against the
incoming message in the following way:

ACR0.7-0 & ACR1.7-5 are compared to ID.28-18
ACR1.4 is compared to the RTR bit.
ACR1.3-0 are unused.
ACR2 & ACR3 are compared to data byte 1 & 2.

The corresponding bits in the AMR registers selects if the results of the comparison doesn’t matter. A
set bit in the mask register means don’t care.

Single filter mode, extended frame
When receiving an extended frame in single filter mode the registers ACR0-3 are compared against
the incoming message in the following way:

ACR0.7-0 & ACR1.7-0 are compared to ID.28-13
ACR2.7-0 & ACR3.7-3 are compared to ID.12-0
ACR3.2 are compared to the RTR bit
ACR3.1-0 are unused.

The corresponding bits in the AMR registers selects if the results of the comparison doesn’t matter. A
set bit in the mask register means don’t care.

Dual filter mode, standard frame
When receiving a standard frame in dual filter mode the registers ACR0-3 are compared against the
incoming message in the following way:
Filter 1

ACR0.7-0 & ACR1.7-5 are compared to ID.28-18
ACR1.4 is compared to the RTR bit.
ACR1.3-0 are compared against upper nibble of data byte 1
ACR3.3-0 are compared against lower nibble of data byte 1

Filter 2
ACR2.7-0 & ACR3.7-5 are compared to ID.28-18
ACR3.4 is compared to the RTR bit.

The corresponding bits in the AMR registers selects if the results of the comparison doesn’t matter. A
set bit in the mask register means don’t care.
Dual filter mode, extended frame
When receiving a standard frame in dual filter mode the registers ACR0-3 are compared against the
incoming message in the following way:

Table 166.Acceptance filter registers

Address Description
16 Acceptance code 0 (ACR0)
17 Acceptance code 1 (ACR1)
18 Acceptance code 2 (ACR2)
19 Acceptance code 3 (ACR3)
20 Acceptance mask 0 (AMR0)
21 Acceptance mask 1 (AMR1)
22 Acceptance mask 2 (AMR2)
23 Acceptance mask 3 (AMR3)
GRIP, Sep 2018, Version 2018.3 146 www.cobham.com/gaisler

GRLIB IP Core

Filter 1

ACR0.7-0 & ACR1.7-0 are compared to ID.28-13

Filter 2
ACR2.7-0 & ACR3.7-0 are compared to ID.28-13

The corresponding bits in the AMR registers selects if the results of the comparison doesn’t matter. A
set bit in the mask register means don’t care.

19.5.15 RX message counter

The RX message counter register at address 29 holds the number of messages currently stored in the
receive fifo. The top three bits are always 0.

19.6 Common registers

There are three common registers with the same addresses and the same functionality in both Basi-
CAN and PeliCAN mode. These are the clock divider register and bus timing register 0 and 1.

19.6.1 Clock divider register

The only real function of this register in the GRLIB version of the Opencores CAN is to choose
between PeliCAN and BasiCAN. The clkout output of the Opencore CAN core is not connected and it
is its frequency that can be controlled with this register.

19.6.2 Bus timing 0

Table 168.Bit interpretation of bus timing 0 register (BTR0) (address 6)

The CAN core system clock is calculated as:
tscl = 2*tclk*(BRP+1)

where tclk is the system clock.
The sync jump width defines how many clock cycles (tscl) a bit period may be adjusted with by one
re-synchronization.

Table 167.Bit interpretation of clock divider register (CDR) (address 31)

Bit Name Description
CDR.7 CAN mode 1 - PeliCAN, 0 - BasiCAN
CDR.6 - unused (cbp bit of SJA1000)
CDR.5 - unused (rxinten bit of SJA1000)
CDR.4 - reserved
CDR.3 Clock off Disable the clkout output
CDR.2-0 Clock divisor Frequency selector

Bit Name Description
BTR0.7-6 SJW Synchronization jump width
BTR0.5-0 BRP Baud rate prescaler
GRIP, Sep 2018, Version 2018.3 147 www.cobham.com/gaisler

GRLIB IP Core

19.6.3 Bus timing 1

Table 169.Bit interpretation of bus timing 1 register (BTR1) (address 7)

The CAN bus bit period is determined by the CAN system clock and time segment 1 and 2 as shown
in the equations below:

ttseg1 = tscl * (TSEG1+1)
ttseg2 = tscl * (TSEG2+1)
tbit = ttseg1 + ttseg2 + tscl

The additional tscl term comes from the initial sync segment. Sampling is done between TSEG1 and
TSEG2 in the bit period.

19.7 Design considerations

This section lists known differences between this CAN controller and SJA1000 on which is it based:
• All bits related to sleep mode are unavailable
• Output control and test registers do not exist (reads 0x00)
• Clock divisor register bit 6 (CBP) and 5 (RXINTEN) are not implemented
• Overrun irq and status not set until fifo is read out

BasicCAN specific differences:
• The receive irq bit is not reset on read, works like in PeliCAN mode
• Bit CR.6 always reads 0 and is not a flip flop with no effect as in SJA1000

PeliCAN specific differences:
• Writing 256 to tx error counter gives immediate bus-off when still in reset mode
• Read Buffer Start Address register does not exist
• Addresses above 31 are not implemented (i.e. the internal RAM/FIFO access)
• The core transmits active error frames in Listen only mode

19.8 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x019. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

19.9 Implementation

19.9.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). See the description of the syncrst VHDL generic for further information.

Bit Name Description
BTR1.7 SAM 1 - The bus is sampled three times, 0 - single sample point
BTR1.6-4 TSEG2 Time segment 2
BTR1.3-0 TSEG1 Time segment 1
GRIP, Sep 2018, Version 2018.3 148 www.cobham.com/gaisler

GRLIB IP Core

19.10 Configuration options

Table 170 shows the configuration options of the core (VHDL generics).

19.11 Signal descriptions

Table 171 shows the interface signals of the core (VHDL ports).

19.12 Signal definitions and reset values

The signals and their reset values are described in table 172.

Table 170.Configuration options

Generic Function Allowed range Default
slvndx AHB slave bus index 0 - NAHBSLV-1 0
ioaddr The AHB I/O area base address. Compared with bit 19-8

of the 32-bit AHB address.
0 - 16#FFF# 16#FFF#

iomask The I/O area address mask. Sets the size of the I/O area
and the start address together with ioaddr.

0 - 16#FFF# 16#FF0#

irq Interrupt number 0 - NAHBIRQ-1 0
memtech Technology to implement on-chip RAM 0 0 - NTECH
syncrst Reset implementation

0: Use asynchronous reset
1: Use synchronous reset, leave internal buffers without
reset
2: Use synchronous reset, initialize internal buffers to
zero at reset.

0 - 2 0

ft Enable fault-tolerance 0 - 1 0

Table 171.Signal descriptions

Signal name Field Type Function Active
CLK Input AHB clock
RESETN Input Reset Low
AHBSI * Input AMBA AHB slave inputs -
AHBSO * Input AMBA AHB slave outputs
CAN_RXI Input CAN receiver input High
CAN_TXO Output CAN transmitter output High
MTESTI** FIFO Input Memory BIST input signal to fifo RAM -

INFO Input Memory BIST input signal to info RAM -
MTESTO** FIFO Output Memory BIST output signal from fifo RAM -

INFO Output Memory BIST output signal from info RAM -
MTESTCLK** N/A Input Memory BIST clock -
*1) see AMBA specification
** not available in FPGA releases

Table 172.Signal definitions and reset values

Signal name Type Function Active Reset value
cantx[] Output CAN transmit data Low Logical 1
canen[] Output CAN transmit enabel - Logical 0
canrx[] Input CAN receive data Low -
GRIP, Sep 2018, Version 2018.3 149 www.cobham.com/gaisler

GRLIB IP Core

19.13 Timing

The timing waveforms and timing parameters are shown in figure 30 and are defined in table 173.

Note: The canrx[] input is re-synchronized internally. The signal does not have to meet any setup or
hold requirements.

19.14 Library dependencies

Table 174 shows libraries that should be used when instantiating the core.

19.15 Component declaration
library grlib;
use grlib.amba.all;
use gaisler.can.all;

component can_oc
 generic (
 slvndx : integer := 0;
 ioaddr : integer := 16#000#;
 iomask : integer := 16#FF0#;
 irq : integer := 0;
 memtech : integer := 0);
 port (
 resetn : in std_logic;
 clk : in std_logic;
 ahbsi : in ahb_slv_in_type;
 ahbso : out ahb_slv_out_type;
 can_rxi : in std_logic;
 can_txo : out std_logic
);
 end component;

Table 173.Timing parameters

Name Parameter Reference edge Min Max Unit
tCAN_OC0 clock to data output delay rising clk edge TBD TBD ns

tCAN_OC1 data input to clock setup rising clk edge - - ns

tCAN_OC2 data input from clock hold rising clk edge - - ns

Table 174.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Types AMBA signal type definitions
GAISLER CAN Component Component declaration

Figure 30. Timing waveforms

tCAN_OC0

cantx[], canen[]

clk

canrx[]
tCAN_OC2

tCAN_OC1
GRIP, Sep 2018, Version 2018.3 150 www.cobham.com/gaisler

GRLIB IP Core

20 CLKGEN - Clock generation

20.1 Overview

The CLKGEN clock generator implements internal clock generation and buffering.

20.2 Technology specific clock generators

20.2.1 Overview

The core is a wrapper that instantiates technology specific primitives depending on the value of the
tech VHDL generic. Each supported technology has its own subsection below. Table 175 lists the sub-
section applicable for each technology setting. The table is arranged after the technology’s numerical
value in GRLIB. The subsections are ordered in alphabetical order after technology vendor.

Table 175.Overview of technology specific clock generator sections

Technology Numerical value Comment Section
inferred 0 Default when no technology specific generator is available. 20.2.2
virtex 1 20.2.12
virtex2 2 20.2.13
memvirage 3 No technology specific clock generator available. 20.2.2
axcel 4 20.2.3
proasic 5 20.2.3
atc18s 6 No technology specific clock generator available. 20.2.2
altera 7 20.2.7
umc 8 No technology specific clock generator available. 20.2.2
rhumc 9 20.2.10
apa3 10 20.2.5
spartan3 11 20.2.11
ihp25 12 No technology specific clock generator available. 20.2.2
rhlib18t 13 20.2.9
virtex4 14 20.2.13
lattice 15 No technology specific clock generator available. 20.2.2
ut25 16 No technology specific clock generator available. 20.2.2
spartan3e 17 20.2.11
peregrine 18 No technology specific clock generator available. 20.2.2
memartisan 19 No technology specific clock generator available. 20.2.2
virtex5 20 20.2.14
custom1 21 No technology specific clock generator available. 20.2.2
ihp25rh 22 No technology specific clock generator available. 20.2.2
stratix1 23 20.2.7
stratix2 24 20.2.7
eclipse 25 No technology specific clock generator available. 20.2.2
stratix3 26 20.2.8
cyclone3 27 20.2.6
memvirage90 28 No technology specific clock generator available. 20.2.2
tsmc90 29 No technology specific clock generator available. 20.2.2
easic90 30 20.2.15
atc18rha 31 No technology specific clock generator available. 20.2.2
GRIP, Sep 2018, Version 2018.3 151 www.cobham.com/gaisler

GRLIB IP Core
20.2.2 Generic technology

This implementation is used when the clock generator does not support instantiation of technology
specific primitives or when the inferred technology has been selected.
This implementation connects the input clock, CLKIN or PCICLKIN depending on the pcien and
pcisysclk VHDL generic, to the SDCLK, CLK1XU, and CLK outputs. The CLKN output is driven by
the inverted input clock. The PCICLK output is directly driven by PCICLKIN. Both clock lock sig-
nals are always driven to ‘1’ and the CLK2X output is always driven to ‘0’.
In simulation, CLK, CLKN and CLK1XU transitions are skewed 1 ns relative to the SDRAM clock
output.

20.2.3 ProASIC

This technology selection does not instantiate any technology specific primitives. The core’s clock
output, CLK, is driven by the CLKIN or PCICLKIN input depending on the value of VHDL generics
pcien and pcisysclk.
The PCICLK is always directly connected to PCICLKIN. Outputs SDCLK, CLKN and CLK2X, are
driven to ground. Both clock lock signals, CGO.CLKLOCK and CGO.PCILOCK, are always driven
high.

20.2.4 Actel Axcelerator

This technology selection has two modes. The first one is used if VHDL generics clk_mul and clk_div
are equal and does not instantiate any technology specific primitives. The core’s clock output, CLK, is
driven by the CLKIN or PCICLKIN input depending on the value of VHDL generics pcien and pcisy-
sclk.
The second mode is used if VHDL generics clk_mul and clk_div are different and instantiates a PLL.
The core’s clock output CLK is either driven by the pciclkin input or the main output from the PLL
depending on the values of VHDL generics pcien and pcisysclk. When the PLL drives the CLK output

smic013 32 No technology specific clock generator available. 20.2.2
tm65gpl 33 No technology specific clock generator available. 20.2.2
axdsp 34 20.2.3
spartan6 35 20.2.11
virtex6 36 20.2.14
actfus 37 20.2.17
stratix4 38 20.2.18
st65lp 39 No technology specific clock generator available. 20.2.2
st65gp 40 No technology specific clock generator available. 20.2.2
easic45 41 20.2.16

Generics used in this technology: pcisysclk
Instantiated technology primitives: None
Signals not driven in this technology: clk4x, clk1xu, clk2xu, clkb, clkc

Generics used in this technology: pcisysclk, clk_mul, clk_div, pcien, freq
Instantiated technology primitives: PLL
Signals not driven in this technology: clk4x, clk1xu, clk2xu, clkb, clkc

Table 175.Overview of technology specific clock generator sections

Technology Numerical value Comment Section
GRIP, Sep 2018, Version 2018.3 152 www.cobham.com/gaisler

GRLIB IP Core

the resulting frequency is the frequency of CLKIN multiplied by the VHDL generic clk_mul and
divided by the VHDL generic clk_div. Clock buffers are not instantiated within the clock generator
and has to be done externally.
For both modes the following applies:
The PCICLK is always directly connected to PCICLKIN. Outputs SDCLK, CLKN and CLK2X, are
driven to ground. Both clock lock signals, CGO.CLKLOCK and CGO.PCILOCK, are always driven
high.

20.2.5 Actel ProASIC3

This technology instantiates a PLL and a PLLINT to generate the main clock. The instantiation of a
PLLINT macro allows the PLL reference clock to be driven from an I/O that is routed through the
regular FPGA routing fabric. Figure 31 shows the instantiated primitives, the PLL EXTFB input is
not shown and the EXTFB port on the instantiated component is always tied to ground. The figure
shows which of the core’s output ports that are driven by the PLL. The PCICLOCK will directly con-
nected to PCICLKIN if VHDL generic pcien is non-zero, while CGO.PCILOCK is always driven
high. The VHDL generics pcien and pcisysclk are used to select the reference clock. The values
driven on the PLL inputs are listed in tables 176 and 177.

Generics used in this technology: clk_mul, clk_div, clk_odiv, pcisysclk, pcien, freq, clkb_odiv, clkc_odiv
Instantiated technology primitives: PLLINT, PLL
Signals not driven in this technology: clkn, sdclk, clk2x, clk4x, clk1xu, clk2xu

Figure 31. Actel ProASIC3 clock generation

PLL

POWERDOWN
CLKA

OADIV[4:0]
OAMUX[2:0]
DLYGLA[4:0]
OBDIV[4:0]
OBMUX[2:0]
DLYYB[4:0]
DLYGLB[4:0]
OCDIV[4:0]
OCMUX[2:0]
DLYYC[4:0]
DLYGLC[4:0]
FINDIV[6:0]
FBDIV[6:0]
FBDLY[4:0]
FBSEL[1:0]
XDLYSEL
VCOSEL[2:0]

GLA
LOCK

GLB
YB

GLC
YC

A Y
PLLINT

Selected clock CLK
CGO.CLKLOCK

{See tables for values

CLKB

CLKC
GRIP, Sep 2018, Version 2018.3 153 www.cobham.com/gaisler

GRLIB IP Core
The PLL primitive has one parameter, VCOFREQUENCY, which is calculated with:

The calculations are performed with integer precision. This value is also used to determine the value
driven on PLL input VCOSEL[2:0]. Table 177 lists the signal value depending on the value of VCOF-
REQUENCY.

Table 176.Constant input signals on Actel ProASIC3 PLL

Signal name Value Comment
OADIV[4:0] VHDL generic clk_odiv - 1 Output divider
OAMUX[2:0] 0b100 Post-PLL MUXA
DLYGLA[4:0] 0 Delay on Global A
OBDIV[4:0] VHDL generic clkb_odiv - 1 when clk-

b_odiv > 0, otherwise 0
Output divider

OBMUX[2:0] 0 when VHDL generic clkb_odiv = 0,
otherwise 0b100

Post-PLL MUXB

DLYYB[4:0] 0 Delay on YB
DLYGLB[4:0] 0 Delay on Global B
OCDIV[4:0] VHDL generic clkc_odiv - 1 when clk-

c_odiv > 0, otherwise 0
Output divider

OCMUX[2:0] 0 when VHDL generic clkc_odiv = 0,
otherwise 0b100

Post-PLL MUXC

DLYYC[4:0] 0 Delay on YC
DLYGLC[4:0] 0 Delay on Global C
FINDIV[6:0] VHDL generic clk_div - 1 Input divider
FBDIV[6:0] VHDL generic clk_mul - 1 Feedback divider
FBDLY[4:0] 0 Feedback delay
FBSEL[1:0] 0b01 2-bit PLL feedback MUX
XDLYSEL 0 1-bit PLL feedback MUX
VCOSEL[2:0] See table 177 below VCO gear control. Selects one of four

frequency ranges.

Table 177.VCOSEL[2:0] on Actel ProASIC3 PLL

Value of VCOFREQUENCY Value driven on VCOSEL[2:0]
< 44 0b000
< 88 0b010
< 175 0b100
>= 175 0b110

VCOFREQUENCY freq clkmul
clkdiv

---------------------------------- 1000=
GRIP, Sep 2018, Version 2018.3 154 www.cobham.com/gaisler

GRLIB IP Core

20.2.6 Altera Cyclone III

This technology instantiates an ALTPLL primitive to generate the required clocks, see figure 32. The
ALTPLL attributes are listed in table 178. As can be seen in this table the attributes OPERATION_-
MODE and COMPENSATE_CLOCK depend on the VHDL generic sdramen.

The value driven on the ALTPLL clock enable signal is dependent on the VHDL generics clk2xen and
sdramen, table 179 lists the effect of these generics.

Generics used in this technology: clk_mul, clk_div, sdramen, pcien, pcisysclk, freq, clk2xen
Instantiated technology primitives: ALTPLL
Signals not driven in this technology: clk4x, clk1xu, clk2xu, clkb, clkc

Table 178.Altera Cyclone III ALTPLL attributes

Attribute name* Value with sdramen = 1 Value with sdramen = 0
INTENDED_DEVICE_FAMILY “Cyclone III” “Cyclone III”
OPERATION_MODE “ZERO_DELAY_BUFFER” “NORMAL”
COMPENSATE_CLOCK “CLK1” “clock0”
INCLK0_INPUT_FREQUENCY 1000000000 / (VHDL generic freq) 1000000000 / (VHDL generic freq)
WIDTH_CLOCK 5 5
CLK0_MULTIPLY_BY VHDL generic clk_mul VHDL generic clk_mul

CLK0_DIVIDE_BY VHDL generic clk_div VHDL generic clk_div

CLK1_MULTIPLY_BY VHDL generic clk_mul VHDL generic clk_mul

CLK1_DIVIDE_BY VHDL generic clk_div VHDL generic clk_div

CLK2_MULTIPLY_BY VHDL generic clk_mul * 2 VHDL generic clk_mul * 2

CLK2_DIVIDE_BY VHDL generic clk_div VHDL generic clk_div

*Any attributes not listed are assumed to have their default value

Table 179.Effect of VHDL generics clk2xen and sdramen on ALTPLL clock enable input

Value of sdramen Value of clk2xen Value of CLKENA[5:0]
0 0 0b000001
0 1 0b000101
1 0 0b000011
1 1 0b000111

Figure 32. Altera Cyclone III ALTPLL

ALTPLL
CLK[5:0]

INCLK[1:0] LOCKED
CLKENA[5:0]See text

INCLK[0]

INCLK[1]

Selected clock

GND See text
CGO.CLKLOCK
GRIP, Sep 2018, Version 2018.3 155 www.cobham.com/gaisler

GRLIB IP Core

Table 180 lists the connections of the core’s input and outputs to the ALTPLL ports.

The clocks can be generated using either the CLKIN input or the PCICLKIN input. This is selected
with the VHDL generics pcien and pcisysclk. If pcien is 0 or pcisysclk is 0 the input clock to the ALT-
PLL will be CLKIN. If pcien is non-zero and pcisysclk is 1 the input to the ALTPLL will be PCI-
CLKIN.
The PCICLK output will connected to the PCICLKIN input if VHDL generic pcien is non-zero. Oth-
erwise the PCICLK output will be driven to ground. The CGO.PCILOCK signal is always driven
high.

20.2.7 Altera Stratix 1/2

This technology instantiates an ALTPLL primitive to generate the required clocks, see figure 33. The
ALTPLL attributes are listed in table 181. As can be seen in this table the OPERATION_MODE attri-
bute depends on the VHDL generic sdramen.

Table 180.Connections between core ports and ALTPLL ports

Core signal Core direction ALTPLL signal
CLKIN/PCICLKIN* Input INCLK[0]
CLK Output CLK[0]
CLKN Output CLK[0] (CLK[0] through an inverter)
CLK2X Output CLK[2]
SDCLK Output CLK[1]
CGO.CLKLOCK Output LOCKED
* Depending on VHDL generics PCIEN and PCISYSCLK, as described below.

Generics used in this technology: clk_mul, clk_div, sdramen, pcien, pcisysclk, freq, clk2xen
Instantiated technology primitives: ALTPLL
Signals not driven in this technology: clk4x, clk1xu, clk2xu, clkb, clkc

Table 181.Altera Stratix 1/2 ALTPLL attributes

Attribute name* Value with sdramen = 1 Value with sdramen = 0
OPERATION_MODE “ZERO_DELAY_BUFFER” “NORMAL”
INCLK0_INPUT_FREQUENCY 1000000000 / (VHDL generic freq) 1000000000 / (VHDL generic freq)
WIDTH_CLOCK 6 6
CLK0_MULTIPLY_BY VHDL generic clk_mul VHDL generic clk_mul

CLK0_DIVIDE_BY VHDL generic clk_div VHDL generic clk_div

CLK1_MULTIPLY_BY VHDL generic clk_mul * 2 VHDL generic clk_mul * 2
CLK1_DIVIDE_BY VHDL generic clk_div VHDL generic clk_div

EXTCLK0_MULTIPLY_BY VHDL generic clk_mul VHDL generic clk_mul

EXTCLK0_DIVIDE_BY VHDL generic clk_div VHDL generic clk_div

*Any attributes not listed are assumed to have their default value

Figure 33. Altera Stratix 1/2 ALTPLL

ALTPLL
CLK[5:0]

INCLK[1:0] LOCKED

EXTCLKENA[3:0] EXTCLK[3:0]

CLKENA[5:0]See text

See textINCLK[0]

INCLK[1]

Selected clock

GND See text

See text

CGO.CLKLOCK
GRIP, Sep 2018, Version 2018.3 156 www.cobham.com/gaisler

GRLIB IP Core

The values driven on the ALTPLL clock enable signals are dependent on the VHDL generic clk2xen,
table 182 lists the effect of clk2xen.

Table 183 lists the connections of the core’s input and outputs to the ALTPLL ports.

The clocks can be generated using either the CLKIN input or the PCICLKIN input. This is selected
with the VHDL generics pcien and pcisysclk. If pcien is 0 or pcisysclk is 0 the input clock to the ALT-
PLL will be CLKIN. If pcien is non-zero and pcisysclk is 1 the input to the ALTPLL will be PCI-
CLKIN.
The PCICLK output will connected to the PCICLKIN input if VHDL generic pcien is non-zero. Oth-
erwise the PCICLK output will be driven to ground. The CGO.PCILOCK signal is always driven
high.

20.2.8 Altera Stratix 3

This technology is not fully supported at this time.

20.2.9 RHLIB18t

Please contact Cobham Gaisler for information concerning the use of this clock generator.

20.2.10 RHUMC

Please contact Cobham Gaisler for information concerning the use of this clock generator.

Table 182.Effect of VHDL generic clk2xen on ALTPLL clock enable inputs

Signal Value with clk2xen = 0 Value with clk2xen /= 0
CLKENA[5:0] 0b000001 0b000011
EXTCLKENA[3:0] 0b0001 0b0011

Table 183.Connections between core ports and ALTPLL ports

Core signal Core direction ALTPLL signal
CLKIN/PCICLKIN* Input INCLK[0]
CLK Output CLK[0]
CLKN Output CLK[0] (CLK[0] through an inverter)
CLK2X Output CLK[1]
SDCLK Output EXTCLK[0]
CGO.CLKLOCK Output LOCKED
* Depending on VHDL generics PCIEN and PCISYSCLK, as described below.

Generics used in this technology: clk_mul, clk_div
Instantiated technology primitives: lfdll_top
Signals not driven in this technology: -

Generics used in this technology: None
Instantiated technology primitives: pll_ip
Signals not driven in this technology: -
GRIP, Sep 2018, Version 2018.3 157 www.cobham.com/gaisler

GRLIB IP Core

20.2.11 Xilinx Spartan 3/3e/6

The main clock is generated with a DCM which is instantiated with the attributes listed in table 184.
The input clock source connected to the CLKIN input is either the core’s CLKIN input or the PCI-
CLKIN input. This is selected with the VHDL generics pcien and pcisysclk. The main DCM’s con-
nections is shown in figure 34.

If the VHDL generic clk2xen is non-zero the DCM shown in figure 35 is instantiated. The attributes of
this DCM are the same as in table 184, except that the CLKFX_MULTIPLY and CLKFX_DIVIDE
attributes are both set to 2 and the CLK_FEEDBACK attribute is set to “1X”. The dll0lock signal is
connected to the LOCKED output of the main clock DCM. When this signal is low all the bits in the

Generics used in this technology: clk_mul, clk_div, sdramen, noclkfb, pcien, pcidll, pcisysclk, freq, clk2xen, clksel
Instantiated technology primitives: BUFG, BUFMUX, DCM, BUFGDLL
Signals not driven in this technology: clk4x, clkb, clkc

Table 184.Spartan 3/e DCM attributes

Attribute name* Value
CLKDV_DIVIDE 2.0
CLKFX_DIVIDE Determined by core’s VHDL generic clk_div

CLKFX_MULTIPLY Determined by core’s VHDL generic clk_mul

CLKIN_DIVIDE_BY_2 false
CLKIN_PERIOD 10.0
CLKOUT_PHASE_SHIFT “NONE”
CLK_FEEDBACK “2X”
DESKEW_ADJUST “SYSTEM_SYNCHRONOUS”
DFS_FREQUENCY_MODE “LOW”
DLL_FREQUENCY_MODE “LOW”
DSS_MODE “NONE”
DUTY_CYCLE_CORRECTION true
FACTORY_JF X”C080”
PHASE_SHIFT 0
STARTUP_WAIT false
*Any attributes not listed are assumed to have their default value

Figure 34. Spartan 3/e generation of main clock

DCM
CLK0
CLK90
CLK180
CLK270
CLK2X
CLK2X180
CLKDV

CLKFB

RST

CLKIN

CLKFX
CLKFX180

LOCKED

STATUS[7:0]

PSDONE

DSSEN

PSINCDEC
PSEN

PSCLK

Selected input clock
BUFG

CGI.PLLRST
BUFG

clk_i

dll0lock

CLK2XU

CLK1XU

BUFG
GRIP, Sep 2018, Version 2018.3 158 www.cobham.com/gaisler

GRLIB IP Core

shift register connected to the CLK2X DCM’s RST input are set to ‘1’. When the dll0lock signal is
asserted it will take four main clock cycles until the RST input is deasserted. Depending on the value
of the clksel VHDL generic the core’s CLK2X output is either driven by a BUFG or a BUFGMUX.
Figure 36 shows the two alternatives and how the CGI.CLKSEL(0) input is used to selected between
the CLK0 and CLK2X output of the CLK2X DCM.

The value of the clk2xen VHDL generic also decides which output that drives the core’s CLK output.
If the VHDL generic is non-zero the CLK output is driven by the clk_p signal originating from the
CLK2X DCM. Otherwise the CLK output is connected to the clk_i signal originating from the main
clock DCM. The core’s CLKN output is driven by the selected signal through an inverter. Figure 37
illustrates the connections.

If the VHDL generic clk2xen is zero the dll0lock signal from the main clock DCM is either connected
to the SDRAM DCM, described below, or if the SDRAM DCM is non-existent, to the core’s
CGO.CLKLOCK output. This setting also leads to the core’s CLK2X output being driven by the main
clock DCM’s CLK2X output via a BUFG, please see figure 38.

Figure 35. Spartan 3/e generation of CLK2X clock when VHDL generic clk2xen is non-zero

DCM
CLK0
CLK90
CLK180
CLK270
CLK2X
CLK2X180
CLKDV

CLKFB

RST

CLKIN

CLKFX
CLKFX180

LOCKED

STATUS[7:0]

PSDONE

DSSEN

PSINCDEC
PSEN

PSCLK

CLK
BUFGclk_o clk_p

clk_n

dll2xlock

dll0lock

CLK
GND SHIFTREG

Figure 36. Spartan 3/e selection of CLK2X clock when VHDL generic clk2xen is non-zero

BUFG
clk_n CLK2X

BUFGMUX

S

I0

I1
O CLK2X

clk_n

clk_o

CGI.CLKSEL(0)

CLK2X driver when VHDL generic
 clksel = 0

CLK2X driver when VHDL generic
 clksel /= 0

Figure 37. Spartan 3/e clock generator outputs CLK and CLKN

CLK

CLK/CLKN drivers when VHDL generic
 clk2xen = 0

clk_i

CLKNclk_i

CLK

CLK/CLKN drivers when VHDL generic
 clk2xen /= 0

clk_p

CLKNclk_p
GRIP, Sep 2018, Version 2018.3 159 www.cobham.com/gaisler

GRLIB IP Core
If the SDRAM clock is enabled, via the sdramen VHDL generic, and the clock generator is config-
ured to use clock feedback the DCM shown in figure 39 is instantiated. This DCM has the same attri-
butes as the CLK2X DCM. The input to the SDRAM DCM input clock is determined via the clk2xen
VHDL generic. If the VHDL generic is set to 0 the input is the main CLK, if the generic is set to 1 the
input is the clk_p out of the CLK2X DCM shown in figure 36. If the clk2xen VHDL generic is set to 2
the clock input to the SDRAM DCM depends on the clksel VHDL generic. The input in this last case
is the CLK2X output shown in figure 38.
If the CLK2X DCM has been instantiated the SDRAM DCM RST input depends on the LOCKED
output of the CLK2X DCM. If the CLK2X DCM has not been instantiated the SDRAM DCM RST
input depends on the LOCKED output from the main clock DCM. The applicable LOCKED signal is
utilized to keep the SDRAM DCM in reset until its input clock has been stabilized. This is done with
a shift register with the same method used for the CLK2X DCM RST.

If the SDRAM clock is disabled (sdramen VHDL generic set to 0) or the core has been configured not
to use clock feedback (noclockfb VHDL generic set to 1) the driver of the core’s SDCLK output is
determined by the value of the clk2xen VHDL generic. If the clk2xen VHDL generic is set to 2, the
SDRAM clock output is the same as the CLK2X output shown in figure 36, in other words it also
depends on the clksel VHDL generic. If the clk2xen VHDL generic has any other value the SDCLK
output is the same as the core’s CLK output.
When the sdramen VHDL generic is set to 0 the core’s CGO.CLKLOCK output is connected to the
CLK2X DCM’s LOCKED output, if the DCM exists, otherwise the CGO.CLKLOCK output is con-
nected to the main clock DCM’s LOCKED output.
If PCI clock generation is enabled via the pcien VHDL generic the core instantiates either a BUFG or
a BUFGDLL as depicted in figure 40 below. Note that the PCI clock must be enabled if the main
clock is to be driven by the PCICLKIN input. If the PCI clock is disabled the PCICLK output is
driven to zero. The CGO.PCILOCK output is always driven high in all configurations.

Figure 38. Spartan 3/e generation of CLK2X clock when VHDL generic clk2xen is zero

BUFG
clk_x CLK2X

Figure 39. Spartan 3/e generation of SDRAM clock

DCM
CLK0
CLK90
CLK180
CLK270
CLK2X
CLK2X180
CLKDV

CLKFB

RST

CLKIN

CLKFX
CLKFX180

LOCKED

STATUS[7:0]

PSDONE

DSSEN

PSINCDEC
PSEN

PSCLK

Selected SDRAM input clock
CGI.PLLREF

dll0lock or dll2xlock

CLK
GND SHIFTREG

SDCLK

CGO.CLKLOCK
GRIP, Sep 2018, Version 2018.3 160 www.cobham.com/gaisler

GRLIB IP Core
20.2.12 Xilinx Virtex

The main clock is generated with the help of a CLKDLL. Figure 41 below shows how the CLKDLL
primitive is connected. The input clock source is either the core’s CLKIN input or the PCICLKIN
input. This is selected with the VHDL generics pcien and pcisysclk. The figure shows three potential
drivers of the BUFG driving the output clock CLK, the driver is selected via the VHDL generics
clk_mul and clk_div. If clk_mul/clk_div is equal to 2 the CLK2X output is selected, if clk_div/clk_mul
equals 2 the CLKDV output is selected, otherwise the CLK0 output drives the BUFG. The inverted
main clock output, CLKN, is the BUFG output connected via an inverter.
The figure shows a dashed line connecting the CLKDLL’s LOCKED output to the core output
CGO.CLKLOCK. The driver of the CGO.CLKLOCK output depends on the instantiation of a CLK-
DLL for the SDRAM clock. See description of the SDRAM clock below.

If the SDRAM clock is enabled, via the sdramen VHDL generic, and the clock generator is config-
ured to use clock feedback, VHDL generic noclkfb set to 0, a CLKDLL is instantiated as depicted in
figure 42. Note how the CLKDLL’s RST input is connected via a shift register clocked by the main
clock. The shift register is loaded with all ‘1’ when the LOCKED signal of the main clock CLKDLL
is low. When the LOCKED signal from the main clock CLKDLL is asserted the SDRAM CLKDLL’s
RST input will be deasserted after four main clock cycles.
For all other configurations the SDRAM clock is driven by the main clock and the CGO.CLKLOCK
signal is driven by the main clock CLKDLL’s LOCKED output. The SDRAM CLKDLL must be
present if the core’s CLK2X output shall be driven.

Generics used in this technology: clk_mul, clk_div, sdramen, noclkfb, pcien, pcidll, pcisysclk
Instantiated technology primitives: BUFG, BUFGDLL, CLKDLL
Signals not driven in this technology: clk4x, clk1xu, clk2xu, clkb, clkc

Figure 40. Spartan 3/e PCI clock generation

BUFG
BUFGDLL

PCICLKIN PCICLKINPCICLK PCICLK

PCIDLL VHDL generic set to 0 PCIDLL VHDL generic set to 1

Figure 41. Virtex generation of main clock

CLKDLL
CLK0
CLK90
CLK180
CLK270
CLK2X
CLKDV
LOCKED

CLKFB

RST

CLKIN BUFG
Selected input clock

BUFG

CGI.PLLRST

CLK
Source selected
via VHDL generics

CGO.CLKLOCK
GRIP, Sep 2018, Version 2018.3 161 www.cobham.com/gaisler

GRLIB IP Core
If PCI clock generation is enabled via the pcien VHDL generic the core instantiates either a BUFG or
a BUFGDLL as depicted in figure 43 below. Note that the PCI clock must be enabled if the main
clock is to be driven by the PCICLKIN input. If the PCI clock is disabled the PCICLK output is
driven to zero. The CGO.PCILOCK output is always driven high in all configurations.

20.2.13 Xilinx Virtex 2/4

The main clock is generated with a DCM which is instantiated with the attributes listed in table 185.
The input clock source connected to the CLKIN input is either the core’s CLKIN input or the PCI-
CLKIN input. This is selected with the VHDL generics pcien and pcisysclk. The main DCM’s con-
nections is shown in figure 44.

Generics used in this technology: clk_mul, clk_div, sdramen, noclkfb, pcien, pcidll, pcisysclk, freq, clk2xen, clksel
Instantiated technology primitives: BUFG, BUFMUX, DCM, BUFGDLL
Signals not driven in this technology: clk4x, clkb, clkc

Figure 42. Virtex generation of SDRAM clock with feedback clock enabled

CLKDLL
CLK0
CLK90
CLK180
CLK270
CLK2X
CLKDV
LOCKED

CLKFB

RST

CLKINCLK
CGI.PLLREF

SDCLK

CLK2X

CGO.CLKLOCK

Main CLKDLL LOCK

CLK
GND SHIFTREG

Figure 43. Virtex PCI clock generation

BUFG
BUFGDLL

PCICLKIN PCICLKINPCICLK PCICLK

PCIDLL VHDL generic set to 0 PCIDLL VHDL generic set to 1
GRIP, Sep 2018, Version 2018.3 162 www.cobham.com/gaisler

GRLIB IP Core
If the VHDL generic clk2xen is non-zero the DCM shown in figure 45 is instantiated. The attributes of
this DCM are the same as in table 185, except that the CLKFX_MULTIPLY and CLKFX_DIVIDE
attributes are both set to 2. The dll0lock signal is connected to the LOCKED output of the main clock
DCM. When this signal is low all the bits in the shift register connected to the CLK2X DCM’s RST
input are set to ‘1’. When the dll0lock signal is asserted it will take four main clock cycles until the
RST input is deasserted. Depending on the value of the clksel VHDL generic the core’s CLK2X out-
put is either driven by a BUFG or a BUFGMUX. Figure 46 shows the two alternatives and how the
CGI.CLKSEL(0) input is used to selected between the CLK0 and CLK2X output of the CLK2X
DCM.

Table 185.Virtex 2/4 DCM attributes

Attribute name* Value
CLKDV_DIVIDE 2.0
CLKFX_DIVIDE Determined by core’s VHDL generic clk_div

CLKFX_MULTIPLY Determined by core’s VHDL generic clk_mul

CLKIN_DIVIDE_BY_2 false
CLKIN_PERIOD 10.0
CLKOUT_PHASE_SHIFT “NONE”
CLK_FEEDBACK “1X”
DESKEW_ADJUST “SYSTEM_SYNCHRONOUS”
DFS_FREQUENCY_MODE “LOW”
DLL_FREQUENCY_MODE “LOW”
DSS_MODE “NONE”
DUTY_CYCLE_CORRECTION true
FACTORY_JF X”C080”
PHASE_SHIFT 0
STARTUP_WAIT false
*Any attributes not listed are assumed to have their default value

Figure 44. Virtex 2/4 generation of main clock

DCM
CLK0
CLK90
CLK180
CLK270
CLK2X
CLK2X180
CLKDV

CLKFB

RST

CLKIN

CLKFX
CLKFX180

LOCKED

STATUS[7:0]

PSDONE

DSSEN

PSINCDEC
PSEN

PSCLK

Selected input clock
BUFG

CGI.PLLRST
BUFG

clk_i

BUFG
CLKN

dll0lock

CLK2XU

CLK1XU

clk_x
GRIP, Sep 2018, Version 2018.3 163 www.cobham.com/gaisler

GRLIB IP Core
The value of the clk2xen VHDL generic also decides which output that drives the core’s CLK output.
If the VHDL generic is non-zero the CLK output is driven by the clk_p signal originating from the
CLK2X DCM. Otherwise the CLK output is connected to the clk_i signal originating from the main
clock DCM. Note that the CLKN output always originates from the main clock DCM, as shown in
figure 44.

If the VHDL generic clk2xen is zero the dll0lock signal from the main clock DCM is either connected
to the SDRAM DCM, described below, or if the SDRAM DCM is non-existent, to the core’s
CGO.CLKLOCK output. This setting also leads to the core’s CLK2X output being driven by the main
clock DCM’s CLK2X output via a BUFG, please see figure 47.

If the SDRAM clock is enabled, via the sdramen VHDL generic, and the clock generator is config-
ured to use clock feedback the DCM shown in figure 48. The input to the SDRAM DCM input clock
is determined via the clk2xen VHDL generic. If the VHDL generic is set to 0 the input is the main
CLK, if the generic is set to 1 the input is the clk_p out of the CLK2X DCM shown in figure 45. If the
clk2xen VHDL generic is set to 2 the clock input to the SDRAM DCM depends on the clksel VHDL
generic. The input in this last case is the CLK2X output shown in figure 46.
If the CLK2X DCM has been instantiated the SDRAM DCM RST input depends on the LOCKED
output of the CLK2X DCM. If the CLK2X DCM has not been instantiated the SDRAM DCM RST
input depends on the LOCKED output from the main clock DCM. The applicable LOCKED signal is

Figure 45. Virtex 2/4 generation of CLK2X clock when VHDL generic clk2xen is non-zero

DCM
CLK0
CLK90
CLK180
CLK270
CLK2X
CLK2X180
CLKDV

CLKFB

RST

CLKIN

CLKFX
CLKFX180

LOCKED

STATUS[7:0]

PSDONE

DSSEN

PSINCDEC
PSEN

PSCLK

CLK
BUFGclk_o clk_p

clk_n

dll2xlock

dll0lock

CLK
GND SHIFTREG

Figure 46. Virtex 2/4 selection of CLK2X clock when VHDL generic clk2xen is non-zero

BUFG
clk_n CLK2X

BUFGMUX

S

I0

I1
O CLK2X

clk_n

clk_o

CGI.CLKSEL(0)

CLK2X driver when VHDL generic
 clksel = 0

CLK2X driver when VHDL generic
 clksel /= 0

Figure 47. Virtex 2/4 generation of CLK2X clock when VHDL generic clk2xen is zero

BUFG
clk_x CLK2X
GRIP, Sep 2018, Version 2018.3 164 www.cobham.com/gaisler

GRLIB IP Core

utilized to keep the SDRAM DCM in reset until its input clock has been stabilized. This is done with
a shift register with the same method used for the CLK2X DCM RST.

If the SDRAM clock is disabled (sdramen VHDL generic set to 0) or the core has been configured not
to use clock feedback (noclockfb VHDL generic set to 1) the driver of the core’s SDCLK output is
determined by the value of the clk2xen VHDL generic. If the clk2xen VHDL generic is set to 2, the
SDRAM clock output is the same as the CLK2X output shown in figure 46, in other words it also
depends on the clksel VHDL generic. If the clk2xen VHDL generic has any other value the SDCLK
output is the same as the core’s CLK output.
When the sdramen VHDL generic is set to 0 the core’s CGO.CLKLOCK output is connected to the
CLK2X DCM’s LOCKED output, if the DCM exists, otherwise the CGO.CLKLOCK output is con-
nected to the main clock DCM’s LOCKED output.
If PCI clock generation is enabled via the pcien VHDL generic the core instantiates either a BUFG or
a BUFGDLL as depicted in figure 49 below. Note that the PCI clock must be enabled if the main
clock is to be driven by the PCICLKIN input. If the PCI clock is disabled the PCICLK output is
driven to zero. The CGO.PCILOCK output is always driven high in all configurations.

20.2.14 Xilinx Virtex 5/6

The main clock is generated with a DCM which is instantiated with the attributes listed in table 186.
The input clock source connected to the CLKIN input is either the core’s CLKIN input or the PCI-

Generics used in this technology: clk_mul, clk_div, sdramen, noclkfb, pcien, pcidll, pcisysclk, freq, clk2xen, clksel
Instantiated technology primitives: BUFG, BUFMUX, DCM, BUFGDLL
Signals not driven in this technology: clk4x, clkb, clkc

Figure 48. Virtex 2/4 generation of SDRAM clock

DCM
CLK0
CLK90
CLK180
CLK270
CLK2X
CLK2X180
CLKDV

CLKFB

RST

CLKIN

CLKFX
CLKFX180

LOCKED

STATUS[7:0]

PSDONE

DSSEN

PSINCDEC
PSEN

PSCLK

Selected SDRAM input clock
CGI.PLLREF

dll0lock or dll2xlock

CLK
GND SHIFTREG

SDCLK

CGO.CLKLOCK

Figure 49. Virtex 2/4 PCI clock generation

BUFG
BUFGDLL

PCICLKIN PCICLKINPCICLK PCICLK

PCIDLL VHDL generic set to 0 PCIDLL VHDL generic set to 1
GRIP, Sep 2018, Version 2018.3 165 www.cobham.com/gaisler

GRLIB IP Core

CLKIN input. This is selected with the VHDL generics pcien and pcisysclk. The main DCM’s con-
nections is shown in figure 50.

If the VHDL generic clk2xen is non-zero the DCM shown in figure 51 is instantiated. The attributes of
this DCM are the same as in table 186, except that the CLKFX_MULTIPLY and CLKFX_DIVIDE
attributes are both set to 2. The dll0lock signal is connected to the LOCKED output of the main clock
DCM. When this signal is low all the bits in the shift register connected to the CLK2X DCM’s RST
input are set to ‘1’. When the dll0lock signal is asserted it will take four main clock cycles until the
RST input is deasserted. Depending on the value of the clksel VHDL generic the core’s CLK2X out-
put is either driven by a BUFG or a BUFGMUX. Figure 52 shows the two alternatives and how the
CGI.CLKSEL(0) input is used to selected between the CLK0 and CLK2X output of the CLK2X
DCM.

Table 186.Virtex 5 DCM attributes

Attribute name* Value
CLKDV_DIVIDE 2.0
CLKFX_DIVIDE Determined by core’s VHDL generic clk_div

CLKFX_MULTIPLY Determined by core’s VHDL generic clk_mul

CLKIN_DIVIDE_BY_2 false
CLKIN_PERIOD 10.0
CLKOUT_PHASE_SHIFT “NONE”
CLK_FEEDBACK “1X”
DESKEW_ADJUST “SYSTEM_SYNCHRONOUS”
DFS_FREQUENCY_MODE “LOW”
DLL_FREQUENCY_MODE “LOW”
DSS_MODE “NONE”
DUTY_CYCLE_CORRECTION true
FACTORY_JF X”C080”
PHASE_SHIFT 0
STARTUP_WAIT false
*Any attributes not listed are assumed to have their default value

Figure 50. Virtex 5 generation of main clock

DCM
CLK0
CLK90
CLK180
CLK270
CLK2X
CLK2X180
CLKDV

CLKFB

RST

CLKIN

CLKFX
CLKFX180

LOCKED

STATUS[7:0]

PSDONE

DSSEN

PSINCDEC
PSEN

PSCLK

Selected input clock
BUFG

CGI.PLLRST
BUFG

clk_i

BUFG
CLKN

dll0lock

CLK2XU

CLK1XU
GRIP, Sep 2018, Version 2018.3 166 www.cobham.com/gaisler

GRLIB IP Core
The value of the clk2xen VHDL generic also decides which output that drives the core’s CLK output.
If the VHDL generic is non-zero the CLK output is driven by the clk_p signal originating from the
CLK2X DCM. Otherwise the CLK output is connected to the clk_i signal originating from the main
clock DCM. Note that the CLKN output always originates from the main clock DCM, as shown in
figure 50.

If the VHDL generic clk2xen is zero the dll0lock signal from the main clock DCM is either connected
to the SDRAM DCM, described below, or if the SDRAM DCM is non-existent, to the core’s
CGO.CLKLOCK output. This setting also leads to the core’s CLK2X output being driven directly by
the main clock DCM’s CLK2X output.
If the SDRAM clock is enabled, via the sdramen VHDL generic, and the clock generator is config-
ured to use clock feedback the DCM shown in figure 53. This DCM has the same attributes as the
main clock DCM described in table 186, with the exceptions that CLKFX_MULTIPLY and CLKFX-
_DIVIDE are both set to 2 and DESKEW_ADJUST is set to “SOURCE_SYNCHRONOUS”.
The input to the SDRAM DCM input clock is determined via the clk2xen VHDL generic. If the
VHDL generic is set to 0 the input is the main CLK, if the generic is set to 1 the input is the clk_p out
of the CLK2X DCM shown in figure 45. If the clk2xen VHDL generic is set to 2 the clock input to the
SDRAM DCM depends on the clksel VHDL generic. The input in this last case is the CLK2X output
shown in figure 52.
If the CLK2X DCM has been instantiated the SDRAM DCM RST input depends on the LOCKED
output of the CLK2X DCM. If the CLK2X DCM has not been instantiated the SDRAM DCM RST
input depends on the LOCKED output from the main clock DCM. The applicable LOCKED signal is
utilized to keep the SDRAM DCM in reset until its input clock has been stabilized. This is done with
a shift register with the same method used for the CLK2X DCM RST.

Figure 51. Virtex 5 generation of CLK2X clock when VHDL generic clk2xen is non-zero

DCM
CLK0
CLK90
CLK180
CLK270
CLK2X
CLK2X180
CLKDV

CLKFB

RST

CLKIN

CLKFX
CLKFX180

LOCKED

STATUS[7:0]

PSDONE

DSSEN

PSINCDEC
PSEN

PSCLK

CLK
BUFGclk_o clk_p

clk_n

dll2xlock

dll0lock

CLK
GND SHIFTREG

Figure 52. Virtex 5 selection of CLK2X clock when VHDL generic clk2xen is non-zero

BUFG
clk_n CLK2X

BUFGMUX

S

I0

I1
O CLK2X

clk_n

clk_o

CGI.CLKSEL(0)

CLK2X driver when VHDL generic
 clksel = 0

CLK2X driver when VHDL generic
 clksel /= 0
GRIP, Sep 2018, Version 2018.3 167 www.cobham.com/gaisler

GRLIB IP Core
If the SDRAM clock is disabled (sdramen VHDL generic set to 0) or the core has been configured not
to use clock feedback (noclockfb VHDL generic set to 1) the driver of the core’s SDCLK output is
determined by the value of the clk2xen VHDL generic. If the clk2xen VHDL generic is set to 2, the
SDRAM clock output is the same as the CLK2X output shown in figure 52, in other words it also
depends on the clksel VHDL generic. If the clk2xen VHDL generic has any other value the SDCLK
output is the same as the core’s CLK output.
When the sdramen VHDL generic is set to 0 the core’s CGO.CLKLOCK output is connected to the
CLK2X DCM’s LOCKED output, if the DCM exists, otherwise the CGO.CLKLOCK output is con-
nected to the main clock DCM’s LOCKED output.
If PCI clock generation is enabled via the pcien VHDL generic the core instantiates either a BUFG or
a BUFGDLL as depicted in figure 54 below. Note that the PCI clock must be enabled if the main
clock is to be driven by the PCICLKIN input. If the PCI clock is disabled the PCICLK output is
driven to zero. The CGO.PCILOCK output is always driven high in all configurations.

20.2.15 eASIC90 (Nextreme)

Please contact Cobham Gaisler for information concerning the use of this clock generator.

Generics used in this technology: clk_mul, clk_div, freq, pcisysclk, pcien
Instantiated technology primitives: eclkgen
Signals not driven in this technology: sdclk, pciclk, clk1xu, clk2xu, clkb, clkc

Figure 53. Virtex 5 generation of SDRAM clock

DCM
CLK0
CLK90
CLK180
CLK270
CLK2X
CLK2X180
CLKDV

CLKFB

RST

CLKIN

CLKFX
CLKFX180

LOCKED

STATUS[7:0]

PSDONE

DSSEN

PSINCDEC
PSEN

PSCLK

Selected SDRAM input clock
CGI.PLLREF

dll0lock or dll2xlock

CLK
GND SHIFTREG

SDCLK

CGO.CLKLOCK

BUFG

Figure 54. Virtex 5 PCI clock generation

BUFG
BUFGDLL

PCICLKIN PCICLKINPCICLK PCICLK

PCIDLL VHDL generic set to 0 PCIDLL VHDL generic set to 1
GRIP, Sep 2018, Version 2018.3 168 www.cobham.com/gaisler

GRLIB IP Core

20.2.16 eASIC45 (Nextreme2)

An example instantiating eASIC’s clock generator wrapper that generates clk, clkn and clk2x is pro-
vided. Note that the example does not instantiate buffers on the clock outputs. Please contact Cobham
Gaisler for information concerning the use of this clock generator.

20.2.17 Actel Fusion

This technology instantiates a PLL and a PLLINT to generate the main clock. The instantiation of a
PLLINT macro allows the PLL reference clock to be driven from an I/O that is routed through the
regular FPGA routing fabric. Figure 55 shows the instantiated primitives, the PLL EXTFB input is
not shown and the EXTFB port on the instantiated component is always tied to ground. The OAD-
IVRST port on the PLL is driven by CGI.PLLRST. The figure shows which of the core’s output ports
that are driven by the PLL. The PCICLOCK will directly connected to PCICLKIN if VHDL generic
pcien is non-zero, while CGO.PCILOCK is always driven high. The VHDL generics pcien and pcisy-
sclk are used to select the reference clock. The values driven on the PLL inputs are listed in tables 187
and 188.

Generics used in this technology: clk_mul, clk_div, freq, pcisysclk, pcien, sdramen, clk2xen
Instantiated technology primitives: eclkgen
Signals not driven in this technology: clk1xu, clk2xu, clkb, clkc

Generics used in this technology: clk_mul, clk_div, clk_odiv, pcisysclk, pcien, freq, clkb_odiv, clkc_odiv
Instantiated technology primitives: PLLINT, PLL
Signals not driven in this technology: clkn, sdclk, clk2x, clk4x, clk1xu, clk2xu

Table 187.Constant input signals on Actel Fusion PLL

Signal name Value Comment
OADIVHALF 0 Division by half
OADIV[4:0] VHDL generic clk_odiv - 1 Output divider
OAMUX[2:0] 0b100 Post-PLL MUXA
DLYGLA[4:0] 0 Delay on Global A
OBDIV[4:0] VHDL generic clkb_odiv - 1 when clk-

b_odiv > 0, otherwise 0
Output divider

OBMUX[2:0] 0 when VHDL generic clkb_odiv = 0,
otherwise 0b100

Post-PLL MUXB

Figure 55. Actel Fusion clock generation

PLL

POWERDOWN
CLKA

OADIV[4:0]
OAMUX[2:0]
DLYGLA[4:0]
OBDIV[4:0]
OBMUX[2:0]
DLYYB[4:0]
DLYGLB[4:0]
OCDIV[4:0]
OCMUX[2:0]
DLYYC[4:0]
DLYGLC[4:0]
FINDIV[6:0]
FBDIV[6:0]
FBDLY[4:0]
FBSEL[1:0]
XDLYSEL
VCOSEL[2:0]

GLA
LOCK

GLB
YB

GLC
YC

A Y
PLLINT

Selected clock CLK
CGO.CLKLOCK

{See tables for values

CLKB

CLKC
OADIVHALF
GRIP, Sep 2018, Version 2018.3 169 www.cobham.com/gaisler

GRLIB IP Core
The PLL primitive has one parameter, VCOFREQUENCY, which is calculated with:

The calculations are performed with integer precision. This value is also used to determine the value
driven on PLL input VCOSEL[2:0]. Table 177 lists the signal value depending on the value of VCOF-
REQUENCY.

20.2.18 Altera Stratix 4

This technology is not fully supported at this time.

DLYYB[4:0] 0 Delay on YB
DLYGLB[4:0] 0 Delay on Global B
OCDIV[4:0] VHDL generic clkc_odiv - 1 when clk-

c_odiv > 0, otherwise 0
Output divider

OCMUX[2:0] 0 when VHDL generic clkc_odiv = 0,
otherwise 0b100

Post-PLL MUXC

DLYYC[4:0] 0 Delay on YC
DLYGLC[4:0] 0 Delay on Global C
FINDIV[6:0] VHDL generic clk_div - 1 Input divider
FBDIV[6:0] VHDL generic clk_mul - 1 Feedback divider
FBDLY[4:0] 0 Feedback delay
FBSEL[1:0] 0b01 2-bit PLL feedback MUX
XDLYSEL 0 1-bit PLL feedback MUX
VCOSEL[2:0] See table 177 below VCO gear control. Selects one of four

frequency ranges.

Table 188.VCOSEL[2:0] on Actel Fusion PLL

Value of VCOFREQUENCY Value driven on VCOSEL[2:0]
< 44 0b000
< 88 0b010
< 175 0b100
>= 175 0b110

Table 187.Constant input signals on Actel Fusion PLL

Signal name Value Comment

VCOFREQUENCY freq clkmul
clkdiv

---------------------------------- 1000=
GRIP, Sep 2018, Version 2018.3 170 www.cobham.com/gaisler

GRLIB IP Core

20.3 Configuration options

Table 189 shows the configuration options of the core (VHDL generics).

Table 189.Configuration options

Generic name Function Allowed range Default
tech Target technology 0 - NTECH inferred
clk_mul Clock multiplier, used in clock scaling. Not all techbolo-

gies support clock scaling.
1

clk_div Clock divisor, used in clock scaling. Not all technologies
support clock scaling.

1

sdramen When this generic is set to 1 the core will generate a
clock on the SDCLK. Not supported by all technologies.
See technology specific description.

0

noclkfb When this generic is set to 0 the core will use the
CGI.PLLREF input as feedback clock for some technol-
ogies. See technology specific description.

1

pcien When this generic is set to 1 the PCI clock is activated.
Otherwise the PCICLKIN input is typically unused. See
technology specific descriptions.

0

pcidll When this generic is set to 1, a DLL will be instantiated
for the PCI input clock for some technologies. See the
technology specific descriptions.

0

pcisysclk When this generic is set to 1 the clock generator will use
the pciclkin input as the main clock reference. This also
requires generic pcien to be set to 1.

0

freq Clock frequency in kHz 25000
clk2xen Enables 2x clock output. Not available in all technolgies

and may have additional options. See technology spe-
cific description.

0

clksel Enable clock select. Not available in all technologies. 0
clk_odiv ProASIC3/Fusion output divider for GLA. Only used in

ProASIC3/Fusion technology.
1 - 32 1

clkb_odiv ProASIC3/Fusion output divider for GLB. Only used in
ProASIC3/Fusion technology. Set this value to 0 to dis-
able generation of GLB.

0 - 32 0

clkc_odiv ProASIC3/Fusion output divider for GLC. Only used in
ProASIC3/Fusion technology. Set this value to 0 to dis-
able generation of GLC.

0 - 32 0
GRIP, Sep 2018, Version 2018.3 171 www.cobham.com/gaisler

GRLIB IP Core

20.4 Signal descriptions

Table 190 shows the interface signals of the core (VHDL ports).

20.5 Signal definitions and reset values

The signals and their reset values are described in table 191.

20.6 Timing

The timing waveforms and timing parameters are shown in figure 56 and are defined in table 192.

Table 190.Signal descriptions

Signal name Field Type Function Active
CLKIN N/A Input Reference clock input -
PCICLKIN N/A Input PCI clock input
CLK N/A Output Main clock -
CLKN N/A Output Inverted main clock -
CLK2X N/A Output 2x clock -
SDCLK N/A Output SDRAM clock -
PCICLK N/A Output PCI clock -
CGI PLLREF Input Optional reference for PLL -

PLLRST Input Optional reset for PLL
PLLCTRL Input Optional control for PLL
CLKSEL Input Optional clock select

CGO CLKLOCK Output Lock signal for main clock
PCILOCK Output Lock signal for PCI clock

CLK4X N/A Output 4x clock
CLK1XU N/A Output Unscaled 1x clock
CLK2XU N/A Output Unscaled 2x clock
CLKB N/A Output GLB output from ProASIC3/Fusion PLL -
CLKC N/A Output GLC output from ProASIC3/Fusion PLL

Table 191.Signal definitions and reset values

Signal name Type Function Active Reset value
clk Input System clock Rising edge -

Table 192.Timing parameters

Name Parameter Reference edge Min Max Unit
tCLKGEN0 clock period - TBD - ns

Figure 56. Timing waveforms

clk
tCLKGEN0
GRIP, Sep 2018, Version 2018.3 172 www.cobham.com/gaisler

GRLIB IP Core

20.7 Library dependencies

Table 193 shows the libraries used when instantiating the core (VHDL libraries).

20.8 Instantiation

This example shows how the core can be instantiated together with the GRLIB reset generator.
library ieee;
use ieee.std_logic_1164.all;
library techmap;
use techmap.gencomp.all;
library gaisler;
use gaisler.misc.all;

entity clkgen_ex is
 port (
 resetn : in std_ulogic;
 clk : in std_ulogic; -- 50 MHz main clock
 pllref : in std_ulogic
);
end;

architecture example of clkgen_ex is

signal lclk, clkm, rstn, rstraw, sdclkl, clk50: std_ulogic;
signal cgi : clkgen_in_type;
signal cgo : clkgen_out_type;

begin
 cgi.pllctrl <= "00"; cgi.pllrst <= rstraw;

 pllref_pad : clkpad generic map (tech => padtech) port map (pllref, cgi.pllref);

 clk_pad : clkpad generic map (tech => padtech) port map (clk, lclk);

 clkgen0 : clkgen -- clock generator
 generic map (clktech, CFG_CLKMUL, CFG_CLKDIV, CFG_MCTRL_SDEN,
 CFG_CLK_NOFB, 0, 0, 0, BOARD_FREQ)
 port map (lclk, lclk, clkm, open, open, sdclkl, open, cgi, cgo, open, clk50);

 sdclk_pad : outpad generic map (tech => padtech, slew => 1, strength => 24)
 port map (sdclk, sdclkl);

 resetn_pad : inpad generic map (tech => padtech) port map (resetn, rst);

 rst0 : rstgen -- reset generator
 port map (rst, clkm, cgo.clklock, rstn, rstraw);

end;

Table 193.Library dependencies

Library Package Imported unit(s) Description
TECHMAP GENCOMP Component, signals Core signal definitions
TECHMAP ALLCLKGEN Component Technology specific CLKGEN components
GRIP, Sep 2018, Version 2018.3 173 www.cobham.com/gaisler

GRLIB IP Core

21 DDRSPA - 16-, 32- and 64-bit DDR266 Controller

21.1 Overview

DDRSPA is a DDR266 SDRAM controller with AMBA AHB back-end. The controller can interface
two 16-, 32- or 64-bit DDR266 memory banks to a 32-bit AHB bus. The controller acts as a slave on
the AHB bus where it occupies a configurable amount of address space for DDR SDRAM access. The
DDR controller is programmed by writing to a configuration register mapped located in AHB I/O
address space. Internally, DDRSPA consists of a ABH/DDR controller and a technology specific
DDR PHY. For currently supported technologies for the PHY see section 21.6.2. The modular design
of DDRSPA allows to add support for other target technologies in a simple manner.

21.2 Operation

21.2.1 General

Double data-rate SDRAM (DDR RAM) access is supported to two banks of 16-, 32- or 64-bit
DDR266 compatible memory devices. The controller supports 64M, 128M, 256M, 512M and 1G
devices with 9- 12 column-address bits, up to 14 row-address bits, and 4 internal banks. The size of
each of each chip select can be programmed in binary steps between 8 Mbyte and 1024 Mbyte. The
DDR data width is set by the ddrbits VHDL generic, and will affect the width of DM, DQS and DQ
signals. The DDR data width does not change the behavior of the AHB interface, except for data
latency. When the VHDL generic mobile is set to a value not equal to 0, the controller supports mobile
DDR SDRAM (LPDDR).

21.2.2 Read cycles

An AHB read access to the controller will cause a corresponding access to the external DDR RAM.
The read cycle is started by performing an ACTIVATE command to the desired bank and row, fol-
lowed by a READ command. CAS latency of 2 (CL=2) or 3 (CL=3) can be used. Byte, half-word (16-
bit) and word (32-bit) AHB accesses are supported. Incremental AHB burst access are supported for
32-bit words only. The read cycle(s) are always terminated with a PRE-CHARGE command, no
banks are left open between two accesses. DDR read cycles are always performed in (aligned) 8-word
bursts, which are stored in a FIFO. After an initial latency, the data is then read out on the AHB bus
with zero waitstates.

Figure 57. DDRSPA Memory controller conected to AMBA bus and DDR SDRAM

DDR266

ADDRESS[16:2]
D[127:0]

RAS
CAS
WE

DDRSDRASN
SDCASN
SDWEN

DQMSDDQM[15:0]

CLK
CSN

CLK
SDCSN[1:0]

CONTROLLER

AHB

SDCKE CKE

PHY
RAS
CAS
WE

16/32/64-bit DDR

DQM

CLKN
CSN

CKE

Memory
CLK

ADDR[13:0]
BA[1:0]
DQ[63:0]

RAS
CAS
WE

DQM

CLK

CSN

CKE

CLKN

ADDR[13:0]
BA[1:0]

DQ[63:0]

DDR CLOCK

DDRSPA

AHB SLAVE
GRIP, Sep 2018, Version 2018.3 174 www.cobham.com/gaisler

GRLIB IP Core

21.2.3 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE commands are
issued after activation. An AHB write burst will store up to 8 words in a FIFO, before writing the data
to the DDR memory. As in the read case, only word bursts are supported

21.2.4 Initialization

If the pwron VHDL generic is 1, then the DDR controller will automatically perform the DDR initial-
ization sequence as described in the JEDEC DDR266 standard: PRE-CHARGE, LOAD-EXTMODE-
REG, LOAD-MODE-REG, PRE-CHARGE, 2xREFRESH and LOAD-MODE-REG; or as described
in the JEDEC LPDDR standard when mobile DDR is enabled: PRE-CHARGE, 2xREFRESH,
LOAD-MODE-REG and LOAD-EXTMODE-REG. The VHDL generics col and Mbyte can be used
to also set the correct address decoding after reset. In this case, no further software initialization is
needed. The DDR initialization can be performed at a later stage by setting bit 15 in the DDR control
register.

21.2.5 Configurable DDR SDRAM timing parameters

To provide optimum access cycles for different DDR devices (and at different frequencies), three tim-
ing parameters can be programmed through the memory configuration register (SDCFG): TRCD,
TRP and TRFCD. The value of these field affects the SDRAM timing as described in table 194.

If the TCD, TRP and TRFC are programmed such that the DDR200/266 specifications are fulfilled,
the remaining SDRAM timing parameters will also be met. The table below shows typical settings for
100 and 133 MHz operation and the resulting SDRAM timing (in ns):

When the DDRSPA controller uses CAS latency (CL) of two cycles a DDR SDRAM speed grade of -
75Z or better is needed to meet 133 MHz timing.
When mobile DDR support is enabled, two additional timing parameters can be programmed though
the Power-Saving configuration register.

Table 194.DDR SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)
Precharge to activate (tRP) TRP + 2

Auto-refresh command period (tRFC) TRFC + 3

Activate to read/write (tRCD) TRCD + 2

Activate to Activate (tRC) TRCD + 8

Activate to Precharge (tRAS) TRCD + 6

Table 195.DDR SDRAM example programming

DDR SDRAM settings tRCD tRC tRP tRFC tRAS

100 MHz: CL=2, TRP=0, TRFC=4, TRCD=0 20 80 20 70 60
133 MHz: CL=2, TRP=1, TRFC=6, TRCD=1 22.5 75 22.5 67.5 52.5

Table 196.Mobile DDR SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)
Exit Power-down mode to first valid command (tXP) TXP + 1

Exit Self Refresh mode to first valid command (tXSR) TXSR + 1

CKE minimum pulse width (tCKE) TCKE + 1
GRIP, Sep 2018, Version 2018.3 175 www.cobham.com/gaisler

GRLIB IP Core

21.2.6 Extended timing fields

The DDRSPA controller can be configured with extended timing fields to provide support for
DDR333 and DDR400. These fields can be detected by checking the XTF bit in the SDCFG register.
When the extended timing fields are enabled, extra upper bits are added to increase the range of the
TRP, TRFC, TXSR and TXP fields. A new TWR field allow increasing the write recovery time. A
new TRAS field to directly control the Active to Precharge period has been added.

21.2.7 Refresh

The DDRSPA controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the SDCFG register. Depending on SDRAM type, the
required period is typically 7.8 us (corresponding to 780 at 100 MHz). The generated refresh period is
calculated as (reload value+1)/sysclk. The refresh function is enabled by bit 31 in SDCTRL register.

21.2.8 Self Refresh

The self refresh mode can be used to retain data in the SDRAM even when the rest of the system is
powered down. When in the self refresh mode, the SDRAM retains data without external clocking
and refresh are handled internally. The memory array that is refreshed during the self refresh opera-
tion is defined in the extended mode register. These settings can be changed by setting the PASR bits
in the Power-Saving configuration register. The extended mode register is automatically updated
when the PASR bits are changed. The supported “Partial Array Self Refresh” modes are: Full, Half,
Quarter, Eighth, and Sixteenth array. “Partial Array Self Refresh” is only supported when mobile
DDR functionality is enabled. To enable the self refresh mode, set the PMODE bits in the Power-Sav-
ing configuration register to “010” (Self Refresh). The controller will enter self refresh mode after
every memory access (when the controller has been idle for 16 clock cycles), until the PMODE bits
are cleared. When exiting this mode and mobile DDR is disabled, the controller introduce a delay of
200 clock cycles and a AUTO REFRESH command before any other memory access is allowed.
When mobile DDR is enabled the delay before the AUTO REFRESH command is defined by tXSR in
the Power-Saving configuration register. The minimum duration of this mode is defined by tRFC.
This mode is only available when the VHDL generic mobile is >= 1.

21.2.9 Clock Stop

In the clock stop mode, the external clock to the SDRAM is stop at a low level (DDR_CLK is low and
DDR_CLKB is high). This reduce the power consumption of the SDRAM while retaining the data. To
enable the clock stop mode, set the PMODE bits in the Power-Saving configuration register to “100”
(Clock Stop). The controller will enter clock stop mode after every memory access (when the control-
ler has been idle for 16 clock cycles), until the PMODE bits are cleared. The REFRESH command

Table 197.DDR SDRAM extended timing parameters

SDRAM timing parameter Minimum timing (clocks)
Activate to Activate (tRC) TRAS+TRCD + 2

Activate to Precharge (tRAS) TRAS + 6

Write recovery time (tWR) TWR+2

Table 198.DDR SDRAM extended timing example programming

DDR SDRAM settings tRCD tRC tRP tRFC tRAS tWR

166 MHz: CL=2, TRP=1, TRFC=9, TRCD=1, TRAS=1, TWR=1 18 60 18 72 42 18
200 MHz: CL=3, TRP=1, TRFC=11, TRCD=1, TRAS=2, TWR=1 15 55 15 70 40 15
GRIP, Sep 2018, Version 2018.3 176 www.cobham.com/gaisler

GRLIB IP Core

will still be issued by the controller in this mode. This mode is only available when the VHDL generic
mobile is >= 1 and mobile DDR functionality is enabled.

21.2.10 Power-Down

When entering the power-down mode all input and output buffers, including DDR_CLK and DDR_-
CLKB and excluding DDR_CKE, are deactivated. This is a more efficient power saving mode then
clock stop mode, with a grater reduction of the SDRAM’s power consumption. All data in the
SDRAM is retained during this operation. To enable the power-down mode, set the PMODE bits in
the Power-Saving configuration register to “001” (Power-Down). The controller will enter power-
down mode after every memory access (when the controller has been idle for 16 clock cycles), until
the PMODE bits is cleared. The REFRESH command will still be issued by the controller in this
mode. When exiting this mode a delay of one or two (when tXP in the Power-Saving configuration
register is ‘1’) clock cycles are added before issue any command to the memory. This mode is only
available when the VHDL generic mobile is >= 1.

21.2.11 Deep Power-Down

The deep power-down operating mode is used to achieve maximum power reduction by eliminating
the power of the memory array. Data will not be retained after the device enters deep power-down
mode. To enable the deep power-down mode, set the PMODE bits in the Power-Saving configuration
register to “101” (Deep Power-Down). To exit the deep power-down mode the PMODE bits in the
Power-Saving configuration register must be cleared followed by the mobile SDRAM initialization
sequence. The mobile SDRAM initialization sequence can be performed by setting bit 15 in the DDR
control register. This mode is only available when the VHDL generic mobile is >= 1 and mobile DDR
functionality is enabled.

21.2.12 Status Read Register

The status read register (SRR) is used to read the manufacturer ID, revision ID, refresh multiplier,
width type, and density of the SDRAM. To Read the SSR a LOAD MODE REGISTER command
with BA0 = 1 and BA1 = 0 must be issued followed by a READ command with the address set to 0.
This command sequence is executed then the Status Read Register is read. This register is only avail-
able when the VHDL generic mobile is >= 1 and mobile DDR functionality is enabled. Only
DDR_CSB[0] is enabled during this operation.

21.2.13 Temperature-Compensated Self Refresh

The settings for the temperature-compensation of the Self Refresh rate can be controlled by setting the
TCSR bits in the Power-Saving configuration register. The extended mode register is automatically
updated when the TCSR bits are changed. Note that some vendors implements a Internal Tempera-
ture-Compensated Self Refresh feature, which makes the memory to ignore the TCSR bits. This func-
tionality is only available when the VHDL generic mobile >= 1 and mobile DDR functionality is
enabled.

21.2.14 Drive Strength

The drive strength of the output buffers can be controlled by setting the DS bits in the Power-Saving
configuration register. The extended mode register is automatically updated when the DS bits are
changed. The available options are: full, three-quarter, one-half, and one-quarter drive strengths. This
functionality is only available when the VHDL generic mobile is >= 1 and mobile DDR functionality
is enabled.
GRIP, Sep 2018, Version 2018.3 177 www.cobham.com/gaisler

GRLIB IP Core

21.2.15 SDRAM commands

The controller can issue four SDRAM commands by writing to the SDRAM command field in
SDCFG: PRE-CHARGE, LOAD-EXTMODE-REG, LOAD-MODE-REG and REFRESH. If the
LEMR command is issued, the PLL Reset bit as programmed in SDCFG will be used, when mobile
DDR support is enabled the DS, TCSR and PASR as programmed in Power-Saving configuration reg-
ister will be used. If the LMR command is issued, the CAS latency as programmed in the Power-Sav-
ing configuration register will be used and remaining fields are fixed: 8 word sequential burst. The
command field will be cleared after a command has been executed.

21.2.16 Clocking

The DDR controller is designed to operate with two clock domains, one for the DDR memory clock
and one for the AHB clock. The two clock domains do not have to be the same or be phase-aligned.
The DDR input clock (CLK_DDR) can be multiplied and divided by the DDR PHY to form the final
DDR clock frequency. The final DDR clock is driven on one output (CLKDDRO), which should
always be connected to the CLKDDRI input. If the AHB clock and DDR clock area generated from
the same clock source, a timing-ignore constraint should be placed between the CLK_AHB and
CLKDDRI to avoid optimization of false-paths during synthesis and place&route.
The Xilinx version of the PHY generates the internal DDR read clock using an external clock feed-
back. The feed-back should have the same delay as DDR signals to and from the DDR memories. The
feed-back should be driven by DDR_CLK_FB_OUT, and returned on DDR_CLK_FB. Most Xilinx
FPGA boards with DDR provides clock feed-backs of this sort. The supported frequencies for the Xil-
inx PHY depends on the clock-to-output delay of the DDR output registers, and the internal delay
from the DDR input registers to the read data FIFO. Virtex2 and Virtex4 can typically run at 120
MHz, while Spartan3e can run at 100 MHz.
The read data clock in the Xilinx version of the PHY is generated using a DCM to offset internal
delay of the DDR clock feed back. If the automatic DCM phase adjustment does not work due to
unsuitable pin selection, extra delay can be added through the RSKEW VHDL generic. The VHDL
generic can be between -255 and 255, and is passed directly to the PHASE_SHIFT generic of the
DCM.
The Altera version of the PHY use the DQS signals and an internal PLL to generate the DDR read
clock. No external clock feed-back is needed and the DDR_CLK_FB_OUT/DDR_CLK_FB signals
are not used. The supported frequencies for the Altera PHY are 100, 110, 120 and 130 MHz. For
Altera CycloneIII, the read data clock is generated by the PLL. The phase shift of the read data clock
is set be the VHDL generic RSKEW in ps (e.g. a value of 2500 equals 90’ phase for a 100MHz sys-
tem).

21.2.17 Pads

The DDRSPA core has technology-specific pads inside the core. The external DDR signals should
therefore be connected directly the top-level ports, without any logic in between.

21.2.18 Endianness

The core is designed for big-endian systems.
GRIP, Sep 2018, Version 2018.3 178 www.cobham.com/gaisler

GRLIB IP Core

21.3 Registers

The DDRSPA core implements two control registers. The registers are mapped into AHB I/O address
space defined by the AHB BAR1 of the core. Only 32-bit single-accesses to the registers are sup-
ported.

Table 199.DDR controller registers

Address offset - AHB I/O - BAR1 Register
0x00 SDRAM control register
0x04 SDRAM configuration register (read-only)
0x08 SDRAM Power-Saving configuration register
0x0C Reserved
0x10 Status Read Register (Only available when mobile DDR support is

enabled)
0x14 PHY configuration register 0 (Only available when VHDL generic

confapi = 1, TCI RTL_PHY)
0x18 PHY configuration register 1 (Only available when VHDL generic

confapi = 1, TCI TRL_PHY)
GRIP, Sep 2018, Version 2018.3 179 www.cobham.com/gaisler

GRLIB IP Core

21.3.1

Table 200. SDRAM control register (SDCTRL)

Control Register

21.3.2

Table 201. SDRAM configuration register (SDCFG)

Configuration Register

21.3.3 Power-Saving Configuration Register

31 30 29 27 26 25 23 22 21 20 18 17 16 15 14 0

Refresh tRP tRFC tRCD SDRAM
bank size

SDRAM
col. size

SDRAM
command

PR IN CE SDRAM refresh load value

31 SDRAM refresh. If set, the SDRAM refresh will be enabled. This register bit is read only when
Power-Saving mode is other then none.

30 SDRAM tRP timing. tRP will be equal to 2 or 3 system clocks (0/1). When mobile DDR support is
enabled, this bit also represent the MSB in the tRFC timing.

29: 27 SDRAM tRFC timing. tRFC will be equal to 3 + field-value system clocks. When mobile DDR sup-
port is enabled, this field is extended with the bit 30.

26 SDRAM tRCD delay. Sets tRCD to 2 + field value clocks.
25: 23 SDRAM banks size. Defines the decoded memory size for each SDRAM chip select: “000”= 8

Mbyte, “001”= 16 Mbyte, “010”= 32 Mbyte “111”= 1024 Mbyte.
22: 21 SDRAM column size. “00”=512, “01”=1024, “10”=2048, “11”=4096
20: 18 SDRAM command. Writing a non-zero value will generate an SDRAM command: “010”=PRE-

CHARGE, “100”=AUTO-REFRESH, “110”=LOAD-COMMAND-REGISTER, “111”=LOAD-
EXTENDED-COMMAND-REGISTER. The field is reset after command has been executed.

17 PLL Reset. This bit is used to set the PLL RESET bit during LOAD-CONFIG-REG commands.
16 Initialize (IN). Set to ‘1’ to perform power-on DDR RAM initialisation. Is automatically cleared

when initialisation is completed. This register bit is read only when Power-Saving mode is other then
none.

15 Clock enable (CE). This value is driven on the CKE inputs of the DDR RAM. Should be set to ‘1’
for correct operation. This register bit is read only when Power-Saving mode is other then none.

14: 0 The period between each AUTO-REFRESH command - Calculated as follows: tREFRESH =
((reload value) + 1) / DDRCLOCK

31 21 20 19 16 15 14 12 11 0

Reserved XTF CONFAPI MD Data width DDR Clock frequency

31: 21 Reserved
20 Extended timing fields for DDR400 available

19: 16 Register API configuration.
0 = Standard register API.
1 = TCI TSMC90 PHY register API.

15 Mobile DDR support enabled. ‘1’ = Enabled, ‘0’ = Disabled (read-only)
14: 12 DDR data width: “001” = 16 bits, “010” = 32 bits, “011” = 64 bits (read-only)
11: 0 Frequency of the (external) DDR clock (read-only)

Table 202.SDRAM Power-Saving configuration register
31 30 29 28 27 26 25 24 23 20 19 18 16 15 12 11 10 9 8 7 5 4 3 2 0

ME CL TRAS xXS* xXP tC tXSR tXP PMODE Reserved TWR xTRP xTRFC DS TCSR PASR
GRIP, Sep 2018, Version 2018.3 180 www.cobham.com/gaisler

GRLIB IP Core
31 Mobile DDR functionality enabled. ‘1’ = Enabled (support for Mobile DDR SDRAM), ‘0’ = disa-
bled (support for standard DDR SDRAM)

30 CAS latency; ‘0’ => CL = 2, ‘1’ => CL = 3
29: 28 SDRAM extended tRAS timing, tRAS will be equal to field-value + 6 system clocks. (Reserved

when extended timing fields are disabled)
27: 26 SDRAM extended tXSR field, extend tXSR with field-value * 16 clocks (Reserved when extended

timing fields are disabled)
25 SDRAM extended tXP field, extend tXP with 2*field-value clocks (Reserved when extended timing

fields are disabled)
24 SDRAM tCKE timing, tCKE will be equal to 1 or 2 clocks (0/1). (Read only when Mobile DDR sup-

port is disabled).
23: 20 SDRAM tXSR timing. tXSR will be equal to field-value system clocks. (Read only when Mobile

DDR support is disabled).
19 SDRAM tXP timing. tXP will be equal to 2 or 3 system clocks (0/1). (Read only when Mobile DDR

support is disabled).
18: 16 Power-Saving mode (Read only when Mobile DDR support is disabled).

“000”: none
“001”: Power-Down (PD)
“010”: Self-Refresh (SR)
“100”: Clock-Stop (CKS)
“101”: Deep Power-Down (DPD)

15: 12 Reserved
11 SDRAM extended tWR timing, tWR will be equal to field-value + 2 clocks (Reserved when

extended timing fields are disabled)
10 SDRAM extended tRP timing, extend tRP with field-value * 2 clocks
9: 8 SDRAM extended tRFC timing, extend tRFC with field-value * 8 clocks
 7: 5 Selectable output drive strength (Read only when Mobile DDR support is disabled).

“000”: Full
“001”: One-half
“010”: One-quarter
“011”: Three-quarter

 4: 3 Reserved for Temperature-Compensated Self Refresh (Read only when Mobile DDR support is dis-
abled).
“00”: 70ªC
“01”: 45ªC
“10”: 15ªC
“11”: 85ªC

 2: 0 Partial Array Self Refresh (Read only when Mobile DDR support is disabled).
“000”: Full array (Banks 0, 1, 2 and 3)
“001”: Half array (Banks 0 and 1)
“010”: Quarter array (Bank 0)
“101”: One-eighth array (Bank 0 with row MSB = 0)
“110”: One-sixteenth array (Bank 0 with row MSB = 00)

Table 202.SDRAM Power-Saving configuration register
GRIP, Sep 2018, Version 2018.3 181 www.cobham.com/gaisler

GRLIB IP Core

21.3.4

Table 203. Status Read Register

Status Read Register

21.3.5

Table 204. PHY configuration register 0 (TCI RTL_PHY only)

PHY Configuration Register 0

21.3.6

Table 205. PHY configuration register 1 (TCI RTL_PHY only)

PHY Configuration Register 1

21.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x025. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

31 16 15 0

SRR_16 SRR

31: 16 Status Read Register when 16-bit DDR memory is used (read only)
15: 0 Status Read Register when 32/64-bit DDR memory is used (read only)

31 30 29 28 27 22 21 16 15 8 7 0

R1 R0 P1 P0 TSTCTRL1 TSTCTRL0 MDAJ_DLL1 MDAJ_DLL0

31 Reset DLL 1 (active high)
30 Reset DLL 1 (active high)
29 Power Down DLL 1 (active high)
28 Power Down DLL 1 (active high)
27: 22 Test control DLL 1

tstclkin(1) is connected to SIGI_1 on DDL 1 when bit 26:25 is NOT equal to “00“.
tstclkin(0) is connected to SIGI_0 on DDL 1 when bit 23:22 is NOT equal to “00“.

21: 16 Test control DLL 0
15: 8 Master delay adjustment input DLL 1
7: 0 Master delay adjustment input DLL 0

31 24 23 16 15 8 7 0

ADJ_RSYNC ADJ_90 ADJ_DQS1 ADJ_DQS0

31: 24 Slave delay adjustment input for resync clock (Slave 1 DLL 1)
23: 16 Slave delay adjustment input for 90’ clock (Slave 0 DLL 1)
15: 8 Slave delay adjustment input for DQS 1 (Slave 1 DLL 0)
7: 0 Slave delay adjustment input for DQS 0 (Slave 0 DLL 0)
GRIP, Sep 2018, Version 2018.3 182 www.cobham.com/gaisler

GRLIB IP Core

21.5 Configuration options

Table 206 shows the configuration options of the core (VHDL generics).

Table 206.Configuration options

Generic Function Allowed range Default
fabtech PHY technology selection virtex2, virtex4, spar-

tan3e, altera
virtex2

memtech Technology selection for DDR FIFOs infered, virtex2, virtex4,
spartan3e, altera

infered

hindex AHB slave index 0 - NAHBSLV-1 0
haddr ADDR field of the AHB BAR0 defining SDRAM area.

Default is 0xF0000000 - 0xFFFFFFFF.
0 - 16#FFF# 16#000#

hmask MASK field of the AHB BAR0 defining SDRAM area. 0 - 16#FFF# 16#F00#
ioaddr ADDR field of the AHB BAR1 defining I/O address

space where DDR control register is mapped.
0 - 16#FFF# 16#000#

iomask MASK field of the AHB BAR1 defining I/O address
space

0 - 16#FFF# 16#FFF#

ddrbits Data bus width of external DDR memory 16, 32, 64 16
MHz DDR clock input frequency in MHz. 10 - 200 100
clkmul, clkdiv The DDR input clock is multiplied with the clkmul

generic and divided with clkdiv to create the final DDR
clock

2 - 32 2

rstdel Clock reset delay in micro-seconds. 1 - 1023 200
col Default number of column address bits 9 - 12 9
Mbyte Default memory chip select bank size in Mbyte 8 - 1024 16
pwron Enable SDRAM at power-on initialization 0 - 1 0
oepol Polarity of bdrive and vbdrive signals. 0=active low,

1=active high
0 - 1 0

ahbfreq Frequency in MHz of the AHB clock domain 1 - 1023 50
rskew Additional read data clock skew

Read data clock phase for Altera CycloneIII
-255 - 255.
0 - 9999

0

mobile Enable Mobile DDR support
0: Mobile DDR support disabled
1: Mobile DDR support enabled but not default
2: Mobile DDR support enabled by default
3: Mobile DDR support only (no regular DDR support)

0 - 3 0

confapi Set the PHY configuration register API:
0 = standard register API (conf0 and conf1 disabled).
1 = TCI RTL_PHY register API.

conf0 Reset value for PHY register 0, conf[31:0] 0 - 16#FFFFFFFF# 0
conf1 Reset value for PHY register1, conf[63:32] 0 - 16#FFFFFFFF# 0
regoutput Enables registers on signal going from controller to PHY 0 - 1 0
ddr400 Enables extended timing fields for DDR400 support 0 - 1 1
scantest Enable scan test support 0 - 1 0
phyiconf PHY implementation configuration. This generic sets

technology specific implementation options for the DDR
PHY. Meaning of values depend on the setting of VHDL
generic fabtech.
For fabtech:s virtex4, virtex5, virtex6: phyiconf selects
type of pads used for DDR clock pairs. 0 instantiates a
differiental pad and 1 instantiates two outpads.

0 - 16#FFFFFFFF# 0
GRIP, Sep 2018, Version 2018.3 183 www.cobham.com/gaisler

GRLIB IP Core

21.6 Implementation

21.6.1 Technology mapping

The core has two technology mapping VHDL generics: memtech and fabtech. The VHDL generic
memtech controls the technology used for memory cell implementation. The VHDL generic fabtech
controls the technology used in the PHY implementation. See the GRLIB Users’s Manual for avail-
able settings.

21.6.2 FPGA support

Complete PHY:s for a number FPGA technologies are included in the distribution, see table below.
Unless otherwise noted these have been only functionally tested on evaluation board in lab environ-
ment and detailed timing analysis has not been performed. Note also that some of the FPGA phy:s use
simplified sampling approaches which may require the memory timing to be better than the JEDEC
standard specifies.
Scripts for post-layout static timing analysis are not included. Because these PHY:s are based on ded-
icated hard macros with fixed placement in the FPGA:s pad structure, just a minimal set of constraints
are normally neccessary for synthesis purposes.

21.6.3 RAM usage

The FIFOs in the core are implemented with the syncram_2p (with separate clock for each port) com-
ponent found in the technology mapping library (TECHMAP). The number of RAMs used for the
FIFO implementation depends on the DDR data width, set by the ddrbits VHDL generic.

Table 207.FPGA DDR PHYs included in GRLIB

Technology fabtech Read clock method Built-in pads
Virtex4,5,6 virtex4, virtex5, virtex6 Clock feedback loop + static shift Yes
Virtex2, Spartan3 virtex2, spartan3 Clock feedback loop + static shift Yes
Spartan3E,6 spartan3 Clock feedback loop + static shift Yes
Stratix II stratix2 Tech intrinsics (DQS based) Yes
Cyclone 3 cyclone3 Static shift Yes

Table 208.RAM usage

RAM dimension
(depth x width)

Number of RAMs
(DDR data width 64)

Number of RAMs
(DDR data width 32)

Number of RAMs
(DDR data width 16)

4 x 128 1
4 x 32 4
5 x 64 1
5 x 32 2
6 x 32 2
GRIP, Sep 2018, Version 2018.3 184 www.cobham.com/gaisler

GRLIB IP Core

21.7 Signal descriptions

Table 209 shows the interface signals of the core (VHDL ports).

21.8 Library dependencies

Table 210 shows libraries used when instantiating the core (VHDL libraries).

Table 209.Signal descriptions

Signal name Type Function Active
RST_DDR Input Reset input for DDR clock domain Low
RST_AHB Input Reset input for AHB clock domain Low
CLK_DDR Input DDR input Clock -
CLK_AHB Input AHB clock -
LOCK Output DDR clock generator locked High
CLKDDRO Internal DDR clock output after clock multiplication
CLKDDRI Clock input for the internal DDR clock domain.

Must be connected to CLKDDRO.
AHBSI Input AHB slave input signals -
AHBSO Output AHB slave output signals -
DDR_CLK[2:0] Output DDR memory clocks (positive) High
DDR_CLKB[2:0] Output DDR memory clocks (negative) Low
DDR_CLK_FB_OUT Output Same a DDR_CLK, but used to drive an external

clock feedback.
-

DDR_CLK_FB Input Clock input for the DDR clock feed-back -
DDR_CKE[1:0] Output DDR memory clock enable High
DDR_CSB[1:0] Output DDR memory chip select Low
DDR_WEB Output DDR memory write enable Low
DDR_RASB Output DDR memory row address strobe Low
DDR_CASB Output DDR memory column address strobe Low
DDR_DM[DDRBITS/8-1:0] Output DDR memory data mask Low
DDR_DQS[DDRBITS/8-1:0] Bidir DDR memory data strobe Low
DDR_AD[13:0] Output DDR memory address bus Low
DDR_BA[1:0] Output DDR memory bank address Low
DDR_DQ[DDRBITS-1:0] BiDir DDR memory data bus -
1) see GRLIB IP Library User’s Manual 2) Polarity selected with the oepol generic

Table 210.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB signal definitions
GAISLER MEMCTRL Signals, component Memory bus signals definitions, component dec-

laration
GRIP, Sep 2018, Version 2018.3 185 www.cobham.com/gaisler

GRLIB IP Core

21.9 Component declaration

component ddrspa
 generic (
 fabtech : integer := 0;
 memtech : integer := 0;
 hindex : integer := 0;
 haddr : integer := 0;
 hmask : integer := 16#f00#;
 ioaddr : integer := 16#000#;
 iomask : integer := 16#fff#;
 MHz : integer := 100;
 clkmul : integer := 2;
 clkdiv : integer := 2;
 col : integer := 9;
 Mbyte : integer := 16;
 rstdel : integer := 200;
 pwron : integer := 0;
 oepol : integer := 0;
 ddrbits : integer := 16;
 ahbfreq : integer := 50
);
 port (
 rst_ddr : in std_ulogic;
 rst_ahb : in std_ulogic;
 clk_ddr : in std_ulogic;
 clk_ahb : in std_ulogic;
 lock : out std_ulogic;-- DCM locked
 clkddro : out std_ulogic;-- DCM locked
 clkddri : in std_ulogic;
 ahbsi : in ahb_slv_in_type;
 ahbso : out ahb_slv_out_type;
 ddr_clk : out std_logic_vector(2 downto 0);
 ddr_clkb: out std_logic_vector(2 downto 0);
 ddr_clk_fb_out : out std_logic;
 ddr_clk_fb : in std_logic;
 ddr_cke : out std_logic_vector(1 downto 0);
 ddr_csb : out std_logic_vector(1 downto 0);
 ddr_web : out std_ulogic; -- ddr write enable
 ddr_rasb : out std_ulogic; -- ddr ras
 ddr_casb : out std_ulogic; -- ddr cas
 ddr_dm : out std_logic_vector (ddrbits/8-1 downto 0); -- ddr dm
 ddr_dqs : inout std_logic_vector (ddrbits/8-1 downto 0); -- ddr dqs
 ddr_ad : out std_logic_vector (13 downto 0); -- ddr address
 ddr_ba : out std_logic_vector (1 downto 0); -- ddr bank address
 ddr_dq : inout std_logic_vector (ddrbits-1 downto 0) -- ddr data

);
 end component;
GRIP, Sep 2018, Version 2018.3 186 www.cobham.com/gaisler

GRLIB IP Core

21.10 Instantiation

This examples shows how the core can be instantiated.
The DDR SDRAM controller decodes SDRAM area at 0x40000000 - 0x7FFFFFFF. The SDRAM
registers are mapped into AHB I/O space on address (AHB I/O base address + 0x100).

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;

entity ddr_Interface is
 port (ddr_clk : out std_logic_vector(2 downto 0);
 ddr_clkb : out std_logic_vector(2 downto 0);
 ddr_clk_fb : in std_logic;
 ddr_clk_fb_out : out std_logic;
 ddr_cke : out std_logic_vector(1 downto 0);
 ddr_csb : out std_logic_vector(1 downto 0);
 ddr_web : out std_ulogic; -- ddr write enable
 ddr_rasb : out std_ulogic; -- ddr ras
 ddr_casb : out std_ulogic; -- ddr cas
 ddr_dm : out std_logic_vector (7 downto 0); -- ddr dm
 ddr_dqs : inout std_logic_vector (7 downto 0); -- ddr dqs
 ddr_ad : out std_logic_vector (13 downto 0); -- ddr address
 ddr_ba : out std_logic_vector (1 downto 0); -- ddr bank address
 ddr_dq : inout std_logic_vector (63 downto 0); -- ddr data

);
end;

architecture rtl of mctrl_ex is

 -- AMBA bus
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal clkml, lock : std_ulogic;

begin

-- DDR controller

ddrc : ddrspa generic map (fabtech => virtex4, ddrbits => 64, memtech => memtech,
hindex => 4, haddr => 16#400#, hmask => 16#F00#, ioaddr => 1,
pwron => 1, MHz => 100, col => 9, Mbyte => 32, ahbfreq => 50, ddrbits => 64)
port map (
rstneg, rstn, lclk, clkm, lock, clkml, clkml, ahbsi, ahbso(4),
ddr_clk, ddr_clkb, ddr_clk_fb_out, ddr_clk_fb,
ddr_cke, ddr_csb, ddr_web, ddr_rasb, ddr_casb,
ddr_dm, ddr_dqs, ddr_adl, ddr_ba, ddr_dq);
GRIP, Sep 2018, Version 2018.3 187 www.cobham.com/gaisler

GRLIB IP Core

22 DDR2SPA - 16-, 32- and 64-bit Single-Port Asynchronous DDR2 Controller

22.1 Overview

DDR2SPA is a DDR2 SDRAM controller with AMBA AHB back-end. The controller can interface
16-, 32- or 64-bit wide DDR2 memory with one or two chip selects. The controller acts as a slave on
the AHB bus where it occupies a configurable amount of address space for DDR2 SDRAM access.
The DDR2 controller is programmed by writing to configuration registers mapped located in AHB I/
O address space.
Internally, DDR2SPA consists of a ABH/DDR2 controller and a technology specific DDR2 PHY. For
currently supported technologies for the PHY, see section 22.7.2. The modular design of DDR2SPA
allows to add support for other target technologies in a simple manner.

22.2 Operation

22.2.1 General

Single DDR2 SDRAM chips are typically 4,8 or 16 data bits wide. By putting multiple identical chips
side by side, wider SDRAM memory banks can be built. Since the command signals are common for
all chips, the memories behave as one single wide memory chip.
This memory controller supports one or two (identical) such 16/32/64-bit wide DDR2 SDRAM mem-
ory banks. The size of the memory can be programmed in binary steps between 8 Mbyte and 1024
Mbyte, or between 32 Mbyte and 4096 Mbyte. The DDR data width is set by the DDRBITS generic,
and will affect the width of DM, DQS and DQ signals. The DDR data width does not change the
behavior of the AHB interface, except for data latency.

22.2.2 Data transfers

An AHB read or write access to the controller will cause a corresponding access cycle to the external
DDR2 RAM. The cycle is started by performing an ACTIVATE command to the desired bank and
row, followed by a sequence of READ or WRITE commands (the count depending on memory width
and burst length setting). After the sequence, a PRECHARGE command is performed to deactivate
the SDRAM bank.
All access types are supported, but only incremental bursts of 32 bit width and incremental bursts of
maximum width (if wider than 32) are handled efficiently. All other bursts are handled as single-

Figure 58. DDR2SPA Memory controller connected to AMBA bus and DDR2 SDRAM

DDR2

ADDRESS[16:2]
DATA[127:0]

RAS
CAS
WE

DDR2SDRASN
SDCASN
SDWEN

DQMSDDQM[15:0]

CLK
CSN

CLK
SDCSN[1:0]

CONTROLLER

AHB

SDCKE CKE

PHY
RAS
CAS
WE

16/32/64-bit DDR2

DQM

CLKN
CSN

CKE

Memory
CLK

ADDR[13:0]
BA[1:0]
DQ[63:0]

RAS
CAS
WE

DQM

CLK

CSN

CKE

CLKN

ADDR[13:0]
BA[1:0]

DQ[63:0]

DDR CLOCK

DDR2SPA

AHB SLAVE

CALl DQS[7:0]DQS[7:0]
DQSN[7:0] DQSN[7:0]
GRIP, Sep 2018, Version 2018.3 188 www.cobham.com/gaisler

GRLIB IP Core

accesses. For maximum throughput, incremental bursts of full AHB width with both alignment and
length corresponding to the burstlen generic should be performed.
The maximum supported access size can be limited by using the ahbbits generic, which is set to the
full AHB bus size by default. Accesses larger than this size are not supported.
The memory controller’s FIFO has room for two write bursts which improves throughput, since the
second write can be written into the FIFO while the first write is being written to the DDR memory.
In systems with high DDR clock frequencies, the controller may have to insert wait states for the min-
imum activate-to-precharge time (tRAS) to expire before performing the precharge command. If a new
AHB access to the same memory row is performed during this time, the controller will perform the
access in the same access cycle.

22.2.3 Initialization

If the pwron VHDL generic is 1, then the DDR2 controller will automatically on start-up perform the
DDR2 initialization sequence as described in the JEDEC DDR2 standard. The VHDL generics col
and Mbyte can be used to also set the correct address decoding after reset. In this case, no further soft-
ware initialization is needed except for enabling the auto-refresh function. If power-on initialization is
not enabled, the DDR2 initialization can be started at a later stage by setting bit 16 in the DDR2 con-
trol register DDR2CFG1.

22.2.4 Big memory support

The total memory size for each chip select is set through the 3-bit wide SDRAM banks size field,
which can be set in binary steps between 8 Mbyte and 1024 Mbyte. To support setting even larger
memory sizes of 2048 and 4096 Mbyte, a fourth bit has been added to this configuration field.
Only 8 different sizes are supported by the controller, either the lower range of 8 MB - 1 GB, or the
higher range of 32 MB - 4 GB. Which range is determined by the bigmem generic, and can be read by
software through the DDR2CFG2 register.

22.2.5 Configurable DDR2 SDRAM timing parameters

To provide optimum access cycles for different DDR2 devices (and at different frequencies), six tim-
ing parameters can be programmed through the memory configuration registers: TRCD, TCL, TRTP,
TWR, TRP and TRFC. For faster memories (DDR2-533 and higher), the TRAS setting also needs to
be configured to satisfy timing. The value of these fields affects the DDR2RAM timing as described
in table 211. Note that if the CAS latency setting is changed after initialization, this change needs also
to be programmed into the memory chips by executing the Load Mode Register command.

If TRCD, TCL, TRTP, TWR, TRP, TRFC and TRAS are programmed such that the DDR2 specifica-
tions are full filled, the remaining SDRAM timing parameters will also be met. The table below

Table 211.DDR2 SDRAM programmable minimum timing parameters

DDR2 SDRAM timing parameter Minimum timing (clocks)
CAS latency, CL TCL + 3
Activate to read/write command (tRCD) TRCD + 2

Read to precharge (tRTP) TRTP + 2

Write recovery time (tWR) TWR-2

Precharge to activate (tRP) TRP + 2

Activate to precharge (tRAS) TRAS + 1

Auto-refresh command period (tRFC) TRFC + 3
GRIP, Sep 2018, Version 2018.3 189 www.cobham.com/gaisler

GRLIB IP Core

shows typical settings for 130, 200 and 400 MHz operation and the resulting DDR2 SDRAM timing
(in ns):

22.2.6 Refresh

The DDR2SPA controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the DDR2CFG1 register. Depending on SDRAM type,
the required period is typically 7.8 us (corresponding to 780 at 100 MHz). The generated refresh
period is calculated as (reload value+1)/sysclk. The refresh function is enabled by bit 31 in
DDR2CFG1 register.

22.2.7 DDR2 SDRAM commands

The controller can issue four SDRAM commands by writing to the SDRAM command field in
SDCFG1: PRE-CHARGE, LOAD-EXTMODE-REG, LOAD-MODE-REG and REFRESH. If the
LMR command is issued, the PLL Reset bit as programmed in DDR2CFG1, CAS Latency setting as
programmed in DDR2CFG4 and the WR setting from DDR2CFG3 will be used, remaining fields are
fixed: 4 word sequential burst. If the LEMR command is issued, the OCD bits will be used as pro-
grammed in the DDR2CFG1 register, and all other bits are set to zero. The command field will be
cleared after a command has been executed.

22.2.8 Registered SDRAM

Registered memory modules (RDIMM:s) have one cycle extra latency on the control signals due to
the external register. They can be supported with this core by setting the REG bit in the DDR2CFG4
register.
This should not be confused with Fully-Buffered DDR2 memory, which uses a different protocol and
is not supported by this controller.

22.2.9 Clocking

The DDR2 controller operates in two separate clock domains, one domain synchronous to the DDR2
memory and one domain synchronous to the AHB bus. The two clock domains do not have to be the
same or be phase-aligned.
The clock for the DDR2 memory domain is generated from the controller’s ddr_clk input via a tech-
nology-specific PLL component. The multiplication and division factor can be selected via the clk-
mul/clkdiv configuration options. The final DDR2 clock is driven on one output (CLKDDRO), which
should always be connected to the CLKDDRI input.
The ddr_rst input asynchronously resets the PHY layer and the built-in PLL. The ahb_rst input should
be reset simultaneously and then kept in reset until the PLL has locked (indicated by the lock output).
If the AHB and DDR2 clocks are based on the same source clock and are kept phase-aligned by the
PLL, the clock domain transition is synchronous to the least common multiple of the two clock fre-
quencies. In this case, the nosync configuration option can be used to remove the synchronization and
handshaking between the two clock domains, which saves a few cycles of memory access latency. If
nosync is not set in this case, a timing-ignore constraint should be placed between the CLK_AHB and
CLKDDRI to avoid optimization of false-paths during synthesis and place&route.

Table 212.DDR2 SDRAM example programming

DDR2 SDRAM settings CL tRCD tRC tRP tRFC tRAS

130 MHz: TCL=0,TRCD=0,TRTP=0,TRP=0,TRAS=0,TRFC=7 3 15 76 15 76 61
200 MHz: TCL=0,TRCD=1,TRTP=0,TRP=1,TRAS=1,TRFC=13 3 15 60 15 80 45
400 MHz: TCL=2,TRCD=4,TRTP=1,TRP=4,TRAS=10,TRFC=29 5 15 60 15 80 45
GRIP, Sep 2018, Version 2018.3 190 www.cobham.com/gaisler

GRLIB IP Core

The supported DDR2 frequencies depends on the clock-to-output delay of the DDR output registers,
and the internal delay from the DDR input registers to the read data FIFO. Virtex5 can typically run at
200 MHz.
When reading data, the data bus (DQ) signals should ideally be sampled 1/4 cycle after each data
strobe (DQS) edge. How this is achieved is technology-specific as described in the following sections.

22.2.10 Read data clock calibration on Xilinx Virtex

On Xilinx Virtex4/5 the data signal inputs are delayed via the I/O pad IDELAY feature to get the
required 1/4 cycle shift. The delay of each byte lane is tuned independently between 0-63 tap delays,
each tap giving 78 ps delay, and the initial value on startup is set via the generics ddelayb[7:0].
The delays can be tuned at runtime by using the DDR2CFG3 control register. There are two bits in the
control register for each byte. One bit determines if the delay should be increased or decreased and the
other bit is set to perform the update. Setting bit 31 in the DDR2CFG3 register resets the delays to the
initial value.
To increase the calibration range, the controller can add additional read latency cycles. The number of
additional read latency cycles is set by the RD bits in the DDR2CFG3 register.

22.2.11 Read data clock calibration on Altera Stratix

On Altera StratixIII, the technology’s delay chain feature is used to delay bytes of input data in a sim-
ilar fashion as the Virtex case above. The delay of each byte lane is tuned between 0-15 tap delays,
each tap giving 50 ps delay, and the initial value on startup is 0.
The delays are tuned at runtime using the DDR2CFG3 register, and extra read cycles can be added
using DDR2CFG3, the same way as described for Virtex.
The data sampling clock can also be skewed on Stratix to increase the calibration range. This is done
writing the PLL_SKEW bits in the DDR2CFG3 register.

22.2.12 Read data clock calibration on Xilinx Spartan-3

On Spartan3, a clock loop is utilized for sampling of incoming data. The DDR_CLK_FB_OUT port
should therefore be connected to a signal path of equal length as the DDR_CLK + DDR_DQS signal
path. The other end of the signal path is to be connected to the DDR_CLK_FB port. The fed back
clock can then be skewed for alignment with incoming data using the rskew generic. The rskew
generic can be set between +/-255 resulting in a linear +/-360 degree change of the clock skew. Bits
29 and 30 in the DDR2CFG3 register can be used for altering the skew at runtime.

22.2.13 Pads

The DDR2SPA core has technology-specific pads inside the core. The external DDR2 signals should
therefore be connected directly the top-level ports, without any logic in between.

22.2.14 Endianness

The core is designed for big-endian systems.

22.3 Fault-tolerant operation (preliminary)

22.3.1 Overview

The memory controller can be configured to support bit-error tolerant operation by setting the ft
generic (not supported in all versions of GRLIB). In this mode, the DDR data bus is widened and the
extra bits are used to store 16 or 32 checkbits corresponding to each 64 bit data word. The variant to
GRIP, Sep 2018, Version 2018.3 191 www.cobham.com/gaisler

GRLIB IP Core

be used can be configured at run-time depending on the connected DDR2 data width and the desired
level of fault tolerance.
When writing, the controller generates the check bits and stores them along with the data. When read-
ing, the controller will transparently correct any correctable bit errors and provide the corrected data
on the AHB bus. However, the corrected bits are not written back to the memory so external scrub-
bing is necessary to avoid uncorrectable errors accumulating over time.
An extra corrected error output signal is asserted when a correctable read error occurs, at the same
cycle as the corrected data is delivered. This can be connected to an interrupt input or to a memory
scrubber. In case of uncorrectable error, this is signaled by giving an AHB error response to the mas-
ter.

22.3.2 Memory setup

In order to support error-correction, the DDR2 data bus needs to be expanded. The different possible
physical configurations are tabulated below. For software, there is no noticeable difference between
these configurations.
If the hardware is built for the wider code, it is still possible to leave the upper half of the checkbit
data bus unconnected and use it for code B.

22.3.3 Error-correction properties

The memory controller uses an interleaved error correcting code which works on nibble (4-bit) units
of data. The codec can be used in two interleaving modes, mode A and mode B.
In mode A, the basic code has 16 data bits, 8 check bits and can correct one nibble error. This code is
interleaved by 4 using the pattern in table 214 to create a code with 64 data bits and 32 check bits.
This code can tolerate one nibble error in each of the A,B,C,D groups shown below. This means that
we can correct 100% of single errors in two adjacent nibbles, or in any 8/16-bit wide data bus lane,
that would correspond to a physical DDR2 chip. The code can also correct 18/23=78% of all possible
random two-nibble errors.
This interleaving pattern was designed to also provide good protection in case of reduced (32/16-bit)
DDR bus width with the same data-checkbit relation, so software will see the exact same checkbits on
diagnostic reads.
In mode B, the basic code has 32 data bits, 8 check bits and can correct one nibble error. This code is
then interleaved by a factor of two to create a code with 64 data bits and 16 check bits.
Note that when configured for a 16-bit wide DDR data bus, code A must be used to get protection
from multi-column errors since each data bus nibbles holds four code word nibbles.

Table 213.Configurations of FT DDR2 memory banks

Data bits (DDRBITS) Checkbits (FTBITS)
Interleaving
modes supported

64 32 A and B
64 16 B only
32 16 A and B
32 8 B only
16 8 A only

Table 214.Mode Ax4 interleaving pattern (64-bit data width)
63:60 59:56 55:52 51:48 47:44 43:40 39:36 35:32 31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0

C D A B A B C D B A D C D C B A

127:120 119:112 111:104 103:96 95:88 87:80 79:72 71:64

Ccb Dcb Acb Bcb Ccb Dcb Acb Bcb
GRIP, Sep 2018, Version 2018.3 192 www.cobham.com/gaisler

GRLIB IP Core
22.3.4 Data transfers

The read case behaves the same way as the non-FT counterpart, except a few cycles extra are needed
for error detection and correction. There is no extra time penalty in the case data is corrected com-
pared to the error-free case.
Only writes of 64 bit width or higher will translate directly into write cycles to the DDR memory.
Other types of write accesses will generate a read-modify-write cycle in order to correctly update the
check-bits. In the special case where an uncorrectable error is detected while performing the RMW
cycle, the write is aborted and the incorrect checkbits are left unchanged so they will be detected upon
the next read.
Only bursts of maximum AHB width is supported, other bursts will be treated as single accesses.
The write FIFO only has room for one write (single or burst).

22.3.5 DDR2 behavior

The behavior over the DDR2 interface is largely unchanged, the same timing parameters and setup
applies as for the non-FT case. The checkbit data and data-mask signals follow the same timing as the
corresponding signals for regular data.

22.3.6 Configuration

Whether the memory controller is the FT or the non-FT version can be detected by looking at the FTV
bit in the DDR2CFG2 register.
Checkbits are always written out to memory when writing even if EDACEN is disabled. Which type
of code, A or B, that is used for both read and write is controlled by the CODE field in the
DDR2FTCFG register.
Code checking on read is disabled on reset and is enabled by setting the EDACEN bit in the
DDR2FTCFG register. Before enabling this, the code to be used should be set in the CODE field and
the memory contents should be (re-)initialized.

22.3.7 Diagnostic checkbit access

The checkbits and data can be accessed directly for testing and fault injection. This is done by writing
the address of into the DDR2FTDA register. The check-bits and data can then be read and written via
the DDR2FTDC and DDR2FTDD register. Note that for checkbits the DDR2FTDA address is 64-bit
aligned, while for data it is 32-bit aligned.
After the diagnostic data register has been read, the FT control register bits 31:19 can be read out to
see if there were any correctable or uncorrectable errors detected, and where the correctable errors
were located. For the 64 databit wide version, there is one bit per byte lane describing whether a cor-
rectable error occurred.

22.3.8 Code boundary

The code boundary feature allows you to gradually switch the memory from one interleaving mode to
the other and regenerate the checkbits without stopping normal operation. This can be used when
recovering from memory faults, as explained further below.

Table 215.Mode Bx2 interleaving pattern (64-bit data width)
63:60 59:56 55:52 51:48 47:44 43:40 39:36 35:32 31:28 27:24 23:20 19:16 15:12 11:8 7:4 3:0

A B A B A B A B B A B A B A B A

95:88 87:80 79:72 71:64

Acb Bcb Acb Bcb
GRIP, Sep 2018, Version 2018.3 193 www.cobham.com/gaisler

GRLIB IP Core

If the boundary address enable (BAEN) control bit is set, the core will look at the address of each
access, and use the interleaving mode selected in the CODE field for memory accesses above or equal
to the boundary address, and the opposite code for memory accesses below to the boundary address.
If the boundary address update (BAUPD) control bit is also set, the core will shift the boundary
upwards whenever the the address directly above the boundary is written to. Since the written data is
now below the boundary, it will be written using the opposite code. The write can be done with any
size supported by the controller.

22.3.9 Data muxing

When code B is used instead of code A, the upper half of the checkbits are unused. The controller sup-
ports switching in this part of the data bus to replace another faulty part of the bus. To do this, one sets
the DATAMUX field to a value between 1-4 to replace a quarter of the data bus, or to 5 to replace the
active checkbit half.

22.3.10 Memory fault recovery

The above features are designed to, when combined and integrated correctly, make the system cabable
to deal with a permanent fault in an external memory chip.
A basic sequence of events is as follows:
1. The system is running correctly with EDAC enabled and the larger code A is used.
2. A memory chip gets a fault and delivers incorrect data. The DDR2 controller keeps delivering
error-free data but reports a correctable error on every read access.
3. A logging device (such as the memory scrubber core) registers the high frequency of correctable
errors and signals an interrupt.
4. The CPU performs a probe using the DDR2 FT diagnostic registers to confirm that the error is
permanent and on which physical lane the error is.
5. After determining that a permanent fault has occurred, the CPU reconfigures the FTDDR2 con-
troller as follows (all configuration register fields changed with a single register write):

The data muxing control field is set so the top checkbit half replaces the failed part of the data
bus.
The code boundary register is set to the lowest memory address.
The boundary address enable and boundary address update enable bits are set.
The mask correctable error bit is set

6. The memory data and checkbits are now regenerated using locked read-write cycles to use the
smaller code and replace the broken data with the upper half of the checkbit bus. This can be done in
hardware using an IP core, such as the AHB memory scrubber, or by some other means depending on
system design.
7. After the whole memory has been regenerated, the CPU disables the code boundary, changes the
code selection field to code B, and unsets the mask correctable error bit.
After this sequence, the system is now again fully operational, but running with the smaller code and
replacement chip and can again recover from any single-nibble error. Note that during this sequence,
it is possible for the system to operate and other masters can both read and write to memory while the
regeneration is ongoing.
GRIP, Sep 2018, Version 2018.3 194 www.cobham.com/gaisler

GRLIB IP Core

22.4 Registers

The DDR2SPA core implements between 5 and 12 control registers, depending on the FT generic and
target technology. The registers are mapped into AHB I/O address space defined by the AHB BAR1
of the core. Only 32-bit single-accesses to the registers are supported.
Older revisions of the core only have registers DDRCFG1-4, which are aliased on the following
addresses. For that reason, check the REG5 bit in DDR2CFG2 before using these bits for backward
compatibility.
For backward compatibility, some of the bits in DDR2CFG5 are mirrored in other registers. Writing
to these bits will affect the contents of DDR2CFG5 and vice versa.

Table 216.DDR2 controller registers

Address offset - AHB I/O - BAR1 Register
0x00 DDR2 SDRAM control register (DDR2CFG1)
0x04 DDR2 SDRAM configuration register (DDR2CFG2)
0x08 DDR2 SDRAM control register (DDR2CFG3)
0x0C DDR2 SDRAM control register (DDR2CFG4)
0x10* DDR2 SDRAM control register (DDR2CFG5)
0x14* Reserved
0x18 DDR2 Technology specific register (DDR2TSR1)
0x1C* DDR2 Technology specific register (DDR2TSR2)
0x20 DDR2 FT Configuration Register (FT only) (DDR2FTCFG)
0x24 DDR2 FT Diagnostic Address register (FT only) (DDR2FTDA)
0x28 DDR2 FT Diagnostic Checkbit register (FT only) (DDR2FTDC)
0x2C DDR2 FT Diagnostic Data register (FT only) (DDR2FTDD)
0x30 DDR2 FT Code Boundary Register (FT only) (DDR2FTBND)
* Older DDR2SPA versions contain aliases of DDR2CFG1-4 at these addresses. Therefore, check bit 15 of DDR2CFG2
before using these registers.
GRIP, Sep 2018, Version 2018.3 195 www.cobham.com/gaisler

GRLIB IP Core

22.4.1

Table 217. 0x00 - DDR2CFG1 - DDR2 SRAM control register 1

DDR2 SDRAM Configuration Register 1

22.4.2

Table 218. 0x04 - DDR2CFG2 - DDR2 SDRAM configuration register 2

DDR2 SDRAM Configuration Register 2

31 30 29 28 27 26 25 23 22 21 20 18 17 16 15 14 0

Refresh OCD EMR bank
size 3

(TRCD) SDRAM bank
size2:0

SDRAM col.
size

SDRAM
command

PR IN CE SDRAM refresh load value

0 0 0 0 0 0 0 0 0 0 0 0

rw rw rw rw rw rw rw rw rw rw rw rw

31 SDRAM refresh. If set, the SDRAM refresh will be enabled.
30 OCD operation
29: 28 Selects Extended mode register (1,2,3)
27 SDRAM banks size bit 3. By enabling this bit the memory size can be set to “1000” = 2048 Mbyte

and “1001” = 4096 Mbyte. See the section on big-memory support.
26 Lowest bit of TRCD field in DDR2CFG, for backward compatibility
25: 23 SDRAM banks size. Defines the decoded memory size for each SDRAM chip select: “000”= 8

Mbyte, “001”= 16 Mbyte, “010”= 32 Mbyte.... “111”= 1024 Mbyte.
22: 21 SDRAM column size. “00”=512, “01”=1024, “10”=2048, “11”=4096
20: 18 SDRAM command. Writing a non-zero value will generate an SDRAM command: “010”=PRE-

CHARGE, “100”=AUTO-REFRESH, “110”=LOAD-COMMAND-REGISTER, “111”=LOAD-
EXTENDED-COMMAND-REGISTER. The field is reset after command has been executed.

17 PLL Reset. This bit is used to set the PLL RESET bit during LOAD-CONFIG-REG commands.
16 Initialize (IN). Set to ‘1’ to perform power-on DDR RAM initialisation. Is automatically cleared

when initialisation is completed.
15 Clock enable (CE). This value is driven on the CKE inputs of the DDR RAM. Should be set to ‘1’

for correct operation.
14: 0 The period between each AUTO-REFRESH command - Calculated as follows: tREFRESH =

((reload value) + 1) / DDRCLOCK

31 26 25 18 17 16 15 14 12 11 0

RESERVED PHY Tech BIG FTV REG5 Data width DDR Clock frequency

0 0 0 0 0 0 0

r r r r r r r

31: 26 Reserved
25: 18 PHY technology identifier, value 0 is for generic/unknown
17 Big memory support, if ‘1’ then memory can be set between 32 Mbyte and 4 Gbyte, if ‘0’ then mem-

ory size can be set between 8 Mbyte and 1 Gbyte.
16 Reads ‘1’ if the controller is fault-tolerant version and EDAC registers exist.
15 Reads ‘1’ if DDR2CFG5 register exists.
14: 12 SDRAM data width: “001” = 16 bits, “010” = 32 bits, “011” = 64 bits.
11: 0 Frequency of the (external) DDR clock.
GRIP, Sep 2018, Version 2018.3 196 www.cobham.com/gaisler

GRLIB IP Core

22.4.3

Table 219.0x08 - DDR2CFG3 - DDR2 SDRAM configuration register 3

DDR2 SDRAM Configuration Register 3

22.4.4

Table 220.0x0C - DDR2CFG4 - DDR2 SDRAM configuration register 4

DDR2 SDRAM Configuration Register 4

31 30 29 28 27 23 22 18 17 16 15 8 7 0

PLL (TRP) tWR (TRFC) RD inc/dec delay Update delay

0 0 * * 0 0

rw rw rw rw rw rw

31 Reset byte delay
30: 29 PLL_SKEW

Bit 29: Update clock phase
Bit 30: 1 = Inc / 0 = Dec clock phase

28 Lowest bit of DDR2CFG4 TRP field for backward compatibility
27: 23 SDRAM write recovery time. tWR will be equal to field value - 2DDR clock cycles
22: 18 Lower 5 bits of DDR2CFG4 TRFC field for backward compatibility.
17: 16 Number of added read delay cycles, default = 1
15: 8 Set to ‘1’ to increment byte delay, set to ‘0’ to decrement delay
7: 0 Set to ‘1’ to update byte delay

31 28 27 24 23 22 21 20 14 13 12 11 10 9 8 7 0

inc/dec CB delay Update CB delay RDH REG RESERVED TRTP RES TCL B8 DQS gating offset

0 0 0 0 0 * 0 * * 0

rw rw rw rw r rw r rw rw rw

31: 28 Set to ‘1’ to increment checkbits byte delay, set to ‘0’ to decrement delay
27: 24 Set to ‘1’ to update checkbits byte delay
23: 22 Read delay high bits, setting this field to N adds 4 x N read delay cycles
21 Registered memory (1 cycle extra latency on control signals)
20: 14 Reserved
13 SDRAM read-to-precharge timing, tRTP will be equal to field value + 2 DDR-clock cycles.
12: 11 Reserved
10: 9 SDRAM CAS latency timing. CL will be equal to field value + 3 DDR-clock cycles.

Note: You must reprogram the memory’s MR register after changing this value
8 Enables address generation for DDR2 chips with eight banks

1=addressess generation for eight banks 0=address generation for four banks
7: 0 Number of half clock cycles for which the DQS input signal will be active after a read command is

given. After this time the DQS signal will be gated off to prevent latching of faulty data. Only valid
if the dqsgating generic is enabled.
GRIP, Sep 2018, Version 2018.3 197 www.cobham.com/gaisler

GRLIB IP Core

22.4.5

Table 221. 0x10 - DDR2CFG5 - DDR2 SDRAM configuration register 5

DDR2 SDRAM Configuration Register 5

22.4.6

Table 222. 0x20 - DDR2FTCFG - DDR2 FT configuration register

DDR2 FT Configuration Register

31 30 28 27 26 25 18 17 16 15 14 11 10 8 7 5 4 0

R TRP RES TRFC ODT DS RESERVED TRCD RESERVED TRAS

0 * 0 0 0 0 0 * 0 0

r rw r rw rw rw r rw r rw

31 Reserved
30: 28 SDRAM tRP timing. tRP will be equal to 2 + field value DDR-clock cycles
27: 26 Reserved
25: 18 SDRAM tRFC timing. tRFC will be equal to 3 + field-value DDR-clock cycles.
17: 16 SDRAM-side on-die termination setting (0=disabled, 1-3=75/150/50 ohm)

Note: You must reprogram the EMR1 register after changing this value.
15 SDRAM-side output drive strength control (0=full strength, 1=half strength)

Note: You must reprogram the EMR1 register after changing this value
14: 11 Reserved
10: 8 SDRAM RAS-to-CAS delay (TRCD). tRCD will be equal to field value + 2 DDR-clock cycles
7: 5 Reserved
4: 0 SDRAM RAS to precharge timing. TRAS will be equal to 2+ field value DDR-clock cycles

31 20 19 18 16 15 8 7 5 4 3 2 1 0

Diag data read error location DDERR DM RESERVED DATAMUX CEM BAUPD BAEN CODE EDEN

0 0 0 0 0 0 0 0 0 0

r r rw r rw rw rw rw rw rw

31: 20 Bit field describing location of corrected errors for last diagnostic data read (read-only)
One bit per byte lane in 64+32-bit configuration

19 Set high if last diagnostic data read contained an uncorrectable error (read-only)
18: 16 Data width, read-only field. 001=16+8, 010=32+16, 011=64+32 bits
15: 8 Reserved
7: 5 Data mux control, setting this nonzero switches in the upper checkbit half with another data lane.

For 64-bit interface
000 = no switching
001 = Data bits 15:0, 010 = Data bits 31:16, 011: Data bits 47:32, 100: Data bits 63:48,
101 = Checkbits 79:64, 110,111 = Undefined

4 If set high, the correctable error signal is masked out.
3 Enable automatic boundary shifting on write
2 Enable the code boundary
1 Code selection, 0=Code A (64+32/32+16/16+8), 1=Code B (64+16/32+8)
0 EDAC Enable
GRIP, Sep 2018, Version 2018.3 198 www.cobham.com/gaisler

GRLIB IP Core

22.4.7

Table 223.0x24 - DDR2FTDA - DDR2 FT Diagnostic Address

DDR2 FT Diagnostic Address

22.4.8

Table 224. 0x28 - DDR2FTDC - DDR2 FT Diagnostic Checkbits

DDR2 FT Diagnostic Checkbits

22.4.9

Table 225. 0x2C - DDR2FTDD - DDR2 FT Diagnostic Data

DDR2 FT Diagnostic Data

22.4.10 DDR2 FT Boundary Address Register

Table 226. 0x30 - DDR2FTBND - DDR2 FT Boundary Address Register

22.5 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x02E. The revision
decribed in this document is revision 1. For description of vendor and device identifiers see GRLIB IP
Library User’s Manual.

31 2 1 0

MEMORY ADDRESS RESERVED

0 0

rw r

31: 3 Address to memory location for checkbit read/write, 64/32-bit aligned for checkbits/data
1: 0 Reserved (address bits always 0 due to alignment)

31 24 23 16 15 8 7 0

CHECKBITS D CHECKBITS C CHECKBITS B CHECKBITS A

* * * 0

rw rw rw rw

31: 24 Checkbits for part D of 64-bit data word (undefined for code B)
23: 16 Checkbits for part C of 64-bit data word (undefined for code B)
15: 8 Checkbits for part B of 64-bit data word
7: 0 Checkbits for part A of 64-it data word.

31 0

DATA BITS

*

r

31: 0 Uncorrected data bits for 32-bit address set in DDR2FTDA

31 3 2 0

CHECKBIT CODE BOUNDARY ADDRESS R

0 0

rw r

31: 3 Code boundary address, 64-bit aligned
2: 0 Zero due to alignment
GRIP, Sep 2018, Version 2018.3 199 www.cobham.com/gaisler

GRLIB IP Core

22.6 Configuration options

Table 227 shows the configuration options of the core (VHDL generics).

Table 227.Configuration options

Generic Function Allowed range Default
fabtech PHY technology selection virtex4, virtex5, stratix3 virtex4
memtech Technology selection for DDR FIFOs inferred, virtex2, vir-

tex4, spartan3e, altera
inferred

hindex AHB slave index 0 - NAHBSLV-1 0
haddr ADDR field of the AHB BAR0 defining SDRAM area.

Default is 0xF0000000 - 0xFFFFFFFF.
0 - 16#FFF# 16#000#

hmask MASK field of the AHB BAR0 defining SDRAM area. 0 - 16#FFF# 16#F00#
ioaddr ADDR field of the AHB BAR1 defining I/O address

space where DDR control register is mapped.
0 - 16#FFF# 16#000#

iomask MASK field of the AHB BAR1 defining I/O address
space

0 - 16#FFF# 16#FFF#

ddrbits Data bus width of external DDR memory 16, 32, 64 16
MHz DDR clock input frequency in MHz. 10 - 200 100
clkmul, clkdiv The DDR input clock is multiplied with the clkmul

generic and divided with clkdiv to create the final DDR
clock

2 - 32 2

rstdel Clock reset delay in micro-seconds. 1 - 1023 200
col Default number of column address bits 9 - 12 9
Mbyte Default memory chip select bank size in Mbyte 8 - 1024 16
pwron Enable SDRAM at power-on initialization 0 - 1 0
oepol Polarity of bdrive and vbdrive signals. 0=active low,

1=active high
0 - 1 0

ahbfreq Frequency in MHz of the AHB clock domain 1 - 1023 50
readdly Additional read latency cycles (used to increase calibra-

tion range)
0-3 1

TRFC Reset value for the tRFC timing parameter in ns. 75-155 130
ddelayb0* Input data delay for bit[7:0] 0-63 0
ddelayb1* Input data delay for bit[15:8] 0-63 0
ddelayb2* Input data delay for bit[23:16] 0-63 0
ddelayb3* Input data delay for bit[31:24] 0-63 0
ddelayb4* Input data delay for bit[39:32] 0-63 0
ddelayb5* Input data delay for bit[47:40] 0-63 0
ddelayb6* Input data delay for bit[55:48] 0-63 0
ddelayb7* Input data delay for bit[63:56] 0-63 0
cbdelayb0* Input data delay for checkbit[7:0] 0-63 0
cbdelayb1* Input data delay for checkbit[15:8] 0-63 0
cbdelayb2* Input data delay for checkbit[23:16] 0-63 0
cbdelayb3* Input data delay for checkbit[31:24] 0-63 0
numidelctrl* Number of IDELAYCTRL the core will instantiate - 4
norefclk* Set to 1 if no 200 MHz reference clock is connected to

clkref200 input.
0-1 0

odten Enable odt: 0 = Disabled, 1 = 75Ohm, 2 =150Ohm, 3 =
50Ohm

0-3 0
GRIP, Sep 2018, Version 2018.3 200 www.cobham.com/gaisler

GRLIB IP Core
22.7 Implementation

22.7.1 Technology mapping

The core has two technology mapping VHDL generics: memtech and fabtech. The VHDL generic
memtech controls the technology used for memory cell implementation. The VHDL generic fabtech
controls the technology used in the PHY implementation. See the GRLIB Users’s Manual for avail-
able settings.

22.7.2 FPGA support

Complete PHY:s for a number of FPGA technologies are included in the distribution, see table below.
Unless otherwise noted these have been only functionally tested on evaluation board in lab environ-
ment and detailed timing analysis has not been performed. Note also that some of the FPGA phy:s use
simplified sampling approaches which may require the memory timing to be better than the JEDEC
standard specifies.
Scripts for post-layout static timing analysis are not included. Because these PHY:s are based on ded-
icated hard macros with fixed placement in the FPGA:s pad structure, just a minimal set of constraints
are normally neccessary for synthesis purposes.

rskew** Set the phase relationship between the DDR controller
clock and the input data sampling clock. Sets the phase
in ps.

0 - 9999 0

octen** Enable on chip termination: 1 = enabled, 0 = disabled 0 - 1 0
dqsgating*** Enable gating of DQS signals when doing reads. 1 =

enable, 0 = disable
0 - 1 0

nosync Disable insertion of synchronization registers between
AHB clock domain and DDR clock domain. This can be
done if the AHB clock’s rising edges always are in phase
with a rising edge on the DDR clock. If this generic is set
to 1 the clkmul and clkdiv generics should be equal. Oth-
erwise the DDR controller may scale the incoming clock
and loose the clocks’ edge alignment in the process.

0 - 1 0

eightbanks Enables address generation for DDR2 chips with eight
banks. The DDR_BA is extended to 3 bits if set to 1.

0 - 1 0

dqsse Single-ended DQS. The value of this generic is written
to bit 10 in the memory’s Extended Mode register. If this
bit is 1 DQS is used in a single-ended mode. Currently
this bit should only, and must be, set to 1 when the
Stratix2 DDR2 PHY is used. This is the only PHY that
supports single ended DQS without modification.

0 - 1 0

burstlen DDR access burst length in 32-bit words 8,16,32,..,256 8
ahbbits AHB bus width 32,64,128,256 AHBDW
ft Enable fault-tolerant version 0 - 1 0
ftbits Extra DDR data bits used for checkbits 0,8,16,32 0
bigmem Big memory support, changes the range of supported

total memory bank sizes from 8MB-1GB to 32MB-4GB
0 - 1 0

raspipe Enables an extra pipeline stage in the address decoding
to improve timing at the cost of one DDR-cycle latency

0 - 1 0

* only available in Virtex4/5 implementation.
** only available in Altera and Spartan3 implementations.
*** only available on Nextreme/eASIC implementations

Table 227.Configuration options

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 201 www.cobham.com/gaisler

GRLIB IP Core

Some PHY:s support instantiation without built-in pads, to separate the pads from the PHY the inter-
nal ddr2spax entity and the phy must be instantiated manually.

22.7.3 RAM usage

The FIFOs in the core are implemented with the syncram_2p (with separate clock for each port) com-
ponent found in the technology mapping library (TECHMAP). The number of RAMs used for the
FIFO implementation depends om the DDR data width, set by the ddrbits VHDL generic, and the
AHB bus width in the system.
The RAM block usage is tabulated below for the default burst length of 8 words. If the burst length is
doubled, the depths for all the RAMs double as well but the count and width remain the same.

22.7.4 Xilinx Virtex-specific issues

The Xilinx tools require one IDELAYCTRL macro to be instantiated in every region where the IDE-
LAY feature is used. Since the DDR2 PHY uses the IDELAY on every data (DQ) pin, this affects the
DDR2 core. For this purpose, the core has a numidelctrl generic, controlling how many IDELAYC-
TRL’s get instantiated in the PHY.
The tools allow for two ways to do this instantiation:
• Instantiate the same number of IDELAYCTRL as the number of clock regions containing DQ

pins and place the instances manually using UCF LOC constraints.
• Instantiate just one IDELAYCTRL, which the ISE tools will then replicate over all regions.

Table 228.FPGA DDR2 PHYs included in GRLIB

Technology fabtech Read clock method Built-in pads
Stratix 2 stratix2 Tech intrinsics (DQS based) Yes
Stratix 3 stratix3 Tunable static shift Yes
Spartan 3 spartan3 Clock feedback loop + static shift Yes
Virtex4,5,6 virtex4, virtex5, virtex6 Fixed clock, DQ shifted using

IDELAY
Yes or No

Spartan6 spartan6 Fixed clock, DQ shifted using
IDELAY

Yes or No

Table 229.Block-RAM usage for default burst length

DDR
width

AHB
width

Write FIFO block-RAM usage Read-FIFO block-RAM usage
Total RAM
countCount Depth Width Count Depth Width

16 32 1 16 32 1 8 32 2
16 64 2 8 32 2 4 32 4
16 128 4 4 32 4 2 32 8
16 256 8 2 32 8 1 32 16
32 32 2 8 32 1 4 64 3
32 64 2 8 32 1 4 64 3
32 128 4 4 32 2 2 64 6
32 256 8 2 32 4 1 64 12
64 32 4 4 32 1 2 128 5
64 64 4 4 32 1 2 128 5
64 128 4 4 32 1 2 128 5
64 256 8 2 32 2 1 128 10
GRIP, Sep 2018, Version 2018.3 202 www.cobham.com/gaisler

GRLIB IP Core

The second solution is the simplest, since you just need to set the numidelctrl to 1 and no extra con-
straints are needed. However, this approach will not work if IDELAY is used anywhere else in the
FPGA design.
For more information on IDELAYCTRL, see Xilinx Virtex4/5 User’s Guide.

22.7.5 Design tools

To run the design in Altera Quartus 7.2 you have to uncomment the lines in the .qsf file that assigns
the MEMORY_INTERFACE_DATA_PIN_GROUP for the DDR2 interface. These group assign-
ments result in error when Altera Quartus 8.0 is used.
GRIP, Sep 2018, Version 2018.3 203 www.cobham.com/gaisler

GRLIB IP Core

22.8 Signal descriptions

Table 230 shows the interface signals of the core (VHDL ports).

Table 230.Signal descriptions

Signal name Type Function Active
RST_DDR Input Reset input for the DDR PHY Low
RST_AHB Input Reset input for AHB clock domain Low
CLK_DDR Input DDR input Clock -
CLK_AHB Input AHB clock -
CLKREF200 Input 200 MHz reference clock -
LOCK Output DDR clock generator locked High
CLKDDRO Internal DDR clock output after clock multiplication
CLKDDRI Clock input for the internal DDR clock domain.

Must be connected to CLKDDRO.
AHBSI Input AHB slave input signals -
AHBSO Output AHB slave output signals -
DDR_CLK[2:0] Output DDR memory clocks (positive) High
DDR_CLKB[2:0] Output DDR memory clocks (negative) Low
DDR_CLK_FB_OUT Output DDR data synchronization clock, connect this to a

signal path with equal length of the DDR_CLK trace
+ DDR_DQS trace

-

DDR_CLK_FB Input DDR data synchronization clock, connect this to the
other end of the signal path connected to DDR_-
CLK_FB_OUT

-

DDR_CKE[1:0] Output DDR memory clock enable High
DDR_CSB[1:0] Output DDR memory chip select Low
DDR_WEB Output DDR memory write enable Low
DDR_RASB Output DDR memory row address strobe Low
DDR_CASB Output DDR memory column address strobe Low
DDR_DM[(DDRBITS+FTBITS)/8-1:0] Output DDR memory data mask Low
DDR_DQS[(DDRBITS+FTBITS)/8-1:0] Bidir DDR memory data strobe Low
DDR_DQSN[(DDRBITS+FTBITS)/8-1:0] Bidir DDR memory data strobe (inverted) High
DDR_AD[13:0] Output DDR memory address bus Low

DDR_BA[2 or 1:0] 3) Output DDR memory bank address Low

DDR_DQ[DDRBITS+FTBITS-1:0] BiDir DDR memory data bus -
DDR_ODT[1:0] Output DDR memory odt Low
1) see GRLIB IP Library User’s Manual
2) Polarity selected with the oepol generic
3) DDR_BA[2:0] if the eightbanks generic is set to 1 else DDR_BA[1:0]
4) Only used on Virtex4/5
5) Only used on Spartan3
GRIP, Sep 2018, Version 2018.3 204 www.cobham.com/gaisler

GRLIB IP Core

22.9 Library dependencies

Table 231 shows libraries used when instantiating the core (VHDL libraries).

22.10 Component declaration
component ddr2spa
 generic (
 fabtech : integer := 0;
 memtech : integer := 0;
 hindex : integer := 0;
 haddr : integer := 0;
 hmask : integer := 16#f00#;
 ioaddr : integer := 16#000#;
 iomask : integer := 16#fff#;
 MHz : integer := 100;
 clkmul : integer := 2;
 clkdiv : integer := 2;
 col : integer := 9;
 Mbyte : integer := 16;
 rstdel : integer := 200;
 pwron : integer := 0;
 oepol : integer := 0;
 ddrbits : integer := 16;
 ahbfreq : integer := 50;
 readdly : integer := 1;
 ddelayb0: integer := 0;
 ddelayb1: integer := 0;
 ddelayb2: integer := 0;
 ddelayb3: integer := 0;
 ddelayb4: integer := 0;
 ddelayb5: integer := 0;
 ddelayb6: integer := 0;
 ddelayb7: integer := 0
);
 port (
 rst_ddr : in std_ulogic;
 rst_ahb : in std_ulogic;
 clk_ddr : in std_ulogic;
 clk_ahb : in std_ulogic;
 clkref200 : in std_ulogic;
 lock : out std_ulogic;-- DCM locked
 clkddro : out std_ulogic;-- DCM locked
 clkddri : in std_ulogic;
 ahbsi : in ahb_slv_in_type;
 ahbso : out ahb_slv_out_type;
 ddr_clk : out std_logic_vector(2 downto 0);
 ddr_clkb : out std_logic_vector(2 downto 0);
 ddr_cke : out std_logic_vector(1 downto 0);
 ddr_csb : out std_logic_vector(1 downto 0);
 ddr_web : out std_ulogic; -- ddr write enable
 ddr_rasb : out std_ulogic; -- ddr ras
 ddr_casb : out std_ulogic; -- ddr cas
 ddr_dm : out std_logic_vector (ddrbits/8-1 downto 0); -- ddr dm
 ddr_dqs : inout std_logic_vector (ddrbits/8-1 downto 0); -- ddr dqs
 ddr_dqsn : inout std_logic_vector (ddrbits/8-1 downto 0); -- ddr dqs
 ddr_ad : out std_logic_vector (13 downto 0); -- ddr address
 ddr_ba : out std_logic_vector (1 downto 0); -- ddr bank address
 ddr_dq : inout std_logic_vector (ddrbits-1 downto 0); -- ddr data
 ddr_odt : out std_logic_vector(1 downto 0) -- odt
);
 end component;

Table 231.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB signal definitions
GAISLER MEMCTRL Signals, component Memory bus signals definitions, component declaration
GRIP, Sep 2018, Version 2018.3 205 www.cobham.com/gaisler

GRLIB IP Core

22.11 Instantiation

This example shows how the core can be instantiated.
The DDR SDRAM controller decodes SDRAM area at 0x40000000 - 0x7FFFFFFF. The DDR2
SDRAM registers are mapped into AHB I/O space on address (AHB I/O base address + 0x100).

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;

entity ddr_Interface is
 port (
 ddr_clk : out std_logic_vector(2 downto 0);
 ddr_clkb : out std_logic_vector(2 downto 0);
 ddr_cke : out std_logic_vector(1 downto 0);
 ddr_csb : out std_logic_vector(1 downto 0);
 ddr_web : out std_ulogic; -- ddr write enable
 ddr_rasb : out std_ulogic; -- ddr ras
 ddr_casb : out std_ulogic; -- ddr cas
 ddr_dm : out std_logic_vector (7 downto 0); -- ddr dm
 ddr_dqs : inout std_logic_vector (7 downto 0); -- ddr dqs
 ddr_dqsn : inout std_logic_vector (7 downto 0); -- ddr dqsn
 ddr_ad : out std_logic_vector (13 downto 0); -- ddr address
 ddr_ba : out std_logic_vector (1 downto 0); -- ddr bank address
 ddr_dq : inout std_logic_vector (63 downto 0); -- ddr data
 ddr_odt : out std_logic_vector (1 downto 0) -- ddr odt
);
end;

architecture rtl of mctrl_ex is

 -- AMBA bus
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal clkml, lock, clk_200,
signal clk_200 : std_ulogic; -- 200 MHz reference clock
signal ddrclkin, ahbclk : std_ulogic; -- DDR input clock and AMBA sys clock
signal rstn : std_ulogic; -- Synchronous reset signal
signal reset : std_ulogic; -- Asynchronous reset signal

begin

-- DDR controller

ddrc : ddr2spa generic map (fabtech => virtex4, ddrbits => 64, memtech => memtech,
hindex => 4, haddr => 16#400#, hmask => 16#F00#, ioaddr => 1,
pwron => 1, MHz => 100, col => 9, Mbyte => 32, ahbfreq => 50, ddrbits => 64,
readdly => 1, ddelayb0 => 0, ddelayb1 => 0, ddelayb2 => 0, ddelayb3 => 0,
ddelayb4 => 0, ddelayb5 => 0, ddelayb6 => 0, ddelayb7 => 0)
port map (
reset, rstn, ddrclkin, ahbclk, clk_200, lock, clkml, clkml, ahbsi, ahbso(4),
ddr_clk, ddr_clkb,
ddr_cke, ddr_csb, ddr_web, ddr_rasb, ddr_casb,
ddr_dm, ddr_dqs, ddr_adl, ddr_ba, ddr_dq, ddr_odt);
GRIP, Sep 2018, Version 2018.3 206 www.cobham.com/gaisler

GRLIB IP Core

23 DIV32 - Signed/unsigned 64/32 divider module

23.1 Overview

The divider module performs signed/unsigned 64-bit by 32-bit division. It implements the radix-2
non-restoring iterative division algorithm. The division operation takes 36 clock cycles. The divider
leaves no remainder. The result is rounded towards zero. Negative result, zero result and overflow
(according to the overflow detection method B of SPARC V8 Architecture manual) are detected.

23.2 Operation

The division is started when ‘1’ is samples on DIVI.START on positive clock edge. Operands are
latched externally and provided on inputs DIVI.Y, DIVI.OP1 and DIVI.OP2 during the whole opera-
tion. The result appears on the outputs during the clock cycle following the clock cycle after the
DIVO.READY was asserted. Asserting the HOLD input at any time will freeze the operation, until
HOLDN is de-asserted.

23.3 Implementation

23.3.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core will use asynchronous reset for all registers if the GRLIB config package setting grlib_asyn-
c_reset_enable is set.

23.4 Configurations options

Core has only one VHDL generic, scantest, that should be set to 1 if GRLIB has been configured to
use asynchronous reset.
GRIP, Sep 2018, Version 2018.3 207 www.cobham.com/gaisler

GRLIB IP Core

23.5 Signal descriptions

Table 232 shows the interface signals of the core (VHDL ports).

23.6 Library dependencies

Table 233 shows libraries used when instantiating the core (VHDL libraries).

23.7 Component declaration

The core has the following component declaration.
component div32
port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 holdn : in std_ulogic;

Table 232.Signal declarations

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
HOLDN N/A Input Hold Low
DIVI Y[32:0] Input Dividend - MSB part

Y[32] - Sign bit
Y[31:0] - Dividend MSB part in 2’s complement
format

High

OP1[32:0] Dividend - LSB part
OP1[32] - Sign bit
OP1[31:0] - Dividend LSB part in 2’s comple-
ment format

High

FLUSH Flush current operation High
SIGNED Signed division High
START Start division High

DIVO READY Output The result is available one clock after the ready
signal is asserted.

High

NREADY The result is available three clock cycles, assum-
ing hold=HIGH, after the nready signal is
asserted.

High

ICC[3:0] Condition codes
ICC[3] - Negative result
ICC[2] - Zero result
ICC[1] - Overflow
ICC[0] - Not used. Always ‘0’.

High

RESULT[31:0] Result High
TESTEN N/A Input Test enable (only used together with async. reset) High
TESTRST N/A Input Test reset (only used together with async. reset) Low

Table 233.Library dependencies

Library Package Imported unit(s) Description
GAISLER ARITH Signals, component Divider module signals, component declaration
GRIP, Sep 2018, Version 2018.3 208 www.cobham.com/gaisler

GRLIB IP Core

 divi : in div32_in_type;
 divo : out div32_out_type
);
end component;

23.8 Instantiation

This example shows how the core can be instantiated.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use gaisler.arith.all;

.

.

.

signal divi : div32_in_type;
signal divo : div32_out_type;

begin

div0 : div32 port map (rst, clk, holdn, divi, divo);

end;
GRIP, Sep 2018, Version 2018.3 209 www.cobham.com/gaisler

GRLIB IP Core

24 DSU3 - LEON3 Hardware Debug Support Unit

24.1 Overview

To simplify debugging on target hardware, the LEON3 processor implements a debug mode during
which the pipeline is idle and the processor is controlled through a special debug interface. The
LEON3 Debug Support Unit (DSU) is used to control the processor during debug mode. The DSU
acts as an AHB slave and can be accessed by any AHB master. An external debug host can therefore
access the DSU through several different interfaces. Such an interface can be a serial UART (RS232),
JTAG, PCI, USB or Ethernet. The DSU supports multi-processor systems and can handle up to 16
processors.

24.2 Operation

Through the DSU AHB slave interface, any AHB master can access the processor registers and the
contents of the instruction trace buffer. The DSU control registers can be accessed at any time, while
the processor registers and caches can only be accessed when the processor has entered debug mode.
In debug mode, the processor pipeline is held and the processor state can be accessed by the DSU.
Entering the debug mode can occur on the following events:
• executing a breakpoint instruction (ta 1)
• integer unit hardware breakpoint/watchpoint hit (trap 0xb)
• rising edge of the external break signal (DSUBRE)
• setting the break-now (BN) bit in the DSU control register
• a trap that would cause the processor to enter error mode
• occurrence of any, or a selection of traps as defined in the DSU control register
• after a single-step operation
• one of the processors in a multiprocessor system has entered the debug mode
• DSU AHB breakpoint or watchpoint hit

Processor(s)
LEON3Processor(s)

LEON3
Unit

AMBA AHB BUS

Debug Support

AHB Slave I/F

Debug I/F

AHB Master I/F

Figure 59. LEON3/DSU Connection

Ethernet

DEBUG HOST

Processor
LEON3Processor(s)

LEON3

JTAGPCIRS232 USB
GRIP, Sep 2018, Version 2018.3 210 www.cobham.com/gaisler

GRLIB IP Core

The debug mode can only be entered when the debug support unit is enabled through an external sig-
nal (DSUEN). For DSU break (DSUBRE), and the break-now BN bit, to have effect the Break-on-IU-
watchpoint (BW) bit must be set in the DSU control register. This bit is set when DSUBRE is active
after reset and should also be set by debug monitor software when initializing the DSU. When the
debug mode is entered, the following actions are taken:
• PC and nPC are saved in temporary registers (accessible by the debug unit)
• an output signal (DSUACT) is asserted to indicate the debug state
• the timer unit is (optionally) stopped to freeze the LEON timers and watchdog
The instruction that caused the processor to enter debug mode is not executed, and the processor state
is kept unmodified. Execution is resumed by clearing the BN bit in the DSU control register or by de-
asserting DSUEN. The timer unit will be re-enabled and execution will continue from the saved PC
and nPC. Debug mode can also be entered after the processor has entered error mode, for instance
when an application has terminated and halted the processor. The error mode can be reset and the pro-
cessor restarted at any address.
When a processor is in the debug mode, an access to ASI diagnostic area is forwarded to the IU which
performs access with ASI equal to value in the DSU ASI register and address consisting of 20 LSB
bits of the original address.

24.3 AHB trace buffer

The AHB trace buffer consists of a circular buffer that stores AHB data transfers, the monitored AHB
bus is either the same bus as the DSU AHB slave interface is connected to, or a completely separate
bus. The address, data and various control signals of the AHB bus are stored and can be read out for
later analysis. The trace buffer is 128, 160 or 224 bits wide, depending on the AHB bus width. The
way information stored is indicated in the table below:

In addition to the AHB signals, the DSU time tag counter is also stored in the trace.
The trace buffer is enabled by setting the enable bit (EN) in the trace control register. Each AHB
transfer is then stored in the buffer in a circular manner. The address to which the next transfer is writ-
ten is held in the trace buffer index register, and is automatically incremented after each transfer. Trac-

Table 234.AHB Trace buffer data allocation

Bits Name Definition
223:160 Load/Store data AHB HRDATA/HWDATA(127:64)
159:129 Load/Store data AHB HRDATA/HWDATA(63:32)
127 AHB breakpoint hit Set to ‘1’ if a DSU AHB breakpoint hit occurred.
126 - Not used
125:96 Time tag DSU time tag counter
95:80 - Not used
79 Hwrite AHB HWRITE
78:77 Htrans AHB HTRANS
76:74 Hsize AHB HSIZE
73:71 Hburst AHB HBURST
70:67 Hmaster AHB HMASTER
66 Hmastlock AHB HMASTLOCK
65:64 Hresp AHB HRESP
63:32 Load/Store data AHB HRDATA/HWDATA(31:0)
31:0 Load/Store address AHB HADDR
GRIP, Sep 2018, Version 2018.3 211 www.cobham.com/gaisler

GRLIB IP Core

ing is stopped when the EN bit is reset, or when a AHB breakpoint is hit. Tracing is temporarily
suspended when the processor enters debug mode, unless the trace force bit (TF) in the trace control
register is set. If the trace force bit is set, the trace buffer is activated as long as the enable bit is set.
The force bit is reset if an AHB breakpoint is hit and can also be cleared by software. Note that neither
the trace buffer memory nor the breakpoint registers (see below) can be read/written by software
when the trace buffer is enabled.
The DSU has an internal time tag counter and this counter is frozen when the processor enters debug
mode. When AHB tracing is performed in debug mode (using the trace force bit) it may be desirable
to also enable the time tag counter. This can be done using the timer enable bit (TE). Note that the
time tag is also used for the instruction trace buffer and the timer enable bit should only be set when
using the DSU as an AHB trace buffer only, and not when performing profiling or software debug-
ging. The timer enable bit is reset on the same events as the trace force bit.

24.3.1 AHB trace buffer filters

The DSU can be implemented with filters that can be applied to the AHB trace buffer, breakpoints and
watchpoints. If implemented, these filters are controlled via the AHB trace buffer filter control and
AHB trace buffer filter mask registers. The fields in these registers allows masking access characteris-
tics such as master, slave, read, write and address range so that accesses that correspond to the speci-
fied mask are not written into the trace buffer. Address range masking is done using the second AHB
breakpoint register set. The values of the LD and ST fields of this register has no effect on filtering.

24.3.2 AHB statistics

The DSU can be implemented to generate statistics from the traced AHB bus. When statistics collec-
tion is enabled the DSU will assert outputs that are suitable to connect to a LEON3 statistics unit
(L3STAT). The statistical outputs can be filtered by the AHB trace buffer filters, this is controlled by
the Performance counter Filter bit (PF) in the AHB trace buffer filter control register. The DSU can
collect data for the events listed in table 235 below.

Table 235.AHB events

Event Description Note
idle HTRANS=IDLE Active when HTRANS IDLE is driven on the AHB slave inputs and

slave has asserted HREADY.
busy HTRANS=BUSY Active when HTRANS BUSY is driven on the AHB slave inputs and

slave has asserted HREADY.
nseq HTRANS=NONSEQ Active when HTRANS NONSEQ is driven on the AHB slave inputs

and slave has asserted HREADY.
seq HTRANS=SEQ Active when HTRANS SEQUENTIAL is driven on the AHB slave

inputs and slave has asserted HREADY.
read Read access Active when HTRANS is SEQUENTIAL or NON-SEQUENTIAL,

slave has asserted HREADY and the HWRITE input is low.
write Write access Active when HTRANS is SEQUENTIAL or NON-SEQUENTIAL,

slave has asserted HREADY and the HWRITE input is high.
hsize[5:0] Transfer size Active when HTRANS is SEQUENTIAL or NON-SEQUENTIAL,

slave has asserted HREADY and HSIZE is BYTE (hsize[0]),
HWORD (HSIZE[1]), WORD (hsize[2]), DWORD (hsize[3]),
4WORD hsize[4], or 8WORD (hsize[5]).

ws Wait state Active when HREADY input to AHB slaves is low and AMBA
response is OKAY.

retry RETRY response Active when master receives RETRY response
split SPLIT response Active when master receives SPLIT response
GRIP, Sep 2018, Version 2018.3 212 www.cobham.com/gaisler

GRLIB IP Core
24.4 Instruction trace buffer

The instruction trace buffer consists of a circular buffer that stores executed instructions. The instruc-
tion trace buffer is located in the processor, and read out via the DSU. The trace buffer is 128 bits
wide, the information stored is indicated in the table below:

During tracing, one instruction is stored per line in the trace buffer with the exception of multi-cycle
instructions. Multi-cycle instructions are entered two or three times in the trace buffer. For store
instructions, bits [95:64] correspond to the store address on the first entry and to the stored data on the
second entry (and third in case of STD). Bit 126 is set on the second and third entry to indicate this. A
double load (LDD) is entered twice in the trace buffer, with bits [95:64] containing the loaded data.
Bit 126 is set for the second entry.
When the processor enters debug mode, tracing is suspended. The trace buffer and the trace buffer
control register can be read and written while the processor is in the debug mode. During the instruc-
tion tracing (processor in normal mode) the trace buffer and trace buffer control register 0 can not be
written. If the two-port trace buffer is enabled (refer to the tbuf generic in section 81.16), then the
trace buffer can be read contextually to the instruction tracing (processor in normal mode). The traced
instructions can optionally be filtered on instruction types. Which instructions are traced is defined in
the instruction trace register [31:28], as defined in the table below:

spdel SPLIT delay Active during the time a master waits to be granted access to the bus
after reception of a SPLIT response. The core will only keep track of
one master at a time. This means that when a SPLIT response is
detected, the core will save the master index. This event will then be
active until the same master is re-allowed into bus arbitration and is
granted access to the bus. This also means that the delay measured
will include the time for re-arbitration, delays from other ongoing
transfers and delays resulting from other masters being granted
access to the bus before the SPLIT:ed master is granted again after
receiving SPLIT complete.
If another master receives a SPLIT response while this event is
active, the SPLIT delay for the second master will not be measured.

locked Locked access Active while the HMASTLOCK signal is asserted on the AHB slave
inputs.

Table 236.Instruction trace buffer data allocation

Bits Name Definition
127 - Unused
126 Multi-cycle instruction Set to ‘1’ on the second and third instance of a multi-cycle instruc-

tion (LDD, ST or FPOP)
125:96 Time tag The value of the DSU time tag counter
95:64 Load/Store parameters Instruction result, Store address or Store data
63:34 Program counter Program counter (2 lsb bits removed since they are always zero)
33 Instruction trap Set to ‘1’ if traced instruction trapped
32 Processor error mode Set to ‘1’ if the traced instruction caused processor error mode
31:0 Opcode Instruction opcode

Table 235.AHB events

Event Description Note
GRIP, Sep 2018, Version 2018.3 213 www.cobham.com/gaisler

GRLIB IP Core
It is also possible to filter traced instructions based on the program counter value. This option is com-
bined with the filtering option if an additional filtering mechanism is activated from Table 237. Refer
to section 24.6.13 for detailed information.

24.5 DSU memory map

The DSU memory map can be seen in table 238 below. In a multiprocessor systems, the register map
is duplicated and address bits 27 - 24 are used to index the processor.
Note: The DSU memory interface is intended to be accessed by a debug monitor. Software running on
the LEON processors should not access the DSU interface. Registers, such as ASR registers, may not
have all fields available via the DSU interface

Table 237.Trace filter operation

Trace filter Instructions traced
0x0 All instructions
0x1 SPARC Fomat 2 instructions
0x2 Control-flow changes. All Call, branch and trap instructions including branch targets
0x4 SPARC Format 1 instructions (CALL)
0x8 SPARC Format 3 instructions except LOAD or STORE
0xC SPARC Format 3 LOAD or STORE instructions
0xD SPARC Format 3 LOAD or STORE instructions to alternate space
0xE SPARC Format 3 LOAD or STORE instructions to alternate space 0x80 - 0xFF with ASI last digit base

filtering

Table 238.DSU memory map

Address offset Register

0x000000 DSU control register

0x000008 Time tag counter

0x000020 Break and Single Step register

0x000024 Debug Mode Mask register

0x000040 AHB trace buffer control register

0x000044 AHB trace buffer index register

0x000048 AHB trace buffer filter control register

0x00004c AHB trace buffer filter mask register

0x000050 AHB breakpoint address 1

0x000054 AHB mask register 1

0x000058 AHB breakpoint address 2

0x00005c AHB mask register 2

0x100000 - 0x10FFFF Instruction trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64,
..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)

0x110000 Instruction Trace buffer control register 0

0x110004 Instruction Trace buffer control register 1

0x200000 - 0x210000 AHB trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64,
..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)

0x300000 - 0x3007FC IU register file, port1 (%asr16.dpsel = 0)
IU register file, port 2 (%asr16.dpsel = 1)

0x300800 - 0x300FFC IU register file check bits (LEON3FT only)
GRIP, Sep 2018, Version 2018.3 214 www.cobham.com/gaisler

GRLIB IP Core
The addresses of the IU registers depends on how many register windows has been implemented:
• %on : 0x300000 + (((psr.cwp * 64) + 32 + n*4) mod (NWINDOWS*64))
• %ln : 0x300000 + (((psr.cwp * 64) + 64 + n*4) mod (NWINDOWS*64))
• %in : 0x300000 + (((psr.cwp * 64) + 96 + n*4) mod (NWINDOWS*64))
• %gn : 0x300000 + (NWINDOWS*64) + n*4
• %fn : 0x301000 + n*4

24.6 DSU registers

24.6.1 DSU control register

The DSU is controlled by the DSU control register:

0x301000 - 0x30107C FPU register file

0x301800 - 0x30187C FPU register file check bits (LEON3FT only)
0x400000 - 0x4FFFFC IU special purpose registers

0x400000 Y register

0x400004 PSR register

0x400008 WIM register

0x40000C TBR register

0x400010 PC register

0x400014 NPC register

0x400018 FSR register

0x40001C CPSR register

0x400020 DSU trap register

0x400024 DSU ASI register

0x400040 - 0x40007C ASR16 - ASR31 (when implemented)

0x700000 - 0x7FFFFC ASI diagnostic access (ASI = value in DSU ASI register, address = address[19:0])
ASI = 0x9 : Local instruction RAM, ASI = 0xB : Local data RAM
ASI = 0xC : Instruction cache tags, ASI = 0xD : Instruction cache data
ASI = 0xE : Data cache tags, ASI = 0xF : Data cache data
ASI = 0x1E : Separate snoop tags

Table 239.0x000000 - CTRL - DSU control register
31 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED PW HL PE EB EE DM BZ BX BS BW BE TE

0 0 0 0 * * * * * * * *

r r rw rw r r r rw rw rw rw rw rw

31: 12 Reserved
11 Power down (PW) - Returns ‘1’ when processor is in power-down mode.
10 Processor halt (HL) - Returns ‘1’ on read when processor is halted. If the processor is in debug

mode, setting this bit will put the processor in halt mode.
9 Processor error mode (PE) - returns ‘1’ on read when processor is in error mode, else ‘0’. If written

with ‘1’, it will clear the error and halt mode.
8 External Break (EB) - Value of the external DSUBRE signal (read-only)
7 External Enable (EE) - Value of the external DSUEN signal (read-only)
6 Debug mode (DM) - Indicates when the processor has entered debug mode (read-only).
5 Break on error traps (BZ) - if set, will force the processor into debug mode on all except the follow-

ing traps: priviledged_instruction, fpu_disabled, window_overflow, window_underflow, asynchro-
nous_interrupt, ticc_trap.

Table 238.DSU memory map

Address offset Register
GRIP, Sep 2018, Version 2018.3 215 www.cobham.com/gaisler

GRLIB IP Core
24.6.2 DSU Break and Single Step register

This register is used to break or single step the processor(s). This register controls all processors in a
multi-processor system, and is only accessible in the DSU memory map of processor 0.

24.6.3 DSU Debug Mode Mask Register

When one of the processors in a multiprocessor LEON3 system enters the debug mode the value of
the DSU Debug Mode Mask register determines if the other processors are forced in the debug mode.
This register controls all processors in a multi-processor system, and is only accessible in the DSU
memory map of processor 0.

4 Break on trap (BX) - if set, will force the processor into debug mode when any trap occurs.
3 Break on S/W breakpoint (BS) - if set, debug mode will be forced when an breakpoint instruction (ta

1) is executed.
2 Break on IU watchpoint (BW) - if set, debug mode will be forced on a IU watchpoint (trap 0xb).
1 Break on error (BE) - if set, will force the processor to debug mode when the processor would have

entered error condition (trap in trap).
0 Trace enable (TE) - Enables instruction tracing. If set the instructions will be stored in the trace

buffer. Remains set when then processor enters debug or error mode

Table 240.0x000020 - BRSS - BRSS - DSU Break and Single Step register
31 16 15 0

SS[15:0] BN[15:0]

31: 16 Single step (SSx) - if set, the processor x will execute one instruction and return to debug mode. The
bit remains set after the processor goes into the debug mode. As an exception, if the instruction is a
branch with the annul bit set, and if the delay instruction is effectively annulled, the processor will
execute the branch, the annulled delay instruction and the instruction thereafter before returning to
debug mode.

15: 0 Break now (BNx) -Force processor x into debug mode if the Break on watchpoint (BW) bit in the
processors DSU control register is set. If cleared, the processor x will resume execution.

Table 241.0x000024 - DBGM - DSU Debug Mode Mask register
31 16 15 0

DM[15:0] ED[15:0]

31: 16 Debug mode mask (DMx) - If set, the corresponding processor will not be able to force running pro-
cessors into debug mode even if it enters debug mode.

15: 0 Enter debug mode (EDx) - Force processor x into debug mode if any of processors in a multiproces-
sor system enters the debug mode. If 0, the processor x will not enter the debug mode.

Table 239.0x000000 - CTRL - DSU control register
GRIP, Sep 2018, Version 2018.3 216 www.cobham.com/gaisler

GRLIB IP Core

24.6.4 DSU trap register

The DSU trap register is a read-only register that indicates which SPARC trap type that caused the
processor to enter debug mode. When debug mode is force by setting the BN bit in the DSU control
register, the trap type will be 0xb (hardware watchpoint trap).

24.6.5 DSU time tag counter

The trace buffer time tag counter is incremented each clock as long as the processor is running. The
counter is stopped when the processor enters debug mode and when the DSU is disabled (unless the
timer enable bit in the AHB trace buffer control register is set), and restarted when execution is
resumed.

The value is used as time tag in the instruction and AHB trace buffer.
The width of the timer is configurable at implementation time.

24.6.6 DSU ASI register

The DSU can perform diagnostic accesses to different ASI areas. The value in the ASI diagnostic
access register is used as ASI while the address is supplied from the DSU.

24.6.7 AHB Trace buffer control register

The AHB trace buffer is controlled by the AHB trace buffer control register:

Table 242.0x400020 - DTR - DSU Trap register
31 13 12 11 4 3 0

RESERVED EM TRAPTYPE R

31: 13 RESERVED
12 Error mode (EM) - Set if the trap would have cause the processor to enter error mode.
11: 4 Trap type (TRAPTYPE) - 8-bit SPARC trap type
3: 0 Read as 0x0

Table 243.0x000008 - DTTC - DSU time tag counter
31 0

TIMETAG

0

rw

31: 0 DSU Time Tag Value (TIMETAG)

Table 244.0x400024 - DASI - ASI diagnostic access register
31 8 7 0

RESERVED ASI

0 NR

r rw

31: 8 RESERVED
7: 0 ASI (ASI) - ASI to be used on diagnostic ASI access

Table 245.0x000040 - ATBC - AHB trace buffer control register
31 16 15 8 7 6 5 4 3 2 1 0

DCNT RESERVED DF SF TE TF BW BR DM EN
GRIP, Sep 2018, Version 2018.3 217 www.cobham.com/gaisler

GRLIB IP Core
24.6.8 AHB trace buffer index register

The AHB trace buffer index register contains the address of the next trace line to be written.

24.6.9 AHB trace buffer filter control register

The trace buffer filter control register is only available if the core has been implemented with support
for AHB trace buffer filtering.

0 0 0 0 0 0 0 0 0 0

rw r rw rw rw rw r rw rw rw

31: 16 Trace buffer delay counter (DCNT) - Note that the number of bits actually implemented depends on
the size of the trace buffer.

15: 9 RESERVED
8 Enable Debug Mode Timer Freeze (DF) - The time tag counter keeps counting in debug mode when

at least one of the processors has the internal timer enabled. If this bit is set to ‘1’ then the time tag
counter is frozen when the processors have entered debug mode.

7 Sample Force (SF) - If this bit is written to ‘1’ it will have the same effect on the AHB trace buffer as
if HREADY was asserted on the bus at the same time as a sequential or non-sequential transfer is
made. This means that setting this bit to ‘1’ will cause the values in the trace buffer’s sample regis-
ters to be written into the trace buffer, and new values will be sampled into the registers. This bit will
automatically be cleared after one clock cycle.
Writing to the trace buffer still requires that the trace buffer is enabled (EN bit set to ‘1’) and that the
CPU is not in debug mode or that tracing is forced (TF bit set to ‘1’). This functionality is primarily
of interest when the trace buffer is tracing a separate bus and the traced bus appears to have frozen.

6 Timer enable (TE) - Activates time tag counter also in debug mode.
5 Trace force (TF) - Activates trace buffer also in debug mode. Note that the trace buffer must be disa-

bled when reading out trace buffer data via the core’s register interface.
4: 3 Bus width (BW) - This value corresponds to log2(Supported bus width / 32)
2 Break (BR) - If set, the processor will be put in debug mode when AHB trace buffer stops due to

AHB breakpoint hit.
1 Delay counter mode (DM) - Indicates that the trace buffer is in delay counter mode.
0 Trace enable (EN) - Enables the trace buffer.

Table 246.0x000044 - ATBI - AHB trace buffer index register
31 4 3 0

INDEX R

NR 0

rw r

31: 4 Trace buffer index counter (INDEX) - Note that the number of bits actually implemented depends on
the size of the trace buffer.

3: 0 Read as 0x0

Table 247.0x000048 - ATBFC - AHB trace buffer filter control register
31 14 13 12 11 10 9 8 7 4 3 2 1 0

RESERVED WPF R BPF RESERVED PF AF FR FW

0 0 0 0 0 0 0 0 0

r rw r rw r rw rw rw rw

31: 14 RESERVED

Table 245.0x000040 - ATBC - AHB trace buffer control register
GRIP, Sep 2018, Version 2018.3 218 www.cobham.com/gaisler

GRLIB IP Core
24.6.10 AHB trace buffer filter mask register

The trace buffer filter mask register is only available if the core has been implemented with support
for AHB trace buffer filtering.

24.6.11 AHB trace buffer breakpoint registers

The DSU contains two breakpoint registers for matching AHB addresses. A breakpoint hit is used to
freeze the trace buffer by automatically clearing the enable bit. Freezing can be delayed by program-
ming the DCNT field in the trace buffer control register to a non-zero value. In this case, the DCNT
value will be decremented for each additional trace until it reaches zero, after which the trace buffer is
frozen. A mask register is associated with each breakpoint, allowing breaking on a block of addresses.
Only address bits with the corresponding mask bit set to ‘1’ are compared during breakpoint detec-
tion. To break on AHB load or store accesses, the LD and/or ST bits should be set.

13: 12 AHB watchpoint filtering (WPF) - Bit 13 of this field applies to AHB watchpoint 2 and bit 12
applies to AHB watchpoint 1. If the WPF bit for a watchpoint is set to ‘1’ then the watchpoint will
not trigger unless the access also passes through the filter. This functionality can be used to, for
instance, set a AHB watchpoint that only triggers if a specified master performs an access to a spec-
ified slave.

11: 10 RESERVED
9: 8 AHB breakpoint filtering (BPF) - Bit 9 of this field applies to AHB breakpoint 2 and bit 8 applies to

AHB breakpoint 1. If the BPF bit for a breakpoint is set to ‘1’ then the breakpoint will not trigger
unless the access also passes through the filter. This functionality can be used to, for instance, set a
AHB breakpoint that only triggers if a specified master performs an access to a specified slave. Note
that if a AHB breakpoint is coupled with an AHB watchpoint then the setting of the corresponding
bit in this field has no effect.

7: 4 RESERVED
3 Performance counter Filter (PF) - If this bit is set to ‘1’, the cores performance counter (statistical)

outputs will be filtered using the same filter settings as used for the trace buffer. If a filter inhibits a
write to the trace buffer, setting this bit to ‘1’ will cause the same filter setting to inhibit the pulse on
the statistical output.

2 Address Filter (AF) - If this bit is set to ‘1’, only the address range defined by AHB trace buffer
breakpoint 2’s address and mask will be included in the trace buffer.

1 Filter Reads (FR) - If this bit is set to ‘1’, read accesses will not be included in the trace buffer.
0 Filter Writes (FW) - If this bit is set to ‘1’, write accesses will not be included in the trace buffer.

Table 248.0x00004C - ATBFM - AHB trace buffer filter mask register
31 16 15 0

SMASK[15:0] MMASK[15:0]

0 0

rw rw

31: 16 Slave Mask (SMASK) - If SMASK[n] is set to ‘1’, the trace buffer will not save accesses performed
to slave n.

15: 0 Master Mask (MMASK) - If MMASK[n] is set to ‘1’, the trace buffer will not save accesses per-
formed by master n.

Table 249.0x000050, 0x000058 - ATBBA - AHB trace buffer break address register
31 2 1 0

BADDR[31:2] R

NR 0

rw r

31: 2 Break point address (BADDR) - Bits 31:2 of breakpoint address
1: 0 Read as 0b00

Table 247.0x000048 - ATBFC - AHB trace buffer filter control register
GRIP, Sep 2018, Version 2018.3 219 www.cobham.com/gaisler

GRLIB IP Core
24.6.12 Instruction trace control register 0

The instruction trace control register 0 contains a pointer that indicates the next line of the instruction
trace buffer to be written.

24.6.13 Instruction trace control register 1

The instruction trace control register 1 contains settings used for trace buffer overflow detection, in
addition it includes settings used for some of the instruction trace buffer filtering options. This register
can be written while the processor is running.
Bits [31:28] is used to enable or disable Instruction Trace Buffer Address based Filtering (ITBAF).
ITBAF is intended to allow the available hardware watch-point (HWP) registers to be used as instruc-
tion trace buffer filters when they are not used for breakpoint operation. If a bit is set to ‘1’ in ITBAF,
the corresponding address and mask information in the HWP register will be used to filter instruction
trace entries based on the program counter (PC) value. Bits[31:28] corresponds to HWP[3:0] respec-
tively. ITBAF can only be used if the corresponding HWP register exist in the hardware. Instruction
Trace Buffer Address based Filtering Option (ITBAFO, Bits[19:16]) determines the type of filtering
for the corresponding ITBAF entry. If an ITBAFO entry is set to ‘0’ only the PC value(s) that match
the address and mask option in the corresponding HWP register will be logged in the instruction trace
buffer (ITB). If a bit is set to ‘1’ only the PC value(s) that does not match the address and mask option
in the corresponding HWP register will be logged in the ITB. Bits[19:16] corresponds to the option
for ITBAF[3:0] respectively. If there is more than one address filtering operation is enabled, the corre-
sponding filtering operations will be combined together.

Bits[15:0] corresponds to ASI last digit based filtering mask (ASIFMASK). ASIFMASK is in effect
when the trace filter configuration is set to 0xE (SPARC Format 3 LOAD or STORE instructions to
alternate space 0x80 - 0xFF with ASI last digit base filtering). Bits[15:0] corresponds to digits
[0xF:0x0] respectively. If a bit is set to ‘0’ in the ASIFMASK, the load and store instructions which
have an ASI between the range of 0x80-0xFF and have the corresponding last digit are logged in the
instruction trace buffer. For example if only the bit0 and bit2 of the ASIFMASK are ‘0’ then only the
load and store instructions with ASIs 0x80, 0x82, 0x90, 0x92, 0xA0, 0xA2, 0xB0, 0xB2, 0xC0, 0xC2,
0xD0, 0xD2, 0xE0, 0xE2, 0xF0, 0xF2 are tracked in the ITB. After the reset of processor all the bits

Table 250.0x000054, 0x00005C - ATBBM - AHB trace buffer break mask register
31 2 1 0

BMASK[31:2] LD ST

NR 0 0

rw rw rw

31: 2 Breakpoint mask (BMASK) - (see text)
1 Load (LD) - Break on data load address
0 Store (ST) - Break on data store address

Table 251.0x110000 - ITBCO - Instruction trace control register 0
31 29 28 16 15 0

RESERVED ITPOINTER

0 NR

r rw

31: 28 Trace filter configuration
27: 16 RESERVED
15: 0 Instruction trace pointer (ITPOINTER) - Note that the number of bits actually implemented depends

on the size of the trace buffer
GRIP, Sep 2018, Version 2018.3 220 www.cobham.com/gaisler

GRLIB IP Core

in the ASIFMASK is set to 0x0000 which means by default all the ASIs in the range of 0x80-0xFF are
tracked.

24.7 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x017. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

24.8 Implementation

24.8.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core does not support grlib_async_reset_enable. All registers that react on the reset signal will
have a synchronous reset.

24.8.2 Technology mapping

DSU3 has one technology mapping generic, tech. This generic controls the implementation of which
technology that will be used to implement the trace buffer memories. The AHB trace buffer will use
two identical SYNCRAM64 blocks to implement the buffer memory (SYNCRAM64 may then result
in two 32-bit wide memories on the target technology, depending on the technology map), with one
additional 32-bit wide SYNCRAM if the system’s AMBA data bus width is 64-bits, and also one
additional 64-bit wide SYNCRAM if the system’s AMBA data bus width exceeds 64 bits.
The depth of the RAMs depends on the KBYTES generic. If KBYTES = 1 (1 Kbyte), then the depth
will be 64. If KBYTES = 2, then the RAM depth will be 128 and so on.

Table 252.0x110004 - ITBCI - Instruction trace control register 1
31 28 27 26 24 23 22 20 19 16 15 0

ITBAF W
O

TLIM OV RESERVED ITBAFO ASIFMASK

0 0 0 0 0 0 0

rw rw rw rw r rw rw

31: 28 Instruction Trace Buffer Address based Filtering (ITBAF) (see text)
27 Watchpoint on overflow (WO) - If this bit is set, and Break on iu watchpoint (BW) is enabled in the

DSU control register, then a watchpoint will be inserted when a trace overflow is detected (TOV
field in this register gets set).

26: 24 Trace Limit (TLIM) - TLIM is compared with the top bits of ITPOINTER in Instruction trace con-
trol register 0 to generate the value in the TOV field below.

23 Trace Overflow (TOV) - Gets set to ‘1’ when the DSU detects that TLIM equals the top three bits of
ITPOINTER.

22: 20 RESERVED
19: 16 Instruction Trace Buffer Address based Filtering Option (ITBAFO) (see text)
15: 0 ASI last digit based filtering mask (ASIFMASK) (see text)
GRIP, Sep 2018, Version 2018.3 221 www.cobham.com/gaisler

GRLIB IP Core

24.9 Configuration options

Table 253 shows the configuration options of the core (VHDL generics).

24.10 Signal descriptions

Table 254 shows the interface signals of the core (VHDL ports). There are several top-level entities
available for the DSU3. The dsu3x entity contains all signals and settings. The other entities are wrap-
pers around dsu3x. The available entities are:
• dsu3 - Entity without support for double clocking. AHB trace of same bus as DSU AHB slave

interface is connected to.
• dsu3_2x - Entity with support for LEON3 double-clocking. AHB trace of same bus as DSU AHB

slave interface is connected to.
• dsu3_mb - Entity with support for AHB tracing of separate bus
• dsu3x - Entity with support for all features (double-clocking and tracing of separate bus)

Table 253.Configuration options

Generic Function Allowed range Default
hindex AHB slave index 0 - NAHBSLV-1 0
haddr AHB slave address (AHB[31:20]) 0 - 16#FFF# 16#900#
hmask AHB slave address mask 0 - 16#FFF# 16#F00#
ncpu Number of attached processors 1 - 16 1
tbits Number of bits in the time tag counter 2 - 63 30
tech Memory technology for trace buffer RAM 0 - NTECH-1 0 (inferred)
kbytes Size of trace buffer memory in Kbytes. A value of 0

will disable the trace buffer function.
0 - 64 0 (disabled)

clk2x Support for LEON3 double-clocking (this generic is
only available on dsu3x entity), see next section.

0 - 1 0 (disabled)

testen Scan test support enable 0 - 1 0
bwidth Traced AHB bus width 32, 64, 128 32
ahbpf AHB performance counters and filtering. If ahbpf is

non-zero the core will support AHB trace buffer fil-
tering. If ahbpf is larger than 1 then the core’s statis-
tical outputs will be enabled.

0 - 2 0
GRIP, Sep 2018, Version 2018.3 222 www.cobham.com/gaisler

GRLIB IP Core

24.11

Table 254.Signal descriptions

Signal definitions and reset values

The signals and their reset values are described in table 255.

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input CPU and bus clock, on dsu3 and dsu3_mb entites -
HCLK N/A Input Bus clock, on dsu3_2x and dsu3x entities. Only

used when double-clocking is enabled.
-

CPUCLK N/A Input CPU clock, on dsu3_2x and dsu3x entities -
AHBMI * Input AHB master input signals, used for AHB tracing -
AHBSI * Input AHB slave input signals, used for AHB tracing

when using dsu3 and dsu3_2x entities
-

AHBSO * Output AHB slave output signals -
TAHBSI * Input AHB slave input signals, used for AHB tracing

when using dsu3_mb and dsu3x entities
-

DBGI - Input Debug signals from LEON3 -
DBGO - Output Debug signals to LEON3 -
DSUI ENABLE Input DSU enable High

BREAK Input DSU break High
DSUO ACTIVE Output Debug mode High

PWD[n-1 : 0] Output Clock gating enable for processor [n] High
ASTAT (record) Output AHB statistic/performance counter events -

HCLKEN N/A Input Double-clocking qualifier signal. Only used with
double-clocking on dsu4_2x and dsu4x entities

High

* see GRLIB IP Library User’s Manual

Table 255.Signal definitions and reset values

Signal name Type Function Active Reset value
dsuen Input DSU enable High -
dsubre Input DSU break High -
dsuact Output Debug mode High Logical 0
GRIP, Sep 2018, Version 2018.3 223 www.cobham.com/gaisler

GRLIB IP Core

24.12 Timing

The timing waveforms and timing parameters are shown in figure 60 and are defined in table 256.

• Note: The dsubre and dsuen are re-synchronized internally. These signals do not have to meet
any setup or hold requirements.

24.13 Library dependencies

Table 257 shows libraries used when instantiating the core (VHDL libraries).

24.14 Component declaration

The core has the following component declaration.

component dsu3
 generic (
 hindex : integer := 0;
 haddr : integer := 16#900#;
 hmask : integer := 16#f00#;
 ncpu : integer := 1;
 tbits : integer := 30;
 tech : integer := 0;
 irq : integer := 0;
 kbytes : integer := 0
);
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 ahbmi : in ahb_mst_in_type;
 ahbsi : in ahb_slv_in_type;
 ahbso : out ahb_slv_out_type;
 dbgi : in l3_debug_out_vector(0 to NCPU-1);
 dbgo : out l3_debug_in_vector(0 to NCPU-1);
 dsui : in dsu_in_type;
 dsuo : out dsu_out_type

Table 256.Timing parameters

Name Parameter Reference edge Min Max Unit
tDSU0 clock to output delay rising clk edge TBD TBD ns

tDSU1 input to clock hold rising clk edge - - ns

tDSU2 input to clock setup rising clk edge - - ns

Table 257.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB signal definitions
GAISLER LEON3 Component, signals Component declaration, signals declaration

Figure 60. Timing waveforms

tDSU0dsuact

clk

tDSU0

tDSU1dsuen, dsubre tDSU2
GRIP, Sep 2018, Version 2018.3 224 www.cobham.com/gaisler

GRLIB IP Core

);
 end component;

24.15 Instantiation

This example shows how the core can be instantiated.
The DSU is always instantiated with at least one LEON3 processor. It is suitable to use a generate
loop for the instantiation of the processors and DSU and showed below.

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.leon3.all;

constant NCPU : integer := 1; -- select number of processors

signal leon3i : l3_in_vector(0 to NCPU-1);
signal leon3o : l3_out_vector(0 to NCPU-1);
signal irqi : irq_in_vector(0 to NCPU-1);
signal irqo : irq_out_vector(0 to NCPU-1);

signal dbgi : l3_debug_in_vector(0 to NCPU-1);
signal dbgo : l3_debug_out_vector(0 to NCPU-1);

signal dsui : dsu_in_type;
signal dsuo : dsu_out_type;

.
begin

cpu : for i in 0 to NCPU-1 generate
 u0 : leon3s-- LEON3 processor
 generic map (ahbndx => i, fabtech => FABTECH, memtech => MEMTECH)
 port map (clkm, rstn, ahbmi, ahbmo(i), ahbsi, ahbsi, ahbso,
 irqi(i), irqo(i), dbgi(i), dbgo(i));
 irqi(i) <= leon3o(i).irq; leon3i(i).irq <= irqo(i);
end generate;

dsu0 : dsu3-- LEON3 Debug Support Unit
 generic map (ahbndx => 2, ncpu => NCPU, tech => memtech, kbytes => 2)
 port map (rstn, clkm, ahbmi, ahbsi, ahbso(2), dbgo, dbgi, dsui, dsuo);
dsui.enable <= dsuen; dsui.break <= dsubre; dsuact <= dsuo.active;
GRIP, Sep 2018, Version 2018.3 225 www.cobham.com/gaisler

GRLIB IP Core

25 DSU4 - LEON4 Hardware Debug Support Unit

25.1 Overview

To simplify debugging on target hardware, the LEON4 processor implements a debug mode during
which the pipeline is idle and the processor is controlled through a special debug interface. The
LEON4 Debug Support Unit (DSU) is used to control the processor during debug mode. The DSU
acts as an AHB slave and can be accessed by any AHB master. An external debug host can therefore
access the DSU through several different interfaces. Such an interface can be a serial UART (RS232),
JTAG, PCI, USB or Ethernet. The DSU supports multi-processor systems and can handle up to 16
processors.

25.2 Operation

Through the DSU AHB slave interface, any AHB master can access the processor registers and the
contents of the instruction trace buffer. The DSU control registers can be accessed at any time, while
the processor registers and caches can only be accessed when the processor has entered debug mode.
In debug mode, the processor pipeline is held and the processor state can be accessed by the DSU.
Entering the debug mode can occur on the following events:
• executing a breakpoint instruction (ta 1)
• integer unit hardware breakpoint/watchpoint hit (trap 0xb)
• rising edge of the external break signal (DSUBRE)
• setting the break-now (BN) bit in the DSU control register
• a trap that would cause the processor to enter error mode
• occurrence of any, or a selection of traps as defined in the DSU control register
• after a single-step operation
• one of the processors in a multiprocessor system has entered the debug mode
• DSU AHB breakpoint or watchpoint hit

Processor(s)
LEON3Processor(s)

LEON3
Unit

AMBA AHB BUS

Debug Support

AHB Slave I/F

Debug I/F

AHB Master I/F

Figure 61. LEON4/DSU Connection

Ethernet

DEBUG HOST

Processor
LEON3Processor(s)

LEON4

JTAGPCIRS232 USB
GRIP, Sep 2018, Version 2018.3 226 www.cobham.com/gaisler

GRLIB IP Core

The debug mode can only be entered when the debug support unit is enabled through an external sig-
nal (DSUEN). For DSU break, and the break-now BN bit, to have effect the Break-on-IU-watchpoint
(BW) bit must be set in the DSU control register. This bit is set when DSUBRE is active after reset
and should also be set by debug monitor software when initializing the DSU. When the debug mode is
entered, the following actions are taken:
• PC and nPC are saved in temporary registers (accessible by the debug unit)
• an output signal (DSUACT) is asserted to indicate the debug state
• the timer unit is (optionally) stopped to freeze the LEON timers and watchdog
The instruction that caused the processor to enter debug mode is not executed, and the processor state
is kept unmodified. Execution is resumed by clearing the BN bit in the DSU control register or by de-
asserting DSUEN. The timer unit will be re-enabled and execution will continue from the saved PC
and nPC. Debug mode can also be entered after the processor has entered error mode, for instance
when an application has terminated and halted the processor. The error mode can be reset and the pro-
cessor restarted at any address.
When a processor is in the debug mode, an access to ASI diagnostic area is forwarded to the IU which
performs access with ASI equal to value in the DSU ASI register and address consisting of 20 LSB
bits of the original address.

25.3 AHB trace buffer

The AHB trace buffer consists of a circular buffer that stores AHB data transfers, the monitored AHB
bus is either the same bus as the DSU AHB slave interface is connected to, or a completely separate
bus. The address, data and various control signals of the AHB bus are stored and can be read out for
later analysis. The trace buffer is 128, 160 or 224 bits wide, depending on the AHB bus width. The
way information stored is indicated in the table below:

In addition to the AHB signals, the DSU time tag counter is also stored in the trace.
The trace buffer is enabled by setting the enable bit (EN) in the trace control register. Each AHB
transfer is then stored in the buffer in a circular manner. The address to which the next transfer is writ-
ten is held in the trace buffer index register, and is automatically incremented after each transfer. Trac-

Table 258.AHB Trace buffer data allocation

Bits Name Definition
223:160 Load/Store data AHB HRDATA/HWDATA(127:64)
159:129 Load/Store data AHB HRDATA/HWDATA(63:32)
127 AHB breakpoint hit Set to ‘1’ if a DSU AHB breakpoint hit occurred.
126 - Not used
125:96 Time tag DSU time tag counter
95:80 - Not used
79 Hwrite AHB HWRITE
78:77 Htrans AHB HTRANS
76:74 Hsize AHB HSIZE
73:71 Hburst AHB HBURST
70:67 Hmaster AHB HMASTER
66 Hmastlock AHB HMASTLOCK
65:64 Hresp AHB HRESP
63:32 Load/Store data AHB HRDATA/HWDATA(31:0)
31:0 Load/Store address AHB HADDR
GRIP, Sep 2018, Version 2018.3 227 www.cobham.com/gaisler

GRLIB IP Core

ing is stopped when the EN bit is reset, or when a AHB breakpoint is hit. Tracing is temporarily
suspended when the processor enters debug mode, unless the trace force bit (TF) in the trace control
register is set. If the trace force bit is set, the trace buffer is activated as long as the enable bit is set.
The force bit is reset if an AHB breakpoint is hit and can also be cleared by software. Note that neither
the trace buffer memory nor the breakpoint registers (see below) can be read/written by software
when the trace buffer is enabled.
The DSU has an internal time tag counter and this counter is frozen when the processor enters debug
mode. When AHB tracing is performed in debug mode (using the trace force bit) it may be desirable
to also enable the time tag counter. This can be done using the timer enable bit (TE). Note that the
time tag is also used for the instruction trace buffer and the timer enable bit should only be set when
using the DSU as an AHB trace buffer only, and not when performing profiling or software debug-
ging. The timer enable bit is reset on the same events as the trace force bit.

25.3.1 AHB trace buffer filters

The DSU can be implemented with filters that can be applied to the AHB trace buffer, breakpoints and
watchpoints. If implemented, these filters are controlled via the AHB trace buffer filter control and
AHB trace buffer filter mask registers. The fields in these registers allows masking access characteris-
tics such as master, slave, read, write and address range so that accesses that correspond to the speci-
fied mask are not written into the trace buffer. Address range masking is done using the second AHB
breakpoint register set. The values of the LD and ST fields of this register has no effect on filtering.

25.3.2 AHB statistics

The DSU can be implemented to generate statistics from the traced AHB bus. When statistics collec-
tion is enabled the DSU will assert outputs that are suitable to connect to a LEON4 statistics unit
(L4STAT). The statistical outputs can be filtered by the AHB trace buffer filters, this is controlled by
the Performance counter Filter bit (PF) in the AHB trace buffer filter control register. The DSU can
collect data for the events listed in table 259 below.

Table 259.AHB events

Event Description Note
idle HTRANS=IDLE Active when HTRANS IDLE is driven on the AHB slave inputs and

slave has asserted HREADY.
busy HTRANS=BUSY Active when HTRANS BUSY is driven on the AHB slave inputs and

slave has asserted HREADY.
nseq HTRANS=NONSEQ Active when HTRANS NONSEQ is driven on the AHB slave inputs

and slave has asserted HREADY.
seq HTRANS=SEQ Active when HTRANS SEQUENTIAL is driven on the AHB slave

inputs and slave has asserted HREADY.
read Read access Active when HTRANS is SEQUENTIAL or NON-SEQUENTIAL,

slave has asserted HREADY and the HWRITE input is low.
write Write access Active when HTRANS is SEQUENTIAL or NON-SEQUENTIAL,

slave has asserted HREADY and the HWRITE input is high.
hsize[5:0] Transfer size Active when HTRANS is SEQUENTIAL or NON-SEQUENTIAL,

slave has asserted HREADY and HSIZE is BYTE (hsize[0]),
HWORD (HSIZE[1]), WORD (hsize[2]), DWORD (hsize[3]),
4WORD hsize[4], or 8WORD (hsize[5]).

ws Wait state Active when HREADY input to AHB slaves is low and AMBA
response is OKAY.

retry RETRY response Active when master receives RETRY response
split SPLIT response Active when master receives SPLIT response
GRIP, Sep 2018, Version 2018.3 228 www.cobham.com/gaisler

GRLIB IP Core
25.4 Instruction trace buffer

The instruction trace buffer consists of a circular buffer that stores executed instructions. The instruc-
tion trace buffer is located in the processor, and read out via the DSU. The trace buffer is 128 bits
wide, the information stored is indicated in the table below:

During tracing, one instruction is stored per line in the trace buffer with the exception of atomic load/
store instructions, which are entered twice (one for the load and one for the store operation). Bits
[95:64] in the buffer correspond to the store address and the loaded data for load instructions. Bit 126
is set for the second entry.
When the processor enters debug mode, tracing is suspended. The trace buffer and the trace buffer
control register can be read and written while the processor is in the debug mode. During the instruc-
tion tracing (processor in normal mode) the trace buffer and trace buffer control register 0 can not be
written. If the two-port trace buffer is enabled (refer to the tbuf generic in section 82.15), then the
trace buffer can be read contextually to the instruction tracing (processor in normal mode). The traced
instructions can optionally be filtered on instruction types. Which instructions are traced is defined in
the instruction trace register [31:28], as defined in the table below:

spdel SPLIT delay Active during the time a master waits to be granted access to the bus
after reception of a SPLIT response. The core will only keep track of
one master at a time. This means that when a SPLIT response is
detected, the core will save the master index. This event will then be
active until the same master is re-allowed into bus arbitration and is
granted access to the bus. This also means that the delay measured
will include the time for re-arbitration, delays from other ongoing
transfers and delays resulting from other masters being granted
access to the bus before the SPLIT:ed master is granted again after
receiving SPLIT complete.
If another master receives a SPLIT response while this event is
active, the SPLIT delay for the second master will not be measured.

locked Locked access Active while the HMASTLOCK signal is asserted on the AHB slave
inputs.

Table 260.Instruction trace buffer data allocation

Bits Name Definition
126 Multi-cycle instruction Set to ‘1’ on the second instance of a multi-cycle instruction
125:96 Time tag The value of the DSU time tag counter
95:64 Result or Store address/data Instruction result, Store address or Store data
63:34 Program counter Program counter (2 lsb bits removed since they are always zero)
33 Instruction trap Set to ‘1’ if traced instruction trapped
32 Processor error mode Set to ‘1’ if the traced instruction caused processor error mode
31:0 Opcode Instruction opcode

Table 259.AHB events

Event Description Note
GRIP, Sep 2018, Version 2018.3 229 www.cobham.com/gaisler

GRLIB IP Core
It is also possible to filter traced instructions based on the program counter value. This option is com-
bined with the filtering option if an additional filtering mechanism is activated from Table 261. Refer
to section 25.6.13 for detailed information.

25.5 DSU memory map

The DSU memory map can be seen in table 262 below. In a multiprocessor systems, the register map
is duplicated and address bits 27 - 24 are used to index the processor.
Note: The DSU memory interface is intended to be accessed by a debug monitor. Software running on
the LEON processors should not access the DSU interface. Registers, such as ASR registers, may not
have all fields available via the DSU interface.

Table 261.Trace filter operation

Trace filter Instructions traced
0x0 All instructions
0x1 SPARC Format 2 instructions
0x2 Control-flow changes. All Call, branch and trap instructions including branch targets
0x4 SPARC Format 1 instructions (CALL)
0x8 SPARC Format 3 instructions except LOAD or STORE
0xC SPARC Format 3 LOAD or STORE instructions
0xD SPARC Format 3 LOAD or STORE instructions to alternate space
0xE SPARC Format 3 LOAD or STORE instructions to alternate space 0x80 - 0xFF with ASI last digit base

filtering

Table 262.DSU memory map

Address offset Register

0x000000 DSU control register

0x000008 Time tag counter

0x000020 Break and Single Step register

0x000024 Debug Mode Mask register

0x000040 AHB trace buffer control register

0x000044 AHB trace buffer index register

0x000048 AHB trace buffer filter control register

0x00004c AHB trace buffer filter mask register

0x000050 AHB breakpoint address 1

0x000054 AHB mask register 1

0x000058 AHB breakpoint address 2

0x00005c AHB mask register 2

0x000070 Instruction count register

0x000080 AHB watchpoint control register

0x000090 - 0x00009C AHB watchpoint 1 data registers

0x0000A0 - 0x0000AC AHB watchpoint 1 mask registers

0x0000B0 - 0x0000BC AHB watchpoint 2 data registers

0x0000C0 - 0x0000CC AHB watchpoint 2 mask registers

0x100000 - 0x10FFFF Instruction trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64,
..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)
GRIP, Sep 2018, Version 2018.3 230 www.cobham.com/gaisler

GRLIB IP Core
25.6 DSU registers

25.6.1 DSU control register

The DSU is controlled by the DSU control register:

0x110000 Instruction Trace buffer control register 0

0x110004 Instruction Trace buffer control register 1

0x200000 - 0x210000 AHB trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64,
..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)

0x300000 - 0x3007FC IU register file.
The addresses of the IU registers depends on how many register windows has been
implemented:
%on: 0x300000 + (((psr.cwp * 64) + 32 + n*4) mod (NWINDOWS*64))
%ln: 0x300000 + (((psr.cwp * 64) + 64 + n*4) mod (NWINDOWS*64))
%in: 0x300000 + (((psr.cwp * 64) + 96 + n*4) mod (NWINDOWS*64))
%gn: 0x300000 + (NWINDOWS*64) + n*4
%fn: 0x301000 + n*4

0x300800 - 0x300FFC IU register file check bits (LEON4FT only)

0x301000 - 0x30107C FPU register file

0x400000 Y register

0x400004 PSR register

0x400008 WIM register

0x40000C TBR register

0x400010 PC register

0x400014 NPC register

0x400018 FSR register

0x40001C CPSR register

0x400020 DSU trap register

0x400024 DSU ASI register

0x400040 - 0x40007C ASR16 - ASR31 (when implemented)

0x700000 - 0x7FFFFC ASI diagnostic access (ASI = value in DSU ASI register, address = address[19:0])
ASI = 0x9 : Local instruction RAM
ASI = 0xB : Local data RAM
ASI = 0xC : Instruction cache tags
ASI = 0xD : Instruction cache data
ASI = 0xE : Data cache tags
ASI = 0xF : Data cache data
ASI = 0x1E : Separate snoop tags

Table 263.0x000000 - CTRL - DSU control register
31 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED PW HL PE EB EE DM BZ BX BS BW BE TE

0 0 0 0 * * * * 0 * * *

r r rw uc r r r rw rw rw rw rw rw

31: 12 Reserved
11 Power down (PW) - Returns ‘1’ when processor is in power-down mode.
10 Processor halt (HL) - Returns ‘1’ on read when processor is halted. If the processor is in debug

mode, setting this bit will put the processor in halt mode.

Table 262.DSU memory map

Address offset Register
GRIP, Sep 2018, Version 2018.3 231 www.cobham.com/gaisler

GRLIB IP Core
25.6.2 DSU Break and Single Step register

This register is used to break or single step the processor(s). This register controls all processors in a
multi-processor system, and is only accessible in the DSU memory map of processor 0.

25.6.3 DSU Debug Mode Mask Register

When one of the processors in a multiprocessor LEON4 system enters the debug mode the value of
the DSU Debug Mode Mask register determines if the other processors are forced in the debug mode.
This register controls all processors in a multi-processor system, and is only accessible in the DSU
memory map of processor 0.

9 Processor error mode (PE) - returns ‘1’ on read when processor is in error mode, else ‘0’. If written
with ‘1’, it will clear the error and halt mode.

8 External Break (EB) - Value of the external DSUBRE signal (read-only)
7 External Enable (EE) - Value of the external DSUEN signal (read-only)
6 Debug mode (DM) - Indicates when the processor has entered debug mode (read-only).
5 Break on error traps (BZ) - if set, will force the processor into debug mode on all except the follow-

ing traps: priviledged_instruction, fpu_disabled, window_overflow, window_underflow, asynchro-
nous_interrupt, ticc_trap.

4 Break on trap (BX) - if set, will force the processor into debug mode when any trap occurs.
3 Break on S/W breakpoint (BS) - if set, debug mode will be forced when an breakpoint instruction (ta

1) is executed.
2 Break on IU watchpoint (BW) - if set, debug mode will be forced on a IU watchpoint (trap 0xb).
1 Break on error (BE) - if set, will force the processor to debug mode when the processor would have

entered error condition (trap in trap).
0 Trace enable (TE) - Enables instruction tracing. If set the instructions will be stored in the trace

buffer. Remains set when then processor enters debug or error mode

Table 264.0x000020 - BRSS - DSU Break and Single Step register
31 16 15 0

SS[15:0] BN[15:0]

0 0

rw rw

31: 16 Single step (SSx) - if set, the processor x will execute one instruction and return to debug mode. The
bit remains set after the processor goes into the debug mode. As an exception, if the instruction is a
branch with the annul bit set, and if the delay instruction is effectively annulled, the processor will
execute the branch, the annulled delay instruction and the instruction thereafter before returning to
debug mode.

15: 0 Break now (BNx) -Force processor x into debug mode if the Break on watchpoint (BW) bit in the
processors DSU control register is set. If cleared, the processor x will resume execution.

Table 265.0x000024 - DBGM - DSU Debug Mode Mask register
31 16 15 0

DM[15:0] ED[15:0]

0 0

rw rw

31: 16 Debug mode mask (DMx) - If set, the corresponding processor will not be able to force running pro-
cessors into debug mode even if it enters debug mode.

15: 0 Enter debug mode (EDx) - Force processor x into debug mode if any of processors in a multiproces-
sor system enters the debug mode. If 0, the processor x will not enter the debug mode.

Table 263.0x000000 - CTRL - DSU control register
GRIP, Sep 2018, Version 2018.3 232 www.cobham.com/gaisler

GRLIB IP Core

25.6.4 DSU trap register

The DSU trap register is a read-only register that indicates which SPARC trap type that caused the
processor to enter debug mode. When debug mode is force by setting the BN bit in the DSU control
register, the trap type will be 0xb (hardware watchpoint trap).

25.6.5 DSU time tag counter

The trace buffer time tag counter is incremented each clock as long as the processor is running. The
counter is stopped when the processor enters debug mode and when the DSU is disabled (unless the
timer enable bit in the AHB trace buffer control register is set), and restarted when execution is
resumed.

The value is used as time tag in the instruction and AHB trace buffer.
The width of the timer is configurable at implementation time.

25.6.6 DSU ASI register

The DSU can perform diagnostic accesses to different ASI areas. The value in the ASI diagnostic
access register is used as ASI while the address is supplied from the DSU.

Table 266.0x400020 - DTR - DSU Trap register
31 13 12 11 4 3 0

RESERVED EM TRAPTYPE R

0 NR NR 0

r r r r

31: 13 RESERVED
12 Error mode (EM) - Set if the trap would have cause the processor to enter error mode.
11: 4 Trap type (TRAPTYPE) - 8-bit SPARC trap type
3: 0 Read as 0x0

Table 267.0x000008 - DTTL - DSU time tag counter
31 0

TIMETAG

0

rw

31: 0 DSU Time Tag Value (TIMETAG)

Table 268.0x400024 -DASI - ASI diagnostic access register
31 8 7 0

RESERVED ASI

0 NR

r rw

31: 8 RESERVED
7: 0 ASI (ASI) - ASI to be used on diagnostic ASI access
GRIP, Sep 2018, Version 2018.3 233 www.cobham.com/gaisler

GRLIB IP Core

25.6.7 AHB Trace buffer control register

The AHB trace buffer is controlled by the AHB trace buffer control register:

25.6.8 AHB trace buffer index register

The AHB trace buffer index register contains the address of the next trace line to be written.

25.6.9 AHB trace buffer filter control register

The trace buffer filter control register is only available if the core has been implemented with support
for AHB trace buffer filtering.

Table 269.0x000040 - ATBC - AHB trace buffer control register
31 16 15 9 8 7 6 5 4 3 2 1 0

DCNT RESERVED DF SF TE TF BW BR DM EN

0 0 0 0 0 0 * 0 0 *

rw r rw rw rw rw r rw rw rw

31: 16 Trace buffer delay counter (DCNT) - Note that the number of bits actually implemented depends on
the size of the trace buffer.

15: 9 RESERVED
8 Enable Debug Mode Timer Freeze (DF) - The time tag counter keeps counting in debug mode when

at least one of the processors has the internal timer enabled. If this bit is set to ‘1’ then the time tag
counter is frozen when the processors have entered debug mode.

7 Sample Force (SF) - If this bit is written to ‘1’ it will have the same effect on the AHB trace buffer as
if HREADY was asserted on the bus at the same time as a sequential or non-sequential transfer is
made. This means that setting this bit to ‘1’ will cause the values in the trace buffer’s sample regis-
ters to be written into the trace buffer, and new values will be sampled into the registers. This bit will
automatically be cleared after one clock cycle.
Writing to the trace buffer still requires that the trace buffer is enabled (EN bit set to ‘1’) and that the
CPU is not in debug mode or that tracing is forced (TF bit set to ‘1’). This functionality is primarily
of interest when the trace buffer is tracing a separate bus and the traced bus appears to have frozen.

6 Timer enable (TE) - Activates time tag counter also in debug mode.
5 Trace force (TF) - Activates trace buffer also in debug mode. Note that the trace buffer must be disa-

bled when reading out trace buffer data via the core’s register interface.
4: 3 Bus width (BW) - This value corresponds to log2(Supported bus width / 32)
2 Break (BR) - If set, the processor will be put in debug mode when AHB trace buffer stops due to

AHB breakpoint hit.
1 Delay counter mode (DM) - Indicates that the trace buffer is in delay counter mode.
0 Trace enable (EN) - Enables the trace buffer.

Table 270.0x000044 - ATBI - AHB trace buffer index register
31 4 3 0

INDEX R

NR 0

rw r

31: 4 Trace buffer index counter (INDEX) - Note that the number of bits actually implemented depends on
the size of the trace buffer.

3: 0 Read as 0x0

Table 271.0x000048 - ATBFC - AHB trace buffer filter control register
31 14 13 12 11 10 9 8 7 4 3 2 1 0

RESERVED WPF R BPF RESERVED PF AF FR FW

0 0 0 0 0 0 0 0 0

r rw r rw r rw rw rw rw
GRIP, Sep 2018, Version 2018.3 234 www.cobham.com/gaisler

GRLIB IP Core
25.6.10 AHB trace buffer filter mask register

The trace buffer filter mask register is only available if the core has been implemented with support
for AHB trace buffer filtering.

25.6.11 AHB trace buffer breakpoint registers

The DSU contains two breakpoint registers for matching AHB addresses. A breakpoint hit is used to
freeze the trace buffer by automatically clearing the enable bit. Freezing can be delayed by program-
ming the DCNT field in the trace buffer control register to a non-zero value. In this case, the DCNT
value will be decremented for each additional trace until it reaches zero, after which the trace buffer is
frozen. A mask register is associated with each breakpoint, allowing breaking on a block of addresses.
Only address bits with the corresponding mask bit set to ‘1’ are compared during breakpoint detec-
tion. To break on AHB load or store accesses, the LD and/or ST bits should be set.

31: 14 RESERVED
13: 12 AHB watchpoint filtering (WPF) - Bit 13 of this field applies to AHB watchpoint 2 and bit 12

applies to AHB watchpoint 1. If the WPF bit for a watchpoint is set to ‘1’ then the watchpoint will
not trigger unless the access also passes through the filter. This functionality can be used to, for
instance, set a AHB watchpoint that only triggers if a specified master performs an access to a spec-
ified slave.

11: 10 RESERVED
9: 8 AHB breakpoint filtering (BPF) - Bit 9 of this field applies to AHB breakpoint 2 and bit 8 applies to

AHB breakpoint 1. If the BPF bit for a breakpoint is set to ‘1’ then the breakpoint will not trigger
unless the access also passes through the filter. This functionality can be used to, for instance, set a
AHB breakpoint that only triggers if a specified master performs an access to a specified slave. Note
that if a AHB breakpoint is coupled with an AHB watchpoint then the setting of the corresponding
bit in this field has no effect.

7: 4 RESERVED
3 Performance counter Filter (PF) - If this bit is set to ‘1’, the cores performance counter (statistical)

outputs will be filtered using the same filter settings as used for the trace buffer. If a filter inhibits a
write to the trace buffer, setting this bit to ‘1’ will cause the same filter setting to inhibit the pulse on
the statistical output.

2 Address Filter (AF) - If this bit is set to ‘1’, only the address range defined by AHB trace buffer
breakpoint 2’s address and mask will be included in the trace buffer.

1 Filter Reads (FR) - If this bit is set to ‘1’, read accesses will not be included in the trace buffer.
0 Filter Writes (FW) - If this bit is set to ‘1’, write accesses will not be included in the trace buffer.

Table 272.0x00004C - ATBFM - AHB trace buffer filter mask register
31 16 15 0

SMASK[15:0] MMASK[15:0]

0 0

rw rw

31: 16 Slave Mask (SMASK) - If SMASK[n] is set to ‘1’, the trace buffer will not save accesses performed
to slave n.

15: 0 Master Mask (MMASK) - If MMASK[n] is set to ‘1’, the trace buffer will not save accesses per-
formed by master n.

Table 273.0x000050, 0x000058 - ATBBA - AHB trace buffer break address register
31 2 1 0

BADDR[31:2] R

NR 0

rw r

Table 271.0x000048 - ATBFC - AHB trace buffer filter control register
GRIP, Sep 2018, Version 2018.3 235 www.cobham.com/gaisler

GRLIB IP Core
25.6.12 Instruction trace control register 0

The instruction trace control register 0 contains a pointer that indicates the next line of the instruction
trace buffer to be written.

25.6.13 Instruction trace control register 1

The instruction trace control register 1 contains settings used for trace buffer overflow detection, in
addition it includes settings used for some of the instruction trace buffer filtering options. This register
can be written while the processor is running.
Bits [31:28] is used to enable or disable Instruction Trace Buffer Address based Filtering (ITBAF).
ITBAF is intended to allow the available hardware watch-point (HWP) registers to be used as instruc-
tion trace buffer filters when they are not used for breakpoint operation. If a bit is set to ‘1’ in ITBAF,
the corresponding address and mask information in the HWP register will be used to filter instruction
trace entries based on the program counter (PC) value. Bits[31:28] corresponds to HWP[3:0] respec-
tively. ITBAF can only be used if the corresponding HWP register exist in the hardware. Instruction
Trace Buffer Address based Filtering Option (ITBAFO, Bits[19:16]) determines the type of filtering
for the corresponding ITBAF entry. If an ITBAFO entry is set to ‘0’ only the PC value(s) that match
the address and mask option in the corresponding HWP register will be logged in the instruction trace
buffer (ITB). If a bit is set to ‘1’ only the PC value(s) that does not match the address and mask option
in the corresponding HWP register will be logged in the ITB. Bits[19:16] corresponds to the option
for ITBAF[3:0] respectively. If there is more than one address filtering operation is enabled, the corre-
sponding filtering operations will be combined together.
Bits[15:0] corresponds to ASI last digit based filtering mask (ASIFMASK). ASIFMASK is in effect
when the trace filter configuration is set to 0xE (SPARC Format 3 LOAD or STORE instructions to
alternate space 0x80 - 0xFF with ASI last digit base filtering). Bits[15:0] corresponds to digits
[0xF:0x0] respectively. If a bit is set to ‘0’ in the ASIFMASK, the load and store instructions which
have an ASI between the range of 0x80-0xFF and have the corresponding last digit are logged in the
instruction trace buffer. For example if only the bit0 and bit2 of the ASIFMASK is set then only the
load and store instructions with ASIs 0x80, 0x82, 0x90, 0x92, 0xA0, 0xA2, 0xB0, 0xB2, 0xC0, 0xC2,

31: 2 Break point address (BADDR) - Bits 31:2 of breakpoint address
1: 0 Read as 0b00

Table 274.0x000054, 0x00005C - ATBBM - AHB trace buffer break mask register
31 2 1 0

BMASK[31:2] LD ST

NR 0 0

rw rw rw

31: 2 Breakpoint mask (BMASK) - (see text)
1 Load (LD) - Break on data load address
0 Store (ST) - Break on data store address

Table 275.0x110000 - ITBCO - Instruction trace control register 0
31 28 27 16 15 0

TFILT RESERVED ITPOINTER

0 0 0

rw r rw

31: 28 Trace filter configuration
27: 16 RESERVED
15: 0 Instruction trace pointer (ITPOINTER) - Note that the number of bits actually implemented depends

on the size of the trace buffer

Table 273.0x000050, 0x000058 - ATBBA - AHB trace buffer break address register
GRIP, Sep 2018, Version 2018.3 236 www.cobham.com/gaisler

GRLIB IP Core

0xD0, 0xD2, 0xE0, 0xE2, 0xF0, 0xF2 are tracked. After the reset of processor all the bits in the
ASIFMASK is set to 0x0000 which means by default all the ASIs in the range of 0x80-0xFF are
tracked.

25.6.14 Instruction count register

The DSU contains an instruction count register to allow profiling of application, or generation of
debug mode after a certain clocks or instructions. The instruction count register consists of a 29-bit
down-counter, which is decremented on either each clock (IC=0) or on each executed instruction
(IC=1). In profiling mode (PE=1), the counter will set to all ones after an underflow without generat-
ing a processor break. In this mode, the counter can be periodically polled and statistics can be formed
on CPI (clocks per instructions). In non-profiling mode (PE=0), the processor will be put in debug
mode when the counter underflows. This allows a debug tool such as GRMON to execute a defined
number of instructions, or for a defined number of clocks.

25.6.15 AHB watchpoint control register

The DSU has two AHB watchpoints that can be used to freeze the AHB tracebuffer, or put the proces-
sor in debug mode, when a specified data pattern occurs on the AMBA bus. These watchpoints can
also be coupled with the two AHB breakpoints so that a watchpoint will not trigger unless the AHB
breakpoint is triggered. This also means that when a watchpoint is coupled with an AHB breakpoint,

Table 276.0x110004 - ITBCI - Instruction trace control register 1
31 28 27 26 24 23 22 20 19 16 15 0

ITBAF W
O

TLIM OV RESERVED ITBAFO ASIFMASK

0 0 0 0 0 0 0

rw rw rw rw r rw rw

31: 28 Instruction Trace Buffer Address based Filtering (ITBAF) (see text)
27 Watchpoint on overflow (WO) - If this bit is set, and Break on iu watchpoint (BW) is enabled in the

DSU control register, then a watchpoint will be inserted when a trace overflow is detected (TOV
field in this register gets set).

26: 24 Trace Limit (TLIM) - TLIM is compared with the top bits of ITPOINTER in Instruction trace con-
trol register 0 to generate the value in the TOV field below.

23 Trace Overflow (TOV) - Gets set to ‘1’ when the DSU detects that TLIM equals the top three bits of
ITPOINTER.

22: 20 RESERVED
19: 16 Instruction Trace Buffer Address based Filtering Option (ITBAFO) (see text)
15: 0 ASI last digit based filtering mask (ASIFMASK) (see text)

Table 277.0x000070 - ICNT - Instruction count register
31 30 29 28 0

CE IC PE ICOUNT[28:0]

0 0 0 NR

rw rw rw rw

31 Counter Enable (CE) - Counter enable
30 Instruction Count (IC) - Instruction (1) or clock (0) counting
29 Profiling Enable (PE) - Profiling enable
28: 0 Instruction count (ICOUNT) - Instruction count
GRIP, Sep 2018, Version 2018.3 237 www.cobham.com/gaisler

GRLIB IP Core

the breakpoint will not cause an AHB tracebuffer freeze, or put the processor(s), in debug mode
unless also the watchpoint is triggered.

25.6.16 AHB watchpoint data and mask registers

The AHB watchpoint data and mask registers specify the data pattern for an AHB watchpoint. A
watchpoint hit is used to freeze the trace buffer by automatically clearing the enable bit. A watchpoint
hit can also be used to force the processor(s) to debug mode.
A mask register is associated with each data register. Only data bits with the corresponding mask bit
set to ‘1’ are compared during watchpoint detection.

In a system with 64-bit bus width only half of the data and mask registers must be written. For AHB
watchpoint 1, a data value with 64-bits would be written to the AHB watchpoint data registers at off-
sets 0x98 and 0x9C. The corresponding mask bits would be set in mask registers at offsets 0xA8 and
0xAC.

Table 278.0x000080 - AHBWPC - AHB watchpoint control register
31 7 6 5 4 3 2 1 0

RESERVED IN CP EN R IN CP EN

0 0 0 0 0 0 0 0

r rw rw rw r rw rw rw

31: 7 RESERVED
6 Invert (IN) - Invert AHB watchpoint 2. If this bit is set the watchpoint will trigger if data on the

AHB bus does NOT match the specified data pattern (typically only usable if the watchpoint has
been coupled with an address by setting the CP field).

5 Couple (CP) - Couple AHB watchpoint 2 with AHB breakpoint 1
4 Enable (EN) - Enable AHB watchpoint 2
3 RESERVED
2 Invert (IN) - Invert AHB watchpoint 1. If this bit is set the watchpoint will trigger if data on the

AHB bus does NOT match the specified data pattern (typically only usable if the watchpoint has
been coupled with an address by setting the CP field).

1 Couple (CP) - Couple AHB watchpoint 1 with AHB breakpoint 1
0 Enable (EN) - Enable AHB watchpoint 1

Table 279.0x000040 to 0x00004C - 0x0000B0 to 0x0000BC - AHBWPPO-7 - AHB watchpoint data register
31 0

DATA[127-n*32 : 96-n*32]

NR

rw

31: 0 AHB watchpoint data (DATA) - Specifies the data pattern of one word for an AHB watchpoint. The
lower part of the register address specifies with part of the bus that the register value will be com-
pared against: Offset 0x0 specifies the data value for AHB bus bits 127:96, 0x4 for bits 95:64, 0x8
for 63:32 and offset 0xC for bits 31:0.

Table 280.0x0000A0 - 0x0000AC - 0x0000C0 to 0x0000CC - AHBWPMO-7 - AHB watchpoint mask register
31 0

MASK[127-n*32 : 96-n*32]

NR

rw

31: 0 AHB watchpoint mask (MASK) - Specifies the mask to select bits for comparison out of one word
for an AHB watchpoint. The lower part of the register address specifies with part of the bus that the
register value will be compared against: Offset 0x0 specifies the data value for AHB bus bits 127:96,
0x4 for bits 95:64, 0x8 for 63:32 and offset 0xC for bits 31:0.
GRIP, Sep 2018, Version 2018.3 238 www.cobham.com/gaisler

GRLIB IP Core

In most GRLIB systems with wide AMBA buses, the data for an access size that is less than the full
bus width will be replicated over the full bus. For instance, a 32-bit write access from a LEON proces-
sor on a 64-bit bus will place the same data on bus bits 64:32 and 31:0.

25.7 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x017. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

25.8 Implementation

25.8.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers, except synchronization registers, if the GRLIB config pack-
age setting grlib_sync_reset_enable_all is set.
The core will use asynchronous reset for all registers, except synchronization registers, if the GRLIB
config package setting grlib_async_reset_enable is set.

25.8.2 Technology mapping

DSU4 has one technology mapping generic, tech. This generic controls the implementation of which
technology that will be used to implement the trace buffer memories. The AHB trace buffer will use
two identical SYNCRAM64 blocks to implement the buffer memory (SYNCRAM64 may then result
in two 32-bit wide memories on the target technology, depending on the technology map), with one
additional 32-bit wide SYNCRAM if the system’s AMBA data bus width is 64-bits, and also one
additional 64-bit wide SYNCRAM if the system’s AMBA data bus width exceeds 64 bits.
The depth of the RAMs depends on the KBYTES generic. If KBYTES = 1 (1 Kbyte), then the depth
will be 64. If KBYTES = 2, then the RAM depth will be 128 and so on.
GRIP, Sep 2018, Version 2018.3 239 www.cobham.com/gaisler

GRLIB IP Core

25.9 Configuration options

Table 281 shows the configuration options of the core (VHDL generics).

25.10 Signal descriptions

Table 282 shows the interface signals of the core (VHDL ports). There are several top-level entities
available for the DSU4. The dsu4x entity contains all signals and settings. The other entities are wrap-
pers around dsu4x. The available entities are:

Table 281.Configuration options

Generic Function Allowed range Default
hindex AHB slave index 0 - NAHBSLV-1 0
haddr AHB slave address (AHB[31:20]) 0 - 16#FFF# 16#900#
hmask AHB slave address mask 0 - 16#FFF# 16#F00#
ncpu Number of attached processors 1 - 16 1
tbits Number of bits in the time tag counter 2 - 63 30
tech Memory technology for trace buffer RAM 0 - NTECH-1 0 (inferred)
kbytes Size of trace buffer memory in KiB. A value of 0

will disable the trace buffer function.
0 - 64 0 (disabled)

clk2x Enable LEON4 double-clocking (generic is only
available on dsu4_2x and dsu4x entities, see next
section)

0 - 1 0

bwidth Traced AHB bus width 32, 64, 128 64
ahbpf AHB performance counters and filtering. If ahbpf is

non-zero the core will support AHB trace buffer fil-
tering. If ahbpf is larger than 1 then the core’s statis-
tical outputs will be enabled.

0 - 2 0

ahbwp AHB watchpoint enable. If ahbwp is non-zero
(default) then the core will support AHB watchpoints
(also referred to as AHB data breakpoints).
Pipeline registers will be added when ahbwp is set to
2 (default value), one register for each bit on the
AMBA data bus. This setting is recommended in
order to improve timing but has a cost in area. The
pipeline registers will also lead to the AHB watch-
point being triggered one cycle later.
It is recommended to leave this functionality
enabled. However, the added logic can create critical
timing paths from the AMBA data vectors and so
AHB watchpoints can be completely disabled by set-
ting this generic to 0.

0 - 2 2

scantest Scan test support enable 0 - 1 0
pipedbg Add pipeline registers on signals from LEON4. If

critical timing paths show between, or through, the
DSU4 and LEON4 then this value can be set to 1 to
add pipeline registers on the dbgi input vector. This
adds one additional wait state on some DSU register
accesses.

0 - 1 0

pipeahbt Add pipeline registers on AMBA signals to AHB
trace buffer. If there are critical timing paths between
the AMBA AHB bus and the DSU AHB trace buffer
memory then this value can be set to 1 to add one
stage of pipelining between the AHB bus and the
trace buffer RAM.

0 - 1 0
GRIP, Sep 2018, Version 2018.3 240 www.cobham.com/gaisler

GRLIB IP Core

• dsu4 - Entity without support for double clocking. AHB trace of same bus as DSU AHB slave

interface is connected to.
• dsu4_2x - Entity with support for LEON4 double-clocking. AHB trace of same bus as DSU AHB

slave interface is connected to.
• dsu4_mb - Entity with support for AHB tracing of separate bus
• dsu4x - Entity with support for all features (tracing of separate bus and LEON4 double-clock-

ing).

25.11 Signal definitions and reset values

The signals and their reset values are described in table 283.

Table 282.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock, used in dsu4_mb and dsu4 entities -
HCLK N/A Input Bus clock, used in dsu4_2x and dsu4x entites,

only used when double-clocking is enabled
-

CPUCLK N/A Input CPU clock, used in dsu4x and dsu4_2x entities -
FCPUCLK N/A Input Free running (never gated) CPU clock, only used

on dsu4x entity.
-

AHBMI * Input AHB master input signals, used for AHB tracing -
AHBSI * Input AHB slave input signals, used for AHB tracing

when using dsu4 and dsu4_2x entities
-

AHBSO * Output AHB slave output signals -
TAHBSI * Input AHB slave input signals, used for AHB tracing

when using dsu4_mb and dsu4x entities.
-

DBGI - Input Debug signals from LEON4 -
DBGO - Output Debug signals to LEON4 -
DSUI ENABLE Input DSU enable High

BREAK Input DSU break High
DSUO ACTIVE Output Debug mode High

PWD[n-1 : 0] Output Clock gating enable for processor [n] High
ASTAT (record) Output AHB statistic/performance counter events -

HCLKEN N/A Input Double-clocking qualifier signal. Only used with
double-clocking on dsu4_2x and dsu4x entities

High

* see GRLIB IP Library User’s Manual

Table 283.Signal definitions and reset values

Signal name Type Function Active Reset value
dsuen Input DSU enable High -
dsubre Input DSU break High -
dsuact Output Debug mode High Logical 0
GRIP, Sep 2018, Version 2018.3 241 www.cobham.com/gaisler

GRLIB IP Core

25.12 Timing

The timing waveforms and timing parameters are shown in figure 62 and are defined in table 284.

Note: The dsubre and dsuen are re-synchronized internally. These signals do not have to meet any
setup or hold requirements.

25.13 Library dependencies

Table 285 shows libraries used when instantiating the core (VHDL libraries).

25.14 Component declaration

The core has the following component declaration.

component dsu4
 generic (
 hindex : integer := 0;
 haddr : integer := 16#900#;
 hmask : integer := 16#f00#;
 ncpu : integer := 1;
 tbits : integer := 30;
 tech : integer := 0;
 irq : integer := 0;
 kbytes : integer := 0
);
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 ahbmi : in ahb_mst_in_type;
 ahbsi : in ahb_slv_in_type;
 ahbso : out ahb_slv_out_type;
 dbgi : in l4_debug_out_vector(0 to NCPU-1);
 dbgo : out l4_debug_in_vector(0 to NCPU-1);
 dsui : in dsu4_in_type;
 dsuo : out dsu4_out_type

Table 284.Timing parameters

Name Parameter Reference edge Min Max Unit
tDSU0 clock to output delay rising clk edge TBD TBD ns

tDSU1 input to clock hold rising clk edge - - ns

tDSU2 input to clock setup rising clk edge - - ns

Table 285.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB signal definitions
GAISLER LEON4 Component, signals Component declaration, signals declaration

Figure 62. Timing waveforms

tDSU0dsuact

clk

tDSU0

tDSU1dsuen, dsubre tDSU2
GRIP, Sep 2018, Version 2018.3 242 www.cobham.com/gaisler

GRLIB IP Core

);
 end component;

25.15 Instantiation

This example shows how the core can be instantiated.
The DSU is always instantiated with at least one LEON4 processor. It is suitable to use a generate
loop for the instantiation of the processors and DSU and showed below.

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.leon4.all;

constant NCPU : integer := 1; -- select number of processors

signal leon4i : l4_in_vector(0 to NCPU-1);
signal leon4o : l4_out_vector(0 to NCPU-1);
signal irqi : irq_in_vector(0 to NCPU-1);
signal irqo : irq_out_vector(0 to NCPU-1);

signal dbgi : l4_debug_in_vector(0 to NCPU-1);
signal dbgo : l4_debug_out_vector(0 to NCPU-1);

signal dsui : dsu4_in_type;
signal dsuo : dsu4_out_type;

.
begin

cpu : for i in 0 to NCPU-1 generate
 u0 : leon4s -- LEON4 processor
 generic map (ahbndx => i, fabtech => FABTECH, memtech => MEMTECH)
 port map (clkm, rstn, ahbmi, ahbmo(i), ahbsi, ahbsi, ahbso,
 irqi(i), irqo(i), dbgi(i), dbgo(i));
 irqi(i) <= leon4o(i).irq; leon4i(i).irq <= irqo(i);
end generate;

dsu0 : dsu4 -- LEON4 Debug Support Unit
 generic map (ahbndx => 2, ncpu => NCPU, tech => memtech, kbytes => 2)
 port map (rstn, clkm, ahbmi, ahbsi, ahbso(2), dbgo, dbgi, dsui, dsuo);
dsui.enable <= dsuen; dsui.break <= dsubre; dsuact <= dsuo.active;
GRIP, Sep 2018, Version 2018.3 243 www.cobham.com/gaisler

GRLIB IP Core

26 FTAHBRAM - On-chip SRAM with EDAC and AHB interface

26.1 Overview

The FTAHBRAM core is a version of the AHBRAM core with added Error Detection And Correction
(EDAC). The on-chip memory is accessed via an AMBA AHB slave interface. The memory imple-
ments a configurable amount of accessible memory (configured via the kbytes VHDL generic). Regis-
ters are accessed via an AMB APB interface.
The on-chip memory implements volatile memory that is protected by means of Error Detection And
Correction (EDAC). One error can be corrected and two errors can be detected, which is performed
by using a (32, 7) BCH code or by technology specific protection provided by the target technology
RAMs (implementation option, if supported by target technology). Some of the optional features
available are single error counter, diagnostic reads and writes and additional pipeline registers. Con-
figuration is performed via a configuration register.
Figure 63 shows a block diagram of the internals of the controller. The block diagram shows the tech-
nology agnostic implementation. If target technology specific protection is selected then the encoder
and decoder are not implemented in the FTAHBRAM.

26.2 Operation

26.2.1 Overview

The on-chip fault tolerant memory is accessed through an AMBA AHB slave interface. The maxi-
mum AMBA access size supported is configurable through the maccsz VHDL generic. The controller
supports all access sizes up to maccsz and the default value for maccsz is set to the maximum bus
width configured for GRLIB (AHBDW constant).
The memory address range is configurable with VHDL generics. As for the standard AHB RAM, the
memory technology and size is configurable through the tech and kbytes VHDL generics. The mini-
mum size is 1 KiB and the maximum is technology dependent.
If the core is implemented without AHB pipeline registers then the EDAC functionality can be com-
pletely removed by setting the edacen VHDL generic to zero during synthesis. The APB interface is

AHB/APB
Bridge

AHB Bus

APB Bus

FTAHBRAM
AHB Slave

Interface

Syncram

Encoding

cbdata

Decoding

data

error

Mux

Configuration Register

Config bits TCB

cb

Mux

Figure 63. Block diagram

Mux
GRIP, Sep 2018, Version 2018.3 244 www.cobham.com/gaisler

GRLIB IP Core

also removed since it is redundant without EDAC. If AHB pipeline registers are included then EDAC
is always enabled and the APB interface is present.
Run-time configuration is done by writing to a configuration register accessed through an AMBA
APB interface. The following can be configured during run-time: EDAC can be enabled and disabled.
When it is disabled, reads and writes will behave as the standard memory. Read and write diagnostics
can be controlled through separate bits. The single error counter can be reset.

26.2.2 Read and write behaviour

If EDAC is disabled (EN bit in configuration register set to 0) write data is passed directly to the
memory area and read data will appear on the AHB bus immediately after it arrives from memory. If
EDAC is enabled write data is passed to an encoder which outputs a 7-bit checksum. The checksum is
stored together with the data in memory and the whole operation is performed without any added
waitstates. This applies to word and wider stores (32-bit, 64-bit, 128-bit). If a byte or halfword store is
performed, the whole word to which the byte or halfword belongs must first be read from memory
(read - modify - write). A new checksum is calculated when the new data is placed in the word and
both data and checksum are stored in memory. This is done with 1 - 2 additional waitstates compared
to the non EDAC case.
Reads with EDAC disabled are performed with 0 or 1 waitstates while there could also be 2 waitstates
when EDAC is enabled. There is no difference between wide, word and subword reads. Table 286
shows a summary of the number of waitstates for the different operations with and without EDAC.

When EDAC is used, the data is decoded the first cycle after it arrives from the memory and appears
on the bus the next cycle if no uncorrectable error is detected. The decoding is done by comparing the
stored checksum with a new one which is calculated from the stored data. This decoding is also done
during the read phase for a subword write. A so-called syndrome is generated from the comparison
between the checksum and it determines the number of errors that occured. One error is automatically
corrected and this situation is not visible on the bus. Two or more detected errors cannot be corrected
so the operation is aborted and the required two cycle error response is given on the AHB bus (see the
AMBA manual for more details). If no errors are detected data is passed through the decoder unal-
tered.

26.2.3 Read and write diagnostics

As mentioned earlier the memory provides read and write diagnostics when EDAC is enabled. When
write diagnostics are enabled, the calculated checksum is not stored in memory during the write
phase. Instead, the TCB field from the configuration register is used. In the same manner, if read diag-
nostics are enabled, the stored checksum from memory is stored in the TCB field during a read (and
also during a subword write). This way, the EDAC functionality can be tested during run-time. Note
that checkbits are stored in TCB during reads and subword writes even if a multiple error is detected.
Also note that the TCB field contains the check bits for a 32-bit word. If the controller has been imple-
mented with support for wider accesses then it is recommended to load and bypass via TCB using
only word accesses. For larger write accesses, the contents of TCB will be written as the checksum for
all of the words within the larger access. For wide read accesses, the TCB field will hold the check
bits for the least significant word.

Table 286.Summary of the number of waitstates for the different operations for the memory.

Operation Waitstates with EDAC Disabled Waitstates with EDAC Enabled
Read 0 - 1 0 - 2
Word, DWord, 4Word
write

0 0

Subword write 0 1 - 2
GRIP, Sep 2018, Version 2018.3 245 www.cobham.com/gaisler

GRLIB IP Core

26.2.4 Error counter

An additional feature is the single error counter which can be enabled with the errcnten VHDL
generic or by enabling AHB pipeline registers. A single error counter (SEC) field is present in the
configuration register, and is incremented each time a single databit error is encountered (reads or
subword writes). The number of bits of this counter is 8, set with the cntbits VHDL generic. It is
accessed through the configuration register. Each counter bit can be reset to zero by writing a one to it.
The counter saturates at the value 28 - 1 (2cntbits - 1). For each access where single errors are detected
the aramo.ce signal will be driven high for one cycle. This signal should be connected to an AHB sta-
tus register which stores information and generates interrupts (see the AHB Status register documen-
tation for more information). Note that if the maximum supported access size is 32 bits then only one
single error can be detected. To support wider access sizes, the core implements several EDAC pro-
tected memories with 32-bit data in parallel. This means that a 64- or 128-bit access can trigger multi-
ple single errors. If this happens then the error counter will be incremented with one.

26.2.5 Endianness

The core is designed for big-endian systems.

26.3 Registers

The core is programmed through registers mapped into APB address space.

Table 287.FTAHBRAM registers

APB Address offset Register
0x0 Configuration Register

Table 288. 0x00 - CFG - Configuration Register
31 30 29 28 27 24 23 21 12+8 13 12 10 9 8 7 6 0

DIAG R EDACEN MEMSIZE SEC MEMSIZE WB RB EN TCB

0 0 * 0 * 0 0 0 NR

rw r r wc r * * * rw

27 24 Value of edacen VHDL generic.
0: EDAC not implemented
1: Technology agnostic BCH EDAC (traditional FTAHBRAM EDAC)
2: Technology agnostic BCH EDAC, provided by SYNCRAMFT
3: Technology specific EDAC (SECDED)

23: 21 Log2 of the current memory size, bits 3:0 of value. Only used when ahbpupe VHDL generic is non-
zero.

12+8: 13 Single error counter (SEC): Incremented each time a single error is corrected (includes errors on
checkbits). Each bit can be set to zero by writing a one to it. This feature is only available if the
errcnten VHDL generic is set.

12: 10 Log2 of the current memory size, bits 2:0 of value
9 Write Bypass (WB): When set, the TCB field is stored as check bits when a write is performed to the

memory.
8 Read Bypass (RB) : When set during a read or subword write, the check bits loaded from memory

are stored in the TCB field.
7 EDAC Enable (EN): When set, the EDAC is used otherwise it is bypassed during read and write

operations.
If edacen (bits 27:24 of this register) is 2 or 3 then the core always behaves as if it is enabled for
write and read timing.
GRIP, Sep 2018, Version 2018.3 246 www.cobham.com/gaisler

GRLIB IP Core
26.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x050. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

26.5 Implementation

26.5.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

26.6 Configuration options

Table 289 shows the configuration options of the core (VHDL generics).

6: 0 Test Check Bits (TCB) : Used as checkbits when the WB bit is set during writes and loaded with the
check bits during a read operation when the RB bit is set.
When the core makes use of technology specific EDAC then the behaviour of error injection is dif-
ferent. The TCB checkbits are propagated to the error injection bits of the SYNCRAMFT entity used
within FTAHBRAM when the WB field is set to 1. Normally only one or two bits are used and the
type of error injection supported is technology specific and described further in the SYNCRAMFT
documentation. The RB field has no effect for technology specific EDAC.

Any unused most significant bits are reserved. Always read as ‘000...0’.
All fields except TCB are initialised at reset. The EDAC is initally disabled (EN = 0), which also applies to diagnos-
tics fiels (RB and WB are zero).
When available, the single error counter (SEC) field is cleared to zero.

Table 289.Configuration options

Generic Function Allowed range Default
hindex Selects which AHB select signal (HSEL) will be used to

access the memory.
0 to NAHBMAX-1 0

haddr ADDR field of the AHB BAR 0 to 16#FFF# 0
hmask MASK field of the AHB BAR 0 to 16#FFF# 16#FFF#
tech Memory technology 0 to NTECH 0
kbytes SRAM size in KiB. The RAM size needs to be a power

of two. Otherwise the RAM size will be rounded up to
the nearest power of two.
For implementations with ahbpipe=1 it is allowed to
specify RAM sizes that are of the form 2^x+2^x-1. For
example. Specifying a 192 KiB RAM size with ahbpipe
= 0 will lead to a 256 KiB RAM area. Specifying a 192
KiB RAM size with ahbpipe = 0 allows a 192 KiB RAM
to be implemented. However, specifying a 160 KiB
RAM size will still lead to a 192 KiB RAM.

1 to targetdep. 1

pindex Selects which APB select signal (PSEL) will be used to
access the memory configuration registers

0 to NAPBMAX-1 0

paddr The 12-bit MSB APB address 0 to 16#FFF# 0
pmask The APB address mask 0 to 16#FFF# 16#FFF#

Table 288. 0x00 - CFG - Configuration Register
GRIP, Sep 2018, Version 2018.3 247 www.cobham.com/gaisler

GRLIB IP Core
edacen Enable and select on-chip EDAC. Must be set to 1 or
larger if ahbpipe generic is set to 1.
0: Disabled
1: Technology agnostic BCH EDAC (traditional FTAH-
BRAM EDAC)
2: Technology agnostic BCH EDAC, provided by SYN-
CRAMFT
3: Technology specific EDAC (SECDED)
Technology specific protection is further documented in
the GRLIB-FT User’s Manual (grlib-ft.pdf).

0 to 3 0

autoscrub Automatically store back corrected data with new check-
bits during a read when a single error is detected. Is
ignored when edacen is deasserted.
This generic must be set to 0 if the ahbpipe generic is set
to 1.

0 to 1 0

errcnten Enables a single error counter.
This generic must be set to 1 if the ahbpipe generic is set
to 1.

0 to 1 0

cntbits number of bits in the single error counter.
This generic must be set to 8 if the ahbpipe generic is set
to 1.

1 to 8 1

ahbpipe Selects to use FTAHBRAM2 architecture. Adds pipeline
registers and requires edacen = 1, autoscrub = 0, errcnten
= 1, cntbits = 8.

0 to 1 0

testen Test enable 0 to 1 0
maccsz Maximum access size supported by core 32 to 128 AHBDW

Table 289.Configuration options

Generic Function Allowed range Default
hindex Selects which AHB select signal (HSEL) will be used to

access the memory.
0 to NAHBMAX-1 0

haddr ADDR field of the AHB BAR 0 to 16#FFF# 0
hmask MASK field of the AHB BAR 0 to 16#FFF# 16#FFF#
tech Memory technology 0 to NTECH 0
kbytes SRAM size in KiB. The RAM size needs to be a power

of two. Otherwise the RAM size will be rounded up to
the nearest power of two.
For implementations with ahbpipe=1 it is allowed to
specify RAM sizes that are of the form 2^x+2^x-1. For
example. Specifying a 192 KiB RAM size with ahbpipe
= 0 will lead to a 256 KiB RAM area. Specifying a 192
KiB RAM size with ahbpipe = 0 allows a 192 KiB RAM
to be implemented. However, specifying a 160 KiB
RAM size will still lead to a 192 KiB RAM.

1 to targetdep. 1
GRIP, Sep 2018, Version 2018.3 248 www.cobham.com/gaisler

GRLIB IP Core

26.7 Signal descriptions

Table 290 shows the interface signals of the core (VHDL ports).

The aramo.ce signal is normally used to generate interrupts which starts an interrupt routine that cor-
rects errors. Since this is not necessary when autoscrubbing is enabled, aramo.ce should not be con-
nected to an AHB status register or the interrupt should be disabled in the interrupt controller

26.8 Library dependencies

Tabel 291 shows libraries used when instantiating the core (VHDL libraries).

26.9 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
library gaisler;

use grlib.amba.all;
use gaisler.misc.all;

entity ftram_ex is
 port(
 rst : std_ulogic;
 clk : std_ulogic;

 --others signals
);
end;

architecture rtl of ftram_ex is

Table 290.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
ARAMO CE Output Single error detected High
MTESTI** N/A Input Memory BIST input signal -
MTESTO** N/A Output Memory BIST output signal -
MTESTCLK** N/A Input Memory BIST clock -
* see GRLIB IP Library User’s Manual
** not available in FPGA releases

Table 291.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER MISC Component Signals and component declaration
GRIP, Sep 2018, Version 2018.3 249 www.cobham.com/gaisler

GRLIB IP Core

--AMBA signals
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_type;
signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector;

--other needed signals here
signal stati : ahbstat_in_type;
signal aramo : ahbram_out_type;

begin

--other component instantiations here
...

-- AHB Status Register
 astat0 : ahbstat generic map(pindex => 13, paddr => 13, pirq => 11,
 nftslv => 3)
 port map(rstn, clkm, ahbmi, ahbso, stati, apbi, apbo(13));
 stati.cerror(1 to NAHBSLV-1) <= (others => ‘0’);

--FT AHB RAM
a0 : ftahbram generic map(hindex => 1, haddr => 1, tech => inferred,
 kbytes => 64, pindex => 4, paddr => 4, edacen => 1, autoscrub => 0,
 errcnt => 1, cntbits => 4)
 port map(rst, clk, ahbsi, ahbso(1), apbi, apbo(4), aramo);
 stati.cerror(0) <= aramo.ce;

end architecture;
GRIP, Sep 2018, Version 2018.3 250 www.cobham.com/gaisler

GRLIB IP Core

27 FTMCTRL - 8/16/32-bit Memory Controller with EDAC

27.1 Overview

The FTMCTRL combined 8/16/32-bit memory controller provides a bridge between external memory
and the AHB bus. The memory controller can handle four types of devices: PROM, asynchronous
static ram (SRAM), synchronous dynamic ram (SDRAM) and memory mapped I/O devices (IO). The
PROM, SRAM and SDRAM areas can be EDAC-protected using a (39,7) BCH code. The BCH code
provides single-error correction and double-error detection for each 32-bit memory word.
The SDRAM area can optionally also be protected using Reed-Solomon coding. In this case a 16-bit
checksum is used for each 32-bit word, and any two adjacent 4-bit (nibble) errors can be corrected.
The EDAC capability is determined through a VHDL generic.
The memory controller is configured through three configuration registers accessible via an APB bus
interface. The PROM, IO, and SRAM external data bus can be configured in 8-, 16-, or 32-bit mode,
depending on application requirements. The controller decodes three address spaces on the AHB bus
(PROM, IO, and SRAM/SDRAM). The addresses are determined through VHDL generics. The IO
area is marked as non-cacheable in the core’s AMBA plug’n’play information record.
External chip-selects are provided for up to four PROM banks, one IO bank, five SRAM banks and
two SDRAM banks. Figure 64 below shows how the connection to the different device types is made.
Note: The FTMCTRL AHB slave interface has a non-compliance with the AMBA 2.0 specification
where the core will only assert HREADY when it is selected (via HSEL). The core functions correctly
in GRLIB systems and there are no known compatibility issues caused by this behaviour. The
HREADY behaviour has been, and will be, preserved to not compromise the extensive heritage of the
memory controller.

27.2 PROM access

Up to four PROM chip-select signals are provided for the PROM area, ROMSN[3:0]. There are two
modes: one with two chip-select signals and one with four. The size of the banks can be set in binary
steps from 16KiB to 256MiB. If the AHB memory area assigned to the memory controller for PROM

Figure 64. FTMCTRL connected to different types of 32+cb-bit memory devices

CS
OE
WE

A
DPROM

CS
OE
WE

I/O

CS
OE
WE

SRAM
RAMSN[4:0]

RAMOEN[4:0]
RWEN[3:0]

ROMSN[3 :0]
OEN

WRITEN

IOSN

A D

FTMCTRL

A[27:0]
D[31:0]

RAS
CAS
WE

SDRAMSDRASN
SDCASN
SDWEN

DQMSDDQM[3:0]

CSNSDCSN[1:0]

AHBAPB

MBENMBEN[3:0]

APB

AHB

CB

CB

A
D

A
D
CB

A
D
CB

CB[15:0]
GRIP, Sep 2018, Version 2018.3 251 www.cobham.com/gaisler

GRLIB IP Core

accesses is larger than the combined size of the memory banks then the PROM memory area will
wrap, starting with the first chip-select being asserted again when accessing addresses higher than the
last decoded bank.
A read access to PROM consists of two data cycles and between 0 and 30 waitstates (in the default
configuration, see wsshift VHDL generic documentation for details). The read data (and optional
EDAC check-bits) are latched on the rising edge of the clock on the last data cycle. On non-consecu-
tive accesses, a idle cycle is placed between the read cycles to prevent bus contention due to slow
turn-off time of PROM devices. Figure 65 shows the basic read cycle waveform (zero waitstate) for
non-consecutive PROM reads. Note that the address is undefined in the idle cycle. Figure 66 shows
the timing for consecutive cycles (zero waitstate). Waitstates are added by extending the data2 phase.
This is shown in figure 67 and applies to both consecutive and non-consecutive cycles. Only an even
number of waitstates can be assigned to the PROM area.

Figure 65. Prom non-consecutive read cyclecs.

data1 data2

address

romsn

data

oen

cb

data1 data2
clk

D1 D2

CB2CB1

A1 A2

Figure 66. Prom consecutive read cyclecs.

data1 data2

address

romsn

data

oen

cb

data2data
clk

A1

D2

CB2CB1

D1

A2

data1
GRIP, Sep 2018, Version 2018.3 252 www.cobham.com/gaisler

GRLIB IP Core
Figure 67. Prom read access with two waitstates.

data1 data2

address

romsn

data

oen

cb

data2data
clk

A1

D1

CB1

data2

Figure 68. Prom write cycle (0-waitstates)

data

address

romsn

data

rwen

cb

lead-out
clk

A1

D1

CB1

lead-in

Figure 69. Prom write cycle (2-waitstates)

data

address

romsn

data

rwen

cb

lead-out

clk

A1

D1

CB1

lead-in datadata
GRIP, Sep 2018, Version 2018.3 253 www.cobham.com/gaisler

GRLIB IP Core

27.3 Memory mapped IO

Accesses to IO have similar timing as PROM accesses. The IO select (IOSN) and output enable
(OEN) signals are delayed one clock to provide stable address before IOSN is asserted. All accesses
are performed as non-consecutive accesses as shown in figure 70. The data2 phase is extended when
waitstates are added.

27.4 SRAM access

The SRAM area is divided on up to five RAM banks. The size of banks 1-4 (RAMSN[3:0]) is pro-
grammed in the RAM bank-size field (MCFG2[12:9]) and can be set in binary steps from 8KiB to
256MiB. The fifth bank (RAMSN[4]) decodes the upper 512MiB (controlled by means of the sdrasel
VHDL generic) and cannot be used simultaneously with SDRAM memory. A read access to SRAM
consists of two data cycles and between zero and three waitstates (in the default configuration, see
wsshift VHDL generic documentation for details). The read data (and optional EDAC check-bits) are
latched on the rising edge of the clock on the last data cycle. Accesses to RAMSN[4] can further be
stretched by de-asserting BRDYN until the data is available. On non-consecutive accesses, a idle
cycle is added after a read cycle to prevent bus contention due to slow turn-off time of memories. Fig-

Figure 70. I/O read cycle (0-waitstates)

data1

address

iosn

data

oen

cb

lead-out
clk

A1

D1

lead-in data2

CB1

Figure 71. I/O write cycle (0-waitstates)

address

iosn

data

writen

cb

lead-out
clk

A1

D1

lead-in data

CB1
GRIP, Sep 2018, Version 2018.3 254 www.cobham.com/gaisler

GRLIB IP Core

ure 72 shows the basic read cycle waveform (zero waitstate). Waitstates are added in the same way as
for PROM in figure 67.

For read accesses to RAMSN[4:0], a separate output enable signal (RAMOEN[n]) is provided for
each RAM bank and only asserted when that bank is selected. A write access is similar to the read
access but takes a minimum of three cycles. Waitstates are added in the same way as for PROM.
Each byte lane has an individual write strobe to allow efficient byte and half-word writes. If the mem-
ory uses a common write strobe for the full 16- or 32-bit data, the read-modify-write bit MCFG2
should be set to enable read-modify-write cycles for sub-word writes.

Figure 72. Sram non-consecutive read cyclecs.

data1 data2

address

ramsn

data

oen,

cb

data1 data2
clk

D1 D2

CB2CB1

A1 A2

ramoen

Figure 73. Sram write cycle (0-waitstates)

data

address

ramsn

data

rwen

cb

lead-out
clk

A1

D1

CB1

lead-in
GRIP, Sep 2018, Version 2018.3 255 www.cobham.com/gaisler

GRLIB IP Core
27.5 8-bit and 16-bit PROM and SRAM access

To support applications with low memory and performance requirements efficiently, the SRAM and
PROM areas can be individually configured for 8- or 16-bit operation by programming the ROM and
RAM width fields in the memory configuration registers. Since reads to memory are always done on
32-bit word basis, read access to 8-bit memory will be transformed in a burst of four read cycles while
access to 16-bit memory will generate a burst of two 16-bit reads. During writes, only the necessary
bytes will be written. Figure 75 shows an interface example with 8-bit PROM and 8-bit SRAM. Fig-
ure 76 shows an example of a 16-bit memory interface.
All possible combinations of width, EDAC, and RMW are not supported. The supported combina-
tions are given in table 292, and the behavior of setting an unsupported combination is undefined. It is
not allowed to set the ROM or RAM width fields to 8-bit or 16-bit width if the core does not imple-
ment support for these widths.

8-bit width support is set with ram8 VHDL generic and 16-bit width support is set with ram16 VHDL
genericis.

Table 292.FTMCTRL supported SRAM and PROM configurations

PROM/SRAM
bus width

RWEN resolution
(SRAM)

EDA
C

RMW bit
(SRAM) Core configuration

8 Bus width None 0 8-bit support
8 Bus width BCH 1 8-bit support, EDAC
16 Byte None 0 16-bit support
16 Bus width None 1 16-bit support
32 Byte None 0
32 Bus width None 1
32+7 Bus width BCH 1 EDAC support

Figure 74. Sram read-modify-write cycle (0-waitstates)

wdata

address

ramsn

data

rwen

cb

lead-out
clk

A1

D1

CB1

nD1

oen,
ramoen

nCB1

rdata1 rdata2 modify

read
GRIP, Sep 2018, Version 2018.3 256 www.cobham.com/gaisler

GRLIB IP Core
In 8-bit mode, the PROM/SRAM devices should be connected to the MSB byte of the data bus
(D[31:24]). The LSB address bus should be used for addressing (A[25:0]). In 16-bit mode, D[31:16]
should be used as data bus, and A[26:1] as address bus.

27.6 8- and 16-bit I/O access

Similar to the PROM/SRAM areas, the IO area can also be configured to 8- or 16-bits mode. How-
ever, the I/O device will NOT be accessed by multiple 8/16 bits accesses as the memory areas, but
only with one single access just as in 32-bit mode. To access an IO device on an 8-bit bus, only byte
accesses should be used (LDUB/STB instructions for the CPU). To accesses an IO device on a 16-bit
bus, only halfword accesses should be used (LDUH/STH instructions for the CPU).

Figure 75. 8-bit memory interface example

CS
OE
WE

A
D

PROM

CS
OE
WE

A
D

SRAM
RAMSN[0]

RAMOEN[0]
RWEN[0]

ROMSN[0]
OEN

A D

MEMORY

A[27:0]

D[31:24]/

RWE[0]

D[31:24]

D[31:24]

A[25:0]

A[25:0]

WRITEN

8-bit PROM

8-bit RAMCONTROLLER

D[31:24]

Figure 76. 16-bit memory interface example

CS
OE
WE

A
D

PROM

CS
OE
WE

A
D

SRAM
RAMSN[0]

RAMOEN[0]
RWEN[0:1]

ROMSN[0]
OEN

A D

A[27:0]

D[31:16]/

RWE[1:0]

D[31:16]

D[31:16]

A[26:1]

A[26:1]

WRITEN

16-bit PROM

16-bit RAM

MEMORY
CONTROLLER

D[31:16]
GRIP, Sep 2018, Version 2018.3 257 www.cobham.com/gaisler

GRLIB IP Core

To access the I/O-area in 8- or 16-bit mode, ram8 VHDL generic or ram16 VHDL generic must be set
respectively.

27.7 Burst cycles

To improve the bandwidth of the memory bus, accesses to consecutive addresses can be performed in
burst mode. Burst transfers will be generated when the memory controller is accessed using an AHB
burst request. These includes instruction cache-line fills, double loads and double stores. The timing
of a burst cycle is identical to the programmed basic cycle with the exception that during read cycles,
the idle cycle will only occurs after the last transfer. Burst cycles will not be generated to the IO area.
Only word (HSIZE = “010”) bursts of incremental type (HBURST=INCR, INCR4, INCR8 or
INCR16) are supported.

27.8 SDRAM access

27.8.1 General

Synchronous dynamic RAM (SDRAM) access is supported to two banks of PC100/PC133 compati-
ble devices. This is implemented by a special version of the SDCTRL SDRAM controller core from
Cobham Gaisler, which is optionally instantiated as a sub-block. The SDRAM controller supports
64M, 256M and 512M devices with 8 - 12 column-address bits, and up to 13 row-address bits. The
size of the two banks can be programmed in binary steps between 4MiB and 512MiB. The operation
of the SDRAM controller is controlled through MCFG2 and MCFG3 (see below). Both 32- and 64-bit
data bus width is supported, allowing the interface of 64-bit DIMM modules. The memory controller
can be configured to use either a shared or separate bus connecting the controller and SDRAM
devices.

27.8.2 Address mapping

The two SDRAM chip-select signals are decoded. SDRAM area is mapped into the upper half of the
RAM area defined by BAR2 register, and cannot be used simultaneously with fifth SRAM bank
(RAMSN[4]). When the SDRAM enable bit is set in MCFG2, the controller is enabled and mapped
into upper half of the RAM area as long as the SRAM disable bit is not set. If the SRAM disable bit is
set, all access to SRAM is disabled and the SDRAM banks are mapped into the lower half of the
RAM area.

27.8.3 Initialisation

When the SDRAM controller is enabled, it automatically performs the SDRAM initialisation
sequence of PRECHARGE, 8x AUTO-REFRESH and LOAD-MODE-REG on both banks simultane-
ously. The controller programs the SDRAM to use single location access on write. The controller pro-
grams the SDRAM to use line burst of length 8 when pageburst VHDL generic is 0. The controller
programs the SDRAM to use page burst when pageburst VHDL generic is 1. The controller programs
the SDRAM to use page burst or line burst of length 8, selectable via the MCFG2 register, when page-
burst VHDL generic is 2.

27.8.4 Configurable SDRAM timing parameters

To provide optimum access cycles for different SDRAM devices (and at different frequencies), three
SDRAM parameters can be programmed through memory configuration register 2 (MCFG2): TCAS,
TRP and TRFCD. The value of these field affects the SDRAM timing as described in table 293.
GRIP, Sep 2018, Version 2018.3 258 www.cobham.com/gaisler

GRLIB IP Core
If the TCAS, TRP and TRFC are programmed such that the PC100/133 specifications are fulfilled,
the remaining SDRAM timing parameters will also be met. The table below shows typical settings for
100 and 133 MHz operation and the resulting SDRAM timing (in ns):

27.8.5 Refresh

The SDRAM controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the MCFG3 register. Depending on SDRAM type, the
required period is typically 7.8 or 15.6 s (corresponding to 780 or 1560 clocks at 100 MHz). The
generated refresh period is calculated as (reload value+1)/sysclk. The refresh function is enabled by
setting bit 31 in MCFG2.

27.8.6 SDRAM commands

The controller can issue three SDRAM commands by writing to the SDRAM command field in
MCFG2: PRE-CHARGE, AUTO-REFRESH and LOAD-MODE-REG (LMR). If the LMR command
is issued, the CAS delay as programmed in MCFG2 will be used. Line burst of length 8 will be set for
read when pageburst VHDL generic is 0. Page burst will be set for read when pageburst VHDL
generic is 1. Page burst or line burst of length 8, selectable via the MCFG2 register will be set, when
pageburst VHDL generic is 2. Remaining fields are fixed: single location write, sequential burst. The
command field will be cleared after a command has been executed. When changing the value of the
CAS delay, a LOAD-MODE-REGISTER command should be generated at the same time. NOTE:
when issuing SDRAM commands, the SDRAM refresh must be disabled.

27.8.7 Read cycles

A read cycle is started by performing an ACTIVATE command to the desired bank and row, followed
by a READ command after the programmed CAS delay. A read burst is performed if a burst access
has been requested on the AHB bus. The read cycle is terminated with a PRE-CHARGE command,
no banks are left open between two accesses.

Table 293.SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)
CAS latency, RAS/CAS delay (tCAS, tRCD) TCAS + 2

Precharge to activate (tRP) TRP + 2

Auto-refresh command period (tRFC) TRFC + 3

Activate to precharge (tRAS) TRFC + 1

Activate to Activate (tRC) TRP + TRFC + 4

Table 294.SDRAM example programming

SDRAM settings tCAS tRC tRP tRFC tRAS

100 MHz, CL=2; TRP=0, TCAS=0, TRFC=4 20 80 20 70 50
100 MHz, CL=3; TRP=0, TCAS=1, TRFC=4 30 80 20 70 50
133 MHz, CL=2; TRP=1, TCAS=0, TRFC=6 15 82 22 67 52
133 MHz, CL=3; TRP=1, TCAS=1, TRFC=6 22 82 22 67 52
GRIP, Sep 2018, Version 2018.3 259 www.cobham.com/gaisler

GRLIB IP Core

27.8.8 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE commands are
issued after activation. A write burst on the AHB bus will generate a burst of write commands without
idle cycles in-between.
After the WRITE command has completed, if there is an immediately following read or write access
(not RMW) to the same 1KiB page on the AHB bus, this access is performed during the same access
cycle without closing and re-opening the row.

27.8.9 Read-modify-write cycles

If EDAC is enabled and a byte or half-word write is performed, the controller will perform a read-
modify-write cycle to update the checkbits correctly. This is done by performing an ACTIVATE com-
mand, followed by READ, WRITE and PRE-CHARGE. The write command interrupts the read burst
and the data mask signals will be raised two cycles before this happens as required by the SDRAM
standard.

27.8.10 Address bus

The memory controller can be configured to either share the address and data buses with the SRAM,
or to use separate address and data buses. When the buses are shared, the address bus of the SDRAMs
should be connected to A[14:2], the bank address to A[16:15]. The MSB part of A[14:2] can be left
unconnected if not used. When separate buses are used, the SDRAM address bus should be connected
to SA[12:0] and the bank address to SA[14:13].

27.8.11 Data bus

SDRAM can be connected to the memory controller through the common or separate data bus. If the
separate bus is used the width is configurable to 32 or 64 bits. 64-bit data bus allows the 64-bit
SDRAM devices to be connected using the full data capacity of the devices. 64-bit SDRAM devices
can be connected to 32-bit data bus if 64-bit data bus is not available but in this case only half the full
data capacity will be used. There is a drive signal vector and separate data vector available for
SDRAM. The drive vector has one drive signal for each data bit. These signals can be used to remove
timing problems with the output delay when a separate SDRAM bus is used.

27.8.12 Clocking

The SDRAM controller is designed for an external SDRAM clock that is in phase or slightly earlier
than the internal AHB clock. This provides the maximum margin for setup and hold on the external
signals, and allows highest possible frequency. For Xilinx and Altera device, the GRLIB Clock Gen-
erator (CLKGEN) can be configured to produce a properly synchronized SDRAM clock. For other
FPGA targets, the custom clock synchronization must be designed. For ASIC targets, the SDRAM
clock can be derived from the AHB clock with proper delay adjustments during place&route.

27.8.13 Initialisation

Each time the SDRAM is enabled (bit 14 in MCFG2), an SDRAM initialisation sequence will be sent
to both SDRAM banks. The sequence consists of one PRECHARGE, eight AUTO-REFRESH and
one LOAD-COMMAND-REGISTER command.

27.9 Memory EDAC

27.9.1 BCH EDAC

The FTMCTRL is provided with an BCH EDAC that can correct one error and detect two errors in a
32-bit word. For each word, a 7-bit checksum is generated according to the equations below. A cor-
GRIP, Sep 2018, Version 2018.3 260 www.cobham.com/gaisler

GRLIB IP Core

rectable error will be handled transparently by the memory controller, but adding one waitstate to the
access. If an un-correctable error (double-error) is detected, the current AHB cycle will end with an
error response. The EDAC can be used during access to PROM, SRAM and SDRAM areas by setting
the corresponding EDAC enable bits in the MCFG3 register. The equations below show how the
EDAC checkbits are generated:
CB0 = D0 ^ D4 ^ D6 ^ D7 ^ D8 ^ D9 ^ D11 ^ D14 ^ D17 ^ D18 ^ D19 ^ D21 ^ D26 ^ D28 ^ D29 ^ D31
CB1 = D0 ^ D1 ^ D2 ^ D4 ^ D6 ^ D8 ^ D10 ^ D12 ^ D16 ^ D17 ^ D18 ^ D20 ^ D22 ^ D24 ^ D26 ^ D28
CB2 = D0 ^ D3 ^ D4 ^ D7 ^ D9 ^ D10 ^ D13 ^ D15 ^ D16 ^ D19 ^ D20 ^ D23 ^ D25 ^ D26 ^ D29 ^ D31
CB3 = D0 ^ D1 ^ D5 ^ D6 ^ D7 ^ D11 ^ D12 ^ D13 ^ D16 ^ D17 ^ D21 ^ D22 ^ D23 ^ D27 ^ D28 ^ D29
CB4 = D2 ^ D3 ^ D4 ^ D5 ^ D6 ^ D7 ^ D14 ^ D15 ^ D18 ^ D19 ^ D20 ^ D21 ^ D22 ^ D23 ^ D30 ^ D31
CB5 = D8 ^ D9 ^ D10 ^ D11 ^ D12 ^ D13 ^ D14 ^ D15 ^ D24 ^ D25 ^ D26 ^ D27 ^ D28 ^ D29 ^ D30 ^ D31
CB6 = D0 ^ D1 ^ D2 ^ D3 ^ D4 ^ D5 ^ D6 ^ D7 ^ D24 ^ D25 ^ D26 ^ D27 ^ D28 ^ D29 ^ D30 ^ D31

If the SRAM is configured in 8-bit mode, the EDAC checkbit bus (CB[7:0]) is not used but it is still
possible to use EDAC protection. Data is always accessed as words (4 bytes at a time) and the corre-
sponding checkbits are located at the address acquired by inverting the word address (bits 2 to 27) and
using it as a byte address. The same chip-select is kept active. A word written as four bytes to
addresses 0, 1, 2, 3 will have its checkbits at address 0xFFFFFFF, addresses 4, 5, 6, 7 at 0xFFFFFFE
and so on. All the bits up to the maximum bank size will be inverted while the same chip-select is
always asserted. This way all the bank sizes can be supported and no memory will be unused (except
for a maximum of 4 byte in the gap between the data and checkbit area). A read access will automati-
cally read the four data bytes individually from the nominal addresses and the EDAC checkbit byte
from the top part of the bank. A write cycle is performed the same way. Byte or half-word write
accesses will result in an automatic read-modify-write access where 4 data bytes and the checkbit byte
are firstly read, and then 4 data bytes and the newly calculated checkbit byte are writen back to the
memory. This 8-bit mode applies to SRAM while SDRAM always uses 32-bit accesses. The size of
the memory bank is determined from the settings in MCFG2. The EDAC cannot be used on memory
areas configured in 16-bit mode.
If the ROM is configured in 8-bit mode, EDAC protection is provided in a similar way as for the
SRAM memory described above. The difference is that write accesses are not being handled automat-
ically. Instead, write accesses must only be performed as individual byte accesses by the software,
writing one byte at a time, and the corresponding checkbit byte must be calculated and be written to
the correct location by the software.
NOTE: when the EDAC is enabled in 8-bit bus mode, only the first bank select (RAMSN[0],
PROMSN[0]) can be used.
The operation of the EDAC can be tested trough the MCFG3 register. If the WB (write bypass) bit is
set, the value in the TCB field will replace the normal checkbits during memory write cycles. If the
RB (read bypass) is set, the memory checkbits of the loaded data will be stored in the TCB field
during memory read cycles. NOTE: when the EDAC is enabled, the RMW bit in memory configura-
tion register 2 must be set.
Data access timing with EDAC enabled is identical to access without EDAC, if the edac VHDL
generic is set to 1. To improve timing of the HREADY output, a pipeline stage can be inserted in the
EDAC error detection by setting the edac VHDL generic to 2. One clock extra latency will then occur
on single word reads, or on the first data word in a burst.
EDAC is not supported for 64-bit wide SDRAM data buses.

27.9.2 Reed-Solomon EDAC

The Reed-Solomon EDAC provides block error correction, and is capable of correcting up to two 4-
bit nibble errors in a 32-bit data word or 16-bit checksum. The Reed-Solomon EDAC can be enabled
for the SDRAM area only, and uses a 16-bit checksum. Operation and timing is identical to the BCH
EDAC with the pipeline option enabled. The Reed-Solomon EDAC is enabled by setting the RSE and
GRIP, Sep 2018, Version 2018.3 261 www.cobham.com/gaisler

GRLIB IP Core

RE bits in MCFG3, and the RMW bit in MCFG2. The Reed-Solomon EDAC is not supported for 64-
bit wide SDRAM buses.
The Reed-Solomon data symbols are 4-bit wide, represented as GF(2^4). The basic Reed-Solomon
code is a shortened RS(15, 13, 2) code, represented as RS(6, 4, 2). It has the capability to detect and
correct a single symbol error anywhere in the codeword. The EDAC implements an interleaved RS(6,
4, 2) code where the overall data is represented as 32 bits and the overall checksum is represented as
16 bits. The codewords are interleaved nibble-wise. The interleaved code can correct two 4-bit errors
when each error is located in a nibble and not in the same original RS(6, 4, 2) codeword.
The Reed-Solomon RS(15, 13, 2) code has the following definition:
• there are 4 bits per symbol;
• there are 15 symbols per codeword;
• the code is systematic;
• the code can correct one symbol error per codeword;
• the field polynomial is

• the code generator polynomial is

for which the highest power of x is stored first;
• a codeword is defined as 15 symbols:

c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14

where c0 to c12 represent information symbols and c13 to c14 represent check symbols.

The shortened and interleaved RS(6, 4, 2) code has the following definition:
• the codeword length is shortened to 4 information symbols and 2 check symbols and as follows:

c0 = c1 = c2 = c3 = c4 = c5 = c6 = c7 = c8 = 0
where the above information symbols are suppressed or virtually filled with zeros;

• two codewords are interleaved (i.e. interleaved depth I=2) with the following mapping to the 32-
bit data and 16-bit checksum, were ci,j is a symbol with codeword index i and symbol index j:
c0,9 = sd[31:28]
c1,9 = sd[27:24]
c0,10 = sd[23:20]
c1,10 = sd[19:16]
c0,11 = sd[15:12]
c1,11 = sd[11:8]
c0,12 = sd[7:4]
c1,12 = sd[3:0]
c0,13 = scb[15:12]
c1,13 = scb[11:8]

f x  x4 x 1+ +=

g x  x i+ 
i 7=

8

 g j x j
j 0=

2

= =
GRIP, Sep 2018, Version 2018.3 262 www.cobham.com/gaisler

GRLIB IP Core

c0,14 = scb[7:4]
c1,14 = scb[3:0]
where SD[] is interchanable with DATA[] and SCB[] is interchangable with CB[]

Note that the FTMCTRL must have the edac VHDL generic set to 3 to enable the RS EDAC function-
ality. The Reed-Solomon EDAC is not supported for 64-bit wide SDRAM buses.

27.9.3 EDAC Error reporting

As mentioned above an un-correctable error results in an AHB error response which can be monitored
on the bus. Correctable errors however are handled transparently and are not visible on the AHB bus.
A sideband signal is provided which is asserted during one clock cycle for each access for which a
correctable error is detected. This can be used for providing an external scrubbing mechanism and/or
statistics. The correctable error signal is most commonly connected to the AHB status register which
monitors both this signal and error responses on the bus. Please see the AHB status register section for
more information.

27.10 Bus Ready signalling

The BRDYN signal can be used to stretch all types of access cycles to the PROM, I/O area and the
SRAM area decoded by RAMSN[4]. This covers read and write accesses in general, and additionally
read-modify-write accesses to the SRAM area. The accesses will always have at least the pre-pro-
grammed number of waitstates as defined in memory configuration registers 1 & 2, but will be further
stretched until BRDYN is asserted. BRDYN should be asserted in the cycle preceding the last one. If
bit 29 in MCFG1 is set, BRDYN can be asserted asynchronously with the system clock. In this case,
the read data must be kept stable until the de-assertion of OEN/RAMOEN and BRDYN must be
asserted for at least 1.5 clock cycle. The use of BRDYN can be enabled separately for the PROM, I/O
and RAMSN[4] areas. It is recommended that BRDYN is asserted until the corresponding chip select
signal is de-asserted, to ensure that the access has been properly completed and avoiding the system to
stall.

Figure 78 shows the use of BRDYN with asynchronous sampling. BRDYN is kept asserted for more
than 1.5 clock-cycle. Two synchronization registers are used so it will take at least one additional
cycle from when BRDYN is first asserted until it is visible internally. In figure 78 one cycle is added
to the data2 phase.

Figure 77. READ cycle with one extra data2 cycle added with BRDYN (synchronous sampling). Lead-out cycle is only
applicable for I/O accesses.

data1 data2

address

romsn/iosn/ramsn[4]

data

oen

data2 lead-out
clk

D1

A1

brdyn
GRIP, Sep 2018, Version 2018.3 263 www.cobham.com/gaisler

GRLIB IP Core
If burst accesses and BRDYN signaling are to be used together, special care needs to be taken to make
sure BRDYN is raised between the separate accesses of the burst. The controller does not raise the
select and OEN signal (in the read case) between accesses during the burst so if BRDYN is kept
asserted until the select signal is raised, all remaining accesses in the burst will finish with the config-
ured fixed number of wait states.
The core can optionally be implemented with a bus ready timeout counter. The counter value and
counter reload value are then available in MCFG7. The counter will be reloaded whenever the bus
ready signal is low (asserted). If the reload value is nonzero, then the counter will decrement with one
each clock cycle the core is waiting for bus ready to be asserted. If the counter reaches zero, the action
taken depends on the state of Bus Error Enable (BEXCN) in MCFG1. If BEXCN is ‘1’, then an
AMBA ERROR response will be generated and the counter will be reloaded. If BEXCN is ‘0’, then
the bus ready enable for the accessed memory area will be disabled and the core will ignore bus ready
for the accessed area.
Bus ready timeout functionality is disabled when the bus ready counter reload value is zero
(MCFG7.BRDYCNTRLD = 0).

Figure 78. BRDYN (asynchronous) sampling and BEXCN timing. Lead-out cycle is only applicable for I/O-accesses.

data1 data2

address

romsn/iosn/ramsn[4]

data

oen

data2 lead-out
clk

D1

A1

brdyn

bexcn

Figure 79. Read cycle with one waitstate (configured) and one BRDYN generated waitstate (synchronous sampling).

data1 data2

address

romsn/iosn/ramsn[4]

data

oen

data2 lead-out

clk

D1

A1

brdyn

data2
ws brdyn
GRIP, Sep 2018, Version 2018.3 264 www.cobham.com/gaisler

GRLIB IP Core

27.11 Access errors

An access error can be signalled by asserting the BEXCN signal for read and write accesses. For reads
it is sampled together with the read data. For writes it is sampled on the last rising edge before chip
select is de-asserted, which is controlled by means of waitstates or bus ready signalling. If the usage
of BEXCN is enabled in memory configuration register 1, an error response will be generated on the
internal AHB bus. BEXCN can be enabled or disabled through memory configuration register 1, and
is active for all areas (PROM, IO and RAM). BEXCN is only sampled in the last access for 8- and 16-
bit mode for RAM and PROM. That is, when four bytes are written for a word access to 8-bit wide
memory BEXCN is only sampled in the last access with the same timing as a single access in 32-bit
mode.

27.12 Attaching an external DRAM controller

To attach an external DRAM controller, RAMSN[4] should be used since it allows the cycle time to
vary through the use of BRDYN. In this way, delays can be inserted as required for opening of banks
and refresh.

Figure 80. Read cycle with BEXCN.

data1 data2

address

romsn/iosn/ramsn

data

oen

lead-out

clk

D1

A1

bexcn

Figure 81. Write cycle with BEXCN. Chip-select (iosn) is not asserted in lead-in cycle for io-accesses.

lead-in data2

address

romsn/iosn/ramsn

data

rwen

lead-out

clk

D1

A1

bexcn
GRIP, Sep 2018, Version 2018.3 265 www.cobham.com/gaisler

GRLIB IP Core

27.13 Output enable timing

A drive signal vector for the data I/O-pads is provided which has one drive signal for each data bit. It
can be used if the synthesis tool does not generate separate registers automatically for the current
technology. This can remove timing problems with output delay. An additional vector is used for the
separate SDRAM bus.

27.14 Read strobe

The READ signal indicates the direction of the current PROM,SRAM,IO or SDRAM transfer, and it
can be used to drive external bi-directional buffers on the data bus. It always is valid at least one cycle
before and after the bus is driven, at other times it is held either constant high or low.

27.15 Endianness

The core is designed for big-endian systems.

27.16 Registers

The core is programmed through registers mapped into APB address space.

27.16.1 Memory configuration register 1 (MCFG1)

Memory configuration register 1 is used to program the timing of rom and IO accesses.

Table 295.FTMCTRL memory controller registers

APB Address offset Register
0x0 Memory configuration register 1 (MCFG1)
0x4 Memory configuration register 2 (MCFG2)
0x8 Memory configuration register 3 (MCFG3)
0xC Memory configuration register 4 (MCFG4)
0x10 Memory configuration register 5 (MCFG5)
0x14 Memory configuration register 6 (MCFG6)
0x18 Memory configuration register 7 (MCFG7)

Table 296.0x00 - MCFG1 - Memory configuration register 1
31 30 29 28 27 26 25 24 23 20 19 18 17

PBRDY ABRDY IOBUSW IBRDY BEXCN IO WAITSTATES IOEN R ROMBANKSZ

0 0 NR 0 0 0 0x00 0 0 0x0

rw rw rw rw rw r rw rw r rw

14 13 12 11 10 9 8 7 4 3 0

ROMANKS7 RESERVED PWEN RES PROM WIDTH PROM WRITE WS PROM READ WS

0 0 0 * 0xE 0xE

rw r rw r rw rw rw

31 RESERVED
30 PROM area bus ready enable (PBRDY) - Enables bus ready (BRDYN) signalling for the PROM

area. Reset to ‘0’.
29 Asynchronous bus ready (ABRDY) - Enables asynchronous bus ready.
28 : 27 I/O bus width (IOBUSW) - Sets the data width of the I/O area (“00”=8, “01”=16, “10” =32).
26 I/O bus ready enable (IBRDY) - Enables bus ready (BRDYN) signalling for the I/O area. Reset to

‘0’.
25 Bus error enable (BEXCN) - Enables bus error signalling for all areas. Reset to ‘0’.
24 RESERVED
GRIP, Sep 2018, Version 2018.3 266 www.cobham.com/gaisler

GRLIB IP Core
During reset, the prom width (bits [9:8]) are set with value on BWIDTH inputs. The prom waitstates
fields are set to 15 (maximum). External bus error and bus ready are disabled. All other fields are
undefined.

27.16.2 Memory configuration register 2 (MCFG2)

Memory configuration register 2 is used to control the timing of the SRAM and SDRAM.

23 : 20 I/O waitstates (IO WAITSTATES) - Sets the number of waitstates during I/O accesses (“0000”=0,
“0001”=1, “0010”=2,..., “1111”=15).
The values above describe the default configuration The core can be configred at implementation to
extend the number of waitstates. The number of wait states inserted will be (IO WAITSTATES)*2ws-

shift, where wsshift can be read from the first user-defined register in the core’s plug&play area
(default is wsshift = 0).

19 I/O enable (IOEN) - Enables accesses to the memory bus I/O area.
18 RESERVED
17: 14 PROM bank size (ROMBANKSZ) - Returns current PROM bank size when read. “0000” is a spe-

cial case and corresponds to a bank size of 256MiB. All other values give the bank size in binary
steps: “0001”=16KiB, “0010”=32KiB, “0011”=64KiB,... , “1111”=256MiB (i.e. 8KiB * 2**ROM-
BANKSZ). For value “0000” or “1111” only two chip selects are available. For other values, two
chip select signals are available for fixed bank sizes. For other values, four chip select signals are
available for programmable bank sizes.
Programmable bank sizes can be changed by writing to this register field. The written values corre-
spond to the bank sizes and number of chip-selects as above. Reset to “0000” when programmable.
Programmable ROMBANKSZ is only available when romasel VHDL generic is 0. For other values
this is a read-only register field containing the fixed bank size value.

13:12 RESERVED
11 PROM write enable (PWEN) - Enables write cycles to the PROM area.
10 RESERVED
9 : 8 PROM width (PROM WIDTH) - Sets the data width of the PROM area (“00”=8, “01”=16,

“10”=32).
7 : 4 PROM write waitstates (PROM WRITE WS) - Sets the number of wait states for PROM write

cycles (“0000”=0, “0001”=2, “0010”=4,..., “1111”=30).
The values above describe the default configuration The core can be configred at implementation to
extend the number of waitstates. The number of wait states inserted will be (PROM WRITE
WS)*2*2wsshift, where wsshift can be read from the first user-defined register in the core’s
plug&play area (default is wsshift = 0).

3 : 0 PROM read waitstates (PROM READ WS) - Sets the number of wait states for PROM read cycles
(“0000”=0, “0001”=2, “0010”=4,...,”1111”=30). Reset to “1111”.
The values above describe the default configuration The core can be configred at implementation to
extend the number of waitstates. The number of wait states inserted will be (PROM READ
WS)*2*2wsshift, where wsshift can be read from the first user-defined register in the core’s
plug&play area (default is wsshift = 0).

Table 297.0x04 - MCFG2 - Memory configuration register 2
31 30 29 27 26 25 23 22 21 20 19 18 17 16

SDRF TRP SDRAM TRFC TCAS SDRAM BANKSZ SDRAM COLSZ SDRAM CMD D64 SDPB R

0 1 0x3 1 0 0x2 0 * 0 0

rw rw rw rw rw rw rw r rw r

15 14 13 12 9 8 7 6 5 4 3 2 1 0

R SE SI RAM BANK SIZE RBRDY RMW RAM WIDTH RAM WRITE WS RAM READ WS

0 0 0 NR NR NR NR 0 0

r rw rw rw rw* rw rw rw rw

31 SDRAM refresh (SDRF) - Enables SDRAM refresh.

Table 296.0x00 - MCFG1 - Memory configuration register 1
GRIP, Sep 2018, Version 2018.3 267 www.cobham.com/gaisler

GRLIB IP Core
27.16.3 Memory configuration register 3 (MCFG3)

MCFG3 contains the reload value for the SDRAM refresh counter and to control and monitor the
memory EDAC.

30 SDRAM TRP parameter (TRP) - tRP will be equal to 2 or 3 system clocks (0/1).

29 : 27 SDRAM TRFC parameter (SDRAM TRFC) - tRFC will be equal to 3+field-value system clocks.

26 SDRAM TCAS parameter (TCAS) - Selects 2 or 3 cycle CAS delay (0/1). When changed, a LOAD-
COMMAND-REGISTER command must be issued at the same time. Also sets RAS/CAS delay
(tRCD).

25 : 23 SDRAM bank size (SDRAM BANKSZ) - Sets the bank size for SDRAM chip selects (“000”=4MiB,
“001”=8MiB, “010”=16MiB,...,. “111”=512MiB).
When configured for 64-bit wide SDRAM data bus (sdbits=64), the meaning of this field doubles so
that “000”=8 MiB, .., “111”=1024 MiB

22 : 21 SDRAM column size (SDRAM COLSZ) - “00”=256, “01”=512, “10”=1024, “11”=2048 except
when bit[25:23]=˘111˘ then ˘11˘=4096

20 : 19 SDRAM command (SDRAM CMD) - Writing a non-zero value will generate a SDRAM command.
“01”=PRECHARGE, “10”=AUTO-REFRESH, “11”=LOAD-COMMAND-REGISTER. The field is
reset after the command has been executed.

18 64-bit SDRAM data bus (D64) - Reads ‘1’ if the memory controller is configured for 64-bit SDRAM
data bus width, ‘0’ otherwise. Read-only.

17 SDRAM Page Burst (SDPB) - SDRAM programmed for page bursts on read when set, else pro-
grammed for line burst lengths of 8 on read. Programmable when pageburst VHDL generic is 2, else
read-only.

16 : 15 RESERVED
14 SDRAM enable (SE) - Enables the SDRAM controller and disables fifth SRAM bank (RAMSN[4]).
13 SRAM disable (SI) - Disables accesses to SRAM bank if bit 14 (SE) is set to ‘1’.
12 : 9 RAM bank size (RAM BANK SIZE) - Sets the size of each RAM bank (“0000”=8KiB,

“0001”=16KiB, “0010”=32KiB, “0011”= 64KiB,.., “1111”=256MiB)(i.e. 8KiB * 2**RAM BANK
SIZE).

8 RESERVED
7 RAM bus ready enable (RBRDY) - Enables bus ready signaling for the RAM area.

Bus read signaling for the RAM area is only available for the fifth chip-select and this field is only
available if the memory controller has been implemented with the VHDL generic srbanks set to 5.

6 Read-modify-write enable (RMW) - Enables read-modify-write cycles for sub-word writes to 16- bit
32-bit areas with common write strobe (no byte write strobe).

5 : 4 RAM width (RAM WIDTH) - Sets the data width of the RAM area (“00”=8, “01”=16, “1X”=32).
3 : 2 RAM write waitstates (RAM WRITE WS) - Sets the number of wait states for RAM write cycles

(“00”=0, “01”=1, “10”=2, “11”=3).
The values above describe the default configuration The core can be configred at implementation to
extend the number of waitstates. The number of wait states inserted will be (RAM WRITE WS)*2ws-

shift, where wsshift can be read from the first user-defined register in the core’s plug&play area
(default is wsshift = 0).

1 : 0 RAM read waitstates (RAM READ WS) - Sets the number of wait states for RAM read cycles
(“00”=0, “01”=1, “10”=2, “11”=3).
The values above describe the default configuration The core can be configred at implementation to
extend the number of waitstates. The number of wait states inserted will be (RAM READ WS)*2ws-

shift, where wsshift can be read from the first user-defined register in the core’s plug&play area
(default is wsshift = 0).

Table 298.0x08 - MCFG3 - Memory configuration register 3
31 29 28 27 26

RESERVED RSE ME SDRAM REFRESH COUNTER

0 0 1 NR

Table 297.0x04 - MCFG2 - Memory configuration register 2
GRIP, Sep 2018, Version 2018.3 268 www.cobham.com/gaisler

GRLIB IP Core
The period between each AUTO-REFRESH command is calculated as follows:
tREFRESH = ((reload value) + 1) / SYSCLK

27.16.4 Memory configuration register 4 (MCFG4)

MCFG4 is only present if the Reed-Solomon EDAC has been enabled with the edac VHDL generic.
MCFG4 provides means to insert Reed-Solomon EDAC errors into memory for diagnostic purposes.

27.16.5 Memory configuration register 5 (MCFG5)

MCFG5 contains fields to control lead out cycles for the ROM and IO areas.

r rw r rw

12 11 10 9 8 7 0

WB RB RE PE TCB

0 0 NR 0 NR

rw rw rw rw rw

31 : 29 RESERVED
28 Reed-Solomon EDAC enable (RSE) - if set, will enable Reed-Solomon protection of SDRAM area

when implemented
27 Memory EDAC (ME) - Indicates if memory EDAC is present. (read-only)
26 : 12 SDRAM refresh counter reload value (SDRAM REFRESH COUNTER)
11 EDAC diagnostic write bypass (WB) - Enables EDAC write bypass.
10 EDAC diagnostic read bypass (RB) - Enables EDAC read bypass.
9 RAM EDAC enable (RE) - Enable EDAC checking of the RAM area (including SDRAM).
8 PROM EDAC enable (PE) - Enable EDAC checking of the PROM area. Ar reset, this bit is initial-

ized with the value of MEMI.EDAC.
7 : 0 Test checkbits (TCB) - This field replaces the normal checkbits during write cycles when WB is set.

It is also loaded with the memory checkbits during read cycles when RB is set.

Table 299.0x0C - MCFG4 - Memory configuration register 4
31 16

RESERVED WB

15 0

TCB[15:0]

31 : 17 RESERVED
16 EDAC diagnostic write bypass (WB) - Enables EDAC write bypass. Identical to WB in MCFG3.
15 : 0 Test checkbits (TCB) - This field replaces the normal checkbits during write cycles when WB is set.

It is also loaded with the memory checkbits during read cycles when RB is set. Note that TCB[7:0]
are identical to TCB[7:0] in MCFG3

Table 300.0x10 - MCFG5 - Memory configuration register 5
31 30 29 23 22 16

RESERVED IOHWS RESERVED

0x00

rw

15 14 13 7 6 0

RESERVED ROMHWS RESERVED

0x00

Table 298.0x08 - MCFG3 - Memory configuration register 3
GRIP, Sep 2018, Version 2018.3 269 www.cobham.com/gaisler

GRLIB IP Core
27.16.6 Memory configuration register 6 (MCFG6)

MCFG6 contains fields to control lead out cycles for the (S)RAM area.

27.16.7 Memory configuration register 7 (MCFG7)

MCFG7 contains fields to control bus ready timeout.

27.17 Vendor and device identifiers

The core has vendor identifier 0x01 (GAISLER) and device identifier 0x054. For description of ven-
dor and device identifiers, see GRLIB IP Library User’s Manual.

rw

31 : 30 RESERVED
29:23 IO lead out (IOHWS) - Lead out cycles added to IO accesses are IOHWS(3:0)*2IOHWS(6:4)

22 : 14 RESERVED
13:7 ROM lead out (ROMHWS) - Lead out cycles added to ROM accesses are

ROMHWS(3:0)*2ROMHWS(6:4)

6 : 0 RESERVED

Table 301.0x14 - MCFG6 - Memory configuration register 6
31 16

RESERVED

0

r

15 14 13 7 6 0

RESERVED RAMHWS RESERVED

r 0x00 r

0 rw 0

31 : 14 RESERVED
13:7 RAM lead out (RAMHWS) - Lead out cycles added to RAM accesses are

RAMHWS(3:0)*2RAMHWS(6:4)

6 : 0 RESERVED

Table 302.0x18 - MCFG7 - Memory configuration register 7
31 16

BRDYNCNT

0

rw

15 0

BRDYNRLD

0

rw

31 : 16 Bus ready count (BRDYNCOUNT) - Counter value. If this register is written then the counter shall
be written with the same value as BRDYNRLD.

15: 0 Bus ready reload value (BRDYNRLD) - Reload value for BRDYNCNT

Table 300.0x10 - MCFG5 - Memory configuration register 5
GRIP, Sep 2018, Version 2018.3 270 www.cobham.com/gaisler

GRLIB IP Core

27.18 Implementation

27.18.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers. See the documentation for the syncrst VHDL generic for information on asynchronous
reset affecting external signals.

27.19 Configuration options

Table 303 shows the configuration options of the core (VHDL generics).

Table 303.Configuration options

Generic Function Allowed range Default
hindex AHB slave index 1 - NAHBSLV-1 0
pindex APB slave index 0 - NAPBSLV-1 0
romaddr ADDR field of the AHB BAR0 defining PROM address space.

Default PROM area is 0x0 - 0x1FFFFFFF.
Also see documentation of romasel VHDL generic below.

0 - 16#FFF# 16#000#

rommask MASK field of the AHB BAR0 defining PROM address space..
Also see documentation of romasel VHDL generic below.

0 - 16#FFF# 16#E00#

ioaddr ADDR field of the AHB BAR1 defining I/O address space.
Default I/O area is 0x20000000 - 0x2FFFFFFF.

0 - 16#FFF# 16#200#

iomask MASK field of the AHB BAR1 defining I/O address space. 0 - 16#FFF# 16#E00#
ramaddr ADDR field of the AHB BAR2 defining RAM address space.

Default RAM area is 0x40000000-0x7FFFFFFF.
0 - 16#FFF# 16#400#

rammask MASK field of the AHB BAR2 defining RAM address space. 0 -16#FFF# 16#C00#
paddr ADDR field of the APB BAR configuration registers address

space.
0 - 16#FFF# 0

pmask MASK field of the APB BAR configuration registers address
space.

0 - 16#FFF# 16#FFF#

wprot RAM write protection. 0 - 1 0
invclk unused N/A 0
fast Enable fast SDRAM address decoding. 0 - 1 0
GRIP, Sep 2018, Version 2018.3 271 www.cobham.com/gaisler

GRLIB IP Core
romasel Sets the PROM bank size.
romasel 0: selects a programmable mode where the ROM-
BANKSZ field in the MCFG1 register sets the bank size. When
romasel is 0 and the bank size is configured (MCFG1 register,
ROMBANKSZ field, via the core’s register interface) to 0b000
or 0b1111 then address bit 28 is used to decode the banks. This
means that the core must be mapped at a 512 MiB address
boundary (0x0, 0x20000000, 0x40000000, .. see romaddr and
rommask VHDL generics) for address decoding to work cor-
rectly.
romasel 1 - 14: Values 1 - 14 sets the size in binary steps (1 =
16KiB, 2 = 32KiB, 3=64KiB,, 14=128MiB). Four chip-
selects are available for these values. 15 sets the bank size to
256MiB with two chip-selects.
romasel 16 - 28: Values 16 - 28 sets the bank size in binary steps
(16 = 64 KiB, 17 = 128KiB, ... 28 = 256MiB). Two chip-selects
are available for this range. The selected bank size is readable
from the rombanksz field in the MCFG1 register for the non-pro-
grammable modes.
The PROM area will wrap back to the first bank after the end of
the last decoded bank. As an example, if romasel is set to 14 the
following banks will be decoded:
bank 0: 0x00000000 - 0x07FFFFFF
bank 1: 0x08000000 - 0x0FFFFFFF
bank 2: 0x10000000 - 0x17FFFFFF
bank 3: 0x18000000 - 0x1FFFFFFF
...bank 0 starting again at 0x20000000 (the same pattern applies
for other values less than 14, addresses will wrap after the last
decoded bank).
If romasel is 15 then the address decoding will result in the fol-
lowing:
bank 0: 0x00000000 - 0x0FFFFFFF
bank 1: 0x10000000 - 0x1FFFFFFF
.. bank 0 starting again at offset 0x20000000
When instantiating the core care must be taken to see how many
chip-selects that will be used as a result of the setting of romasel.
This affects the base address at which the core can be placed
(setting of romaddr and rommask VHDL generics). As an exam-
ple, placing the PROM area at a 256 MiB address boundary, like
the base address 0x10000000 and using romasel = 0, 14, 15 or 28
will NOT result in ROM chip-select 0 getting asserted for an
access to the PROM base address as the address decoding
requires that the core has been placed on a 512 MiB address
boundary.

0 - 28 28

sdrasel log2(RAM address space size) - 1. E.g if size of the RAM
address space is 0x40000000 sdrasel is log2(2^30)-1= 29.

14 - 31 29

srbanks Number of SRAM banks. 0 - 5 4
ram8 Enable 8-bit PROM, SRAM and I/O access. 0 - 1 0
ram16 Enable 16-bit PROM, SRAM and I/O access. 0 - 1 0
sden Enable SDRAM controller. 0 - 1 0
sepbus SDRAM is located on separate bus. 0 - 1 1
sdbits 32 or 64 -bit SDRAM data bus. 32, 64 32
oepol Select polarity of drive signals for data pads. 0 = active low, 1 =

active high.
0 - 1 0

Table 303.Configuration options

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 272 www.cobham.com/gaisler

GRLIB IP Core
27.20 Scan support

Scan support is enabled by setting the SCANTEST generic to 1. When enabled, the asynchronous
reset of any flip-flop will be connected to AHBI.testrst during when AHBI.testen = ‘1’.

27.21 Signal descriptions

Table 304 shows the interface signals of the core (VHDL ports).

edac Enable EDAC. 0 = No EDAC; 1 = BCH EDAC; 2 = BCH
EDAC with pipelining; 3 = BCH + RS EDAC

0 - 3 0

sdlsb Select least significant bit of the address bus that is connected to
SDRAM.

- 2

syncrst Choose between synchronous and asynchronous reset for chip-
select, oen and drive signals.

0 - 1 0

pageburst Line burst read of length 8 when 0, page burst read when 1, pro-
grammable read burst type when 2.

0-2 0

scantest Enable scan test support 0 - 1 0
netlist Use technology specific netlist instead of RTL code 0 - 1 0
tech Technology to use for netlists 0 - NTECH 0
rahold Unused 0 - 16 0
wsshift Wait state counter shift. This value defines the number of steps

to shift the wait state counter. The number of waitstates that the
core can generate is limited by 2wsshift. See the wait state fields
in the core’s APB register descriptions to see the effect of this
generic. The value of this generic can be read out in the first
user-defined register of the core’s plug&play area. This means
that if wsshift is non-zero then the AHB controller must have full
plug&play decoding enabled.

- 0

brdynto Bus ready timeout conunter enable. If this generic is non-zero
then the core will be implemented with a bus ready timeout
counter (see MCFG7).

0 - 1 0

Table 304.Signal descriptions

Signal name Field Type Function Active
CLK N/A Input Clock -
RST N/A Input Reset Low
MEMI DATA[31:0] Input Memory data High

BRDYN Input Bus ready strobe Low
BEXCN Input Bus exception Low
CB[15:0] Input EDAC checkbits High
WRN[3:0] Input SRAM write enable feedback signal Low
BWIDTH[1:0] Input Sets the reset value of the PROM data bus width

field in the MCFG1 register
High

EDAC Input The reset value for the PROM EDAC enable bit High
SD[31:0] Input SDRAM separate data bus High
SCB[15:0] Input SDRAM separate checkbit bus High

Table 303.Configuration options

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 273 www.cobham.com/gaisler

GRLIB IP Core
MEMO ADDRESS[31:0] Output Memory address High
CB[15:0] Output EDAC Checkbit
DATA[31:0] Output Memory data -
SDDATA[63:0] Output Sdram memory data -
RAMSN[4:0] Output SRAM chip-select Low
RAMOEN[4:0] Output SRAM output enable Low
IOSN Output Local I/O select Low
ROMSN[3:0] Output PROM chip-select Low
OEN Output Output enable Low
WRITEN Output Write strobe Low
WRN[3:0] Output SRAM write enable:

 WRN[0] corresponds to DATA[31:24],
 WRN[1] corresponds to DATA[23:16],
 WRN[2] corresponds to DATA[15:8],
 WRN[3] corresponds to DATA[7:0].
Any WRN[] signal can be used for CB[].

Low

MBEN[3:0] Output Read/write byte enable:
 MBEN[0] corresponds to DATA[31:24],
 MBEN[1] corresponds to DATA[23:16],
 MBEN[2] corresponds to DATA[15:8],
 MBEN[3] corresponds to DATA[7:0].
Any MBEN[] signal can be used for CB[].

Low

BDRIVE[3:0] Output Drive byte lanes on external memory bus. Con-
trols I/O-pads connected to external memory
bus:
 BDRIVE[0] corresponds to DATA[31:24],
 BDRIVE[1] corresponds to DATA[23:16],
 BDRIVE[2] corresponds to DATA[15:8],
 BDRIVE[3] corresponds to DATA[7:0].
Any BDRIVE[] signal can be used for CB[].

Low/High

VBDRIVE[31:0] Output Vectored I/O-pad drive signals. Low/High
SVBDRIVE[63:0] Output Vectored I/O-pad drive signals for separate

sdram bus.
Low/High

READ Output Read strobe High
SA[14:0] Output SDRAM separate address bus High
CE Output Single error detected High

AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
WPROT WPROTHIT Input Unused -

Table 304.Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 274 www.cobham.com/gaisler

GRLIB IP Core
SDO SDCASN Output SDRAM column address strobe Low
SDCKE[1:0] Output SDRAM clock enable High
SDCSN[1:0] Output SDRAM chip select Low
SDDQM[7:0] Output SDRAM data mask:

 SDDQM[7] corresponds to SD[63:56],
 SDDQM[6] corresponds to SD[55:48],
 SDDQM[5] corresponds to SD[47:40],
 SDDQM[4] corresponds to SD[39:32],
 SDDQM[3] corresponds to SD[31:24],
 SDDQM[2] corresponds to SD[23:16],
 SDDQM[1] corresponds to SD[15:8],
 SDDQM[0] corresponds to SD[7:0].
Any SDDQM[] signal can be used for CB[].

Low

SDRASN Output SDRAM row address strobe Low
SDWEN Output SDRAM write enable Low

* see GRLIB IP Library User’s Manual

Table 304.Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 275 www.cobham.com/gaisler

GRLIB IP Core

27.22 Signal definitions and reset values

The signals and their reset values are described in table 305.

Table 305.Signal definitions and reset values

Signal name Type Function Active Reset value
address[27:0] Output Memory address High Undefined
data[31:0] Input/Output Memory data High Tri-state
cb[15:0] Input/Output Check bits High Tri-state
ramsn[4:0] Output SRAM chip select Low Logical 1
ramoen[4:0] Output SRAM output enable Low Logical 1
rwen[3:0] Output, SRAM write byte enable:

 rwen[0] corresponds to data[31:24],
 rwen[1] corresponds to data[23:16],
 rwen[2] corresponds to data[15:8],
 rwen[3] corresponds to data[7:0].
Any rwen[] signal can be used for cb[].

Low Logical 1

ramben[3:0] Output SRAM read/write byte enable:
 ramben[0] corresponds to data[31:24],
 ramben[1] corresponds to data[23:16],
 ramben[2] corresponds to data[15:8],
 ramben[3] corresponds to data[7:0].
Any ramben[] signal can be used for cb[].

Low Logical 1

oen Output Output enable Low Logical 1
writen Output Write strobe Low Logical 1
read Output Read strobe High Logical 1
iosn Output IO area chip select Low Logical 1
romsn[3:0] Output PROM chip select Low Logical 1
brdyn Input Bus ready. Extends accesses to the IO area. Low -
bexcn Input Bus exception. Low -
sa[15:0] Output SDRAM address High Undefined
sd[31:0] Input/Output SDRAM data High Tri-state
scb[15:0] Input/Output SDRAM check bits High Tri-state
sdcsn[1:0] Output SDRAM chip select Low Logical 1
sdwen Output SDRAM write enable Low Logical 1
sdrasn Output SDRAM row address strobe Low Logical 1
sdcasn Output SDRAM column address strobe Low Logical 1
sddqm[3:0] Output SDRAM data mask:

 sddqm[5] corresponds to scb[15:8],
 sddqm[4] corresponds to scb[7:0],
 sddqm[3] corresponds to sd[31:24],
 sddqm[2] corresponds to sd[23:16],
 sddqm[1] corresponds to sd[15:8],
 sddqm[0] corresponds to sd[7:0].
Any sddqm[] signal can be used for scb[].

Low Logical 1
GRIP, Sep 2018, Version 2018.3 276 www.cobham.com/gaisler

GRLIB IP Core

27.23 Timing

The timing waveforms and timing parameters are shown in figure 82 and are defined in table 306.

Figure 82. Timing waveforms - SRAM, PROM accesses

tFTMCTRL0

address[]

clk

tFTMCTRL1

data[], cb[]
(output)

data[], cb[]
(input)

ramsn[], romsn[]

tFTMCTRL3, tFTMCTRL4

ramoen[], ramben[], oen

read

rwen[], writen

tFTMCTRL9
brdyn, bexcn

tFTMCTRL10

tFTMCTRL2 tFTMCTRL2

tFTMCTRL6 tFTMCTRL6

address[]

clk

ramsn[], romsn[]

tFTMCTRL7 tFTMCTRL8

tFTMCTRL5

tFTMCTRL1

read

tFTMCTRL2 tFTMCTRL2
GRIP, Sep 2018, Version 2018.3 277 www.cobham.com/gaisler

GRLIB IP Core
The timing waveforms and timing parameters are shown in figure 82 and are defined in table 306.

Table 306.Timing parameters - SRAM, PROM and I/O accesses

Name Parameter Reference edge Min Max Unit
tFTMCTRL0 address clock to output delay rising clk edge TBD TBD ns

tFTMCTRL1 clock to output delay rising clk edge TBD TBD ns

tFTMCTRL2 clock to output delay rising clk edge TBD TBD ns

tFTMCTRL3 clock to data output delay rising clk edge TBD TBD ns

tFTMCTRL4 clock to data non-tri-state delay rising clk edge TBD TBD ns

tFTMCTRL5 clock to data tri-state delay rising clk edge TBD TBD ns

tFTMCTRL6 clock to output delay rising clk edge TBD TBD ns

tFTMCTRL7 data input to clock setup rising clk edge TBD - ns

tFTMCTRL8 data input from clock hold rising clk edge TBD - ns

tFTMCTRL9 input to clock setup rising clk edge TBD - ns

tFTMCTRL10 input from clock hold rising clk edge TBD - ns

Figure 83. Timing waveforms - I/O accesses

tFTMCTRL0

address[]

clk

tFTMCTRL1

data[]
(output)

data[]
(input)

iosn[]

tFTMCTRL3, tFTMCTRL4

oen

rwen[], writen

tFTMCTRL9
brdyn, bexcn

tFTMCTRL10

tFTMCTRL2 tFTMCTRL2

tFTMCTRL6 tFTMCTRL6

address[]

clk

iosn[]

tFTMCTRL7 tFTMCTRL8

tFTMCTRL5

tFTMCTRL1

read

read
tFTMCTRL2 tFTMCTRL2
GRIP, Sep 2018, Version 2018.3 278 www.cobham.com/gaisler

GRLIB IP Core
27.24 Library dependencies

Table 308 shows libraries used when instantiating the core (VHDL libraries).

27.25 Instantiation

This example shows how the core can be instantiated.
The example design contains an AMBA bus with a number of AHB components connected to it
including the memory controller. The external memory bus is defined on the example designs port
map and connected to the memory controller. System clock and reset are generated by GR Clock Gen-
erator and Reset Generator.
Memory controller decodes default memory areas: PROM area is 0x0 - 0x1FFFFFFF, I/O-area is
0x20000000-0x3FFFFFFF and RAM area is 0x40000000 - 0x7FFFFFFF. SDRAM controller is
enabled. SDRAM clock is synchronized with system clock by clock generator.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.pads.all; -- used for I/O pads

entity mctrl_ex is

Table 307.Timing parameters - SDRAM accesses

Name Parameter Reference edge Min Max Unit
tFTMCTRL11 clock to output delay rising clk edge TBD TBD ns

tFTMCTRL12 clock to data output delay rising clk edge TBD TBD ns

tFTMCTRL13 data clock to data tri-state delay rising clk edge TBD TBD ns

tFTMCTRL14 data input to clock setup rising clk edge TBD - ns

tFTMCTRL15 data input from clock hold rising clk edge TBD - ns

Table 308.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB signal definitions
GAISLER MEMCTRL Signals

Components
Memory bus signals definitions
FTMCTRL component

Figure 84. Timing waveforms - SDRAM accesses

sdcasn, sdrasn

clk

sdwen, sdcsn[]
sddqm[]

write nop read nop nop term nop nop nop

address[], sa[]

data[], cb[],
tFTMCTRL14

tFTMCTRL11

tFTMCTRL11

tFTMCTRL13
tFTMCTRL12

tFTMCTRL15
sd[], scb[]
GRIP, Sep 2018, Version 2018.3 279 www.cobham.com/gaisler

GRLIB IP Core

 port (
 clk : in std_ulogic;
 resetn : in std_ulogic;
 pllref : in std_ulogic;

 -- memory bus
 address : out std_logic_vector(27 downto 0); -- memory bus
 data : inout std_logic_vector(31 downto 0);
 ramsn : out std_logic_vector(4 downto 0);
 ramoen : out std_logic_vector(4 downto 0);
 rwen : inout std_logic_vector(3 downto 0);
 romsn : out std_logic_vector(3 downto 0);
 iosn : out std_logic;
 oen : out std_logic;
 read : out std_logic;
 writen : inout std_logic;
 brdyn : in std_logic;
 bexcn : in std_logic;
-- sdram i/f
 sdcke : out std_logic_vector (1 downto 0); -- clk en
 sdcsn : out std_logic_vector (1 downto 0); -- chip sel
 sdwen : out std_logic; -- write en
 sdrasn : out std_logic; -- row addr stb
 sdcasn : out std_logic; -- col addr stb
 sddqm : out std_logic_vector (7 downto 0); -- data i/o mask
 sdclk : out std_logic; -- sdram clk output
 sa : out std_logic_vector(14 downto 0); -- optional sdram address
 sd : inout std_logic_vector(63 downto 0) -- optional sdram data
);
end;

architecture rtl of mctrl_ex is

 -- AMBA bus (AHB and APB)
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

 -- signals used to connect memory controller and memory bus
 signal memi : memory_in_type;
 signal memo : memory_out_type;

 signal sdo : sdram_out_type;

 signal wprot : wprot_out_type; -- dummy signal, not used
 signal clkm, rstn : std_ulogic; -- system clock and reset

-- signals used by clock and reset generators
 signal cgi : clkgen_in_type;
 signal cgo : clkgen_out_type;

 signal gnd : std_ulogic;

begin

 -- Clock and reset generators
 clkgen0 : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1,
 tech => virtex2, sdinvclk => 0)
 port map (clk, gnd, clkm, open, open, sdclk, open, cgi, cgo);

 cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pllref <= pllref;

 -- Memory controller
 ftmctrl0 : ftmctrl generic map (srbanks => 1, sden => 1, edac => 1)
 port map (rstn, clkm, memi, memo, ahbsi, ahbso(0), apbi, apbo(0), wprot, sdo);

 -- memory controller inputs not used in this configuration
 memi.brdyn <= ’1’; memi.bexcn <= ’1’; memi.wrn <= "1111";
GRIP, Sep 2018, Version 2018.3 280 www.cobham.com/gaisler

GRLIB IP Core

 memi.sd <= sd;

 -- prom width at reset
 memi.bwidth <= "10";

 -- I/O pads driving data memory bus data signals
 datapads : for i in 0 to 3 generate
 data_pad : iopadv generic map (width => 8)
 port map (pad => memi.data(31-i*8 downto 24-i*8),
 o => memi.data(31-i*8 downto 24-i*8),
 en => memo.bdrive(i),
 i => memo.data(31-i*8 downto 24-i*8));
 end generate;

 -- connect memory controller outputs to entity output signals
 address <= memo.address; ramsn <= memo.ramsn; romsn <= memo.romsn;
 oen <= memo.oen; rwen <= memo.wrn; ramoen <= "1111" & memo.ramoen(0);
 sa <= memo.sa;
 writen <= memo.writen; read <= memo.read; iosn <= memo.iosn;
 sdcke <= sdo.sdcke; sdwen <= sdo.sdwen; sdcsn <= sdo.sdcsn;
 sdrasn <= sdo.rasn; sdcasn <= sdo.casn; sddqm <= sdo.dqm;
end;
GRIP, Sep 2018, Version 2018.3 281 www.cobham.com/gaisler

GRLIB IP Core

28 FTSDCTRL - 32/64-bit PC133 SDRAM Controller with EDAC

28.1 Overview

The fault tolerant SDRAM memory interface handles PC133 SDRAM compatible memory devices
attached to a 32- or 64-bit wide data bus. The interface acts as a slave on the AHB bus where it occu-
pies configurable amount of address space for SDRAM access. An optional Error Detection And
Correction Unit (EDAC) logic (only for the 32 - bit bus) corrects one bit error and detects two bit
errors.
The SDRAM controller function is programmed by means of register(s) mapped into AHB I/O
address space. Chip-select decoding is done for two SDRAM banks.

28.2 Operation

28.2.1 General

Synchronous Dynamic RAM (SDRAM) access is supported to two banks of PC100/PC133 compati-
ble devices. The controller supports 64, 256 and 512 Mbyte devices with 8 - 12 column-address bits,
up to 13 row-address bits, and 4 banks. The size of each of the two banks can be programmed in
binary steps between 4 Mbyte and 512 Mbyte. The operation of the SDRAM controller is controlled
through the configuration register SDCFG. A second register, ECFG, is available for configuring the
EDAC functions. SDRAM banks data bus width is configurable between 32 and 64 bits.

28.2.2 Initialization

When the SDRAM controller is enabled, it automatically performs the SDRAM initialization
sequence of PRECHARGE, 8x AUTO-REFRESH and LOAD-MODE-REG on both banks simultane-
ously. When mobile SDRAM functionality is enabled, the initialization sequence is appended with a
LOAD-EXTMODE-REG command. The controller programs the SDRAM to use page burst on read
accesses and single location access on write accesses. If the pwron VHDL generic is 1, the initializa-
tion sequence is also sent automatically when reset is released. Note that some SDRAM devices
require a stable clock of 100 us before any commands might be sent. When using on-chip PLL, this
might not always be the case and the pwron VHDL generic should be set to 0 in such cases.

Figure 85. FT SDRAM memory controller connected to AMBA bus and SDRAM

A D

FT SDRAM

SDO.ADDRESS[16:2]

SDI.D[63:0]/

RAS
CAS
WE

BA

D

SDRAMSDO.SDRASN
SDO.SDCASN
SDO.SDWEN

A[16:15]

DQMSDO.SDDQM[7:0]

CLK
CSN

SDO.SDCLK
SDO.SDCSN[1:0]

A
A[14:2]

CONTROLLER

AHB

SDO.D[31:0]

SDO.SDCLK CKE

CB[6:0]

CB

CB
GRIP, Sep 2018, Version 2018.3 282 www.cobham.com/gaisler

GRLIB IP Core

28.2.3 Configurable SDRAM timing parameters

To provide optimum access cycles for different SDRAM devices (and at different frequencies), three
SDRAM parameters can be programmed through memory configuration register 2 (MCFG2): TCAS,
TRP and TRFCD. The value of these fields affect the SDRAM timing as described in table 309.

If the TCAS, TRP and TRFC are programmed such that the PC100/133 specifications are fulfilled,
the remaining SDRAM timing parameters will also be met. The table below shows typical settings for
100 and 133 MHz operation and the resulting SDRAM timing (in ns):

When mobile SDRAM support is enabled, one additional timing parameter (TXSR) can be pro-
grammed though the Power-Saving configuration register.

28.2.4 Refresh

The SDRAM controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the SDCFG register. Depending on SDRAM type, the
required period is typically 7.8 or 15.6 s (corresponding to 780 or 1560 clocks at 100 MHz). The
generated refresh period is calculated as (reload value+1)/sysclk. The refresh function is enabled by
setting bit 31 in SDCFG register.

28.2.5 Self Refresh

The self refresh mode can be used to retain data in the SDRAM even when the rest of the system is
powered down. When in the self refresh mode, the SDRAM retains data without external clocking
and refresh are handled internally. The memory array that is refreshed during the self refresh opera-
tion is defined in the extended mode register. These settings can be changed by setting the PASR bits
in the Power-Saving configuration register. The extended mode register is automatically updated
when the PASR bits are changed. The supported “Partial Array Self Refresh” modes are: Full, Half,
Quarter, Eighth, and Sixteenth array. “Partial Array Self Refresh” is only supported when mobile
SDRAM functionality is enabled. To enable the self refresh mode, set the PMODE bits in the Power-
Saving configuration register to “010” (Self Refresh). The controller will enter self refresh mode after

Table 309.SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)
CAS latency, RAS/CAS delay (tCAS, tRCD) TCAS + 2

Precharge to activate (tRP) TRP + 2

Auto-refresh command period (tRFC) TRFC + 3

Activate to precharge (tRAS) TRFC + 1

Activate to Activate (tRC) TRP + TRFC + 4

Table 310.SDRAM example programming

SDRAM settings tCAS tRC tRP tRFC tRAS

100 MHz, CL=2; TRP=0, TCAS=0, TRFC=4 20 80 20 70 50
100 MHz, CL=3; TRP=0, TCAS=1, TRFC=4 30 80 20 70 50
133 MHz, CL=2; TRP=1, TCAS=0, TRFC=6 15 82 22 67 52
133 MHz, CL=3; TRP=1, TCAS=1, TRFC=6 22 82 22 67 52

Table 311.Mobile SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)
Exit Self Refresh mode to first valid command (tXSR) tXSR
GRIP, Sep 2018, Version 2018.3 283 www.cobham.com/gaisler

GRLIB IP Core

every memory access (when the controller has been idle for 16 clock cycles), until the PMODE bits
are cleared. When exiting this mode the controller introduce a delay defined by tXSR in the Power-
Saving configuration register and a AUTO REFRESH command before any other memory access is
allowed. The minimum duration of this mode is defined by tRAS. This mode is only available when
the VHDL generic mobile is >= 1.

28.2.6 Power-Down

When entering the power-down mode all input and output buffers, excluding SDCKE, are deacti-
vated. All data in the SDRAM is retained during this operation. To enable the power-down mode, set
the PMODE bits in the Power-Saving configuration register to “001” (Power-Down). The controller
will enter power-down mode after every memory access (when the controller has been idle for 16
clock cycles), until the PMODE bits is cleared. The REFRESH command will still be issued by the
controller in this mode. When exiting this mode a delay of one clock cycles are added before issue any
command to the memory. This mode is only available when the VHDL generic mobile is >= 1.

28.2.7 Deep Power-Down

The deep power-down operating mode is used to achieve maximum power reduction by eliminating
the power of the memory array. Data will not be retained after the device enters deep power-down
mode. To enable the deep power-down mode, set the PMODE bits in the Power-Saving configuration
register to “101” (Deep Power-Down). To exit the deep power-down mode the PMODE bits in the
Power-Saving configuration register must be cleared. The controller will respond with an AMBA
ERROR response to an AMBA access, that will result in a memory access, during Deep Power-Down
mode. This mode is only available when the VHDL generic mobile is >= 1 and mobile SDRAM func-
tionality is enabled.

28.2.8 Temperature-Compensated Self Refresh

The settings for the temperature-compensation of the Self Refresh rate can be controlled by setting the
TCSR bits in the Power-Saving configuration register. The extended mode register is automatically
updated when the TCSR bits are changed. Note that some vendors implements a Internal Tempera-
ture-Compensated Self Refresh feature, which makes the memory ignore the TCSR bits. This func-
tionality is only available when the VHDL generic mobile is >= 1 and mobile SDRAM functionality
is enabled.

28.2.9 Drive Strength

The drive strength of the output buffers can be controlled by setting the DS bits in the Power-Saving
configuration register. The extended mode register is automatically updated when the DS bits are
changed. The available options are: full, three-quarter, one-half, and one-quarter drive strengths. This
functionality is only available when the VHDL generic mobile is >= 1 and mobile SDRAM function-
ality is enabled.

28.2.10 SDRAM commands

The controller can issue three SDRAM commands by writing to the SDRAM command field in
SDCFG: PRE-CHARGE, AUTO-REFRESH and LOAD-MODE-REG (LMR). If the LMR command
is issued, the CAS delay as programmed in SDCFG will be used. Line burst of length 8 will be set for
read when pageburst VHDL generic is 0. Page burst will be set for read when pageburst VHDL
generic is 1. Page burst or line burst of length 8, selectable via the SDCFG register will be set, when
pageburst VHDL generic is 2. Remaining fields are fixed: page read burst, single location write,
sequential burst. The command field will be cleared after a command has been executed. Note that
when changing the value of the CAS delay, a LOAD-MODE-REGISTER command should be gener-
ated at the same time.
GRIP, Sep 2018, Version 2018.3 284 www.cobham.com/gaisler

GRLIB IP Core

28.2.11 Read cycles

A read cycle is started by performing an ACTIVATE command to the desired bank and row, followed
by a READ command after the programmed CAS delay. A read burst is performed if a burst access
has been requested on the AHB bus. The read cycle is terminated with a PRE-CHARGE command,
no banks are left open between two accesses. Note that only word bursts are supported by the
SDRAM controller. The AHB bus supports bursts of different sizes such as bytes and halfwords but
they cannot be used.

28.2.12 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE commands are
issued after activation. A write burst on the AHB bus will generate a burst of write commands without
idle cycles in-between. As in the read case, only word bursts are supported.

28.2.13 Address bus connection

The SDRAM address bus should be connected to SA[12:0], the bank address to SA[14:13], and the
data bus to SD[31:0] or SD[63:0] if 64-bit data bus is used.

28.2.14 Data bus

Data bus width is configurable to 32 or 64 bits. 64-bit data bus allows the 64-bit SDRAM devices to
be connected using the full data capacity of the devices. 64-bit SDRAM devices can be connected to
32-bit data bus if 64-bit data bus is not available but in this case only half the full data capacity will be
used.

28.2.15 EDAC

The controller optionally contains Error Detection And Correction (EDAC) logic, using a BCH(32, 7)
code. It is capable of correcting one bit error and detecting two bit errors. The EDAC logic does not
add any additional waitstates during normal operation. Detected errors will cause additional waitstates
for correction (single errors) or error reporting (multiple errors). Single errors are automatically cor-
rected and generally not visible externally unless explicitly checked.
This checking is done by monitoring the ce signal and single error counter. This counter holds the
number of detected single errors. The ce signal is asserted one clock cycle when a single error is
detected and should be connected to the AHB status register. This module stores the AHB status of the
instruction causing the single error and generates interrupts (see the AHB status register documenta-
tion for more information).
The EDAC functionality can be enabled/disabled during run-time from the ECFG register (and the
logic can also be completely removed during synthesis with VHDL generics. The ECFG register also
contains control bits and checkbit fields for diagnostic reads. These diagnostic functions are used for
testing the EDAC functions on-chip and allows one to store arbitrary checkbits with each written
word. Checkbits read from memory can also be controlled.
64-bit bus support is not provided when EDAC is enabled. Thus, the and edacen VHDL generic
should never be set to one when the sdbits VHDL generic is set to 64.
The equations below show how the EDAC checkbits are generated:
CB0 = D0 ^ D4 ^ D6 ^ D7 ^ D8 ^ D9 ^ D11 ^ D14 ^ D17 ^ D18 ^ D19 ^ D21 ^ D26 ^ D28 ^ D29 ^ D31
CB1 = D0 ^ D1 ^ D2 ^ D4 ^ D6 ^ D8 ^ D10 ^ D12 ^ D16 ^ D17 ^ D18 ^ D20 ^ D22 ^ D24 ^ D26 ^ D28
CB2 = D0 ^ D3 ^ D4 ^ D7 ^ D9 ^ D10 ^ D13 ^ D15 ^ D16 ^ D19 ^ D20 ^ D23 ^ D25 ^ D26 ^ D29 ^ D31
CB3 = D0 ^ D1 ^ D5 ^ D6 ^ D7 ^ D11 ^ D12 ^ D13 ^ D16 ^ D17 ^ D21 ^ D22 ^ D23 ^ D27 ^ D28 ^ D29
CB4 = D2 ^ D3 ^ D4 ^ D5 ^ D6 ^ D7 ^ D14 ^ D15 ^ D18 ^ D19 ^ D20 ^ D21 ^ D22 ^ D23 ^ D30 ^ D31
CB5 = D8 ^ D9 ^ D10 ^ D11 ^ D12 ^ D13 ^ D14 ^ D15 ^ D24 ^ D25 ^ D26 ^ D27 ^ D28 ^ D29 ^ D30 ^ D31
CB6 = D0 ^ D1 ^ D2 ^ D3 ^ D4 ^ D5 ^ D6 ^ D7 ^ D24 ^ D25 ^ D26 ^ D27 ^ D28 ^ D29 ^ D30 ^ D31
GRIP, Sep 2018, Version 2018.3 285 www.cobham.com/gaisler

GRLIB IP Core

28.2.16 Clocking

The SDRAM controller is designed for an external SDRAM clock that is in phase or slightly earlier
than the internal AHB clock. This provides the maximum margin for setup and hold on the external
signals, and allows highest possible frequency. For Xilinx and Altera devices, the GRLIB Clock Gen-
erator (CLKGEN) can be configured to produce a properly synchronized SDRAM clock. For other
FPGA targets, the custom clock synchronization must be designed, or the inverted clock option can be
used (see below). For ASIC targets, the SDRAM clock can be derived from the AHB clock with
proper delay adjustments during place&route.
If the VHDL generic INVCLK is set, then all outputs from the SDRAM controller are delayed for 1/2
clock. This is done by clocking all output registers on the falling clock edge. This option can be used
on FPGA targets where proper SDRAM clock synchronization cannot be achieved. The SDRAM
clock can be the internal AHB clock without further phase adjustments. Since the SDRAM signals
will only have 1/2 clock period to propagate, this option typically limits the maximum SDRAM fre-
quency to 40 - 50 MHz.

28.2.17 Endianness

The core is designed for big-endian systems.

28.3 Registers

The memory controller is programmed through register(s) mapped into the AHB I/O space defined by
the controllers AHB BAR1.
If EDAC is enabled through the use of the edacen VHDL generic, an EDAC configuration register
will be available.
Only 32-bit single-accesses to the registers are supported.

28.3.1 SDRAM configuration register (SDCFG)

The SDRAM configuration register is used to control the timing of the SDRAM.

Table 312.FT SDRAM controller registers

AHB address offset Register
0x0 SDRAM Configuration register
0x4 EDAC Configuration register
0x8 SDRAM Power-Saving configuration register

Table 313. 0x00 - SDCFG - SDRAM configuration register
31 30 29 27 26 25 23 22 21 20 18 17 16 15 14 0

Refresh tRP tRFC tCD SDRAM
bank size

SDRAM
col. size

SDRAM
command

Page-
Burst

MS D64 SDRAM refresh load value

0 1 0b111 1 0 0b10 0 * * * NR

rw rw rw rw rw rw rw rw* r r rw

31 SDRAM refresh. If set, the SDRAM refresh will be enabled.
30 SDRAM tRP timing. tRP will be equal to 2 or 3 system clocks (0/1).

29: 27 SDRAM tRFC timing. tRFC will be equal to 3 + field-value system clocks.

26 SDRAM CAS delay. Selects 2 or 3 cycle CAS delay (0/1). When changed, a LOAD-COMMAND-
REGISTER command must be issued at the same time. Also sets RAS/CAS delay (tRCD).
GRIP, Sep 2018, Version 2018.3 286 www.cobham.com/gaisler

GRLIB IP Core
28.3.2 EDAC configuration register (ECFG)

The EDAC configuration register controls the EDAC functions of the SDRAM controller during run
time.

28.3.3 SDRAM Power-Saving configuration register (SDCFG2)

The SDRAM Power-Saving register is used to control the power settings of the SDRAM.

25: 23 SDRAM banks size. Defines the decoded memory size for each SDRAM chip select: “000”= 4
Mbyte, “001”= 8 Mbyte, “010”= 16 Mbyte “111”= 512 Mbyte.
When configured for 64-bit wide SDRAM data bus (sdbits=64), the meaning of this field doubles so
that “000”=8 Mbyte, .., “111”=1024 Mbyte

22: 21 SDRAM column size. “00”=256, “01”=512, “10”=1024, “11”=2048 except when bit[25:23]=˘111˘
then ˘11˘=4096

20: 18 SDRAM command. Writing a non-zero value will generate an SDRAM command: “010”=PRE-
CHARGE, “100”=AUTO-REFRESH, “110”=LOAD-COMMAND-REGISTER, “111”=LOAD-
EXTENDED-COMMAND-REGISTER. The field is reset after command has been executed.

17 1 = pageburst is used for read operations, 0 = line burst of length 8 is used for read operations. (Only
available when VHDL generic pageburst i set to 2)

16 Mobile SDR support enabled. '1' = Enabled, '0' = Disabled (read-only).
15 64-bit data bus (D64) - Reads ‘1’ if memory controller is configured for 64-bit data bus, otherwise

‘0’. Read-only.
14: 0 The period between each AUTO-REFRESH command - Calculated as follows: tREFRESH =

((reload value) + 1) / SYSCLK

Table 314.0x04 - ECFG - EDAC configuration register
31 30 cntbits + 10 cnbits + 9 10 9 8 7 6 0

EA
V

RESERVED SEC WB RB EN TCB

* 0 NR NR NR 0 NR

r r wc rw rw rw rw

6: 0 TCB : Test checkbits. These bits are written as checkbits into memory during a write operation when
the WB bit in the ECFG register is set. Checkbits read from memory during a read operation are
written to this field when the RB bit is set.

7: EN : EDAC enable. Run time enable/disable of the EDAC functions. If EDAC is disabled no error
detection will be done during reads and subword writes. Checkbits will still be written to memory
during write operations.

8: RB : Read bypass. Store the checkbits read from memory during a read operation into the TCB field.
9: WB : Write bypass. Write the TCB field as checkbits into memory for all write operations.
cntbits + 9: 10 SEC : Single error counter. This field is available when the errcnt VHDL generic is set to one during

synthesis. It increments each time a single error is detected. It saturates when the maximum value is
reached. The maximum value is the largest number representable in the number of bits used, which
in turn is determined by the cntbits VHDL generic. Each bit in the counter can be reset by writing a
one to it.

30:cntbits + 10 Reserved.
31: EAV : EDAC available. This bit is always one if the SDRAM controller contains EDAC.

Table 315.0x08 - SDCFG2 - SDRAM Power-Saving configuration register
31 30 29 24 23 20 19 18 16 15 7 6 5 4 3 2 0

ME CE RESERVED tXSR R PMODE RESERVED DS TCSR PASR

* * 0 * 0 0 0 0 0 0

Table 313. 0x00 - SDCFG - SDRAM configuration register
GRIP, Sep 2018, Version 2018.3 287 www.cobham.com/gaisler

GRLIB IP Core
28.4 Vendor and device identifiers

The module has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x055. For a descrip-
tion of vendor and device identifiers see GRLIB IP Library User’s Manual.

28.5 Implementation

28.5.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual). By default, the core makes use of synchronous reset and resets a subset of its
internal registers.
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core will use asynchronous reset for all registers, except synchronization registers, if the GRLIB
config package setting grlib_async_reset_enable is set.
The registers driving SDRAM chip select and output enables for the SDRAM data bus have asynchro-
nous reset.

rw* rw* r rw* r rw r rw rw rw

31 Mobile SDRAM functionality enabled. ‘1’ = Enabled (support for Mobile SDRAM), ‘0’ = disabled
(support for standard SDRAM)

30 Clock enable (CE). This value is driven on the CKE inputs of the SDRAM. Should be set to ‘1’ for
correct operation. This register bit is read only when Power-Saving mode is other then none.

29: 24 Reserved
23: 20 SDRAM tXSR timing. tXSR will be equal to field-value system clocks. (Read only when Mobile

SDR support is disabled).
19 Reserved
18: 16 Power-Saving mode (Read only when Mobile SDR support is disabled).

“000”: none
“001”: Power-Down (PD)
“010”: Self-Refresh (SR)
“101”: Deep Power-Down (DPD)

15: 7 Reserved
 6: 5 Selectable output drive strength (Read only when Mobile SDR support is disabled).

“00”: Full
“01”: One-half
“10”: One-quarter
“11”: Three-quarter

 4: 3 Reserved for Temperature-Compensated Self Refresh (Read only when Mobile SDR support is disa-
bled).
“00”: 70ªC
“01”: 45ªC
“10”: 15ªC
“11”: 85ªC

 2: 0 Partial Array Self Refresh (Read only when Mobile SDR support is disabled).
“000”: Full array (Banks 0, 1, 2 and 3)
“001”: Half array (Banks 0 and 1)
“010”: Quarter array (Bank 0)
“101”: One-eighth array (Bank 0 with row MSB = 0)
“110”: One-sixteenth array (Bank 0 with row MSB = 00)

Table 315.0x08 - SDCFG2 - SDRAM Power-Saving configuration register
GRIP, Sep 2018, Version 2018.3 288 www.cobham.com/gaisler

GRLIB IP Core

28.6 Configuration options

Table 316 shows the configuration options of the core (VHDL generics).

Table 316.Configuration options

Generic Function Allowed range Default
hindex AHB slave index 1 - NAHBSLV-1 0
haddr ADDR field of the AHB BAR0 defining SDRAM area.

Default is 0xF0000000 - 0xFFFFFFFF.
0 - 16#FFF# 16#000#

hmask MASK field of the AHB BAR0 defining SDRAM area. 0 - 16#FFF# 16#F00#
ioaddr ADDR field of the AHB BAR1 defining I/O address

space where SDCFG register is mapped.
0 - 16#FFF# 16#000#

iomask MASK field of the AHB BAR1 defining I/O address
space.

0 - 16#FFF# 16#FFF#

wprot Write protection. 0 - 1 0
invclk Inverted clock is used for the SDRAM. 0 - 1 0
fast Enable fast SDRAM address decoding. 0 - 1 0
pwron Enable SDRAM at power-on. 0 - 1 0
sdbits 32 or 64 -bit data bus width. 32, 64 32
edacen EDAC enable. If set to one, EDAC logic will be included

in the synthesized design. An EDAC configuration regis-
ter will also be available.

0 - 1 0

errcnt Include an single error counter which is accessible from
the EDAC configuration register.

0 - 1 0

cntbits Number of bits used in the single error counter 1 - 8 1
pageburst Enable SDRAM page burst operation.

0: Controller uses line burst of length 8 for read opera-
tions.
1: Controller uses pageburst for read operations.
2: Controller uses pageburst/line burst depending on
PageBurst bit in SDRAM configuration register.

0 - 2 0

mobile Enable Mobile SDRAM support
0: Mobile SDRAM support disabled
1: Mobile SDRAM support enabled but not default
2: Mobile SDRAM support enabled by default
3: Mobile SDRAM support only (no regular SDR sup-
port)

0 - 3 0
GRIP, Sep 2018, Version 2018.3 289 www.cobham.com/gaisler

GRLIB IP Core

28.7 Signal descriptions

Table 317 shows the interface signals of the core (VHDL ports).

Table 317.Signals declarations

Signal name Field Type Function Active
CLK N/A Input Clock -
RST N/A Input Reset Low
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
SDI WPROT Input Not used -

DATA[63:0] Input Data -
CB[7:0] Input Checkbits -

SDO SDCKE[1:0] Output SDRAM clock enable High
SDCSN[1:0] Output SDRAM chip select Low
SDWEN Output SDRAM write enable Low
RASN Output SDRAM row address strobe Low
CASN Output SDRAM column address strobe Low
DQM[7:0] Output SDRAM data mask:

 DQM[7] corresponds to DATA[63:56],
 DQM[6] corresponds to DATA[55:48],
 DQM[5] corresponds to DATA[47:40],
 DQM[4] corresponds to DATA[39:32],
 DQM[3] corresponds to DATA[31:24],
 DQM[2] corresponds to DATA[23:16],
 DQM[1] corresponds to DATA[15:8],
 DQM[0] corresponds to DATA[7:0].
Any DQM[] signal can be used for CB[].

Low

BDRIVE Output Drive SDRAM data bus Low
ADDRESS[16:2] Output SDRAM address -
DATA[31:0] Output SDRAM data -
CB[7:0] Output Checkbits -
CE Output Correctable Error High

* see GRLIB IP Library User’s Manual
GRIP, Sep 2018, Version 2018.3 290 www.cobham.com/gaisler

GRLIB IP Core

28.8 Signal definitions and reset values

The signals and their reset values are described in table 318.

28.9 Timing

The timing waveforms and timing parameters are shown in figure 86 and are defined in table 319.

Table 318.Signal definitions and reset values

Signal name Type Function Active Reset value
sa[14:0] Output SDRAM address High Undefined
sd[31:0] Input/Output SDRAM data High Tri-state
scb[15:0] Input/Output SDRAM check bits High Tri-state
sdcsn[1:0] Output SDRAM chip select Low Logical 1
sdwen Output SDRAM write enable Low Logical 1
sdrasn Output SDRAM row address strobe Low Logical 1
sdcasn Output SDRAM column address strobe Low Logical 1
sddqm[3:0] Output SDRAM data mask:

 sddqm[3] corresponds to sd[31:24],
 sddqm[2] corresponds to sd[23:16],
 sddqm[1] corresponds to sd[15:8],
 sddqm[0] corresponds to sd[7:0].
Any sddqm[] signal can be used for scb[].

Low Logical 1

Table 319.Timing parameters

Name Parameter Reference edge Min Max Unit
tFTSDCTRL0 clock to output delay rising clk edge TBD TBD ns

tFTSDCTRL1 clock to data output delay rising clk edge TBD TBD ns

tFTSDCTRL2 data clock to data tri-state delay rising clk edge TBD TBD ns

tFTSDCTRL3 data input to clock setup rising clk edge TBD - ns

tFTSDCTRL4 data input from clock hold rising clk edge TBD - ns

Figure 86. Timing waveforms

sdcasn, sdrasn

clk

sdwen, sdcsn[]
sddqm[]

write nop read nop nop term nop nop nop

sa[]

sd[], scb[]
tFTSDCTRL3

tFTSDCTRL0

tFTSDCTRL0

tFTSDCTRL2
tFTSDCTRL1

tFTSDCTRL4
GRIP, Sep 2018, Version 2018.3 291 www.cobham.com/gaisler

GRLIB IP Core

28.10 Library dependencies

Table 5 shows libraries used when instantiating the core (VHDL libraries).

28.11 Instantiation

This example shows how the core can be instantiated.
The example design contains an AMBA bus with a number of AHB components connected to it
including the FT SDRAM controller. The external SDRAM bus is defined in the example designs port
map and connected to the SDRAM controller. System clock and reset are generated by GR Clock
Generator and Reset Generator. It is also shown how the correctable error (CE) signal is connected to
the ahb status register. It is not mandatory to connect this signal. In this example, 3 units can be con-
nected to the status register.
The SDRAM controller decodes SDRAM area: 0x60000000 - 0x6FFFFFFF. SDRAM Configuration
and EDAC configuration registers are mapped into AHB I/O space on address (AHB I/O base address
+ 0x100).
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.pads.all; -- used for I/O pads
use gaisler.misc.all;

entity mctrl_ex is
 port (
 clk : in std_ulogic;
 resetn : in std_ulogic;
 pllref : in std_ulogic;
 ... -- other signals

-- sdram memory bus
 sdcke : out std_logic_vector (1 downto 0); -- clk en
 sdcsn : out std_logic_vector (1 downto 0); -- chip sel
 sdwen : out std_logic; -- write en
 sdrasn : out std_logic; -- row addr stb
 sdcasn : out std_logic; -- col addr stb
 sddqm : out std_logic_vector (7 downto 0); -- data i/o mask
 sdclk : out std_logic; -- sdram clk output
 sa : out std_logic_vector(14 downto 0); -- optional sdram address
 sd : inout std_logic_vector(63 downto 0); -- optional sdram data
 cb : inout std_logic_vector(7 downto 0) --EDAC checkbits
);
end;

architecture rtl of mctrl_ex is

 -- AMBA bus (AHB and APB)
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
 signal ahbmi : ahb_mst_in_type;

Table 320.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB signal definitions
GAISLER MEMCTRL Signals, component Memory bus signals definitions, component dec-

laration
GRIP, Sep 2018, Version 2018.3 292 www.cobham.com/gaisler

GRLIB IP Core

 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

 -- signals used to connect SDRAM controller and SDRAM memory bus
 signal sdi : sdctrl_in_type;
 signal sdo : sdctrl_out_type;

 signal clkm, rstn : std_ulogic; -- system clock and reset
signal ce : std_logic_vector(0 to 2); --correctable error signal vector

-- signals used by clock and reset generators
 signal cgi : clkgen_in_type;
 signal cgo : clkgen_out_type;

 signal gnd : std_ulogic;

begin

 -- AMBA Components are defined here ...
 ...

 -- Clock and reset generators
 clkgen0 : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1,
 tech => virtex2, sdinvclk => 0)
 port map (clk, gnd, clkm, open, open, sdclk, open, cgi, cgo);

 cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pllref <= pllref;

 rst0 : rstgen
 port map (resetn, clkm, cgo.clklock, rstn);

 -- AHB Status Register
 astat0 : ahbstat generic map(pindex => 13, paddr => 13, pirq => 11,
 nftslv => 3)
 port map(rstn, clkm, ahbmi, ahbsi, ce, apbi, apbo(13));

 -- SDRAM controller
 sdc : ftsdctrl generic map (hindex => 3, haddr => 16#600#, hmask => 16#F00#,
 ioaddr => 1, fast => 0, pwron => 1, invclk => 0, edacen => 1, errcnt => 1,
 cntbits => 4)
 port map (rstn, clkm, ahbsi, ahbso(3), sdi, sdo, ce(0));

 -- input signals
 sdi.data(31 downto 0) <= sd(31 downto 0);

 -- connect SDRAM controller outputs to entity output signals
 sa <= sdo.address; sdcke <= sdo.sdcke; sdwen <= sdo.sdwen;
 sdcsn <= sdo.sdcsn; sdrasn <= sdo.rasn; sdcasn <= sdo.casn;
 sddqm <= sdo.dqm;

 -- I/O pads driving data bus signals
 sd_pad : iopadv generic map (width => 32)
 port map (sd(31 downto 0), sdo.data, sdo.bdrive, sdi.data(31 downto 0));

 -- I/O pads driving checkbit signals
 cb_pad : iopadv generic map (width => 8)
 port map (cb, sdo.cb, sdo.bdrive, sdi.cb);

end;

28.12 Constraints

This section contains example constraints for the SDRAM controller.

SDRAM interface
###

set sdram_freq 100.0
set sdram_clkper [expr { 1000.0 / $sdram_freq }]
GRIP, Sep 2018, Version 2018.3 293 www.cobham.com/gaisler

GRLIB IP Core

create_clock -name "c_memclk" -period $sdram_clkper [get_ports "mem_clk"]

set sdram_cmd_ports [get_ports {mem_wen mem_rasn mem_cke mem_casn mem_ba mem_addr[12]
mem_addr[11] mem_addr[10] mem_addr[9] mem_addr[8] mem_addr[7] mem_addr[6] mem_addr[5]
mem_addr[4] mem_addr[3] mem_addr[2] mem_addr[1] mem_addr[0]}]
set sdram_cs_ports [get_ports {mem_sn*}]
set sdram_dq_ports [get_ports mem_dq]
set sdram_dqm_ports [get_ports mem_dqm]

Use Micron datasheet values for SDRAM plus 1 ns margin for PCB propagation and other un-
modeled effects
set sdram_tAC 6.0
set sdram_tOHN 1.8
set sdram_ts_cmd 1.5
set sdram_th_cmd 0.8
set sdram_ts_cs 1.5
set sdram_th_cs 0.8
set sdram_ts_dq 1.5
set sdram_th_dq 0.8
set sdram_ts_dqm 1.5
set sdram_th_dqm 0.8

set_input_delay -clock "c_memclk" -min $sdram_tOHN $sdram_dq_ports
set_input_delay -clock "c_memclk" -max [expr { $sdram_tAC + 1.0 }] $sdram_dq_ports

set_output_delay -clock "c_memclk" -max [expr {$sdram_ts_cmd+1.0}] $sdram_cmd_ports
set_output_delay -clock "c_memclk" -min -$sdram_th_cmd $sdram_cmd_ports
set_output_delay -clock "c_memclk" -max [expr {$sdram_ts_cs+1.0}] $sdram_cs_ports
set_output_delay -clock "c_memclk" -min -$sdram_th_cs $sdram_cs_ports
set_output_delay -clock "c_memclk" -max [expr {$sdram_ts_dq+1.0}] $sdram_dq_ports
set_output_delay -clock "c_memclk" -min -$sdram_th_dq $sdram_dq_ports
set_output_delay -clock "c_memclk" -max [expr {$sdram_ts_dqm+1.0}] $sdram_dqm_ports
set_output_delay -clock "c_memclk" -min -$sdram_th_dqm $sdram_dqm_ports
GRIP, Sep 2018, Version 2018.3 294 www.cobham.com/gaisler

GRLIB IP Core

29 FTSRCTRL - Fault Tolerant 32-bit PROM/SRAM/IO Controller

29.1 Overview

The fault tolerant 32-bit PROM/SRAM memory interface uses a common 32-bit memory bus to inter-
face PROM, SRAM and I/O devices. Support for 8-bit PROM banks can also be separately enabled.
In addition it also provides an Error Detection And Correction Unit (EDAC), correcting one and
detecting two errors. Configuration of the memory controller functions is performed through the APB
bus interface.

29.2 Operation

The controller is configured through VHDL generics to decode three address ranges: PROM, SRAM
and I/O area. By default the PROM area is mapped into address range 0x0 - 0x00FFFFFF, the SRAM
area is mapped into address range 0x40000000 - 0x40FFFFFF, and the I/O area is mapped to
0x20000000 - 0x20FFFFFF.
One chip select is decoded for the I/O area, while SRAM and PROM can have up to 8 chip select sig-
nals. The controller generates both a common write-enable signal (WRITEN) as well as four byte-
write enable signals (WREN). If the SRAM uses a common write enable signal the controller can be
configured to perform read-modify-write cycles for byte and half-word write accesses. Number of
waitstates is separately configurable for the three address ranges.
The EDAC function is optional, and can be enabled with the edacen VHDL generic. The configura-
tion of the EDAC is done through a configuration register accessed from the APB bus. During nomi-
nal operation, the EDAC checksum is generated and checked automatically. Single errors are
corrected without generating any indication of this condition in the bus response. If a multiple error is
detected, a two cycle error response is given on the AHB bus.

Figure 87. 32-bit FT PROM/SRAM/IO controller

CS
OE
WE

A
DPROM

CS
OE
WE

A
DSRAM

SRO.RAMSN
SRO.RAMOEN

SRO.RWEN[3:0]

SRO.ROMSN
SRO.OEN

SRO.WRITEN

A D

MEMORY

SRI.A[27:0]

SRI.D[31:0]

CONTROLLER

AHB

AHB/APB

Bridge

APB

CB

CB

CB

CB[7:0]

SRO.D[31:0]

CS
OE
WE

A
DIO

SRO.IOSN
GRIP, Sep 2018, Version 2018.3 295 www.cobham.com/gaisler

GRLIB IP Core

Single errors can be monitored in two ways:
• by monitoring the CE signal which is asserted for one cycle each time a single error is detected.
• by checking the single error counter which is accessed from the MCFG3 configuration register.
The CE signal can be connected to the AHB status register which stores information of the AHB
instruction causing the error and also generates interrupts. See the AHB status register documentation
for more information. When EDAC is enabled, one extra latency cycle is generated during reads and
subword writes.

The EDAC function can be enabled for SRAM and PROM area accesses, but not for I/O area
accesses. For the SRAM area, the EDAC functionality is only supported for accessing 32-bit wide
SRAM banks. For the PROM area, the EDAC functionality is supported for accessing 32-bit wide
PROM banks, as well as for read accesses to 8-bit wide PROM banks.
The equations below show how the EDAC checkbits are generated:
CB0 = D0 ^ D4 ^ D6 ^ D7 ^ D8 ^ D9 ^ D11 ^ D14 ^ D17 ^ D18 ^ D19 ^ D21 ^ D26 ^ D28 ^ D29 ^ D31
CB1 = D0 ^ D1 ^ D2 ^ D4 ^ D6 ^ D8 ^ D10 ^ D12 ^ D16 ^ D17 ^ D18 ^ D20 ^ D22 ^ D24 ^ D26 ^ D28
CB2 = D0 ^ D3 ^ D4 ^ D7 ^ D9 ^ D10 ^ D13 ^ D15 ^ D16 ^ D19 ^ D20 ^ D23 ^ D25 ^ D26 ^ D29 ^ D31
CB3 = D0 ^ D1 ^ D5 ^ D6 ^ D7 ^ D11 ^ D12 ^ D13 ^ D16 ^ D17 ^ D21 ^ D22 ^ D23 ^ D27 ^ D28 ^ D29
CB4 = D2 ^ D3 ^ D4 ^ D5 ^ D6 ^ D7 ^ D14 ^ D15 ^ D18 ^ D19 ^ D20 ^ D21 ^ D22 ^ D23 ^ D30 ^ D31
CB5 = D8 ^ D9 ^ D10 ^ D11 ^ D12 ^ D13 ^ D14 ^ D15 ^ D24 ^ D25 ^ D26 ^ D27 ^ D28 ^ D29 ^ D30 ^ D31
CB6 = D0 ^ D1 ^ D2 ^ D3 ^ D4 ^ D5 ^ D6 ^ D7 ^ D24 ^ D25 ^ D26 ^ D27 ^ D28 ^ D29 ^ D30 ^ D31

29.2.1 8-bit PROM access

The FTSRCTRL controller can be configured to access an 8-bit wide PROM. The data bus of the
external PROM should be connected to the upper byte of the 32-bit data bus, i.e. D[31:24]. The 8-bit
mode is enabled with the prom8en VHDL generic. When enabled, read accesses to the PROM area
will be done in four-byte bursts for all 32-, 16- and 8-bit AMBA AHB accesses. The whole 32-bit
word is then output on the AHB data bus, allowing the master to chose the bytes needed (big-endian).
Writes should be done one byte at a time. For correct word aligned 32-bit word write accesses, the
byte should always be driven on bits 31 to 24 on the AHB data bus. For non-aligned 32-bit word write
accesses, the byte should be driven on the bits of the AHB data bus that correspond to the byte address
(big-endian). For correct half-word aligned 16-bit half-word write accesses, the byte should always be
driven on bits 31 to 24, or 15 to 8, on the AHB data bus. For non-aligned 16-bit half-word write
accesses, the byte should be driven on the bits of the AHB data bus that correspond to the byte address
(big-endian). For 8-bit word write accesses the byte should always be driven on the AHB data bus bits
that corresponds to the byte address (big-endian). To summarize, all legal AMBA AHB write accesses
are supported according to the AMBA standard, additional illegal accesses are supported as described
above, and it is always the addressed byte that is output.
It is possible to dynamically switch between 8- and 32-bit PROM mode by writing to the RBW field
of the MCFG1 register. The BWIDTH[1:0] input signal determines the reset value of this RBW regis-
ter field. When RBW is “00” then 8-bit mode is selected. If RBW is “10” then 32-bit mode is selected.
Other RBW values are reserved for future use. SRAM access is not affected by the 8-bit PROM mode.
It is also possible to use the EDAC in the 8-bit PROM mode, configured by the edacen VHDL
generic, and enabled via the MCFG3 register. Read accesses to the 8-bit PROM area will be done in
five-byte bursts for all 32-, 16- and 8-bit AMBA AHB accesses. After a potential correction, the
whole 32-bit word is output on the AHB data bus, allowing the master to chose the bytes needed (big-
endian). EDAC support is not provided for write accesses, they are instead performed in the same way
as without the EDAC enabled. The checksum byte must be written by the user into the correct byte
address location.
The fifth byte corresponds to the EDAC checksum and is located in the upper part of the effective
memory area, as explained in detail in the definition of the MCFG1 memory configuration register.
The EDAC checksums are located in the upper quarter of what is defined as available EDAC area by
means of the EBSZ field and the ROMBSZ field or rombanksz VHDL generic. When set to 0, the size
GRIP, Sep 2018, Version 2018.3 296 www.cobham.com/gaisler

GRLIB IP Core

of the available EDAC area is defined as the PROM bank size. When set to 1, as twice the PROM
bank size. When set to 2, as four times the PROM bank size. And when set to 3, as eight times the
PROM bank size. For any other value than 0, the use of multiple PROM banks is required.
Example, if ROMBSZ=10 and EBSZ=1, the EDAC area is 8KiB*2^ROMBSZ*2^EBSZ=
16MiB=0x01000000. The checksum byte for the first word located at address 0x00000000 to
0x00000003 is located at 0x00C00000. The checksum byte for the second word located at address
0x00000004 to 0x00000007 is located at 0x00C00001, and so on. Since EBSZ=1, two PROM banks
are required for implementing the EDAC area, each bank with size 8MiB=0x00800000.

29.2.2 Access errors

The active low Bus Exception signal (BEXCN) can be used to signal access errors. It is enabled by
setting the BEXCEN bit in MCFG1 and is active for all types of accesses to all areas (PROM, SRAM
and I/O). The BEXCN signal is sampled on the same cycle as read data is sampled. For writes it is
sampled on the last rising edge before writen/rwen is de-asserted (writen and rwen are clocked on the
falling edge). When a bus exception is detected an error response will be generated for the access.

29.2.3 Using bus ready signalling

The Bus Ready (BRDYN) signal can be used to add waitstates to I/O-area accesses, covering the
complete memory area and both read and write accesses. It is enabled by setting the Bus Ready

Figure 88. Read cycle with BEXCN.

data

address

romsn/iosn/ramsn

data

oen

lead-out

clk

D1

A1

bexcn

Figure 89. Write cycle with BEXCN.

lead-in data3

address

romsn/iosn/ramsn

data

rwen

lead-out
clk

D1

A1

bexcn

data1 data2
GRIP, Sep 2018, Version 2018.3 297 www.cobham.com/gaisler

GRLIB IP Core

Enable (BRDYEN) bit in the MCFG1 register. An access will have at least the amount of waitstates
set with the VHDL generic or through the register, but will be further stretched until BRDYN is
asserted. Additional waitstates can thus be inserted after the pre-set number of waitstates by de-assert-
ing the BRDYN signal. BRDYN should be asserted in the cycle preceding the last one. It is recom-
mended that BRDYN remains asserted until the IOSN signal is de-asserted, to ensure that the access
has been properly completed and avoiding the system to stall. Read accesses will have the same tim-
ing as when EDAC is enabled while write accesses will have the timing as for single accesses even if
bursts are performed.

29.3 PROM/SRAM/IO waveforms

The internal and external waveforms of the interface are presented in the figures hereafter.

Figure 90. I/O READ cycle, programmed with 1 wait state, and with an extra data cycle added with BRDYN.

lead-in wait

address

iosn

data

oen

clk

D1

brdyn

A1

data data

first
sample

Figure 91. PROM/SRAM non-consecutive read cyclecs.

data1

haddr

romsn

data

oen

cb

data1lead-out lead-out
clk

D1 D2

CB2CB1

A1 A3

address A1

10 00htrans

hrdata

hready

A2

10

A2

ramsn

D1 D2
GRIP, Sep 2018, Version 2018.3 298 www.cobham.com/gaisler

GRLIB IP Core
Figure 92. 32-bit PROM/SRAM sequential read access with 0 wait-states and EDAC disabled.

data1 data1

haddr

romsn

data

oen

cb

data1 lead-out
clk

A1 A3

address A1

10htrans

hrdata

hready

A2

ramsn

D1 D3

A4 A5

0011

D2 D4

A2 A3 A4

D1 D2 D3 D4

CB1 CB2 CB3 CB4

data1

Figure 93. 32-bit PROM/SRAM non-sequential read access with 0 wait-states and EDAC enabled.

data1 unused

haddr

romsn

data

oen

cb

data1 unusedlead-out lead-out
clk

D1 D2

A1 A3

address A1

10 00htrans

hrdata

hready

A2

10

A2

ramsn

D1 D2

CB1 CB2
GRIP, Sep 2018, Version 2018.3 299 www.cobham.com/gaisler

GRLIB IP Core
Figure 94. 32-bit PROM/SRAM sequential read access with 0 wait-states and EDAC enabled..

data1 data1

haddr

romsn

data

oen

cb

data1 unused
clk

A1 A3

address A1

10htrans

hrdata

hready

A2

ramsn

D1 D3

A4 A5

0011

D2 D4

A2 A3 A4

D1 D2 D3 D4

CB1 CB2 CB3 CB4

data1 lead-out

Figure 95. 32-bit PROM/SRAM non-sequential write access with 0 wait-states and EDAC disabled.

lead-in data1

haddr

romsn

data

writen

cb

lead-outdata2 lead-out

clk

D1

CB2CB1

A1 A3

address A1

10 00htrans

hwdata

hready

A2

10

A2

ramsn

D1 D2

D2

data1 data2lead-in
GRIP, Sep 2018, Version 2018.3 300 www.cobham.com/gaisler

GRLIB IP Core
If waitstates are configured through the VHDL generics or registers, one extra data cycle will be
inserted for each waitstate in both read and write cycles. The timing for write accesses is not affected
when EDAC is enabled while one extra latency cycle is introduced for single access reads and at the
beginning of read bursts.

Figure 96. 32-bit PROM/SRAM sequential write access with 0 wait-states and EDAC disabled.

lead-in data1

haddr

romsn

data

writen

cb

data1 data2data2
clk

D1

A1 A3

address A1

10 00htrans

hwdata

hready

A2

11

A2

ramsn

D1 D3

D3

A3

D2

CB1 CB3CB2

A4

D2

data1 data2 lead-out
GRIP, Sep 2018, Version 2018.3 301 www.cobham.com/gaisler

GRLIB IP Core
Read-Modify-Write (RMW) accesses will have an additional waitstate inserted to accommodate
decoding when EDAC is enabled.
I/O accesses are similar to PROM and SRAM accesses but a lead-in and lead-out cycle is always pres-
ent.

Figure 97. 32-bit PROM/SRAM rmw access with 0 wait-states and EDAC disabled.

haddr

romsn

data

oen

cb

clk

D1

A1 A2

address A1

10 00htrans

hwdata

hready

ramsn

M1

D1/M1

writen

CB1 CM1

Figure 98. I/O write access with 0 wait-states.

lead-in data1

haddr

iosn

data

writen

lead-outdata2
clk

D1

A1 A2

address A1

10 00htrans

hwdata

hready

D1

data3
GRIP, Sep 2018, Version 2018.3 302 www.cobham.com/gaisler

GRLIB IP Core
29.4 Endianness

The core is designed for big-endian systems.

29.5 Registers

The core is programmed through registers mapped into APB address space.

Table 321.FT PROM/SRAM/IO controller registers

APB Address offset Register
0x0 Memory configuration register 1
0x4 Memory configuration register 2
0x8 Memory configuration register 3

Figure 99. I/O read access with 0 wait-states

lead-in data

haddr

iosn

data

oen

lead-out
clk

D1

A1 A2

address A1

10 00htrans

hrdata

hready

D1
GRIP, Sep 2018, Version 2018.3 303 www.cobham.com/gaisler

GRLIB IP Core

29.5.1

Table 322.0x00 - MCFG1 - Memory configuration register 1.

Memory Configuration Register 1

29.5.2

Table 323.0x04 - MCFG2 - Memory configuration register 2.

Memory Configuration Register 2

31 27 26 25 24 23 20 19 18 17 14 13 12 11 10 9 8 7 4 3 0

RESERVED BR BE R IOWS R ROMBSZ EBSZ RW R RBW RESERVED ROMWS

0 0 0 0 0 0 * * 0 0 * 0 0xF

r rw rw r rw r rw* rw* rw r rw r rw

31: 27 RESERVED
26 Bus ready enable (BR) - Enables the bus ready signal (BRDYN) for I/O-area.
25 Bus exception enable (BE) - Enables the bus exception signal (BEXCEN) for PROM, SRAM and I/

O areas
24 RESERVED
23: 20 I/O wait states (IOWS) - Sets the number of waitstates for accesses to the I/O-area. Only available if

the wsreg VHDL generic is set to one.
19: 18 RESERVED
17: 14 ROM bank size (ROMBSZ) - Sets the PROM bank size. Only available if the rombanksz VHDL

generic is set to zero. Otherwise, the rombanksz VHDL generic sets the bank size and the value can
be read from this field. 0 = 8KiB, 1 = 16KiB, 2 = 32KiB, 3 = 64KiB, ..., 15=256 MiB (i.e. 8 KiB *
2**ROMBSZ).

13: 12 EDAC bank size (EBSZ) - Sets the EDAC bank size for 8-bit PROM support. Only available if the
rombanksz VHDL generic is zero, and edacen and prom8en VHDL generics are one. Otherwise, the
value is fixed to 0. The resulting EDAC bank size is 2^EBSZ * 2^ROMBSZ * 8KiB. Note that only
the three lower quarters of the bank can be used for user data. The EDAC checksums are placed in
the upper quarter of the bank.

11 ROM write enable (RW) - Enables writes to the PROM memory area. When disabled, writes to the
PROM area will generate an ERROR response on the AHB bus.

10 RESERVED
9: 8 ROM data bus width (RBW) - Sets the PROM data bus width. “00” = 8-bit, “10” = 32-bit, others

reserved.
7: 4 RESERVED
3: 0 ROM waitstates (ROMWS) - Sets the number of waitstates for accesses to the PROM area. Reset to

all-ones. Only available if the wsreg generic is set to one.

31 13 12 9 8 7 6 5 2 1 0

RESERVED RAMBSZ R RW RESERVED RAMW

0 * 0 * 0 0

r rw* r rw* r rw*

31: 13 RESERVED
12: 9 RAM bank size (RAMBSZ) - Sets the RAM bank size. Only available if the banksz VHDL generic

is set to zero. Otherwise, the banksz VHDL generic sets the bank size and the value can be read from
this field. 0 = 8KiB, 1 = 16KiB, 2 = 32KiB, 3 = 64KiB, ..., 15=256 MiB (i.e. 8 KiB * 2**RAMBSZ)

8: 7 RESERVED
6 Read-modify-write enable (RW) - Enables read-modify-write cycles for write accesses. Only availa-

ble if the rmw VHDL generic is set to one.
5: 2 RESERVED
1: 0 RAM waitstates (RAMW) - Sets the number of waitstates for accesses to the RAM area. Only avail-

able if the wsreg VHDL generic is set to one.
GRIP, Sep 2018, Version 2018.3 304 www.cobham.com/gaisler

GRLIB IP Core

29.5.3

Table 324.0x08 - MCFG3 - Memory configuration register 3.

Memory Configuration Register 3

All the fields in MCFG3 register are available if the edacen VHDL generic is set to one except SEC
field which also requires that the errcnt VHDL generic is set to one. The exact breakpoint between the
SEC and RESERVED field depends on the cntbits generic. The breakpoint is 11+cntbits. The values
shown in the table is for maximum cntbits value 8.

29.6 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x051. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

29.7 Implementation

29.7.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers. The registers driving external chip select, output enable and output enables for the data
bus have asynchronous reset.

31 20 19 12 11 10 9 8 7 0

RESERVED SEC WB RB SE PE TCB

0 0 0 0 0 0 NR

r wc rw rw rw rw rw*

31: 20 RESERVED
19: 12 Single error counter.(SEC) - This field increments each time a single error is detected until the max-

imum value that can be stored in the field is reached. Each bit can be reset by writing a one to it.
11 Write bypass (WB) - Enables EDAC write bypass. When enabled the TCB field will be used as

checkbits in all write operations.
10 Read bypass (RB) - Enables EDAC read bypass. When enabled checkbits read from memory in all

read operations will be stored in the TCB field.
9 SRAM EDAC enable (SE) - Enables EDAC for the SRAM area.
8 PROM EDAC enable (PE) - Enables EDAC for the PROM area. Reset value is taken from the input

signal sri.edac.
7: 0 Test checkbits (TCB) - Used as checkbits in write operations when WB is activated and checkbits

from read operations are stored here when RB is activated.
GRIP, Sep 2018, Version 2018.3 305 www.cobham.com/gaisler

GRLIB IP Core

29.8 Configuration options

Table 321 shows the configuration options of the core (VHDL generics).

29.9 Signal descriptions

Table 326 shows the interface signals of the core (VHDL ports).

Table 325. Controller configuration options

Generic Function Allowed range Default
hindex AHB slave index. 1 - NAHBSLV-1 0
romaddr ADDR field of the AHB BAR0 defining PROM address space.

Default PROM area is 0x0 - 0xFFFFFF.
0 - 16#FFF# 16#000#

rommask MASK field of the AHB BAR0 defining PROM address space. 0 - 16#FFF# 16#FF0#
ramaddr ADDR field of the AHB BAR1 defining RAM address space.

Default RAM area is 0x40000000-0x40FFFFFF.
0 - 16#FFF# 16#400#

rammask MASK field of the AHB BAR1 defining RAM address space. 0 -16#FFF# 16#FF0#
ioaddr ADDR field of the AHB BAR2 defining IO address space.

Default RAM area is 0x20000000-0x20FFFFFF.
0 - 16#FFF# 16#200#

iomask MASK field of the AHB BAR2 defining IO address space. 0 - 16#FFF# 16#FF0#
ramws Number of waitstates during access to SRAM area. 0 - 15 0
romws Number of waitstates during access to PROM area. 0 - 15 2
iows Number of waitstates during access to IO area. 0 - 15 2
rmw Enable read-modify-write cycles. 0 - 1 0
srbanks Set the number of RAM banks. 1 - 8 1
banksz Set the size of bank 1 - 4. 1 = 16KiB, 2 = 32KiB, 3 = 64KiB, ... ,

15 = 256 MiB (i.e. 8 KiB * 2**banksz). If set to zero, the bank
size is set with the rambsz field in the MCFG2 register.

0 - 15 15

rombanks Sets the number of PROM banks available. 1 - 8 1
rombanksz Sets the size of one PROM bank. 1 = 16KiB, 2 = 32KiB, 3 =

64KiB, ... , 15 = 256 MiB (i.e. 8 KiB * 2**rombanksz). If set to
zero, the bank size is set with the rombsz field in the MCFG1
register.

0 - 15 15

rombankszdef Sets the reset value of the rombsz register field in MCFG1 if
available.

0 - 15 15

pindex APB slave index. 1 - NAPBSLV-1 0
paddr APB address. 1 - 16#FFF# 0
pmask APB address mask. 1 - 16#FFF# 16#FFF#
edacen EDAC enable. If set to one, EDAC logic is synthesized. 0 - 1 0
errcnt If one, a single error counter is added. 0 - 1 0
cntbits Number of bits in the single error counter. 1 - 8 1
wsreg Enable programmable waitstate generation. 0 - 1 0
prom8en Enable 8-bit PROM mode. 0 - 1 0
oepol Select polarity of output enable signals. 0 = active low, 1 =

active high.
0 - 1 0

Table 326.Signal descriptions

Signal name Field Type Function Active
CLK N/A Input Clock -
RST N/A Input Reset Low
GRIP, Sep 2018, Version 2018.3 306 www.cobham.com/gaisler

GRLIB IP Core
SRI DATA[31:0] Input Memory data High
BRDYN Input Bus ready strobe Low
BEXCN Input Bus exception Low
WRN[3:0] Input Not used -
BWIDTH[1:0] Input Sets the reset value of the PROM data bus width

field in the MCFG1 register
-

SD[31:0] Input Not used -
CB[7:0] Input Checkbits -
PROMDATA[31:0] Input Not used -
EDAC Input The reset value for the PROM EDAC enable bit High

Table 326.Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 307 www.cobham.com/gaisler

GRLIB IP Core
SRO ADDRESS[31:0] Output Memory address High
DATA[31:0] Output Memory data High
RAMSN[7:0] Output SRAM chip-select Low
RAMOEN[7:0] Output SRAM output enable Low
IOSN Output IO area chip select Low
ROMSN[7:0] Output PROM chip-select Low
OEN Output Output enable Low
WRITEN Output Write strobe Low
WRN[3:0] Output SRAM write enable:

 WRN[0] corresponds to DATA[31:24],
 WRN[1] corresponds to DATA[23:16],
 WRN[2] corresponds to DATA[15:8],
 WRN[3] corresponds to DATA[7:0].
Any WRN[] signal can be used for CB[].

Low

MBEN[3:0] Output Byte enable:
 MBEN[0] corresponds to DATA[31:24],
 MBEN[1] corresponds to DATA[23:16],
 MBEN[2] corresponds to DATA[15:8],
 MBEN[3] corresponds to DATA[7:0].
Any MBEN[] signal can be used for CB[].

BDRIVE[3:0] Output Drive byte lanes on external memory bus.Con-
trols I/O-pads connected to external memory
bus:
 BDRIVE[0] corresponds to DATA[31:24],
 BDRIVE[1] corresponds to DATA[23:16],
 BDRIVE[2] corresponds to DATA[15:8],
 BDRIVE[3] corresponds to DATA[7:0].
Any BDRIVE[] signal can be used for CB[].

Low

READ Output Read strobe High
RAMN Output Common SRAM Chip Select. Always asserted

when one of the 8 RAMSN signals is asserted.
Low

ROMN Output Common PROM Chip Select. Always asserted
when one of the 8 ROMSN signals is asserted.

Low

SA[14:0] Output Not used -
CB[7:0] Output Checkbits -
PSEL Output Not used -
CE Output Single error detected. High

AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
SDO SDCASN Output Not used. All signals are drive to inactive state. Low
* see GRLIB IP Library User’s Manual

Table 326.Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 308 www.cobham.com/gaisler

GRLIB IP Core

29.10 Signal definitions and reset values

The signals and their reset values are described in table 327.

Table 327.Signal definitions and reset values

Signal name Type Function Active Reset value
address[27:0] Output Memory address High Undefined
data[31:0] Input/Output Memory data High Tri-state
cb[7:0] Input/Output Check bits High Tri-state
ramsn[3:0] Output SRAM chip select Low Logical 1
ramoen[3:0] Output SRAM output enable Low Logical 1
rwen[3:0] Output, SRAM write byte enable:

 rwen[0] corresponds to data[31:24],
 rwen[1] corresponds to data[23:16],
 rwen[2] corresponds to data[15:8],
 rwen[3] corresponds to data[7:0].
Any rwen[] signal can be used for cb[].

Low Logical 1

ramben[3:0] Output SRAM read/write byte enable:
 ramben[0] corresponds to data[31:24],
 ramben[1] corresponds to data[23:16],
 ramben[2] corresponds to data[15:8],
 ramben[3] corresponds to data[7:0].
Any ramben[] signal can be used for cb[].

Low Logical 1

oen Output Output enable Low Logical 1
writen Output Write strobe Low Logical 1
read Output Read strobe High Logical 1
iosn Output IO area chip select Low Logical 1
romsn[1:0] Output PROM chip select Low Logical 1
brdyn Input Bus ready. Extends accesses to the IO area. Low -
bexcn Input Bus exception. Low -
GRIP, Sep 2018, Version 2018.3 309 www.cobham.com/gaisler

GRLIB IP Core

29.11 Timing

The timing waveforms and timing parameters are shown in figure 100 and are defined in table 328.

Table 328.Timing parameters

Name Parameter Reference edge Min Max Unit
tFTSRCTRL0 address clock to output delay rising clk edge TBD TBD ns

tFTSRCTRL1 clock to output delay rising clk edge TBD TBD ns

tFTSRCTRL2 clock to output delay rising clk edge TBD TBD ns

tFTSRCTRL3 clock to data output delay falling clk edge TBD TBD ns

tFTSRCTRL4 clock to data non-tri-state delay rising clk edge TBD TBD ns

tFTSRCTRL5 clock to data tri-state delay rising clk edge TBD TBD ns

tFTSRCTRL6 clock to output delay rising clk edge TBD TBD ns

tFTSRCTRL7 data input to clock setup rising clk edge TBD - ns

tFTSRCTRL8 data input from clock hold rising clk edge TBD - ns

tFTSRCTRL9 input to clock setup rising clk edge TBD - ns

tFTSRCTRL10 input from clock hold rising clk edge TBD - ns

Figure 100. Timing waveforms

tFTSRCTRL0

address[]

clk

tFTSRCTRL1 tFTSRCTRL1

data[], cb[]
(output)

data[], cb[]
(input)

ramsn[], romsn[]
iosn

tFTSRCTRL3, tFTSRCTRL4 tFTSRCTRL5

ramoen[]
ramben[], oen, read

rwen[], writen

tFTSRCTRL9
brdyn, bexcn

tFTSRCTRL10

tFTSRCTRL2 tFTSRCTRL2

tFTSRCTRL6 tFTSRCTRL6

address[]

clk

ramsn[], romsn[]
iosn

tFTSRCTRL7 tFTSRCTRL8

tFTSRCTRL3
GRIP, Sep 2018, Version 2018.3 310 www.cobham.com/gaisler

GRLIB IP Core

29.12 Library dependencies

Table 329 shows libraries used when instantiating the core (VHDL libraries).

29.13 Component declaration

The core has the following component declaration.
component ftsrctrl is
 generic (
 hindex : integer := 0;
 romaddr : integer := 0;
 rommask : integer := 16#ff0#;
 ramaddr : integer := 16#400#;
 rammask : integer := 16#ff0#;
 ioaddr : integer := 16#200#;
 iomask : integer := 16#ff0#;
 ramws : integer := 0;
 romws : integer := 2;
 iows : integer := 2;
 rmw : integer := 0;
 srbanks : integer range 1 to 8 := 1;
 banksz : integer range 0 to 15 := 15;
 rombanks : integer range 1 to 8 := 1;
 rombanksz : integer range 0 to 15 := 15;
 rombankszdef : integer range 0 to 15 := 15;
 pindex : integer := 0;
 paddr : integer := 0;
 pmask : integer := 16#fff#;
 edacen : integer range 0 to 1 := 1;
 errcnt : integer range 0 to 1 := 0;
 cntbits : integer range 1 to 8 := 1;
 wsreg : integer := 0;
 oepol : integer := 0;
 prom8en : integer := 0
);
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 ahbsi : in ahb_slv_in_type;
 ahbso : out ahb_slv_out_type;
 apbi : in apb_slv_in_type;
 apbo : out apb_slv_out_type;
 sri : in memory_in_type;
 sro : out memory_out_type;
 sdo : out sdctrl_out_type
);
end component;

29.14 Instantiation

This example shows how the core can be instantiated.
The example design contains an AMBA bus with a number of AHB components connected to it
including the memory controller. The external memory bus is defined in the example design’s port
map and connected to the memory controller. System clock and reset are generated by GR Clock Gen-
erator and Reset Generator. The CE signal of the memory controller is also connected to the AHB sta-
tus register.

Table 329.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB signal definitions
GAISLER MEMCTRL Signals, component Memory bus signals definitions, component dec-

laration
GRIP, Sep 2018, Version 2018.3 311 www.cobham.com/gaisler

GRLIB IP Core

Memory controller decodes default memory areas: PROM area is 0x0 - 0xFFFFFF and RAM area is
0x40000000 - 0x40FFFFF.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.pads.all; -- used for I/O pads
use gaisler.misc.all;

entity mctrl_ex is
 port (
 clk : in std_ulogic;
 resetn : in std_ulogic;
 pllref : in std_ulogic;

 -- memory bus
 address : out std_logic_vector(27 downto 0); -- memory bus
 data : inout std_logic_vector(31 downto 0);
 ramsn : out std_logic_vector(4 downto 0);
 ramoen : out std_logic_vector(4 downto 0);
 rwen : inout std_logic_vector(3 downto 0);
 romsn : out std_logic_vector(1 downto 0);
 iosn : out std_logic;
 oen : out std_logic;
 read : out std_logic;
 writen : inout std_logic;
 brdyn : in std_logic;
 bexcn : in std_logic;
-- sdram i/f
 sdcke : out std_logic_vector (1 downto 0); -- clk en
 sdcsn : out std_logic_vector (1 downto 0); -- chip sel
 sdwen : out std_logic; -- write en
 sdrasn : out std_logic; -- row addr stb
 sdcasn : out std_logic; -- col addr stb
 sddqm : out std_logic_vector (7 downto 0); -- data i/o mask
 sdclk : out std_logic; -- sdram clk output
 sa : out std_logic_vector(14 downto 0); -- optional sdram address
 sd : inout std_logic_vector(63 downto 0); -- optional sdram data
 cb : inout std_logic_vector(7 downto 0); --checkbits
);
end;

architecture rtl of mctrl_ex is

 -- AMBA bus (AHB and APB)
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

 -- signals used to connect memory controller and memory bus
 signal memi : memory_in_type;
 signal memo : memory_out_type;

 signal sdo : sdctrl_out_type;

 signal wprot : wprot_out_type; -- dummy signal, not used
 signal clkm, rstn : std_ulogic; -- system clock and reset

-- signals used by clock and reset generators
 signal cgi : clkgen_in_type;
 signal cgo : clkgen_out_type;
GRIP, Sep 2018, Version 2018.3 312 www.cobham.com/gaisler

GRLIB IP Core

 signal gnd : std_ulogic;

 signal stati : ahbstat_in_type; --correctable error vector

begin

 -- AMBA Components are defined here ...

 -- Clock and reset generators
 clkgen0 : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1,
 tech => virtex2, sdinvclk => 0)
 port map (clk, gnd, clkm, open, open, sdclk, open, cgi, cgo);

 cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pllref <= pllref;

 rst0 : rstgen
 port map (resetn, clkm, cgo.clklock, rstn);

 -- AHB Status Register
 astat0 : ahbstat generic map(pindex => 13, paddr => 13, pirq => 11,
 nftslv => 1)
 port map(rstn, clkm, ahbmi, ahbsi, stati, apbi, apbo(13));

 stati.cerror(0) <= memo.ce;

 -- Memory controller
 mctrl0 : ftsrctrl generic map (rmw => 1, pindex => 10, paddr => 10,
 edacen => 1, errcnt => 1, cntbits => 4)
 port map (rstn, clkm, ahbsi, ahbso(0), apbi, apbo(10), memi, memo,
 sdo);

 -- I/O pads driving data memory bus data signals
 datapads : for i in 0 to 3 generate
 data_pad : iopadv generic map (width => 8)
 port map (pad => data(31-i*8 downto 24-i*8),
 o => memi.data(31-i*8 downto 24-i*8),
 en => memo.bdrive(i),
 i => memo.data(31-i*8 downto 24-i*8));
 end generate;

 --I/O pads driving checkbit signals
 cb_pad : iopadv generic map (width => 8)
 port map (pad => cb,
 o => memi.cb,
 en => memo.bdrive(0),
 i => memo.cb;

 -- connect memory controller outputs to entity output signals
 address <= memo.address; ramsn <= memo.ramsn; romsn <= memo.romsn;
 oen <= memo.oen; rwen <= memo.wrn; ramoen <= memo.ramoen;
 writen <= memo.writen; read <= memo.read; iosn <= memo.iosn;
 sdcke <= sdo.sdcke; sdwen <= sdo.sdwen; sdcsn <= sdo.sdcsn;
 sdrasn <= sdo.rasn; sdcasn <= sdo.casn; sddqm <= sdo.dqm;

end;
GRIP, Sep 2018, Version 2018.3 313 www.cobham.com/gaisler

GRLIB IP Core

30 FTSRCTRL8 - 8-bit SRAM/16-bit IO Memory Controller with EDAC

30.1 Overview

The fault tolerant 8-bit SRAM/16-bit I/O memory interface uses a common 16-bit data bus to inter-
face 8-bit SRAM and 16-bit I/O devices. It provides an Error Detection And Correction unit (EDAC),
correcting up to two errors and detecting up to four errors in a data byte. The EDAC eight checkbits
are stored in parallel with the 8-bit data in SRAM memory. Configuration of the memory controller
functions is performed through the APB bus interface.

30.2 Operation

The controller is configured through VHDL generics to decode two address ranges: SRAM and I/O
area. By default the SRAM area is mapped into address range 0x40000000 - 0x40FFFFFF, and the I/
O area is mapped to 0x20000000 - 0x20FFFFFF.
One chip select is decoded for the I/O area, while SRAM can have up to 8 chip select signals. The
controller generates a common write-enable signal (WRITEN) for both SRAM and I/O. The number
of waitstates may be separately configured for the two address ranges.
The EDAC function is optional, and can be enabled with the edacen VHDL generic. The configura-
tion of the EDAC is done through a configuration register accessed from the APB bus. During nomi-
nal operation, the EDAC checksum is generated and checked automatically. The 8-bit input to the
EDAC function is split into two 4-bit nibbles. A modified hamming(8,4,4) coding featuring a single
error correction and double error detection is applied to each 4-bit nibble. This makes the EDAC
capable of correcting up to two errors and detecting up to four errors per 8-bit data. Single errors (cor-
rectable errors) are corrected without generating any indication of this condition in the bus response.
If a multiple error (uncorrectable errors) is detected, a two cycle error response is given on the AHB
bus.
Single errors may be monitored in two ways:
• by monitoring the CE signal which is asserted for one cycle each time a correctable error is

detected.
• by checking the single error counter which is accessed from the MCFG3 configuration register.

CS
OE
WE

A
DSRAM

SRO.RAMSN
SRO.OEN

SRO.WRITEN

A D

MEMORY

SRI.A[27:0]

SRI.D[15:0]

CONTROLLER

AHB

AHB/APB
Bridge

APB

SRO.D[15:0]

CS
OE
WE

A
DIO

SRO.IOSN

Figure 101. Block diagram
GRIP, Sep 2018, Version 2018.3 314 www.cobham.com/gaisler

GRLIB IP Core
The CE signal can be connected to the AHB status register which stores information of the AHB
instruction causing the error and also generates interrupts. See the AHB status register documentation
for more information.

The EDAC function can only be enabled for SRAM area accesses. If a 16-bit or 32-bit bus access is
performed, the memory controller calculates the EDAC checksum for each byte read from the mem-
ory but the indication of single error is only signaled when the access is done. (I.e. if more than one
byte in a 32-bit access has a single error, only one error is indicated for the hole 32-bit access.)
The equations below show how the EDAC checkbits are generated:
CB7 = Data[15] ^ Data[14] ^ Data[13] // i.e. Data[7]
CB6 = Data[15] ^ Data[14] ^ Data[12] // i.e. Data[6]
CB5 = Data[15] ^ Data[13] ^ Data[12] // i.e. Data[5]
CB4 = Data[14] ^ Data[13] ^ Data[12] // i.e. Data[4]
CB3 = Data[11] ^ Data[10] ^ Data[9] // i.e. Data[3]
CB2 = Data[11] ^ Data[10] ^ Data[8] // i.e. Data[2]
CB1 = Data[11] ^ Data[9] ^ Data[8] // i.e. Data[1]
CB0 = Data[10] ^ Data[9] ^ Data[8] // i.e. Data[0]

30.2.1 Memory access

The memory controller supports 32/16/8-bit single accesses and 32-bit burst accesses to the SRAM. A
32-bit or a 16-bit access is performed as multiple 8-bit accesses on the 16-bit memory bus, where data
is transferred on data lines 8 to 15 (Data[15:8]). The eight checkbits generated/used by the EDAC are
transferred on the eight first data lines (Data[7:0]). For 32-bit and 16-bit accesses, the bytes read from
the memory are arranged according to the big-endian order (i.e. for a 32-bit read access, the bytes read
from memory address A, A+1, A+2, and A+3 correspond to the bit[31:24], bit[23:16], bit[15:8], and
bit[7:0] in the 32-bit word transferred to the AMBA bus. The table 339 shows the expected latency
from the memory controller.

One extra cycle is added for 16-bit burst accesses when Bus Exception is enabled.

30.2.2 I/O access

The memory controller accepts 32/16/8-bit single accesses to the I/O area, but the access generated
towards the I/O device is always 16-bit. The two least significant bits of the AMBA address (byte
address) determine which half word that should be transferred to the I/O device. (i.e. If the byte
address is 0 and it is a 32-bit access, bits 16 to 31 on the AHB bus is transferred on the 16-bit memory
bus. If the byte address is 2 and it is a 16-bit access, bit 0 to 15 on the AHB bus is transferred on the
16-bit memory bus.) If the access is an 8-bit access, the data is transferred on data lines 8 to 15
(Data[15:8]) on the memory bus. In case of a write, data lines 0 to 7 is also written to the I/O device
but these data lines do not transfer any valid data.

Table 330.FTSCTRL8 access latency

Accesses Single data First data (burst) Middle data (burst) Last data (burst)
32-bit write 10 8 8 10
32-bit read 6 6 4 4
16-bit write 4 (+1) - - -
16-bit read 4 - - -
8-bit write 4 - - -
8-bit read 3 - - -
GRIP, Sep 2018, Version 2018.3 315 www.cobham.com/gaisler

GRLIB IP Core

30.2.3 Using Bus Exception

The active low Bus Exception signal (BEXCN) can be used to signal access errors. It is enabled by
setting the BEXCEN bit in MCFG1 and is only active for the I/O area. The BEXCN signal is sampled
on the same cycle as data is written to memory or read data is sampled. When a bus exception is
detected an error response will be generated for the access. One additional latency cycle is added to
the AMBA access when the Bus Exception is enable.

30.2.4 Using Bus Ready

The Bus Ready (BRDYN) signal can be used to add waitstates to I/O-area accesses. It is enabled by
setting the Bus Ready Enable (BRDYEN) bit in the MCFG1 register. An access will have at least the
amount of waitstates set with the VHDL generic or through the register, but will be further stretched
until BRDYN is asserted. Additional waitstates can thus be inserted after the pre-set number of wait-
states by deasserting the BRDYN signal. BRDYN should be asserted in the cycle preceding the last
one. It is recommended that BRDY remains asserted until the IOSN signal is de-asserted, to ensure
that the access has been properly completed and avoiding the system to stall.

30.3 SRAM/IO waveforms

The internal and external waveforms of the interface are presented in the figures below.

Figure 102. I/O READ cycle, programmed with 1 wait state, and with an extra data cycle added with BRDYN.

lead-in wait

address

iosn

data

oen

clk

D1

brdyn

A1

data data

first
sample
GRIP, Sep 2018, Version 2018.3 316 www.cobham.com/gaisler

GRLIB IP Core
Figure 103. 32-bit SRAM sequential read accesses with 0
wait-states and EDAC enabled.

haddr

ramsn

data

oen

clk

B3

A0 A8

address A0

10 00htrans

hrdata

hready

A4

11

D1

A1 A2 A3 A4 A5 A6 A7

B2 B1 B0 B7 B6 B5 B4

D0

Figure 104. 32-bit SRAM sequential writeaccess with 0
wait-states and EDAC enabled.

haddr

ramsn

data

writen

clk

B3

A0

address A0

10 00htrans

hwdata

hready

A4

11

A1

D0

B4

A2

B2

A8

A3 A4

B1 B0

D1
GRIP, Sep 2018, Version 2018.3 317 www.cobham.com/gaisler

GRLIB IP Core
On a read access, data is sampled one clock cycle before HREADY is asserted.

Figure 105. 8-bit SRAM non-sequential write access with 0
wait-states and EDAC enabled.

haddr

ramsn

data

writen

clk

B3

A0

address A0

10 00htrans

hwdata

hready

A1

11

A1

D0

A2

B2

D1

Figure 106. 8-bit SRAM non-sequential read access with 0
wait-states and EDAC enabled.

haddr

ramsn

data

oen

clk

B3

A0 A2

address A0

10 00htrans

hrdata

hready

A1

10

D[23:16]

A1

B2

D[31:24]
GRIP, Sep 2018, Version 2018.3 318 www.cobham.com/gaisler

GRLIB IP Core
I/O write accesses are extended with one extra latency cycle if the bus exception is enabled.
If waitstates are configured through the VHDL generics or registers, one extra data cycle will be
inserted for each waitstate in both read and write cycles.

30.4 Endianness

The core is designed for big-endian systems.

Figure 107. 16-bit I/O non-sequential write access with 0
wait-states.

haddr

iosn

data

writen

clk

H1

A0

address A0

10htrans

hwdata

hready

A1

00

D[31:16]

Figure 108. 16-bit I/O non-sequential read access with 0
wait-states.

haddr

ramsn

data

oen

clk

H1

A2

address A2

10 00htrans

hrdata

hready

A4

10

D[31:16]

A4

H3

D[15:0]
GRIP, Sep 2018, Version 2018.3 319 www.cobham.com/gaisler

GRLIB IP Core

30.5 Registers

The core is programmed through registers mapped into APB address space.

Table 331.FT SRAM/IO controller registers

APB Address offset Register
0x00 Memory configuration register 1
0x04 Memory configuration register 2
0x08 Memory configuration register 3
GRIP, Sep 2018, Version 2018.3 320 www.cobham.com/gaisler

GRLIB IP Core

30.5.1

Table 332.0x00 - MCFG1 - Memory configuration register 1

Memory Configuration Register 1

30.5.2

Table 333.0x04 - MCFG2 - Memory configuration register 2

Memory Configuration Register 2

30.5.3

Table 334.0x08 - MCFG2 - Memory configuration register 3

Memory Configuration 3

All the fields in the MCFG3 register are available if the edacen VHDL generic is set to one except for
the SEC field which also requires that the errcnt VHDL generic is set to one.

31 27 26 25 24 23 20 19 0

RESERVED BRDY BEXC R IOWS RESERVED

0 0 0 0 0xF 0

r rw rw r rw r

31 : 27 RESERVED
26 BRDYEN: Enables the BRDYN signal.
25 BEXCEN: Enables the BEXCN signal.
24 RESERVED
23 : 20 IOWS: Sets the number of waitstates for accesses to the IO area. Only available if the wsreg VHDL

generic is set to one.
19 : 0 RESERVED

31 13 12 9 8 2 1 0

RESERVED RAMBSZ RESERVED RAMWS

0 * 0 *

r rw* r rw*

31 : 12 RESERVED
12 : 9 RAMBSZ: Sets the SRAM bank size. Only available if the banksz VHDL generic is set to zero. Oth-

erwise the banksz VHDL generic sets the bank size. 0 = 8 kB, 15 = 256 MB.
8 : 2 RESERVED
1 : 0 RAMWS: Sets the number of waitstates for accesses to the RAM area. Only available if the wsreg

VHDL generic is set to one.

31 cnt + 13 cnt + 12 12 11 10 9 8 7 0

RESERVED SEC WB RB SEN TCB

0 0 0 0 0 0 NR

r wc rw rw rw r rw

31 :
cnt+13

RESERVED

cnt+12
: 12

SEC. Single error counter. This field increments each time a single error is detected. It saturates at
the maximum value that can be stored in this field. Each bit can be reset by writing a one to it. cnt =
the number of counter bits.

11 WB: Write bypass. If set, the TCB field will be used as checkbits in all write operations.
10 RB: Read bypass. If set, checkbits read from memory in all read operations will be stored in the TCB

field.
9 SEN: SRAM EDAC enable. If set, EDAC will be active for the SRAM area.
8 RESERVED
7 : 0 TCB: Used as checkbits in write operations when WB is one and checkbits from read operations are

stored here when RB is one.
GRIP, Sep 2018, Version 2018.3 321 www.cobham.com/gaisler

GRLIB IP Core

30.6 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x056. For description of
vendor and device identifiers see the GRLIB IP Library User’s Manual.

30.7 Implementation

30.7.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers. The registers driving external chip select, output enable and output enables for the data
bus have asynchronous reset.

30.8 Configuration options

Table 331 shows the configuration options of the core (VHDL generics).

30.9 Signal descriptions

Table 336 shows the interface signals of the core (VHDL ports).

Table 335. Controller configuration options

Generic Function Allowed range Default
hindex AHB slave index. 1 - NAHBSLV-1 0
ramaddr ADDR field of the AHB BAR1 defining RAM address space.

Default RAM area is 0x40000000-0x40FFFFFF.
0 - 16#FFF# 16#400#

rammask MASK field of the AHB BAR1 defining RAM address space. 0 -16#FFF# 16#FF0#
ioaddr ADDR field of the AHB BAR2 defining IO address space.

Default RAM area is 0x20000000-0x20FFFFFF.
0 - 16#FFF# 16#200#

iomask MASK field of the AHB BAR2 defining IO address space. 0 - 16#FFF# 16#FF0#
ramws Number of waitstates during access to SRAM area. 0 - 15 0
iows Number of waitstates during access to IO area. 0 - 15 2
srbanks Set the number of RAM banks. 1 - 8 1
banksz Set the size of bank 1 - 4. 1 = 16 kB, ... , 15 = 256 MB. If set to

zero, the bank size is set with the rambsz field in the MCFG2
register.

0 - 15 15

pindex APB slave index. 1 - NAPBSLV-1 0
paddr APB address. 1 - 16#FFF# 0
pmask APB address mask. 1 - 16#FFF# 16#FFF#
edacen EDAC enable. If set to one, EDAC logic is synthesized. 0 - 1 0
errcnt If one, a single error counter is added. 0 - 1 0
cntbits Number of bits in the single error counter. 1 - 8 1
wsreg Enable programmable waitstate generation. 0 - 1 0

Table 336.Signal descriptions

Signal name Field Type Function Active
CLK N/A Input Clock -
RST N/A Input Reset Low
GRIP, Sep 2018, Version 2018.3 322 www.cobham.com/gaisler

GRLIB IP Core
SRI DATA[31:0] Input Memory data:
[15:0] used for IO accesses
[7:0] used for checkbits for SRAM accesses
[15:8] use for data for SRAM accesses

High

BRDYN Input Bus ready strobe Low
BEXCN Input Bus exception Low
WRN[3:0] Input Not used -
BWIDTH[1:0] Input Not used -
SD[31:0] Input Not used -
CB[7:0] Input Not used -
PROMDATA[31:0] Input Not used -
EDAC Input Not used -

SRO ADDRESS[31:0] Output Memory address High
DATA[31:0] Output Memory data:

[15:0] used for IO accesses
[7:0] used for checkbits for SRAM accesses
[15:8] use for data for SRAM accesses

High

RAMSN[7:0] Output SRAM chip-select Low
RAMOEN[7:0] Output SRAM output enable Low
IOSN Output IO area chip select Low
ROMSN[7:0] Output Not used Low
OEN Output Output enable Low
WRITEN Output Write strobe Low
WRN[3:0] Output SRAM write enable:

WRN[0] corresponds to DATA[15:8],
WRN[1] corresponds to DATA[7:0],
WRN[3:2] Not used

Low

BDRIVE[3:0] Output Drive byte lanes on external memory bus. Con-
trols I/O-pads connected to external memory
bus:
BDRIVE[0] corresponds to DATA[15:8],
BDRIVE[1] corresponds to DATA[7:0],
BDRIVE[3:2] Not used

Low

VBDRIVE[31:0] Output Vectored I/O-pad drive signal. Low
READ Output Read strobe High
RAMN Output Common SRAM Chip Select. Always asserted

when one of the 8 RAMSN signals is asserted.
Low

ROMN Output Not used -
SA[14:0] Output Not used -
CB[7:0] Output Not used -
PSEL Output Not used -
CE Output Single error detected. High

AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
* see GRLIB IP Library User’s Manual

Table 336.Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 323 www.cobham.com/gaisler

GRLIB IP Core
30.10 Signal definitions and reset values

The signals and their reset values are described in table 337.

Table 337.Signal definitions and reset values

Signal name Type Function Active Reset value
address[25:0] Output Memory address High Undefined
data[31:0] Input/Output Memory data High Tri-state
cb[7:0] Input/Output Check bits High Tri-state
ramsn[3:0] Output SRAM chip select Low Logical 1
ramoen[3:0] Output SRAM output enable Low Logical 1
rwen[3:0] Output, SRAM write enable:

rwen[0] corresponds to data[15:8],
rwen[1] corresponds to data[7:0],
rwen[3:2] Not used

Low Logical 1

ramben[3:0] Output SRAM bank enable:
ramben[0] corresponds to data[15:8],
ramben[1] corresponds to data[7:8],
ramben[3:2] Not used

Low Logical 1

oen Output Output enable Low Logical 1
writen Output Write strobe Low Logical 1
read Output Read strobe High Logical 1
iosn Output IO area chip select Low Logical 1
brdyn Input Bus ready. Extends accesses to the IO area. Low -
bexcn Input Bus exception. Low -
GRIP, Sep 2018, Version 2018.3 324 www.cobham.com/gaisler

GRLIB IP Core

30.11 Timing

The timing waveforms and timing parameters are shown in figure 109 and are defined in table 338.

Table 338.Timing parameters

Name Parameter Reference edge Min Max Unit
tFTSRCTRL0 address clock to output delay rising clk edge TBD TBD ns

tFTSRCTRL1 clock to output delay rising clk edge TBD TBD ns

tFTSRCTRL2 clock to output delay rising clk edge TBD TBD ns

tFTSRCTRL3 clock to data output delay falling clk edge TBD TBD ns

tFTSRCTRL4 clock to data non-tri-state delay rising clk edge TBD TBD ns

tFTSRCTRL5 clock to data tri-state delay rising clk edge TBD TBD ns

tFTSRCTRL6 clock to output delay rising clk edge TBD TBD ns

tFTSRCTRL7 data input to clock setup rising clk edge TBD - ns

tFTSRCTRL8 data input from clock hold rising clk edge TBD - ns

tFTSRCTRL9 input to clock setup rising clk edge TBD - ns

tFTSRCTRL10 input from clock hold rising clk edge TBD - ns

Figure 109. Timing waveforms

tFTSRCTRL0

address[]

clk

tFTSRCTRL1 tFTSRCTRL1

data[], cb[]
(output)

data[], cb[]
(input)

ramsn[], romsn[]
iosn

tFTSRCTRL3, tFTSRCTRL4 tFTSRCTRL5

ramoen[]
ramben[], oen, read

rwen[], writen

tFTSRCTRL9
brdyn, bexcn

tFTSRCTRL10

tFTSRCTRL2 tFTSRCTRL2

tFTSRCTRL6 tFTSRCTRL6

address[]

clk

ramsn[], romsn[]
iosn

tFTSRCTRL7 tFTSRCTRL8

tFTSRCTRL3
GRIP, Sep 2018, Version 2018.3 325 www.cobham.com/gaisler

GRLIB IP Core

30.12 Library dependencies

Table 339 shows libraries used when instantiating the core (VHDL libraries).

30.13 Component declaration

The core has the following component declaration.
component ftsrctrl8 is
 generic (
 hindex : integer := 0;
 ramaddr : integer := 16#400#;
 rammask : integer := 16#ff0#;
 ioaddr : integer := 16#200#;
 iomask : integer := 16#ff0#;
 ramws : integer := 0;
 iows : integer := 2;
 srbanks : integer range 1 to 8 := 1;
 banksz : integer range 0 to 15 := 15;
 pindex : integer := 0;
 paddr : integer := 0;
 pmask : integer := 16#fff#;
 edacen : integer range 0 to 1 := 1;
 errcnt : integer range 0 to 1 := 0;
 cntbits : integer range 1 to 8 := 1;
 wsreg : integer := 0;
 oepol : integer := 0
);
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 ahbsi : in ahb_slv_in_type;
 ahbso : out ahb_slv_out_type;
 apbi : in apb_slv_in_type;
 apbo : out apb_slv_out_type;
 sri : in memory_in_type;
 sro : out memory_out_type
);
end component;

30.14 Instantiation

This example shows how the core can be instantiated.
The example design contains an AMBA bus with a number of AHB components connected to it
including the memory controller. The external memory bus is defined in the example design’s port
map and connected to the memory controller. The system clock and reset are generated by GR Clock
Generator and Reset Generator. The CE signal of the memory controller is also connected to the AHB
status register.
The memory controller decodes default memory areas: I/O area is 0x20000000 - 0x20FFFFFF and
RAM area is 0x40000000 - 0x40FFFFF.
library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
library techmap;
use techmap.gencomp.all;
library gaisler;

Table 339.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB signal definitions
GAISLER MEMCTRL Signals, component Memory bus signals definitions, component dec-

laration
GRIP, Sep 2018, Version 2018.3 326 www.cobham.com/gaisler

GRLIB IP Core

use gaisler.memctrl.all;
use gaisler.misc.all;

entity ftsrctrl8_ex is
 port (
 resetn : in std_ulogic;
 clk : in std_ulogic;

 address : out std_logic_vector(27 downto 0);
 data : inout std_logic_vector(31 downto 0);
 ramsn : out std_logic_vector (3 downto 0);
 ramoen : out std_logic_vector (3 downto 0);
 rwen : out std_logic_vector (3 downto 0);
 oen : out std_ulogic;
 writen : out std_ulogic;
 read : out std_ulogic;
 iosn : out std_ulogic;
 brdyn : in std_ulogic; -- Bus ready
 bexcn : in std_ulogic -- Bus exception
);
end;

architecture rtl of ftsrctrl8_ex is
signal memi : memory_in_type;
signal memo : memory_out_type;

signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector := (others => apb_none);
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi : ahb_mst_in_type;
signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

signal clkm, rstn, rstraw : std_ulogic;
signal cgi : clkgen_in_type;
signal cgo : clkgen_out_type;

signal stati : ahbstat_in_type;

begin

 -- clock and reset
 cgi.pllctrl <= "00"; cgi.pllrst <= rstraw; cgi.pllref <= ’0’;
 clk_pad : clkpad port map (clk, clkm);
 rst0 : rstgen -- reset generator
 port map (resetn, clkm, ’1’, rstn, rstraw);

 -- AHB controller
 ahb0 : ahbctrl -- AHB arbiter/multiplexer
 generic map (rrobin => 1, ioaddr => 16#fff#, devid => 16#201#)
 port map (rstn, clkm, ahbmi, ahbmo, ahbsi, ahbso);

 -- Memory controller
 sr0 : ftsrctrl8 generic map (hindex => 0, pindex => 0, edacen => 1)
 port map (rstn, clkm, ahbsi, ahbso(0), apbi, apbo(0), memi, memo);

 brdyn_pad : inpad port map (brdyn, memi.brdyn);
 bexcn_pad : inpad port map (bexcn, memi.bexcn);

 addr_pad : outpadv generic map (width => 28)
 port map (address, memo.address(27 downto 0));
 rams_pad : outpadv generic map (width => 4)
 port map (ramsn, memo.ramsn(3 downto 0));
 oen_pad : outpad
 port map (oen, memo.oen);
 rwen_pad : outpadv generic map (width => 4)
 port map (rwen, memo.wrn);
 roen_pad : outpadv generic map (width => 4)
 port map (ramoen, memo.ramoen(3 downto 0));
 wri_pad : outpad
 port map (writen, memo.writen);
GRIP, Sep 2018, Version 2018.3 327 www.cobham.com/gaisler

GRLIB IP Core

 read_pad : outpad
 port map (read, memo.read);
 iosn_pad : outpad
 port map (iosn, memo.iosn);
 data_pad : iopadvv generic map (width => 8) -- SRAM and I/O Data
 port map (data(15 downto 8), memo.data(15 downto 8),
 memo.vbdrive(15 downto 8), memi.data(15 downto 8));
 cbdata_pad : iopadvv generic map (width => 8) -- SRAM checkbits and I/O Data
 port map (data(7 downto 0), memo.data(7 downto 0),
 memo.vbdrive(7 downto 0), memi.data(7 downto 0));

 -- APB bridge and AHB stat
 apb0 : apbctrl -- AHB/APB bridge
 generic map (hindex => 1, haddr => 16#800#)
 port map (rstn, clkm, ahbsi, ahbso(1), apbi, apbo);

 stati.cerror(0) <= memo.ce;
 ahbstat0 : ahbstat generic map (pindex => 15, paddr => 15, pirq => 1)
 port map (rstn, clkm, ahbmi, ahbsi, stati, apbi, apbo(15));
end;
GRIP, Sep 2018, Version 2018.3 328 www.cobham.com/gaisler

GRLIB IP Core

31 GPTIMER - General Purpose Timer Unit

31.1 Overview

The General Purpose Timer Unit provides a common prescaler and decrementing timer(s). The num-
ber of timers is configurable through the ntimers VHDL generic in the range 1 to 7. The prescaler
width is configured through the sbits VHDL generic. Timer width is configured through the nbits
VHDL generic. The timer unit acts a slave on AMBA APB bus. The unit is capable of asserting inter-
rupts on timer underflow. The interrupt to use is configurable to be common for the whole unit or sep-
arate for each timer.

31.2 Operation

The prescaler is clocked by the system clock and decremented on each clock cycle when at least one
timer is enabled. When the prescaler underflows, it is reloaded from the prescaler reload register and a
timer tick is generated.
The operation of each timers is controlled through its control register. A timer is enabled by setting the
enable bit in the control register. The timer value is then decremented on each prescaler tick. When a
timer underflows, it will automatically be reloaded with the value of the corresponding timer reload
register if the restart bit in the control register is set, otherwise it will stop at -1 and reset the enable
bit.
The timer unit can be configured to generate common interrupt through a VHDL-generic. The shared
interrupt will be signaled when any of the timers with interrupt enable bit underflows. The timer unit
will signal an interrupt on appropriate line when a timer underflows (if the interrupt enable bit for the
current timer is set), when configured to signal interrupt for each timer. The interrupt pending bit in
the control register of the underflown timer will be set and remain set until cleared by writing ‘1’.
To minimize complexity, timers share the same decrementer. This means that the minimum allowed
prescaler division factor is ntimers+1 (reload register = ntimers) where ntimers is the number of
implemented timers. By setting the chain bit in the control register timer n can be chained with pre-
ceding timer n-1. Timer n will be decremented each time when timer n-1 underflows.
Each timer can be reloaded with the value in its reload register at any time by writing a ‘one’ to the
load bit in the control register. The last timer acts as a watchdog, driving a watchdog output signal
when expired, when the wdog VHDL generic is set to a time-out value larger than 0. The watchdog
timer also implements a window functionality when the wdogwin VHDL generic is set to 1. This
enables a decrementing counter which reloads each time the timer is reloaded. If the timer is reloaded
and the window counter has not reached zero, this will also assert the watchdog output.

timer n reload

Figure 110. General Purpose Timer Unit block diagram

prescaler reload

-1

prescaler value timer 1 value

timer 2 value

timer n value

timer 1 reload

timer 2 reload

-1

tick

pirq

pirq+1

pirqn+(n-1)
GRIP, Sep 2018, Version 2018.3 329 www.cobham.com/gaisler

GRLIB IP Core

Each timer can be configured to latch its value to a dedicated register when an event is detected on the
interrupt (functionality enabled via VHDL generic glatch). All timers can be forced to reload when an
event is detected on the interrupt bus (functionality enabled via VHDL generic gset). A dedicated
mask register is provided to filter the interrupts.
At reset, all timers are disabled except the watchdog timer (if enabled by the generics). The prescaler
value and reload registers are set to all ones, while the watchdog timer is set to the wdog VHDL
generic. All other registers are uninitialized except for the WDOGDIS and WDOGNMI fields that are
reset to ‘0’.

31.3 Registers

The core is programmed through registers mapped into APB address space. The number of imple-
mented registers depend on the number of implemented timers.

31.3.1

Table 341.0x00 - SCALER - Scaler value register

 Scaler Value Register

31.3.2

Table 342.0x04 - SRELOAD - Scaler reload value register

 Scaler Reload Value Register

Table 340.General Purpose Timer Unit registers

APB address offset Register
0x00 Scaler value
0x04 Scaler reload value
0x08 Configuration register
0x0C Timer latch configuration register
0x10 Timer 1 counter value register
0x14 Timer 1 reload value register
0x18 Timer 1 control register
0x1C Timer 1 latch register
0xn0 Timer n counter value register
0xn4 Timer n reload value register
0xn8 Timer n control register
0xnC Timer n latch register

31 16 16-1 0

RESERVED SCALER

0 all 1

r rw

16-1: 0 Scaler value. This value will also be set by writes to the Scaler reload value register.
Any unused most significant bits are reserved. Always reads as ‘000...0’.

31 16 16-1 0

RESERVED SCALER RELOAD VALUE

0 all 1

r rw

16-1: 0 Scaler reload value. Writes to this register also set the scaler value.
Any unused most significant bits are reserved. Always read as ‘000...0’.
GRIP, Sep 2018, Version 2018.3 330 www.cobham.com/gaisler

GRLIB IP Core

31.3.3

Table 343.0x08 - CONFIG - Configuration register

 Configuration Register

31.3.4

Table 344.0x0C - CATCHCFG - Timer latch configuration register

 Timer Latch Configuration Register

31.3.5

Table 345.0xn0, when n selects the times - TCNTVALn - Timer n counter value register

 Timer N Counter Value Register

31 23 22 16 15 14 13 12 11 10 9 8 7 3 2 0

“000..0” TIMEREN 00 EV ES EL EE DF SI IRQ TIMERS

0 0 0 0 0 0 0 0 * * *

r rw r rw rw rw rw rw r r r

31: 23 Reserved. Always reads as ‘000...0’.
22: 16 Enable bits for each timer. Writing ‘1’ to one of this bits sets the enable bit in the corresponding tim-

ers control register. Writing ‘0’ has no effect to the timers. bit[16] corresponds to timer0, bit[17] to
timer 1,...

15: 14 Reserved
13 External Events (EV). If set then the latch events are taken from the secondary input. If this field is

zero then the source of the latch events is the interrupt bus.
12 Enable set (ES). If set, on the next matching interrupt, the timers will be loaded with the correspond-

ing timer reload values. The bit is then automatically cleared, not to reload the timer values until set
again.

11 Enable latching (EL). If set, on the next matching interrupt, the latches will be loaded with the corre-
sponding timer values. The bit is then automatically cleared, not to load a timer value until set again.

10 Enable external clock source (EE). If set the prescaler is clocked from the external clock source.
9 Disable timer freeze (DF). If set the timer unit can not be freezed, otherwise signal GPTI.DHALT

freezes the timer unit.
8 Separate interrupts (SI). Reads ‘1’ if the timer unit generates separate interrupts for each timer, oth-

erwise ‘0’. Read-only.
7: 3 APB Interrupt: If configured to use common interrupt all timers will drive APB interrupt nr. IRQ,

otherwise timer n will drive APB Interrupt IRQ+n (has to be less the MAXIRQ). Read-only.
Note that the maximum value of this register is 31. If the number of interrupts in the system is set
higher than 32, this must be taken into account.

2: 0 Number of implemented timers. Read-only.

31 0

LATCHSEL

0

rw

31: 0 Specifies what bits of the interrupt bus, or external latch vector, bus that shall cause the Timer Latch
Registers to latch the timer values. If the configuration register EV field is zero then latching is done
based on events on the interrupt bus. If the EV field is ‘1’ then the external latch vecor is used.

32-1 0

TCVAL

0

rw

32-1: 0 Timer Counter value. Decremented by 1 for each prescaler tick.
Any unused most significant bits are reserved. Always reads as ‘000...0’.
GRIP, Sep 2018, Version 2018.3 331 www.cobham.com/gaisler

GRLIB IP Core

31.3.6

Table 346.0xn4, when n selects the times - TRLDVALn - Timer n reload value register

 Timer N Reload Value Register

31.3.7

Table 347.0xn8, when n selects the times - TCTRLn - Timer n control register

 Timer N Control Register

31.3.8

Table 348.0xnC, when n selects the times - TLATCHn - Timer n latch register

 Timer N Latch Register

32-1 0

TRCDUAL

*

rw

32-1: 0 Timer Reload value. This value is loaded into the timer counter value register when ‘1’ is written to
load bit in the timers control register or when the RS bit is set in the control register and the timer
underflows.
Any unused most significant bits are reserved. Always reads as ‘000...0’.

31 16 15 9 8 7 6 5 4 3 2 1 0

WDOGWINC RESERVED WS WN DH CH IP IE LD RS EN

0 0 0 0 0 0 0 * 0 * *

rw r rw rw r rw wc rw rw rw rw

31: 16 Reload value for the watchdog window counter. The window counter is reloaded with this value
each time the watchdog counter is reloaded. This functionality is only available when the core has
been implemented with VHDL generic wdog /= 0, wdogwin /= 0 and only for the last timer

15: 9 Reserved. Always reads as ‘000...0’.
8 Disable Watchdog Output (WS/WDOGDIS): If this field is set to ‘1’ then the GPTO.WDOG and

GPTO.WDOGN outputs are disabled (fixed to ‘0’ and ‘1’ respectively). This functionality is only
available when the core has been implemented with VHDL generic wdog /= 0 and only for the last
timer. If wdog = 0 then this register is read-only and always ‘0’.

7 Enable Watchdog NMI (WN/WDOGNMI): If this field is set to ‘1’ then the watchdog timer will also
generate a non-maskable interrupt (interrupt 15) when an interrupt is signalled. This functionality is
only available when the core has been implemented with VHDL generic wdog /= 0 and only for the
last timer. If wdog = 0 then this register is read-only and always ‘0’.

6 Debug Halt (DH): Value of GPTI.DHALT signal which is used to freeze counters (e.g. when a sys-
tem is in debug mode). Read-only.

5 Chain (CH): Chain with preceding timer. If set for timer n, timer n will be decremented each time
when timer (n-1) underflows.

4 Interrupt Pending (IP): The core sets this bit to ‘1’ when an interrupt is signalled. This bit remains ‘1’
until cleared by writing ‘1’ to this bit, writes of ‘0’ have no effect.

3 Interrupt Enable (IE): If set the timer signals interrupt when it underflows. The reset value for this bit
is ‘0’ unless watchdog functionality has been enabled. If watchdog functionality has been enabled
then this bit for the last timer will have reset value ‘1’.

2 Load (LD): Load value from the timer reload register to the timer counter value register. This bit is
automatically cleared when the value has been loaded.

1 Restart (RS): If set, the timer counter value register is reloaded with the value of the reload register
when the timer underflows

0 Enable (EN): Enable the timer.

31 0

LTCV

0

r

31: 0 Latched timer counter value (LTCV): Valued latched from corresponding timer. Read-only.
GRIP, Sep 2018, Version 2018.3 332 www.cobham.com/gaisler

GRLIB IP Core
31.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x011. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

31.5 Implementation

31.5.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core does not support grlib_async_reset_enable. All registers that react on the reset signal will
have a synchronous reset.
GRIP, Sep 2018, Version 2018.3 333 www.cobham.com/gaisler

GRLIB IP Core

31.6 Configuration options

Table 349 shows the configuration options of the core (VHDL generics).

Table 349.Configuration options

Generic Function Allowed range Default
pindex Selects which APB select signal (PSEL) will be used to

access the timer unit
0 to NAPBSLV-1 0

paddr The 12-bit MSB APB address 0 to 4095 0
pmask The APB address mask 0 to 4095 4095
nbits Defines the number of bits in the timers 1 to 32 32
ntimers Defines the number of timers in the unit 1 to 7 1
pirq Defines which APB interrupt the timers will generate 0 to NAHBIRQ-1 0
sepirq If set to 1, each timer will drive an individual interrupt

line, starting with interrupt pirq. If set to 0, all timers will
drive the same interrupt line (pirq).

0 to 1
(note: ntimers + pirq
must be less than or
equal to NAHBIRQ if
sepirq is set to 1)

0

sbits Defines the number of bits in the scaler 1 to 32 16
wdog Watchdog reset value. When set to a non-zero value, the

last timer will be enabled and pre-loaded with this value
at reset. When the timer value reaches 0, the WDOG out-
put is driven active.

0 to 2nbits - 1 0

ewdogen External watchdog enable. When set to a non-zero value,
the enable bit of the watchdog timer will be set during
core reset via the signal gpti.wdogen.Otherwise the
enable bit will be set to ‘1’ during core reset.

0 - 1 0

glatch Enable external timer latch (via interrupt or external vec-
tor)

0 - 1 0

gextclk Enable external timer clock input 0 - 1 0
gset Enable external timer reload (via interrupt or external

vector)
0 - 1 0

gelatch Enable support for external latch events
0: Timer latch/set is only support for interrupt bus (if
enabled via glatch and gset generics)
1: Timer latch/set is disabled after an, unmasked, event
on GPTI.LATCHV
2: Timer latch/set is performed on an, unmasked, event
on GPTI.LATCHV and timer latch/set is disabled on
GPTI.LATCHD events.

0 - 2 0

wdogwin Enables the watchdog window counter. 0 - 1 0
GRIP, Sep 2018, Version 2018.3 334 www.cobham.com/gaisler

GRLIB IP Core

31.7 Signal descriptions

Table 350 shows the interface signals of the core (VHDL ports).

31.8 Signal definitions and reset values

When the watchdog times out, the wdogn output is driven active low, else it is in tri-state and there-
fore requires an external pull-up.
The signals and their reset values are described in table 351.

Table 350.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
GPTI DHALT Input Freeze timers High

EXTCLK Input Use as alternative clock -
WDOGEN Input Sets enable bit of the watchdog timer if VHDL

generics wdog and ewdogen are set to non-zero
values.

-

LATCHV[31:0] Input External latch/set vector, used if VHDLgeneric
gelatch /=0

High

LATCHD[31:0] Input External latch/set disable vector, used if VHDL
generic gelatch = 2.

High

GPTO TICK[0:7] Output Timer ticks. TICK[0] is high for one clock each
time the scaler underflows. TICK[1-n] are high
for one clock each time the corresponding timer
underflows.

High

WDOG Output Watchdog output. Equivalent to interrupt pend-
ing bit of last timer.

High

WDOGN Output Watchdog output. Equivalent to interrupt pend-
ing bit of last timer.

Low

* see GRLIB IP Library User’s Manual

Table 351.Signal definitions and reset values

Signal name Type Function Active Reset value
wdogn Tri-state output Watchdog output. Equivalent to interrupt

pending bit of last timer.
Low Tri-state
GRIP, Sep 2018, Version 2018.3 335 www.cobham.com/gaisler

GRLIB IP Core

31.9 Timing

The timing waveforms and timing parameters are shown in figure 111 and are defined in table 352.

31.10 Library dependencies

Table 353 shows libraries used when instantiating the core (VHDL libraries).

31.11 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

entity gptimer_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 ... -- other signals
);
end;

architecture rtl of gptimer_ex is

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);

 -- GP Timer Unit input signals
 signal gpti : gptimer_in_type;

begin

Table 352.Timing parameters

Name Parameter Reference edge Min Max Unit
tGPTIMER0 clock to output delay rising clk edge TBD TBD ns

tGPTIMER1 clock to output tri-state rising clk edge TBD TBD ns

Table 353.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER MISC Signals, component Component declaration

Figure 111. Timing waveforms

tGPTIMER0
wdogn

clk

tGPTIMER1
GRIP, Sep 2018, Version 2018.3 336 www.cobham.com/gaisler

GRLIB IP Core

 -- AMBA Components are instantiated here
 ...

 -- General Purpose Timer Unit
 timer0 : gptimer
 generic map (pindex => 3, paddr => 3, pirq => 8, sepirq => 1)
 port map (rstn, clk, apbi, apbo(3), gpti, open);

 gpti.dhalt <= ’0’; gpti.extclk <= ’0’; -- unused inputs

end;
GRIP, Sep 2018, Version 2018.3 337 www.cobham.com/gaisler

GRLIB IP Core

32 GR1553B - MIL-STD-1553B / AS15531 Interface

32.1 Overview

This interface core connects the AMBA AHB/APB bus to a single- or dual redundant MIL-STD-
1553B bus, and can act as either Bus Controller, Remote Terminal or Bus Monitor.
MIL-STD-1553B (and derived standard SAE AS15531) is a bus standard for transferring data
between up to 32 devices over a shared (typically dual-redundant) differential wire. The bus is
designed for predictable real-time behavior and fault-tolerance. The raw bus data rate is fixed at 1
Mbit/s, giving a maximum of around 770 kbit/s payload data rate.
One of the terminals on the bus is the Bus Controller (BC), which controls all traffic on the bus. The
other terminals are Remote Terminals (RTs), which act on commands issued by the bus controller.
Each RT is assigned a unique address between 0-30. In addition, the bus may have passive Bus Moni-
tors (BM:s) connected.
There are 5 possible data transfer types on the MIL-STD-1553 bus:
• BC-to-RT transfer (“receive”)
• RT-to-BC transfer (“transmit”)
• RT-to-RT transfer
• Broadcast BC-to-RTs
• Broadcast RT-to-RTs
Each transfer can contain 1-32 data words of 16 bits each.
The bus controller can also send “mode codes” to the RTs to perform administrative tasks such as time
synchronization, and reading out terminal status.

32.2 Electrical interface

The core is connected to the MIL-STD-1553B bus wire through single or dual transceivers, isolation
transformers and transformer or stub couplers as shown in figure 112. If single-redundancy is used,
the unused bus receive P/N signals should be tied both-high or both-low. The transmitter enables are
typically inverted and therefore called transmitter inibit (txinh). See the standard and the respective
component’s data sheets for more information on the electrical connection.

rxenA

txA_N

rxA_P

rxA_N

txA_P

txinhA
Bus A

rxenB

txB_N

rxB_P

rxB_N

txB_P

txinhB
Bus BGR1553B

Terminal boundary
Figure 112. Interface between core and MIL-STD-1553B bus (dual-redundant, transformer coupled)
GRIP, Sep 2018, Version 2018.3 338 www.cobham.com/gaisler

GRLIB IP Core

32.3 Operation

32.3.1 Operating modes

The core contains three separate control units for the Bus Controller, Remote Terminal and Bus Mon-
itor handling, with a shared 1553 codec. All parts may not be present in the hardware, which parts are
available can be checked from software by looking at the BCSUP/RTSUP/BMSUP register bits.
The operating mode of the core is controlled by starting and stopping of the BC/RT/BM units via reg-
ister writes. At start-up, none of the parts are enabled, and the core is completely passive on both the
1553 and AMBA bus.
The BC and RT parts of the core can not be active on the 1553 bus at the same time. While the BC is
running or suspended, only the BC (and possibly BM) has access to the 1553 bus, and the RT can only
receive and respond to commands when both the BC schedules are completely stopped (not running
or even suspended).
The Bus Monitor, however, is only listening on the codec receivers and can therefore operate regard-
less of the enabled/disabled state of the other two parts.

32.3.2 Register interface

The core is configured and controlled through control registers accessed over the APB bus. Each of
the BC,RT,BM parts has a separate set of registers, plus there is a small set of shared registers.
Some of the control register fields for the BC and RT are protected using a ‘key’, a field in the same
register that has to be written with a certain value for the write to take effect. The purpose of the keys
are to give RT/BM designers a way to ensure that the software can not interfere with the bus traffic by
enabling the BC or changing the RT address. If the software is built without knowledge of the key to a
certain register, it is very unlikely that it will accidentally perform a write with the correct key to that
control register.

32.3.3 Interrupting

The core has one interrupt output, which can be generated from several different source events. Which
events should cause an interrupt can be controlled through the IRQ Enable Mask register.

32.3.4 MIL-STD-1553 Codec

The core’s internal codec receives and transmits data words on the 1553 bus, and generates and
checks sync patterns and parity.
Loop-back checking logic checks that each transmitted word is also seen on the receive inputs. If the
transmitted word is not echoed back, the transmitter stops and signals an error condition, which is
then reported back to the user.
Two versions of the codec are available and can be selected at build time through the codecver
generic. The new version (codecver=1) provides better noise rejection performance, otherwise there is
no functional difference. The new version of the codec is recommended for new designs, and the old
version will eventually be deprecated.
GRIP, Sep 2018, Version 2018.3 339 www.cobham.com/gaisler

GRLIB IP Core

32.4 Bus Controller Operation

32.4.1 Overview

When operating as Bus Controller, the core acts as master on the MIL-STD-1553 bus, initiates and
performs transfers.
This mode works based on a scheduled transfer list concept. The software sets up in memory a
sequence of transfer descriptors and branches, data buffers for sent and received data, and an IRQ
pointer ring buffer. When the schedule is started (through a BC action register write), the core pro-
cesses the list, performs the transfers one after another and writes resulting status into the transfer list
and incoming data into the corresponding buffers.

32.4.2 Timing control

In each transfer descriptor in the schedule is a “slot time” field. If the scheduled transfer finishes
sooner than its slot time, the core will pause the remaining time before scheduling the next command.
This allows the user to accurately control the message timing during a communication frame.
If the transfer uses more than its slot time, the overshooting time will be subtracted from the following
command’s time slot. The following command may in turn borrow time from the following command
and so on. The core can keep track of up to one second of borrowed time, and will not insert pauses
again until the balance is positive, except for intermessage gaps and pauses that the standard requires.
If you wish to execute the schedule as fast as possible you can set all slot times in the schedule to zero.
If you want to group a number of transfers you can move all the slot time to the last transfer.
The schedule can be stopped or suspended by writing into the BC action register. When suspended,
the schedule’s time will still be accounted, so that the schedule timing will still be correct when the
schedule is resumed. When stopped, on the other hand, the schedule’s timers will be reset.
When the extsync bit is set in the schedule’s next transfer descriptor, the core will wait for a positive
edge on the external sync input before starting the command. The schedule timer and the time slot bal-
ance will then be reset and the command is started. If the sync pulse arrives before the transfer is
reached, it is stored so the command will begin immediately. The trigger memory is cleared when
stopping (but not when suspending) the schedule. Also, the trigger can be set/cleared by software
through the BC action register.

32.4.3 Bus selection

Each transfer descriptor has a bus selection bit that allows you to control on which one of the two
redundant buses (‘0’ for bus A, ‘1’ for bus B) the transfer will occur.
Another way to control the bus usage is through the per-RT bus swap register, which has one register
bit for each RT address. The bus swap register is an optional feature, software can check the BCFEAT
read-only register field to see if it is available.
Writing a ‘1’ to a bit in the per-RT Bus Swap register inverts the meaning of the bus selection bit for
all transfers to the corresponding RT, so ‘0’ now means bus ‘B’ and ‘1’ means bus ‘A’. This allows
you to switch all transfers to one or a set of RT:s over to the other bus with a single register write and
without having to modify any descriptors.
The hardware determines which bus to use by taking the exclusive-or of the bus swap register bit and
the bus selection bit. Normally it only makes sense to use one of these two methods for each RT, either
the bus selection bit is always zero and the swap register is used, or the swap register bit is always
zero and the bus selection bit is used.
If the bus swap register is used for bus selection, the store-bus descriptor bit can be enabled to auto-
matically update the register depending on transfer outcome. If the transfer succeeded on bus A, the
bus swap register bit is set to ‘0’, if it succeeds on bus B, the swap register bit is set to ‘1’. If the trans-
fer fails, the bus swap register is set to the opposite value.
GRIP, Sep 2018, Version 2018.3 340 www.cobham.com/gaisler

GRLIB IP Core

32.4.4 Secondary transfer list

The core can be set up with a secondary “asynchronous” transfer list with the same format as the ordi-
nary schedule. This transfer list can be commanded to start at any time during the ordinary schedule.
While the core is waiting for a scheduled command’s slot time to finish, it will check if the next asyn-
chronous transfer’s slot time is lower than the remaining sleep time. In that case, the asynchronous
command will be scheduled.
If the asynchronous command doesn’t finish in time, time will be borrowed from the next command
in the ordinary schedule. In order to not disturb the ordinary schedule, the slot time for the asynchro-
nous messages must therefore be set to pessimistic values.
The exclusive bit in the transfer descriptor can be set if one does not want an asynchronous command
scheduled during the sleep time following the transfer.
Asynchronous messages will not be scheduled while the schedule is waiting for a sync pulse or the
schedule is suspended and the current slot time has expired, since it is then not known when the next
scheduled command will start.

32.4.5 Interrupt generation

Each command in the transfer schedule can be set to generate an interrupt after certain transfers have
completed, with or without error. Invalid command descriptors always generate interrupts and stop
the schedule. Before a transfer-triggered interrupt is generated, the address to the corresponding
descriptor is written into the BC transfer-triggered IRQ ring buffer and the BC Transfer-triggered IRQ
Ring Position Register is incremented.
A separate error interrupt signals DMA errors. If a DMA error occurs when reading/writing descrip-
tors, the executing schedule will be suspended. DMA errors in data buffers will cause the correspond-
ing transfer to fail with an error code (see table 357).
Whether any of these interrupt events actually cause an interrupt request on the AMBA bus is con-
trolled by the IRQ Mask Register setting.

32.4.6 Transfer list format

The BC:s transfer list is an array of transfer descriptors mixed with branches as shown in table 354.
Each entry has to be aligned to start on a 128-bit (16-byte) boundary. The two unused words in the
branch case are free to be used by software to store arbitrary data.

Table 354.GR1553B transfer descriptor format

Offset Value for transfer descriptor DMA R/W Value for branch DMA R/W
0x00 Transfer descriptor word 0 (see table 355) R Condition word (see table 359) R
0x04 Transfer descriptor word 1 (see table 356) R Jump address, 128-bit aligned R
0x08 Data buffer pointer, 16-bit aligned.

For write buffers, if bit 0 is set the received
data is discarded and the pointer is ignored.
This can be used for RT-to-RT transfers where
the BC is not interested in the data transferred.

R Unused -

0x0C Result word, written by core (see table 357) W Unused -
GRIP, Sep 2018, Version 2018.3 341 www.cobham.com/gaisler

GRLIB IP Core

The transfer descriptor words are structured as shown in tables 355-357 below.

Table 355.GR1553B BC transfer descriptor word 0 (offset 0x00)
31 30 29 28 27 26 25 24 23 22 20 19 18 17 16 15 0

0 WTRIG EXCL IRQE IRQN SUSE SUSN RETMD NRET STBUS GAP RESERVED STIME

31 Must be 0 to identify as descriptor

30 Wait for external trigger (WTRIG)

29 Exclusive time slot (EXCL) - Do not schedule asynchronous messages

28 IRQ after transfer on Error (IRQE)

27 IRQ normally (IRQN) - Always interrupts after transfer

26 Suspend on Error (SUSE) - Suspends the schedule (or stops the async transfer list) on error

25 Suspend normally (SUSN) - Always suspends after transfer

24 : 23 Retry mode (RETMD). 00 - Retry on same bus only. 01 - Retry alternating on both buses
10: Retry first on same bus, then on alternating bus. 11 - Reserved, do not use

22 : 20 Number of retries (NRET) - Number of automatic retries per bus
The total number of tries (including the first attempt) is NRET+1 for RETMD=00, 2 x (NRET+1) for RETMD=01/
10

19 Store bus (STBUS) - If the transfer succeeds and this bit is set, store the bus on which the transfer succeeded (0
for bus A, 1 for bus B) into the per-RT bus swap register. If the transfer fails and this bit is set, store the opposite
bus instead. (only if the per-RT bus mask is supported in the core)
See section 32.4.3 for more information.

18 Extended intermessage gap (GAP) - If set, adds an additional amount of gap time, corresponding to the RTTO
field, after the transfer

17 : 16 Reserved - Set to 0 for forward compatibility

15 : 0 Slot time (STIME) - Allocated time in 4 microsecond units, remaining time after transfer will insert delay

Table 356.GR1553B BC transfer descriptor word 1 (offset 0x04)
31 30 29 26 25 21 20 16 15 11 10 9 5 4 0

DUM BUS RTTO RTAD2 RTSA2 RTAD1 TR RTSA1 WCMC

31 Dummy transfer (DUM) - If set to ‘1’ no bus traffic is generated and transfer “succeeds” immediately
For dummy transfers, the EXCL,IRQN,SUSN,STBUS,GAP,STIME settings are still in effect, other bits and
the data buffer pointer are ignored.

30 Bus selection (BUS) - Bus to use for transfer, 0 - Bus A, 1 - Bus B

29:26 RT Timeout (RTTO) - Extra RT status word timeout above nominal in units of 4 us (0000 -14 us, 1111 -74
us). Note: This extra time is also used as extra intermessage gap time if the GAP bit is set.

25:21 Second RT Address for RT-to-RT transfer (RTAD2) See table 358 for details on how to setup
RTAD1,RTSA1,RTAD2,RTSA2,WCMC,TR

for different transfer types.

Note that bits 15:0 correspond to the (first)
command word on the 1553 bus

20:16 Second RT Subaddress for RT-to-RT transfer (RTSA2)

15:11 RT Address (RTAD1)

10 Transmit/receive (TR)

9:5 RT Subaddress (RTSA1)

4:0 Word count/Mode code (WCMC)
GRIP, Sep 2018, Version 2018.3 342 www.cobham.com/gaisler

GRLIB IP Core
The branch condition word is formed as shown in table 359.

Table 357.GR1553B transfer descriptor result word (offset 0x0C)
31 30 24 23 16 15 8 7 4 3 2 0

0 Reserved RT2ST RTST RETCNT RES TFRST

31 Always written as 0

30:24 Reserved - Mask away on read for forward compatibility

23:16 RT 2 Status Bits (RT2ST) - Status bits from receiving RT in RT-to-RT transfer, otherwise 0
Same bit pattern as for RTST below

15:8 RT Status Bits (RTST) - Status bits from RT (transmitting RT in RT-to-RT transfer)
15 - Message error, 14 - Instrumentation bit or reserved bit set, 13 - Service request,
12 - Broadcast command received, 11 - Busy bit, 10 - Subsystem flag, 9 - Dynamic bus control acceptance, 8 - Termi-
nal flag

7:4 Retry count (RETCNT) - Number of retries performed

3 Reserved - Mask away on read for forward compatibility

2:0 Transfer status (TFRST) - Outcome of last try
000 - Success (or dummy bit was set)
001 - RT did not respond (transmitting RT in RT-to-RT transfer)
010 - Receiving RT of RT-to-RT transfer did not respond
011 - A responding RT:s status word had message error, busy, instrumentation or reserved bit set (*)
100 - Protocol error (improperly timed data words, decoder error, wrong number of data words)
101 - The transfer descriptor was invalid
110 - Data buffer DMA timeout or error response
111 - Transfer aborted due to loop back check failure

* Error code 011 is issued only when the number of data words match the success case, otherwise code 100 is used. Error code 011 can be
issued for a correctly executed “transmit last command” or “transmit last status word” mode code since these commands do not reset the status
word.

Table 358.GR1553B BC Transfer configuration bits for different transfer types

Transfer type
RTAD1
(15:11)

RTSA1
(9:5)

RTAD2
(25:21)

RTSA2
(20:16)

WCMC
(4:0)

TR
(10)

Data buffer
direction

Data, BC-to-RT RT address
(0-30)

RT subaddr
(1-30)

Don’t care 0 Word count
(0 for 32)

0 Read
(2-64 bytes)

Data, RT-to-BC RT address
(0-30)

RT subaddr
(1-30)

Don’t care 0 Word count
(0 for 32)

1 Write
(2-64 bytes)

Data, RT-to-RT Recv-RT
addr (0-30)

Recv-RT
subad. (1-30)

Xmit-RT
addr (0-30)

Xmit-RT
subad. (1-30)

Word count
(0 for 32)

0 Write
(2-64 bytes)

Mode, no data RT address
(0-30)

0 or 31 (*) Don’t care Don’t care Mode code
(0-8)

1 Unused

Mode, RT-to-BC RT address
(0-30)

0 or 31 (*) Don’t care Don’t care Mode code
(16/18/19)

1 Write
(2 bytes)

Mode, BC-to-RT RT address
(0-30)

0 or 31 (*) Don’t care Don’t care Mode code
(17/20/21)

0 Read
(2 bytes)

Broadcast
Data, BC-to-RTs

31 RTs subaddr
(1-30)

Don’t care 0 Word count
(0 for 32)

0 Read
(2-64 bytes)

Broadcast
Data, RT-to-RTs

31 Recv-RTs
subad. (1-30)

Xmit-RT
addr (0-30)

Xmit-RT
subad. (1-30)

Word count
(0 for 32)

0 Write
(2-64 bytes)

Broadcast
Mode, no data

31 0 or 31 (*) Don’t care Don’t care Mode code
(1, 3-8)

1 Unused

Broadcast
Mode, BC-to-RT

31 0 or 31 (*) Don’t care Don’t care Mode code
(17/20/21)

0 Read
(2 bytes)

(*) The standard allows using either of subaddress 0 or 31 for mode commands.
GRIP, Sep 2018, Version 2018.3 343 www.cobham.com/gaisler

GRLIB IP Core
Note that you can get a constant true condition by setting MODE=0 and STCC=0xFF, and a constant
false condition by setting STCC=0x00. 0x800000FF can thus be used as an end-of-list marker.

Table 359.GR1553B branch condition word (offset 0x00)
31 30 27 26 25 24 23 16 15 8 7 0

1 Reserved (0) IRQC ACT MODE RT2CC RTCC STCC

31 Must be 1 to identify as branch

30 : 27 Reserved - Set to 0

26 Interrupt if condition met (IRQC)

25 Action (ACT) - What to do if condition is met, 0 - Suspend schedule, 1 - Jump

24 Logic mode (MODE):
0 = Or mode (any bit set in RT2CC, RTCC is set in RT2ST,RTST, or result is in STCC mask)
1 - And mode (all bits set in RT2CC,RTCC are set in RT2ST,RTST and result is in STCC mask)

23:16 RT 2 Condition Code (RT2CC) - Mask with bits corresponding to RT2ST in result word of last transfer

15:8 RT Condition Code (RTCC) - Mask with bits corresponding to RTST in result word of last transfer

7:0 Status Condition Code (STCC) - Mask with bits corresponding to status value of last transfer
GRIP, Sep 2018, Version 2018.3 344 www.cobham.com/gaisler

GRLIB IP Core

32.5 Remote Terminal Operation

32.5.1 Overview

When operating as Remote Terminal, the core acts as a slave on the MIL-STD-1553B bus. It listens
for requests to its own RT address (or broadcast transfers), checks whether they are configured as
legal and, if legal, performs the corresponding transfer or, if illegal, sets the message error flag in the
status word. Legality is controlled by the subaddress control word for data transfers and by the mode
code control register for mode codes.
To start the RT, set up the subaddress table and log ring buffer, and then write the address and RT
enable bit is into the RT Config Register.

32.5.2 Data transfer handling

The Remote Terminal mode uses a three-level structure to handle data transfer DMA. The top level is
a subaddress table, where each subaddress has a subaddress control word, and pointers to a transmit
descriptor and a receive descriptor. Each descriptor in turn contains a descriptor control/status word,
pointer to a data buffer, and a pointer to a next descriptor, forming a linked list or ring of descriptors.
Data buffers can reside anywhere in memory with 16-bit alignment.
When the RT receives a data transfer request, it checks in the subaddress table that the request is legal.
If it is legal, the transfer is then performed with DMA to or from the corresponding data buffer. After
a data transfer, the descriptor’s control/status word is updated with success or failure status and the
subaddress table pointer is changed to point to the next descriptor.
If logging is enabled, a log entry will be written into a log ring buffer area. A transfer-triggered IRQ
may also be enabled. To identify which transfer caused the interrupt, the RT Event Log IRQ Position
points to the corresponding log entry. For that reason, logging must be enabled in order to enable
interrupts.
If a request is legal but can not be fulfilled, either because there is no valid descriptor ready or because
the data can not be accessed within the required response time, the core will signal a RT table access
error interrupt and not respond to the request. Optionally, the terminal flag status bit can be automati-
cally set on these error conditions.

SA ctrl word

Transmit descr. ptr

Receive descr. ptr
SA N

SA N-1

SA N+1

Descriptor ctrl/stat

Data buffer ptr.

Next pointer

Descriptor ctrl/stat

Data buffer ptr.

Next pointer

Descriptor ctrl/stat

Data buffer ptr.

Next pointer 0x3

Transmit data

Receive buffer

Receive buffer

Subaddress table
Figure 113. RT subaddress data structure example diagram
GRIP, Sep 2018, Version 2018.3 345 www.cobham.com/gaisler

GRLIB IP Core

32.5.3 Mode Codes

Which of the MIL-STD-1553B mode codes that are legal and should be logged and interrupted are
controlled by the RT Mode Code Control register. As for data transfers, to enable interrupts you must
also enable logging. Inhibit mode codes are controlled by the same fields as their non-inhibit counter-
part and mode codes that can be broadcast have two separate fields to control the broadcast and non-
broadcast variants.
The different mode codes and the corresponding action taken by the RT are tabulated below. Some
mode codes do not have a built-in action, so they will need to be implemented in software if desired.
The relation between each mode code to the fields in the RT Mode Code control register is also
shown.

Table 360.RT Mode Codes

Mode code Description Built-in action, if mode code is enabled

Can
log/
IRQ

Enabled
after
reset

Ctrl.
reg
bits

0 00000 Dynamic bus control If the DBCA bit is set in the RT Bus Status register,
a Dynamic Bus Control Acceptance response is
sent.

Yes No 17:16

1 00001 Synchronize The time field in the RT sync register is updated.
The output rtsync is pulsed high one AMBA cycle.

Yes Yes 3:0

2 00010 Transmit status word Transmits the RT:s status word
Enabled always, can not be logged or disabled.

No Yes -

3 00011 Initiate self test No built-in action Yes No 21:18
4 00100 Transmitter shutdown The RT will stop responding to commands on the

other bus (not the bus on which this command was
given).

Yes Yes 11:8

5 00101 Override transmitter
shutdown

Removes the effect of an earlier transmitter shut-
down mode code received on the same bus

Yes Yes 11:8

6 00110 Inhibit terminal flag Masks the terminal flag of the sent RT status words Yes No 25:22
7 00111 Override inhibit termi-

nal flag
Removes the effect of an earlier inhibit terminal
flag mode code.

Yes No 25:22

8 01000 Reset remote terminal The fail-safe timers, transmitter shutdown and
inhibit terminal flag inhibit status are reset.
The Terminal Flag and Service Request bits in the
RT Bus Status register are cleared.
The extreset output is pulsed high one AMBA
cycle.

Yes No 29:26

16 10000 Transmit vector word Responds with vector word from RT Status Words
Register

Yes No 13:12

17 10001 Synchronize with data
word

The time and data fields in the RT sync register are
updated. The rtsync output is pulsed high one
AMBA cycle

Yes Yes 7:4

18 10010 Transmit last command Transmits the last command sent to the RT.
Enabled always, can not be logged or disabled.

No Yes -

19 10011 Transmit BIT word Responds with BIT word from RT Status Words
Register

Yes No 15:14

20 10100 Selected transmitter
shutdown

No built-in action No No -

21 10101 Override selected
transmitter shutdown

No built-in action No No -
GRIP, Sep 2018, Version 2018.3 346 www.cobham.com/gaisler

GRLIB IP Core

32.5.4 Event Log

The event log is a ring of 32-bit entries, each entry having the format given in table 361. Note that for
data transfers, bits 23-0 in the event log are identical to bits 23-0 in the descriptor status word.

32.5.5 Subaddress table format

Table 362.GR1553B RT Subaddress table entry for subaddress number N, 0<N<31

Table 363.GR1553B RT Subaddress table control word (offset 0x00)

Table 361.GR1553B RT Event Log entry format
31 30 29 28 24 23 10 9 8 3 2 0

IRQSR TYPE SAMC TIMEL BC SZ TRES

31 IRQ Source (IRQSRC) - Set to ‘1’ if this transfer caused an interrupt

30 : 29 Transfer type (TYPE) - 00 - Transmit data, 01 - Receive data, 10 - Mode code

28 : 24 Subaddress / Mode code (SAMC) - If TYPE=00/01 this is the transfer subaddress, If TYPE=10, this is the
mode code

23 : 10 TIMEL - Low 14 bits of time tag counter.

9 Broadcast (BC) - Set to 1 if request was to the broadcast address

8 : 3 Transfer size (SZ) - Count in 16-bit words (0-32)

2 : 0 Transfer result (TRES)
000 = Success
001 = Superseded (canceled because a new command was given on the other bus)
010 = DMA error or memory timeout occurred
011 = Protocol error (improperly timed data words or decoder error)
100 = The busy bit or message error bit was set in the transmitted status word and no data was sent
101 = Transfer aborted due to loop back checker error

Offset Value DMA R/W
0x10*N + 0x00 Subaddress N control word (table 363) R
0x10*N + 0x04 Transmit descriptor pointer, 16-byte aligned (0x3 to indicate invalid pointer) R/W
0x10*N + 0x08 Receive descriptor pointer, 16-byte aligned (0x3 to indicate invalid pointer) R/W
0x10*N + 0x0C Unused -
Note: The table entries for mode code subaddresses 0 and 31 are never accessed by the core.

31 19 18 17 16 15 14 13 12 8 7 6 5 4 0

0 (reserved) WRAP IGNDV BCRXE RXEN RXLOG RXIRQ RXSZ TXEN TXLOG TXIRQ TXSZ

31 : 19 Reserved - set to 0 for forward compatibility

18 Auto-wraparound enable (WRAP) - Enables a test mode for this subaddress, where transmit transfers send back the
last received data. This is done by copying the finished transfer’s descriptor pointer to the transmit descriptor pointer
address after each successful transfer.
Note: If WRAP=1, you should not set TXSZ > RXSZ as this might cause reading beyond buffer end

17 Ignore data valid bit (IGNDV) - If this is ‘1’ then receive transfers will proceed (and overwrite the buffer) if the receive
descriptor has the data valid bit set, instead of not responding to the request.
This can be used for descriptor rings where you don’t care if the oldest data is overwritten.

16 Broadcast receive enable (BCRXEN) - Allow broadcast receive transfers to this subaddress

15 Receive enable (RXEN) - Allow receive transfers to this subaddress

14 Log receive transfers (RXLOG) - Log all receive transfers in event log ring (only used if RXEN=1)

13 Interrupt on receive transfers (RXIRQ) - Each receive transfer will cause an interrupt (only if also RXEN,RXLOG=1)

12 : 8 Maximum legal receive size (RXSZ) to this subaddress - in16-bit words, 0 means 32

7 Transmit enable (TXEN) - Allow transmit transfers from this subaddress

6 Log transmit transfers (TXLOG) - Log all transmit transfers in event log ring (only if also TXEN=1)

5 Interrupt on transmit transfers (TXIRQ) - Each transmit transfer will cause an interrupt (only if TXEN,TXLOG=1)

4 : 0 Maximum legal transmit size (TXSZ) from this subaddress - in 16-bit words, 0 means 32
GRIP, Sep 2018, Version 2018.3 347 www.cobham.com/gaisler

GRLIB IP Core
Table 364.GR1553B RT Descriptor format

Offset Value DMA R/W
0x00 Control and status word, see table 365 R/W
0x04 Data buffer pointer, 16-bit aligned R
0x08 Pointer to next descriptor, 16-byte aligned

or 0x0000003 to indicate end of list
R

Table 365.GR1553B RT Descriptor control/status word (offset 0x00)
31 30 29 26 25 10 9 8 3 2 0

DV IRQEN Reserved (0) TIME BC SZ TRES

31 Data valid (DV) - Should be set to 0 by software before and set to 1 by hardware after transfer.
If DV=1 in the current receive descriptor before the receive transfer begins then a descriptor table error will
be triggered. You can override this by setting the IGNDV bit in the subaddress table.

30 IRQ Enable override (IRQEN) - Log and IRQ after transfer regardless of SA control word settings
Can be used for getting an interrupt when nearing the end of a descriptor list.

29 : 26 Reserved - Write 0 and mask out on read for forward compatibility

25 : 10 Transmission time tag (TTIME) - Set by the core to the value of the RT timer when the transfer finished.

9 Broadcast (BC) - Set by the core if the transfer was a broadcast transfer

8 : 3 Transfer size (SZ) - Count in 16-bit words (0-32)

2 : 0 Transfer result (TRES)
000 = Success
001 = Superseded (canceled because a new command was given on the other bus)
010 = DMA error or memory timeout occurred
011 = Protocol error (improperly timed data words or decoder error)
100 = The busy bit or message error bit was set in the transmitted status word and no data was sent
101 = Transfer aborted due to loop back checker error
GRIP, Sep 2018, Version 2018.3 348 www.cobham.com/gaisler

GRLIB IP Core

32.6 Bus Monitor Operation

32.6.1 Overview

The Bus Monitor (BM) can be enabled by itself, or in parallel to the BC or RT. The BM acts as a pas-
sive logging device, writing received data with time stamps to a ring buffer.

32.6.2 Filtering

The Bus Monitor can also support filtering. This is an optional feature, software can check for this by
testing whether the BM filter registers are writable.
Transfers can be filtered per RT address and per subaddress or mode code, and the filter conditions are
logically AND:ed. If all bits of the three filter registers and bits 2-3 of the control register are set to
’1’, the BM core will log all words that are received on the bus.
In order to filter on subaddress/mode code, the BM has logic to track 1553 words belonging to the
same message. All 10 message types are supported. If an unexpected word appears, the filter logic
will restart. Data words not appearing to belong to any message can be logged by setting a bit in the
control register.
The filter logic can be manually restarted by setting the BM enable bit low and then back to high. This
feature is mainly to improve testability of the BM itself.
The filtering capability can be configured out of the BM to save area. If this is done, all words seen
are logged and the filter control registers become read-only and always read out as all-ones. You can,
however, still control whether Manchester/parity errors are logged.

32.6.3 No-response handling

In the MIL-STD-1553B protocol, a command word for a mode code using indicator 0 or a regular
transfer to subaddress 8 has the same structure as a legal status word. Therefore ambiguity can arise
when the subaddress or mode code filters are used, an RT is not responding on a subaddress, and the
BC then commands the same RT again on subaddress 8 or mode code indicator 0 on the same bus.
This can lead to the second command word being interpreted as a status word and filtered out.
The BM can use the instrumentation bit and reserved bits to disambiguate, which means that this case
will never occur when subaddresses 1-7, 9-30 and mode code indicator 31 are used. Also, this case
does not occur when the subaddress/mode code filters are unused and only the RT address filter is
used.

32.6.4 Log entry format

Each log entry is two 32-bit words.

Table 366.GR1553B BM Log entry word 0 (offset 0x00)
31 30 24 23 0

1 Reserved TIME

31 Always written as 1

30 : 24 Reserved - Mask out on read for forward compatibility

23 : 0 Time tag (TIME)
GRIP, Sep 2018, Version 2018.3 349 www.cobham.com/gaisler

GRLIB IP Core
32.7 Clocking

The core needs a separate clock for the 1553 codec.
The core operates in two clock domains, the AMBA clock domain and the 1553 codec clock domain,
with synchronization and handshaking between the domains. The AMBA clock can be at any fre-
quency but must be at a minimum of 10 MHz. A propagation delay of up to one codec clock cycle (50
ns) can be tolerated in each clock-domain crossing signal.
The core has two separate reset inputs for the two clock domains. They should be reset simultane-
ously, for instance by using two Reset generator cores connected to the same reset input but clocked
by the respective clocks.

32.8 AXI support

The core is designed for an AMBA system but can be adapted for AXI using the AHBM2AXI
adapter.

32.9 Registers

The core is programmed through registers mapped into APB address space. If the RT, BC or BM parts
of the core have been configured out, the corresponding registers will become unimplemented and
return zero when read. Reserved register fields should be written as zeroes and masked out on read.

Table 367.GR1553B BM Log entry word 1 (offset 0x04)
31 30 20 19 18 17 16 15 0

0 Reserved BUS WST WTP WD

31 Always written as 0

30 : 20 Reserved - Mask out on read for forward compatibility

19 Receive data bus (BUS) - 0:A, 1:B

18 : 17 Word status (WST) - 00=word OK, 01=Manchester error, 10=Parity error

16 Word type (WTP) - 0:Data, 1:Command/status

15 : 0 Word data (WD)

Table 368.MIL-STD-1553B interface registers

APB address offset Register R/W Reset value
0x00 IRQ Register RW (write ‘1’ to clear) 0x00000000
0x04 IRQ Enable RW 0x00000000
0x08...0x0F (Reserved)
0x10 Hardware config register R (constant) ** 0x00000000*
0x14...0x3F (Reserved)
0x40...0x7F BC Register area (see table 369)
0x80...0xBF RT Register area (see table 370)
0xC0...0xFF BM Register area (see table 371)
(*) May differ depending on core configuration
(**) Read-writable in special case of codecver=2
GRIP, Sep 2018, Version 2018.3 350 www.cobham.com/gaisler

GRLIB IP Core

Table 369.MIL-STD-1553B interface BC-specific registers

APB address offset Register R/W Reset value
0x40 BC Status and Config register RW 0xf0000000*
0x44 BC Action register W
0x48 BC Transfer list next pointer RW 0x00000000
0x4C BC Asynchronous list next pointer RW 0x00000000
0x50 BC Timer register R 0x00000000
0x54 BC Timer wake-up register RW 0x00000000
0x58 BC Transfer-triggered IRQ ring position RW 0x00000000
0x5C BC Per-RT bus swap register RW 0x00000000
0x60...0x67 (Reserved)
0x68 BC Transfer list current slot pointer R 0x00000000
0x6C BC Asynchronous list current slot pointer R 0x00000000
0x70...0x7F (Reserved)
(*) May differ depending on core configuration

Table 370.MIL-STD-1553B interface RT-specific registers

APB address offset Register R/W Reset value
0x80 RT Status register R 0x80000000*
0x84 RT Config register RW 0x0000e03e***
0x88 RT Bus status bits register RW 0x00000000
0x8C RT Status words register RW 0x00000000
0x90 RT Sync register R 0x00000000
0x94 RT Subaddress table base address RW 0x00000000
0x98 RT Mode code control register RW 0x00000555
0x9C...0xA3 (Reserved)
0xA4 RT Time tag control register RW 0x00000000
0xA8 (Reserved)
0xAC RT Event log size mask RW 0xfffffffc
0xB0 RT Event log position RW 0x00000000
0xB4 RT Event log interrupt position R 0x00000000
0xB8.. 0xBF (Reserved)
(*) May differ depending on core configuration
(***) Reset value is affected by the external RTADDR/RTPAR input signals
GRIP, Sep 2018, Version 2018.3 351 www.cobham.com/gaisler

GRLIB IP Core

Table 371.MIL-STD-1553B interface BM-specific registers

APB address offset Register R/W Reset value
0xC0 BM Status register R 0x80000000*
0xC4 BM Control register RW 0x00000000
0xC8 BM RT Address filter register RW 0xffffffff
0xCC BM RT Subaddress filter register RW 0xffffffff
0xD0 BM RT Mode code filter register RW 0xffffffff
0xD4 BM Log buffer start RW 0x00000000
0xD8 BM Log buffer end RW 0x00000007
0xDC BM Log buffer position RW 0x00000000
0xE0 BM Time tag control register RW 0x00000000
0xE4...0xFF (Reserved)
(*) May differ depending on core configuration
GRIP, Sep 2018, Version 2018.3 352 www.cobham.com/gaisler

GRLIB IP Core

32.9.1

Table 372.0x00 - IRQ - GR1553B IRQ Register

IRQ Register

32.9.2

Table 373.0x04 - IRQE - GR1553B IRQ Enable Register

IRQ Enable Register

32.9.3

Table 374.GR1553B Hardware Configuration Register

Hardware Configuration Register

31 18 17 16 15 11 10 9 8 7 3 2 1 0

RESERVED BMTOF BMD RESERVED RTTE RTD RTEV RESERVED BCWK BCD BCEV

0 0 0 0 0 0 0 0 0 0 0

r wc wc r wc wc wc r wc wc wc

Bits read ‘1’ if interrupt occurred, write back ‘1’ to acknowledge

17 BM Timer overflow (BMTOF)

16 BM DMA Error (BMD)

10 RT Table access error (RTTE)

9 RT DMA Error (RTD)

8 RT transfer-triggered event interrupt (RTEV)

2 BC Wake-up timer interrupt (BCWK)

1 BC DMA Error (BCD)

0 BC Transfer-triggered event interrupt (BCEV)

31 18 17 16 15 11 10 9 8 7 3 2 1 0

RESERVED BMTOE BMDE RESERVED RTTEE RTDE RTEVE RESERVED BCWKE BCDE BCEVE

0 0 0 0 0 0 0 0 0 0 0

r rw rw r rw rw rw r rw rw rw

17 BM Timer overflow interrupt enable (BMTOE)

16 BM DMA error interrupt enable (BMDE)

10 RT Table access error interrupt enable (RTTEE)

9 RT DMA error interrupt enable (RTDE)

8 RT Transfer-triggered event interrupt enable (RTEVE)

2 BC Wake up timer interrupt (BCWKE)

1 BC DMA Error Enable (BCDE)

0 BC Transfer-triggered event interrupt (BCEVE)

31 30 13 12 11 10 9 8 7 0

MOD RESERVED CVER XKEYS ENDIAN SCLK CCFREQ

* 0 * * * * ‘

r r r(w) r r r r

31 Modified (MOD) - Reserved to indicate that the core has been modified / customized in an unspecified man-
ner

12 Codec version (CVER) - 0=Old version, 1=New version. If the core has been set to soft-configurable version
(codecver=2) this bit is also writable.

11 Set if safety keys are enabled for the BM Control Register and for all RT Control Register fields.

10 : 9 AHB Endianness - 00=Big-endian, 01=Little-endian, 10/11=Reserved

8 Same clock (SCLK) - Reserved for future versions to indicate that the core has been modified to run with a
single clock

7 : 0 Codec clock frequency (CCFREQ) - Reserved for future versions of the core to indicate that the core runs at
a different codec clock frequency. Frequency value in MHz, a value of 0 means 20 MHz.
GRIP, Sep 2018, Version 2018.3 353 www.cobham.com/gaisler

GRLIB IP Core

32.9.4

Table 375.0x40 - BCSL - GR1553B BC Status and Config Register

BC Status and Config Register

32.9.5

Table 376.0x44 - BCA - GR1553B BC Action Register

BC Action Register

32.9.6

Table 377.0x48 - BCTNP - GR1553B BC Transfer list next pointer register

BC Tranfer List Next Pointer Register

31 30 28 27 17 16 15 11 10 9 8 7 3 2 0

BCSUP BCFEAT RESERVED BCCHK ASADL R ASST SCADL SCST

* * 0 0 0 0 0 0 0

r r r rw r r r r r

31 BC Supported (BCSUP) - Reads ‘1’ if core supports BC mode

30 : 28 BC Features (BCFEAT) - Bit field describing supported optional features (‘1’=supported):

30
29
28

BC Schedule timer supported
BC Schedule time wake-up interrupt supported
BC per-RT bus swap register and STBUS descriptor bit supported

16 Check broadcasts (BCCHK) - Writable bit, if set to ‘1’ enables waiting and checking for (unexpected)
responses to all broadcasts.

15 : 11 Asynchronous list address low bits (ASADL) - Bit 8-4 of currently executing (if ASST=01) or next asynchro-
nous command descriptor address

9 : 8 Asynchronous list state (ASST) - 00=Stopped, 01=Executing command, 10=Waiting for time slot

7 : 3 Schedule address low bits (SCADL) - Bit 8-4 of currently executing (if SCST=001) or next schedule descrip-
tor address

2 : 0 Schedule state (SCST) - 000=Stopped, 001=Executing command, 010=Waiting for time slot, 011=Sus-
pended, 100=Waiting for external trigger

31 16 15 10 9 8 7 5 4 3 2 1 0

BCKEY RESERVED ASSTP ASSRT RESERVED CLRT SETT SCSTP SCSUS SCSRT

- - - - - - - - - -

w - w w - w w w w w

31 : 16 Safety code (BCKEY) - Must be 0x1552 when writing, otherwise register write is ignored

9 Asynchronous list stop (ASSTP) - Write ‘1’ to stop asynchronous list (after current transfer, if executing)

8 Asynchronous list start (ASSRT) - Write ‘1’ to start asynchronous list

4 Clear external trigger (CLRT) - Write ‘1’ to clear trigger memory

3 Set external trigger (SETT) - Write ‘1’ to force the trigger memory to set

2 Schedule stop (SCSTP) - Write ‘1’ to stop schedule (after current transfer, if executing)

1 Schedule suspend (SCSUS) - Write ‘1’ to suspend schedule (after current transfer, if executing)

0 Schedule start (SCSRT) - Write ‘1’ to start schedule

31 0

SCHEDULE TRANSFER LIST POINTER

0

rw

31 : 0 Read: Currently executing (if SCST=001) or next transfer to be executed in regular schedule.
Write: Change address. If running, this will cause a jump after the current transfer has finished.
GRIP, Sep 2018, Version 2018.3 354 www.cobham.com/gaisler

GRLIB IP Core

32.9.7

Table 378.0x4C - BCANP - GR1553B BC Asynchronous list next pointer register

BC Asynchronous List Next Pointer Register

32.9.8

Table 379.0x50 - BCT - GR1553B BC Timer register

BC Timer Register

32.9.9

Table 380.0x54 - BCTW - GR1553B BC Timer Wake-up register

BC Timer Wake-up Register

32.9.10

Table 381.0x58 - BCRD - GR1553B BC Transfer-triggered IRQ ring position register

BC Transfer-triggered IRQ Ring Position Register

31 0

ASYNCHRONOUS LIST POINTER

0

rw

31 :0 Read: Currently executing (if ASST=01) or next transfer to be executed in asynchronous schedule.
Write: Change address. If running, this will cause a jump after the current transfer has finished.

31 24 23 0

RESERVED SCHEDULE TIME (SCTM)

0 0

r r

23 : 0 Elapsed “transfer list” time in microseconds (read-only)
Set to zero when schedule is stopped or on external sync.

Note: This register is an optional feature, see BC Status and Config Register, bit 30

31 30 24 23 0

WKEN RESERVED WAKE-UP TIME (WKTM)

0 0 0

rw r rw

31 Wake-up timer enable (WKEN) - If set, an interrupt will be triggered when WKTM=SCTM

23 : 0 Wake-up time (WKTM).

Note: This register is an optional feature, see BC Status and Config Register, bit 29

31 0

BC IRQ SOURCE POINTER RING POSITION

0

rw

31 : 0 The current write pointer into the transfer-tirggered IRQ descriptor pointer ring.
Bits 1:0 are constant zero (4-byte aligned)
The ring wraps at the 64-byte boundary, so bits 31:6 are only changed by user
GRIP, Sep 2018, Version 2018.3 355 www.cobham.com/gaisler

GRLIB IP Core

32.9.11

Table 382.0x5C - BCBS - GR1553B BC per-RT Bus swap register

BC per-RT Bus Swap Register

32.9.12

Table 383.0x68 - BCTCP - GR1553B BC Transfer list current slot pointer

BC Transfer List Current Slot Pointer

32.9.13

Table 384.0x6C - BCACP - GR1553B BC Asynchronous list current slot pointer

BC Asynchronous List Current Slot Pointer

32.9.14

Table 385.0x80 - RTS - GR1553B RT Status register (read-only)

RT Status Register

31 0

BC PER-RT BUS SWAP

0

rw

31 : 0 The bus selection value will be logically exclusive-or:ed with the bit in this mask corresponding to the
addressed RT (the receiving RT for RT-to-RT transfers). This register gets updated by the core if the STBUS
descriptor bit is used.
For more information on how to use this feature, see section 32.4.3.

Note: This register is an optional feature, see BC Status and Config Register, bit 28

31 0

BC TRANSFER SLOT POINTER

0

r

31 : 0 Points to the transfer descriptor corresponding to the current time slot (read-only, only valid while transfer list
is running).
Bits 3:0 are constant zero (128-bit/16-byte aligned)

31 0

BC TRANSFER SLOT POINTER

0

r

31 : 0 Points to the transfer descriptor corresponding to the current asynchronous schedule time slot (read-only,
only valid while asynchronous list is running).
Bits 3:0 are constant zero (128-bit/16-byte aligned)

31 30 4 3 2 1 0

RTSUP RESERVED ACT SHDA SHDB RUN

31 RT Supported (RTSUP) - Reads ‘1’ if core supports RT mode

3 RT Active (ACT) - ‘1’ if RT is currently processing a transfer

2 Bus A shutdown (SHDA) - Reads ‘1’ if bus A has been shut down by the BC (using the transmitter shutdown
mode command on bus B)

1 Bus B shutdown (SHDB) - Reads ‘1’ if bus B has been shut down by the BC (using the transmitter shutdown
mode command on bus A)

0 RT Running (RUN) - ‘1’ if the RT is listening to commands.
GRIP, Sep 2018, Version 2018.3 356 www.cobham.com/gaisler

GRLIB IP Core

32.9.15

Table 386.0x84 - RTC - GR1553B RT Config register

RT Config Register

32.9.16

Table 387.0x88 - RTBS - GR1553B RT Bus status register

RT Bus Status Register

32.9.17

Table 388.0x8C - RTSW - GR1553B RT Status words register

RT Status Words Register

31 16 15 14 13 12 7 6 5 1 0

RTKEY SYS SYDS BRS RESERVED RTEIS RTADDR RTEN

0 1 1 1 0 * * 0

w rw rw rw r r rw rw

31 : 16 Safety code (RTKEY) - Must be written as 0x1553 when changing the RT address, otherwise the address
field is unaffected by the write. When reading the register, this field reads 0x0000.
If extra safety keys are enabled (see Hardware Config Register), the lower half of the key is used to also pro-
tect the other fields in this register.

15 Sync signal enable (SYS) - Set to ‘1’ to pulse the rtsync output when a synchronize mode code (without
data) has been received

14 Sync with data signal enable (SYDS) - Set to ‘1’ to pulse the rtsync output when a synchronize with data
word mode code has been received

13 Bus reset signal enable (BRS) - Set to ‘1’ to pulse the busreset output when a reset remote terminal mode
code has been received.

6 Reads ‘1’ if current address was set through external inputs.
After setting the address from software this field is set to ‘0’

5 : 1 RT Address (RTADDR) - This RT:s address (0-30)

0 RT Enable (RTEN) - Set to ‘1’ to enable listening for requests

31 9 8 7 5 4 3 2 1 0

RESERVED TFDE RESERVED SREQ BUSY SSF DBCA TFLG

0 0 0 0 0 0 0 0

r rw rw rw rw rw rw rw

8 Set Terminal flag automatically on DMA and descriptor table errors (TFDE)

4 : 0 These bits will be sent in the RT:s status responses over the 1553 bus.

4 Service request (SREQ)

3 Busy bit (BUSY)
Note: If the busy bit is set, the RT will respond with only the status word and the transfer “fails”

2 Subsystem Flag (SSF)

1 Dynamic Bus Control Acceptance (DBCA)
Note: This bit is only sent in response to the Dynamic Bus Control mode code

0 Terminal Flag (TFLG)
The BC can mask this flag using the “inhibit terminal flag” mode command, if legal

31 16 15 0

BIT WORD (BITW) VECTOR WORD (VECW)

0 0

rw rw

31 : 16 BIT Word - Transmitted in response to the “Transmit BIT Word” mode command, if legal

15 : 0 Vector word - Transmitted in response to the “Transmit vector word” mode command, if legal.
GRIP, Sep 2018, Version 2018.3 357 www.cobham.com/gaisler

GRLIB IP Core

32.9.18

Table 389.0x90 - RTSY - GR1553B RT Sync register

RT Sync Register

32.9.19

Table 390.0x94 - RTSTBA - GR1553B RT Sub address table base address register

Sub Address Table Base Address Register

32.9.20

Table 391.0x98 - RTMCC - GR1553B RT Mode code control register

RT Mode Code Control Register

31 16 15 0

SYNC TIME (SYTM) SYNC DATA (SYD)

0 0

r r

31 : 16 The value of the RT timer at the last sync or sync with data word mode command, if legal.

15 : 0 The data received with the last synchronize with data word mode command, if legal

31 9 8 0

SUBADDRESS TABLE BASE (SATB) RESERVED

0 0

rw r

31 : 9 Base address, bits 31-9 for subaddress table

8 : 0 Always read ‘0’, writing has no effect

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RESERVED RRTB RRT ITFB ITF ISTB IST DBC

0 0 0 0 0 0 0 0

r rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TBW TVW TSB TS SDB SD SB S

0 0 1 1 1 1 1 1

rw rw rw rw rw rw rw rw

For each mode code: “00” - Illegal, “01” - Legal, “10” - Legal, log enabled, “11” - Legal, log and interrupt

29 : 28 Reset remote terminal broadcast (RRTB)

27 : 26 Reset remote terminal (RRT)

25 : 24 Inhibit & override inhibit terminal flag bit broadcast (ITFB)

23 : 22 Inhibit & override inhibit terminal flag (ITF)

21 : 20 Initiate self test broadcast (ISTB)

19 : 18 Initiate self test (IST)

17 : 16 Dynamic bus control (DBC)

15 : 14 Transmit BIT word (TBW)

13 : 12 Transmit vector word (TVW)

11 : 10 Transmitter shutdown & override transmitter shutdown broadcast (TSB)

9 : 8 Transmitter shutdown & override transmitter shutdown (TS)

7 : 6 Synchronize with data word broadcast (SDB)

5 : 4 Synchronize with data word (SD)

3 : 2 Synchronize broadcast (SB)

1 : 0 Synchronize (S)
GRIP, Sep 2018, Version 2018.3 358 www.cobham.com/gaisler

GRLIB IP Core

32.9.21

Table 392.0xA4 - RTTTC - GR1553B RT Time tag control register

RT Time Tag Control Register

32.9.22

Table 393.0xAC - RTELM - GR1553B RT Event Log mask register

RT Event Log Mask Register

32.9.23

Table 394.0xB0 - RTELP - GR1553B RT Event Log position register

RT Event Log Position Register

32.9.24

Table 395.0xB4 - RTELIP - GR1553B RT Event Log interrupt position register

RT Event Log Interrupt Position Register

32.9.25

Table 396.0xC0 - BMS - GR1553B BM Status register

BM Status Register

31 16 15 0

TIME RESOLUTION (TRES) TIME TAG VALUE (TVAL)

0 0

rw rw

31 : 16 Time tag resolution (TRES) - Time unit of RT:s time tag counter in microseconds, minus 1

15 : 0 Time tag value (TVAL) - Current value of running time tag counter

31 21 16 2 1 0

RESERVED EVENT LOG SIZE MASK RES

0xFFFFFFC

r rw r

31 : 0 Mask determining size and alignment of the RT event log ring buffer. All bits “above” the size should be set to
‘1’, all bits below should be set to ‘0’

31 0

EVENT LOG WRITE POINTER

0

rw

31 : 0 Address to first unused/oldest entry of event log buffer, 32-bit aligned

31 0

EVENT LOG IRQ POINTER

0

r

31 : 0 Address to event log entry corresponding to interrupt, 32-bit aligned
The register is set for the first interrupt and not set again until the interrupt has been acknowledged.

31 30 29 0

BMSUP KEYEN RESERVED

* * 0

r r r

31 BM Supported (BMSUP) - Reads ‘1’ if BM support is in the core.

30 Key Enabled (KEYEN) - Reads ‘1’ if the BM validates the BMKEY field when the control register is written.
GRIP, Sep 2018, Version 2018.3 359 www.cobham.com/gaisler

GRLIB IP Core

32.9.26

Table 397.0xC4 - BMC - GR1553B BM Control register

BM Control Register

32.9.27

Table 398.0xC8 - BMRTAF - GR1553B BM RT Address filter register

BMRT Address Filter Register

32.9.28

Table 399.0xCC - BMRTSF - GR1553B BM RT Sub address filter register

BMRT Sub address Filter Register

31 16 15 6 5 4 3 2 1 0

BMKEY RESERVED WRSTP EXST IMCL UDWL MANL BMEN

0 0 0 0 0 0 0 0

rw r rw rw rw rw rw rw

31 : 16 Safety key - If extra safety keys are enabled (see KEYEN), this field must be 0x1543 for a write to be
accepted. Is 0x0000 when read.

5 Wrap stop (WRSTP) - If set to ‘1’, BMEN will be set to ‘0’ and stop the BM when the BM log position wraps
around from buffer end to buffer start

4 External sync start (EXST) - If set to ‘1’,BMEN will be set to ‘1’ and the BM is started when an external BC
sync pulse is received

3 Invalid mode code log (IMCL) - Set to ‘1’ to log invalid or reserved mode codes.

2 Unexpected data word logging (UDWL) - Set to ‘1’ to log data words not seeming to be part of any command

1 Manchester/parity error logging (MANL) - Set to ‘1’ to log bit decoding errors

0 BM Enable (BMEN) - Must be set to ‘1’ to enable any BM logging

31 0

ADDRESS FILTER MASK

0xFFFFFFFF

rw

31 Enables logging of broadcast transfers

30 : 0 Each bit position set to ‘1’ enables logging of transfers with the corresponding RT address

31 0

SUBADDRESS FILTER MASK

0xFFFFFFFF

rw

31 Enables logging of mode commands on sub address 31

30 : 1 Each bit position set to ‘1’ enables logging of transfers with the corresponding RT sub address

0 Enables logging of mode commands on sub address 0
GRIP, Sep 2018, Version 2018.3 360 www.cobham.com/gaisler

GRLIB IP Core

32.9.29

Table 400.0xCC - BMRTMC - GR1553B BM RT Mode code filter register

BMRT Mode Code Filter Register

32.9.30

Table 401.0xD4 - BMLBS - GR1553B BM Log buffer start

BMLog Buffer Start

32.9.31

Table 402.0xD8 - BMLBE - GR1553B BM Log buffer end

BMLog Buffer End

31 19 18 17 16

RESERVED STSB STS TLC

0x1ttt 1 1 1

r rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TSW RRTB RRT ITFB ITF ISTB IST DBC TBW TVW TSB TS SDB SD SB S

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Each bit set to ‘1’ enables logging of a mode code:

18 Selected transmitter shutdown broadcast & override selected transmitter shutdown broadcast (STSB)

17 Selected transmitter shutdown & override selected transmitter shutdown (STS)

16 Transmit last command (TLC)

15 Transmit status word (TSW)

14 Reset remote terminal broadcast (RRTB)

13 Reset remote terminal (RRT)

12 Inhibit & override inhibit terminal flag bit broadcast (ITFB)

11 Inhibit & override inhibit terminal flag (ITF)

10 Initiate self test broadcast (ISTB)

9 Initiate self test (IST)

8 Dynamic bus control (DBC)

7 Transmit BIT word (TBW)

6 Transmit vector word (TVW)

5 Transmitter shutdown & override transmitter shutdown broadcast (TSB)

4 Transmitter shutdown & override transmitter shutdown (TS)

3 Synchronize with data word broadcast (SDB)

2 Synchronize with data word (SD)

1 Synchronize broadcast (SB)

0 Synchronize (S)

31 0

BM LOG BUFFER START

0

rw

31 : 0 Pointer to the lowest address of the BM log buffer (8-byte aligned)
Due to alignment, bits 2:0 are always 0.

31 22 21 3 2 0

- BM LOG BUFFER END -

0x0000007

r rw r

31 : 0 Pointer to the highest address of the BM log buffer
Only bits 21:3 are settable, i.e. the buffer can not cross a 4 MB boundary Bits 31:22 read the same as the
buffer start address.Due to alignment, bits 2:0 are always equal to 1
GRIP, Sep 2018, Version 2018.3 361 www.cobham.com/gaisler

GRLIB IP Core

32.9.32

Table 403.0xDC - BMLBP - GR1553B BM Log buffer position

BMLog Buffer Position

32.9.33

Table 404.0xE0 - BMTTC - GR1553B BM Time tag control register

BM Time Tag Control Register

32.10 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x04D. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

32.11 Implementation

32.11.1 Reset

The core does not changs reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual).
The core has two separate reset inputs for the two clock domains. They should be reset simultane-
ously, for instance by using two Reset generator cores connected to the same reset input but clocked
by the respective clocks See the documentation of the syncrst VHDL generic for possible reset imple-
mentations.

32.11.2 External control

An external control synthesis option is available that changes the core so that some of the configura-
tion register fields inside the core driven directly from external signals (auxin.extctrl) instead from the
internal logic of the IP core. The fields that are externally controlled can no longer be overwritten
through the register interface, however the registers can still be read out through the APB interface
and will return the values that were externally assigned. Note also that the external control of rtaddr/
rten fields will also override the ordinary auxin.rtaddr/auxin.rtpar functionality.

31 22 21 3 2 0

- BM LOG BUFFER POSITION -

0x00000000

r rw r

31 : 0 Pointer to the next position that will be written to in the BM log buffer
Only bits 21:3 are settable, i.e. the buffer can not cross a 4 MB boundary Bits 31:22 read the same as the
buffer start address.Due to alignment, bits 2:0 are always equal to 0

31 24 23 0

TIME TAG RESOLUTION TIME TAG VALUE

0 0

rw rw

31 : 24 Time tag resolution (TRES) - Time unit of BM:s time tag counter in microseconds, minus 1

23 : 0 Time tag value (TVAL) - Current value of running time tag counter
GRIP, Sep 2018, Version 2018.3 362 www.cobham.com/gaisler

GRLIB IP Core

32.12 Configuration options

Table 405 shows the configuration options of the core (VHDL generics).

Table 405.Configuration options

Generic Function Allowed range Default
hindex AHB master index 0 - NAHBMST-1 0
pindex APB slave index 0 - NAPBSLV-1 0
paddr ADDR field of the APB BAR. 0 - 16#FFF# 0
pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#
pirq Index of the interrupt line. 0 - NAHBIRQ-1 0
bc_enable Selects whether BC support is built into the core 0 - 1 1
rt_enable Selects whether RT support is built into the core 0 - 1 1
bm_enable Selects whether BM support is built into the core 0 - 1 1
bc_timer Selects whether the BC timer and wake-up interrupt fea-

tures are built into the core.
0=None, 1=Timer, 2=Timer and wake-up

0-2 1

bc_rtbusmask Selects whether the BC per-RT bus swap register is built
into the core.

0-1 1

extra_regkeys Enables extra safety keys for the BM control register and
for all fields in the RT control registers

0-1 0

syncrst Selects reset configuration:
0: Asynchronous reset, all registers in core are reset
1: Synchronous, minimal set of registers are reset
2: Synchronous, most registers reset (increases area
slightly to simplify netlist simulation)

0-2 1

ahbendian Selects AHB bus endianness (for use in non-GRLIB sys-
tems), 0=Big endian, 1=Little endian

0 - 1 0

bm_filters Enable BM filtering capability 0 - 1 1
codecfreq Codec clock domain frequency in MHz 20 or 24 20
sameclk AMBA clock and reset is same as codec (removes inter-

nal synchronization)
0 - 1 0

codecver Version selection for internal 1553 codec.
0: Old version, 1: New version, 2: Soft programmable

0 - 2 1

extctrlen Enables external signal control of register fields from
auxin.extctrl record

0 - 1 0
GRIP, Sep 2018, Version 2018.3 363 www.cobham.com/gaisler

GRLIB IP Core

32.13 Signal descriptions

Tables 406-407 shows the interface signals of the core (VHDL ports).

Table 406.Signal descriptions on AMBA side

Signal name Field Type Function Active
CLK N/A Input Clock, AMBA clock domain -
RST N/A Input Reset for registers in CLK clock domain Low
AHBMI * Input AHB master input signals -
AHBMO * Output AHB master output signals -
APBSI * Input APB slave input signals -
APBSO * Output APB slave output signals -
AUXIN EXTSYNC Input External sync input for Bus Controller

Re-synchronized to AMBA clk internally.
Edge-detection checks for the sampled pattern
“01”, i.e. pulses should be at least one
CLK cycle to always get detected.

Pos. edge

RTADDR Input Reset value for RT address, if parity matches. -
RTPAR Input RT address odd parity -
EXTCTRL Input External control register input record, used only

when extctrlen=1.
RTEN, RTADDR,BRS,SYS,SYDS:: Controls
fields with the same name in the RT Configura-
tion register
BUSY: Controls the BUSY field in the RT Bus
Status register
SATB: Controls the RT Subaddress table base
register.
MCCR: Controls the RT mode code control reg-
ister

-

AUXOUT RTSYNC Output Pulsed for one CLK cycle after receiving a syn-
chronize mode command in RT mode

High

BUSRESET Output Pulsed for one CLK cycle after receiving a reset
remote terminal mode command in RT mode

High

VALIDCMDA Output Pulsed for one CLK cycle after receiving a valid
command word on bus A/B in RT mode

High
VALIDCMDB Output High
TIMEDOUTA Output Asserted when the terminal fail-safe timer has

triggered on bus A/B.
High

TIMEDOUTB Output High
BADREG Output Pulsed for one CLK cycle when an invalid regis-

ter access is performed, either:
- an access to an undefined register,
- read/write from a write-only/read-only register,
- a read/write to a non-implemented part of the
core
- an incorrect BCKEY/BMKEY

High

IRQVEC Output Auxiliary IRQ vector. Pulsed at the same time as
the ordinary PIRQ line, but with a separate line
for each interrupt:
7: BM Timer overflow, 6: BM DMA Error,
5: RT Table error, 4: RT DMA Error, 3: RT Event
2: BC Wake-up, 1: BC DMA Error, 0: BC Event

High

* see GRLIB IP Library User’s Manual
GRIP, Sep 2018, Version 2018.3 364 www.cobham.com/gaisler

GRLIB IP Core
32.14 Signal definitions and reset values

The signals and their reset values are described in table 408.

Table 407.Signal descriptions on 1553 side

Signal name Field Type Function Active
CODEC_CLK N/A Input Codec clock -
CODEC_RST N/A Input Reset for registers in CODEC_CLK domain Low
TXOUT BUSA_TXP Output Bus A transmitter, positive output High **

BUSA_TXN Output Bus A transmitter, negative output High **
BUSA_TXEN Output Bus A transmitter enable High
BUSA_RXEN Output Bus A receiver enable High
BUSB_TXP Output Bus B transmitter, positive output High **
BUSB_TXN Output Bus B transmitter, negative output High **
BUSB_TXEN Output Bus B transmitter enable High
BUSB_RXEN Output Bus B receiver enable High
BUSA_TXIN Output Inverted version of BUSA_TXEN

(for VHDL coding convenience)
High

BUSB_TXIN Output Inverted version of BUSB_TXEN High
TXOUT_FB See TXOUT Input Feedback input to the terminal fail-safe timers.

Should be tied directly to TXOUT, but are
exposed to allow testing the fail-safe timer func-
tion.
This input is re synchronized to CODEC_CLK
so it can be asynchronous.

See TXOUT

RXIN BUSA_RXP Input Bus A receiver, positive input High **
BUSA_RXN Input Bus A receiver, negative input High **
BUSB_RXP Input Bus B receiver, positive input High **
BUSB_RXN Input Bus B receiver, negative input High **

** The core will put both P/N outputs low when not transmitting. For input, it accepts either both-low or both-high idle.

Table 408.Signal definitions and reset values

Signal name Type Function Active Reset value
busa_rxen Output Enable for the A receiver High Logical 0
busa_rxp Input Positive data input from the A receiver High* -
busa_rxn Input Negative data input from the A receiver High* -
busa_txinh Output Enable for the A transmitter Low** Logical 1
busa_txp Output Positive data to the A transmitter High Logical 0
busa_txn Output Negative data to the A transmitter High Logical 0
busb_rxen Output Enable for the B receiver High Logical 0
busb_rxp Input Positive data input from the B receiver High* -
busb_rxn Input Negative data input from the B receiver High* -
busb_txinh Output Enable for the B transmitter Low** Logical 1
busb_txp Output Positive data to the B transmitter High Logical 0
busb_txn Output Negative data to the B transmitter High Logical 0
* rx inputs can be either both-high or both-low when bus is idle
** txinh inhibits (disables) transmission when high, enables transmission when low
GRIP, Sep 2018, Version 2018.3 365 www.cobham.com/gaisler

GRLIB IP Core

32.15 Timing

The timing waveforms and timing parameters are shown in figure 114 and are defined in table 409.

32.16 Library dependencies

Table 410 shows libraries used when instantiating the core (VHDL libraries).

32.17 Instantiation

This example shows how the core can be instantiated in a GRLIB design.

library ieee;
use ieee.std_logic_1164.all;

library grlib, gaisler;
use grlib.amba.all;
use gaisler.gr1553b_pkg.all;
use gaisler.misc.rstgen;

entity gr1553b_ex is
 generic (
 padtech : integer
);
 port (
 rstn : in std_ulogic;
 clk : in std_ulogic;
 codec_clk : in std_ulogic;

Table 409.Timing parameters

Name Parameter Reference edge Min Max Unit
tGR1553B1 clock to output delay, control signals rising clk edge - TBD ns

tGR1553B2 clock to output delay, transmit data rising clk edge TBD TBD ns

tGR1553B3 data input to clock setup rising clk edge TBD * - ns
tGR1553B4 data input from clock hold rising clk edge TBD * - ns

* The rx input signals are re-synchronized to clk internally

Table 410.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB/APB signal definitions
GAISLER GR1553B_PKG Signals, component signal and component declaration

Figure 114. Timing waveforms

tGR1553B1
txinh/rxen

clk

rxp/rxn

tGR1553B2

tGR1553B4

txp/txn

tGR1553B3
GRIP, Sep 2018, Version 2018.3 366 www.cobham.com/gaisler

GRLIB IP Core

 -- MIL-STD-1553 signals
 txAen : out std_ulogic;
 txAP : out std_ulogic;
 txAN : out std_ulogic;
 rxAen : out std_ulogic;
 rxAP : in std_ulogic;
 rxAN : in std_ulogic;
 txAen : out std_ulogic;
 txAP : out std_ulogic;
 txAN : out std_ulogic;
 rxAen : out std_ulogic;
 rxAP : in std_ulogic;
 rxAN : in std_ulogic
);
end;

architecture rtl of gr1553b_ex is

 -- System-wide synchronous reset
 signal rst : std_logic;

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbi : ahb_mst_in_type;
 signal ahbo : ahb_mst_out_vector := (others => apb_none);

 -- GR1553B signals
 signal codec_rst : std_ulogic;
 signal txout : gr1553b_txout_type;
 signal rxin : gr1553b_rxin_type;
 signal auxin : gr1553b_auxin_type;
 signal auxout : gr1553b_auxout_type;

begin

 rg0: rstgen port map (rstn, clk, ’1’, rst, open);

 -- AMBA Components are instantiated here
 ...

 -- Reset generation for 1553 codec
 rgc: rstgen port map (rstn, codec_clk, ’1’, codec_rst, open);

 -- GR1553B

 gr1553b0: gr1553b
 generic map (hindex => 4, pindex => 7, paddr => 7, pirq => 13, syncrst => 1,
 bc_enable => 1, rt_enable => 1, bm_enable => 1)
 port map (clk, rst, ahbi, ahbo(4), apbi, apbo(7), auxin, auxout,
 codec_clk, codec_rst, txout, txout, rxin);

 p: gr1553b_pads
 generic map (padtech => padtech, outen_pol => 0)
 port map (txout,rxin,
 rxAen,rxAP,rxAN,txAen,txAP,txAN,
 rxBen,rxBP,rxBN,txBen,txBP,txBN);

 auxin <= gr1553b_auxin_zero;

end;

32.18 Constraints

This section contains example constraints for GR1553B.

0. Define a clock called 'mil_clk'
1. milclkperiod = 1553B Maximum clock frequency
GRIP, Sep 2018, Version 2018.3 367 www.cobham.com/gaisler

GRLIB IP Core

2. tech_lib_setup = Setup timing for FlipFlop used in technology
3. tech_lib_hold = Hold timing for FlipFlop used in technology

set_input_delay -clock [get_clocks mil_clk] -min [expr $tech_lib_hold] [get_ports
$mil_inputs]
set_input_delay -clock [get_clocks mil_clk] -max [expr $milclkperiod/2 - $tech_lib_setup]
[get_ports $mil_inputs] -add_delay
set_output_delay -clock [get_clocks mil_clk] -max [expr $milclkperiod/2 + $tech_lib_setup]
[get_ports $mil_outputs] -add_delay
set_output_delay -clock [get_clocks mil_clk] -min [expr -1 * $tech_lib_hold]
[get_ports $mil_outputs] -add_delay
GRIP, Sep 2018, Version 2018.3 368 www.cobham.com/gaisler

GRLIB IP Core

32.19 Note: AHB Interface Compatibility

32.19.1 Introduction

When using the GR1553B core in a non-GRLIB environment, the AHB system designer must make
sure that the slaves to be accessed by the core are compatible with the accesses the master makes.

32.19.2 Generic access patterns

The GR1553B core performs the following accesses on the AHB bus:
• 32-bit sequential read burst, unspecified length, Length 2-3, 128-bit aligned start address.

(BC,RT)
• 32-bit sequential write burst, length 2 (BM)
• Single 32-bit read/write (BC,RT)
• Single 16-bit write (BC,RT)
• Idle transfers
The master supports wait states (hready low) as well as split and retry responses. In either case, it will
retry accesses indefinitely until getting an OKAY or ERROR response.
Busy cycles and locked transfers are not used by the core.

32.19.3 Endianness

The GR1553B core, in its standard configuration, only works on big-endian systems. Byte-swapping
in software is not enough because of the 16-bit writes.
Little-endian bus support can be configured by setting the ahbendian generic to 1. The endian-ness
setting only changes the handling of data buffers, data structures are still read using 32-bit reads/
writes and bit fields extracted from the same bit positions.
For data buffers, the core is designed to make 16-bit addressing correct, so that each 16-bit data word
in memory is transferred msb to lsb in increasing address order. Note that with little-endian addressing
this means that the data will not be sent in byte order. This means that care must be taken to ensure
correct ordering when transferring data from 1553 buffers to/from byte streams (files, network pack-
ets, etc.).
GRIP, Sep 2018, Version 2018.3 369 www.cobham.com/gaisler

GRLIB IP Core
0 0 1 1 0 1 0 0

Time

0 1 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1

1553 bus

GR1553B

ahbendian=0

Big-endian
AHB

RAM

Bus data: 0x3456, 0xF001

AHB hwdata (31:0): 0x3456F001

RAM contents, as byte array: 0x34, 0x56, 0xF0, 0x01
RAM contents, as hword array: 0x3456, 0xF001

Big-endian operation (both hword and byte consistent):

1553 traffic example:

1553 bus

GR1553B

ahbendian=1

Little-endian
AHB

RAM

Bus data: 0x3456, 0xF001

AHB hwdata (31:0): 0xF0013456

RAM contents, as byte array: 0x56, 0x34, 0x01, 0xF0
RAM contents, as hword array: 0x3456, 0xF001

Little-endian operation (hword consistent):

Figure 115. Relation between transferred 1553 data order and RAM contents for little/big-
GRIP, Sep 2018, Version 2018.3 370 www.cobham.com/gaisler

GRLIB IP Core

32.20 Note: AHB Latency and throughput requirements

32.20.1 Introduction

Since the AMBA AHB bus standard does not in itself guarantee any maximum latency or throughput,
the AHB bus system must be carefully designed so that the core can satisfy the 1553 requirements
reliably.
Throughput is not normally a problem, since even at the lowest supported AMBA frequency of 10
MHz, the core can only use a few percent of the bus bandwidth.
Latency is a larger concern, especially when there are other bus masters with high bandwidth utiliza-
tion or large burst access patterns.
Some general recommendations:
• Make GR1553B the highest priority master on the bus
• Limit the maximum length of other master’s bursts to the order of 5 us.
• Use local RAM for descriptors and preferably also data.

32.20.2 BC Descriptor processing

Between transfers, the BC core first writes the descriptor status word using a 32-bit write, then fetches
the following descriptor using a 3 x 32-bit read burst.
If the next location in the schedule is a branch, then the burst fetches only the first two 32-bit words,
then processes the condition for one cycle, and then continues.
The core keeps the bus request signal high continuously until the next descriptor has been read.
Between the status write and the descriptor read, there is one idle AHB transaction, i.e. the descriptor
read is started the cycle after the status write finishes. Between a branch read and the next descriptor
read, there are two idle AHB transactions, i.e. one completely idle cycle between the end of branch
read and the start of descriptor read.

32.20.3 BC Asynchronous scheduling

If the asynchronous list is started and there is slack in the regular schedule, the BC needs to read the
next asynchronous descriptor in order to make the scheduling decision. In case there is less slack than
was specified in the asynchronous descriptor, the BC will then read the regular descriptor and proceed
with the regular schedule. In this case, the BC remembers the asynchronous time requirement and will
not need to re-read the asynchronous descriptor until the asynchronous transfer is actually scheduled.
If there is less than 24 us of slack in the regular schedule, then the BC will assume there is no time for
the asynchronous transfer, not read the asynchronous descriptor and just proceed with the regular
schedule. This means that as long as two BC descriptors can be read within 24 us, the asynchronous
descriptor processing can not affect the ordinary schedule.

32.20.4 BC Data Buffer processing

When transferring data from BC-to-RT, the core reads the first one or two (depending on alignment)
16-bit data words from memory using a 32-bit read, while the command word is being transferred.
The core then reads an additional 32-bit word every time the last previously read data word is sent and
there is more to send.
For transfers from RT-to-BC, the core either writes the first data word using a 16-bit write, or writes
the first two data words using a 32-bit write, depending on data buffer alignment. It will then perform
a 32-bit write after every two data words received. While performing the write, the core does not buf-
fer another data word so the write has to complete within 20 us.
GRIP, Sep 2018, Version 2018.3 371 www.cobham.com/gaisler

GRLIB IP Core

If there is one received data word left after the transfer, it is written during the 5 us message gap. If it
doesn’t finish in that time, the descriptor processing will be delayed until after the write finishes.

32.20.5 BC Requirements

The hard requirement on the BC comes from the data buffers, where one read/write should finish in
20 us.
The time needed for descriptor processing will affect the schedule. In order to reduce this time, the
time for a 32-bit write followed by a 3x32-bit read burst should be reduced, preferably to the 2-3 us
range. This is more of a soft requirement, and for larger schedules it can often be viewed as an average
over minor frames or other groups of transfers.
If the asynchronous scheduling feature is used, and you do not want the regular schedule to be
affected by this, two 3x32-bit read bursts must be able to finish within 24 us.

32.20.6 RT Transfer Processing

For the RT there are two cases to consider, receive and transmit.
The receive case:
1. The RT gets the receive command
2. While the first data word is transmitted over the bus, the RT looks up the subaddress table and
receive descriptor.
3. The data words are stored
4. The RT waits 5-6 us to see that there are no extra (unwanted) data words.
5. The status word is transmitted. In parallel, the results are written to the descriptor and the log and
table is updated.
The transmit case:
1. The RT gets the transmit command
2. In parallel there are two processes working:

Process A:
A.1 The RT looks up in the subaddress table that the request is legal.
A.2 The RT looks up the descriptor and reads the first word of data

Process B:
B.1 The RT waits 5-6 us to see that there are no extra (unwanted) data words received.
B.2 Wait for A.1 to finish
B.3 Send status word
B.4 Send data

3. The data words are sent
4. The results are written to the descriptor and the log and table is updated.
In the receive case, the subaddress table and descriptor reads (two 3x32-bit read bursts) have to finish
within the 20 us period that the data word is transferred.
In the transmit case, the subaddress table read (one 2x32-bit read burst) has to finish in time so that the
RT satisfies the response time requirement.
The RT has a status word response time requirement of 12 us mid-bit to mid-sync, which translates
into in 10 us maximum bus dead time before responding. These 10 us also include transceiver delays,
so the actual time available is typically closer to 9 us.
GRIP, Sep 2018, Version 2018.3 372 www.cobham.com/gaisler

GRLIB IP Core

The core has a safety limit of 9 us, after which a table error interrupt is generated and no response is
generated. However, this should be seen as a fallback solution and triggering this time-out should be
considered a fault at the AMBA bus design level.

32.20.7 RT Requirements

From the cases above, the following requirements can be derived:
One 2x32-bit read burst must finish in 8.5-9 us (from the transmit case above)
Two 3x32-bit read bursts plus one 32-bit read must finish in 20 us.
Each 32-bit data buffer read/write must finish in 20 us.

32.20.8 Bus Monitor

The bus monitor will at full bus traffic, write 2x32-bit data words every 20 us.
If run in parallel with the BC or RT, this will need to be added to the requirements. The core is
designed so that, after an RT+BM receives a command word, the RT will access the bus first to do the
more urgent accesses.
GRIP, Sep 2018, Version 2018.3 373 www.cobham.com/gaisler

GRLIB IP Core

32.21 Note: BC transfer timing

32.21.1 Introduction

In order to design a transfer schedule for the Bus Controller, the worst-case times for each transfer
must be calculated. This note is intended to give some hints on how to do this. Understanding of the
1553B protocol is assumed, see the AS15531 standard (in particular, Figure 9) for details.

32.21.2 Overview

Except for the case of automatic retries, the longest time a transfer takes is the success case, where all
permitted time-outs and slack is used.
When reading the standard, there are a few points to note for the calculations:
• The time-outs and gaps in the standard are specified mid-parity to mid-sync. To convert into bus

dead time, one must subtract 2 us.
• The timings are specified on the bus side, so transceiver delays must be taken into account.

32.21.3 Transceiver delay

The timings in the 1553 standard are specified on the terminal boundary which is on the bus side of
the transceiver. However, the core operates on the other side of the transceiver. Therefore, the trans-
ceiver delays must be taken into account.
The BC mode uses the loopback checking mechanism to compensate for transceiver delay. After the
command words have been sent, it waits for the words to loop back through the receiver and then
starts the RT time-out timer.

32.21.4 BC Transfer Steps: Parts

A BC transfer can be divided into the following steps:
1. Transmission of control words and receive data
This is a continuous transmission which takes 20 us per word sent. Also include 0.2 us starting delay.
2. Transceiver turnaround
The core waits for the transmitted command to loop back into the receiver. By doing this before start-
ing the RT time-out clock, we get an accurate RT timeout regardless of transceiver delay.
The time this takes is the sum of the transmitter and receiver delay, plus internal decoding delays of
0.15-0.40 us.
3. RT Response Time-out
The core allows a maximum of 12.0-12.5 us bus dead time before the beginning of the RT Response.
Note that this time can be increased via a descriptor setting.
4. RT Response and transmit data
The BC receives the RT status word and the specified number of data words.
The Bus Controller checks for message continuity and allows a maximum of 1 us of sync drift over
the entire message. The maximum time for this part is thus 20 us/word + 1 us.
5. Second RT Response Time-out
For RT-to-RT transfers. See step 3.
6. Second RT Response
For RT-to-RT transfers. See step 4.
7. Word count verification
GRIP, Sep 2018, Version 2018.3 374 www.cobham.com/gaisler

GRLIB IP Core

For non-broadcast and RT-to-RT messages, the BC waits an additional 5 us to ensure that there is no
additional word sent out by the last transmitting RT.
8. Store result, fetch next descriptor
The time this takes to perform depends completely on the AMBA system the core is connected to.
9. Broadcast message gap and descriptor processing
For single-RT broadcasts, instead of step 7-8 the core inserts a 3 us message gap, and in parallel starts
fetching the next descriptor. This step therefore takes the maximum of 3 us and the time needed for
step 8.

32.21.5 BC transfer steps: Composition

The different 1553 message types map to the above steps as:
BC-to-RT, RT-to-BC, Mode: Steps 1-4,7-8
RT-to-RT: Steps 1-8
BC-to-RT broadcast, Mode broadcast: Steps 1,2,9
RT-to-RT broadcast: Steps 1-4,7-8
If broadcast response checking is enabled in the BC status register, the core waits and checks that no
RT produces a response on the bus after each broadcast. Thus, the broadcast case changes to 1-4,7-8,
and 30-35 us is added to the worst-case transfer time.

32.21.6 Timing calculation

Based on the steps above, and also taking automatic replies into account, we end up with the follow-
ing calculations:
BC-to-RT, RT-to-BC or Mode, N data words:
T = Ctry x (20.2 + Nx20 + Tloop + 12.5 + Textra + 21 + 5) + Tdpr
= Ctry x (58.7 + Nx20 + Textra + Tloop) + Tdpr

RT-to-RT, N data words:
T = Ctry x (40.2 + Tloop + 12.5 + Textra + 21 + Nx20 + 12.5 + Textra + 21 + 5) + Tdpr
= Ctry x (112.2 + Nx20 + 2Textra + Tloop) + Tdpr

BC-to-RT broadcast or Mode broadcast, N data words:
T = Ctry x (20.2 + Nx20 + Tloop + 3) - 3 + max(Tdpr,3)
RT-to-RT broadcast:
T = Ctry x (40.2 + Tloop + 12.5 + Textra + 21 + Nx20 + 5) + Tdpr

Where:
T Worst-case time usage for transfer (i.e. how much the following transfer is delayed when
running at maximum rate)
Ctry The maximum number of attempts, controlled by descriptor, equal to 1 unless automatic
retries are used.
Tloop Time from the end of a word transmission to receiver decoding the looped-back word.
Sum of transceiver transmit and receive delay, plus internal delay of 400 ns.
Tdpr Time needed for data processing between this and the next transfer. This includes storing
result, processing any branches, and fetching the next descriptor
Textra Extra RT response time, equal to the RTTO field in the transfer descriptor multiplied by
4 us.
GRIP, Sep 2018, Version 2018.3 375 www.cobham.com/gaisler

GRLIB IP Core

32.21.7 Example

Assume for this example that Tloop = 1.4 us (transceiver delay of 500 ns + 500 ns) and Tdpr = 3 us (90
cycles at 30 MHz).
An RT-to-RT transfer of 5 data words then needs up to 1 x (112.2 + 5x20 + 2x0 + 1.4) + 3 = 216.6 us
of time to execute.
GRIP, Sep 2018, Version 2018.3 376 www.cobham.com/gaisler

GRLIB IP Core

32.22 Note: Time synchronization

32.22.1 Introduction

The purpose of time synchronization is to get a common notion of time between the terminals on the
bus. This allows the user to relate time stamps from different terminals and coordinate events. If there
is an external time base available on one of the terminals it is also interesting to be able to translate the
time stamps over into this time base.
This note describes the GR1553B IP core’s BC-to-RT time synchronization capabilities and discusses
some applications.

32.22.2 Hardware features: BC features

The BC supports sending the 1553 bus standard’s two mode commands dedicated to synchronization,
synchronize (code 1) and synchronize with data word (code 17). The commands can be sent either to
a specific RT, or sent on the broadcast address to all RT:s on one bus.
With the “wait for external trigger” (WTRIG) descriptor bit, any data transfer or mode code in the
schedule can be set up to wait for a positive edge on the IP core’s auxin.extsync input signal before
starting. The external sync can also be triggered from software by writing to the BC Action Register.
It is also possible to use the regular scheduling features of the core to plan synchronization commands
within a frame with high precision, just like any other transfer can be planned. This makes it possible
to send timed sync pulses at a different interval than the external sync pulses, or to use the internal BC
timer as time master with no external time base at all.

32.22.3 Hardware features: RT features

The RT supports receiving the two synchronization mode commands that can be emitted by the BC. In
case of synchronization with data word, the attached data word can be read out through the RT sync
register.
The RT has an internal timer with configurable scaler, which can be read-out and configured through
the RT Time tag control register. When a mode command is received, the timer value is stored into the
RT Sync Register which can be read out by software.
There are also a number of core output signals related to synchronization. The validcmdA/B outputs
are raised whenever a valid command word is received in the RT, and this happens at the same time as
the internal time stamp is taken. There is also an output called rtsync which is set high only after a
successfully received sync command. The rtsync output pulse always occurs after the validcmd pulse.
If software handling of synchronization is desired, the core can be configured to generate an IRQ after
a sync mode command has been received.

32.22.4 Hardware features: Internal timers

Both the internal timer used for BC scheduling and the timer used for the RT time stamps are based on
1 MHz clock ticks generated in the codec clock domain that are resynchronized to the AMBA clock
domain. When the RT timer register is written, the tick generator and the (optional) scaler gets reset,
therefore for best timestamp accuracy, the RT timer should be left free-running and used as differen-
tial measurements.
In terms of frequency accuracy, the internal timers will have the same characteristics as the codec
clock, which is limited by the 1553 standard to 1000 ppm long-term. If the user has a more accurate
clock source than this, this will naturally translate into more accurate timing.
GRIP, Sep 2018, Version 2018.3 377 www.cobham.com/gaisler

GRLIB IP Core

32.22.5 Synchronization schemes

32.22.6 Synchronization schemes: Overview

This section describes a few ways to generate and receive synchronization commands on the bus.
There are many possible ways to do this, but in this section the basic scheme assumed is by broadcast-
ing sync mode commands from the BC at a regular interval. To handle fault conditions, the sync com-
mands are sent on alternating buses.
Typically the user also wants to send a frame number or a coarse time stamp with the sync command.
This can be sent either as the attached data word when using the sync with data mode command, or it
can be sent beforehand to a dedicated subaddress on the RT:s. This is not described further in the sec-
tion.

32.22.7 Synchronization schemes: BC without external time base

If no external real time base is available on the BC, regular sync commands can still be generated by
scheduling as shown in the example below.

32.22.8 Synchronization schemes: BC with external time base

If there is an external time base connected to the extsync input of the core, this can be used by setting
the wait for external trigger descriptor bit at intervals in the schedule corresponding to the sync inter-
val. The schedule can otherwise be kept as is. As the figure shows it is possible to have the sync
pulses at a multiple of the sync interval and use the internal time base for the sync commands in
between.

Table 411.Example BC descriptor structure with synchronization

Sum of slot times assigned in each frame = sync period/2

Frame 1
Sync broadcast
Bus A

Transfer Transfer ... Jump to
frame 2

Frame 2
Sync broadcast
Bus B

Transfer Transfer ... Jump to
frame 3

Frame 3
Sync broadcast
Bus A

Transfer Transfer ... Jump to
frame 4

Frame 4
Sync broadcast
Bus B

Transfer Transfer ... Jump to
frame 1

Table 412.Example BC descriptor structure with external synchronization

Sum of slot times assigned in each frame = sync period/2

Frame 1
Sync broadcast
Bus A, wtrig set

Transfer Transfer ... Jump to
frame 2

Sum of slot
times in all
four frames
gives exter-
nal sync
periodFrame 2

Sync broadcast
Bus B

Transfer Transfer ... Jump to
frame 3

Frame 3
Sync broadcast
Bus A

Transfer Transfer ... Jump to
frame 4

Frame 4
Sync broadcast
Bus B

Transfer Transfer ... Jump to
frame 1
GRIP, Sep 2018, Version 2018.3 378 www.cobham.com/gaisler

GRLIB IP Core

32.22.9 Synchronization schemes: RT without external time base

If the resolution of the sync period from the BC is good enough, then the simplest solution is to just
take the frame number sent by the BC directly and use it as the time stamp.
If more resolution is needed, the user can read out the current value of the RT Timer, compare with the
last sync time stamp in the RT Sync register, and use the difference as a time offset from the last sync
time from the BC.

32.22.10Synchronization schemes: RT with external time base(s)

If an external timer is available, its value can be read out at the same time as the sync time stamp by
the hardware using a construct like the one shown below. The first register captures the external timer
value whenever a command word is received, and the second register records the time stamp if the
command was a sync mode code. With this value, the user will then obtain a common time stamp
between the BC time, RT time and external time that can be used in different ways.

32.22.11Accuracy

32.22.12Accuracy: Propagation delays

When the sync command is sent, there is first an approximate 500 ns of delay inside the core, fol-
lowed by analog delays, consisting of BC pad delays, BC transmitter delay, bus propagation delays,
RT receiver delays, and RT pad delays.

When using the external BC sync, there is also a 2-3 AHB cycle delay before the sync is detected due
to synchronization. This creates a small offset between the external time reference and the internal
time.
On the RT digital side, there will first be a delay of 20000 ns to receive the whole command word, fol-
lowed by internal decoding delays of approximately 500 ns before the command word is recognized
and the time stamp is taken.
Most of this delay is constant, in particular the 20 us word length, and can therefore be easily compen-
sated for by offsetting the time stamps. Offsetting the RT timestamps by 24 us should be a reasonable
first-order approach, accurate within +/- 4 us or so. If more accuracy is needed, characterization mea-
surements or further analysis of the bus system would need to be done.

32.22.13Accuracy: Clock drift

Relative drift between the clocks determine how often synchronization is necessary. Since the internal
timers of the BC and RT are as accurate as the codec clocks, and both the clocks must have the 1000
ppm worst-case accuracy permitted by the 1553 standard, the BC and RT timers can drift apart up to 2
us for a sync period of 1 ms. Assuming the external time base is much more accurate, the internal and
external BC time bases will drift apart of up to 1 us for every ms of external sync period.

Reg

D

EN

CLK

QExternal
Timer

OR
validcmdA
validcmdB

Reg

D

EN

CLK

Q

ahb clock

rtsync

Sync timestamp

Figure 116. Obtaining an RT sync timestamp in hardware with an external time base
GRIP, Sep 2018, Version 2018.3 379 www.cobham.com/gaisler

GRIP, Sep 2018, Version 2018.3 380 www.cobham.com/gaisler

GRLIB IP Core
33 GRTIMER - General Purpose Timer Unit

33.1 Overview

The GRTIMER IP core’s functionality for latching timer values, external clocking and reload on
external events has been merged into the GPTIMER core. All new designs should instantiate the
GPTIMER IP core.
A GRTIMER entity exists that is a wrapper around the GPTIMER IP core for backward
compatibility.

GRLIB IP Core

34 GRACECTRL - AMBA System ACE Interface Controller

34.1 Overview

The core provides an AMBA AHB interface to the microprocessor interface of a Xilinx System ACE
Compact Flash Solution. Accesses to the core’s memory space are directly translated to accesses on
the System ACE microprocessor interface (MPU).

34.2 Operation

34.2.1 Operational model

The core has one AHB I/O area, accesses to this area are directly translated to accesses on the Xilinx
System ACE’s Microprocessor Interface (MPU). When an access is made to the I/O area, the core
first checks if there already is an ongoing access on the MPU. If an access is currently active, the core
will respond with an AMBA SPLIT response. If the MPU bus is available, the core will start an access
on the MPU bus and issue a SPLIT response to the AMBA master. If the core has been configured for
a system that does not support SPLIT responses, it will insert wait states instead.

34.2.2 Bus widths

The AMBA access is directly translated to an MPU access where bits 6:0 of the AMBA address bus
are connected to the MPU address bus. The core can be configured to connect to a 16-bit MPU inter-
face or a 8-bit MPU interface. When the core is connected to a 8-bit MPU interface it can emulate 16-
bit mode by translating 16-bit (half-word) AMBA accesses into two 8-bit MPU accesses. The mode to
use is decided at implementation time via the VHDL generic mode.
The core does not perform any checks on the size of the AMBA access and software should only
make half-word (16-bit), or byte (8-bit) depending on the setting of VHDL generic mode, accesses to
the core’s memory area. Any other access size will be accepted by the core but the operation may not
have the desired result. On AMBA writes the core uses address bit 1 (or address bits 1:0 for 8-bit
mode) to select if it should propagate the high or the low part of the AMBA data bus to the MPU data
bus. On read operations the core will propagate the read MPU data to all parts of the AMBA data bus.
It is recommended to set the mode VHDL generic to 2 for 8-bit MPU interfaces, and to 0 for 16-bit
MPU interfaces. This way software can always assume that it communicates via a 16-bit MPU inter-
face (accesses to the System ACE BUSMODEREG register are overriden by the core with suitable
values when mode is set to 2).

34.2.3 Clocking and synchronization

The core has two clock inputs; the AMBA clock and the System ACE clock. The AMBA clock drives
the AHB slave interface and the System ACE clock drives the System ACE interface state machine.

Figure 117. Block diagram

A
M
B
A

A
H
B

AHB control

MPD[15 / 7:0]
MPA[6:0]

MPIRQ

MPCEN
MPWEN
MPOEN

System ACE
 control
GRIP, Sep 2018, Version 2018.3 381 www.cobham.com/gaisler

GRLIB IP Core

All signals crossing between the two clock domains are synchronized to prevent meta-stability. The
system clock should have a higher frequency than the System ACE clock.

34.2.4 Endianness

The core is designed for big-endian systems.

34.3 Registers

The core does implement any registers accessible via AMBA.

34.4 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x067. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

34.5 Implementation

34.5.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

34.5.2 Technology mapping

The core does not instantiate any technology specific primitives.

34.5.3 RAM usage

The core does not use any RAM components.

34.6 Configuration options

Table 413 shows the configuration options of the core (VHDL generics).

Table 413.Configuration options

Generic name Function Allowed range Default
hindex AHB slave index 0 - (NAHBSLV-1) 0
hirq Interrupt line 0 - (NAHBIRQ-1) 0
haddr ADDR field of the AHB BAR0 0 - 16#FFF# 16#000#
hmask MASK field of the AHB BAR0 0 - 16#FFF# 16#FFF#
split If this generic is set to 1 the core will issue AMBA

SPLIT responses when it is busy performing an access to
the System ACE. Otherwise the core will insert wait
states until the operation completes.
Note that SPLIT support on the AHBCTRL core MUST
be enabled if this generic is set to 1.

0 - 1 0

swap If this generic is set to 0 the core will connect the System
ACE data(15:0) to AMBA data(15:0). If this generic is
set to 1, the core will swap the System ACE data line and
connect:
System ACE data(15:8) <-> AMBA data(7:0)
System ACE data(7 :0) <-> AMBA data(15:8).
This generic only has effect for mode = 0.

0 - 1 0

oepol Polarity of pad output enable signal 0 - 1 0
GRIP, Sep 2018, Version 2018.3 382 www.cobham.com/gaisler

GRLIB IP Core
34.7 Signal descriptions

Table 414 shows the interface signals of the core (VHDL ports).

34.8 Signal definitions and reset values

The signals and their reset values are described in table 415.

mode Bus width mode
0: Core is connected to 16-bit MPU. Only half-word
AMBA accesses should be made to the core.
1: Core is connected to 8-bit MPU. Only byte AMBA
accesses should be made to the core.
2: Core is connected to 8-bit MPU but will emulate a 16-
bit MPU interface. Only half-word AMBA accesses
should be made to the core (recommended setting for 8-
bit MPU interfaces).

0 - 2 0

Table 414.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
CLKACE N/A Input System ACE clock -
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
ACEI DI(15:0) Input Data line -

IRQ Input System ACE interrupt request High
ACEO ADDR(6:0) Output System ACE address -

DO(15:0) Output Data line -
CEN Output System ACE chip enable Low
WEN Output System ACE write enable Low
OEN Output System ACE output enable Low
DOEN Output Data line output enable -

* see GRLIB IP Library User’s Manual

Table 415.Signal definitions and reset values

Signal name Type Function Active Reset value
d[15:0] InputOutput System ACE data line - -
irq Input System ACE interrupt request Logical 1 -
addr[6:0] Output System ACE address - -
cen Output System ACE chip enable Logical 0 -
wen Output System ACE write enable Logical 0 -
oen Output System ACE output enable Logical 0 -

Table 413.Configuration options

Generic name Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 383 www.cobham.com/gaisler

GRLIB IP Core

34.9 Library dependencies

Table 416 shows the libraries used when instantiating the core (VHDL libraries).

34.10 Instantiation

This example shows how the core can be instantiated.
library ieee;
use ieee.std_logic_1164.all;

library grlib, techmap;
use grlib.amba.all;
use techmap.gencomp.all;

library gaisler;
use gaisler.misc.all;

entity gracectrl_ex is
 port (
 clk : in std_ulogic;
 clkace : in std_ulogic;
 rstn : in std_ulogic;
 sace_a : out std_logic_vector(6 downto 0);
 sace_mpce : out std_ulogic;
 sace_d : inout std_logic_vector(15 downto 0);
 sace_oen : out std_ulogic;
 sace_wen : out std_ulogic;
 sace_mpirq : in std_ulogic;
);
end;

architecture rtl of gracectrl_ex is
 -- AMBA signals
 signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
 ...
 -- GRACECTRL signals
 signal acei : gracectrl_in_type;
 signal aceo : gracectrl_out_type;

begin

 -- AMBA Components are instantiated here
 ...

 -- GRACECTRL core is instantiated below
 grace0 : gracectrl generic map (hindex => 4, hirq => 4, haddr => 16#002#,
 hmask => 16#fff#, split => 1)
 port map (rstn, clk, ahbsi, ahbso(4), acei, acoo);
 sace_a_pads : outpadv generic map (width => 7, tech => padtech)
 port map (sace_a, aceo.addr);
 sace_mpce_pad : outpad generic map(tech => padtech)
 port map (sace_mpce, aceo.cen);
 sace_d_pads : iopadv generic map (tech => padtech, width => 16)
 port map (sace_d, aceo.do, aceo.doen, aceo.di);
 sace_oen_pad : outpad generic map (tech => padtech)
 port map (sace_oen, aceo.oen);
 sace_wen_pad : outpad generic map (tech => padtech)
 port map (sace_wen, aceo.wen);
 sace_mpirq_pad : inpad generic map (tech => padtech)
 port map (sace_mpirq, acei.irq);

Table 416.Library dependencies

Library Package Imported unit(s) Description
GAISLER MISC Component, signals Component and signal definitions
GRLIB AMBA Signals AMBA signal definitions
GRIP, Sep 2018, Version 2018.3 384 www.cobham.com/gaisler

GRLIB IP Core
end;
GRIP, Sep 2018, Version 2018.3 385 www.cobham.com/gaisler

GRLIB IP Core

35 GRAES - Advanced Encryption Standard

35.1 Overview

The Advanced Encryption Standard (AES) is a symmetric encryption algorithm for high throughput
application (like audio or video streams). The GRAES core implements the AES-128 algorithm, sup-
porting the Electronic Codebook (ECB) method. The AES-128 algorithm is specified in the
“Advanced Encryption Standard (AES)” document, Federal Information Processing Standards (FIPS)
Publication 197. The document is established by the National Institute of Standards and Technology
(NIST).
The core provides the following internal AMBA AHB slave interface, with sideband signals as per
[GRLIB] including:
• interrupt bus
• configuration information
• diagnostic information

The core can be partition in the following hierarchical elements:
• Advanced Encryption Standard (AES) core
• AMBA AHB slave
• GRLIB plug&play wrapper

Note that the core can also be used without the GRLIB plug&play information.

35.2 Operation

The input and output for the AES algorithm each consist of sequences of 128 bits (digits with values
of 0 or 1). These sequences will sometimes be referred to as blocks and the number of bits they con-
tain will be referred to as their length. The cipher key for the AES-128 algorithm is a sequence of 128
bits (can also be 192 or 256 bits for other algorithms).
To transfer a 128 bit key or data block four write operations are necessary since the bus interface is 32
bit wide. After supplying a “key will be input” command to the control register, the key is input via
four registers. After supplying a “data will be input” command to the control register, the input data is
written via four registers. After the last input data register is written, the encryption or decryption is
started. The progress can be observed via the debug register. When the operation is completed, an
interrupt is generated. The output data is then read out via four registers. Note that the above sequence
must be respected. It is not required to write a new key between each data input. There is no command
needed for reading out the result.
The implementation requires around 89 clock cycles for a 128 bit data block in encryption direction
and around 90 clock cycles for decryption direction. For decryption an initial key calculation is
required. This takes around 10 additional clock cycles per every new key. Typically large amounts of
data are decrypted (and also encrypted) with the same key. The key initialization for the decryption
round does not influence the throughput.

35.3 Background

The Federal Information Processing Standards (FIPS) Publication Series of the National Institute of
Standards and Technology (NIST) is the official series of publications relating to standards and guide-
lines adopted and promulgated under the provisions of the Information Technology Management
Reform Act.
GRIP, Sep 2018, Version 2018.3 386 www.cobham.com/gaisler

GRLIB IP Core

The Advanced Encryption Standard (AES) standard specifies the Rijndael algorithm, a symmetric
block cipher that can process data blocks of 128 bits, using cipher keys with lengths of 128, 192, and
256 bits. Rijndael was designed to handle additional block sizes and key lengths, however they are not
adopted in this standard.

35.4 AES-128 parameters

The GRAES core implements AES-128. An AES algorithm is defined by the following parameters
according to FIPS-197:
• Nk number of 32-bit words comprising the cipher key
• Nr number of rounds

The AES-128 algorithm is specified as Nk=4 and Nr=10.
The GRAES core has been verified against the complete set of Known Answer Test vectors included
in the AES Algorithm Validation Suite (AESAVS) from National Institute of Standards and Technol-
ogy (NIST), Information Technology Laboratory, Computer Security Division.

35.5 Throughput

The data throughput for the GRAES core is around 128/90 bits per clock cycle, i.e. approximately 1.4
Mbits per MHz.
The underlaying AES core has been implemented in a dual crypto chip on 250 nm technology as
depicted in the figure below. The throughput at 33 MHz operating frequency was 42 Mbit/s, the
power consumption was 9,6 mW, and the size was 14,5 kgates.

Figure 118. Dual Crypto Chip

35.6 Characteristics

The GRAES core has been synthesized for a Xilinx Virtex-2 XC2V6000-4 devices with the following
results:
• LUTs: 5040 (7%)
• 256x1 ROMs (ROM256X1): 128
GRIP, Sep 2018, Version 2018.3 387 www.cobham.com/gaisler

GRLIB IP Core

• Frequency:125 MHz

35.7 Registers

The core is programmed through registers mapped into AHB I/O address space.. Only 32-bit single-
accesses to the registers are supported

35.7.1 Control Register

Table 418.0x00 - CTRL - Control Register

31-2: - Unused
1: DEC 0 = “encrypt”, 1 = “decrypt” (only relevant when KEY=1)
0: KEY 0 = “data will be input”, 1 = “key will be input”

Note that the Data Input Registers cannot be written before a command is given to the Control Regis-
ter. Note that the Data Input Registers must then be written in sequence, and all four registers must be
written else the core ends up in an undefined state.
The KEY bit determines whether a key will be input (KEY=1), or data will be input (KEY=0). When
a “key will be input” command is written, the DEC bit determines whether decryption (DEC=1) or
encryption (DEC=0) should be applied to the subsequent data input.
Note that the register cannot be written after a command has been given, until the specific operation
completes. A write access will be terminated with an AMBA AHB error response till the Data Input
Register 3 has been written, and the with an AMBA AHB retry response till the operation completes.
Any read access to this register results in an AMBA AHB error response.

Table 417.GRAES registers

AHB I/O address offset Register
0x00 Control Register
0x10 Data Input 0 Register
0x14 Data Input 1 Register
0x18 Data Input 2 Register
0x1C Data Input 3 Register
0x20 Data Output 0 Register
0x24 Data Output 1 Register
0x28 Data Output 2 Register
0x2C Data Output 3 Register
0x3C Debug Register

31 2 1 0
RESERVED DE

C
KE
Y

- - -
w w w
GRIP, Sep 2018, Version 2018.3 388 www.cobham.com/gaisler

GRLIB IP Core

35.7.2 Debug Register (R)

Table 419.0x3C - DEBUG - Debug Register

31-0: FSM Finite State Machine
Any write access to this register results in an AMBA AHB error response.

35.7.3 Data Input Registers (W)

Table 420.0x10 - DATAI0 - Data Input 0 Register

Table 421.0x14 - DATAI1 - Data Input 1 Register

Table 422.0x18 - DATAI2 - Data Input 2 Register

Table 423.0x1C - DATAI3 - Data Input 3 Register

Note that these registers can only be written with a key after a “key will be input” command has been
written to the control register. Note that the registers must then be written in sequence, and all four
registers must be written else the core ends up in an undefined state.
Note that these registers can only be written with data after a “data will be input” command has been
written to the control register, else an AMBA AHB error response is given. Note that the registers
must then be written in sequence and all four registers must be written else the core ends up in an
undefined state. The encryption or decryption operation is started when the Data Input 3 Register is
written to with data.

31 0
FSM

r

31 0
Data/Key(127 downto 96)
-
w

31 0
Data/Key(95 downto 64)
-
w

31 0
Data/Key(63 downto 32)
-
w

31 0
Data/Key(31 downto 0)
-
w

GRIP, Sep 2018, Version 2018.3 389 www.cobham.com/gaisler

GRLIB IP Core

35.7.4 Data Output Registers (R)

Table 424.0x20 - DATAO0 - Data Output 0 Register

Table 425.0x24 - DATAO1 - Data Output 1 Register

Table 426.0x28 - DATAO2 - Data Output 2 Register

Table 427.0x2C - DATAO3 - Data Output 3 Register

Note that these registers can only be read after encryption or decryption has been completed. An
AMBA AHB retry response is given to read accesses that occur while the encryption or decryption is
in progress. If a read access is attempted before an encryption or decryption has even been initiated,
then an AMBA AHB erro response is given. Write accesses to these registers result in an AMBA
AHB error response.

35.8 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x073. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

35.9 Configuration options

Table 428 shows the configuration options of the core (VHDL generics).

31 0
Data(127 downto 96)
-
r*

31 0
Data(95 downto 64)
-
r*

31 0
Data(63 downto 32)
-
r*

31 0
Data(31 downto 0)
-
r*

Table 428.Configuration options

Generic Function Allowed range Default
hindex AHB slave index 0 - NAHBSLV-1 0
ioaddr Addr field of the AHB I/O BAR 0 - 16#FFF# 0
iomask Mask field of the AHB I/O BAR 0 - 16#FFF# 16#FFC#
hirq Interrupt line used by the GRAES 0 - NAHBIRQ-1 0
GRIP, Sep 2018, Version 2018.3 390 www.cobham.com/gaisler

GRLIB IP Core

35.10 Signal descriptions

Table 429 shows the interface signals of the core (VHDL ports).

Note that the AES core can also be used without the GRLIB plug&play information. The AMBA
AHB signals are then provided as IEEE Std_Logic_1164 compatible scalars and vectors.

35.11 Library dependencies

Table 430 shows libraries used when instantiating the core (VHDL libraries).

35.12 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;

library gaisler;
use gaisler.crypto.all;
...
...
 signal debug: std_logic_vector(0 to 4);
..
..
 GRAES0: graes
 generic map (
 hindex => hindex,
 ioaddr => ioaddr,
 iomask => iomask,
 hirq => hirq)
 port map (
 rstn => rstn,
 clk => clk,
 ahbi => ahbsi,
 ahbo => ahbso(hindex),
 debug => debug);

Table 429.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
AHBI * Input AHB slave input signals -
AHBO * Output AHB slave output signals -
DEBUG[0:4] N/A Output Debug information -
* see GRLIB IP Library User’s Manual

Table 430.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER CRYPTO Component GRAES component declarations
GRIP, Sep 2018, Version 2018.3 391 www.cobham.com/gaisler

GRLIB IP Core

36 GRAES_DMA - Advanced Encryption Standard with DMA

36.1 Overview

The Advanced Encryption Standard (AES) is a symmetric encryption algorithm for high throughput
applications (like audio or video streams). The GRAES_DMA core implements the AES algorithm
with 256-bit key length using CTR mode of operation. The AES algorithm is specified in the
“Advanced Encryption Standard (AES)” document, Federal Information Processing Standards (FIPS)
Publication 197. The document is established by the National Institute of Standards and Technology
(NIST). DMA is used for efficiently transferring plaintext and ciphertext to the cryptographic core
with minimum CPU involvement.
The core provides an AMBA AHB master interface, with sideband signals as per [GRLIB] including:
• interrupt bus
• configuration information
• diagnostic information
The core can be partition in the following hierarchical elements:
• Advanced Encryption Standard (AES) core
• AMBA AHB master

36.2 Operation

The input and output for the AES algorithm each consist of sequences of 128 bits (digits with values
of 0 or 1). These sequences will sometimes be referred to as blocks and the number of bits they con-
tain will be referred to as their length. The cipher key for the AES algorithm supported in this core is
a sequence of 256 bits.
To encrypt a message a descriptor must be setup. It contains pointers to memory locations where the
key, initialization vector and plaintext are located. The memory addresses for the key and initializa-
tion vector must be word aligned while the plaintext can start at any address. If the previous key and/
or init vector are to be reused there are control bits in the descriptor which can be used to make the
core skip the fetching of the respective pointers and also subsequently skip the fetching of the actual
key and initvector. Currently the initvector and key always have to be loaded for the core to operate
correctly.
The core can also read the key and initialization vector from input signals. This is done by setting the
keyvector and initvector address pointers to all ones.
When one or more descriptors have been enabled the core can be enabled and it will automatically
start fetching the necessary values from memory, split the data into the required blocks, encrypt/
decrypt and finally write back the result to memory. When each descriptor is finished the core will set
the enable bit to 0. An interrupt can also optionally be generated. The result of the encryption or
decryption can be either written back to the same memory address from where the plain or ciphertext
was read or to a different location specified in an additional pointer. The layout of the descriptor is
shown in the tables below.

Table 431.GRAES_DMA descriptor word 0 (address offset 0x0)
31 21 20 8 7 6 5 4 3 2 1 0

LEN RESERVED KE IV DO ED MD IE EN

31: 21 Length (LEN) - Length in bytes of message to process
20: 8 RESERVED
7 Key (KE) - When set a new key will be fetched and used from the memory address set in the key

address descriptor word. If not set the currently stored key is used and the key adddress word should
not be included in the descriptor.
GRIP, Sep 2018, Version 2018.3 392 www.cobham.com/gaisler

GRLIB IP Core
6 Initialization vector (IV) - When set a new initialization vectir will be fetched and used from the
memory address set in the initialization vector address descriptor word. If not set the currently stored
initialization vector is used and the initialization vector adddress word should not be included in the
descriptor.

5 Dataout (DO) - When set the encrypted/decrypted output will be written to the memory address
specified in the dataout descriptor word. Otherwise data is written to the same memory address from
where the original plaintext/ciphertext was fetched and the dataout address word should not be
included in the descriptor.

4 Encrypt-decrypt (ED) - If set to one encryption will be performed otherwise decryption
3 RESERVED
2 RESERVED
1 Interrupt enable (IE) - When set an interrupt will be generated when the processing of the current

enabled descriptor is finished and the interrupt enable bit in the control register is set. It should be
noted that, the enable bit in the control register might not be cleared yet when a finish interrupt is
generated for the last descriptor because the core will read the next descriptor and stop after encoun-
tering a ‘0’ on the descriptor control word enable bit which takes some clock cycles.

0 Enable (EN) - When set to ‘1’ indicates that descriptor is enabled and the GRAES core will process
it. After the processing is finished this bit will be cleared and the core will jump to the next register.
It should be noted that this bit will not be cleared in case a DMA error is encountered at any point of
the processing of the current descriptor. If this bit is clear on the first read from the GRAES_DMA
core the core will stop processing.

Table 432.GRAES_DMA descriptor word 1 (address offset 0x4)
31 0

Data input address

31: 0 Data input address - Memory address pointer where plaintext/ciphertext for encryption/descryption
is located.

Table 433.GRAES_DMA descriptor word 2(address offset 0x8 if DO is set, otherwise not exist)
31 2 1 0

Dataout address

31: 2 Dataout address - Memory address where encrypted/decrypted data shall be stored. If the data should
be stored at the same location as the input data (DO bit in word 0 is 0) then this word shall not be
included in the descriptor.

1: 0 Reserved

Table 434.GRAES_DMA descriptor word 3(address offset 0xC if DO and IV is set; address offset 0x8 if DO is clear and IV
is set; otherwise not exist.)

31 2 1 0

IV address

31: 2 Initialization vector address - Memory address where initialization vector is located. If a new init-
vector is not needed (IV bit in word 0 is 0) then this word shall not be included in the descriptor.
If this value is set to 0xFFFFFFFF then the core will take the initialization value from the ivin input
signal instead.

1: 0 Must be set to zero unless the init value shall be taken from signal input.

Table 435.GRAES_DMA descriptor word 4(address offset 0x10 if DO, IV and KEY is set; address offset 0xC if one of the
following bits are set and one of them is clear (DO, IV) and KEY is set; address offset 0x8 if DO and IV is clear
and KEY is set; otherwise not exist)

31 2 1 0

Key address

Table 431.GRAES_DMA descriptor word 0 (address offset 0x0)
GRIP, Sep 2018, Version 2018.3 393 www.cobham.com/gaisler

GRLIB IP Core
The descriptor control word should be written last. If one or more words are not included the offsets
of the following words should be adjusted accordingly.

36.3 Background

The Federal Information Processing Standards (FIPS) Publication Series of the National Institute of
Standards and Technology (NIST) is the official series of publications relating to standards and guide-
lines adopted and promulgated under the provisions of the Information Technology Management
Reform Act.
The Advanced Encryption Standard (AES) standard specifies the Rijndael algorithm, a symmetric
block cipher that can process data blocks of 128 bits, using cipher keys with lengths of 128, 192, and
256 bits. Rijndael was designed to handle additional block sizes and key lengths, however they are not
adopted in this standard.

36.4 Characteristics

The GRAES_DMA core has been synthesized for a Actel AX2000-std device with the following
results:
• Combinational Cells: 9364 of 21504 (44%)
• Sequential Cells: 2374 of 10752 (22%)
• Total Cells: 11738 of 32256 (37%)
• Block Rams : 0 of 64 (0%)
• Frequency:60 MHz

36.5 Endianness

The core is designed for big-endian systems.

31: 2 Key address - Memory address where key is located. If a new key is not needed (KE bit in word 0 is
0) then this word shall not be included in the descriptor.
If this value is set to 0xFFFFFFFF then the core will take the key value from the keyin input signal
instead.

1: 0 Must be set to zero unless the init value shall be taken from signal input.

Table 436.GRAES_DMA descriptor word 5(address offset 0x14 if DO,IV, KEY is set; address offset 0x10 if two of the
following bits are set and one of them is clear (DO,IV,KEY); address offset 0xC if two of the following bits are
clear and one of them is set (DO,IV,KEY); address offset 0x8 if DO,IV, and KEY is clear)

31 2 1 0

Next descriptor

31: 2 Next descriptor address - Memory address to the next descriptor.
1: 0 Reserved

Table 435.GRAES_DMA descriptor word 4(address offset 0x10 if DO, IV and KEY is set; address offset 0xC if one of the
following bits are set and one of them is clear (DO, IV) and KEY is set; address offset 0x8 if DO and IV is clear
and KEY is set; otherwise not exist)
GRIP, Sep 2018, Version 2018.3 394 www.cobham.com/gaisler

GRLIB IP Core

36.6 Registers

The core is programmed through registers mapped into APB address space.

Table 437.GRAES_DMA registers

APB address offset Register
0x0 Control
0x4 Status
0x8 Descriptor address
GRIP, Sep 2018, Version 2018.3 395 www.cobham.com/gaisler

GRLIB IP Core

36.6.1

Table 438.0x00 - CTRL - GRAES_DMA control register

Control Register

36.6.2

Table 439.0x04 - STAT - GRAES_DMA status register

Status Register

36.6.3

Table 440.0x08 - ADDR - GRAES_DMA Descriptor address

Descriptor Address

31 4 3 2 1 0

RESERVED AB IOE KS IE EN

0 0 0 0 0 0

r rw rw rw rw rw

31: 5 RESERVED
4 Abort (AB) - If set to ‘1’ the core will stop processing after reaching a new descriptor and it will self-

clear the Abort and Enable (bit-0) bits. The software can check the status of Abort or Enable bits after
setting the Abort bit to see when the core becomes idle.It should be noted that if the last descriptor
that is processed when abort bit is set causes a DMA error the DMA error status bit will be set so the
software has to make sure to handle a potential error after abort. This bit can only be written if it is
clear. Reset value : ‘0’

3 Interrupt On Error (IOE)- If set to ‘1’ then the core will generate an interrupt when an DMA error is
encountered. This bit is independent from the bit-1 (IE). Read the section related to DMA error han-
dling for further details about error handling. This bit can only be written if enable bit is clear.Reset
value : ‘0’

2 Keysize (KS) - If set to ‘1’ then the core will use 128 bit key length. Otherwise the core makes use of
256 bit key length. This bit can only be written if enable bit is clear.Reset value : ‘0’

1 Interrupt Enable (IE) - If set, an interrupt is generated each time a message has been decrypted. This
bit can only be written if enable bit is clear.Reset value: ‘0’.

0 Enable (EN) - Write a one to this bit each time new descriptors are activated in the list. Writing a one
will cause the core to read a new descriptor and perform the requested operation. This bit is automati-
cally cleared when the core encounters a descriptor which is not enabled or if a DMA error is encoun-
tered. This bit can not be set when the error bit in the status register is set. Software has to clear the
error bit in the status register to be able to set the Enable bit again. Read the Status Register section
for more details. This bit can only be written when it is clear but it can initiate the processing of the
last descriptor again in certain conditions to allow dynamic addition of descriptors to the link list. For
further details read the descriptor processing section. Reset value: ‘0’

31 0

RESERVED ER

0 0

r rw

31: 1 RESERVED
0 Error (ER) - The bit is automatically set to 1 when a DMA error is encountered. When it is set, the

enable bit in the ctrl register is locked and can not be set until the error bit is cleared. The error bit is
cleared by writing ‘1’ to it.

31 2 1 0

Descriptor address R

0 0

rw r

31: 2 Current descriptor address - Points to current descriptor. Can be initialized with a new pointer when
the core is disabled. Is updated by the core while it is progressing through the list of descriptors.

1: 0 RESERVED
GRIP, Sep 2018, Version 2018.3 396 www.cobham.com/gaisler

GRLIB IP Core
36.7 Descriptor Processing

Software should set up the descriptor or descriptor chain as it described in the operation section. There
are two ways to finish the processing of a descriptor or a descriptor chain. First way is to link the next
descriptor to itself for the last descriptor in the chain. After processing, the enable bit of the descriptor
control word is automatically cleared so if the next descriptor points to itself the enable bit will be
cleared and when read again and the core will stop. Another way is to allocate an empty pointer in
which the enable bit of the descriptor word is cleared and link it as a last descriptor. It should be noted
that when an empty pointer is allocated, size of it should be equal to the maximum possible size (6
words), although the content of the unused words does not matter as soon as the descriptor is not
enabled.
If interrupt enable bit is set, an interrupt will be generated after processing an enabled descriptor. But
it should be noted that after an interrupt is generated for the last enabled descriptor in the chain, the
enable bit in the control word might not be cleared yet due to core being started to process the next
descriptor in which it encounters a cleared enable bit and clears the enable bit in the control register. If
the software updates the last disabled pointer in the list and enables it while the core is running, and
sets the enable bit in the control register while it is already set and it was reading the last pointer, the
core will reprocess the last descriptor if the descriptor enable bit was cleared (it did not read the
updated descriptor control word), to make sure operation to continue. If the software makes this mod-
ification and sets the enable bit in the control register while it was set, then the core will anyway con-
tinue operation because it will read the last descriptor as enabled. This feature allows for safe dynamic
addition of descriptors to the list while processing is ongoing. It should be noted the control word of a
descriptor should always be written last.
The core will immediately stop processing on an DMA error and software has to take certain steps
which are explained in the next section (Error Handling).

36.8 Error Handling

If the core encounters a DMA error, the processing will be immediately stopped (enable bit in the core
control register will be cleared) and the error bit in the status register will be set. If interrupt on error is
enabled an interrupt will also be generated regardless of interrupt enable bit is set on the descriptor
control word. When the error bit in the status register is set, the descriptor address that resides in the
descriptor address register is the descriptor that caused the DMA error. It should be noted that the
enable bit in the descriptor control word will not be cleared during error. In addition, the enable bit in
the control word will be locked if the error bit in the status register is set. So after an error the software
has to clear the error bit by writing ‘1’ to the position of error bit in the status register. The software
should check the status of error bit after the processing of a descriptor chain is finished (en bit is
cleared in the control register), to make sure no error has occurred and clear the error bit after an error
in order to be able to proceed with the next operations.

After an error is generated the software should either fix the problem related to the error in the
descriptor or set the descriptor address to a new descriptor after clearing the error bit and before start-
ing a new operation. Otherwise it can cause an infinite loop because the enable bit of the descriptor
word which causes a DMA error is not automatically cleared and the descriptor address points to the
failing descriptor when the core stops due to a DMA error.

36.9 Aborting Operation

It is possible to abort the processing of descriptor at a certain point. When the abort bit in the core’s
control word is set, the processing will stop when the current descriptor has finished processing. After
GRIP, Sep 2018, Version 2018.3 397 www.cobham.com/gaisler

GRLIB IP Core

the abort operation has successfully finished the abort bit and enable bit in the core’s control word will
be cleared. After finishing, the descriptor address register points to the descriptor which is not pro-
cessed due to stopping. It should be noted that abort bit will not interrupt the processing of the current
descriptor when it is set, hence it can not resolve a problem of unresponsive DMA. The abort bit can
be used to make sure the core goes into idle state as soon as possible and does not create any transac-
tions on the DMA bus anymore.

36.10 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x07B. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

36.11 Implementation

36.11.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core will use asynchronous reset for all registers, if the GRLIB config package setting
grlib_async_reset_enable is set.

36.12 Configuration options

Table 441 shows the configuration options of the core (VHDL generics).

Table 441.Configuration options

Generic Function Allowed range Default
hindex AHB master index 0 - NAHBMST-1 0
pindex APB slave index 0 - NAPBSLV-1 0
paddr Addr field of the APB BAR 0 - 16#FFF# 0
pmask Mask field of the APB BAR 0 - 16#FFF# 16#FFF#
pirq Interrupt line used by the GRAES 0 - NAHBIRQ-1 0
extkeyiv Support key and IV initalization from signals. If this

generic is 1 then the keyin and ivin signals can be used to
set key and IV values.

0 - 1 0

scantest Enable SCAN test support 0 - 1 0
GRIP, Sep 2018, Version 2018.3 398 www.cobham.com/gaisler

GRLIB IP Core

36.13 Signal descriptions

Table 442 shows the interface signals of the core (VHDL ports).

36.14 Library dependencies

Table 443 shows libraries used when instantiating the core (VHDL libraries).

36.15 Instantiation

This example shows how the core can be instantiated.
entity graes_dma_tb is
 generic(
 hindex: in Integer := 0;
 pindex: in Integer := 0;
 paddr: in Integer := 0;
 pmask: in Integer := 16#fff#;
 pirq: in Integer := 1);

end entity graes_dma_tb;

signal rstn: std_ulogic := ’0’;
signal clk: std_ulogic := ’0’;
signal apbi: apb_slv_in_type;
signal apbo: apb_slv_out_vector := (others => apb_none);
signal ahbmi: ahb_mst_in_type;
signal ahbmo: ahb_mst_out_vector := (others => ahbm_none);

graes0: graes_dma
 generic map(
 hindex => hindex,
 pindex => pindex,
 paddr => paddr,
 pmask => pmask,
 pirq => pirq)
 port map(
 rstn => rstn,
 clk => clk,
 ahbi => ahbmi,

Table 442.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
AHBI * Input AHB master input signals -
AHBO * Output AHB master output signals -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
KEYIN[255:0] N/A Input Alternative key input -
IVIN[127:0] N/A Input Alternative IV input -
* see GRLIB IP Library User’s Manual

Table 443.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER CRYPTO Component GRAES component declarations
GRIP, Sep 2018, Version 2018.3 399 www.cobham.com/gaisler

GRLIB IP Core

 ahbo => ahbmo(hindex),
 apbi => apbi,
 apbo => apbo(pindex));
GRIP, Sep 2018, Version 2018.3 400 www.cobham.com/gaisler

GRLIB IP Core

37 GRCAN - CAN 2.0 Controller with DMA

37.1 Overview

The CAN controller is assumed to operate in an AMBA bus system where both the AMBA AHB bus
and the APB bus are present. The AMBA APB bus is used for configuration, control and status han-
dling. The AMBA AHB bus is used for retrieving and storing CAN messages in memory external to
the CAN controller. This memory can be located on-chip, as shown in the block diagram, or external
to the chip.
The CAN controller supports transmission and reception of sets of messages by use of circular buffers
located in memory external to the core. Separate transmit and receive buffers are assumed. Reception
and transmission of sets of messages can be ongoing simultaneously.
After a set of message transfers has been set up via the AMBA APB interface the DMA controller ini-
tiates a burst of read accesses on the AMBA AHB bus to fetch messages from memory, which are per-
formed by the AHB master. The messages are then transmitted by the CAN core. When a
programmable number of messages have been transmitted, the DMA controller issues an interrupt.
After the reception has been set up via the AMBA APB interface, messages are received by the CAN
core. To store messages to memory, the DMA controller initiates a burst of write accesses on the
AMBA AHB bus, which are performed by the AHB master. When a programmable number of mes-
sages have been received, the DMA controller issues an interrupt.
The CAN controller can detect a SYNC message and generate an interrupt, which is also available as
an output signal from the core. The SYNC message identifier is programmable via the AMBA APB
interface. Separate synchronisation message interrupts are provided.
The CAN controller can transmit and receive messages on either of two CAN busses, but only on one
at a time. The selection is programmable via the AMBA APB interface.
Note that it is not possible to receive a CAN message while transmitting one.

37.1.1 Function

The core implements the following functions:
• CAN protocol
• Message transmission
• Message filtering and reception

Figure 119. Block diagram

GRCAN

DMA

AMBA
APB
Slave

AMBA Layer

M
ux

 /
D

eM
ux

Coding Layer

FIFO
AMBA
AHB

Master

A
M

B
A

 A
P

B

N
om

in
al

 C
A

N
 b

us

A
M

B
A

 A
H

B Physical Layer

R
ed

un
da

nt
 C

A
N

 b
us

CAN 2.0
Codec

Controller
GRIP, Sep 2018, Version 2018.3 401 www.cobham.com/gaisler

GRLIB IP Core

• SYNC message reception
• Status and monitoring
• Interrupt generation
• Redundancy selection

37.1.2 Interfaces

The core provides the following external and internal interfaces:
• CAN interface
• AMBA AHB master interface, with sideband signals as per [GRLIB] including:
• cacheability information
• interrupt bus
• configuration information
• diagnostic information
• AMBA APB slave interface, with sideband signals as per [GRLIB] including:
• interrupt bus
• configuration information
• diagnostic information

37.1.3 Hierarchy

The CAN controller core can be partitioned in the following hierarchical elements:
• CAN 2.0 Core
• Redundancy Multiplexer / De-multiplexer
• Direct Memory Access controller
• AMBA APB slave
• AMBA AHB master

37.2 Interface

The external interface towards the CAN bus features two redundant pairs of transmit output and
receive input (i.e. 0 and 1).
The active pair (i.e. 0 or 1) is selectable by means of a configuration register bit. Note that all recep-
tion and transmission is made over the active pair.
For each pair, there is one enable output (i.e. 0 and 1), each being individually programmable. Note
that the enable outputs can be used for enabling an external physical driver. Note that both pairs can
be enabled simultaneously. Note that the polarity for the enable/inhibit inputs on physical interface
drivers differs, thus the meaning of the enable output is undefined.
Redundancy is implemented by means of Selective Bus Access. Note that the active pair selection
above provides means to meet this requirement.

37.3 Protocol

The CAN protocol is based on a CAN 2.0 controller VHDL core. The CAN controller complies with
CAN Specification Version 2.0 Part B, except for the overload frame generation.
Note that there are three different CAN types generally defined:
• 2.0A, which considers 29 bit ID messages as an error
GRIP, Sep 2018, Version 2018.3 402 www.cobham.com/gaisler

GRLIB IP Core

• 2.0B Passive, which ignores 29 bit ID messages
• 2.0B Active, which handles 11 and 29 bit ID messages
Only 2.0B Active is implemented.

37.4 Status and monitoring

The CAN interface incorporates status and monitoring functionalities. This includes:
• Transmitter active indicator
• Bus-Off condition indicator
• Error-Passive condition indicator
• Over-run indicator
• 8-bit Transmission error counter
• 8-bit Reception error counter
The status is available via a register and is also stored in a circular buffer for each received message.

37.5 Transmission

The transmit channel is defined by the following parameters:
• base address
• buffer size
• write pointer
• read pointer
The transmit channel can be enabled or disabled.

37.5.1 Circular buffer

The transmit channel operates on a circular buffer located in memory external to the CAN controller.
The circular buffer can also be used as a straight buffer. The buffer memory is accessed via the
AMBA AHB master interface.
Each CAN message occupies 4 consecutive 32-bit words in memory. Each CAN message is aligned to
4 words address boundaries (i.e. the 4 least significant byte address bits are zero for the first word in a
CAN message).
The size of the buffer is defined by the CanTxSIZE.SIZE field, specifying the number of CAN mes-
sages * 4 that fit in the buffer.
E.g. CanTxSIZE.SIZE =2 means 8 CAN messages fit in the buffer.
Note however that it is not possible to fill the buffer completely, leaving at least one message position
in the buffer empty. This is to simplify wrap-around condition checking.
E.g. CanTxSIZE.SIZE =2 means that 7 CAN messages fit in the buffer at any given time.

37.5.2 Write and read pointers

The write pointer (CanTxWR.WRITE) indicates the position+1 of the last CAN message written to
the buffer. The write pointer operates on number of CAN messages, not on absolute or relative
addresses.
The read pointer (CanTxRD.READ) indicates the position+1 of the last CAN message read from the
buffer. The read pointer operates on number of CAN messages, not on absolute or relative addresses.
GRIP, Sep 2018, Version 2018.3 403 www.cobham.com/gaisler

GRLIB IP Core

The difference between the write and the read pointers is the number of CAN messages available in
the buffer for transmission. The difference is calculated using the buffer size, specified by the CanTx-
SIZE.SIZE field, taking wrap around effects of the circular buffer into account.
Examples:
• There are 2 CAN messages available for transmit when CanTxSIZE.SIZE=2,

CanTxWR.WRITE=2 and CanTxRD.READ=0.
• There are 2 CAN messages available for transmit when CanTxSIZE.SIZE=2, CanTxWR.WRITE

=0 and CanTxRD.READ =6.
• There are 2 CAN messages available for transmit when CanTxSIZE.SIZE=2, CanTxWR.WRITE

=1 and CanTxRD.READ =7.
• There are 2 CAN messages available for transmit when CanTxSIZE.SIZE=2, CanTxWR.WRITE

=5 and CanTxRD.READ =3.
When a CAN message has been successfully transmitted, the read pointer (CanTxRD.READ) is auto-
matically incremented, taking wrap around effects of the circular buffer into account. Whenever the
write pointer CanTxWR.WRITE and read pointer CanTxRD.READ are equal, there are no CAN mes-
sages available for transmission.

37.5.3 Location

The location of the circular buffer is defined by a base address (CanTxADDR.ADDR), which is an
absolute address. The location of a circular buffer is aligned on a 1kbyte address boundary.

37.5.4 Transmission procedure

When the channel is enabled (CanTxCTRL.ENABLE=1), as soon as there is a difference between the
write and read pointer, a message transmission will be started. Note that the channel should not be
enabled if a potential difference between the write and read pointers could be created, to avoid the
message transmission to start prematurely.
A message transmission will begin with a fetch of the complete CAN message from the circular buffer
to a local fetch-buffer in the CAN controller. After a successful data fetch, a transmission request will
be forwarded to the CAN core. If there is at least an additional CAN message available in the circular
buffer, a prefetch of this CAN message from the circular buffer to a local prefetch-buffer in the CAN
controller will be performed. The CAN controller can thus hold two CAN messages for transmission:
one in the fetch buffer, which is fed to the CAN core, and one in the prefetch buffer.
After a message has been successfully transmitted, the prefetch-buffer contents are moved to the fetch
buffer (provided that there is message ready). The read pointer (CanTxRD.READ) is automatically
incremented after a successful transmission, i.e. after the fetch-buffer contents have been transmitted,
taking wrap around effects of the circular buffer into account. If there is at least an additional CAN
message available in the circular buffer, a new prefetch will be performed.
If the write and read pointers are equal, no more prefetches and fetches will be performed, and trans-
mission will stop.
If the single shot mode is enabled for the transmit channel (CanTxCTRL.SINGLE=1), any message
for which the arbitration is lost, or failed for some other reason, will lead to the disabling of the chan-
nel (CanTxCTRL.ENABLE=0), and the message will not be put up for re-arbitration.
Interrupts are provided to aid the user during transmission, as described in detail later in this section.
The main interrupts are the Tx, TxEmpty and TxIrq which are issued on the successful transmission
of a message, when all messages have been transmitted successfully and when a predefined number of
messages have been transmitted successfully. The TxLoss interrupt is issued whenever transmission
arbitration has been lost, could also be caused by a communications error. The TxSync interrupt is
issued when a message matching the SYNC Code Filter Register.SYNC and SYNC Mask Filter Reg-
GRIP, Sep 2018, Version 2018.3 404 www.cobham.com/gaisler

GRLIB IP Core

ister.MASK registers is successfully transmitted. Additional interrupts are provided to signal error
conditions on the CAN bus and AMBA bus.

37.5.5 Straight buffer

It is possible to use the circular buffer as a straight buffer, with a higher granularity than the 1kbyte
address boundary limited by the base address (CanTxADDR.ADDR) field.
While the channel is disabled, the read pointer (CanTxRD.READ) can be changed to an arbitrary
value pointing to the first message to be transmitted, and the write pointer (CanTxWR.WRITE) can
be changed to an arbitrary value.
When the channel is enabled, the transmission will start from the read pointer and continue to the
write pointer.

37.5.6 AMBA AHB error

Definition:
• a message fetch occurs when no other messages is being transmitted
• a message prefetch occurs when a previously fetched message is being transmitted
• the local fetch buffer holds the message being fetched
• the local prefetch buffer holds the message being prefetched
• the local fetch buffer holds the message being transmitted by the CAN core
• a successfully prefetched message is copied from the local prefetch buffer to the local fetch buf-

fer when that buffer is freed after a successful transmission.
An AHB error response occurring on the AMBA AHB bus while a CAN message is being fetched
will result in a TxAHBErr interrupt.
If the CanCONF.ABORT bit is set to 0b, the channel causing the AHB error will skip the message
being fetched from memory and will increment the read pointer. No message will be transmitted.
If the CanCONF.ABORT bit is set to 1b, the channel causing the AHB error will be disabled
(CanTxCTRL.ENABLE is cleared automatically to 0 b). The read pointer can be used to determine
which message caused the AHB error. Note that it could be any of the four word accesses required to
read a message that caused the AHB error.
If the CanCONF.ABORT bit is set to 1b, all accesses to the AMBA AHB bus will be disabled after an
AMBA AHB error occurs, as indicated by the CanSTAT.AHBErr bit being 1b. The accesses will be
disabled until the CanSTAT register is read, and automatically clearing bit CanSTAT.AHBErr.
An AHB error response occurring on the AMBA AHB bus while a CAN message is being prefetched
will not cause an interrupt, but will stop the ongoing prefetch and further prefetch will be prevented
temporarily. The ongoing transmission of a CAN message from the fetch buffer will not be affected.
When the fetch buffer is freed after a successful transmission, a new fetch will be initiated, and if this
fetch results in an AHB error response occurring on the AMBA AHB bus, this will be handled as for
the case above. If no AHB error occurs, prefetch will be allowed again.

37.5.7 Enable and disable

When an enabled transmit channel is disabled (CanTxCTRL.ENABLE=0b), any ongoing CAN mes-
sage transfer request will not be aborted until a CAN bus arbitration is lost or the message has been
sent successfully. If the message is sent successfully, the read pointer (CanTxRD.READ) is automati-
cally incremented. Any associated interrupts will be generated.
The progress of the any ongoing access can be observed via the CanTxCTRL.ONGOING bit. The
CanTxCTRL.ONGOING must be 0b before the channel can be re-configured safely (i.e. changing
GRIP, Sep 2018, Version 2018.3 405 www.cobham.com/gaisler

GRLIB IP Core

address, size or read pointer). It is also possible to wait for the Tx and TxLoss interrupts described
hereafter.
The channel can be re-enabled again without the need to re-configure the address, size and pointers.
Priority inversion is handled by disabling the transmitting channel, i.e. setting CanTxC-
TRL.ENABLE=0b as described above, and observing the progress, i.e. reading via the CanTxC-
TRL.ONGOING bit as described above. When the transmit channel is disabled, it can be re-
configured and a higher priority message can be transmitted. Note that the single shot mode does not
require the channel to be disabled, but the progress should still be observed as above.
No message transmission is started while the channel is not enabled.

37.5.8 Interrupts

During transmission several interrupts can be generated:
• TxLoss: Message arbitration lost for transmit (could be caused by

communications error, as indicated by other interrupts as well)
• TxErrCntr: Error counter incremented for transmit
• TxSync: Synchronization message transmitted
• Tx: Successful transmission of one message
• TxEmpty: Successful transmission of all messages in buffer
• TxIrq: Successful transmission of a predefined number of messages
• TxAHBErr: AHB access error during transmission
• Off: Bus-off condition
• Pass: Error-passive condition
The Tx, TxEmpty and TxIrq interrupts are only generated as the result of a successful message trans-
mission, after the CanTxRD.READ pointer has been incremented.

37.6 Reception

The receive channel is defined by the following parameters:
• base address
• buffer size
• write pointer
• read pointer
The receive channel can be enabled or disabled.

37.6.1 Circular buffer

The receive channel operates on a circular buffer located in memory external to the CAN controller.
The circular buffer can also be used as a straight buffer. The buffer memory is accessed via the
AMBA AHB master interface.
Each CAN message occupies 4 consecutive 32-bit words in memory. Each CAN message is aligned to
4 words address boundaries (i.e. the 4 least significant byte address bits are zero for the first word in a
CAN message).
The size of the buffer is defined by the CanRxSIZE.SIZE field, specifying the number of CAN mes-
sages * 4 that fit in the buffer.
E.g. CanRxSIZE.SIZE=2 means 8 CAN messages fit in the buffer.
GRIP, Sep 2018, Version 2018.3 406 www.cobham.com/gaisler

GRLIB IP Core

Note however that it is not possible to fill the buffer completely, leaving at least one message position
in the buffer empty. This is to simplify wrap-around condition checking.
E.g. CanRxSIZE.SIZE=2 means that 7 CAN messages fit in the buffer at any given time.

37.6.2 Write and read pointers

The write pointer (CanRxWR.WRITE) indicates the position+1 of the last CAN message written to
the buffer. The write pointer operates on number of CAN messages, not on absolute or relative
addresses.
The read pointer (CanRxRD.READ) indicates the position+1 of the last CAN message read from the
buffer. The read pointer operates on number of CAN messages, not on absolute or relative addresses.
The difference between the write and the read pointers is the number of CAN message positions avail-
able in the buffer for reception. The difference is calculated using the buffer size, specified by the
CanRxSIZE.SIZE field, taking wrap around effects of the circular buffer into account.
Examples:
• There are 2 CAN messages available for read-out when CanRxSIZE.SIZE=2, Can-

RxWR.WRITE=2 and CanRxRD.READ=0.
• There are 2 CAN messages available for read-out when CanRxSIZE.SIZE=2, Can-

RxWR.WRITE =0 and CanRxRD.READ=6.
• There are 2 CAN messages available for read-out when CanRxSIZE.SIZE=2, Can-

RxWR.WRITE =1 and CanRxRD.READ=7.
• There are 2 CAN messages available for read-out when CanRxSIZE.SIZE=2, Can-

RxWR.WRITE =5 and CanRxRD.READ=3.
When a CAN message has been successfully received and stored, the write pointer (Can-
RxWR.WRITE) is automatically incremented, taking wrap around effects of the circular buffer into
account. Whenever the read pointer CanRxRD.READ equals (CanRxWR.WRITE+1) modulo (Can-
RxSIZE.SIZE*4), there is no space available for receiving another CAN message.
The error behavior of the CAN core is according to the CAN standard, which applies to the error
counter, buss-off condition and error-passive condition.

37.6.3 Location

The location of the circular buffer is defined by a base address (CanRxADDR.ADDR), which is an
absolute address. The location of a circular buffer is aligned on a 1kbyte address boundary.

37.6.4 Reception procedure

When the channel is enabled (CanRxCTRL.ENABLE=1), and there is space available for a message
in the circular buffer (as defined by the write and read pointer), as soon as a message is received by
the CAN core, an AMBA AHB store access will be started. The received message will be temporarily
stored in a local store-buffer in the CAN controller. Note that the channel should not be enabled until
the write and read pointers are configured, to avoid the message reception to start prematurely
After a message has been successfully stored the CAN controller is ready to receive a new message.
The write pointer (CanRxWR.WRITE) is automatically incremented, taking wrap around effects of
the circular buffer into account.
Interrupts are provided to aid the user during reception, as described in detail later in this section. The
main interrupts are the Rx, RxFull and RxIrq which are issued on the successful reception of a mes-
sage, when the message buffer has been successfully filled and when a predefined number of mes-
sages have been received successfully. The RxMiss interrupt is issued whenever a message has been
received but does not match a message filtering setting, i.e. neither for the receive channel nor for the
SYNC message described hereafter.
GRIP, Sep 2018, Version 2018.3 407 www.cobham.com/gaisler

GRLIB IP Core

The RxSync interrupt is issued when a message matching the SYNC Code Filter Register.SYNC and
SYNC Mask Filter Register.MASK registers has been successfully received. Additional interrupts are
provided to signal error conditions on the CAN bus and AMBA bus.

37.6.5 Straight buffer

It is possible to use the circular buffer as a straight buffer, with a higher granularity than the 1kbyte
address boundary limited by the base address (CanRxADDR.ADDR) field.
While the channel is disabled, the write pointer (CanRxWR.WRITE) can be changed to an arbitrary
value pointing to the first message to be received, and the read pointer (CanRxRD.READ) can be
changed to an arbitrary value.
When the channel is enabled, the reception will start from the write pointer and continue to the read
pointer.

37.6.6 AMBA AHB error

An AHB error response occurring on the AMBA AHB bus while a CAN message is being stored will
result in an RxAHBErr interrupt.
If the CanCONF.ABORT bit is set to 0b, the channel causing the AHB error will skip the received
message, not storing it to memory. The write pointer will be incremented.
If the CanCONF.ABORT bit is set to 1b, the channel causing the AHB error will be disabled (Can-
RxCTRL.ENABLE is cleared automatically to 0b). The write pointer can be used to determine which
message caused the AHB error. Note that it could be any of the four word accesses required to writ a
message that caused the AHB error.
If the CanCONF.ABORT bit is set to 1b, all accesses to the AMBA AHB bus will be disabled after an
AMBA AHB error occurs, as indicated by the CanSTAT.AHBErr bit being 1b. The accesses will be
disabled until the CanSTAT register is read, and automatically clearing bit CanSTAT.AHBErr.

37.6.7 Enable and disable

When an enabled receive channel is disabled (CanRxCTRL.ENABLE=0b), any ongoing CAN mes-
sage storage on the AHB bus will not be aborted, and no new message storage will be started. Note
that only complete messages can be received from the CAN core. If the message is stored success-
fully, the write pointer (CanRxWR.WRITE) is automatically incremented. Any associated interrupts
will be generated.
The progress of the any ongoing access can be observed via the CanRxCTRL.ONGOING bit. The
CanRxCTRL.ONGOING must be 0b before the channel can be re-configured safely (i.e. changing
address, size or write pointer). It is also possible to wait for the Rx and RxMiss interrupts described
hereafter.
The channel can be re-enabled again without the need to re-configure the address, size and pointers.
No message reception is performed while the channel is not enabled

37.6.8 Interrupts

During reception several interrupts can be generated:
• RxMiss: Message filtered away for receive
• RxErrCntr: Error counter incremented for receive
• RxSync: Synchronization message received
• Rx: Successful reception of one message
• RxFull: Successful reception of all messages possible to store in buffer
GRIP, Sep 2018, Version 2018.3 408 www.cobham.com/gaisler

GRLIB IP Core

• RxIrq: Successful reception of a predefined number of messages
• RxAHBErr: AHB access error during reception
• OR: Over-run during reception
• OFF: Bus-off condition
• PASS: Error-passive condition
The Rx, RxFull and RxIrq interrupts are only generated as the result of a successful message recep-
tion, after the CanRxWR.WRITE pointer has been incremented.
The OR interrupt is generated when a message is received while a previously received message is still
being stored. A full circular buffer will lead to OR interrupts for any subsequently received messages.
Note that the last message stored which fills the circular buffer will not generate an OR interrupt. The
overrun is also reported with the CanSTAT.OR bit, which is cleared when reading the register.
The error behavior of the CAN core is according to the CAN standard, which applies to the error
counter, buss-off condition and error-passive condition.

37.7 Global reset and enable

When the CanCTRL.RESET bit is set to 1b, a reset of the core is performed. The reset clears all the
register fields to their default values. Any ongoing CAN message transfer request will be aborted,
potentially violating the CAN protocol.
When the CanCTRL.ENABLE bit is cleared to 0b, the CAN core is reset and the configuration bits
CanCONF.SCALER, CanCONF.PS1, CanCONF.PS2, CanCONF.RSJ and CanCONF.BPR may be
modified. When disabled, the CAN controller will be in sleep mode not affecting the CAN bus by
only sending recessive bits. Note that the CAN core requires that 10 recessive bits are received before
any reception or transmission can be initiated. This can be caused either by no unit sending on the
CAN bus, or by random bits in message transfers.

37.8 Interrupt

Three interrupts are implemented by the CAN interface:
Index: Name: Description:
0 IRQ Common output from interrupt handler
1 TxSYNC Synchronization message transmitted (optional)
2 RxSYNC Synchronization message received (optional)

The interrupts are configured by means of the pirq VHDL generic and the singleirq VHDL generic.

37.9 Endianness

The core is designed for big-endian systems.

37.10 AXI support

The core is designed for an AMBA system but can be adapted for AXI using the AHBM2AXI
adapter.
GRIP, Sep 2018, Version 2018.3 409 www.cobham.com/gaisler

GRLIB IP Core

37.11 Registers

The core is programmed through registers mapped into APB address space.

37.11.1 Configuration Register

Table 445.Configuration Register

31-24: SCALER Prescaler setting, 8-bit: system clock / (SCALER +1)
23-20: PS1 Phase Segment 1, 4-bit: (valid range 1 to 15)
19-16: PS2 Phase Segment 2, 4-bit: (valid range 2 to 8)
14-12: RSJ ReSynchronization Jumps, 3-bit: (valid range 1 to 4)

Table 444.GRCAN registers

APB address offset Register
0x000 Configuration Register
0x004 Status Register
0x008 Control Register
0x018 SYNC Mask Filter Register
0x01C SYNC Code Filter Register
0x100 Pending Interrupt Masked Status Register
0x104 Pending Interrupt Masked Register
0x108 Pending Interrupt Status Register
0x10C Pending Interrupt Register
0x110 Interrupt Mask Register
0x114 Pending Interrupt Clear Register
0x200 Transmit Channel Control Register
0x204 Transmit Channel Address Register
0x208 Transmit Channel Size Register
0x20C Transmit Channel Write Register
0x210 Transmit Channel Read Register
0x214 Transmit Channel Interrupt Register
0x300 Receive Channel Control Register
0x304 Receive Channel Address Register
0x308 Receive Channel Size Register
0x30C Receive Channel Write Register
0x310 Receive Channel Read Register
0x314 Receive Channel Interrupt Register
0x318 Receive Channel Mask Register
0x31C Receive Channel Code Register

31 24 23 20 19 16
SCALER PS1 PS2
0 0 0
rw rw rw
15 14 12 11 10 9 8 7 6 5 4 3 2 1 0

RSJ BPR SAM Sile
nt

Sele
ct

Ena
ble1

Ena
ble0

Abo
rt

0 0 0 0 0 0 0 0
rw rw rw rw rw rw rw rw
GRIP, Sep 2018, Version 2018.3 410 www.cobham.com/gaisler

GRLIB IP Core

9:8: BPR Baud rate, 2-bit:

00b = system clock / (SCALER +1) / 1
01b = system clock / (SCALER +1) / 2
10b = system clock / (SCALER +1) / 4
11b = system clock / (SCALER +1) / 8

5: SAM Single sample when 0b. Triple sample when 1b.
4: SILENT Listen only to the CAN bus, send recessive bits.
3: SELECT Selection receiver input and transmitter output:

Select receive input 0 as active when 0b,
Select receive input 1 as active when 1b
Select transmit output 0 as active when 0b,
Select transmit output 1 as active when 1b

2: ENABLE1 Set value of output 1 enable
1: ENABLE0 Set value of output 0 enable
0: ABORT Abort transfer on AHB ERROR

All bits are cleared to 0 at reset.
Note that constraints on PS1, PS2 and RSJ are defined as:
• PS1 +1 >= PS2
• PS1 > PS2
• PS2 >= RSJ
Note that CAN standard TSEG1 is defined by PS1+1.
Note that CAN standard TSEG2 is defined by PS2.
Note that the SCALER setting defines the CAN time quantum, together with the BPR setting:

system clock / ((SCALER+1) * BPR)
where SCALER is in range 0 to 255, and the resulting division factor due to BPR is 1, 2, 4 or 8.
For a quantum equal to one system clock period, an additional quantum is added to the node delay.
Note that for minimizing the node delay, then set either SCALER > 0 or BRP > 0.
Note that the resulting bit rate is:

system clock / ((SCALER+1) * BPR * (1+ PS1+1 + PS2))
where PS1 is in the range 1 to 15, and PS2 is in the range 2 to 8.
Note that RSJ defines the number of allowed re-synchronization jumps according to the CAN stan-
dard, being in the range 1 to 4.
For SAM = 0b (single), the bus is sampled once; recommended for high speed buses (SAE class C).
For SAM = 1b (triple), the bus is sampled three times; recommended for low/medium speed buses
(SAE class A and B) where filtering spikes on the bus line is beneficial.
Note that the transmit or receive channel active during the AMBA AHB error is disabled if the
ABORT bit is set to 1b. Note that all accesses to the AMBA AHB bus will be disabled after an AMBA
AHB error occurs while the ABORT bit is set to 1b. The accesses will be disabled until the CanSTAT
register is read.
GRIP, Sep 2018, Version 2018.3 411 www.cobham.com/gaisler

GRLIB IP Core

37.11.2 Status Register

Table 446.Status register

31-28: TxChannelsNumber of TxChannels -1, 4-bit
27-24: RxChannelsNumber of RxChannels -1, 4-bit
23-16: TxErrCntr Transmission error counter, 8-bit
15-8: RxErrCntr Reception error counter, 8-bit
4: ACTIVE Transmission ongoing
3: AHBErr AMBA AHB master interface blocked due to previous AHB error
2: OR Overrun during reception
1: OFF Bus-off condition
0: PASS Error-passive condition

All bits are cleared to 0 at reset.
The OR bit is set if a message with a matching ID is received and cannot be stored via the AMBA
AHB bus, this can be caused by bandwidth limitations or when the circular buffer for reception is
already full.
The OR and AHBErr status bits are cleared when the register has been read.
Note that TxErrCntr and RxErrCntr are defined according to CAN protocol.
Note that the AHBErr bit is only set to 1b if an AMBA AHB error occurs while the Can-
CONF.ABORT bit is set to 1b.

37.11.3 Control Register

Table 447.Control Register

1: RESET Reset complete core when 1
0: ENABLE Enable CAN controller, when 1. Reset CAN controller, when 0

All bits are cleared to 0 at reset.
Note that RESET is read back as 0b.
Note that ENABLE should be cleared to 0b to while other settings are modified, ensuring that the
CAN core is properly synchronized.

31 28 27 24 23 16
TxChannels RxChannels TxErrCntr
0 0 0
r r r
15 8 7 6 5 4 3 2 1 0
RxErrCntr Acti

ve
AH
B
Err

OR Off Pass

0 0 0 0 0 0
r r r r r r

31 2 1 0
Rese
t

Ena
ble

0 0
rw rw
GRIP, Sep 2018, Version 2018.3 412 www.cobham.com/gaisler

GRLIB IP Core

Note that when ENABLE is cleared to 0b, the CAN interface is in sleep mode, only outputting reces-
sive bits.
Note that the CAN core requires that 10 recessive bits be received before receive and transmit opera-
tions can begin.

37.11.4 SYNC Code Filter Register

Table 448.SYNC Code Filter Register

28-0: SYNC Message Identifier

All bits are cleared to 0 at reset.
Note that Base ID is bits 28 to 18 and Extended ID is bits 17 to 0.

37.11.5 SYNC Mask Filter Register

Table 449.SYNC Mask Filter Register

28-0: MASK Message Identifier

All bits are set to 1 at reset.
Note that Base ID is bits 28 to 18 and Extended ID is bits 17 to 0.
A RxSYNC message ID is matched when:

((Received-ID XOR CanCODE.SYNC) AND CanMASK.MASK) = 0
A TxSYNC message ID is matched when:
((Transmitted-ID XOR CanCODE.SYNC) AND CanMASK.MASK) = 0

37.11.6 Transmit Channel Control Register

Table 450.Transmit Channel Control Register

2: SINGLE Single shot mode
1: ONGOINGTransmission ongoing
0: ENABLE Enable channel

All bits are cleared to 0 at reset.

31 30 29 28 0
SYNC
0
rw

31 30 29 28 0
MASK
0x1FFFFFFF
rw

31 3 2 1 0
Sin-
gle

Ong
oing

Ena
ble

0 0 0
rw rw rw
GRIP, Sep 2018, Version 2018.3 413 www.cobham.com/gaisler

GRLIB IP Core

Note that if the SINGLE bit is 1b, the channel is disabled (i.e. the ENABLE bit is cleared to 0b) if the
arbitration on the CAN bus is lost.
Note that in the case an AHB bus error occurs during an access while fetching transmit data, and the
CanCONF.ABORT bit is 1b, then the ENABLE bit will be reset automatically.
At the time the ENABLE is cleared to 0b, any ongoing message transmission is not aborted, unless
the CAN arbitration is lost or communication has failed.
Note that the ONGOING bit being 1b indicates that message transmission is ongoing and that config-
uration of the channel is not safe.

37.11.7 Transmit Channel Address Register

Table 451.Transmit Channel Address Register

31-10: ADDR Base address for circular buffer

All bits are cleared to 0 at reset.

37.11.8 Transmit Channel Size Register

Table 452.Transmit Channel Size Register

20-6: SIZE The size of the circular buffer is SIZE*4 messages

All bits are cleared to 0 at reset.
Valid SIZE values are between 0 and 16384.
Note that each message occupies four 32-bit words.
Note that the resulting behavior of invalid SIZE values is undefined.
Note that only (SIZE*4)-1 messages can be stored simultaneously in the buffer. This is to simplify
wrap-around condition checking.
The width of the SIZE field may be made configurable by means of a VHDL generic. In this case it
should be set to 16-1 bits width.

37.11.9 Transmit Channel Write Register

Table 453.Transmit Channel Write Register

19-4: WRITE Pointer to last written message +1

31 10 9 0
ADDR
0
rw

31 21 20 6 5 0
SIZE
0
rw

31 20 19 4 3 0
WRITE
0
rw
GRIP, Sep 2018, Version 2018.3 414 www.cobham.com/gaisler

GRLIB IP Core
All bits are cleared to 0 at reset.
The WRITE field is written to in order to initiate a transfer, indicating the position +1 of the last mes-
sage to transmit.
Note that it is not possible to fill the buffer. There is always one message position in buffer unused.
Software is responsible for not over-writing the buffer on wrap around (i.e. setting WRITE=READ).
The field is implemented as relative to the buffer base address (scaled with the SIZE field).

37.11.10Transmit Channel Read Register

Table 454.Transmit Channel Read Register

19-4: READ Pointer to last read message +1

All bits are cleared to 0 at reset.
The READ field is written to automatically when a transfer has been completed successfully, indicat-
ing the position +1 of the last message transmitted.
Note that the READ field can be use to read out the progress of a transfer.
Note that the READ field can be written to in order to set up the starting point of a transfer. This
should only be done while the transmit channel is not enabled.
Note that the READ field can be automatically incremented even if the transmit channel has been dis-
abled, since the last requested transfer is not aborted until CAN bus arbitration is lost.
When the Transmit Channel Read Pointer catches up with the Transmit Channel Write Register, an
interrupt is generated (TxEmpty). Note that this indicates that all messages in the buffer have been
transmitted.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).

37.11.11Transmit Channel Interrupt Register

Table 455.Transmit Channel Interrupt Register

19-4: IRQ Interrupt is generated when CanTxRD.READ=IRQ, as a consequence of a message transmission

All bits are cleared to 0 at reset.
Note that this indicates that a programmed number of messages have been transmitted.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).

31 20 19 4 3 0
READ
0
rw

31 20 19 4 3 0
IRQ
0
rw
GRIP, Sep 2018, Version 2018.3 415 www.cobham.com/gaisler

GRLIB IP Core

37.11.12Receive Channel Control Register

Table 456.Receive Channel Control Register

1: ONGOINGReception ongoing (read-only)
0: ENABLE Enable channel

All bits are cleared to 0 at reset.
Note that in the case an AHB bus error occurs during an access while fetching transmit data, and the
CanCONF.ABORT bit is 1b, then the ENALBE bit will be reset automatically.
At the time the ENABLE is cleared to 0b, any ongoing message reception is not aborted
Note that the ONGOING bit being 1b indicates that message reception is ongoing and that configura-
tion of the channel is not safe.

37.11.13Receive Channel Address Register

Table 457.Receive Channel Address Register

31-10: ADDR Base address for circular buffer

All bits are cleared to 0 at reset.

37.11.14Receive Channel Size Register

Table 458.Receive Channel Size Register

20-6: SIZE The size of the circular buffer is SIZE*4 messages

All bits are cleared to 0 at reset.
Valid SIZE values are between 0 and 16384.
Note that each message occupies four 32-bit words.
Note that the resulting behavior of invalid SIZE values is undefined.
Note that only (SIZE*4)-1 messages can be stored simultaneously in the buffer. This is to simplify
wrap-around condition checking.
The width of the SIZE field may be made configurable by means of a VHDL generic. In this case it
should be set to 16-1 bits width.

31 2 1 0
OnG
oing

Ena
ble

0 0
r rw

31 10 9 0
ADDR
0
rw

31 21 20 6 5 0
SIZE
0
rw
GRIP, Sep 2018, Version 2018.3 416 www.cobham.com/gaisler

GRLIB IP Core

37.11.15Receive Channel Write Register

Table 459.Receive Channel Write Register

19-4: WRITE Pointer to last written message +1

All bits are cleared to 0 at reset.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).
The WRITE field is written to automatically when a transfer has been completed successfully, indicat-
ing the position +1 of the last message received.
Note that the WRITE field can be use to read out the progress of a transfer.
Note that the WRITE field can be written to in order to set up the starting point of a transfer. This
should only be done while the receive channel is not enabled.

37.11.16Receive Channel Read Register

Table 460.Receive Channel Read Register

19-4: READ Pointer to last read message +1

All bits are cleared to 0 at reset.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).
The READ field is written to in order to release the receive buffer, indicating the position +1 of the
last message that has been read out.
Note that it is not possible to fill the buffer. There is always one message position in buffer unused.
Software is responsible for not over-reading the buffer on wrap around (i.e. setting WRITE=READ).

37.11.17Receive Channel Interrupt Register

Table 461.Receive Channel Interrupt Register

19-4: IRQ Interrupt is generated when CanRxWR.WRITE=IRQ, as a consequence of a message reception

All bits are cleared to 0 at reset.
Note that this indicates that a programmed number of messages have been received.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).

31 20 19 4 3 0
WRITE
0
rw

31 20 19 4 3 0
READ
0
rw

31 20 19 4 3 0
IRQ
0
rw
GRIP, Sep 2018, Version 2018.3 417 www.cobham.com/gaisler

GRLIB IP Core

37.11.18Receive Channel Mask Register

Table 462.Receive Channel Mask Register

28-0: AM Acceptance Mask, bits set to 1b are taken into account in the comparison between the received message
ID and the CanRxCODE.AC field

All bits are set to 1 at reset.
Note that Base ID is bits 28 to 18 and Extended ID is bits 17 to 0.

37.11.19Receive Channel Code Register

Table 463.Receive Channel Code Register

28-0: AC Acceptance Code, used in comparison with the received message

All bits are cleared to 0at reset.
Note that Base ID is bits 28 to 18 and Extended ID is bits 17 to 0.
A message ID is matched when:

((Received-ID XOR CanRxCODE.AC) AND CanRxMASS.AM) = 0

37.11.20Interrupt registers

The interrupt registers give complete freedom to the software, by providing means to mask interrupts,
clear interrupts, force interrupts and read interrupt status.
When an interrupt occurs the corresponding bit in the Pending Interrupt Register is set. The normal
sequence to initialize and handle a module interrupt is:
• Set up the software interrupt-handler to accept an interrupt from the module.
• Read the Pending Interrupt Register to clear any spurious interrupts.
• Initialize the Interrupt Mask Register, unmasking each bit that should generate the module inter-

rupt.
• When an interrupt occurs, read the Pending Interrupt Status Register in the software interrupt-

handler to determine the causes of the interrupt.
• Handle the interrupt, taking into account all causes of the interrupt.
• Clear the handled interrupt using Pending Interrupt Clear Register.
Masking interrupts: After reset, all interrupt bits are masked, since the Interrupt Mask Register is zero.
To enable generation of a module interrupt for an interrupt bit, set the corresponding bit in the Inter-
rupt Mask Register.
Clearing interrupts: All bits of the Pending Interrupt Register are cleared when it is read or when the
Pending Interrupt Masked Register is read. Reading the Pending Interrupt Masked Register yields the

31 30 29 28 0
AM
0x1FFFFFFF
rw

31 30 29 28 0
AC
0
rw
GRIP, Sep 2018, Version 2018.3 418 www.cobham.com/gaisler

GRLIB IP Core

contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask Register.
Selected bits can be cleared by writing ones to the bits that shall be cleared to the Pending Interrupt
Clear Register.
Forcing interrupts: When the Pending Interrupt Register is written, the resulting value is the original
contents of the register logically OR-ed with the write data. This means that writing the register can
force (set) an interrupt bit, but never clear it.
Reading interrupt status: Reading the Pending Interrupt Status Register yields the same data as a read
of the Pending Interrupt Register, but without clearing the contents.
Reading interrupt status of unmasked bits: Reading the Pending Interrupt Masked Status Register
yields the contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask
Register, but without clearing the contents.
The interrupt registers comprise the following:
• Pending Interrupt Masked Status Register [CanPIMSR] R
• Pending Interrupt Masked Register [CanPIMR] R
• Pending Interrupt Status Register [CanPISR] R
• Pending Interrupt Register [CanPIR] R/W
• Interrupt Mask Register [CanIMR] R/W
• Pending Interrupt Clear Register [CanPICR] W

16: TxLoss Message arbitration lost during transmission (could be caused by
communications error, as indicated by other interrupts as well)

15: RxMiss Message filtered away during reception
14: TxErrCntr Transmission error counter incremented
13: RxErrCntr Reception error counter incremented
12: TxSync Synchronization message transmitted
11: RxSync Synchronization message received
10: Tx Successful transmission of message
9: Rx Successful reception of message
8: TxEmpty Successful transmission of all messages in buffer
7: RxFull Successful reception of all messages possible to store in buffer
6: TxIRQ Successful transmission of a predefined number of messages
5: RxIRQ Successful reception of a predefined number of messages
4: TxAHBErr AHB error during transmission
3: RxAHBErr AHB error during reception
2: OR Over-run during reception
1: OFF Bus-off condition

Table 464.Interrupt registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Tx
Loss
0
*

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Rx
Miss

Tx
Err
Cntr

Rx
Err
Cntr

Tx
Syn
c

Rx
Syn
c

Tx Rx Tx
Emp
ty

Rx
Full

Tx
IRQ

Rx
IRQ

Tx
AH
B
Err

Rx
AH
B
Err

OR Off Pass

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* * * * * * * * * * * * * * * *
GRIP, Sep 2018, Version 2018.3 419 www.cobham.com/gaisler

GRLIB IP Core

0: PASS Error-passive condition

All bits in all interrupt registers are reset to 0b after reset.
Note that the TxAHBErr interrupt is generated in such way that the corresponding read and write
pointers are valid for failure analysis. The interrupt generation is independent of the Can-
CONF.ABORT field setting.
Note that the RxAHBErr interrupt is generated in such way that the corresponding read and write
pointers are valid for failure analysis. The interrupt generation is independent of the Can-
CONF.ABORT field setting.

37.12 Memory mapping

The CAN message is represented in memory as shown in table 465.

Values: Levels according to CAN standard: 1b is recessive,
0b is dominant

Legend: Naming and number in according to CAN standard
IDE Identifier Extension: 1b for Extended Format,

0b for Standard Format
RTR Remote Transmission Request: 1b for Remote Frame,

0b for Data Frame
bID Base Identifier
eID Extended Identifier
DLC Data Length Code, according to CAN standard:

0000b 0 bytes
0001b 1 byte
0010b 2 bytes
0011b 3 bytes

Table 465.CAN message representation in memory.

AHB addr
0x0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IDE RT
R

- bID eID

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
eID

0x4 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
DLC - - - - TxErrCntr
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RxErrCntr - - - - Ahb

Err
OR Off Pass

0x8 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Byte 0 (first transmitted) Byte 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Byte 2 Byte 3

0xC 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Byte 4 Byte 5
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Byte 6 Byte 7 (last transmitted)
GRIP, Sep 2018, Version 2018.3 420 www.cobham.com/gaisler

GRLIB IP Core

0100b 4 bytes
0101b 5 bytes
0110b 6 bytes
0111b 7 bytes
1000b 8 bytes
OTHERS illegal

TxErrCntr Transmission Error Counter
RxErrCntr Reception Error Counter
AHBErr AHB interface blocked due to AHB Error when 1b
OR Reception Over run when 1b
OFF Bus Off mode when 1b
PASS Error Passive mode when 1b
Byte 00 to 07 Transmit/Receive data, Byte 00 first Byte 07 last

37.13 Vendor and device identifiers

The module has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x03D. For descrip-
tion of vendor and device identifiers see GRLIB IP Library User’s Manual.

37.14 Implementation

37.14.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

37.15 Configuration options

Table 466 shows the configuration options of the core (VHDL generics).

Table 466.Configuration options

Generic name Function Allowed range Default
hindex AHB master index. 0 - NAHBMST-1 0
pindex APB slave index 0 - NAPBSLV-1 0
paddr Addr field of the APB bar. 0 - 16#FFF# 0
pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFC#
pirq Interrupt line used by the GRCAN. 0 - NAHBIRQ-1 0
singleirq Implement only one common interrupt 0 - 1 0
txchannels Number of transmit channels 1 - 1 1
rxchannels Number of receive channels 1 - 1 1
ptrwidth Width of message pointers 16 - 16 16
GRIP, Sep 2018, Version 2018.3 421 www.cobham.com/gaisler

GRLIB IP Core

37.16 Signal descriptions

Table 467 shows the interface signals of the core (VHDL ports).

37.17 Signal definitions and reset values

The signals and their reset values are described in table 468.

37.18 Timing

The timing waveforms and timing parameters are shown in figure 120 and are defined in table 469.

Table 467.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
AHBI * Input AMB master input signals -
AHBO * Output AHB master output signals -
CANI Rx[1:0] Input Receive lines -
CANO Tx[1:0] Output Transmit lines -

En[1:0] Transmit enables -
* see GRLIB IP Library User’s Manual

Table 468.Signal definitions and reset values

Signal name Type Function Active Reset value
cantx[] Output CAN transmit data Low Logical 1
canen[] Output CAN transmitter enable High Logical 0
canrx[] Input CAN receive data Low -

Table 469.Timing parameters

Name Parameter Reference edge Min Max Unit
tGRCAN0 clock to data output delay rising clk edge - TBD ns

tGRCAN1 data input to clock setup rising clk edge TBD - ns

tGRCAN2 data input from clock hold rising clk edge TBD - ns

tGRCAN3 clock to output delay rising clk edge - TBD ns

Figure 120. Timing waveforms

tGRCAN0

cantx[]

clk

canrx[]
tGRCAN2

tGRCAN1tGRCAN3 tGRCAN3

canen[]
GRIP, Sep 2018, Version 2018.3 422 www.cobham.com/gaisler

GRLIB IP Core

37.19 Library dependencies

Table 470 shows the libraries used when instantiating the core (VHDL libraries).

37.20 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library gaisler;
use gaisler.can.all;

entity example is
 generic (
 padtech: in integer := 0);
 port (
 -- CAN interface
 cantx: out std_logic_vector(1 downto 0);
 canrx: in std_logic_vector(1 downto 0);
 canen: out std_logic_vector(1 downto 0);

...

 -- Signal declarations
 signal rstn: std_ulogic;
 signal clk: std_ulogic;

 signal ahbmo: ahb_mst_out_vector := (others => ahbm_none);
 signal ahbmi: ahb_mst_in_type;

 signal apbi: apb_slv_in_type;
 signal apbo: apb_slv_out_vector := (others => apb_none);

 signal cani0: can_in_type;
 signal cano0: can_out_type;

...

 -- Component instantiation
 grcan0: grcan
 generic map (
 hindex => 1,
 pindex => 1,
 paddr => 16#00C",
 pmask => 16#FFC",
 pirq => 1,
 txchannels => 1,
 rxchannels => 1,
 ptrwidth => 16)
 port map (
 rstn => rstn,
 clk => clk,
 apbi => apbi,
 apbo => apbo(1),
 ahbi => ahbmi,
 ahbo => ahbmo(1),
 cani => cani0,
 cano => cano0);

Table 470.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER CAN Signals, component GRCAN component and signal declarations.
GRIP, Sep 2018, Version 2018.3 423 www.cobham.com/gaisler

GRLIB IP Core

 cantx0_pad : outpad
 generic map (tech => padtech) port map (cantx(0), cani0.tx(0));

 canrx0_pad : inpad
 generic map (tech => padtech) port map (canrx(0), cani0.rx(0));

 canen0_pad : outpad
 generic map (tech => padtech) port map (canen(0), cani0.en(0));

 cantx1_pad : outpad
 generic map (tech => padtech) port map (cantx(1), cani0.tx(1));

 canrx1_pad : inpad
 generic map (tech => padtech) port map (canrx(1), cani0.rx(1));

 canen1_pad : outpad
 generic map (tech => padtech) port map (canen(1), cani0.en(1));
GRIP, Sep 2018, Version 2018.3 424 www.cobham.com/gaisler

GRLIB IP Core

38 GRCANFD - CAN Flexible Data-Rate Controller

38.1 Overview

GRCANFD implements a CAN-FD controller with a top layer handling the configuration of the IP
and the communication between the internal CAN-FD controller and a memory external to the IP. It
features a generic bus master interface and an AMBA 2.0 APB slave interface. The first one is used
for fetching and storing CAN frames from/to external memory. Wrappers adapting this interface to
both AMBA 2.0 AHB and AXI4 are available. The APB interface is used for the configuration of the
IP.
The internal codec is the CAN-FD controller, and implements the MAC and PL sub-layers of the pro-
tocol: transmission and reception of frames, error detection and signaling, frame acknowledgement,
bit resynchronization, etc. This functionality is compliant with the ISO standard 11898-1:2015 (2nd
edition).
The top layer contains the memory-mapped registers for the configuration of the IP, accessible
through the APB interface. It also controls the global functionality of the IP by fetching frames to be
transmitted from the external memory (TX channel) and by storing received frames into the external
memory (RX channel). The top layer includes an internal SRAM with capacity for 4 complete frames
of up to 64 bytes of data payload, thus reducing the risk of missing frames due to problems accessing
the bus and increasing the efficiency of the IP.
The external memory where the frames are stored is commonly referred to as the circular buffers, and
it may be located on-chip or external to the chip. The IP will write and read from this memory through
the master interface. There is a separate buffer for the TX and for the RX channels, and they have by
default a circular topology. Straight buffers are also supported. The content of the circular buffers is
handled by pointers.
For transmission, the IP starts by fetching two complete frames from the circular buffer and storing
them into the local SRAM. Once the SRAM contains at least a complete frame, the CAN-FD control-
ler will attempt to transmit the frame according to the CAN-FD protocol. Once the transmission is
complete, the proper interrupts are raised and a new frame can be fetched from the buffer, if available.
For reception, the controller receives and acknowledges incoming frames, and the IP stores them in
the internal SRAM. When a frame is completely received, the IP will attempt to store it into the circu-
lar buffer through the bus master. Once the frame is stored in the buffer, the content of the SRAM may
be overwritten with the following frame received.
The IP may have up to 3 separate interrupt lines. The first one is the common line, which includes
interrupts for reception and transmission of frames, update of the status of the IP (error counters,
internal buffer overrun, etc.) and status of the CAN bus. The other two interrupt lines used for SYNC
messages (for TX and RX channel, respectively). These synchronization messages are programmable
via the AMBA APB interface.
The IP implements bus redundancy: its interface includes two RX and two TX lines. The pair of lines
to be used can be selected via the AMBA APB interface. It is important to note that the transmission
and reception of frames can only occur on one bus at a time. An additional signal is included to enable
or disable the physical CAN-FD transceiver.
The following block diagram depicts the main components of GRCANFD. The diagram assumes that
the AHB wrapper is used, but the functionality is equivalent if the generic bus master or the AXI
wrapper are chosen instead.
GRIP, Sep 2018, Version 2018.3 425 www.cobham.com/gaisler

GRLIB IP Core
38.1.1 Function

The core implements the following functions:
• CAN-FD functionality
• TX channel: frame fetching and transmission
• RX channel: frame filtering, reception and storage
• SYNC message detection for both TX and RX channels
• Status and monitoring of the IP
• Interrupt generation
• Redundancy selection

38.1.2 Interfaces

The IP core contains the following interfaces:
• CAN interface (nominal and redundant)
• Generic bus master interface. If connected to the AMBA AHB wrapper, it includes the sideband

signals as per [GRLIB] including:
- cacheability information
- interrupt bus
- configuration information
- diagnostic information

• AMBA APB slave interface, with sideband signals as per [GRLIB] including:
- interrupt bus
- configuration information
- diagnostic information

38.1.3 Hierarchy

The CAN controller core can be partitioned in the following main hierarchical elements:
• CAN-FD controller/codec

Figure 121. Block diagram

GRCANFD

DMA

AMBA
APB
Slave

AMBA Layer Coding Layer

FIFO
AMBA
AHB

Master
A

M
B

A
 A

P
B

N
om

in
al

 C
A

N
 b

us

A
M

B
A

 A
H

B

R
ed

un
da

nt
 C

A
N

 b
us

CANFD
Controller Codec
GRIP, Sep 2018, Version 2018.3 426 www.cobham.com/gaisler

GRLIB IP Core

• CAN bus selector
• Internal SRAM (FIFO)
• Direct Memory Access controller
• AMBA APB slave
• Generic bus master
• (Optional) Bridges adapting the generic bus master to AMBA 2.0 AHB or AXI4

38.2 CAN Interface

The external interface towards the CAN bus features two redundant pairs of transmit output and
receive input (i.e. 0 and 1).
The active pair (i.e. 0 or 1) is selectable by means of a configuration register bit. Note that all recep-
tion and transmission is made over the active pair.
For each pair, there is one enable output (i.e. 0 and 1), each being individually programmable. The
enable outputs can be used for enabling an external physical driver. Note that both pairs can be
enabled simultaneously. The polarity for the enable/inhibit inputs on physical interface drivers may
differ, thus the meaning of the enable output is undefined.
Redundancy is implemented by means of Selective Bus Access. Note that the active pair selection
above provides means to meet this requirement.

38.3 Protocol compliance

The CAN-FD controller included in GRCANFD is a VHDL core compliant with the ISO standard for
CAN with the FD extension: ISO 11898-1:2015 (2nd edition).

38.4 Status and monitoring

The CANFD register interface incorporates status and monitoring functionalities. The Status Register
contains the most essential information regarding the operational mode of the IP, including:
• Ongoing transmission
• Bus-off state
• Error-passive mode
• Overrun
• Transmitter error counter (8 bits)
• Receiver error counter (8 bits)
Some of the previous indicators are also written to the circular buffer every time a frame is received
and stored. This is described later in the memory mapping of frames. Note that this only applies to the
RX channel.

38.5 Frame memory mapping

A descriptor is the minimum unit used to represent a frame. It consists of four 32-bit words. The num-
ber of descriptors needed to represent a frame varies from 1 to 5. For classical CAN frames only one
descriptor is needed. For CAN-FD frames, the number of descriptors depends on the data length of
the frame: whereas frames with up to 8 bytes only require 1 descriptor (as with classical CAN
frames), frames with 64 bytes of data payload require 5 descriptors.
The first descriptor in a frame always includes the control bits describing the frame, as well as infor-
mation regarding the status of the bus and the IP. This is applicable to both classical CAN and CAN-
FD frames. If a frame requires more than one descriptor, the successive descriptors (from 2 up to 5) do
GRIP, Sep 2018, Version 2018.3 427 www.cobham.com/gaisler

GRLIB IP Core

not replicate the control and status bits, but only include data bytes. Therefore, each of these descrip-
tors may contain up to 16 bytes of data. Descriptors belonging to the same frame shall always appear
consecutively in the circular buffer.
Each CAN descriptor is aligned to 4 words address boundaries, i.e. the 4 least significant byte address
bits are zero for the first word in a CAN descriptor. Note that this frame representation and memory
mapping is backwards compatible with GRCAN, which only supports classical CAN format.
Table 471 describes the memory mapping for the first descriptor of a frame, including both control
and status bits (first half of the descriptor) and data bytes (second half).

Values: Levels according to CAN standard: 1b is recessive,
0b is dominant

Legend: Naming and numbering according to CAN standard
IDE Identifier Extension: 1b for Extended Format (Base + Extended ID),

0b for Standard Format (Base ID)
RTR Remote Transmission Request: 1b for Remote Frame (only classical CAN),

0b for Data Frame
bID Base Identifier
eID Extended Identifier
DLC Data Length Code, according to CAN standard:

0000b 0 bytes
0001b 1 byte
0010b 2 bytes
0011b 3 bytes
0100b 4 bytes
0101b 5 bytes
0110b 6 bytes
0111b 7 bytes
1000b 8 bytes

Table 471.CAN message representation in memory.

AHB addr
0x0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IDE RT
R

- bID eID

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
eID

0x4 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
DLC - FD

F
BR
S

- TxErrCntr

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RxErrCntr - - - - Ahb

Err
OR Off Pass

0x8 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Byte 0 (first transmitted) Byte 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Byte 2 Byte 3

0xC 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Byte 4 Byte 5
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Byte 6 Byte 7
GRIP, Sep 2018, Version 2018.3 428 www.cobham.com/gaisler

GRLIB IP Core

1001b 12 bytes (only CAN-FD)
1010b 16 bytes (only CAN-FD)
1011b 20 bytes (only CAN-FD)
1100b 24 bytes (only CAN-FD)
1101b 32 bytes (only CAN-FD)
1110b 48 bytes (only CAN-FD)
1111b 64 bytes (only CAN-FD)

FDF Flexible-Data Rate Frame 1b for FD Format,
0b for Classic Format

BRS Switch Data Bit Rate 1b for bit-rate switch (only CAN-FD frames),
0b for constant bit-rate

TxErrCntr Transmission Error Counter
RxErrCntr Reception Error Counter
AHBErr AHB Error during previous accesses to the bus when 1b
OR Reception Overrun when 1b
OFF Bus-Off mode when 1b
PASS Error-Passive mode when 1b
Byte 00 to 07 Transmit/Receive data, Byte 00 first Byte 07 last

Status bits (TxErrCntr, RxErrCntr, AHBErr, OR, OFF, PASS) only apply to the RX channel. The IP
will write these bits to the circular buffer together with the received frame. For transmission, these bits
are not used, therefore they can be simply set to 0b when setting up a frame.
Frames with DLC > 1000b will only result in more than 8 bytes of data for FD frames (FDF set to 1b).
For classical CAN frames, the maximum data size is limited to 8 bytes, even if DLC is higher than
1000b. Note also that GRCANFD will ignore the BRS bit if FDF is set to 0b (classical CAN format),
so that the Nominal Bit Rate would be used for the entire frame.
If an FD frame contains more than 8 data bytes, it requires additional descriptors to be fully repre-
sented in the circular buffer. These descriptors only contain data bytes, and its memory representation
is the continuation of the second half of the first descriptor:
• Descriptor #2: data bytes 8 to 23.
• Descriptor #3: data bytes 24 to 39.
• Descriptor #4: data bytes 40 to 55.
• Descriptor #5: data bytes 56 to 63 (second half of the descriptor is unused).

38.6 Transmission

The circular buffer for the transmit channel is defined by the following parameters:
• base address
• buffer size
• write pointer
• read pointer
The transmit channel can be enabled or disabled.

38.6.1 Circular buffer

The transmit channel operates on a circular buffer located in memory external to GRCANFD. The cir-
cular buffer can also be used as a straight buffer. The buffer memory is accessed via the bus master
interface (such as AMBA AHB or AXI).
The size of the buffer is defined by the SIZE field in the Transmission Channel Size Register, specify-
ing the number of CAN descriptors * 4 that fit in the buffer.
E.g. CanTxSIZE.SIZE =2 means 8 CAN descriptors fit in the buffer.
GRIP, Sep 2018, Version 2018.3 429 www.cobham.com/gaisler

GRLIB IP Core

Note however that it is not possible to fill the buffer completely, leaving at least one descriptor posi-
tion in the buffer empty. This is to simplify wrap-around condition checking.
E.g. CanTxSIZE.SIZE =2 means that 7 CAN descriptors fit in the buffer at any given time.

38.6.2 Write and read pointers

The write pointer (WRITE field in the Transmission Channel Write Register) indicates the position
+1 of the last CAN descriptor written to the buffer. The write pointer operates on number of CAN
descriptors, not on absolute or relative addresses.
The read pointer (READ field in the Transmission Channel Read Register) indicates the position +1
of the last CAN descriptor read from the buffer. The read pointer operates on number of CAN descrip-
tors, not on absolute or relative addresses.
The difference between the write and the read pointers is the number of CAN descriptors available in
the buffer for transmission. The difference is calculated using the buffer size, specified by the CanTx-
SIZE.SIZE field, taking wrap around effects of the circular buffer into account.
Examples:
• There are 2 CAN descriptors available for transmit when CanTxSIZE.SIZE=2,

CanTxWR.WRITE=2 and CanTxRD.READ=0.
• There are 2 CAN descriptors available for transmit when CanTxSIZE.SIZE=2,

CanTxWR.WRITE =0 and CanTxRD.READ =6.
• There are 2 CAN descriptors available for transmit when CanTxSIZE.SIZE=2,

CanTxWR.WRITE =1 and CanTxRD.READ =7.
• There are 2 CAN descriptors available for transmit when CanTxSIZE.SIZE=2,

CanTxWR.WRITE =5 and CanTxRD.READ =3.
When a frame has been successfully transmitted, the read pointer (CanTxRD.READ) is automatically
updated, taking wrap-around effects of the circular buffer into account. If a frame consists of more
than one descriptor, the pointer is not incremented one by one, but it is updated to the next descriptor
to be read from the buffer.
Whenever the write pointer CanTxWR.WRITE and read pointer CanTxRD.READ are equal, there are
no CAN descriptors available for transmission.

38.6.3 Location

The location of the circular buffer is defined by a base address in Transmission Channel Address Reg-
ister, which is an absolute address. The location of a circular buffer is aligned on a 1kbyte address
boundary.

38.6.4 Transmission procedure

When the channel is enabled (ENABLE bit in the Transmission Channel Control Register equal to
1b), as soon as there is a difference between the write and read pointer, GRCANFD will start fetching
the first descriptor of a frame, whose position is indicated by the read pointer. If a frame consists of
more than one descriptor, GRCANFD will continue fetching them until the full frame has been read.
GRCANFD will decode the DLC field, available in the first descriptor, in order to know how many
descriptors shall be fetched in total.
The full frame is stored into a local SRAM with capacity for 4 complete frames, regardless of their
data length: 2 for the TX channel and 2 for the RX channel. The transmission of a frame does not start
until the full frame is available in the SRAM. For transmission, storing the frame minimizes the num-
ber of accesses to the circular buffer, and it allows pre-fetching a second frame before completing the
transmission of the first one, thus increasing the efficiency of the transmitter channel.
GRIP, Sep 2018, Version 2018.3 430 www.cobham.com/gaisler

GRLIB IP Core

Note that the TX channel should not be enabled if a potential difference between the write and read
pointers could be created, to avoid the descriptor fetching to start prematurely. The TX write pointer
shall not be updated until all the descriptors forming the frame are ready to be fetched from the circu-
lar buffer.
The read pointer (CanTxRD.READ) is automatically updated after a successful transmission, taking
into account wrap around effects of the circular buffer. The content of the local SRAM may then be
overwritten, so a new frame would be fetched as soon as the write and read pointers differ.
If the single-shot mode is enabled for the TX channel (CanTxCTRL.SINGLE=1), any frame for
which the arbitration is lost, or failed for some other reason such as ACK missing, will lead to the TX
channel being automatically disabled (CanTxCTRL.ENABLE=0). The frame will not be put up for
re-arbitration and the local SRAM will be emptied, in order not to block future transmissions.
Interrupts are provided to aid the user during transmission, as described in detail later in this section.
The main interrupts are the Tx, TxEmpty and TxIrq which are issued respectively after the successful
transmission of a frame, when all frames in the circular buffer have been transmitted and when a pre-
defined number of frames have been transmitted. The TxLoss interrupt is asserted whenever a trans-
mission does not complete: examples of this are loss of arbitration or communication errors. The
TxSync interrupt is issued when a frame matching the SYNC pattern is successfully transmitted.
Additional interrupts are provided to signal error conditions on the CAN bus and the AMBA bus.

38.6.5 Straight buffer

It is possible to use the circular buffer as a straight buffer, with a higher granularity than the 1kbyte
address boundary limited by the base address in the Transmit Channel Address Register.
While the channel is disabled, the read pointer (READ field in the Transmission Channel Read Regis-
ter) can be changed to an arbitrary value pointing to the first descriptor to be transmitted, and the write
pointer (WRITE field in the Transmission Channel Write Register) can be changed to an arbitrary
value.
When the channel is enabled, the transmission will start from the read pointer and continue to the
write pointer.

38.6.6 AMBA AHB error

An AHB error response occurring on the AMBA AHB bus while a frame descriptor is being fetched
will result in a TxAHBErr interrupt. Consequently the bit AHBErr of the Status Register is set to 1b,
and can only be cleared by reading that register.
If the CanCONF.ABORT bit is set to 0b, GRCANFD will automatically try to fetch the same frame
descriptor again.
If the CanCONF.ABORT bit is set to 1b, the TX channel will be disabled (ENABLE bit in the Trans-
mission Channel Control register is cleared automatically to 0b). The read pointer can be used to
determine which frame caused the AHB error (but not the specific descriptor, if the frame contains
more than one). If the error occurs while the other frame in the local SRAM is being transmitted, the
transmission is not interrupted, in order not to disrupt the CAN bus. If the transmission is acknowl-
edged, the pointers are updated accordingly, even if the channel is already disabled.

38.6.7 Enable and disable

When the TX channel is disabled (ENABLE bit in the Transmission Channel Control Register cleared
to 0b) during an ongoing transmission, the internal CAN-FD codec will not abort the transmission,
but attempt to finish it until the frame is acknowledged, the arbitration is lost or any error is detected.
If the frame is sent successfully, the read pointer (CanTxRD.READ) is automatically incremented.
Any associated interrupt will be generated.
GRIP, Sep 2018, Version 2018.3 431 www.cobham.com/gaisler

GRLIB IP Core

The progress of any ongoing access can be observed via the ONGOING bit in the Transmission Chan-
nel Control Register. The ONGOING bit must be 0b before the channel can be re-configured safely
(i.e. changing address, size or read pointer). It is also possible to wait for the Tx and TxLoss interrupts
described hereafter.
GRCANFD includes a status bit in the TX channel control register called DisACK. This bit is used to
indicate that the TX channel disable request has been acknowledged, and it will take effect as soon as
the ongoing transmission finishes or fails to complete. The TX channel is not completely disabled
until both ENABLE and DisACK are both 0b.
The channel can be re-enabled again without the need to re-configure the address, size and pointers.
Priority inversion is handled by disabling the transmitting channel, i.e. setting CanTxC-
TRL.ENABLE=0b as described above, and observing the progress, i.e. reading via the CanTxC-
TRL.ONGOING and CanTxCTRL.DisACK bits as described above. When the transmit channel is
disabled, it can be re-configured and a higher priority frames can be transmitted. Note that the single
shot mode does not require the channel to be disabled, but the progress should still be observed as
above.

38.6.8 Interrupts

During transmission several interrupts can be generated:
• TxLoss: Frame transmission interrupted due to lost of arbitration, ACK not detected by the

transmitter or errors during the transmission.
• TxErrCntr: Increment of the transmitter error counter.
• TxSync: Frame matching the SYNC filter transmitted.
• Tx: Successful transmission of a frame.
• TxEmpty: Successful transmission of all the frames in the circular buffer.
• TxIrq: Successful transmission of a predefined number of frames. The TX read pointer

matches the position programmed by the Transmit Channel Interrupt Register.
• TxAHBErr: AHB access error while fetching a descriptor.
• Off: Bus-off condition.
• Pass: Error-passive condition.
The Tx, TxEmpty and TxIrq interrupts are only generated as the result of a successful frame transmis-
sion, only once the CanTxRD.READ pointer has been incremented.

38.7 Reception

The receive channel is defined by the following parameters:
• base address
• buffer size
• write pointer
• read pointer
The receive channel can be enabled or disabled.

38.7.1 Circular buffer

The reception channel operates on a circular buffer located in memory external to GRCANFD. The
circular buffer can also be used as a straight buffer. The buffer memory is accessed via the bus master
interface (such as AMBA AHB or AXI).
GRIP, Sep 2018, Version 2018.3 432 www.cobham.com/gaisler

GRLIB IP Core

The size of the buffer is defined by the SIZE field in the Reception Channel Size Register, specifying
the number of CAN descriptors * 4 that fit in the buffer.
E.g. CanRxSIZE.SIZE =2 means 8 CAN descriptors fit in the buffer.
Note however that it is not possible to fill the buffer completely, leaving at least one descriptor posi-
tion in the buffer empty. This is to simplify wrap-around condition checking.
E.g. CanRxSIZE.SIZE =2 means that 7 CAN descriptors fit in the buffer at any given time.

38.7.2 Write and read pointers

The write pointer (WRITE field in the Reception Channel Write Register) indicates the position +1 of
the last CAN descriptor written to the buffer. The write pointer operates on number of CAN descrip-
tors, not on absolute or relative addresses.
The read pointer (READ field in the Reception Channel Read Register) indicates the position +1 of
the last CAN descriptor read from the buffer. The read pointer operates on number of CAN descrip-
tors, not on absolute or relative addresses.
The difference between the write and the read pointers is the number of CAN descriptors available in
the buffer for read-out after having received a set of frames. The difference is calculated using the buf-
fer size, specified by the CanRxSIZE.SIZE field, taking wrap around effects of the circular buffer into
account.
Examples:
• There are 2 CAN descriptors available for read-out when CanRxSIZE.SIZE=2, Can-

RxWR.WRITE=2 and CanRxRD.READ=0.
• There are 2 CAN descriptors available for read-out when CanRxSIZE.SIZE=2, Can-

RxWR.WRITE =0 and CanRxRD.READ=6.
• There are 2 CAN descriptors available for read-out when CanRxSIZE.SIZE=2, Can-

RxWR.WRITE =1 and CanRxRD.READ=7.
• There are 2 CAN descriptors available for read-out when CanRxSIZE.SIZE=2, Can-

RxWR.WRITE =5 and CanRxRD.READ=3.
When a frame has been successfully received and all its descriptors have been stored into the circular
buffer, the write pointer (CanRxWR.WRITE) is automatically updated, taking wrap-around effects of
the circular buffer into account. If a frame consists of more than one descriptor, the pointer is not
incremented one by one, but it is updated to the next position to be written to the buffer.
Whenever the read pointer CanRxRD.READ equals (CanRxWR.WRITE+1) modulo (CanRx-
SIZE.SIZE*4), there is no space available for storing another descriptor. This is signaled by an inter-
rupt (RxFull). If a frame consists of more than one descriptor, GRCANFD will attempt to store each
descriptor as long as there is space in the buffer. If there is no space for the next descriptor, the inter-
rupt will be asserted, and GRCANFD will wait until the read pointer is updated to continue storing the
frame.

38.7.3 Location

The location of the circular buffer is defined by a base address in the Reception Channel Address Reg-
ister, which is an absolute address. The location of a circular buffer is aligned on a 1kbyte address
boundary.

38.7.4 Reception procedure

When the channel is enabled (ENABLE bit in the Reception Channel Control Register equal to 1b),
GRCANFD will evaluate whether any incoming frame shall be stored into the local SRAM. To store a
frame, there shall be space available in the SRAM, with capacity for 2 frames for the RX channel
GRIP, Sep 2018, Version 2018.3 433 www.cobham.com/gaisler

GRLIB IP Core

(regardless of their data length), and the frame shall match the acceptance filter, which is programma-
ble through the Acceptance Code and Acceptance Mask registers.
Once the frame is completely stored into the local SRAM, GRCANFD will split the frame into
descriptors, as many as required to represent the full frame. Then it will attempt to write each descrip-
tor into the circular buffer, as long as the write and read pointers differ. This process will continue
until the full frame is written to the buffer, which is signaled by the Rx interrupt and the write pointer
being updated (CanRxWR.WRITE).
By having a local SRAM with capacity for 2 CAN-FD frames, GRCANF minimizes the risk of miss-
ing frames due to conflicts accessing the bus or due to the RX buffer being full. Once a frame is stored
into the circular buffer and the write pointer is updated, the content of the SRAM can be replaced with
a new frame.
Note that the channel should not be enabled until the write and read pointers are configured, to avoid
the message reception to start prematurely.
If the local SRAM already contains 2 frames yet to be stored to the circular buffer, GRCANFD will
transmit an Overload Frame to indicate that is not ready to receive the next frame. Up to 2 consecutive
Overload Frames will be issued. If a new frame is received before there being space available in the
SRAM, the frame cannot be internally stored and the Overrun condition shall be raised and signaled
via the corresponding interrupt (OR).
Interrupts are provided to aid the user during reception, as described in detail later in this section. The
main interrupts are Rx and RxIrq which are issued on the successful reception of a frame and when a
predefined number of frames have been received successfully. The RxMiss interrupt is asserted when-
ever a frame has been received but does not match a frame filtering setting, i.e. neither the acceptance
nor the SYNC filters.
The RxFull interrupt is raised when there is no space in the circular buffer for storing the next descrip-
tor. This does not only occur when a complete frame has been stored, but also when a descriptor has
been stored and GRCANFD cannot stored the following one belonging to the same frame.
The RxSync interrupt is issued when a frame matching the SYNC filter has been successfully
received and stored into the circular buffer. Additional interrupts are provided to signal error condi-
tions on the CAN bus and AMBA bus.
Regardless of the status of the RX channel, the internal CAN-FD codec will check for errors and
acknowledge any incoming frames. The codec shall also evaluate frames with any identifier, even if
they do not match the Acceptance or SYNC filters. The only way to prevent the internal codec from
checking and acknowledging any incoming frames is to disable it via the Control Register (ENABLE
bit).

38.7.5 Straight buffer

It is possible to use the circular buffer as a straight buffer, with a higher granularity than the 1kbyte
address boundary limited by the base address (CanRxADDR.ADDR) field.
While the channel is disabled, the write pointer (CanRxWR.WRITE) can be changed to an arbitrary
value pointing to the first frame to be received, and the read pointer (CanRxRD.READ) can be
changed to an arbitrary value.
When the channel is enabled, the reception will start from the write pointer and continue to the read
pointer.

38.7.6 AMBA AHB error

An AHB error response occurring on the AMBA AHB bus while a frame descriptor is being stored
will result in an RxAHBErr interrupt. Consequently the bit AHBErr of the Status Register is set to 1b,
and it can only be cleared when that register is read.
GRIP, Sep 2018, Version 2018.3 434 www.cobham.com/gaisler

GRLIB IP Core

If the CanCONF.ABORT bit is set to 0b, GRCANFD will retry to write the same descriptor to the cir-
cular buffer.
If the CanCONF.ABORT bit is set to 1b, the RX channel will be disabled (CanRxCTRL.ENABLE is
cleared automatically to 0b). The write pointer can be used to determine which frame caused the AHB
error (but not the specific descriptor, if the frame contains more than one). Any ongoing reception is
aborted, and the local SRAM is emptied. The descriptor causing the AHB error is not stored and the
write pointer is therefore not updated.

38.7.7 Enable and disable

When the RX channel is disabled (ENABLE bit in the Reception Channel Control Register cleared to
0b) during an ongoing reception, GRCANFD will not abort the reception, but attempt to finish it until
it is successfully written to the circular buffer or any errors have been detected. No new frame recep-
tion will be started afterwards. If the frame is stored successfully, the write pointer (Can-
RxWR.WRITE) is automatically updated. Any associated interrupts will be generated.
Note that this does not apply to when the RX channel is automatically disabled due to an AHB error
and ABORT is set to 1b, as explained in the previous section.
The progress of the any ongoing reception can be observed via the ONGOING bit in the Reception
Channel Control Register. The ONGOING bit must be 0b before the channel can be re-configured
safely (i.e. changing address, size or write pointer).
GRCANFD includes a status bit in the RX channel control register called DisACK. This bit is used to
indicate that the RX channel disable request has been acknowledged, and will take effect as soon as
the ongoing reception finishes and the frame is stored into the circular buffer, or until it fails to com-
plete. The RX channel is not completely disabled until both ENABLE and DisACK are both 0b.
The channel can be re-enabled again without the need to re-configure the address, size and pointers.

38.7.8 Interrupts

During reception several interrupts can be generated:
• RxMiss: Frame filtered away for not matching neither the Acceptance nor the SYNC filters.
• RxErrCntr: Receive error counter incremented.
• RxSync: Frame matching the SYNC filter received.
• Rx: Successful reception of a frame and storage into the circular buffer.
• RxFull: RX buffer full; no space for the next frame descriptor.
• RxIrq: Successful reception of a predefined number of frames. The RX write pointer

matches the position programmed by the Reception Channel Interrupt Register.
• RxAHBErr: AHB access error while storing a frame descriptor.
• OR: Overrun during reception.
• OFF: Bus-off condition.
• PASS: Error-passive condition.
The Rx and RxIrq interrupts are only generated as the result of a successful frame reception, after the
CanRxWR.WRITE pointer has been incremented. RxFull may be generated when a descriptor is
stored, regardless of whether it is the last one within a frame or not.
The OR interrupt is generated when the a new frame is received but the SRAM already contains two
frames yet to be stored into the circular buffer. This may be due to a conflict accessing the bus via the
bus master, or to the RX circular buffer being full. The assertion of this interrupt implies that one or
more frames have already been missed. Once this occurs, the Overrun bit of the Status Register is set
to 1b, and will only be cleared by reading the mentioned register.
GRIP, Sep 2018, Version 2018.3 435 www.cobham.com/gaisler

GRLIB IP Core

38.8 Global reset and enable

When the RESET bit in the Control Register is set to 1b, a reset of the whole IP is performed, includ-
ing the internal CAN-FD codec. The reset clears all the register fields to their default values. Any
ongoing frame transfer request will be aborted, potentially violating the CAN protocol.
When the ENABLE bit in the Control Register is cleared to 0b, the CAN-FD codec is reset, so it is
safe to modify the configuration registers. When disabled, the CAN-FD controller will be in sleep
mode. It will be only sending recessive bits not affecting the CAN bus. It will neither receive nor
acknowledge any frame on the bus.
Once the codec is enabled again, it will enter bus integration state before being able to transmit or
receive frames. It requires that 11 consecutive recessive bits are detected prior to starting the normal
operation.

38.9 Interrupt outputs

The IP interface features up to 3 separate interrupt lines as outputs:
Index: Name: Description:
0 IRQ Common output from interrupt handler
1 TxSYNC Synchronization message transmitted (optional)
2 RxSYNC Synchronization message received (optional)

The interrupts are configured by means of the pirq VHDL generic and the singleirq VHDL generic. If
singleirq is set to 1 there will be only one interrupt line, whose number will be the one set by pirq.
Otherwise, if singleirq is set to 0, there will be three interrupt lines, whose numbers will be pirq,
pirq+1 and pirq+2. If pirq+1 or pirq+2 exceed the maximum number of IRQ lines, the IP will not be
able to generate 3 interrupt outputs, even if singleirq is set to 0.

38.10 Endianness

The core is designed for big-endian systems.

38.11 Bus master interface

38.11.1 Protocol support

The core features a generic bus master interface to increase the flexibility of the IP. Additionally
Cobham Gaisler provides wrappers for both AMBA AHB 2.0 and AXI4.

38.11.2 Bus access

By default, GRCANFD uses the generic bus master to access the bus in order to fetch and store frame
descriptors. Each access stores or fetches a full descriptor to/from the corresponding circular buffer,
hence it implies a 128-bit access for both writing and reading. As explained in previous sections, a
frame descriptor is formed by four 32-bit words (128 bits).
The wrapper for AMBA AHB 2.0 features a bridge to convert the generic bus master into an AHB bus
master interface. The 128-bit accesses are split into a burst of 4 incremental 32-bit accesses.
The wrapper for AXI4 features a bridge to convert the generic bus master into an AXI4 bus master
interface. For further information regarding the accesses contact Cobham Gaisler.
GRIP, Sep 2018, Version 2018.3 436 www.cobham.com/gaisler

GRLIB IP Core

38.12 Registers

The core is programmed through registers mapped into APB address space.

38.12.1 Configuration Register

Table 473.Configuration Register

4: SILENT Listen only to the CAN bus, send recessive bits.
3: SELECT Line selector for transmitter and receiver:

Select receiver input 0 and transmitter output 0 as active when 0b,
Select receiver input 1 and transmitter output 1 as active when 1b.

2: ENABLE1 Set value of output 1 enable. Its polarity depends on the physical transceiver.

Table 472.GRCAN registers

APB address offset Register
0x000 Configuration Register
0x004 Status Register
0x008 Control Register
0x018 SYNC Mask Filter Register
0x01C SYNC Code Filter Register
0x040 Nominal Bit-Rate Configuration Register
0x044 Data Bit-Rate Configuration Register
0x048 Transmitter Delay Compensation Register
0x100 Pending Interrupt Masked Status Register
0x104 Pending Interrupt Masked Register
0x108 Pending Interrupt Status Register
0x10C Pending Interrupt Register
0x110 Interrupt Mask Register
0x114 Pending Interrupt Clear Register
0x200 Transmit Channel Control Register
0x204 Transmit Channel Address Register
0x208 Transmit Channel Size Register
0x20C Transmit Channel Write Register
0x210 Transmit Channel Read Register
0x214 Transmit Channel Interrupt Register
0x300 Receive Channel Control Register
0x304 Receive Channel Address Register
0x308 Receive Channel Size Register
0x30C Receive Channel Write Register
0x310 Receive Channel Read Register
0x314 Receive Channel Interrupt Register
0x318 Receive Channel Acceptance Mask Register
0x31C Receive Channel Acceptance Code Register

31 5 4 3 2 1 0

Reserved Sile
nt

Sele
ct

Ena
ble1

Ena
ble0

Abo
rt

0x0000000 0 0 0 0 0
r rw rw rw rw rw
GRIP, Sep 2018, Version 2018.3 437 www.cobham.com/gaisler

GRLIB IP Core

1: ENABLE0 Set value of output 0 enable. Its polarity depends on the physical transceiver.
0: ABORT Abort transfer on AHB ERROR.

All bits are cleared to 0 at reset.
By setting the ABORT bit to 1b, the TX and RX channels are automatically disabled upon detection
of an AHB error. Otherwise, the transfer causing the error is issued again.

38.12.2 Status Register

Table 474.Status register

23-16: TxErrCntr Transmission error counter, 8-bit
15-8: RxErrCntr Reception error counter, 8-bit
4: ACTIVE Transmission ongoing
3: AHBErr Errors detected during a previous transfer via the AHB master interface
2: OR Overrun during reception
1: Bus Off Bus-off condition
0: Err Pass Error-passive condition

All bits are cleared to 0 at reset.
The OR bit is set if a frame with an ID matching the acceptance filter cannot be stored within the local
SRAM due to lack of space, i.e. the SRAM already contains 2 frames yet to be stored into the circular
buffer.
The OR and AHBErr status bits are cleared when the Status Register is read.
Note that TxErrCntr and RxErrCntr are defined an updated according to the CAN protocol.
Additionally, the fields TxErrCntr, RxErrCntr, AHBErr, OR, Bus Off and Err Pass are stored in the
circular buffer during reception as part of the first descriptor of every frame.

38.12.3 Control Register

Table 475.Control Register

1: RESET Reset complete core when 1. Self-clearing.
0: ENABLE Enable CAN-FD codec, when 1. Disable CAN-FD codec, when 0.

All bits are cleared to 0 at reset.

31 24 23 16
Reserved TxErrCntr

0x00 0x00
r r

15 8 7 6 5 4 3 2 1 0

RxErrCntr Reserved Acti
ve

Ahb
Err OR Bus

Off
Err
Pass

0x00 0x0 0 0 0 0 0
r r r r r r r

31 2 1 0

Reserved Rese
t

Ena
ble

0x00000000 0 0
r w rw
GRIP, Sep 2018, Version 2018.3 438 www.cobham.com/gaisler

GRLIB IP Core

RESET takes effect on the whole IP, including the internal codec. It is self-clearing, so it is read back
as 0b.
The internal codec shall be disabled by setting ENABLE to 0 before modifying any CAN-related set-
tings, such as the configuration of the data bit rates. This ensures that the integration with the CAN
bus is correctly performed.
When ENABLE is cleared to 0b, the CAN interface is in sleep mode, only outputting recessive bits.
Once the CAN-FD codec is enabled again, it needs to detect 11 consecutive recessive bits on the CAN
bus prior to starting the normal operation, i.e. transmit or receive any frame.

38.12.4 SYNC Code Filter Register

Table 476.SYNC Code Filter Register

28-0: CODE Code for SYNC filter

All bits are cleared to 0 at reset.
Note that Base ID corresponds to the bits 28 to 18 and Extended ID corresponds to bits 17 to 0.

38.12.5 SYNC Mask Filter Register

Table 477.SYNC Mask Filter Register

28-0: MASK Mask for SYNC filter

All bits of the MASK field are set to 1 at reset.
Note that Base ID corresponds to the bits 28 to 18 and Extended ID corresponds to bits 17 to 0.

The SYNC filter is applied to the transmitted frames as soon as the codec transmits the frame. For the
RX channel, the filter is applied as soon as the codec receives the frame, regardless of whether the
frame is to be stored into the circular buffer afterwards, so it does not depend on the configuration of
the Acceptance filter. Specific interrupts are available for both SYNC filters.
An ID matches the RxSYNC filter when:

((Received-ID) XOR (SYNC CODE)) AND (SYNC MASK) = 0
An ID matches the TxSYNC filter when:

((Transmitted-ID) XOR (SYNC CODE)) AND (SYNC MASK) = 0

31 30 29 28 0
Reserved CODE

0x0 0x00000000
r rw

31 30 29 28 0
Reserved MASK

0x0 0x1FFFFFFF
r rw
GRIP, Sep 2018, Version 2018.3 439 www.cobham.com/gaisler

GRLIB IP Core

38.12.6

Table 478. Nominal Bit-Rate Configuration Register

Nominal Bit-Rate Configuration Register

23-16: SCALER Prescaler setting for nominal bit rate, 8-bit: system clock / (SCALER +1)
15-10: PS1 Phase Segment 1 for nominal bit rate, 6-bit
9-4: PS2 Phase Segment 2 for nominal bit rate, 5-bit
3-0: SJW Synchronization Jump Width, 5-bit

All bits are cleared to 0 at reset.
The prescaler sets the number of clock cycles per nominal time quantum (plus an offset of 1). PS1,
PS2 and SJW define the number of nominal quantum within the Phase Segment 1, Phase Segment 2
and Synchronization Jump Width, respectively.
Certain constraints apply to the previous parameters. Since GRCANFD is an FD enabled implementa-
tion with separate prescalers for the nominal and the data bit rate, the valid ranges are as follows:
• Prescaler: 0 - 255
• PS1: 2 - 63
• PS2: 2 - 16
• SJW: 1 - 16
Additional considerations must be taken when defining the parameters:
• PS2 >= SJW
• SJW <= min (PS1, PS2)
For more information regarding the parameters defining the nominal bit time, please refer to the ISO
standard 11898-1:2015 (2nd edition).
Therefore, the Nominal time quantum can be obtained as follows:

(system clock period) * (SCALER+1)
whereas the resulting Nominal bit rate is:

(system clock frequency) / ((SCALER+1) * (1+ PS1 + PS2))

31 24 23 16
Reserved SCALER

0x00 0x00
r rw

15 10 9 5 4 0
PS1 PS2 SJW
0x00 0x00 0x00
rw rw rw
GRIP, Sep 2018, Version 2018.3 440 www.cobham.com/gaisler

GRLIB IP Core

38.12.7

Table 479.Data Bit-Rate Configuration Register

Data Bit-Rate Configuration Register

23-16: SCALER Prescaler setting for data bit rate, 8-bit: system clock / (SCALER +1)
13-10: PS1 Phase Segment 1 for data bit rate, 4-bit
8-5: PS2 Phase Segment 2 for data bit rate, 4-bit
3-0: SJW Synchronization Jump Width, 4-bit

All bits are cleared to 0 at reset.
The prescaler sets the number of clock cycles per data time quantum (plus an offset of 1). PS1, PS2
and SJW define the number of data quantum within the Phase Segment 1, Phase Segment 2 and Syn-
chronization Jump Width, respectively.
Certain constraints apply to the previous parameters. Since GRCANFD is an FD enabled implementa-
tion with separate prescalers for the nominal and the data bit rate, the valid ranges are as follows:
• Prescaler: 0 - 255
• PS1: 1 - 15
• PS2: 2 - 8
• SJW: 1 - 8
Additional considerations must be taken when defining the parameters:
• SJW <= min (PS1, PS2)
• Data bit-rate >= Nominal bit-rate
For more information regarding the parameters defining the data bit time, please refer to the ISO stan-
dard 11898-1:2015 (2nd edition).
Therefore, the Data time quantum can be obtained as follows:

(system clock period) * (SCALER+1)
whereas the resulting Data bit rate is:

(system clock frequency) / ((SCALER+1) * (1+ PS1 + PS2))

31 24 23 16
Reserved SCALER

0x00 0x00
r rw

15 14 13 10 9 8 5 4 3 0
Reserved PS1 Res. PS2 Res. SJW

00 0x0 0 0x0 0 0x0
r rw r rw r rw
GRIP, Sep 2018, Version 2018.3 441 www.cobham.com/gaisler

GRLIB IP Core

38.12.8

Table 480.Transmitter Delay Compensation Register

Transmitter Delay Compensation Register

5-0: TxCompVal Number of time quantum for the transmitter delay compensation.

All bits are cleared to 0 at reset.
This register configures the delay in terms of number of data quantum to be compensated during the
data phase of an FD frame. A maximum of 2 data bit times may be compensated.
If set to 0, the transmitter delay compensation is internally disabled. Otherwise, the register defines
the delay between the synchronization segment of a bit and its corresponding secondary sample point,
when the signal may be safely read-back.

38.12.9 Transmit Channel Control Register

Table 481.Transmit Channel Control Register

3: DisAck Disable request acknowledged
2: SINGLE Single shot mode
1: Ongoing Transmission ongoing
0: ENABLE Enable channel

All bits are cleared to 0 at reset.
The TX channel is enabled by setting ENABLE to 1b.
The Ongoing bit indicates whether the codec is transmitting a frame. If the TX channel is disabled
while Ongoing is set to 1, the TX channel is disabled, but any ongoing transmission will continue
until it finishes (either successfully or with errors). In this case, the DisACK bit is set to 1b to indicate
the user that the TX channel will be completely disabled as soon as the ongoing transmission ends.
Changing the configuration of the TX channel (pointers, parameters of the buffer) is not safe when
ongoing is set to 1b. The user shall wait until the TX channel is effectively disabled by monitoring
both DisACK and ENABLE. When both are set to ‘0’, the codec is no longer transmitting a frame, so
the TX channel can be safely reconfigured.
If the single shot mode is enabled, the TX channel will be automatically disabled when a transmission
does not complete successfully. This may be due to loss of arbitration, transmission errors, ACK not
being sent by the receivers, etc. In this case, the content of the SRAM is removed to avoid blocking
any future transmission and GRCANFD does not update the TX read pointer.
The TX channel will also be automatically disabled if the ABORT bit is set to 1b in the Configuration
Register, and an AHB error occurs while fetching a descriptor from the circular buffer. If the codec is
transmitting a frame in parallel, the transmission is not interrupted, since that frame did not cause the
error accessing the bus (a transmission only starts when all the descriptors describing the frame are
fetched).

31 6 5 0
Reserved TxCompVal

0x0000000 0x00
r rw

31 4 3 2 1 0

Reserved Dis
Ack

Sin-
gle

Ong
oing

Ena
ble

0x0000000 0 0 0 0
r r rw r rw
GRIP, Sep 2018, Version 2018.3 442 www.cobham.com/gaisler

GRLIB IP Core

38.12.10 Transmit Channel Address Register

Table 482.Transmit Channel Address Register

31-10: ADDR Base address for TX circular buffer

All bits are cleared to 0 at reset.

38.12.11 Transmit Channel Size Register

Table 483.Transmit Channel Size Register

20-6: SIZE The size of the TX circular buffer is SIZE*4 descriptors

All bits are cleared to 0 at reset.
Valid SIZE values are between 0 and 16384.
Each descriptor occupies four 32-bit words. A frame may consist of 1 to 5 descriptors depending on
its format and data length.
Note that the resulting behavior of invalid SIZE values is undefined.
Note that only (SIZE*4)-1 descriptors can be stored simultaneously in the buffer. This is to simplify
wrap-around condition checking.

38.12.12 Transmit Channel Write Register

Table 484.Transmit Channel Write Register

19-4: WRITE Pointer to last written descriptor+1

All bits are cleared to 0 at reset.
The WRITE field is written to in order to initiate a transfer, indicating the position +1 of the last
descriptor to transmit.
Note that it is not possible to fill the buffer. There is always one descriptor position in buffer unused.
Software is responsible for not over-writing the buffer on wrap around (i.e. setting WRITE=READ).
The field is implemented as relative to the buffer base address (scaled with the SIZE field).
GRCANFD reads this register to know if there are more descriptors to fetch. While operating, it will
never modify the write pointer, unless the core is being reset.

31 10 9 0
ADDR Reserved

0 0x000
rw r

31 21 20 6 5 0
Reserved SIZE Reserved

0x000 0x0000 0x00
r rw r

31 20 19 4 3 0
Reserved WRITE Reserved

0x000 0x0000 0x0
r rw r
GRIP, Sep 2018, Version 2018.3 443 www.cobham.com/gaisler

GRLIB IP Core

38.12.13 Transmit Channel Read Register

Table 485.Transmit Channel Read Register

19-4: READ Pointer to last read descriptor+1

All bits are cleared to 0 at reset.
The READ field is written to automatically by the core when a transfer has been completed success-
fully, indicating the position +1 of the last descriptor transmitted. If a frame consists of more than 1
descriptor, GRCANFD will not increment the pointer one by one, but update it with the final position
directly.
Note that the READ field can be use to read out the progress of a transfer of a set of frames.
Note that the READ field can be written to in order to set up the starting point of a transfer. This
should only be done while the transmit channel is not enabled and the codec is not transmitting any
frame.
Note that the READ field may be incremented even if the transmit channel has been disabled, in case
the codec was already transmitting a frame when the ENABLE was set to 0b. As explained previ-
ously, this is indicated by both the Ongoing and the DisACK bits of the TX control register.
When the Transmit Channel Read Pointer catches up with the Transmit Channel Write Register, an
interrupt is generated (TxEmpty). Note that this implies that all descriptors stored in the buffer have
been transmitted.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).

38.12.14 Transmit Channel Interrupt Register

Table 486.Transmit Channel Interrupt Register

19-4: IRQ Interrupt is generated when the value in the Tx Read register becomes equal to IRQ, as a consequence
 of the transmission of a frame

All bits are cleared to 0 at reset.
Note that this indicates that a programmed number of descriptors have been transmitted.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).
It is important to notice that this interrupt will not be generated unless the register points to the last
descriptor of a frame + 1, since the TX read pointer is not incremented one by one.

31 20 19 4 3 0
Reserved READ Reserved

0x000 0x0000 0x0
r rw r

31 20 19 4 3 0
Reserved IRQ Reserved

0x000 0x0000 0x0
r rw r
GRIP, Sep 2018, Version 2018.3 444 www.cobham.com/gaisler

GRLIB IP Core

38.12.15 Receive Channel Control Register

Table 487.Receive Channel Control Register

2: DisAck Disable request acknowledged
1: ONGOING Reception ongoing (read-only)
0: ENABLE Enable channel

All bits are cleared to 0 at reset.
The RX channel is enabled by setting ENABLE to 1b.
The Ongoing bit indicates that a reception is taking place. There are two scenarios for this: the codec
may be receiving the frame, or the frame has already been received, matches the acceptance filter and
it is yet to be written to the circular buffer.
If the user disables the RX channel by setting ENABLE to 0b in the RX Channel Control Register,
any ongoing reception will not be aborted. The bit DisACK, when set to 1b, indicates that the request
for disabling the channel has been received and it will take effect as soon as the reception completes
(all the descriptors are stored in the buffer) or fails (the codec detects an error and does not acknowl-
edge the frame).
The RX channel may not be configured while Ongoing is 1b, as this may disrupt the status of the
CAN bus. The user shall monitor both Ongoing and DisACK bits: when both are 0b, it is safe to mod-
ify the configuration of the RX channel.
The RX channel is automatically disabled if the ABORT bit is set to 1b in the Configuration Register
and an AHB error is detected when accessing the bus. In this case, since the content of the SRAM is
causing the error, the SRAM is emptied and any ongoing reception is aborted.

38.12.16 Receive Channel Address Register

Table 488.Receive Channel Address Register

31-10: ADDR Base address for RX circular buffer

All bits are cleared to 0 at reset.

38.12.17 Receive Channel Size Register

Table 489.Receive Channel Size Register

20-6: SIZE The size of the RX circular buffer is SIZE*4 descriptors

31 2 1 0

Reserved Dis
Ack

Ong
oing

Ena
ble

0x00000000 0 0 0
r r r rw

31 10 9 0
ADDR Reserved

0x000000 0x000
rw r

31 21 20 6 5 0
Reserved SIZE Reserved

0x000 0x0000 0x00
r rw r
GRIP, Sep 2018, Version 2018.3 445 www.cobham.com/gaisler

GRLIB IP Core
All bits are cleared to 0 at reset.
Valid SIZE values are between 0 and 16384.
Note that each descriptor occupies four 32-bit words. A frame may consist of 1 to 5 descriptors
depending on its format and data length.
Note that the resulting behavior of invalid SIZE values is undefined.
Note that only (SIZE*4)-1 descriptors can be stored simultaneously in the buffer. This is to simplify
wrap-around condition checking.

38.12.18 Receive Channel Write Register

Table 490.Receive Channel Write Register

19-4: WRITE Pointer to last written descriptor +1

All bits are cleared to 0 at reset.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).
The WRITE field is written to automatically when a transfer has been completed successfully, indicat-
ing the position +1 of the last descriptor received. For frames consisting of more than 1 descriptor,
GRCANFD will not increment the Write pointer one by one, but update it with the final position
directly.
The Write pointer may be updated even after disabling the RX channel. This may be due to the fact
that there was a frame being received or already in the local SRAM, and the storage takes place after
the disable request.
Note that the WRITE field can be use to read out the progress of a transfer of a set of frames.
Note that the WRITE field can be written to in order to set up the starting point of a transfer. This
should only be done while the receive channel is not enabled.
If the RX write pointer catches up with the read pointer, there is no space in the buffer for any addi-
tional descriptor. An interrupt is asserted informing that the buffer is full. GRCANFD will detect this
and transmit up to 2 consecutive Overload Frames to delay the reception of the next frame. If a new
frame arrives under this circumstance, the IP misses it and the Overrun bit in the Status Register is set,
together with the Overrun interrupt.

38.12.19 Receive Channel Read Register

Table 491.Receive Channel Read Register

19-4: READ Pointer to last read descriptor +1

All bits are cleared to 0 at reset.

31 20 19 4 3 0
Reserved WRITE Reserved

0x000 0x0000 0x0
r rw r

31 20 19 4 3 0
Reserved READ Reserved

0x000 0x0000 0x0
r rw r
GRIP, Sep 2018, Version 2018.3 446 www.cobham.com/gaisler

GRLIB IP Core

The field is implemented as relative to the buffer base address (scaled with the SIZE field).
The READ field is written to in order to release the receive buffer, indicating the position +1 of the
last descriptor that has been read out.
Note that it is not possible to fill the buffer. There is always one descriptor position in buffer unused.
Software is responsible for not over-reading the buffer on wrap around (i.e. setting WRITE=READ).
GRCANFD will never modify the RX read pointer, unless the IP is being reset.

38.12.20 Receive Channel Interrupt Register

Table 492.Receive Channel Interrupt Register

19-4: IRQ Interrupt is generated when the value in the Rx Write register becomes equal to IRQ, as a consequence
 of reception of a message

All bits are cleared to 0 at reset.
Note that this indicates that a programmed number of descriptors have been received.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).
It is important to notice that this interrupt will not be generated unless the register points to the last
descriptor of a frame + 1, since the RX write pointer is not incremented one by one.

38.12.21 Receive Channel Acceptance Mask Register

Table 493.Receive Channel Acceptance Mask Register

28-0: AM Acceptance Mask: bits set to 1b are taken into account in the comparison between the received frame
ID and the CanRxCODE.AC field

All bits are set to 1 at reset.
Note that Base ID corresponds to the bits 28 to 18 and Extended ID corresponds to the bits 17 to 0.

38.12.22 Receive Channel Acceptance Code Register

Table 494.Receive Channel Acceptance Code Register

28-0: AC Acceptance Code, used in comparison with the received frame ID

All bits are cleared to 0 at reset.

31 20 19 4 3 0
Reserved IRQ Reserved

0x000 0x0000 0x0
r rw r

31 30 29 28 0
Reserved AM

000 0x1FFFFFFF
r rw

31 30 29 28 0
Reserved AC

000 0x00000000
r rw
GRIP, Sep 2018, Version 2018.3 447 www.cobham.com/gaisler

GRLIB IP Core

Note that Base ID corresponds to the bits 28 to 18 and Extended ID corresponds to the bits 17 to 0.
When a frame is received by the internal CAN-FD codec, GRCANFD applies the Acceptance filter to
decide whether it should be stored into the circular buffer. A frame matches the filter if the following
condition is verified:

((Received-ID) XOR (ACCPT CODE)) AND (ACCPT MASK) = 0

38.12.23 Interrupt registers

The interrupt registers give complete freedom to the software, by providing means to mask interrupts,
clear interrupts, force interrupts and read interrupt status.
When an interrupt occurs the corresponding bit in the Pending Interrupt Register is set. The normal
sequence to initialize and handle a module interrupt is:
• Set up the software interrupt-handler to accept an interrupt from the module.
• Read the Pending Interrupt Register to clear any spurious interrupts.
• Initialize the Interrupt Mask Register, unmasking each bit that should generate the module inter-

rupt.
• When an interrupt occurs, read the Pending Interrupt Status Register in the software interrupt-

handler to determine the causes of the interrupt.
• Handle the interrupt, taking into account all causes of the interrupt.
• Clear the handled interrupt using Pending Interrupt Clear Register.
Masking interrupts: After reset, all interrupt bits are masked, since the Interrupt Mask Register is zero.
To enable generation of a module interrupt for an interrupt bit, set the corresponding bit in the Inter-
rupt Mask Register.
Clearing interrupts: All bits of the Pending Interrupt Register are cleared when it is read or when the
Pending Interrupt Masked Register is read. Reading the Pending Interrupt Masked Register yields the
contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask Register.
Selected bits can be cleared by writing ones to the bits that shall be cleared to the Pending Interrupt
Clear Register.
Forcing interrupts: When the Pending Interrupt Register is written, the resulting value is the original
contents of the register logically OR-ed with the write data. This means that writing the register can
force (set) an interrupt bit, but never clear it.
Reading interrupt status: Reading the Pending Interrupt Status Register yields the same data as a read
of the Pending Interrupt Register, but without clearing the contents.
Reading interrupt status of unmasked bits: Reading the Pending Interrupt Masked Status Register
yields the contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask
Register, but without clearing the contents.
The interrupt registers comprise the following:
• Pending Interrupt Masked Status Register [CanPIMSR] R
• Pending Interrupt Masked Register [CanPIMR] R
• Pending Interrupt Status Register [CanPISR] R
• Pending Interrupt Register [CanPIR] R/W
• Interrupt Mask Register [CanIMR] R/W
• Pending Interrupt Clear Register [CanPICR] W
GRIP, Sep 2018, Version 2018.3 448 www.cobham.com/gaisler

GRLIB IP Core
16: TxLoss Unsuccessful transmission (due to loss of arbitration or errors in the frame)
15: RxMiss Message filtered away during reception for not matching either SYNC or Acceptance filters
14: TxErrCntr Transmission error counter incremented
13: RxErrCntr Reception error counter incremented
12: TxSync Synchronization message transmitted by the codec
11: RxSync Synchronization message received by the codec
10: Tx Successful transmission of message
9: Rx Successful reception of message
8: TxEmpty Successful transmission of all frames in TX circular buffer
7: RxFull Successful reception of all frames possible to store in RX circular buffer
6: TxIRQ The Tx Read Pointer is equal to the value stored in Tx IRQ register
5: RxIRQ The Rx Write Pointer is equal to the value stored in Rx IRQ register
4: TxAHBErr AHB error during transmission
3: RxAHBErr AHB error during reception
2: OR Over-run during reception
1: OFF Bus-off condition
0: PASS Error-passive condition

All bits in all interrupt registers are reset to 0b after reset.
Note that the TxAHBErr interrupt is generated in such way that the corresponding read and write
pointers are valid for failure analysis. The interrupt generation is independent of the Can-
CONF.ABORT field setting.
Note that the RxAHBErr interrupt is generated in such way that the corresponding read and write
pointers are valid for failure analysis. The interrupt generation is independent of the Can-
CONF.ABORT field setting.

38.13 Vendor and device identifiers

The module has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x0B5. For descrip-
tion of vendor and device identifiers see GRLIB IP Library User’s Manual.

38.14 Implementation

38.14.1 Reset

The core changes its reset behavior depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).

Table 495.Interrupt registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Tx
Loss
0
*

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Rx
Miss

Tx
Err
Cntr

Rx
Err
Cntr

Tx
Syn
c

Rx
Syn
c

Tx Rx Tx
Emp
ty

Rx
Full

Tx
IRQ

Rx
IRQ

Tx
AH
B
Err

Rx
AH
B
Err

OR Off Pass

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* * * * * * * * * * * * * * * *
GRIP, Sep 2018, Version 2018.3 449 www.cobham.com/gaisler

GRLIB IP Core

GRCANFD will feature a synchronous reset if the parameter grlib_async_reset_enable is not set in
the GRLIB configuration package. On the contrary, it will implement an asynchronous reset if
grlib_async_reset_enable is set.
The reset is applied to all the registers in GRCANFD, except for the synchronization registers.

38.15 Configuration options

Table 496 shows the configuration options of the core (VHDL generics).

If singleirq is set to 1 there will be only one interrupt line, whose number will be the one set by pirq.
Otherwise, if singleirq is set to 0, there will be three interrupt lines (Paragraph 38.8), whose numbers
will be pirq, pirq+1 and pirq+2.

38.16 Signal descriptions

Table 497 shows the interface signals of the core when using the wrapper for AMBA AHB 2.0
(VHDL ports).

38.17 Signal definitions and reset values

The signals and their reset values are described in table 498.

Table 496.Configuration options

Generic name Function Allowed range Default
tech Technology for the syncram and the sync. registers 0 - NTECH inferred (0)
hindex AHB master index 0 - NAHBMST-1 0
pindex APB slave index 0 - NAPBSLV-1 0
paddr Addr field of the APB bar 0 - 16#FFF# 0
pmask Mask field of the APB bar 0 - 16#FFF# 16#FFC#
pirq Interrupt line used by the GRCANFD 0 - NAHBIRQ-1 1
singleirq Implement only one common interrupt 0 - 1 0

Table 497.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
AHBMI * Input AMB master input signals -
AHBMO * Output AHB master output signals -
CANI Rx[1:0] Input Receive lines -
CANO Tx[1:0] Output Transmit lines -

En[1:0] Transmit enables -
* see GRLIB IP Library User’s Manual

Table 498.Signal definitions and reset values

Signal name Type Function Active Reset value
cantx[] Output CAN transmit data Low Logical 1
canen[] Output CAN transmitter enable High Logical 0
canrx[] Input CAN receive data Low -
GRIP, Sep 2018, Version 2018.3 450 www.cobham.com/gaisler

GRLIB IP Core

38.18 Library dependencies

Table 499 shows the libraries used when instantiating the core (VHDL libraries).

38.19 Instantiation

This example shows how the core can be instantiated using the AMBA 2.0 AHB wrapper.
library ieee;
use ieee.std_logic_1164.all;
library gaisler;
use gaisler.canfd.all;

entity example is
 generic (
 padtech: in integer := 0);
 port (
 -- CAN interface
 cantx: out std_logic_vector(1 downto 0);
 canrx: in std_logic_vector(1 downto 0);
 canen: out std_logic_vector(1 downto 0);

...

 -- Signal declarations
 signal rstn: std_ulogic;
 signal clk: std_ulogic;

 signal ahbmo: ahb_mst_out_vector := (others => ahbm_none);
 signal ahbmi: ahb_mst_in_type;

 signal apbi: apb_slv_in_type;
 signal apbo: apb_slv_out_vector := (others => apb_none);

 signal cani0: canfd_in_type;
 signal cano0: canfd_out_type;

...

 -- Component instantiation
canfd0 : grcanfd_ahb
 generic map(
 hindex => 0,
 pindex => 0,
 paddr => 16#00C#,
 pmask => 16#FFC#,
 pirq => 1,
 singleirq => 0)
 port map(
 clk => clk,
 rstn => rstn,
 ahbmi => ahbmi,
 ahbmo => ahbmo(0),
 apbi => apbi,

Table 499.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GRLIB GENERIC BM PKG Signals, components Package including the generic bus master

interface and the bridges for converting to
AHB and AXI

GAISLER CANFD Signals, component GRCANFD component and signal declara-
tions

TECHMAP GENCOMP Components Technology-dependent components: local
syncram and synchronization registers
GRIP, Sep 2018, Version 2018.3 451 www.cobham.com/gaisler

GRLIB IP Core

 apbo => apbo(0),
 cani => cani0,
 cano => cano0
);

 cantx0_pad : outpad
 generic map (tech => padtech) port map (cantx(0), cani0.tx(0));

 canrx0_pad : inpad
 generic map (tech => padtech) port map (canrx(0), cani0.rx(0));

 canen0_pad : outpad
 generic map (tech => padtech) port map (canen(0), cani0.en(0));

 cantx1_pad : outpad
 generic map (tech => padtech) port map (cantx(1), cani0.tx(1));

 canrx1_pad : inpad
 generic map (tech => padtech) port map (canrx(1), cani0.rx(1));

 canen1_pad : outpad
 generic map (tech => padtech) port map (canen(1), cani0.en(1));
GRIP, Sep 2018, Version 2018.3 452 www.cobham.com/gaisler

GRLIB IP Core

39 GRCLKGATE / GRCLKGATE2X - Clock gating unit

39.1 Overview

The clock gating unit provides a means to save power by disabling the clock to unused functional
blocks. The core provides a mechanism to automatically disabling the clock to LEON processors in
power-down mode, and optionally also to disable the clock for floating-point units.
The core provides a register interface via its APB slave bus interface.
The clock gate unit has two main top-level units, GRCLKGATE and GRCLKGATE2X. GRCLK-
GATE2X exposes the full functionality and is the recommended top-level for new designs.

39.2 Operation

The operation of the clock gating unit is controlled through four registers: the unlock, clock enable,
core reset and CPU/FPU override registers. The clock enable register defines if a clock is enabled or
disabled. A ‘1’ in a bit location will enable the corresponding clock, while a ‘0’ will disable the clock.
The core reset register allows to generate a reset signal for each generated clock. A reset will be gen-
erated as long as the corresponding bit is set to ‘1’. The bits in clock enable and core reset registers
can only be written when the corresponding bit in the unlock register is 1. If a bit in the unlock register
is 0, the corresponding bits in the clock enable and core reset registers cannot be written.
To gate the clock for a core, the following procedure should be applied:
1. Disable the core through software to make sure it does not initialize any AHB accesses
2. Write a 1 to the corresponding bit in the unlock register
3. Write a 0 to the corresponding bit in the clock enable register
4. Write a 0 to the corresponding bit in the unlock register
To enable the clock for a core, the following procedure should be applied
1. Write a 1 to the corresponding bit in the unlock register
2. Write a 1 to the corresponding bit in the core reset register
3. Write a 1 to the corresponding bit in the clock enable register
4. Write a 0 to the corresponding bit in the clock enable register
5. Write a 0 to the corresponding bit in the core reset register
6. Write a 1 to the corresponding bit in the clock enable register
7. Write a 0 to the corresponding bit in the unlock register
The clock gating unit also provides gating for the processor core and, optionally, floating-point units.
A processor core will be automatically gated off when it enters power-down mode.
With the GRCLKGATE and GRCLKGATE2X units, any shared FPU will be gated off when all pro-
cessor cores connected to the FPU have floating-point disabled or when all connected processor cores
are in power-down mode.
With the GRCLKGATE2X unit it is also possible to support dedicated FPU clock gating. In this case
a FPU will be gated off when processor core connected to the FPU has floating-point disabled or
when the processor core is in power down mode.
Processor/FPU clock gating can be disabled by writing ‘1’ to bit 0 of the CPU/FPU override register.

39.2.1 Shared FPU

For systems with shared FPU, a processor may be clock gated off while the connected FPU continues
to be clocked. The power-down instruction may overtake a previously issued floating-point instruc-
GRIP, Sep 2018, Version 2018.3 453 www.cobham.com/gaisler

GRLIB IP Core

tion and cause the processor to be gated off before the floating-point operation has completed. This
can in turn lead to the processor not reacting to the completion of the floating-point operation and to a
subsequent processor freeze after the processor wakes up and continues to wait for the completion of
the floating-point operation.
In order to avoid this, software must make sure that all floating-point operations have completed
before the processor enters power-down. This is generally not a problem in real-world applications as
the power-down instruction is typically used in a idle loop and floating-point results have been stored
to memory before entering the idle loop. To make sure that there are no floating-point operations
pending, software should perform a store of the %fsr register before the power-down instruction.

39.3 Registers

The core’s registers are mapped into APB address space.

Table 500. Clock gate unit registers

APB address offset Register
0x00 Unlock register
0x04 Clock enable register
0x08 Core reset register
0x0C CPU/FPU override register
0x10 - 0xFF Reserved
GRIP, Sep 2018, Version 2018.3 454 www.cobham.com/gaisler

GRLIB IP Core

39.3.1 Unlock register

Table 501.0x00 - UNLOCK - Unlock register

39.3.2 Clock enable register

Table 502.0x04 - CLKEN - Clock enable register

39.3.3 Core reset register

Table 503. 0x08 - RESET - Reset register

39.3.4 CPU/FPU override register

Table 504. 0x0c - OVERRIDE - CPU/FPU override register

39.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x02C. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

31 x+1 x 0

RESERVED UNLOCK

0 0

r rw

31: x+1 RESERVED
x: 0 Unlock clock enable and reset registers (UNLOCK) - The bits in clock enable and core reset regis-

ters can only be written when the corresponding bit in this field is 1.

31 x+1 x 0

RESERVED ENABLE

0 *

r rw

31: x+1 RESERVED
x: 0 Cock enable (ENABLE) - A ‘1’ in a bit location will enable the corresponding clock, while a ‘0’ will

disable the clock.

31 x+1 x 0

RESERVED RESET

0 0

r rw

31: x+1 RESERVED
x: 0 Reset (RESET) - A reset will be generated as long as the corresponding bit is set to ‘1’.

31 y+1 y 16 15 x+1 x 0

RESERVED FOVERRIDE RESERVED OVERRIDE

0 0 0 0

r rw r rw

31: y+1 RESERVED
y: 16 Override FPU clock gating (FOVERRIDE) - If bit n of this field is set to ’1’ then the clock for FPU

n will be active regardless of the value of %PSR.EF. Only available if FPU clock is enabled at imple-
mentation.

15: x+1 RESERVED
x: 0 Override CPU clock gating (OVERRIDE) - If bit n of this field is set to ’1’ then the clock for proces-

sor n and FPU n will always be active.
GRIP, Sep 2018, Version 2018.3 455 www.cobham.com/gaisler

GRLIB IP Core

39.5 Implementation

39.5.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset for its internal registers.

39.5.2 Clock gate implementation

The clock gates are implemented using the CLKAND core in the techmap library, that instantiates the
appropriate cell for the selected technology.
For ungated clocks, dummy clock gates are instantiated with the same technology but the isdummy
generic set to 1. The technology mapping for the technology can decide whether to instantiate real
clock gating cells for the technology or to pass the clock through as-is without any gating.

39.5.3 Scan test support

The test-enable signal is taken in through the APB input record and passed through to the techmap
layer where it can be connected to the clock gating cell’s test enable input or OR:ed into the normal
enable if no test-enable input is available. Another alternative is to drive the cell’s test enable input
with constant 0 and hook it up to test-enable or scan-enable during the DFT implementation. Refer to
the synthesis/DFT tools documentation for more details.
A separate ungate active-high input signal that also sets all clock gates to pass-through can be enabled
in the core. This is passed in through the functional path.

39.5.4 Simulation

The underlying technology-specific gating in the techmap layer should ensure that all the gated and
ungated clocks generated are delay and delta aligned to avoid zero-delay simulation problems. The
standard solution is to add a 5 ps delay that gets removed on synthesis, however some technologies
may use a different approach.

39.6 Configuration options

Table 505 shows the configuration options of the core (VHDL generics).

Table 505.Configuration options

Generic Function Allowed range Default
tech Clock/fabrication technology 0 to NTECH-1 0
pindex Selects which APB select signal (PSEL) will be used to

access the unit
paddr The 12-bit MSB APB address 0 to 16#FFF# 0
pmask The APB address mask 0 to 16#FFF# 16#FFF#
ncpu Number of processors that will connect to the unit - 1
nclks Number of peripheral units (clock/reset pairs) in addition

to any processors and floating-point units that will con-
nect to the unit.

0 - 31 8

emask Bit mask where bit n (0 is the least significant bit)
decides if a unit should be enabled (1) or disabled (0)
after system reset.

0 - 16#FFFFFFFF# 0

extemask If this generic is set to a non-zero value then the after-
reset-enable-mask will be taken from the input signal
epwen.

0 - 1 0

scantest Enable scan test support 0 - 1 0
GRIP, Sep 2018, Version 2018.3 456 www.cobham.com/gaisler

GRLIB IP Core
edges Extra clock edges provided by the clock gate unit after
reset completes. CPUs get edges + 3 rising edges after
reset and other cores get edges + 1 rising edges after sys-
tem reset.

- 0

noinv Do not use inverted clock for clock gate enable register.
This generic can be set to one for technologies that have
glitch free clock gates.

0 - 1 0

fpush Selects FPU configuration
0: System has processors without, or with dedicated,
FPUs
1: System has one FPU shared between all processors
3: System has one FPU for each parir of processors.
(FPU0 is connected to CPU0 and CPU1, FPU1 is con-
nected to CPU2 and CPU3, ...)

0 - 2 0

clk2xen Enable double clocking.
Only available on GRCLKGATE2X entity

0 - 1 1

ungateen Enable separate ungate input for asynchronous un-gating
of all clocks.

0 - 16#FFFFFFFF# 0

fpuclken Enable separate clocks for FPU. Requires that generic
fpush is set to 0.
Only available on GRCLKGATE2X entity

0 - 1 0

nahbclk Length of clkahb output vector
Only available on GRCLKGATE2X entity

0 - 16#FFFFFFFF# 1

nahbclk2x Length of clkahb2x output vector
Only available on GRCLKGATE2X entity

0 - 16#FFFFFFFF# 1

balance If balance is set to 1 then an always-enabled clock gate is
inserted on each clkahb output.
This option is obsolete as the techmap layer can now
decide what to do with dummy clock gates, and only the
value 1 is supported in the core.

1 - 1 1

Table 505.Configuration options

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 457 www.cobham.com/gaisler

GRLIB IP Core

39.7 Signal descriptions

Table 506 shows the interface signals of the core (VHDL ports).

39.8 Library dependencies

Table 507 shows libraries used when instantiating the core (VHDL libraries).

39.9 Instantiation

This example shows how the core can be instantiated.
clkg0: grclkgate
 generic map (
 tech => fabtech,
 pindex => 4,
 paddr => 16#040#,
 pmask => 16#fff#,
 ncpu => CFG_NCPU,

Table 506.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLKIN N/A Input Clock -
CLKIN2X N/A Input Clock with higher frequency.

Only present on GRCLKGATE2X entity.
-

PWD N/A Input Power-down signal from processor cores High
FPEN N/A Input Floating-point enable signal from processor

cores, only used in configurations with shared
FPU when using the GRCLKGATE entity. For
GRCLKGATE2X this input is also used when
VHDL generic fpuclken is set to 1.

High

APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
GCLK[nclks-1:0] N/A Output Clock(s) to peripheral unit -
RESET[nclks-1:0] N/A Output Reset(s) to peripheral units Low
CLKAHB[nahbclk**-1:0] N/A Output Clock to non-gated units -
CLKAHB2X[nahbclk2x**-1:0] N/A Output 2x Clock to non-gated units -
CLKCPU[ncpu-1:0] N/A Output Clock to processor cores -
ENABLE[nclks-1:0] N/A Output Enable signal(s) for peripheral units High
CLKFPU[nfpu***:0] N/A Output Clock to shared floating-point units, only used in

configurations with shared FPU.
-

EPWEN N/A Input External enable reset vector High
UNGATE N/A Input Ungate all clocks for test mode (only used if

enabled in configuration)
High

* see GRLIB IP Library User’s Manual
** Single output on GRCLKGATE entity, vector on GRCLKGATE2X entity.
*** where nfpu = (fpush/2)*(ncpu/2-1) for GRCLKGATE and (fpush/2+fpuclken)*(ncpu/(2-fpuclken)-1) for GRCLK-
GATE2X

Table 507.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER MISC Component Component declaration
GRIP, Sep 2018, Version 2018.3 458 www.cobham.com/gaisler

GRLIB IP Core

 nclks => NCLKS,
 emask => 0, -- Don’t care
 extemask => 1, -- Reset value defined by input vector (epwen below)
 scantest => scantest,
 edges => CG_EDGES,
 noinv => CG_NOINV,
 fpush => CFG_GRFPUSH)
 port map(
 rst => rstn, -- from reset generator
 clkin => ahb_clk, -- from clock generator
 pwd => pwd, -- from processors, typically dsuo.pwd(CFG_NCPU-1 downto 0)
 fpen => fpen, -- from processors, if shared FPU is used
 apbi => apbi,
 apbo => apbo(4),
 gclk => gclk, -- clock to (gated) peripheral cores
 reset => grst, -- reset to (gated) peripheral cores
 clkahb => clkm, -- clock to AMBA system (not gated)
 clkcpu => cpuclk, -- clock to processor cores
 enable => clkenable, -- enable(n) signals that peripheral n is enabled
 clkfpu => fpuclk, -- clock to any shared FPU cores
 epwen => pwenmask, -- signal to set enable-after-reset
 ungate => gnd);
GRIP, Sep 2018, Version 2018.3 459 www.cobham.com/gaisler

GRLIB IP Core

40 GRDMAC - DMA Controller with internal AHB/APB bridge

40.1 Overview

The GRDMAC core provides a flexible direct memory access controller. The core can perform burst
transfers of data between AHB and APB peripherals at aligned or unaligned memory addresses. The
core can be instantiated with one or two AHB master interfaces to perform transfers among different
AHB buses.
The core's configuration registers are accessible through an APB interface. Up to 16 DMA channels
are supported. Each channel can be configured flexibly by means of two descriptor chains residing in
main memory: a Memory to Buffer (M2B) chain and a Buffer to Memory (B2M) chain. Each chain is
composed of a linked list of descriptors, where each descriptor specifies an AHB address and the size
of the data to read/write, supporting a scatter/gather behavior.
Once enabled, the core will proceed in reading the descriptor chains, then reading memory mapped
addresses specified by the M2B chain and filling its internal buffer. It will then write the content of the
buffer back to memory mapped addresses by elaborating the B2M descriptor chain.
The core supports a simplified mode of operation, with only one channel. In this mode of operation
only one descriptor is present for each of the M2B and B2M chains. These two descriptors are written
directly in the core's register via APB.

40.2 Configuration

The GRDMAC core consists of four main components: the DMA control unit, the AHB Master inter-
face, the internal buffer with realignment support and an optional second AHB Master interface. The
core supports being attached to any AHB bus with a data width of 32-bit, 64-bit or 128-bit. For every
DMA channel the core will perform two types of DMA transfers through one of the AMBA AHB
Master interfaces: from memory to the internal buffer (M2B) and from the internal buffer to memory
(B2M). The core will read data from memory until its internal buffer is filled or until the M2B

Figure 122. Block diagram
GRIP, Sep 2018, Version 2018.3 460 www.cobham.com/gaisler

GRLIB IP Core

descriptor chain is completed. When one of these two events is detected, GRDMAC will start writing
the buffer content into memory, by switching to the B2M chain.
The internal buffer size is configurable through the generic bufsize. In case the buffer size is smaller
that the total size of the M2B chain, the core will switch multiple times from the M2B chain to the
B2M chain and vice versa.
The second AHB Master Interface is enabled by setting the en_ahbm1 generic to 1. If the second
interface is not enabled, all settings related to it will be ignored and the core will default to the main
AHB Master Interface for all transfers.

40.2.1 Core setup

The GRDMAC core reads its configuration from any AHB mapped address (typically main
memory) through its main AMBA AHB Master interface (AHBM0 if instantiated with sup-
port for two master interfaces). The core supports up to 16 DMA channels, a number config-
urable through the ndmach generic. For each channel, the M2B and B2M descriptor linked
lists must be set up, and a pointer to the first descriptor in the two chains must be provided.
These pointers are organized in a structure called Channel Vector. The Channel Vector is
organized as in Table 508, below. For each of the GRDMAC channels there are two pointers:
one pointer to the M2B descriptor linked list and one pointer to the B2M descriptor linked
list. The Channel Vector array must be created at a 128-byte-aligned address. The GRDMAC
core will read the Channel Vector entries for each channel up to ndmach channels.

40.2.2 Descriptor types

Each descriptor consists of a four-field structure as provided in the tables below and must be
created at a 16-byte-aligned address. There are three descriptor types: M2B descriptors, B2M
descriptors and conditional descriptors.
The former two descriptors, categorized as data descriptors, are only allowed in the respec-
tive descriptor linked lists (M2B descriptor linked list and B2M descriptor linked list).
Conditional descriptors on the other hand, are required to be followed by a data descriptor, to
which they bond to, and they can be specified in both the M2B and B2M descriptor linked
lists. They are special descriptors that enable conditional behavior in a descriptor linked list
and they are described in more detail in paragraph 40.3.2.

40.2.3 Data descriptors

For data descriptors, the first field, the next_descriptor field, is the address of the next
descriptor in the chain. The chain ends with a descriptor whose next_descriptor field is all
zeroes (NULL pointer).

Table 508.GRDMAC Channel Vector format

Address offset Field
0x00 Channel 0: M2B descriptor pointer
0x04 Channel 0: B2M descriptor pointer
0x08 Channel 1: M2B descriptor pointer
0x0C Channel 1: B2M descriptor pointer
... ...
... ...
0x78 Channel 15: M2B descriptor pointer
0x7C Channel 15: B2M descriptor pointer
GRIP, Sep 2018, Version 2018.3 461 www.cobham.com/gaisler

GRLIB IP Core

The second field of an M2B descriptor, the address field, defines the address to read the data
from. It can be any address in the system, and there are no alignment requirements. The num-
ber of bytes to transfer from memory to the internal buffer is specified in the third field, the
control field, as seen in the table below.

Table 509.GRDMAC M2B descriptor format

Address offset Field
0x0 M2B next_descriptor
0x4 M2B address
0x8 M2B control
0xC M2B status

Table 510. GRDMAC M2B descriptor next_descriptor field (address offset 0x00)
31 4 3 1 0

NEXT_PTR RESERVED DT

31: 4 M2B Next descriptor pointer address (NEXT_PTR) - MSb of 16 Byte aligned address of the next
descriptor in the M2B descriptor chain or NULL.

0 M2B descriptor type (DT) - Descriptor type field, ‘0’ for data descriptors, ‘1’ for conditional
descriptors. Must be set to ‘0’ for this type of descriptor.

Table 511. GRDMAC M2B descriptor address field (address offset 0x04)
31 0

ADDR

31: 0 M2B Address (ADDR) - Starting address the core will read data from.

Table 512. GRDMAC M2B descriptor control field (address offset 0x08)
31 16 15 5 4 3 2 1 0

SIZE RESERVED FA AN IE WB EN

31: 16 M2B descriptor size (SIZE) - Size in Bytes of the data that will be fetched from the address specified
in the M2B address register.

4 M2B descriptor Fixed Address (FA) - If set to ‘1’, the data will be fetched from the same address for
the entire size of the descriptor transfer. This is useful when reading from IO peripheral registers in
combination with a conditional descriptor. If set to ‘0’, normal operation mode is attained.

3 M2B descriptor AHB Master Interface Number (AN) - If set to ‘0’, the descriptor’s transfer will be
performed by the main AHB Master Interface (AHBM0). If set to ‘1’, the descriptor’s transfer will
be performed by the second AHB Master Interface (AHBM1). If this interface is not enabled by the
configuration generic en_ahbm1, then the transfer will fall back to the main AHB Master Interface
(AHBM0).

2 M2B descriptor Interrupt Enable (IE) - If set to one, an interrupt will be generated when the M2B
descriptor is completed. Descriptor interrupt generation also depends on interrupt mask for channel 0
and global interrupt enable.

1 M2B descriptor write-back (WB) - If set to one, the descriptor’s status field will be written back in
main memory after completion.

0 M2B descriptor Enable (EN) - If set to one, the descriptor will be enabled, otherwise it will be
skipped and the next descriptor fetched from memory.
GRIP, Sep 2018, Version 2018.3 462 www.cobham.com/gaisler

GRLIB IP Core
For the B2M chain, the same holds true, with the exception of the address field, which speci-
fies the address in main memory to write to.

Table 513. GRDMAC M2B descriptor status field (address offset 0x0C)
31 3 2 1 0

RESERVED E S C

2 M2B descriptor error (E) - If set to one, an error was generated during execution of the M2B descrip-
tor. See error register for more information.

1 M2B descriptor status (S) - If set to one, the descriptor is being executed and running. Otherwise set
to zero.

0 M2B descriptor completion (C) - If set to one, the descriptor was completed successfully.

Table 514.GRDMAC B2M descriptor format

Address offset Field
0x0 B2M next_descriptor
0x4 B2M address
0x8 B2M control
0xC B2M status

Table 515. GRDMAC B2M descriptor next_descriptor field (address offset 0x00)
31 4 3 1 0

NEXT_PTR RESERVED DT

31: 4 B2M Next descriptor pointer address (NEXT_PTR) - Address of the next descriptor in the B2M
descriptor chain or NULL.

0 B2M descriptor type (DT) - Descriptor type field, ‘0’ for data descriptors, ‘1’ for conditional
descriptors. Must be set to ‘0’ for this type of descriptor.

Table 516. GRDMAC B2M descriptor address field (address offset 0x04)
31 0

ADDR

31: 0 B2M Address (ADDR) - Starting address the core will write data to.

Table 517. GRDMAC B2M descriptor control field (address offset 0x08)
31 16 15 5 4 3 2 1 0

SIZE RESERVED FA AN IE WB EN

31: 16 B2M descriptor size (SIZE) - Size in Bytes of the data that will be written to the address specified in
the B2M address register.

4 B2M descriptor Fixed Address (FA) - If set to ‘1’, the data will be fetched from the same address for
the entire size of the descriptor transfer. This is useful when writing to IO peripheral registers in
combination with a conditional descriptor. If set to ‘0’, normal operation mode is attained.
GRIP, Sep 2018, Version 2018.3 463 www.cobham.com/gaisler

GRLIB IP Core
If a descriptor’s write-back bit in its control field is set to one, the descriptor’s status field will be writ-
ten back to memory after completion. The transfer uses the AMBA AHB Master interface of the core.

40.2.4 Conditional descriptors

A conditional descriptor is a special kind of descriptor which bonds to a data descriptor and provides
additional conditional behavior to it. A conditional descriptor can be used to create a DMA channel
that retrieves data from IO cores, therefore off loading the CPU from the task. Usually IO cores pro-
vide a status register or an interrupt line to notify the CPU of the availability of new data. A condi-
tional descriptor can be set up to poll this status register or to be triggered by an interrupt, signaling
for instance, the availability of new data. Once data is available, the bond data descriptor is executed,
accumulating the data in the internal buffer of the DMA core, before bursting it to memory for the
software to handle it.
There are, hence, two kinds of conditional descriptors: polling conditional descriptors or triggering
conditional descriptors. The former kind will continuously poll an address for data, and once a termi-
nation condition on the retrieved data is met, will yield to the data descriptor. The latter kind will
instead have the core entering a state where it waits for a monitored input signal line to trigger. When
the monitored input line is sampled to a value of ‘1’, the data descriptor will be executed.
To set up a triggering conditional descriptor, the IT bit field in the descriptor’s control field needs to
be set to ‘1’. Bits 5:0 of the conditional address/triggering line field will specify which of the 64 input
lines of the IRQ_TRIG signal will be monitored. During the execution of the triggering conditional
descriptor, the triggering line is monitored every clock cycle, and when the value of the line is ‘1’, the
conditional execution will terminate and the data descriptor will be yield, fetching COND_SIZE bytes
before going back to executing the conditional triggering. The data descriptor will be considered com-
pleted when all the bytes from the data descriptor, specified in the SIZE field, have been transfered, in
amounts of COND_SIZE at each triggering. If the timer_en VHDL configuration generic is set to ‘1’,
an optional timeout counter can be enabled during the triggering conditional descriptor execution. By
setting the TE bit field in the core’s control register to ‘1’ and by setting the Timer Reset Value Regis-
ter to the required number of clock cycles, the descriptor execution is halted with a Timeout Error if

3 B2M descriptor AHB Master Interface Number (AN) - If set to ‘0’, the descriptor’s transfer will be
performed by the main AHB Master Interface (AHBM0). If set to ‘1’, the descriptor’s transfer will
be performed by the second AHB Master Interface (AHBM1). If this interface is not enabled by the
configuration generic en_ahbm1, then the transfer will fall back to the main AHB Master Interface
(AHBM0).

2 B2M descriptor Interrupt Enable (IE) - If set to one, an interrupt will be generated when the B2M
descriptor is completed. Descriptor interrupt generation also depends on interrupt mask for channel 0
and global interrupt enable.

1 B2M descriptor write-back (WB) - If set to one, the descriptor’s status field will be written back in
main memory after completion.

0 B2M descriptor Enable (EN) - If set to one, the descriptor will be enabled, otherwise it will be
skipped and the next descriptor fetched from memory.

Table 518. GRDMAC B2M descriptor status field (address offset 0x0C)
31 3 2 1 0

RESERVED E S C

2 B2M descriptor error (E) - If set to one, an error was generated during execution of the B2M descrip-
tor. See error register for more information.

1 B2M descriptor status (S) - If set to one, the descriptor is being executed and running. Otherwise set
to zero.

0 B2M descriptor completion (C) - If set to one, the descriptor was completed successfully.

Table 517. GRDMAC B2M descriptor control field (address offset 0x08)
GRIP, Sep 2018, Version 2018.3 464 www.cobham.com/gaisler

GRLIB IP Core

an interrupt is not received before the timer expires. The error halts the channel execution after even-
tual descriptor write-back is performed.
To set up a polling conditional descriptor, the IT bit field in the descriptor’s control field needs to be
set to ‘0’. Bits 31:0 of the conditional address/triggering line field will point to the address that the
DMA core will poll for data until the termination condition is TRUE. The condition is specified as the
bitwise AND between the 32-bit word pointed by COND_ADDR and the COND_MASK. This value
is compared to 0 according to the following formulas, according to the termination condition type
selected in the conditional control field (CT).

When the condition is TRUE, the conditional descriptor will stop polling and will proceed with fetch-
ing COND_SIZE bytes from the data descriptor pointed by NEXT_PTR. The behavior of conditional
descriptors is explained in depth in paragraph 40.3.2.
Also in paragraph 40.3.2 is an example configuration of a conditional DMA channel for UART read-
ing.

Table 519. GRDMAC Conditional descriptor Termination condition type 0

Table 520. GRDMAC Conditional descriptor Termination condition type 1

Table 521.GRDMAC Conditional descriptor format

Address offset Field
0x0 Conditional next_descriptor
0x4 Conditional address/triggering line
0x8 Conditional control
0xC Conditional mask

Table 522. GRDMAC Conditional descriptor next_descriptor field (address offset 0x00)
31 4 3 1 0

NEXT_PTR RESERVED DT

31: 4 Conditional Next descriptor pointer address (NEXT_PTR) - Address of the data descriptor in the
descriptor chain which the conditional descriptor is bond to. Cannot be NULL.

0 Conditional descriptor type (DT) - Descriptor type field, ‘0’ for data descriptors, ‘1’ for conditional
descriptors. Must be set to ‘1’ for this type of descriptor.

Table 523. GRDMAC Conditional descriptor address field (address offset 0x04)
31 6 5 0

COND_ADDR[31:6] COND_ADDR[5:0] / IRQN

*COND_ADDR COND_MASK  0=

*COND_ADDR COND_MASK 0
GRIP, Sep 2018, Version 2018.3 465 www.cobham.com/gaisler

GRLIB IP Core
40.2.5 Register setup

Once the channel vector and the relative descriptor chains are setup in main memory, the GRDMAC
register must be also setup. The 128-byte-aligned address, where the Channel Vector resides, must be
written in the Channel Vector Pointer register. The control register must also be setup. Once the
enable bit of the control register is set to one, the core will start running and will execute all the chan-
nels which are enabled.

40.3 Operation

40.3.1 Normal mode of operation

In normal mode of execution, GRDMAC will start executing all the enabled channels until they are
complete or an error is generated.

31: 0 Conditional Address (COND_ADDR) - Address of the 32-bit word the core will read for the condi-
tional termination expression matching.

5: 0 IRQ Trigger Line Number (IRQN) - Index of the IRQ_TRIG signal input vector which is used as the
triggering line for triggered conditional descriptors, 0 to 63.

Table 524. GRDMAC Conditional descriptor control field (address offset 0x08)
31 16 15 4 3 2 1 0

COND_SIZE COUNTER_RST AN CT IT EN

31: 16 Conditional descriptor total size (COND_SIZE) - Total size in Bytes of the data that will be fetched
from the bond data descriptor each time the conditional termination expression matches to true.

15: 4 Conditional descriptor counter reset value (COUNTER_RST) - Reset value of the conditional
counter timer that is executed before every polling or triggering. The unit is number of clock cycles
and the purpose is to provide a timer between polling requests onto the AMBA AHB bus with
enough clock cycles in order not to clog the bus.

3 Conditional descriptor AHB Master Interface Number (AN) - If set to ‘0’, the descriptor’s transfer
will be performed by the main AHB Master Interface (AHBM0). If set to ‘1’, the descriptor’s trans-
fer will be performed by the second AHB Master Interface (AHBM1). If this interface is not enabled
by the configuration generic en_ahbm1, then the transfer will fall back to the main AHB Master
Interface (AHBM0).

2 Conditional descriptor Termination Condition type (CT) - If the conditional descriptor is of type
“polling”, this bits specifies which type of termination condition is used. If ‘0’, the termination con-
dition is of type 0 as specified in this paragraph. If ‘1’, the termination condition is of type 1.

1 Conditional Descriptor Irq Trigger (IT) - If set to ‘1’, the conditional descriptor will wait for the
input interrupt line to go high before executing the bond data descriptor. The selected interrupt line is
the one indexed by IRQN in the IRQ_TRIG signal input vector. This bit enables triggering behavior
of conditional descriptors. If this bit is set to ‘0’, normal polling behavior with termination condition
is enabled.

0 Conditional descriptor Enable (EN) - If set to one, the descriptor will be enabled, otherwise it will be
skipped and the next descriptor fetched from memory.

Table 525. GRDMAC Conditional descriptor mask field (address offset 0x0C)
31 0

COND_MASK

31: 0 Conditional Mask (COND_MASK) - Bit mask used in the conditional descriptor termination condi-
tion matching.

Table 523. GRDMAC Conditional descriptor address field (address offset 0x04)
GRIP, Sep 2018, Version 2018.3 466 www.cobham.com/gaisler

GRLIB IP Core

When executing a DMA channel, the core will initially fetch the two descriptor pointers from the
address provided in the CVP register which are relative to the channel. It will then fetch the first M2B
and B2M descriptors from main memory. The M2B descriptor chain is then executed until either the
internal buffer is full, or the M2B chain is completed. If one of this events happen, the core will switch
to the B2M descriptor chain. The B2M chain will switch back to the M2B chain when the buffer is
empty. The DMA channel is marked complete when the last descriptor in the B2M chain is executed,
finally emptying the buffer.
During the execution of a chain, the core will fetch a new descriptor after the successful completion of
the previous one, following the pointers in the linked list. When the core reaches a NULL pointer in
the M2B chain, it will switch to the B2M chain. When it reaches a NULL pointer in the B2M chain,
the core will update the DMA channel status and switch to the next enabled DMA channel, until all
the channels are completed.

40.3.2 Operation with conditional descriptors

Conditional descriptors bond to the following data descriptor in the linked list and provide conditional
behavior to the execution of the data descriptor. During the execution of a DMA channel, when the
core fetches a conditional descriptor from memory, it will proceed and fetch the following descriptor
in the chain as well, which must be a data descriptor.
After the descriptors’ pair has been fetched, the conditional execution will follow these steps:
a) the core will execute the conditional counter, down counting for COUNTER_RST clock cycles
b) if the conditional descriptor is a polling descriptor, go to step c1, if it’s a triggering descriptor, go

to step c2.
c1) the core will fetch a 32-bit word at the COND_ADDR address.
d1) if the conditional termination condition of Table 520 is false then the core will go back to step a,

if the conditional termination condition of Table 520 is true, the core will fetch a portion of the
data from the data descriptor which is COND_SIZE bytes, then go back to step a.

c2) the core will monitor line IRQN of the IRQ_TRIG input signal, indefinitely or until the trigger
counter expires.

d2) when the monitored line has a value of ‘1’, the core will fetch a portion of the data from the data
descriptor which is COND_SIZE bytes, then go back to step a.

The total SIZE of the bond data descriptor will be decremented by COND_SIZE bytes every time the
bond data descriptor is executed, and the ADDRESS will be incremented by the same amount (unless
the FA flag is set).
The FA (Fixed Address) bit field in the data descriptor control field is useful when accessing data to/
from a peripheral data register, i.e. UART data register, when you need to read/write always from/to
the same address.
The execution of the descriptor pair (conditional and bond data descriptors) ends when the SIZE field
of the data descriptor reaches 0. In other words, the execution ends when SIZE bytes have been
fetched in total from the data descriptor, by fetching COND_SIZE byte amounts every time the condi-
tional condition (polling or triggering) is true.

40.3.3 Simplified mode of operation

In Simplified Mode of Operation, the GRDMAC core configuration resides entirely in its configura-
tion registers and the Channel Vector structure is not used. The core will not perform any memory
access to fetch configuration data. This mode of operation makes use of only two data descriptors,
respectively one descriptor for M2B transfers and one for B2M transfers. Conditional descriptors are
not supported in this mode. The descriptors are written directly onto GRDMAC via APB at offsets
0x20 and 0x30. Their next_descriptor field is hardwired to zeroes. Their status is always written-back
to their relative descriptor status register.
GRIP, Sep 2018, Version 2018.3 467 www.cobham.com/gaisler

GRLIB IP Core

When the core is configured in Simplified mode of operation, the relative bit (SM) must be set to one
in the control register. The core will execute the two internal descriptors on channel zero. Channel
zero must therefore be enabled, and the core status can be read on channel zero’s status bits in the sta-
tus register.

40.4 AHB transfers

For every descriptor executed, GRDMAC will perform an AHB data transfer at the address and of the
size specified. The AHB accesses that it can perform are up to 128-bit wide and can be at aligned or
unaligned memory addresses. The maximum AHB access width depends on the AHB bus width and
on the busw and wbmask generics, as described in paragraph 40.7.
The core will perform unaligned memory access if defined by the descriptors. It will perform byte (8
bit) accesses at byte-aligned addresses, half-word (16 bit) accesses at half-word aligned addresses,
and so on. The core will perform burst transfers of the maximum supported width for as long as possi-
ble according to the total transfer size. For example, if the maximum supported bus width for one
transfer is 64-bit, and a descriptor requests 18 bytes at address 0x40000006, the core will perform one
16-bit half-word access, and one two-beat burst of double words. In some cases, the total transfer size
might require GRDMAC to perform additional word, half-word and/or byte accesses at the end of the
transfer. The burst accesses performed by GRDMAC are of type incrementing burst of unspecified
length. These bursts will never cross a 1KB memory boundary, or a smaller boundary that can be set
with the generic burstbound. At the specified memory boundary set by burstbound, the burst will be
interrupted, an idle cycle will be inserted and the incrementing burst of unspecified length will restart
from the next address. This generic can be used to limit the maximum burst length performed by the
core, making re-arbitration on the AHB bus more frequent.
When the core is configured with the VHDL generic en_ahbm1 set to ‘1’, a secondary AHB Master
interface will be instantiated inside the GRDMAC core. This interface can be connected to a second
AHB bus to provide bridging capabilities to the DMA controller. The core will fetch data from this
interface when the AN flag in the descriptor’s control field is set accordingly. This flag will be
ignored in case the core is configured with the en_ahbm1 VHDL generic set to ‘0’.

40.5 Data realignment buffer

The realignment buffer is the data buffer used internally by the GRDMAC core. The component
allows the core to store the data in a tightly packed way, being optimized to store AMBA AHB trans-
fer data of different size and at different address offsets.
The internal buffer uses RAM implemented using GRLIB parameterizable SYNCRAMBW memo-
ries, assuring portability to all supported technologies. Internally two SYNCRAMBW are used, one
for even words and one for odd words. The total number of RAMs used depends on the bufsize
generic, and its minimum size is two words, 8 bytes. To control the implementation technology of the
internal RAMs, the technology mapping generic memtech may be used. Additionally, the generic
testen will be propagated to the SYNCRAMBW and is used to enable scan test support.
Fault tolerance can be added to the RAM by setting the ft generic to a value different than 0. To obtain
byte parity DMR memories, set the ft generic to 1. To use TMR set it to 2. Note that the ft generic
needs to be set to 0 unless the core is used together with the fault tolerant version of GRLIB, which is
not available under the terms of the GPL.

40.6 Interrupts

GRDMAC provides fine-grained control of interrupt generation. At the highest level, the global Inter-
rupt Enable bit (IE) in the control register can be set to zero to mask every interrupt setting in the core.
If set to one, interrupt generation depends on the following settings.
The Interrupt on Error Enable bit (IEE) in the control register provides a way to generate interrupts in
the event of errors. Error generation is discussed further in the next paragraph.
GRIP, Sep 2018, Version 2018.3 468 www.cobham.com/gaisler

GRLIB IP Core

An interrupt can be also generated by the successful completion of a descriptor, if the Interrupt Enable
(IE) bit is set to one in the descriptor’s control field. The Interrupt Mask bit (Ix) in the Interrupt Mask
register can be set to zero to mask all the descriptor completion interrupts. If descriptor write-back is
enabled, the interrupt will be generated after writing back the descriptor’s status in main memory.
For both interrupts on error and interrupts on descriptor completion events, a flag will be raised in the
interrupt flag register at the bit corresponding to the channel where the interrupt event happened (IFx).
As an example of interrupt generation setup, one can enable interrupt on channel completion by per-
forming the following steps. The Interrupt Enable (IE) bit in GRDMAC control register must be set to
one, as must be the relevant channel’s interrupt mask bit in the Interrupt mask register. Finally the
Interrupt Enable (IE) bit in the control field of the last descriptor in the B2M chain of the channel
must be set to one, while the same field must be set to zero in every other descriptor in the channel.
This way, when the last descriptor in the buffer to memory chain is completed successfully, an inter-
rupt will be generated.

40.7 Wide Data Bus support

The size of AMBA accesses supported through GRDMAC’s AHB master interfaces depends on the
maximum bus width and if the accessed memory area has been marked as being on the wide bus.
The generic wbmask is treated as a 16 bit mask where every bit represents a 256 MiB block of mem-
ory, with the least significative bit representing the range 0 - 0x10000000. If the corresponding bit is
set to one, GRDMAC with perform wide accesses to that memory area. The size of the accesses is
controlled with the busw generic. If the generic is set to 0, only 32 bit accesses will be performed.
Furthermore, the size of the AHB accesses can be limited with the Transfer Size Limit (TSL) field in
the control register of GRDMAC. If the field is set to 1, the core will limit its maximum AHB transfer
size to 32 bits. If it is set to 2, the limit will be 64 bits, and if it is set to 3, the limit will be 128 bits.
The field must be interpreted as an upper limit on the transfer size and is subject to the wbmask and
busw generic.

40.8 Errors

Four types of errors can be generated by GRDMAC. Transfer errors, descriptor errors, Channel Vector
Pointer errors, conditional errors and timeout errors, as defined in the Error Register.
Transfer errors are generated when the core is accessing DMA data from and to memory and it
encounters an AMBA AHB ERROR response. When a transfer error occurs on a descriptor which has
the write-back flag enabled, the descriptor status will be written back to main memory with the error
field set to one. An eventual interrupt will be generated only after the write back.
Descriptor errors are generated when an ERROR response is received while reading or writing back a
descriptor in main memory.
Channel Vector Pointer errors are generated when the core receives an ERROR response when access-
ing the Channel Vector data structure in main memory.
Conditional errors are generated when a conditional polling descriptor encounters a problem during
an AHB polling operation such as an ERROR response.
Finally timeout errors are caused by the timeout counter expiring before receiving an interrupt during
triggered conditional descriptor execution. This requires the timer_en VHDL configuration generic to
be set to ‘1’ and the TE bit field in the control register to be configured to ‘1’ during execution.
The core will enable the corresponding error type bit in the error register in addition to the error flag
bit (E). The channel number where the error happened can be also read directly from the channel error
field (CHERR) of the error register. Additionally an interrupt will be generated if the Interrupt on
Error Enable bit (IEE) and the global Interrupt Enable (IE) bit in GRDMAC control register are set to
one, and a flag will be raised in the interrupt flag register bit corresponding to the channel where the
error event occurred (IFx).
GRIP, Sep 2018, Version 2018.3 469 www.cobham.com/gaisler

GRLIB IP Core

40.9 Internal Buffer Readout Interface

In case of an error, the execution of the DMA channels will halt and the error will be reported as
described in the previous session. It can happen that data that has been accumulated in the internal
buffer during the M2B chain transactions, is not written out as part of the B2M chain, due to the chan-
nel halting. This internal data can still be read via the APB interface of the GRDMAC core, through
the Internal Buffer Readout Interface memory area. The memory area is located at offset 0x800 to
0xFFF of the GRDMAC core memory address, totaling 2 KiB of accessible Internal Buffer space, as
seen in Table 526. This area can only be read when the core is in an idle state and bit flag EN of the
Control Register is set to ‘0’. The amount of valid data in the internal buffer can be inferred by read-
ing the read pointer and write pointers to the buffer from the Internal Buffer Pointers Register (offset
0x40).

40.10 Endianness

The core is designed for big-endian systems.

40.11 Registers

The core is programmed through registers mapped into APB address space. The APB address is con-
figured with the paddr and pmask generics. If the core is instantiated with the internal AHB/APB
bridge, the haddr and hmask generics will configure the APB address space.

Table 526.GRDMAC controller registers

APB address offset Register
0x00 Control register
0x04 Status register
0x08 Interrupt mask register
0x0C Error register
0x10 Channel Vector Pointer
0x14 Timer Reset Value register
0x18 Capability register
0x1C Interrupt flag register
0x20 Reserved
0x24 M2B Descriptor Address register*
0x28 M2B Descriptor Control register*
0x2C M2B Descriptor Status register*
0x30 Reserved
0x34 B2M Descriptor Address register*
0x38 B2M Descriptor Control register*
0x3C B2M Descriptor Status register*
0x40 Internal Buffer Pointers Register
0x800-0xFFF Internal Buffer Readout Area
*Only used in Simplified Mode of Operation
GRIP, Sep 2018, Version 2018.3 470 www.cobham.com/gaisler

GRLIB IP Core

40.11.1

Table 527.GRDMAC control register

Control Register

40.11.2

Table 528.GRDMAC status register

Status Register

40.11.3 Interrupt Mask

Table 529.GRDMAC Interrupt Mask

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 6 5 4 3 2 1 0

EF EE ED EC EB EA E9 E8 E7 E6 E5 E4 E3 E2 E1 E0 TSL RESERVED TE SM IEE IE RS EN

NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR 0 NR NR NR 0 0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw * rw rw rw rw rw

31: 16 Enable channel x (Ex) - Set to one to enable DMA channel x, from 0 to 15.
15 12 Transfer Size limit (TSL) - If set to 1, the GRDMAC core will limit its maximum transfer size to 32b

accesses. If set to 2, it will limit the transfer size to 64 bits. If set to 3, it will limit the maximum
transfer size to 128 bit. If set to 0 no limit is imposed. The maximum transfer size is controlled by the
wbmask and busw generics.

5 Timer Enable (TE) - Set to ‘1’ to enable the timeout timer during triggered conditional descriptor
execution. If the timer_en generic is set to ‘1’, the field is rw, read-only otherwise.

4 Simplified mode (SM) - Set to one to use the core in simplified mode of operation
3 Interrupt enable for Errors (IEE) - Set to one to enable interrupt generation on error. Interrupt gener-

ation on error depends on the global Interrupt Enable (IE).
2 Interrupt Enable (IE) - Global Interrupt Enable. If set to zero, no interrupt will be generated. If set to

one, interrupts from errors, descriptor completion, won’t be masked.
1 Reset (RS) - Resets the core register if set to one.
0 Enable/Run (EN) - When set to one, the core will be enabled and start running.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SF SE SD SC SB SA S9 S8 S7 S6 S5 S4 S3 S2 S1 S0 CF CE CD CC CB CA C9 C8 C7 C6 C5 C4 C3 C2 C1 C0

0 0

r r

31: 16 Status of channel x (Sx) - Set to one if DMA channel x is running, set to zero otherwise.
15: 0 Completion of channel x(Cx) - Set to one if DMA channel x has completed successfully, zero other-

wise.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IF IE ID IC IB IA I9 I8 I7 I6 I5 I4 I3 I2 I1 I0

NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15: 0 Interrupt Mask for channel x (Ix) - Set to 0 to mask descriptor interrupt generation from channel x.
Interrupt generation depends on the global Interrupt Enable in the control register.
GRIP, Sep 2018, Version 2018.3 471 www.cobham.com/gaisler

GRLIB IP Core

40.11.4

Table 530.GRDMAC error register

Error Register

40.11.5

Table 531.GRDMAC Channel Vector Pointer

Channel Vector Pointer

40.11.6

Table 532.GRDMAC Timer Reset Value Register

Timer Reset Value Register

40.11.7 Capability Register

31 20 19 16 15 6 5 4 3 2 1 0

RESERVED CHERR RESERVED ME OE TE DE CE E

0 0 0 0 0 0

r wc wc wc wc wc wc

19: 16 Channel error (CHERR) - Channel number where last error was generated.
5 Timeout Error (ME) - One if the last generated error was of type timeout error. This field is cleared

by writing a one to it.
4 Conditional Error (OE) - One if the last generated error was of type conditional execution error. This

field is cleared by writing a one to it.
3 Transfer Error (TE) - One if the last generated error was of type transfer error. This field is cleared

by writing a one to it.
2 Descriptor Error (DE) - One if the last generated error was of type descriptor error. This field is

cleared by writing a one to it.
1 CVP Error (CE) - One if the last generated error was of type CVP error. This field is cleared by writ-

ing a one to it.
0 Error (E) - If set to one, an error was generated by the entity. This field is cleared by writing a one to

it.

31 7 6 0

CVP RESERVED

NR

rw

31: 7 Channel Vector Pointer (CVP) - 128 Byte aligned memory address pointing to the vector of up to 16
couples of descriptor chain pointers.

31 0

TIMER_RST

0x00000000

*

31: 0 Timer Reset Value (TIMER_RST) - Reset value for the triggered conditional descriptor timeout
timer. If the timer_en generic is set to ‘1’, the field is rw, read-only otherwise.

Table 533.GRDMAC capability register
31 16 15 12 11 10 9 8 7 4 3 0

BUFSZ RESERVED TT FT H1 NCH VER

* * * * * *

r r r r r r

31: 16 Buffer size (BUFSZ) - Binary logarithm of the internal buffer size of the entity.
11 Timer (TT) - If set to ‘1’, the timeout timer is enabled.
GRIP, Sep 2018, Version 2018.3 472 www.cobham.com/gaisler

GRLIB IP Core
10: 9 Fault Tolerant buffer (FT) - These bits indicate if the internal buffers in the core is implemented with
fault tolerance. When 0, no fault tolerance, when 1, byte parity DMR, when 2, TMR. Reflects the
VHDL generic ft.

8 Second AHB Master (H1) - If set to one, the second AHB master interface (AHBM1) is enabled.
7: 4 Channel Number (NCH) - The maximum number of supported DMA channels in the core is

NCH+1.
3: 0 Version (VER) - GRDMAC version number.

Table 533.GRDMAC capability register
GRIP, Sep 2018, Version 2018.3 473 www.cobham.com/gaisler

GRLIB IP Core

40.11.8

Table 534.GRDMAC interrupt flag register

Interrupt Flag Register

40.11.9

Table 535.GRDMAC M2B descriptor address register*

M2B Descriptor Address Register*

40.11.10

Table 536.GRDMAC M2B descriptor control register*

M2B Descriptor Control Register*

40.11.11

Table 537.GRDMAC M2B descriptor status register*

 M2B Descriptor Status Register*

40.11.12 B2M Descriptor Address Register*

31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED IFF IFE IFD IFC IFB IFA IF9 IF8 IF7 IF6 IF5 IF4 IF3 IF2 IF1 IF0

NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15: 0 Interrupt flag for channel x (IFx) - When set to one, an interrupt event (descriptor completion or
error) was generated on channel x. This field is cleared by writing a one to it.

31 0

ADDR

NR

rw

31: 0 M2B Address (ADDR) - Starting address the core will read data from.

31 16 15 3 2 1 0

SIZE RESERVED IE R EN

NR NR NR

rw rw rw*

31: 16 M2B descriptor size (SIZE) - Size in Bytes of the data that will be fetched from the address specified
in the M2B address register.

2 M2B descriptor Interrupt Enable (IE) - If set to one, an interrupt will be generated when the M2B
descriptor is completed. Descriptor interrupt generation also depends on interrupt mask for channel 0
and global interrupt enable.

0 M2B descriptor Enable (EN) - Set to one when the descriptor is written the first time. Write value
ignored.

31 3 2 1 0

RESERVED E S C

0 0 0

rw rw rw

2 M2B descriptor error - If set to one, an error was generated during execution of the M2B descriptor.
See error register for more information.

1 M2B descriptor status (S) - If set to one, the descriptor is being executed and running. Otherwise set
to zero.

0 M2B descriptor completetion (C) - If set to one, the descriptor was completed successfully.

Table 538.GRDMAC B2M descriptor address register*
31 0

ADDR
GRIP, Sep 2018, Version 2018.3 474 www.cobham.com/gaisler

GRLIB IP Core
40.11.13

Table 539.GRDMAC B2M descriptor control register*

 B2M Descriptor Control Register*

40.11.14

Table 540.GRDMAC B2M descriptor status register*

 B2M Descriptor Status Register*

40.11.15

Table 541.GRDMAC internal buffer pointers register*

 Internal Buffer Pointers Register

*Register used only when the core is set to work in Simplified mode of operation.

40.12 Example DMA channel set-up

In this example a single DMA channel will be set-up, using conditional descriptors, to gather data
from the UART core (APBUART) and write it into main memory.

NR

rw

31: 0 B2M Address (ADDR) - Starting address the core will write data to.

31 16 15 3 2 1 0

SIZE RESERVED IE R EN

NR NR NR

rw rw rw*

31: 16 B2M descriptor size (SIZE) - Size in Bytes of the data that will be written to the address specified in
the B2M address register.

2 B2M descriptor Interrupt Enable (IE) - If set to one, an interrupt will be generated when the B2M
descriptor is completed. Descriptor interrupt generation also depends on interrupt mask for channel 0
and global interrupt enable.

0 B2M descriptor Enable (EN) - Set to one when the descriptor is written the first time. Write value
ignored.

31 3 2 1 0

RESERVED E S C

0 0 0

rw rw rw

2 B2M descriptor error - If set to one, an error was generated during execution of the B2M descriptor.
See error register for more information.

1 B2M descriptor status (S) - If set to one, the descriptor is being executed and running. Otherwise set
to zero.

0 B2M descriptor completion (C) - If set to one, the descriptor was completed successfully.

31 16 15 0

READ_P WRITE_P

0 0

r r

31: 16 B2M Internal Buffer Read Pointer (READ_P)- Points to the last offset in the internal buffer which
was correctly read by the core and output on the bus.

15: 0 B2M Internal Buffer Write Pointer (WRITE_P) - Points to the last offset in the internal buffer which
was correctly written by the core as an input from the bus.

Table 538.GRDMAC B2M descriptor address register*
GRIP, Sep 2018, Version 2018.3 475 www.cobham.com/gaisler

GRLIB IP Core

The GRDMAC core is configured with its register address-space starting at address 0xCCC00200 and
main memory starts at 0x40000000. The APBUART core’s register is mapped at 0xCCC00100 and
the UART receiver FIFO queue is configured as 4 bytes.
The DMA channel will need two descriptors in the M2B chain: a conditional descriptor bound to a
data descriptor. The B2M chain will only need one data descriptor.
The conditional descriptor will poll the UART status register, mapped at 0xCCC00104, and will use
the mask 0x00000100 for the termination condition. This mask will be ANDed with the status regis-
ter, and the result of this operation will only show the value of the “Receiver FIFO half-full” field in
the status register. This will enable the conditional register to stop polling when this bit becomes ‘1’.
At this point the data descriptor will be executed for the amount of bytes specified in the conditional
descriptor, which in this case is 1 bytes (half of the FIFO size). For the data transfer to read and accu-
mulate correct data, the core must perform a single-byte access. The UART data register contains only
one byte of relevant data. The size limit per transfer is therefore 1 byte and the address is marked as
fixed, so the core will not increment it after every transfer.
The polling counter for the conditional descriptor is set according to the UART speed. If the UART
baud rate is 38.4K and the system frequency is 100 MHz, one can assume that there is going to be 1
Byte available in the UART every 26k clock cycles. Setting the polling period to a value less than 26K
will let the DMA get all the characters from the UART without missing any. The conditional counter
reset value is set to its maximum, a period of 4095 clock cycles (0xFFF).
The polling will restart after the last read and the transfers will go on until the total size specified in
the SIZE field of the data descriptor is reached. At this point the M2B chain is completed and the core
will proceed with the B2M chain, emptying the contents of its buffer into memory, at the address
specified.
GRIP, Sep 2018, Version 2018.3 476 www.cobham.com/gaisler

GRLIB IP Core

Table 542 shows the memory layout of the system with the required data to set-up this exam-
ple. Note that the Channel Vector is 128-byte aligned and the descriptors are 16-byte aligned,

as required by the core.
The core is configured with only one DMA channel (channel 0) and one master interface, as
can be seen in the capability register. Additionally the internal core’s buffer is 512 Bytes and
the time-out timer is available.
The core’s control register is pre-set to enable channel 0 and to enable interrupts and inter-
rupts on errors. To start the execution of the channel the software will write a ‘1’ to the
enable bit in the control register, usually by reading the register, performing a logical OR
with 0x00000001, and writing the value back to the register. In this case the value that needs
to be written to address 0xCCC00200 to correctly start execution is 0x0001000D.

40.13 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x095. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

40.14 Implementation

40.14.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).

Table 542. Memory Content
Address Data Description

0x40000080 0x40020010 Channel Vector - Channel 0 M2B descriptor chain pointer

0x40000084 0x40020040 Channel Vector - Channel 0 B2M descriptor chain pointer

... ...

0x40020010 0x40020031 M2B conditional descriptor 0 - next descriptor pointer (lsb set to 1 for cond. desc.)

0x40020014 0xCCC00104 M2B conditional descriptor 0 - address (UART status register address)

0x40020018 0x0001FFF1 M2B conditional descriptor 0 - control (poll every 4095 cycles, get 1 Byte)

0x4002001C 0x00000080 M2B conditional descriptor 0 - mask (only check “Receiver FIFO half-full”)

... ...

0x40020030 0x00000000 M2B data descriptor 0 - next descriptor pointer (NULL, end of chain)

0x40020034 0xCCC00100 M2B data descriptor 0 - address (UART data register address)

0x40020038 0x04000011 M2B data descriptor 0 - control (1024 Bytes from fixed address)

0x4002003C - M2B data descriptor 0 - status (written by core)

... ...

0x40020040 0x00000000 B2M data descriptor 0 - next descriptor pointer (NULL, end of chain)

0x40020044 0x40030000 B2M data descriptor 0 - address (DMA write address for UART data)

0x40020048 0x04000001 B2M data descriptor 0 - control (1024 Bytes)

0x4002004C - B2M data descriptor 0 - status (written by core)

... ...

0x40030000 - UART data written by the DMA core

... ...

0xCCC00200 0x0001000C GRDMAC Control register

0xCCC00204 - GRDMAC Status register (updated by the DMA core)

0xCCC00208 0x00000001 GRDMAC interrupt mask register

0xCCC0020C - GRDMAC error register (updated by the DMA core)

0xCCC00200 0x40000080 GRDMAC channel vector pointer

0xCCC00204 - Reserved

0xCCC00208 0x02000812 GRDMAC capability register

0xCCC0020C - GRDMAC interrupt flag register (updated by the DMA core)
GRIP, Sep 2018, Version 2018.3 477 www.cobham.com/gaisler

GRLIB IP Core

The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core does not support grlib_async_reset_enable. All registers that react on the reset signal will
have a synchronous reset.

40.15 Configuration options

Table 543 shows the configuration options of the GRDMAC core (VHDL generics). These options
are specific to the generic entity grdmac. See the chapter Instantiation for more details on specialized
versions of GRDMAC.

Table 543.Configuration options

Generic Function Allowed range Default
hmindex AHB master index (AHBM0) 0 - NAHBMST-1 0
hirq IRQ line used by GRDMAC 0 - NAHBIRQ-1 0
pindex APB slave index 0 - NAPBSLV-1 0
paddress Addr field of the APB bar. 0 - 16#FFF# 1
pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#
en_ahbm1 Enable second AHB master interface (AHBM1) 0 - NAHBMST-1 0
hmindex1 Second AHB master (AHBM1) index 0 - NAHBMST-1 1
ndmach Number of available DMA channels. 1 - 16 1
bufsize Internal buffer size. Must be a power of 2. 8 - 65536 256
burstbound Boundary that the burst will never cross. Maximum is

1KB as per the AMBA AHB standard. Could be set to
smaller values to ease re-arbitration. Must be a multiple
of 2.

4 - 1024 512

timer_en Enables the implementation of the timeout counter
which can be set during triggered conditional descriptor
execution.

0 - 1 0

memtech Internal buffer’s memory technology selection 0 - NTECH 0
testen Enable bypass logic for scan testing 0 - 1 0
ft This generic determines if fault tolerance should be

added to the internal data realignment buffer. 0 = no fault
tolerance, 1 = byte parity DMR, 2 = TMR. Note that this
generic needs to be set to 0 if the core is used together
with the GPL version of GRLIB, since that version does
not include any fault tolerance capability.

0 - 2 0

wbmask Wide-bus mask. Indicates which address ranges are 64/
128 bit capable. Treated as a 16-bit vector with LSB bit
(right-most) indicating address 0 - 0x10000000. See sec-
tion 40.7 for more information.

0 - 16#FFFF# 0

busw Bus width of the wide bus area (64 or 128). See section
40.7 for more information.

64, 128 64
GRIP, Sep 2018, Version 2018.3 478 www.cobham.com/gaisler

GRLIB IP Core

40.16 Signal descriptions

Table 544 shows the interface signals of the core (VHDL ports).

40.17 Library dependencies

Table 545 shows the libraries used when instantiating the core (VHDL libraries).

40.18 Instantiation

In addition to the generic GRDMAC version, grdmac, a single-port version of the core is available,
grdmac_1p, where the en_ahbm1 generic is preset to ‘0’, and the generics and ports related to the
dual-port functionality are removed for convenience.
library ieee;
use ieee.std_logic_1164.all;

library gaisler;
use gaisler.misc.all;
use gaisler.grdmac_pkg.all;

library grlib;
use grlib.amba.all;
use grlib.stdlib.all;

entity grdmac_ex is

end entity;

architecture rtl of grdmac_ex is

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);

 signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);

 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

Table 544.Signal descriptions

Signal name Field Type Function Active
RST N/A Input AHB reset Low
CLK N/A Input AHB clock -
AHBMI * Input AHB master input -
AHBMO * Output AHB master output -
AHBMI1 * Input AHB second master input -
AHBMO1 * Output AHB second master output -
APBI * Output APB slave inputs -
APBO * Input APB slave outputs -
IRQ_TRIG[63:0] Input Descriptor triggering input
* see GRLIB IP Library User’s Manual

Table 545.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER GRDMAC_PKG Components, signals GRDMAC internal components and signals.
GRIP, Sep 2018, Version 2018.3 479 www.cobham.com/gaisler

GRLIB IP Core

begin

 -- ... AHBCTRL

 -- GRDMAC one-AHB-port, AHB master index 1, APB index 0
 -- internal buffer size 1024 bytes, will break bursts at 512 byte boundaries
 -- APB registers at address 0xCCC00200
 dma0 : grdmac_1p
 generic map (
 hmindex => 1,
 pindex => 0,
 paddr => 16#002#,
 hirq => 1,
 ndmach => 2,
 bufsize => 1024, --bytes
 burstbound => 512 -- bytes
)
 port map (rstn, clk, ahbmi, ahbmo(1), apbi, apbo(0));

 -- AHB/APB bridge, AHB slave index 2
 apb0: apbctrl
 generic map (hindex => 2, haddr => 16#CCC#)
 port map (rstn, clk, ahbsi, ahbso(2), apbi, apbo);

 -- ... APB peripherals

end architecture ; -- rtl
GRIP, Sep 2018, Version 2018.3 480 www.cobham.com/gaisler

GRLIB IP Core

41 GRECC - Elliptic Curve Cryptography

41.1 Overview

Elliptic Curve Cryptography (ECC) is used as a public key mechanism. The computational burden
that is inhibited by ECC is less than the one of RSA. ECC provides the same level of security as RSA
but with a significantly shorter key length. ECC is well suited for application in mobile communica-
tion.
The GRECC core implements encryption and decryption for an elliptic curve based on 233-bit key
and point lengths. The implemented curve is denoted as sect233r1 or B-233.

The sect233r1 elliptic curve domain parameters are specified in the “Standards for Efficient Cryptog-
raphy (SEC) - SEC2: Recommended Elliptic Curve Domain Parameters” document. The document is
established by the Standards for Efficient Cryptography Group (SECG).
The B-233 elliptic curve domain parameters are specified in the “Digital Signature Standard (DSS)”
document, Federal Information Processing Standards (FIPS) Publication 186-2. The document is
established by the National Institute of Standards and Technology (NIST).
The GRECC can be used with algorithms such as:
• Elliptic Curve Digital Signature Algorithm DSA (ECDSA), which appears in FIPS 186-2, IEEE

1363-2000 and ISO/IEC 15946-2
• Elliptic Curve El Gamal Method (key exchange protocol)
• Elliptic Curve Diffie-Hellman (ECDH) (key agreement protocol)

The core provides the following internal AMBA APB slave interface, with sideband signals as per
[GRLIB] including:
• interrupt bus
• configuration information
• diagnostic information

The core can be partition in the following hierarchical elements:
• Elliptic Curve Cryptography (ECC) core
• AMBA APB slave
• GRLIB plug&play wrapper

Note that the core can also be used without the GRLIB plug&play information.

41.2 Operation

Elliptic Curve Cryptography (ECC) is an asymmetric cryptographic approach (also known as public
key cryptography) that applies different keys for encryption and decryption. The most expensive
operation during both encryption and decryption is the elliptic curve point multiplication. Hereby, a
point on the elliptic curve is multiplied with a long integer (k*P multiplication). The bit sizes of the
coordinates of the point P=(x, y) and the factor k have a length of hundreds of bits.
In this implementation the key and the point lengths are 233 bit, so that for every key there are 8 write
cycles necessary and for every point (consisting of x and y) there are 16 write cycles necessary. After
at least 16700 clock cycles the result can be read out.
GRIP, Sep 2018, Version 2018.3 481 www.cobham.com/gaisler

GRLIB IP Core

The key is input via eight registers. The input point Pin=(x, y) is written via eight registers for x and
eight registers for y. After the last y input register is written, the encryption or decryption is started.
The progress can be observed via the status register. When the operation is completed, an interrupt is
generated. The output point Pout=(x, y) is then read out via eight registers for x and eight registers for
y.

41.3 Advantages

The main operation in ECC is the k*P multiplication. One k*P multiplication requires about 1500
field multiplications in the base field, which is the most expensive base operation. The complexity of
a field multiplication can be reduced by applying the Karatsuba method. Normally the Karatsuba
approach is applied recursively. The GRECC core includes an iterative implementation of the Karat-
suba method which allows to realize area efficient hardware accelerators for the k*P multiplication.
Hardware accelerators which are realized applying an iterative approach need up to 60 per cent less
area and about 30 per cent less energy per multiplication than the recursive variants.

41.4 Background

The Standards for Efficient Cryptography Group (SECG) was initiated by Certicom Corporation to
address the difficulty vendors and users face when building and deploying interoperable security solu-
tions. The SECG is a broad international coalition comprised of leading technology companies and
key industry players in the information security industry. One of the goals is to enable the effective
incorporation of Elliptic Curve Cryptographic (ECC) technology into these various cryptographic
solutions.
The Standards for Efficient Cryptography Group (SECG) has develop two sets of documents. The
first set, under the name SEC, specifies interoperable cryptographic technologies and solutions. The
second set, Guidelines for Efficient Cryptography (GEC), provides background information on ellip-
tic curve cryptography and recommendations for ECC parameter and curve selection.
The Federal Information Processing Standards Publication Series of the National Institute of Stan-
dards and Technology (NIST) is the official series of publications relating to standards and guidelines
adopted under the provisions of the Information Technology Management Reform Act.
This Digital Signature Standard (DSS) specifies a suite of algorithms which can be used to generate a
digital signature. Digital signatures are used to detect unauthorized modifications to data and to
authenticate the identity of the signatory. In addition, the recipient of signed data can use a digital sig-
nature in proving to a third party that the signature was in fact generated by the signatory. This is
known as nonrepudiation since the signatory cannot, at a later time, repudiate the signature.

41.5 233-bit elliptic curve domain parameters

The core implements the 233-bit elliptic curve domain parameters sect233r1, or the equivalent B-233,
which are verifiably random parameters. The following specification is established in “Standards for
Efficient Cryptography (SEC) - SEC 2: Recommended Elliptic Curve Domain Parameters”. The veri-
fiably random elliptic curve domain parameters over F2m are specified by the septuple T = (m; f (x); a;
b; G; n; h) where m = 233 and the representation of F2233 is defined by:

f (x) = x233+x74 +1
The curve E: y2+xy = x3+ax2+b over F2m is defined by:

a = 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000001

b = 0066 647EDE6C 332C7F8C 0923BB58 213B333B 20E9CE42 81FE115F 7D8F90AD
The base point G in compressed form is:

G = 0300FA C9DFCBAC 8313BB21 39F1BB75 5FEF65BC 391F8B36 F8F8EB73 71FD558B

and in uncompressed form is:
GRIP, Sep 2018, Version 2018.3 482 www.cobham.com/gaisler

GRLIB IP Core

G = 04 00FAC9DF CBAC8313 BB2139F1 BB755FEF 65BC391F 8B36F8F8

 EB7371FD 558B0100 6A08A419 03350678 E58528BE BF8A0BEF F867A7CA
 36716F7E 01F81052

Finally the order n of G and the cofactor are:
n = 0100 00000000 00000000 00000000 0013E974 E72F8A69 22031D26 03CFE0D7

h = 02

41.6 Throughput

The data throughput for the GRECC core is around 233/16700 bits per clock cycle, i.e. approximately
13.9 kbits per MHz.
The underlaying EEC core has been implemented in a dual crypto chip on 250 nm technology as
depicted in the figure below. The throughput at 33 MHz operating frequency was 850 kbit/s, the
power consumption was 56,8 mW, and the size was 48,5 kgates.

Figure 123. Dual Crypto Chip

41.7 Characteristics

The GRECC core has been synthesized for a Xilinx Virtex-2 XC2V6000-4 devices with the following
results:
• LUTs: 12850 (19%)
• Frequency:93 MHz
GRIP, Sep 2018, Version 2018.3 483 www.cobham.com/gaisler

GRLIB IP Core

41.8 Registers

The core is programmed through registers mapped into APB address space.

Table 546.GRECC registers

APB address offset Register
0x20 Key 0 Register
0x24 Key 1 Register
0x28 Key 2 Register
2C Key 3 Register
0x30 Key 4 Register
0x34 Key 5 Register
0x38 Key 6 Register
0x3C Key 7 Register
0x40 Point X Input 0 Register
0x044 Point X Input 1 Register
0x048 Point X Input 2 Register
0x04C Point X Input 3 Register
0x050 Point X Input 4 Register
0x054 Point X Input 5 Register
0x58 Point X Input 6 Register
0x5C Point X Input 7 Register
0x60 Point Y Input 0 Register
0x64 Point Y Input 1 Register
0x68 Point Y Input 2 Register
0x6C Point Y Input 3 Register
0x70 Point Y Input 4 Register
0x74 Point Y Input 5 Register
0x78 Point Y Input 6 Register
0x7C Point Y Input 7 Register
0xA0 Point X Output 0 Register
0xA4 Point X Output 1 Register
0xA8 Point X Output 2 Register
0xAC Point X Output 3 Register
0xB0 Point X Output 4 Register
0xB4 Point X Output 5 Register
0xB8 Point X Output 6 Register
0xBC Point X Output 7 Register
0xC0 Point Y Output 0 Register
0xC4 Point Y Output 1 Register
0xC8 Point Y Output 2 Register
0xCC Point Y Output 3 Register
0xD0 Point Y Output 4 Register
0xD4 Point Y Output 5 Register
0xD8 Point Y Output 6 Register
0xDC Point Y Output 7 Register
0xFC Status Register
GRIP, Sep 2018, Version 2018.3 484 www.cobham.com/gaisler

GRLIB IP Core

41.8.1 Key 0 to 7 Registers

Table 547.0x20 - KEY0 - Key 0 Register (least significant)

Table 548.0x24 - KEY1 - Key 1 Register

Table 549.0x28 - KEY2 - Key 2 Register

Table 550.0x2C - KEY3 - Key 3 Register

Table 551.0x30 - KEY4 - Key 4 Register

Table 552.0x34 - KEY5 - Key 5 Register

Table 553.0x38 - KEY6 - Key 6 Register

31 0
KEY(31 downto 0)
0
w

31 0
KEY(63 downto32)
0
w

31 0
KEY(95 downto 64)
0
w

31 0
KEY(127 downto 96)
0
w

31 0
KEY(159 downto 128)
0
w

31 0
KEY(191 downto 160)
0
w

31 0
KEY(223 downto 192)
0
w

GRIP, Sep 2018, Version 2018.3 485 www.cobham.com/gaisler

GRLIB IP Core

Table 554.0x3C - KEY7 - Key 7 Register (most significant)

31 9 8 0
RESERVED KEY(232 downto 224)
0 0
- w
GRIP, Sep 2018, Version 2018.3 486 www.cobham.com/gaisler

GRLIB IP Core

41.8.2 Point X Input 0 to 7 Registers

Table 555.0x40 - PXI0 - Point X Input 0 Register (least significant)

Table 556.0x44 - PXI1 - Point X Input 1 Register

Table 557.0x48 - PXI2 - Point X Input 2 Register

Table 558.0x4C - PXI3 - Point X Input 3 Register

Table 559.0x50 - PXI4 - Point X Input 4 Register

Table 560.0x54 - PXI5 - Point X Input 5 Register

Table 561.0x58 - PXI6 - Point X Input 6 Register

31 0
X(31 downto 0)
0
w

31 0
X(63 downto32)
0
w

31 0
X(95 downto 64)
0
w

31 0
X(127 downto 96)
0
w

31 0
X(159 downto 128)
0
w

31 0
X(191 downto 160)
0
w

31 0
X(223 downto 192)
0
w

GRIP, Sep 2018, Version 2018.3 487 www.cobham.com/gaisler

GRLIB IP Core

Table 562.0x5C - PXI7 - Point X Input 7 Register (most significant)

31 9 8 0
RESERVED X(232 downto 224)
0 0
- w
GRIP, Sep 2018, Version 2018.3 488 www.cobham.com/gaisler

GRLIB IP Core

41.8.3 Point Y Input 0 to 7 Registers (W)

Table 563.0x60 - PYI0 - Point Y Input 0 Register (least significant)

Table 564.0x64 - PYI1 - Point Y Input 1 Register

Table 565.0x68 - PYI2 - Point Y Input 2 Register

Table 566.0x6C - PYI3 - Point Y Input 3 Register

Table 567.0x70 - PYI4 - Point Y Input 4 Register

Table 568.0x74 - PYI5 - Point Y Input 5 Register

Table 569.0x78 - PYI6 - Point Y Input 6 Register

31 0
Y(31 downto 0)

31 0
Y(63 downto32)

31 0
Y(95 downto 64)

31 0
Y(127 downto 96)

31 0
Y(159 downto 128)

31 0
Y(191 downto 160)

31 0
Y(223 downto 192)
GRIP, Sep 2018, Version 2018.3 489 www.cobham.com/gaisler

GRLIB IP Core

Table 570.0x7C - PYI7 - Point Y Input 7 Register (most significant)

The encryption or decryption operation is started when the Point Y Input 7 Register is written.

31 9 8 0
RESERVED Y(232 downto 224)

0
w

GRIP, Sep 2018, Version 2018.3 490 www.cobham.com/gaisler

GRLIB IP Core

41.8.4 Point X Output 0 to 7 Registers (R)

Table 571.0xA0 - PXO0 - Point X Output 0 Register (least significant)

Table 572.0xA4 - PXO1 - Point X Output 1 Register

Table 573.0xA8 - PXO2 - Point X Output 2 Register

Table 574.0xAC - PXO3 - Point X Output 3 Register

Table 575.0xB0 - PXO4 - Point X Output 4 Register

Table 576.0xB4 - PXO5 - Point X Output 5 Register

Table 577.0xB8 - PXO6 - Point X Output 6 Register

31 0
X(31 downto 0)
NR
r

31 0
X(63 downto32)
NR
r

31 0
X(95 downto 64)
NR
r

31 0
X(127 downto 96)
NR
r

31 0
X(159 downto 128)
NR
r

31 0
X(191 downto 160)
NR
r

31 0
X(223 downto 192)
NR
r

GRIP, Sep 2018, Version 2018.3 491 www.cobham.com/gaisler

GRLIB IP Core

Table 578.0xBC - PXO7 - Point X Output 7 Register (most significant)

31 9 8 0
RESERVED X(232 downto 224)
- NR
r r
GRIP, Sep 2018, Version 2018.3 492 www.cobham.com/gaisler

GRLIB IP Core

41.8.5 Point Y Output 0 to 7 Registers (R)

Table 579.0xC0 - PYO0 - Point Y Output 0 Register (least significant)

Table 580.0xC4 - PYO1 - Point Y Output 1 Register

Table 581.0xC8 - PYO2 - Point Y Output 2 Register

Table 582.0xCC - PYO3 - Point Y Output 3 Register

Table 583.0xD0 - PYO4 - Point Y Output 4 Register

Table 584.0xD4 - PYO5 - Point Y Output 5 Register

Table 585.0xD8 - PYO6 - Point Y Output 6 Register

31 0
Y(31 downto 0)
NR
r

31 0
Y(63 downto32)
NR
r

31 0
Y(95 downto 64)
NR
r

31 0
Y(127 downto 96)
NR
r

31 0
Y(159 downto 128)
NR
r

31 0
Y(191 downto 160)
NR
r

31 0
Y(223 downto 192)
NR
r

GRIP, Sep 2018, Version 2018.3 493 www.cobham.com/gaisler

GRLIB IP Core

Table 586.0xDC - PYO7 - Point Y Output 7 Register (most significant)

41.8.6 Status Register (R)

Table 587.0xFC - STAT - Status Register

31-1: - Unused
0: FSM 0 when ongoing, 1 when idle or ready

41.9 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x074. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

41.10 Configuration options

Table 588 shows the configuration options of the core (VHDL generics).

41.11 Signal descriptions

Table 589 shows the interface signals of the core (VHDL ports).

Note that the ECC core can also be used without the GRLIB plug&play information. The AMBA
APB signals are then provided as IEEE Std_Logic_1164 compatible scalars and vectors.

31 9 8 0
RESERVED Y(232 downto 224)
- NR
r r

31 1 0
. FS

M
0 1
r r

Table 588.Configuration options

Generic Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0
paddr Addr field of the APB BAR 0 - 16#FFF# 0
pmask Mask field of the APB BAR 0 - 16#FFF# 16#FFC#
pirq Interrupt line used by the GRECC 0 - NAHBIRQ-1 0

Table 589.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
DEBUG[10:0] N/A Output Debug information -
* see GRLIB IP Library User’s Manual
GRIP, Sep 2018, Version 2018.3 494 www.cobham.com/gaisler

GRLIB IP Core

41.12 Library dependencies

Table 590 shows libraries used when instantiating the core (VHDL libraries).

41.13 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;

library gaisler;
use gaisler.crypto.all;
...
...
 signal debug: std_logic_vector(10 downto 0);
..
..
 grecc0: grecc
 generic map (
 pindex => pindex,
 paddr => paddr,
 pmask => pmask,
 pirq => pirq)
 port map (
 rstn => rstn,
 clk => clk,
 apbi => apbi,
 apbo => apbo(pindex),
 debug => debug);

Table 590.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER CRYPTO Component GRECC component declarations
GRIP, Sep 2018, Version 2018.3 495 www.cobham.com/gaisler

GRLIB IP Core

42 GRETH - Ethernet Media Access Controller (MAC) with EDCL support

42.1 Overview

Cobham Gaisler’s Ethernet Media Access Controller (GRETH) provides an interface between an
AMBA-AHB bus and an Ethernet network. It supports 10/100 Mbit speed in both full- and half-
duplex. The AMBA interface consists of an APB interface for configuration and control and an AHB
master interface which handles the dataflow. The dataflow is handled through DMA channels. There
is one DMA engine for the transmitter and one for the receiver. Both share the same AHB master
interface. The ethernet interface supports both the MII and RMII interfaces which should be con-
nected to an external PHY. The GRETH also provides access to the MII Management interface which
is used to configure the PHY.
Optional hardware support for the Ethernet Debug Communication Link (EDCL) protocol is also pro-
vided. This is an UDP/IP based protocol used for remote debugging.

42.2 Operation

42.2.1 System overview

The GRETH consists of 3 functional units: The DMA channels, MDIO interface and the optional
Ethernet Debug Communication Link (EDCL).
The main functionality consists of the DMA channels which are used to transfer data between an
AHB bus and an Ethernet network. There is one transmitter DMA channel and one Receiver DMA
channel. The operation of the DMA channels is controlled through registers accessible through the
APB interface.
The MDIO interface is used for accessing configuration and status registers in one or more PHYs con-
nected to the MAC. The operation of this interface is also controlled through the APB interface.
The optional EDCL provides read and write access to an AHB bus through Ethernet. It uses the UDP,
IP, ARP protocols together with a custom application layer protocol to accomplish this. The EDCL
contains no user accessible registers and always runs in parallel with the DMA channels.

AHB
APB

Ethernet MAC

Registers MDIO

MDIO_OE
MDIO_O
MDIO_I

MDC

AHB Master
Interface

Transmitter

Receiver

Transmitter

Receiver

DMA Engine

DMA Engine

FIFO

FIFO

TX_EN
TX_ER
TXD(3:0)
TX_CLK
RX_CRS
RX_COL

RX_DV
RX_ER
RXD(3:0)
RX_CLK

EDCL
 Transmitter

EDCL
 Receiver

Figure 124. Block diagram of the internal structure of the GRETH.
GRIP, Sep 2018, Version 2018.3 496 www.cobham.com/gaisler

GRLIB IP Core

The Media Independent Interface (MII) is used for communicating with the PHY. There is an Ethernet
transmitter which sends all data from the AHB domain on the Ethernet using the MII interface. Corre-
spondingly, there is an Ethernet receiver which stores all data from the Ethernet on the AHB bus. Both
of these interfaces use FIFOs when transferring the data streams. The GRETH also supports the RMII
which uses a subset of the MII signals.
The EDCL and the DMA channels share the Ethernet receiver and transmitter.

42.2.2 Protocol support

The GRETH is implemented according to IEEE standard 802.3-2002 and IEEE standard 802.3Q-
2003. There is no support for the optional control sublayer. This means that packets with type 0x8808
(the only currently defined ctrl packets) are discarded. The support for 802.3Q is optional and need to
be enabled via generics.

42.2.3 Clocking

GRETH has three clock domains: The AHB clock, Ethernet receiver clock and the Ethernet transmit-
ter clock. The ethernet transmitter and receiver clocks are generated by the external ethernet PHY, and
are inputs to the core through the MII interface. The three clock domains are unrelated to each other
and all signals crossing the clock regions are fully synchronized inside the core.
Both full-duplex and half-duplex operating modes are supported and both can be run in either 10 or
100 Mbit. The minimum AHB clock for 10 Mbit operation is 2.5 MHz, while 18 MHz is needed for
100 Mbit. Using a lower AHB clock than specified will lead to excessive packet loss.

42.2.4 RAM debug support

Support for debug accesses the core’s internal RAM blocks can be optionally enabled using the ram-
debug VHDL generic. Setting it to 1 enables accesses to the transmitter and receiver RAM buffers and
setting it to 2 enables accesses to the EDCL buffer in addition to the previous two buffers.
The transmitter RAM buffer is accessed starting from APB address offset 0x10000 which corresponds
to location 0 in the RAM. There are 512 32-bit wide locations in the RAM which results in the last
address being 0x107FC corresponding to RAM location 511 (byte addressing used on the APB bus).
Correspondingly the receiver RAM buffer is accessed starting from APB address offset 0x20000. The
addresses, width and depth is the same.
The EDCL buffers are accessed starting from address 0x30000. The number of locations depend on
the configuration and can be from 256 to 16384. Each location is 32-bits wide so the maximum
address is 0x3FC and 0xFFFC correspondingly.
Before any debug accesses can be made the ramdebugen bit in the control register has to be set.
During this time the debug interface controls the RAM blocks and normal operations is stopped.
EDCL packets are not received. The MAC transmitter and receiver could still operate if enabled but
the RAM buffers would be corrupt if debug accces are made simultaneously. Thus they MUST be dis-
abled before the RAM debug mode is enabled.

42.2.5 Multibus version

There is a version of the core which has an additional master interface that can be used for the EDCL.
Otherwise this version is identical to the basic version. The additional master interface is enabled with
the edclsepahb VHDL generic. Then the ethi.edclsepahb signal control whether EDCL accesses are
done on the standard master interface or the additional interface. Setting the signal to ‘0’ makes the
EDCL use the standard master interface while ‘1’ selects the additional master. This signal is only
sampled at reset and changes to this signal have no effect until the next reset.
GRIP, Sep 2018, Version 2018.3 497 www.cobham.com/gaisler

GRLIB IP Core

42.2.6 Endianness

The core is designed for big-endian systems.

42.3 Tx DMA interface

The transmitter DMA interface is used for transmitting data on an Ethernet network. The transmission
is done using descriptors located in memory.

42.3.1 Setting up a descriptor.

A single descriptor is shown in table 591 and 592. The number of bytes to be sent should be set in the
length field and the address field should point to the data. The address must be word-aligned. If the
interrupt enable (IE) bit is set, an interrupt will be generated when the packet has been sent (this
requires that the transmitter interrupt bit in the control register is also set). The interrupt will be gener-
ated regardless of whether the packet was transmitted successfully or not. The Wrap (WR) bit is also a
control bit that should be set before transmission and it will be explained later in this section.

To enable a descriptor the enable (EN) bit should be set and after this is done, the descriptor should
not be touched until the enable bit has been cleared by the GRETH.

42.3.2 Starting transmissions

Enabling a descriptor is not enough to start a transmission. A pointer to the memory area holding the
descriptors must first be set in the GRETH. This is done in the transmitter descriptor pointer register.
The address must be aligned to a 1 kB boundary. Bits 31 to 10 hold the base address of descriptor area
while bits 9 to 3 form a pointer to an individual descriptor.The first descriptor should be located at the
base address and when it has been used by the GRETH the pointer field is incremented by 8 to point at
the next descriptor. The pointer will automatically wrap back to zero when the next 1 kB boundary has

Table 591.GRETH transmit descriptor word 0 (address offset 0x0)
31 16 15 14 13 12 11 10 0

RESERVED AL UE IE WR EN LENGTH

31: 16 RESERVED
15 Attempt Limit Error (AL) - The packet was not transmitted because the maximum number of

attempts was reached.
14 Underrun Error (UE) - The packet was incorrectly transmitted due to a FIFO underrun error.
13 Interrupt Enable (IE) - Enable Interrupts. An interrupt will be generated when the packet from this

descriptor has been sent provided that the transmitter interrupt enable bit in the control register is set.
The interrupt is generated regardless if the packet was transmitted successfully or if it terminated
with an error.

12 Wrap (WR) - Set to one to make the descriptor pointer wrap to zero after this descriptor has been
used. If this bit is not set the pointer will increment by 8. The pointer automatically wraps to zero
when the 1 kB boundary of the descriptor table is reached.

11 Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor
fields.

10: 0 LENGTH - The number of bytes to be transmitted.

Table 592.GRETH transmit descriptor word 1 (address offset 0x4)
31 2 1 0

ADDRESS RES

31: 2 Address (ADDRESS) - Pointer to the buffer area from where the packet data will be loaded.
1: 0 RESERVED
GRIP, Sep 2018, Version 2018.3 498 www.cobham.com/gaisler

GRLIB IP Core

been reached (the descriptor at address offset 0x3F8 has been used). The WR bit in the descriptors can
be set to make the pointer wrap back to zero before the 1 kB boundary.
The pointer field has also been made writable for maximum flexibility but care should be taken when
writing to the descriptor pointer register. It should never be touched when a transmission is active.
The final step to activate the transmission is to set the transmit enable bit in the control register. This
tells the GRETH that there are more active descriptors in the descriptor table. This bit should always
be set when new descriptors are enabled, even if transmissions are already active. The descriptors
must always be enabled before the transmit enable bit is set.

42.3.3 Descriptor handling after transmission

When a transmission of a packet has finished, status is written to the first word in the corresponding
descriptor. The Underrun Error bit is set if the FIFO became empty before the packet was completely
transmitted while the Attempt Limit Error bit is set if more collisions occurred than allowed. The
packet was successfully transmitted only if both of these bits are zero. The other bits in the first
descriptor word are set to zero after transmission while the second word is left untouched.
The enable bit should be used as the indicator when a descriptor can be used again, which is when it
has been cleared by the GRETH. There are three bits in the GRETH status register that hold transmis-
sion status. The Transmitter Error (TE) bit is set each time an transmission ended with an error (when
at least one of the two status bits in the transmit descriptor has been set). The Transmitter Interrupt
(TI) is set each time a transmission ended successfully.
The transmitter AHB error (TA) bit is set when an AHB error was encountered either when reading a
descriptor or when reading packet data. Any active transmissions were aborted and the transmitter
was disabled. The transmitter can be activated again by setting the transmit enable register.

42.3.4 Setting up the data for transmission

The data to be transmitted should be placed beginning at the address pointed by the descriptor address
field. The GRETH does not add the Ethernet address and type fields so they must also be stored in the
data buffer. The 4 B Ethernet CRC is automatically appended at the end of each packet. Each descrip-
tor will be sent as a single Ethernet packet. If the size field in a descriptor is greater than defined by
maxsize generic + header size bytes, the packet will not be sent.

42.4 Rx DMA interface

The receiver DMA interface is used for receiving data from an Ethernet network. The reception is
done using descriptors located in memory.

42.4.1 Setting up descriptors

A single descriptor is shown in table 593 and 594. The address field should point to a word-aligned
buffer where the received data should be stored. The GRETH will never store more than defined by
the maxisize generic + header size bytes to the buffer. If the interrupt enable (IE) bit is set, an interrupt
will be generated when a packet has been received to this buffer (this requires that the receiver inter-
rupt bit in the control register is also set). The interrupt will be generated regardless of whether the
packet was received successfully or not. The Wrap (WR) bit is also a control bit that should be set
before the descriptor is enabled and it will be explained later in this section.

Table 593.GRETH receive descriptor word 0 (address offset 0x0)
31 27 26 25 19 18 17 16 15 14 13 12 11 10 0

RESERVED MC RESERVED LE OE CE FT AE IE WR EN LENGTH

31: 27 RESERVED
GRIP, Sep 2018, Version 2018.3 499 www.cobham.com/gaisler

GRLIB IP Core
42.4.2 Starting reception

Enabling a descriptor is not enough to start reception. A pointer to the memory area holding the
descriptors must first be set in the GRETH. This is done in the receiver descriptor pointer register. The
address must be aligned to a 1 kB boundary. Bits 31 to 10 hold the base address of descriptor area
while bits 9 to 3 form a pointer to an individual descriptor. The first descriptor should be located at the
base address and when it has been used by the GRETH the pointer field is incremented by 8 to point at
the next descriptor. The pointer will automatically wrap back to zero when the next 1 kB boundary has
been reached (the descriptor at address offset 0x3F8 has been used). The WR bit in the descriptors can
be set to make the pointer wrap back to zero before the 1 kB boundary.
The pointer field has also been made writable for maximum flexibility but care should be taken when
writing to the descriptor pointer register. It should never be touched when reception is active.
The final step to activate reception is to set the receiver enable bit in the control register. This will
make the GRETH read the first descriptor and wait for an incoming packet.

42.4.3 Descriptor handling after reception

The GRETH indicates a completed reception by clearing the descriptor enable bit. The other control
bits (WR, IE) are also cleared. The number of received bytes is shown in the length field. The parts of
the Ethernet frame stored are the destination address, source address, type and data fields. Bits 17-14
in the first descriptor word are status bits indicating different receive errors. All four bits are zero after
a reception without errors. The status bits are described in table 593.
Packets arriving that are smaller than the minimum Ethernet size of 64 B are not considered as a
reception and are discarded. The current receive descriptor will be left untouched an used for the first
packet arriving with an accepted size. The TS bit in the status register is set each time this event
occurs.

26 Multicast address (MC) - The destination address of the packet was a multicast address (not broad-
cast).

25: 19 RESERVED
18 Length error (LE) - The length/type field of the packet did not match the actual number of received

bytes.
17 Overrun error (OE) - The frame was incorrectly received due to a FIFO overrun.
16 CRC error (CE) - A CRC error was detected in this frame.
15 Frame too long (FT) - A frame larger than the maximum size was received. The excessive part

was truncated.
14 Alignment error (AE) - An odd number of nibbles were received.
13 Interrupt Enable (IE) - Enable Interrupts. An interrupt will be generated when a packet has been

received to this descriptor provided that the receiver interrupt enable bit in the control register is set.
The interrupt is generated regardless if the packet was received successfully or if it terminated with
an error.

12 Wrap (WR) - Set to one to make the descriptor pointer wrap to zero after this descriptor has been
used. If this bit is not set the pointer will increment by 8. The pointer automatically wraps to zero
when the 1 kB boundary of the descriptor table is reached.

11 Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor
fields.

10: 0 LENGTH - The number of bytes received to this descriptor.

Table 594.GRETH receive descriptor word 1 (address offset 0x4)
31 2 1 0

ADDRESS RES

31: 2 Address (ADDRESS) - Pointer to the buffer area from where the packet data will be loaded.
1: 0 RESERVED

Table 593.GRETH receive descriptor word 0 (address offset 0x0)
GRIP, Sep 2018, Version 2018.3 500 www.cobham.com/gaisler

GRLIB IP Core

If a packet is received with an address not accepted by the MAC, the IA status register bit will be set.
Packets larger than maximum size cause the FT bit in the receive descriptor to be set. The length field
is not guaranteed to hold the correct value of received bytes. The counting stops after the word con-
taining the last byte up to the maximum size limit has been written to memory.
The address word of the descriptor is never touched by the GRETH.

42.4.4 Reception with AHB errors

If an AHB error occurs during a descriptor read or data store, the Receiver AHB Error (RA) bit in the
status register will be set and the receiver is disabled. The current reception is aborted. The receiver
can be enabled again by setting the Receive Enable bit in the control register.

42.4.5 Accepted MAC addresses

In the default configuration the core receives packets with either the unicast address set in the MAC
address register or the broadcast address. Multicast support can also be enabled and in that case a hash
function is used to filter received multicast packets. A 64-bit register, which is accessible through the
APB interface, determines which addresses should be received. Each address is mapped to one of the
64 bits using the hash function and if the bit is set to one the packet will be received. The address is
mapped to the table by taking the 6 least significant bits of the 32-bit Ethernet crc calculated over the
destination address of the MAC frame. A bit in the receive descriptor is set if a packet with a multicast
address has been received to it.

42.5 MDIO Interface

The MDIO interface provides access to PHY configuration and status registers through a two-wire
interface which is included in the MII interface. The GRETH provided full support for the MDIO
interface. If it is not needed in a design it can be removed with a VHDL generic.
The MDIO interface can be used to access from 1 to 32 PHY containing 1 to 32 16-bit registers. A
read transfer i set up by writing the PHY and register addresses to the MDIO Control register and set-
ting the read bit. This caused the Busy bit to be set and the operation is finished when the Busy bit is
cleared. If the operation was successful the Linkfail bit is zero and the data field contains the read
data. An unsuccessful operation is indicated by the Linkfail bit being set. The data field is undefined
in this case.
A write operation is started by writing the 16-bit data, PHY address and register address to the MDIO
Control register and setting the write bit. The operation is finished when the busy bit is cleared and it
was successful if the Linkfail bit is zero.

42.5.1 PHY interrupts

The core also supports status change interrupts from the PHY. A level sensitive interrupt signal can be
connected on the mdint input. The mdint_pol vhdl generic can be used to select the polarity. The PHY
status change bit in the status register is set each time an event is detected in this signal. If the PHY
status interrupt enable bit is set at the time of the event the core will also generate an interrupt on the
AHB bus.

42.6 Ethernet Debug Communication Link (EDCL)

The EDCL provides access to an on-chip AHB bus through Ethernet. It uses the UDP, IP and ARP
protocols together with a custom application layer protocol. The application layer protocol uses an
ARQ algorithm to provide reliable AHB instruction transfers. Through this link, a read or write trans-
fer can be generated to any address on the AHB bus. The EDCL is optional and must be enabled with
a generic.
GRIP, Sep 2018, Version 2018.3 501 www.cobham.com/gaisler

GRLIB IP Core

42.6.1 Operation

The EDCL receives packets in parallel with the MAC receive DMA channel. It uses a separate MAC
address which is used for distinguishing EDCL packets from packets destined to the MAC DMA
channel. The EDCL also has an IP address which is set through generics. Since ARP packets use the
Ethernet broadcast address, the IP-address must be used in this case to distinguish between EDCL
ARP packets and those that should go to the DMA-channel. Packets that are determined to be EDCL
packets are not processed by the receive DMA channel.
When the packets are checked to be correct, the AHB operation is performed. The operation is per-
formed with the same AHB master interface that the DMA-engines use. The replies are automatically
sent by the EDCL transmitter when the operation is finished. It shares the Ethernet transmitter with
the transmitter DMA-engine but has higher priority.

42.6.2 EDCL protocols

The EDCL accepts Ethernet frames containing IP or ARP data. ARP is handled according to the pro-
tocol specification with no exceptions.
IP packets carry the actual AHB commands. The EDCL expects an Ethernet frame containing IP,
UDP and the EDCL specific application layer parts. Table 595 shows the IP packet required by the
EDCL. The contents of the different protocol headers can be found in TCP/IP literature.

The following is required for successful communication with the EDCL: A correct destination MAC
address as set by the generics, an Ethernet type field containing 0x0806 (ARP) or 0x0800 (IP). The
IP-address is then compared with the value determined by the generics for a match. The IP-header
checksum and identification fields are not checked. There are a few restrictions on the IP-header
fields. The version must be four and the header size must be 5 B (no options). The protocol field must
always be 0x11 indicating a UDP packet. The length and checksum are the only IP fields changed for
the reply.
The EDCL only provides one service at the moment and it is therefore not required to check the UDP
port number. The reply will have the original source port number in both the source and destination
fields. UDP checksum are not used and the checksum field is set to zero in the replies.
The UDP data field contains the EDCL application protocol fields. Table 596 shows the application
protocol fields (data field excluded) in packets received by the EDCL. The 16-bit offset is used to
align the rest of the application layer data to word boundaries in memory and can thus be set to any
value. The R/W field determines whether a read (0) or a write(1) should be performed. The length

field contains the number of bytes to be read or written. If R/W is one the data field shown in table
595 contains the data to be written. If R/W is zero the data field is empty in the received packets.
Table 597 shows the application layer fields of the replies from the EDCL. The length field is always
zero for replies to write requests. For read requests it contains the number of bytes of data contained in
the data field.

Table 595.The IP packet expected by the EDCL.

Ethernet
Header

IP
Header

UDP
Header

2 B
Offset

4 B
Control word

4 B
Address

Data 0 - 242
4B Words

Ethernet
CRC

Table 596.The EDCL application layer fields in received frames.

16-bit Offset 14-bit Sequence number 1-bit R/W 10-bit Length 7-bit Unused

Table 597.The EDCL application layer fields in transmitted frames.

16-bit Offset 14-bit sequence number 1-bit ACK/NAK 10-bit Length 7-bit Unused
GRIP, Sep 2018, Version 2018.3 502 www.cobham.com/gaisler

GRLIB IP Core
The EDCL implements a Go-Back-N algorithm providing reliable transfers. The 14-bit sequence
number in received packets are checked against an internal counter for a match. If they do not match,
no operation is performed and the ACK/NAK field is set to 1 in the reply frame. The reply frame con-
tains the internal counter value in the sequence number field. If the sequence number matches, the
operation is performed, the internal counter value is stored in the sequence number field, the ACK/
NAK field is set to 0 in the reply and the internal counter is incremented, . The length field is always
set to 0 for ACK/NAK=1 frames. The unused field is not checked and is copied to the reply. It can
thus be set to hold for example some extra identifier bits if needed.

42.6.3 EDCL IP and Ethernet address settings

The default value of the EDCL IP and MAC addresses are set by ipaddrh, ipaddrl, macad-
drh and macaddrl generics. The IP address can later be changed by software, but the MAC
address is fixed. To allow several EDCL enabled GRETH controllers on the same sub-net, the 4 LSB
bits of the IP and MAC address can optionally be set by an input signal. This is enabled by setting the
edcl generic = 2, and driving the 4-bit LSB value on ethi.edcladdr.

42.6.4 EDCL buffer size

The EDCL has a dedicated internal buffer memory which stores the received packets during process-
ing. The size of this buffer is configurable with a VHDL generic to be able to obtain a suitable com-
promise between throughput and resource utilization in the hardware. Table 598 lists the different
buffer configurations. For each size the table shows how many concurrent packets the EDCL can han-
dle, the maximum size of each packet including headers and the maximum size of the data payload.
Sending more packets before receiving a reply than specified for the selected buffer size will lead to
dropped packets. The behavior is unspecified if sending larger packets than the maximum allowed.

42.7 Media Independent Interfaces

There are several interfaces defined between the MAC sublayer and the Physical layer. The GRETH
supports two of them: The Media Independent Interface (MII) and the Reduced Media Independent
Interface (RMII).
The MII was defined in the 802.3 standard and is most commonly supported. The ethernet interface
have been implemented according to this specification. It uses 16 signals.
To support lower speed where the operation and clock frequency of the core and phy remains
unchanged i.e. running at 10Mb/s when the IP is configured for 100Mb/s speed enable signals should
be created to mimic the desired bit rate.
When operating at 10Mb/s, every byte of the MAC frame is repeated 10 clock periods to achieve the
correct bit rate. The GRETH_GBIT core does not take care of this operation and enable signals with
toggling frequency of the correct bit rate needs to be created.

Table 598.EDCL buffer sizes

Total buffer size (kB) Number of packet buffers Packet buffer size (B) Maximum data payload (B)
1 4 256 200
2 4 512 456
4 8 512 456
8 8 1024 968
16 16 1024 968
32 32 1024 968
64 64 1024 968
GRIP, Sep 2018, Version 2018.3 503 www.cobham.com/gaisler

GRLIB IP Core

The RMII was developed to meet the need for an interface allowing Ethernet controllers with smaller
pin counts. It uses 6 (7) signals which are a subset of the MII signals. Table 599 shows the mapping
between the RMII signals and the GRLIB MII interface.

42.8 AXI support

The core is designed for an AMBA system but can be adapted for AXI using the AHBM2AXI
adapter.

42.9 Registers

The core is programmed through registers mapped into APB address space.

Table 599.Signal mappings between RMII and the GRLIB MII interface.

RMII MII
txd[1:0] txd[1:0]
tx_en tx_en
crs_dv rx_crs
rxd[1:0] rxd[1:0]
ref_clk rmii_clk
rx_er not used

Table 600.GRETH registers

APB address offset Register
0x0 Control register
0x4 Status/Interrupt-source register
0x8 MAC Address MSB
0xC MAC Address LSB
0x10 MDIO Control/Status
0x14 Transmit descriptor pointer
0x18 Receiver descriptor pointer
0x1C EDCL IP
0x20 Hash table msb
0x24 Hash table lsb
0x28 EDCL MAC address MSB
0x2C EDCL MAC address LSB
0x10000 - 0x107FC Transmit RAM buffer debug access
0x20000 - 0x207FC Receiver RAM buffer debug access
0x30000 - 0x3FFFC EDCL buffer debug access
GRIP, Sep 2018, Version 2018.3 504 www.cobham.com/gaisler

GRLIB IP Core

42.9.1

Table 601.0x00 - CTRL - GRETH control register

Control Register

42.9.2 Status Register

31 30 28 27 26 25 24 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EA BS MA MC RESERVED ED RD DD ME PI RES SP RS PM FD RI TI RE TE

* * * * * 0 * * 0 0 0 0 1 0 0 0 0 0 0 0

r r r r r r rw rw rw rw rw r rw wc rw rw rw rw rw rw

31 EDCL available (EA) - Set to one if the EDCL is available.
30: 28 EDCL buffer size (BS) - Shows the amount of memory used for EDCL buffers. 0 = 1 kB, 1 = 2 kB,

...., 6 = 64 kB.
27 RESERVED
26 MDIO interrupts available (MA) - Set to one when the core supports mdio interrupts. Read only.
25 Multicast available (MC) - Set to one when the core supports multicast address reception. Read only.
24: 15 RESERVED
14 EDCL Disable (ED) - Set to one to disable the EDCL and zero to enable it. Reset value taken from

the ethi.edcldisable signal. Only available if the EDCL hardware is present in the core.
13 RAM debug enable (RD) - Set to one to enable the RAM debug mode. Reset value: ‘0’. Only avail-

able if the VHDL generic ramdebug is nonzero.
12 Disable duplex detection (DD) - Disable the EDCL speed/duplex detection FSM. If the FSM cannot

complete the detection the MDIO interface will be locked in busy mode. If software needs to access
the MDIO the FSM can be disabled here and as soon as the MDIO busy bit is 0 the interface is avail-
able. Note that the FSM cannot be reenabled again.

11 Multicast enable (ME) - Enable reception of multicast addresses. Reset value: ‘0’.
10 PHY status change interrupt enable (PI) - Enables interrupts for detected PHY status changes.
9: 8 RESERVED
7 Speed (SP) - Sets the current speed mode. 0 = 10 Mbit, 1 = 100 Mbit. Only used in RMII mode (rmii

= 1). A default value is automatically read from the PHY after reset. Reset value: ‘1’.
6 Reset (RS) - A one written to this bit resets the GRETH core. Self clearing. No other accesses should

be done .to the slave interface other than polling this bit until it is cleared.
5 Promiscuous mode (PM) - If set, the GRETH operates in promiscuous mode which means it will

receive all packets regardless of the destination address. Reset value: ‘0’.
4 Full duplex (FD) - If set, the GRETH operates in full-duplex mode otherwise it operates in half-

duplex. Reset value: ‘0’.
3 Receiver interrupt (RI) - Enable Receiver Interrupts. An interrupt will be generated each time a

packet is received when this bit is set. The interrupt is generated regardless if the packet was
received successfully or if it terminated with an error. Reset value: ‘0’.

2 Transmitter interrupt (TI) - Enable Transmitter Interrupts. An interrupt will be generated each time a
packet is transmitted when this bit is set. The interrupt is generated regardless if the packet was
transmitted successfully or if it terminated with an error. Reset value: ‘0’.

1 Receive enable (RE) - Should be written with a one each time new descriptors are enabled. As long
as this bit is one the GRETH will read new descriptors and as soon as it encounters a disabled
descriptor it will stop until RE is set again. This bit should be written with a one after the new
descriptors have been enabled. Reset value: ‘0’.

0 Transmit enable (TE) - Should be written with a one each time new descriptors are enabled. As long
as this bit is one the GRETH will read new descriptors and as soon as it encounters a disabled
descriptor it will stop until TE is set again. This bit should be written with a one after the new
descriptors have been enabled. Reset value: ‘0’.

Table 602.0x04 - STAT - GRETH status register
31 9 8 7 6 5 4 3 2 1 0

RESERVED PS IA TS TA RA TI RI TE RE

0 0 0 NR NR NR NR NR NR

wc wc wc wc wc wc wc wc wc
GRIP, Sep 2018, Version 2018.3 505 www.cobham.com/gaisler

GRLIB IP Core
8 PHY status changes (PS) - Set each time a PHY status change is detected.
7 Invalid address (IA) - A packet with an address not accepted by the MAC was received. Cleared

when written with a one. Reset value: ‘0’.
6 Too small (TS) - A packet smaller than the minimum size was received. Cleared when written with a

one. Reset value: ‘0’.
5 Transmitter AHB error (TA) - An AHB error was encountered in transmitter DMA engine. Cleared

when written with a one. Not Reset.
4 Receiver AHB error (RA) - An AHB error was encountered in receiver DMA engine. Cleared when

written with a one. Not Reset.
3 Transmitter interrupt (TI) - A packet was transmitted without errors. Cleared when written with a

one. Not Reset.
2 Receiver interrupt (RI) - A packet was received without errors. Cleared when written with a one. Not

Reset.
1 Transmitter error (TE) - A packet was transmitted which terminated with an error. Cleared when

written with a one. Not Reset.
0 Receiver error (RE) - A packet has been received which terminated with an error. Cleared when writ-

ten with a one. Not Reset.

Table 602.0x04 - STAT - GRETH status register
GRIP, Sep 2018, Version 2018.3 506 www.cobham.com/gaisler

GRLIB IP Core

42.9.3

Table 603.0x08 - MACMSB - GRETH MAC address MSB.

MAC Address MSB

42.9.4 MAC Address LSB

Table 604.0x0C - MACLSB - GRETH MAC address LSB.

42.9.5

Table 605.0x10 - MDIO - GRETH MDIO ctrl/status register.

MDIO ctrl/status Register

31 16 15 0

RESERVED Bit 47 downto 32 of the MAC address

NR

rw

31: 16 RESERVED
15: 0 The two most significant bytes of the MAC Address. Not Reset.

31 0

Bit 31 downto 0 of the MAC address

31: 0 The four least significant bytes of the MAC Address. Not Reset.

31 16 15 11 10 6 5 4 3 2 1 0

DATA PHYADDR REGADDR RES BU LF RD WR

0 * 0 0 1 0 0

rw rw rw r r rw rw

31: 16 Data (DATA) - Contains data read during a read operation and data that is transmitted is taken from
this field. Reset value: 0x0000.

15: 11 PHY address (PHYADDR) - This field contains the address of the PHY that should be accessed
during a write or read operation. Reset value: “00000”.

10: 6 Register address (REGADDR) - This field contains the address of the register that should be accessed
during a write or read operation. Reset value: “00000”.

5:4 RESERVED
3 Busy (BU) - When an operation is performed this bit is set to one. As soon as the operation is finished

and the management link is idle this bit is cleared. Reset value: ‘0’.
2 Linkfail (LF) - When an operation completes (BUSY = 0) this bit is set if a functional management

link was not detected. Reset value: ‘1’.
1 Read (RD) - Start a read operation on the management interface. Data is stored in the data field. Reset

value: ‘0’.
0 Write (WR) - Start a write operation on the management interface. Data is taken from the Data field.

Reset value: ‘0’.
GRIP, Sep 2018, Version 2018.3 507 www.cobham.com/gaisler

GRLIB IP Core

42.9.6

Table 606.0x14 - TXBASE - GRETH transmitter descriptor table base address register.

Transmitter Descriptor Table Base Address Register

42.9.7 Receiver Descriptor Table Base Address Register

Table 607.0x18 - RXBASE - GRETH receiver descriptor table base address register.

42.9.8

Table 608.0x1C - EDCLIP - GRETH EDCL IP register

EDCL IP Register

42.9.9

Table 609.0x20 - HhSB - GRETH Hash table msb register

Hash Table Msb Register

31 10 9 3 2 0

BASEADDR DESCPNT RES

NR 0 0

rw rw r

31: 10 Transmitter descriptor table base address (BASEADDR) - Base address to the transmitter descriptor
table.Not Reset.

9: 3 Descriptor pointer (DESCPNT) - Pointer to individual descriptors. Automatically incremented by
the Ethernet MAC.

2: 0 RESERVED

31 10 9 3 2 0

BASEADDR DESCPNT RES

NR 0 0

rw rw r

31: 10 Receiver descriptor table base address (BASEADDR) - Base address to the receiver descriptor
table.Not Reset.

9: 3 Descriptor pointer (DESCPNT) - Pointer to individual descriptors. Automatically incremented by
the Ethernet MAC.

2: 0 RESERVED

31 0

EDCL IP ADDRESS

*

rw

31: 0 EDCL IP address. Reset value is set with the ipaddrh and ipaddrl generics.

31 0

Hash table (64:32)

NR

rw

31: 0 Hash table msb. Bits 64 downto 32 of the hash table.
GRIP, Sep 2018, Version 2018.3 508 www.cobham.com/gaisler

GRLIB IP Core

42.9.10

Table 610.0x24 - HCSB - GRETH Hash table lsb register

Hash Table Lsb Register

42.9.11

Table 611.0x28 - EMACMSB - GRETH EDCL MAC address MSB.

EDCL MAC Address MSB

42.9.12

Table 612.0x2C - EMACLSB - GRETH EDCL MAC address LSB.

EDCL MAC Address LSB

42.10 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x1D. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

42.11 Implementation

42.11.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

42.12 Configuration options

Table 613 shows the configuration options of the core (VHDL generics).

31 0

Hash table (64:32)

NR

rw

31: 0 Hash table lsb. Bits 31downto 0 of the hash table.

31 16 15 0

RESERVED Bit 47 downto 32 of the EDCL MAC Address

*

rw

31: 16 RESERVED
15: 0 The two most significant bytes of the EDCL MAC Address. Hardcoded reset value set with the

VHDL generic macaddrh.

31 0

Bit 31 downto 0 of the EDCL MAC Address

*

rw

31: 0 The 4 least significant bytes of the EDCL MAC Address. Hardcoded reset value set with the VHDL
generics macaddrh and macaddrl. If the VHDL generic edcl is set to 2 bits 3 downto 0 are set with
the edcladdr input signal.

Table 613.Configuration options

Generic Function Allowed range Default
hindex AHB master index. 0 - NAHBMST-1 0
pindex APB slave index 0 - NAPBSLV-1 0
GRIP, Sep 2018, Version 2018.3 509 www.cobham.com/gaisler

GRLIB IP Core
paddr Addr field of the APB bar. 0 - 16#FFF# 0
pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#
pirq Interrupt line used by the GRETH. 0 - NAHBIRQ-1 0
memtech Memory technology used for the FIFOs. 0 - NTECH inferred
ifg_gap Number of ethernet clock cycles used for one interframe

gap. Default value as required by the standard. Do not
change unless you know what you are doing.

1 - 255 24

attempt_limit Maximum number of transmission attempts for one
packet. Default value as required by the standard.

1 - 255 16

backoff_limit Limit on the backoff size of the backoff time. Default
value as required by the standard. Sets the number of bits
used for the random value. Do not change unless you
know what your doing.

1 - 10 10

slot_time Number of ethernet clock cycles used for one slot- time.
Default value as required by the ethernet standard. Do
not change unless you know what you are doing.

1 - 255 128

mdcscaler Sets the divisor value use to generate the mdio clock
(mdc). The mdc frequency will be clk/(2*(mdcs-
caler+1)).

0 - 255 25

enable_mdio Enable the Management interface, 0 - 1 0
fifosize Sets the size in 32-bit words of the receiver and transmit-

ter FIFOs.
4 - 32 8

nsync Number of synchronization registers used. 1 - 2 2
edcl Enable EDCL. 0 = disabled. 1 = enabled. 2 = enabled

and 4-bit LSB of IP and ethernet MAC address pro-
grammed by ethi.edcladdr, 3=in addition to features for
value 2 the reset value for the EDCL disable bit is taken
from the ethi.edcldisable signal instead of being hard-
coded to 0. 4=in addition to features for value 2 and 3 the
an option is given to disable the EDCL via external input
signal.

0 - 4 0

edclbufsz Select the size of the EDCL buffer in kB. 1 - 64 1
macaddrh Sets the upper 24 bits of the EDCL MAC address.

Not all addresses are allowed and most NICs and proto-
col implementations will discard frames with illegal
addresses silently. Consult network literature if unsure
about the addresses.

0 - 16#FFFFFF# 16#00005E#

macaddrl Sets the lower 24 bits of the EDCL MAC address.
Not all addresses are allowed and most NICs and proto-
col implementations will discard frames with illegal
addresses silently. Consult network literature if unsure
about the addresses.

0 - 16#FFFFFF# 16#000000#

ipaddrh Sets the upper 16 bits of the EDCL IP address reset
value.

0 - 16#FFFF# 16#C0A8#

ipaddrl Sets the lower 16 bits of the EDCL IP address reset
value.

0 - 16#FFFF# 16#0035#

phyrstadr Sets the reset value of the PHY address field in the
MDIO register.

0 - 31 0

rmii Selects the desired PHY interface. 0 = MII, 1 = RMII. 0 - 1 0
oepol Selects polarity on output enable (ETHO.MDIO_OE).

0 = active low, 1 = active high
0 - 1 0

Table 613.Configuration options

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 510 www.cobham.com/gaisler

GRLIB IP Core
42.13 Signal descriptions

Table 614 shows the interface signals of the core (VHDL ports).

mdint_pol Selects polarity for level sensitive PHY interrupt line. 0
= active low, 1 = active high

0 - 1 0

enable_mdint Enable mdio interrupts 0 - 1 0
multicast Enable multicast support 0 - 1 0
ramdebug Enables debug access to the core’s RAM blocks through

the APB interface. 1=enables access to the receiver and
transmitter RAM buffers, 2=enables access to the EDCL
buffers in addition to the functionality of value 1. Setting
this generic to 2 will have no effect if the edcl generic is
0.

0 - 2 0

ehindex AHB master index for the separate EDCL master inter-
face. Only used if edclsepahb is 1.

0 - NAHBMST-1 0

edclsepahb Enables separate EDCL AHB master interface. A signal
determines if the separate interface or the common inter-
face is used. Only available in the GRETH_GBIT_MB
version of the core.

0 - 1 0

mdiohold Set output hold time for MDIO in number of AHB
cycles. Should be 10 ns or more.

1 - 30 1

maxsize Set maximum length of the data field of Ethernet 802.3
frame. Values of ‘maxsize’ and below for this field indi-
cate that the ethernet type field is used as the size of the
payload of the Ethernet Frame while values of above
‘maxsize’ indicate that the field is used to represent Eth-
erType. For 802.3q support set the length of the payload
to 1504

64 - 2047 1500

gmiimode Enable the use of receive and transmit valid signals to
enter data to/from the PHY at the correct rate.

0-1 0

Table 614.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
AHBMI * Input AMB master input signals -
AHBMO * Output AHB master output signals -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -

Table 613.Configuration options

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 511 www.cobham.com/gaisler

GRLIB IP Core
ETHI gtx_clk Input Ethernet gigabit transmit clock. -
rmii_clk Input Ethernet RMII clock. -
tx_clk Input Ethernet transmit clock. -
tx_dv Input Ethernet transmitter enable -
rx_clk Input Ethernet receive clock. -
rxd Input Ethernet receive data. -
rx_dv Input Ethernet receive data valid. High
rx_er Input Ethernet receive error. High
rx_col Input Ethernet collision detected. (Asynchronous,

sampled with tx_clk)
High

rx_crs Input Ethernet carrier sense. (Asynchronous, sampled
with tx_clk)

High

rx_en Input Ethernet receiver enable. -
mdio_i Input Ethernet management data input -
mdint Input Ethernet management interrupt -
phyrstaddr Input Reset address for GRETH PHY address field. -
edcldis Input Disable EDCL functionality -
edcladdr Input Sets the four least significant bits of the EDCL

MAC address and the EDCL IP address when
the edcl generic is set to 2.

-

edclsepahb Input Selects AHB master interface for the EDCL. ‘0’
selects the common interface and ‘1’ selects the
separate interface. Only available in the
GRETH_GBIT_MB version of the core when
the VHDL generic edclsepahb is set to 1.

-

edcldisable Input Reset value for edcl disable register bit. Setting
the signal to 1 disables the EDCL at reset and 0
enables it.

-

ETHO reset Output Ethernet reset (asserted when the MAC is reset). Low
txd Output Ethernet transmit data. -
tx_en Output Ethernet transmit enable. High
tx_er Output Ethernet transmit error. High
mdc Output Ethernet management data clock. -
mdio_o Output Ethernet management data output. -
mdio_oe Output Ethernet management data output enable. Set by the

oepol
generic.

MTESTI** BUF Input Memory BIST input signal to buffer RAM -
EDCL Input Memory BIST input signal to EDCL RAM -

MTESTO** BUF Output Memory BIST output signal from buffer RAM -
EDCL Output Memory BIST output signal from EDCL RAM -

MTESTCLK** N/A Input Memory BIST clock -
* see GRLIB IP Library User’s Manual
** not available in FPGA releases

Table 614.Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 512 www.cobham.com/gaisler

GRLIB IP Core

42.14 Library dependencies

Table 615 shows libraries used when instantiating the core (VHDL libraries).

42.15 Instantiation

The first example shows how the non-mb version of the core can be instantiated and the second one
show the mb version.

42.15.1 Non-MB version

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.ethernet_mac.all;

entity greth_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- ethernet signals
 ethi :: in eth_in_type;
 etho : in eth_out_type
);
end;

architecture rtl of greth_ex is

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

begin

 -- AMBA Components are instantiated here
 ...

 -- GRETH
 e1 : greth
 generic map(
 hindex => 0,
 pindex => 12,
 paddr => 12,
 pirq => 12,
 memtech => inferred,
 mdcscaler => 50,
 enable_mdio => 1,
 fifosize => 32,
 nsync => 1,
 edcl => 1,
 edclbufsz => 8,
 macaddrh => 16#00005E#,

Table 615.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER NET Signals, components GRETH component declaration
GRIP, Sep 2018, Version 2018.3 513 www.cobham.com/gaisler

GRLIB IP Core

 macaddrl => 16#00005D#,
 ipaddrh => 16#c0a8#,
 ipaddrl => 16#0035#)
 port map(
 rst => rstn,
 clk => clk,
 ahbmi => ahbmi,
 ahbmo => ahbmo(0),
 apbi => apbi,
 apbo => apbo(12),
 ethi => ethi,
 etho => etho
);
end;

42.15.2 MB version
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.ethernet_mac.all;

entity greth_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- ethernet signals
 ethi :: in eth_in_type;
 etho : in eth_out_type
);
end;

architecture rtl of greth_ex is

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

begin

 -- AMBA Components are instantiated here
 ...

 -- GRETH
 e1 : greth_mb
 generic map(
 hindex => 0,
 pindex => 12,
 paddr => 12,
 pirq => 12,
 memtech => inferred,
 mdcscaler => 50,
 enable_mdio => 1,
 fifosize => 32,
 nsync => 1,
 edcl => 1,
 edclbufsz => 8,
 macaddrh => 16#00005E#,
 macaddrl => 16#00005D#,
 ipaddrh => 16#c0a8#,
 ipaddrl => 16#0035#,
 ehindex => 1,
 edclsepahb => 1)
GRIP, Sep 2018, Version 2018.3 514 www.cobham.com/gaisler

GRLIB IP Core

 port map(
 rst => rstn,
 clk => clk,
 ahbmi => ahbmi,
 ahbmo => ahbmo(0),
 ahbmi2 => ahbmi,
 ahbmo2 => ahbmo(1),
 apbi => apbi,
 apbo => apbo(12),
 ethi => ethi,
 etho => etho
);
end;
GRIP, Sep 2018, Version 2018.3 515 www.cobham.com/gaisler

GRLIB IP Core

43 GRETH_GBIT - Gigabit Ethernet Media Access Controller (MAC) w. EDCL

43.1 Overview

Cobham Gaisler’s Gigabit Ethernet Media Access Controller (GRETH_GBIT) provides an interface
between an AMBA-AHB bus and an Ethernet network. It supports 10/100/1000 Mbit speed in both
full- and half-duplex. The AMBA interface consists of an APB interface for configuration and control
and an AHB master interface which handles the dataflow. The dataflow is handled through DMA
channels. There is one DMA engine for the transmitter and one for the receiver. Both share the same
AHB master interface.
The ethernet interface supports the MII and GMII interfaces which should be connected to an external
PHY. The GRETH also provides access to the MII Management interface which is used to configure
the PHY. Optional hardware support for the Ethernet Debug Communication Link (EDCL) protocol is
also provided. This is an UDP/IP based protocol used for remote debugging.
Supported features for the DMA channels are Scatter Gather I/O and TCP/UDP over IPv4 checksum
offloading for both receiver and transmitter. Software Drivers are provided for RTEMS, eCos, uCli-
nux and Linux 2.6.

43.2 Operation

43.2.1 System overview

The GRETH_GBIT consists of 3 functional units: The DMA channels, MDIO interface and the
optional Ethernet Debug Communication Link (EDCL).
The main functionality consists of the DMA channels which are used for transferring data between an
AHB bus and an Ethernet network. There is one transmitter DMA channel and one Receiver DMA
channel. The operation of the DMA channels is controlled through registers accessible through the
APB interface.

AHB
APB

Ethernet MAC

Registers MDIO

MDIO_OE
MDIO_O
MDIO_I
MDC

AHB Master
Interface

Transmitter

Receiver

Transmitter

Receiver

DMA Engine

DMA Engine

RAM

RAM

TX_EN
TX_ER
TXD(7:0)
TX_CLK
RX_CRS
RX_COL

RX_DV
RX_ER
RXD(7:0)
RX_CLK

EDCL
 Transmitter

EDCL
 Receiver

Figure 125. Block diagram of the internal structure of the GRETH_GBIT.

GTX_CLK
GRIP, Sep 2018, Version 2018.3 516 www.cobham.com/gaisler

GRLIB IP Core

The MDIO interface is used for accessing configuration and status registers in one or more PHYs con-
nected to the MAC. The operation of this interface is also controlled through the APB interface.
The optional EDCL provides read and write access to an AHB bus through Ethernet. It uses the UDP,
IP and ARP protocols together with a custom application layer protocol to accomplish this. The
EDCL contains no user accessible registers and always runs in parallel with the DMA channels.
The Media Independent Interface (MII) and Gigabit Media Independent Interface (GMII) are used for
communicating with the PHY. More information can be found in section 43.7.
The EDCL and the DMA channels share the Ethernet receiver and transmitter. More information on
these functional units is provided in sections 43.3 - 43.6.

43.2.2 Protocol support

The GRETH_GBIT is implemented according to IEEE standard 802.3-2002. There is no support for
the optional control sublayer. This means that packets with type 0x8808 (the only currently defined
ctrl packets) are discarded.

43.2.3 Hardware requirements

The GRETH_GBIT is synthesisable with most Synthesis tools. There are three or four clock domains
depending on if the gigabit mode is used. The three domains always present are the AHB clock,
Ethernet Receiver clock (RX_CLK) and the 10/100 Ethernet transmitter clock (TX_CLK). If the giga-
bit mode is also used the fourth clock domain is the gigabit transmitter clock (GTX_CLK). Both full-
duplex and half-duplex operating modes are supported and both can be run in either 10/100 or 1000
Mbit. The system frequency requirement (AHB clock) for 10 Mbit operation is 2.5 MHz, 18 MHz for
100 Mbit and 40 MHz for 1000 Mbit mode. The 18 MHz limit was tested on a Xilinx board with a
DCM that did not support lower frequencies so it might be possible to run it on lower frequencies. It
might also be possible to run the 10 Mbit mode on lower frequencies.
RX_CLK and TX_CLK are sourced by the PHY while GTX_CLK is sourced by the MAC according
to the 802.3-2002 standard. The GRETH_GBIT does not contain an internal clock generator so GTX-
_CLK should either be generated in the FPGA (with a PLL/DLL) or with an external oscillator.

43.2.4 RAM debug support

Support for debug accesses the core’s internal RAM blocks can be optionally enabled using the ram-
debug VHDL generic. Setting it to 1 enables accesses to the transmitter and receiver RAM buffers and
setting it to 2 enables accesses to the EDCL buffer in addition to the previous two buffers.
The transmitter RAM buffer is accessed starting from APB address offset 0x10000 which corresponds
to location 0 in the RAM. There are 512 32-bit wide locations in the RAM which results in the last
address being 0x107FC corresponding to RAM location 511 (byte addressing used on the APB bus).
Correspondingly the receiver RAM buffer is accessed starting from APB address offset 0x20000. The
addresses, width and depth is the same.
The EDCL buffers are accessed starting from address 0x30000. The number of locations depend on
the configuration and can be from 256 to 16384. Each location is 32-bits wide so the maximum
address is 0x3FC and 0xFFFC correspondingly.
Before any debug accesses can be made the ramdebugen bit in the control register has to be set.
During this time the debug interface controls the RAM blocks and normal operations is stopped.
EDCL packets are not received. The MAC transmitter and receiver could still operate if enabled but
the RAM buffers would be corrupt if debug accces are made simultaneously. Thus they MUST be dis-
abled before the RAM debug mode is enabled.
GRIP, Sep 2018, Version 2018.3 517 www.cobham.com/gaisler

GRLIB IP Core

43.2.5 Multibus version

There is a version of the core which has an additional master interface that can be used for the EDCL.
Otherwise this version is identical to the basic version. The additional master interface is enabled with
the edclsepahb VHDL generic. Then the ethi.edclsepahb signal control whether EDCL accesses are
done on the standard master interface or the additional interface. Setting the signal to ‘0’ makes the
EDCL use the standard master interface while ‘1’ selects the additional master. This signal is only
sampled at reset and changes to this signal have no effect until the next reset.

43.2.6 Endianness

The core is designed for big-endian systems.

43.3 Tx DMA interface

The transmitter DMA interface is used for transmitting data on an Ethernet network. The transmission
is done using descriptors located in memory.

43.3.1 Setting up a descriptor.

A single descriptor is shown in table 616 and 617. The number of bytes to be sent should be set in the
length field and the address field should point to the data. There are no alignment restrictions on the
address field. If the interrupt enable (IE) bit is set, an interrupt will be generated when the packet has
been sent (this requires that the transmitter interrupt bit in the control register is also set). The inter-
rupt will be generated regardless of whether the packet was transmitted successfully or not.

Table 616.GRETH_GBIT transmit descriptor word 0 (address offset 0x0)
31 21 20 19 18 17 16 15 14 13 12 11 10 0

RESERVED UC TC IC MO LC AL UE IE WR EN LENGTH

31: 21 RESERVED
20 UDP checksum (UC) - Calculate and insert the UDP checksum for this packet. The checksum is only

inserted if an UDP packet is detected.
19 TCP checksum (TC) - Calculate and insert the TCP checksum for this packet. The checksum is only

inserted if an TCP packet is detected.
18 IP checksum (IC) - Calculate and insert the IP header checksum for this packet. The checksum is

only inserted if an IP packet is detected.
17 More (MO) - More descriptors should be fetched for this packet (Scatter Gather I/O).
16 Late collision (LC) - A late collision occurred during the transmission (1000 Mbit mode only).
15 Attempt limit error (AL) - The packet was not transmitted because the maximum number of

attempts was reached.
14 Underrun error (UE) - The packet was incorrectly transmitted due to a FIFO underrun error.
13 Interrupt enable (IE) - Enable Interrupts. An interrupt will be generated when the packet from this

descriptor has been sent provided that the transmitter interrupt enable bit in the control register is set.
The interrupt is generated regardless if the packet was transmitted successfully or if it terminated
with an error.

12 Wrap (WR) - Set to one to make the descriptor pointer wrap to zero after this descriptor has been
used. If this bit is not set the pointer will increment by 8. The pointer automatically wraps to zero
when the 1 kB boundary of the descriptor table is reached.

11 Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor
fields.

10: 0 LENGTH - The number of bytes to be transmitted.

Table 617.GRETH_GBIT transmit descriptor word 1 (address offset 0x4)
31 0

ADDRESS
GRIP, Sep 2018, Version 2018.3 518 www.cobham.com/gaisler

GRLIB IP Core
To enable a descriptor the enable (EN) bit should be set and after this is done, the descriptor should
not be touched until the enable bit has been cleared by the GRETH_GBIT. The rest of the fields in the
descriptor are explained later in this section.

43.3.2 Starting transmissions

Enabling a descriptor is not enough to start a transmission. A pointer to the memory area holding the
descriptors must first be set in the GRETH_GBIT. This is done in the transmitter descriptor pointer
register. The address must be aligned to a 1 kB boundary. Bits 31 to 10 hold the base address of
descriptor area while bits 9 to 3 form a pointer to an individual descriptor. The first descriptor should
be located at the base address and when it has been used by the GRETH_GBIT the pointer field is
incremented by 8 to point at the next descriptor. The pointer will automatically wrap back to zero
when the next 1 kB boundary has been reached (the descriptor at address offset 0x3F8 has been used).
The WR bit in the descriptors can be set to make the pointer wrap back to zero before the 1 kB bound-
ary.
The pointer field has also been made writable for maximum flexibility but care should be taken when
writing to the descriptor pointer register. It should never be touched when a transmission is active.
The final step to activate the transmission is to set the transmit enable bit in the control register. This
tells the GRETH_GBIT that there are more active descriptors in the descriptor table. This bit should
always be set when new descriptors are enabled, even if transmissions are already active. The descrip-
tors must always be enabled before the transmit enable bit is set.

43.3.3 Descriptor handling after transmission

When a transmission of a packet has finished, status is written to the first word in the corresponding
descriptor. The Underrun Error bit is set if the transmitter RAM was not able to provide data at a suf-
ficient rate. This indicates a synchronization problem most probably caused by a low clock rate on the
AHB clock. The whole packet is buffered in the transmitter RAM before transmission so underruns
cannot be caused by bus congestion. The Attempt Limit Error bit is set if more collisions occurred
than allowed. When running in 1000 Mbit mode the Late Collision bit indicates that a collision
occurred after the slottime boundary was passed.
The packet was successfully transmitted only if these three bits are zero. The other bits in the first
descriptor word are set to zero after transmission while the second word is left untouched.
The enable bit should be used as the indicator when a descriptor can be used again, which is when it
has been cleared by the GRETH_GBIT. There are three bits in the GRETH_GBIT status register that
hold transmission status. The Transmit Error (TE) bit is set each time an transmission ended with an
error (when at least one of the three status bits in the transmit descriptor has been set). The Transmit
Successful (TI) is set each time a transmission ended successfully.
The Transmit AHB Error (TA) bit is set when an AHB error was encountered either when reading a
descriptor, reading packet data or writing status to the descriptor. Any active transmissions are aborted
and the transmitter is disabled. The transmitter can be activated again by setting the transmit enable
register.

43.3.4 Setting up the data for transmission

The data to be transmitted should be placed beginning at the address pointed by the descriptor address
field. The GRETH_GBIT does not add the Ethernet address and type fields so they must also be
stored in the data buffer. The 4 B Ethernet CRC is automatically appended at the end of each packet.

31: 0 Address (ADDRESS) - Pointer to the buffer area from where the packet data will be loaded.

Table 617.GRETH_GBIT transmit descriptor word 1 (address offset 0x4)
GRIP, Sep 2018, Version 2018.3 519 www.cobham.com/gaisler

GRLIB IP Core

Each descriptor will be sent as a single Ethernet packet. If the size field in a descriptor is greater than
1514 B, the packet will not be sent.

43.3.5 Scatter Gather I/O

A packet can be generated from data fetched from several descriptors. This is called Scatter Gather I/
O. The More (MO) bit should be set to 1 to indicate that more descriptors should be used to generate
the current packet. When data from the current descriptor has been read to the RAM the next descrip-
tor is fetched and the new data is appended to the previous data. This continues until a descriptor with
the MO bit set to 0 is encountered. The packet will then be transmitted.
Status is written immediately when data has been read to RAM for descriptors with MO set to 1. The
status bits are always set to 0 since no transmission has occurred. The status bits will be written to the
last descriptor for the packet (which had MO set to 0) when the transmission has finished.
No interrupts are generated for descriptors with MO set to 1 so the IE bit is don’t care in this case.
The checksum offload control bits (explained in section 43.3.6) must be set to the same values for all
descriptors used for a single packet.

43.3.6 Checksum offloading

Support is provided for correct checksum calculations in hardware for TCP and UDP over IPv4 for
non-fragmented packets with data length less or equal to maximum transmission unit. The checksum
calculations are enabled in each descriptor and applies only to that packet (when the MO bit is set all
descriptors used for a single packet must have the checksum control bits set in the same way).
The IP Checksum bit (IC) enables IP header checksum calculations. If an IPv4 packet is detected
when transmitting the packet associated with the descriptor the header checksum is calculated and
inserted. If TCP Checksum (TC) is set the TCP checksum is calculated and inserted if an TCP/IPv4
packet is detected. Finally, if the UDP Checksum bit is set the UDP checksum is calculated and
inserted if a UDP/IPv4 packet is detected. In the case of fragmented IP packets, incorrect checksums
for TCP and UDP are inserted for the first fragment (which contains the TCP or UDP header).

43.4 Rx DMA interface

The receiver DMA interface is used for receiving data from an Ethernet network. The reception is
done using descriptors located in memory.

43.4.1 Setting up descriptors

A single descriptor is shown in table 618 and 619. The address field points at the location where the
received data should be stored. There are no restrictions on alignment. The GRETH_GBIT will never
store more than 1518 B to the buffer (the tagged maximum frame size excluding CRC). The CRC
field (4 B) is never stored to memory so it is not included in this number. If the interrupt enable (IE)
bit is set, an interrupt will be generated when a packet has been received to this buffer (this requires
that the receiver interrupt bit in the control register is also set). The interrupt will be generated regard-
less of whether the packet was received successfully or not.
The enable bit is set to indicate that the descriptor is valid which means it can be used by the to store a
packet. After it is set the descriptor should not be touched until the EN bit has been cleared by the
GRETH_GBIT.
GRIP, Sep 2018, Version 2018.3 520 www.cobham.com/gaisler

GRLIB IP Core

The rest of the fields in the descriptor are explained later in this section..

43.4.2 Starting reception

Enabling a descriptor is not enough to start reception. A pointer to the memory area holding the
descriptors must first be set in the GRETH_GBIT. This is done in the receiver descriptor pointer reg-
ister. The address must be aligned to a 1 kB boundary. Bits 31 to 10 hold the base address of descrip-
tor area while bits 9 to 3 form a pointer to an individual descriptor. The first descriptor should be
located at the base address and when it has been used by the GRETH_GBIT the pointer field is incre-
mented by 8 to point at the next descriptor. The pointer will automatically wrap back to zero when the
next 1 kB boundary has been reached (the descriptor at address offset 0x3F8 has been used). The WR
bit in the descriptors can be set to make the pointer wrap back to zero before the 1 kB boundary.
The pointer field has also been made writable for maximum flexibility but care should be taken when
writing to the descriptor pointer register. It should never be touched when reception is active.
The final step to activate reception is to set the receiver enable bit in the control register. This will
make the GRETH_GBIT read the first descriptor and wait for an incoming packet.

Table 618.GRETH_GBIT receive descriptor word 0 (address offset 0x0)
31 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 0

RESERVED MC IF TR TD UR UD IR ID LE OE CE FT AE IE WR EN LENGTH

31: 27 RESERVED
26 Multicast address (MC) - The destination address of the packet was a multicast address (not broad-

cast).
25 IP fragment (IF) - Fragmented IP packet detected.
24 TCP error (TR) - TCP checksum error detected.
23 TCP detected (TD) - TCP packet detected.
22 UDP error (UR) - UDP checksum error detected.
21 UDP detected (UD) - UDP packet detected.
20 IP error (IR) - IP checksum error detected.
19 IP detected (ID) - IP packet detected.
18 Length error (LE) - The length/type field of the packet did not match the actual number of received

bytes.
17 Overrun error (OE) - The frame was incorrectly received due to a FIFO overrun.
16 CRC error (CE) - A CRC error was detected in this frame.
15 Frame too long (FT) - A frame larger than the maximum size was received. The excessive part

was truncated.
14 Alignment error (AE) - An odd number of nibbles were received.
13 Interrupt Enable (IE) - Enable Interrupts. An interrupt will be generated when a packet has been

received to this descriptor provided that the receiver interrupt enable bit in the control register is set.
The interrupt is generated regardless if the packet was received successfully or if it terminated with
an error.

12 Wrap (WR) - Set to one to make the descriptor pointer wrap to zero after this descriptor has been
used. If this bit is not set the pointer will increment by 8. The pointer automatically wraps to zero
when the 1 kB boundary of the descriptor table is reached.

11 Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor
fields.

10: 0 LENGTH - The number of bytes received to this descriptor.

Table 619.GRETH_GBIT receive descriptor word 1 (address offset 0x4)
31 0

ADDRESS

31: 0 Address (ADDRESS) - Pointer to the buffer area from where the packet data will be loaded.
GRIP, Sep 2018, Version 2018.3 521 www.cobham.com/gaisler

GRLIB IP Core

43.4.3 Descriptor handling after reception

The GRETH indicates a completed reception by clearing the descriptor enable bit. The other control
bits (WR, IE) are also cleared. The number of received bytes is shown in the length field. The parts of
the Ethernet frame stored are the destination address, source address, type and data fields. Bits 24-14
in the first descriptor word are status bits indicating different receive errors. Bits 18 - 14 are zero after
a reception without link layer errors. The status bits are described in table 618 (except the checksum
offload bits which are also described in section 43.4.6).
Packets arriving that are smaller than the minimum Ethernet size of 64 B are not considered as a
reception and are discarded. The current receive descriptor will be left untouched an used for the first
packet arriving with an accepted size. The TS bit in the status register is set each time this event
occurs.
If a packet is received with an address not accepted by the MAC, the IA status register bit will be set.
Packets larger than maximum size cause the FT bit in the receive descriptor to be set. The length field
is not guaranteed to hold the correct value of received bytes. The counting stops after the word con-
taining the last byte up to the maximum size limit has been written to memory.
The address word of the descriptor is never touched by the GRETH.

43.4.4 Reception with AHB errors

If an AHB error occurs during a descriptor read or data store, the Receiver AHB Error (RA) bit in the
status register will be set and the receiver is disabled. The current reception is aborted. The receiver
can be enabled again by setting the Receive Enable bit in the control register.

43.4.5 Accepted MAC addresses

In the default configuration the core receives packets with either the unicast address set in the MAC
address register or the broadcast address. Multicast support can also be enabled and in that case a hash
function is used to filter received multicast packets. A 64-bit register, which is accessible through the
APB interface, determines which addresses should be received. Each address is mapped to one of the
64 bits using the hash function and if the bit is set to one the packet will be received. The address is
mapped to the table by taking the 6 least significant bits of the 32-bit Ethernet crc calculated over the
destination address of the MAC frame. A bit in the receive descriptor is set if a packet with a multicast
address has been received to it.

43.4.6 Checksum offload

Support is provided for checksum calculations in hardware for TCP/UDP over IPv4. The checksum
logic is always active and detects IPv4 packets with TCP or UDP payloads. If IPv4 is detected the ID
bit is set, UD is set if an UDP payload is detected in the IP packet and TD is set if a TCP payload is
detected in the IP packet (TD and UD are never set if an IPv4 packet is not detected). When one or
more of these packet types is detected its corresponding checksum is calculated and if an error is
detected the checksum error bit for that packet type is set. The error bits are never set if the corre-
sponding packet type is not detected. The core does not support checksum calculations for TCP and
UDP when the IP packet has been fragmented. This condition is indicated by the IF bit in the receiver
descriptor and when set neither the TCP nor the UDP checksum error indications are valid.

43.5 MDIO Interface

The MDIO interface provides access to PHY configuration and status registers through a two-wire
interface which is included in the MII interface. The GRETH_GBIT provides full support for the
MDIO interface.
The MDIO interface can be used to access from 1 to 32 PHY containing 1 to 32 16-bit registers. A
read transfer i set up by writing the PHY and register addresses to the MDIO Control register and set-
GRIP, Sep 2018, Version 2018.3 522 www.cobham.com/gaisler

GRLIB IP Core

ting the read bit. This caused the Busy bit to be set and the operation is finished when the Busy bit is
cleared. If the operation was successful the Linkfail bit is zero and the data field contains the read
data. An unsuccessful operation is indicated by the Linkfail bit being set. The data field is undefined
in this case.
A write operation is started by writing the 16-bit data, PHY address and register address to the MDIO
Control register and setting the write bit. The operation is finished when the busy bit is cleared and it
was successful if the Linkfail bit is zero.

43.5.1 PHY interrupts

The core also supports status change interrupts from the PHY. A level sensitive interrupt signal can be
connected on the mdint input. The mdint_pol vhdl generic can be used to select the polarity. The PHY
status change bit in the status register is set each time an event is detected in this signal. If the PHY
status interrupt enable bit is set at the time of the event the core will also generate an interrupt on the
AHB bus.

43.6 Ethernet Debug Communication Link (EDCL)

The EDCL provides access to an on-chip AHB bus through Ethernet. It uses the UDP, IP and ARP
protocols together with a custom application layer protocol. The application layer protocol uses an
ARQ algorithm to provide reliable AHB instruction transfers. Through this link, a read or write trans-
fer can be generated to any address on the AHB bus. The EDCL is optional and must be enabled with
a generic.

43.6.1 Operation

The EDCL receives packets in parallel with the MAC receive DMA channel. It uses a separate MAC
address which is used for distinguishing EDCL packets from packets destined to the MAC DMA
channel. The EDCL also has an IP address which is set through generics. Since ARP packets use the
Ethernet broadcast address, the IP-address must be used in this case to distinguish between EDCL
ARP packets and those that should go to the DMA-channel. Packets that are determined to be EDCL
packets are not processed by the receive DMA channel.
When the packets are checked to be correct, the AHB operation is performed. The operation is per-
formed with the same AHB master interface that the DMA-engines use. The replies are automatically
sent by the EDCL transmitter when the operation is finished. It shares the Ethernet transmitter with
the transmitter DMA-engine but has higher priority.

43.6.2 EDCL protocols

The EDCL accepts Ethernet frames containing IP or ARP data. ARP is handled according to the pro-
tocol specification with no exceptions.
IP packets carry the actual AHB commands. The EDCL expects an Ethernet frame containing IP,
UDP and the EDCL specific application layer parts. Table 620 shows the IP packet required by the
EDCL. The contents of the different protocol headers can be found in TCP/IP literature.

The following is required for successful communication with the EDCL: A correct destination MAC
address as set by the generics, an Ethernet type field containing 0x0806 (ARP) or 0x0800 (IP). The
IP-address is then compared with the value determined by the generics for a match. The IP-header
checksum and identification fields are not checked. There are a few restrictions on the IP-header
fields. The version must be four and the header size must be 5 B (no options). The protocol field must

Table 620.The IP packet expected by the EDCL.

Ethernet
Header

IP
Header

UDP
Header

2 B
Offset

4 B
Control word

4 B
Address

Data 0 - 242
4B Words

Ethernet
CRC
GRIP, Sep 2018, Version 2018.3 523 www.cobham.com/gaisler

GRLIB IP Core

always be 0x11 indicating a UDP packet. The length and checksum are the only IP fields changed for
the reply.
The EDCL only provides one service at the moment and it is therefore not required to check the UDP
port number. The reply will have the original source port number in both the source and destination
fields. UDP checksum are not used and the checksum field is set to zero in the replies.
The UDP data field contains the EDCL application protocol fields. Table 621 shows the application
protocol fields (data field excluded) in packets received by the EDCL. The 16-bit offset is used to
align the rest of the application layer data to word boundaries in memory and can thus be set to any
value. The R/W field determines whether a read (0) or a write(1) should be performed. The length

field contains the number of bytes to be read or written. If R/W is one the data field shown in Table
620 contains the data to be written. If R/W is zero the data field is empty in the received packets.
Table 622 shows the application layer fields of the replies from the EDCL. The length field is always
zero for replies to write requests. For read requests it contains the number of bytes of data contained in
the data field.

The EDCL implements a Go-Back-N algorithm providing reliable transfers. The 14-bit sequence
number in received packets are checked against an internal counter for a match. If they do not match,
no operation is performed and the ACK/NAK field is set to 1 in the reply frame. The reply frame con-
tains the internal counter value in the sequence number field. If the sequence number matches, the
operation is performed, the internal counter is incremented, the internal counter value is stored in the
sequence number field and the ACK/NAK field is set to 0 in the reply. The length field is always set to
0 for ACK/NAK=1 frames. The unused field is not checked and is copied to the reply. It can thus be
set to hold for example some extra id bits if needed.

43.6.3 EDCL IP and Ethernet address settings

The default value of the EDCL IP and MAC addresses are set by ipaddrh, ipaddrl, macad-
drh and macaddrl generics. The IP address can later be changed by software, but the MAC
address is fixed. To allow several EDCL enabled GRETH controllers on the same sub-net, the 4 LSB
bits of the IP and MAC address can optionally be set by an input signal. This is enabled by setting the
edcl generic = 2, and driving the 4-bit LSB value on ethi.edcladdr.

43.6.4 EDCL buffer size

The EDCL has a dedicated internal buffer memory which stores the received packets during process-
ing. The size of this buffer is configurable with a VHDL generic to be able to obtain a suitable com-
promise between throughput and resource utilization in the hardware. Table 623 lists the different
buffer configurations. For each size the table shows how many concurrent packets the EDCL can han-
dle, the maximum size of each packet including headers and the maximum size of the data payload.

Table 621.The EDCL application layer fields in received frames.

16-bit Offset 14-bit Sequence number 1-bit R/W 10-bit Length 7-bit Unused

Table 622.The EDCL application layer fields in transmitted frames.

16-bit Offset 14-bit sequence number 1-bit ACK/NAK 10-bit Length 7-bit Unused
GRIP, Sep 2018, Version 2018.3 524 www.cobham.com/gaisler

GRLIB IP Core

Sending more packets before receiving a reply than specified for the selected buffer size will lead to
dropped packets. The behavior is unspecified if sending larger packets than the maximum allowed.

43.7 Media Independent Interfaces

There are several interfaces defined between the MAC sublayer and the Physical layer. The
GRETH_GBIT supports the Media Independent Interface (MII) and the Gigabit Media Independent
Interface (GMII).
The GMII is used in 1000 Mbit mode and the MII in 10 and 100 Mbit. These interfaces are defined
separately in the 802.3-2002 standard but in practice they share most of the signals. The GMII has 9
additional signals compared to the MII. Four data signals are added to the receiver and transmitter
data interfaces respectively and a new transmit clock for the gigabit mode is also introduced.
To support lower speed where the operation and clock frequency of the core and phy remains
unchanged i.e. running at 100Mb/s when the IP is configured for 1000Mb/s speed enable signals
should be created to mimic the desired bit rate.
When operating at 100Mb/s, every byte of the MAC frame is repeated 10 clock periods to achieve the
correct bit rate. The GRETH_GBIT core does not take care of this operation and enable signals with
toggling frequency of the correct bit rate needs to be created.
When operating at 10Mb/s, every byte of the MAC frame is repeated 100 clock periods to achieve the
correct bit rate. The GRETH_GBIT core does not take care of this operation and enable signals with
toggling frequency of the correct bit rate needs to be created.

Table 623.EDCL buffer sizes

Total buffer size (kB) Number of packet buffers Packet buffer size (B) Maximum data payload (B)
1 4 256 200
2 4 512 456
4 8 512 456
8 8 1024 968
16 16 1024 968
32 32 1024 968
64 64 1024 968

Table 624.Signals in GMII and MII.

MII and GMII GMII Only
txd[3:0] txd[7:4]
tx_en rxd[7:4]
tx_er gtx_clk
rx_col
rx_crs
rxd[3:0]
rx_clk
rx_er
rx_dv
rx_en
tx_dv
GRIP, Sep 2018, Version 2018.3 525 www.cobham.com/gaisler

GRLIB IP Core

43.8 AXI support

The core is designed for an AMBA system but can be adapted for AXI using the AHBM2AXI
adapter.

43.9 Registers

The core is programmed through registers mapped into APB address space.

Table 625.GRETH_GBIT registers

APB address offset Register
0x00 Control register
0x04 Status/Interrupt-source register
0x08 MAC Address MSB
0x0C MAC Address LSB
0x10 MDIO Control/Status
0x14 Transmit descriptor pointer
0x18 Receiver descriptor pointer
0x1C EDCL IP
0x20 Hash table msb
0x24 Hash table lsb
0x28 EDCL MAC address MSB
0x2C EDCL MAC address LSB
0x10000 - 0x107FC Transmit RAM buffer debug access
0x20000 - 0x207FC Receiver RAM buffer debug access
0x30000 - 0x3FFFC EDCL buffer debug access
GRIP, Sep 2018, Version 2018.3 526 www.cobham.com/gaisler

GRLIB IP Core

43.9.1

Table 626.0x00 - CTRL - GRETH control register

Control register

31 30 28 27 26 25 24 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EA BS GA MA MC RESERVED ED RD DD ME PI BM GB SP RS PM FD RI TI RE TE

* * * * * 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0

r r r r r r rw rw rw rw rw rw rw rw wc rw rw rw rw rw rw

31 EDCL available (EA) - Set to one if the EDCL is available.
30: 28 EDCL buffer size (BS) - Shows the amount of memory used for EDCL buffers. 0 = 1 kB, 1 = 2 kB,

...., 6 = 64 kB.
27 Gigabit MAC available (GA) - This bit always reads as a 1 and indicates that the MAC has 1000

Mbit capability.
26 Mdio interrupts enabled (ME) - Set to one when the core supports mdio interrupts. Read only.
25 Multicast available (MC) - Set to one when the core supports multicast address reception. Read only.
24: 15 RESERVED
14 EDCL Disable(ED) - Set to one to disablethe EDCL and zero to enable it. Reset value taken from the

ethi.edcldisable signal. Only available if the EDCL hardware is present in the core.
13 RAM debug enable (RD) - Set to one to enable the RAM debug mode. Reset value: ‘0’. Only avail-

able if the VHDL generic ramdebug is nonzero.
12 Disable duplex detection (DD) - Disable the EDCL speed/duplex detection FSM. If the FSM cannot

complete the detection the MDIO interface will be locked in busy mode. If software needs to access
the MDIO the FSM can be disabled here and as soon as the MDIO busy bit is 0 the interface is avail-
able. Note that the FSM cannot be reenabled again.

11 Multicast enable (ME) - Enable reception of multicast addresses. Reset value: ‘0’.
10 PHY status change interrupt enable (PI) - Enables interrupts for detected PHY status changes.
9 Burstmode (BM) - When set to 1, transmissions use burstmode in 1000 Mbit Half-duplex mode

(GB=1, FD = 0). When 0 in this speed mode normal transmissions are always used with extension
inserted. Operation is undefined when set to 1 in other speed modes. Reset value: ‘0’.

8 Gigabit (GB) - 1 sets the current speed mode to 1000 Mbit and when set to 0, the speed mode is
selected with bit 7 (SP). Reset value: ‘0’.

7 Speed (SP) - Sets the current speed mode. 0 = 10 Mbit, 1 = 100 Mbit. Must not be set to 1 at the same
time as bit 8 (GB). Reset valuie: ‘0’.

6 Reset (RS) - A one written to this bit resets the GRETH_GBIT core. Self clearing. No other accesses
should be done .to the slave interface other than polling this bit until it is cleared.

5 Promiscuous mode (PM) - If set, the GRETH_GBIT operates in promiscuous mode which means it
will receive all packets regardless of the destination address. Reset value: ‘0’.

4 Full duplex (FD) - If set, the GRETH_GBIT operates in full-duplex mode otherwise it operates in
half-duplex. Reset value: ‘0’.

3 Receiver interrupt (RI) - Enable Receiver Interrupts. An interrupt will be generated each time a
packet is received when this bit is set. The interrupt is generated regardless if the packet was
received successfully or if it terminated with an error. Reset value: ‘0’.

2 Transmitter interrupt (TI) - Enable Transmitter Interrupts. An interrupt will be generated each time a
packet is transmitted when this bit is set. The interrupt is generated regardless if the packet was
transmitted successfully or if it terminated with an error. Reset value: ‘0’.

1 Receive enable (RE) - Should be written with a one each time new descriptors are enabled. As long
as this bit is one the GRETH_GBIT will read new descriptors and as soon as it encounters a disabled
descriptor it will stop until RE is set again. This bit should be written with a one after the new
descriptors have been enabled. Reset value: ‘0’.

0 Transmit enable (TE) - Should be written with a one each time new descriptors are enabled. As long
as this bit is one the GRETH_GBIT will read new descriptors and as soon as it encounters a disabled
descriptor it will stop until TE is set again. This bit should be written with a one after the new
descriptors have been enabled. Reset value: ‘0’.
GRIP, Sep 2018, Version 2018.3 527 www.cobham.com/gaisler

GRLIB IP Core

43.9.2 Status Register

Table 627.0x04 - STAT - GRETH_GBIT status register.

43.9.3

Table 628.0x08 - MACMSB - GRETH_GBIT MAC address MSB.

Mac Address MSB

43.9.4

Table 629.0x0C - MACLSB - GRETH_GBIT MAC address LSB.

Mac Address LSB

31 9 8 7 6 5 4 3 2 1 0

RESERVED PS IA TS TA RA TI RI TE RE

0 0 0 0 NR NR NR NR NR NR

r wc wc wc wc wc wc wc wc wc

31: 9 RESERVED
8 PHY status changes (PS) - Set each time a PHY status change is detected.
7 Invalid address (IA) - A packet with an address not accepted by the MAC was received. Cleared

when written with a one. Reset value: ‘0’.
6 Too small (TS) - A packet smaller than the minimum size was received. Cleared when written with a

one. Reset value: ‘0’.
5 Transmitter AHB error (TA) - An AHB error was encountered in transmitter DMA engine. Cleared

when written with a one. Not Reset.
4 Receiver AHB error (RA) - An AHB error was encountered in receiver DMA engine. Cleared when

written with a one. Not Reset.
3 Transmit successful (TI) - A packet was transmitted without errors. Cleared when written with a one.

Not Reset.
2 Receive successful (RI) - A packet was received without errors. Cleared when written with a one.

Not Reset.
1 Transmitter error (TE) - A packet was transmitted which terminated with an error. Cleared when

written with a one. Not Reset.
0 Receiver error (RE) - A packet has been received which terminated with an error. Cleared when writ-

ten with a one. Not Reset.

31 16 15 0

RESERVED Bit 47 downto 32 of the MAC Address

0 DR

r rw

31: 16 RESERVED
15: 0 The two most significant bytes of the MAC Address. Not Reset.

31 0

Bit 31 downto 0 of the MAC Address

NR

rw

31: 0 The 4 least significant bytes of the MAC Address. Not Reset.
GRIP, Sep 2018, Version 2018.3 528 www.cobham.com/gaisler

GRLIB IP Core

43.9.5

Table 630.0x10 - MDIO - GRETH_GBIT MDIO control/status register.

MDIO control/status Register

43.9.6

Table 631.0x14 - TXBASE - GRETH_GBIT transmitter descriptor table base address register.

Transmitter Descripter Table Base Address Register

43.9.7

Table 632.0x18 - RXBASE - GRETH_GBIT receiver descriptor table base address register.

Receiver Descriptor Table Base Address Register

31 16 15 11 10 5 4 3 2 1 0

DATA PHYADDR REGADDR RES BU LF RD WR

0 * 0 0 1 0 0

rw rw rw r r rw rw

31: 16 Data (DATA) - Contains data read during a read operation and data that is transmitted is taken from
this field. Reset value: 0x0000.

15: 11 PHY address (PHYADDR) - This field contains the address of the PHY that should be accessed
during a write or read operation. Reset value: “00000”.

10: 6 Register address (REGADDR) - This field contains the address of the register that should be
accessed during a write or read operation. Reset value: ‘”00000”.

5: 4 RESERVED
3 Busy (BU) - When an operation is performed this bit is set to one. As soon as the operation is fin-

ished and the management link is idle this bit is cleared. Reset value: ‘0’.
2 Linkfail (LF) - When an operation completes (BUSY = 0) this bit is set if a functional management

link was not detected. Reset value: ‘1’.
1 Read (RD) - Start a read operation on the management interface. Data is stored in the data field.

Reset value: ‘0’.
0 Write (WR) - Start a write operation on the management interface. Data is taken from the Data field.

Reset value: ‘0’.

31 10 9 3 2 0

BASEADDR DESCPNT RES

NR 0 0

rw rw r

31: 10 Transmitter descriptor table base address (BASEADDR) - Base address to the transmitter descriptor
table.Not Reset.

9: 3 Descriptor pointer (DESCPNT) - Pointer to individual descriptors. Automatically incremented by
the Ethernet MAC.

2: 0 RESERVED

31 10 9 3 2 0

BASEADDR DESCPNT RES

NR 0 0

rw rw r

31: 10 Receiver descriptor table base address (BASEADDR) - Base address to the receiver descriptor
table.Not Reset.

9: 3 Descriptor pointer (DESCPNT) - Pointer to individual descriptors. Automatically incremented by
the Ethernet MAC.

2: 0 RESERVED
GRIP, Sep 2018, Version 2018.3 529 www.cobham.com/gaisler

GRLIB IP Core

43.9.8

Table 633.0x1C - EDCLIP - GRETH_GBIT EDCL IP register

IP Register

43.9.9

Table 634.0x20 - HMSB - GRETH Hash table MSB register

Hash Table MSB Register

43.9.10

Table 635.0x24 - HLSB - GRETH Hash table LSB register

Hash Table LSB Register

43.9.11

Table 636.0x28 - EMACMSB - GRETH_GBIT EDCL MAC address MSB.

MAC Address MSB

43.9.12

Table 637.0x2C - EMACLSB - GRETH_GBIT EDCL MAC address LSB.

Mac Address LSB

31 0

EDCL IP ADDRESS

0

rw

31: 0 EDCL IP address. Reset value is set with the ipaddrh and ipaddrl generics.

31 0

Hash table (64:32)

NR

rw

31: 0 Hash table msb. Bits 64 downto 32 of the hash table.

31 0

Hash table (64:32)

NR

rw

31: 0 Hash table lsb. Bits 31downto 0 of the hash table.

31 16 15 0

RESERVED Bit 47 downto 32 of the EDCL MAC Address

0 *

r rw

31: 16 RESERVED
15: 0 The two most significant bytes of the EDCL MAC Address. Hardcoded reset value set with the

VHDL generic macaddrh.

31 0

Bit 31 downto 0 of the EDCL MAC Address

*

rw

31: 0 The 4 least significant bytes of the EDCL MAC Address. Hardcoded reset value set with the VHDL
generics macaddrh and macaddrl. If the VHDL generic edcl is set to 2 bits 3 downto 0 are set with
the edcladdr input signal.
GRIP, Sep 2018, Version 2018.3 530 www.cobham.com/gaisler

GRLIB IP Core

43.10 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x01D. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

43.11 Implementation

43.11.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers, except synchronization registers, if the GRLIB config pack-
age setting grlib_sync_reset_enable_all is set.
The core will use asynchronous reset for all registers if the GRLIB config package setting grlib_asyn-
c_reset_enable is set.

43.11.2 Internal reset and reset via EDCL link

It is recommended to only use the internal reset bit in the control register for GRLIB releases 2018.2
and later. For earlier releases of GRLIB it is recommend to always use the input signal RST.

43.12 Configuration options

Table 638 shows the configuration options of the core (VHDL generics).*) Not all addresses are
allowed and most NICs and protocol implementations will discard frames with illegal addresses
silently. Consult network literature if unsure about the addresses.

Table 638.Configuration options

Generic Function Allowed range Default
hindex AHB master index. 0 - NAHBMST-1 0
pindex APB slave index 0 - NAPBSLV-1 0
paddr Addr field of the APB bar. 0 - 16#FFF# 0
pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#
pirq Interrupt line used by the GRETH. 0 - NAHBIRQ-1 0
memtech Memory technology used for the FIFOs. 0 - NTECH inferred
ifg_gap Number of ethernet clock cycles used for one interframe gap.

Default value as required by the standard. Do not change unless
you know what your doing.

1 - 255 24

attempt_limit Maximum number of transmission attempts for one packet.
Default value as required by the standard.

1 - 255 16

backoff_limit Limit on the backoff size of the backoff time. Default value as
required by the standard. Sets the number of bits used for the
random value. Do not change unless you know what your doing.

1 - 10 10

slot_time Number of ethernet clock cycles used for one slot- time. Default
value as required by the ethernet standard. Do not change unless
you know what you are doing.

1 - 255 128

mdcscaler Sets the divisor value use to generate the mdio clock (mdc). The
mdc frequency will be clk/(2*(mdcscaler+1)).

0 - 255 25

nsync Number of synchronization registers used. 1 - 2 2
GRIP, Sep 2018, Version 2018.3 531 www.cobham.com/gaisler

GRLIB IP Core
edcl Enable EDCL. 0 = disabled. 1 = enabled. 2 = enabled and 4-bit
LSB of IP and ethernet MAC address programmed by
ethi.edcladdr, 3=in addition to features for value 2 the reset value
for the EDCL disable bit is taken from the ethi.edcldisable signal
instead of being hardcoded to 0. 4=in addition to features for
value 2 and 3 the an option is given to disable the EDCL via
external input signal.

0 - 4 0

edclbufsz Select the size of the EDCL buffer in kB. 1 - 64 1
burstlength Sets the maximum burstlength used during DMA 4 - 128 32
macaddrh Sets the upper 24 bits of the EDCL MAC address.

Not all addresses are allowed and most NICs and protocol imple-
mentations will discard frames with illegal addresses silently.
Consult network literature if unsure about the addresses.

0 - 16#FFFFFF# 16#00005E#

macaddrl Sets the lower 24 bits of the EDCL MAC address.
Not all addresses are allowed and most NICs and protocol imple-
mentations will discard frames with illegal addresses silently.
Consult network literature if unsure about the addresses.

0 - 16#FFFFFF# 16#000000#

ipaddrh Sets the upper 16 bits of the EDCL IP address reset value. 0 - 16#FFFF# 16#C0A8#
ipaddrl Sets the lower 16 bits of the EDCL IP address reset value. 0 - 16#FFFF# 16#0035#
phyrstadr Sets the reset value of the PHY address field in the MDIO regis-

ter. When set to 32, the address is taken from the ethi.phyrstaddr
signal.

0 - 32 0

sim Set to 1 for simulations and 0 for synthesis. 1 selects a faster mdc
clock to speed up simulations.

0 - 1 0

mdint_pol Selects polarity for level sensitive PHY interrupt line. 0 = active
low, 1 = active high

0 - 1 0

enable_mdint Enables mdio interrupts. 0 - 1 0
multicast Enables multicast support. 0 - 1 0
ramdebug Enables debug access to the core’s RAM blocks through the

APB interface. 1=enables access to the receiver and transmitter
RAM buffers, 2=enables access to the EDCL buffers in addition
to the functionality of value 1. Setting this generic to 2 will have
no effect if the edcl generic is 0.

0 - 2 0

ehindex AHB master index for the separate EDCL master interface. Only
used if edclsepahb is 1.

0 - NAHBMST-1 0

edclsepahb Enables separate EDCL AHB master interface. A signal deter-
mines if the separate interface or the common interface is used.
Only available in the GRETH_GBIT_MB version of the core.

0 - 1 0

mdiohold Set output hold time for MDIO in number of AHB cycles.
Should be 10 ns or more.

1 - 30 1

gmiimode Enable the use of receive and transmit valid signals to enter data
to/from the PHY at the correct rate.

0-1 0

Table 638.Configuration options

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 532 www.cobham.com/gaisler

GRLIB IP Core

43.13 Signal descriptions

Table 639 shows the interface signals of the core (VHDL ports).

Table 639.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
AHBMI * Input AMB master input signals -
AHBMO * Output AHB master output signals -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
GRIP, Sep 2018, Version 2018.3 533 www.cobham.com/gaisler

GRLIB IP Core
ETHI gtx_clk Input Ethernet gigabit transmit clock. -
rmii_clk Input Ethernet RMII clock. -
tx_clk Input Ethernet transmit clock. -
tx_dv Input Ethernet transmitter enable -
rx_clk Input Ethernet receive clock. -
rxd Input Ethernet receive data. -
rx_dv Input Ethernet receive data valid. High
rx_er Input Ethernet receive error. High
rx_col Input Ethernet collision detected. (Asynchronous,

sampled with tx_clk)
High

rx_crs Input Ethernet carrier sense. (Asynchronous, sampled
with tx_clk)

High

rx_en Input Ethernet receiver enable. -
mdio_i Input Ethernet management data input -
mdint Input Ethernet management interrupt -
phyrstaddr Input Reset address for GRETH PHY address field. -
edcldis Input Disable EDCL functionality -
edcladdr Input Sets the four least significant bits of the EDCL

MAC address and the EDCL IP address when
the edcl generic is set to 2.

-

edclsepahb Input Selects AHB master interface for the EDCL. ‘0’
selects the common interface and ‘1’ selects the
separate interface. Only available in the
GRETH_GBIT_MB version of the core when
the VHDL generic edclsepahb is set to 1.

-

edcldisable Input Reset value for edcl disable register bit. Setting
the signal to 1 disables the EDCL at reset and 0
enables it.

-

ETHO reset Output Ethernet reset (asserted when the MAC is reset). Low
txd Output Ethernet transmit data. -
tx_en Output Ethernet transmit enable. High
tx_er Output Ethernet transmit error. High
mdc Output Ethernet management data clock. -
mdio_o Output Ethernet management data output. -
mdio_oe Output Ethernet management data output enable. Set by the

oepol
generic.

MTESTI** BUF Input Memory BIST input signal to buffer RAM -
EDCL Input Memory BIST input signal to EDCL RAM -

MTESTO** BUF Output Memory BIST output signal from buffer RAM -
EDCL Output Memory BIST output signal from EDCL RAM -

MTESTCLK** N/A Input Memory BIST clock -
* see GRLIB IP Library User’s Manual
** not available in FPGA releases

Table 639.Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 534 www.cobham.com/gaisler

GRLIB IP Core

43.14 Library dependencies

Table 640 shows libraries used when instantiating the core (VHDL libraries).

43.15 Instantiation

The first example shows how the non-mb version of the core can be instantiated and the second one
show the mb version.

43.15.1 Non-MB version

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.ethernet_mac.all;

entity greth_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- ethernet signals
 ethi : in eth_in_type;
 etho : in eth_out_type
);
end;

architecture rtl of greth_ex is

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

begin

 -- AMBA Components are instantiated here
 ...

 -- GRETH
 e1 : greth_gbit
 generic map(
 hindex => 0,
 pindex => 12,
 paddr => 12,
 pirq => 12,
 memtech => inferred,
 mdcscaler => 50,
 burstlength => 32,
 nsync => 1,
 edcl => 1,

Table 640.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER ETHERNET_MAC Signals, component GRETH_GBIT component declarations,

GRETH_GBIT signals.
GAISLER NET Signals Ethernet signals
GRIP, Sep 2018, Version 2018.3 535 www.cobham.com/gaisler

GRLIB IP Core

 edclbufsz => 8,
 macaddrh => 16#00005E#,
 macaddrl => 16#00005D#,
 ipaddrh => 16#c0a8#,
 ipaddrl => 16#0035#)
 port map(
 rst => rstn,
 clk => clk,
 ahbmi => ahbmi,
 ahbmo => ahbmo(0),
 apbi => apbi,
 apbo => apbo(12),
 ethi => ethi,
 etho => etho
);
end;

43.15.2 MB version
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.ethernet_mac.all;

entity greth_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- ethernet signals
 ethi : in eth_in_type;
 etho : in eth_out_type
);
end;

architecture rtl of greth_ex is

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);
begin

 -- AMBA Components are instantiated here
 ...

 -- GRETH
 e1 : greth_gbit_mb
 generic map(
 hindex => 0,
 pindex => 12,
 paddr => 12,
 pirq => 12,
 memtech => inferred,
 mdcscaler => 50,
 burstlength => 32,
 nsync => 1,
 edcl => 1,
 edclbufsz => 8,
 macaddrh => 16#00005E#,
 macaddrl => 16#00005D#,
 ipaddrh => 16#c0a8#,
 ipaddrl => 16#0035#,
 ehindex => 1
GRIP, Sep 2018, Version 2018.3 536 www.cobham.com/gaisler

GRLIB IP Core

 edclsepahb => 1)
 port map(
 rst => rstn,
 clk => clk,
 ahbmi => ahbmi,
 ahbmo => ahbmo(0),
 ahbmi2 => ahbmi,
 ahbmo2 => ahbmo(1),
 apbi => apbi,
 apbo => apbo(12),
 ethi => ethi,
 etho => etho
);
end;
GRIP, Sep 2018, Version 2018.3 537 www.cobham.com/gaisler

GRLIB IP Core

44 GRFIFO - FIFO Interface

44.1 Overview

The FIFO interface is assumed to operate in an AMBA bus system where both the AMBA AHB bus
and the APB bus are present. The AMBA APB bus is used for configuration, control and status han-
dling. The AMBA AHB bus is used for retrieving and storing FIFO data in memory external to the
FIFO interface. This memory can be located on-chip or external to the chip.
The FIFO interface supports transmission and reception of blocks of data by use of circular buffers
located in memory external to the core. Separate transmit and receive buffers are assumed. Reception
and transmission of data can be ongoing simultaneously.
After a data transfer has been set up via the AMBA APB interface, the DMA controller initiates a
burst of read accesses on the AMBA AHB bus to fetch data from memory that are performed by the
AHB master. The data are then written to the external FIFO. When a programmable amount of data
has been transmitted, the DMA controller issues an interrupt.
After reception has been set up via the AMBA APB interface, data are read from the external FIFO.
To store data to memory, the DMA controller initiates a burst of write accesses on the AMBA AHB
bus that are performed by the AHB master. When a programmable amount of data has been received,
the DMA controller issues an interrupt.

Figure 126. Block diagram

GRFIFO

DMA

AMBA
APB
Slave

AMBA Layer
M

ux
 /

D
eM

ux

TX FIFO
AMBA
AHB

Master

A
M

B
A

 A
P

B

A
M

B
A

 A
H

B Physical Layer

E
xt

er
na

l F
IF

O
 d

ev
ic

e(
s)

Controller

RX FIFO

Figure 127. Example of usage, with shared external data bus

GRFIFO

A
M

B
A

 A
P

B

A
M

B
A

 A
H

B

D[8:0]

ATMEL
M6720X

ATMEL
M6720X

WR*

RD*

FULL*

EMPTY*

HALF*
GRIP, Sep 2018, Version 2018.3 538 www.cobham.com/gaisler

GRLIB IP Core

44.1.1 Function

The core implements the following functions:
• data transmission to external FIFO
• circular transmit buffer
• direct memory access for transmitter
• data reception from external FIFO
• circular receive buffer for receiver
• direct memory access
• automatic 8- and 16-bit data width conversion
• general purpose input output

44.1.2 Transmission

Data to be transferred via the FIFO interface are fetched via the AMBA AHB master interface from
on-chip or off-chip memory. This is performed by means of direct memory access (DMA), imple-
menting a circular transmit buffer in the memory. The transmit channel is programmable via the
AMBA APB slave interface, which is also used for the monitoring of the FIFO and DMA status.
The transmit channel is programmed in terms of a base address and size of the circular transmit buffer.
The outgoing data are stored in the circular transmit buffer by the system. A write address pointer reg-
ister is then set by the system to indicate the last byte written to the circular transmit buffer. An inter-
rupt address pointer register is used by the system to specify a location in the circular transmit buffer
from which a data read should cause an interrupt to be generated.
The FIFO interface automatically indicates with a read address pointer register the location of the last
fetched byte from the circular transmit buffer. Read accesses are performed as incremental bursts,
except when close to the location specified by the interrupt pointer register at which point the last
bytes might be fetched by means of single accesses.
Data transferred via the FIFO interface can be either 8- or 16-bit wide. The handling of the transmit
channel is however the same. All transfers performed by the AMBA AHB master are 32-bit word
based. No byte or half-word transfers are performed.
To handle the 8- and 16-bit FIFO data width, a 32-bit read access might carry less than four valid
bytes. In such a case, the remaining bytes are ignored. When additional data are available in the circu-
lar transmit buffer, the previously fetched bytes will be re-read together with the newly written bytes
to form the 32-bit data. Only the new bytes will be transmitted to the FIFO, not to transmit the same
byte more than once. The aforementioned write address pointer indicates what bytes are valid.
An interrupt is generated when the circular transmit buffer is empty. The status of the external FIFO is
observed via the AMBA APB slave interface, indicating Full Flag and Half-Full Flag.

44.1.3 Reception

Data received via the FIFO interface are stored via the AMBA AHB master interface to on-chip or
off-chip memory. This is performed by means of direct memory access (DMA), implementing a circu-
lar receive buffer in the memory. The receive channel is programmable via the AMBA APB slave
interface, which is also used for the monitoring of the FIFO and DMA status.
The receive channel is programmed in terms of a base address and size of the circular receive buffer.
The incoming data are stored in the circular receive buffer. The interface automatically indicates with
a write address pointer register the location of the last stored byte. A read address pointer register is
used by the system to indicate the last byte read from the circular receive buffer. An interrupt address
pointer register is used by the system to specify a location in the circular receive buffer to which a data
write should cause an interrupt to be generated.
GRIP, Sep 2018, Version 2018.3 539 www.cobham.com/gaisler

GRLIB IP Core

Write accesses are performed as incremental bursts, except when close to the location specified by the
interrupt pointer register at which point the last bytes might be stored by means of single accesses.
Data transferred via the FIFO interface can be either 8- or 16-bit wide. The handling of the receive
channel is however the same. All transfers performed by the AMBA AHB master are 32-bit word
based. No byte or half-word transfers are performed.
To handle the 8- and 16-bit FIFO data width, a 32-bit write access might carry less than four valid
bytes. In such a case, the remaining bytes will all be zero. When additional data are received from the
FIFO interface, the previously stored bytes will be re-written together with the newly received bytes
to form the 32-bit data. In this way, the previously written bytes are never overwritten. The aforemen-
tioned write address pointer indicates what bytes are valid.
An interrupt is generated when the circular receive buffer is full. If more FIFO data are available, they
will not be moved to the circular receive buffer. The status of the external FIFO is observed via the
AMBA APB slave interface, indicating Empty Flag and Half-Full Flag.

44.1.4 General purpose input output

Data input and output signals unused by the FIFO interface can be used as general purpose input out-
put, providing 0, 8 or 16 individually programmable channels.

44.1.5 Interfaces

The core provides the following external and internal interfaces:
• FIFO interface
• AMBA AHB master interface, with sideband signals as per [GLRIB] including:
• cachability information
• interrupt bus
• configuration information
• diagnostic information
• AMBA APB slave interface, with sideband signals as per [GLRIB] including:
• interrupt bus
• configuration information
• diagnostic information

The interface is intended to be used with the following FIFO devices from ATMEL:
 Name:Type:

M67204H4K x 9 FIFOESA/SCC 9301/049, SMD/5962-89568
 M67206H16K x 9 FIFOESA/SCC 9301/048, SMD/5962-93177
 M672061H16K x 9 FIFO ESA/SCC 9301/048, SMD/5962-93177

44.2 Interface

The external interface supports one or more FIFO devices for data output (transmission) and/or one or
more FIFO devices for data input (reception). The external interface supports FIFO devices with 8-
and 16-bit data width. Note that one device is used when 8-bit and two devices are used when 16-bit
data width is needed. The data width is programmable. Note that this is performed commonly for both
directions.
GRIP, Sep 2018, Version 2018.3 540 www.cobham.com/gaisler

GRLIB IP Core

The external interface supports one parity bit over every 8 data bits. Note that there can be up to two
parity bits in either direction. The parity is programmable in terms of odd or even parity. Note that odd
parity is defined as an odd number of logical ones in the data bits and parity bit. Note that even parity
is defined as an even number of logical ones in the data bits and parity bit. Parity is generated for write
accesses to the external FIFO devices. Parity is checked for read accesses from the external FIFO
devices and a parity failure results in an internal interrupt.
The external interface provides a Write Enable output signal. The external interface provides a Read
Enable output signal. The timing of the access towards the FIFO devices is programmable in terms of
wait states based on system clock periods.
The external interface provides an Empty Flag input signal, which is used for flow-control during the
reading of data from the external FIFO, not reading any data while the external FIFO is empty. Note
that the Empty Flag is sampled at the end of the read access to determine if the FIFO is empty. To
determine when the FIFO is not empty, the Empty Flag is re-synchronized with Clk.
The external interface provides a Full Flag input signal, which is used for flow-control during the
writing of data to the external FIFO, not writing any data while the external FIFO is full. Note that the
Full Flag is sampled at the end of the write access to determine if the FIFO is full. To determine when
the FIFO is not full, the Full Flag is re-synchronized with Clk.
The external interface provides a Half-Full Flag input signal, which is used as status information only.
The data input and output signals are possible to use as general purpose input output channels. This
need is only realized when the data signals are not used by the FIFO interface. Each general purpose
input output channel is individually programmed as input or output. The default reset configuration
for each general purpose input output channel is as input. The default reset value each general purpose
input output channel is logical zero. Note that protection toward spurious pulse commands during
power up shall be mitigated as far as possible by means of I/O cell selection from the target technol-
ogy.

44.3 Waveforms

The following figures show read and write accesses to the FIFO with 0 and 4 wait states, respectively.
GRIP, Sep 2018, Version 2018.3 541 www.cobham.com/gaisler

GRLIB IP Core
WEn

REn

D, P

EFn

FFn

HFn

Clk

WS

Write Read

Sample

Settings: WS=0

Figure 128. FIFO read and write access waveform, 0 wait states (WS)

Write Read

WS WS WS WS

Write ReadWrite Read

WS WS WS

Idle Idle Idle

FFn
Sample
FFn

Sample
EFn

Sample
EFn

Sample
FFn

Sample
FFn

Sample
EFn

Sample
EFn
GRIP, Sep 2018, Version 2018.3 542 www.cobham.com/gaisler

GRLIB IP Core
WEn

REn

D, P

EFn

FFn

HFn

Clk

WS

Write Read

Settings: WS=4 (with additional gap between accesses)

Figure 129. FIFO read and write access waveform, 4 wait states (WS)

Idle

Sample
FFn

Sample
EFn

Gap IdleGap Write

WS WSWS WS WSWS WSWS WS WSWS WS
GRIP, Sep 2018, Version 2018.3 543 www.cobham.com/gaisler

GRLIB IP Core

44.4 Transmission

The transmit channel is defined by the following parameters:
• base address
• buffer size
• write pointer
• read pointer
The transmit channel can be enabled or disabled.

44.4.1 Circular buffer

The transmit channel operates on a circular buffer located in memory external to the FIFO controller.
The circular buffer can also be used as a straight buffer. The buffer memory is accessed via the
AMBA AHB master interface.
The size of the buffer is defined by the FifoTxSIZE.SIZE field, specifying the number of 64 byte
blocks that fit in the buffer.
E.g. FifoTxSIZE.SIZE = 1 means 64 bytes fit in the buffer.
Note however that it is not possible to fill the buffer completely, leaving at least one word in the buffer
empty. This is to simplify wrap-around condition checking.
E.g. FifoTxSIZE.SIZE = 1 means that 60 bytes fit in the buffer at any given time.

44.4.2 Write and read pointers

The write pointer (FifoTxWR.WRITE) indicates the position+1 of the last byte written to the buffer.
The write pointer operates on number of bytes, not on absolute or relative addresses.
The read pointer (FifoTxRD.READ) indicates the position+1 of the last byte read from the buffer. The
read pointer operates on number of bytes, not on absolute or relative addresses.
The difference between the write and the read pointers is the number of bytes available in the buffer
for transmission. The difference is calculated using the buffer size, specified by the FifoTxSIZE.SIZE
field, taking wrap around effects of the circular buffer into account.
Examples:
• There are 2 bytes available for transmit when FifoTxSIZE.SIZE=1, FifoTxWR.WRITE=2 and

FifoTxRD.READ=0.
• There are 2 bytes available for transmit when FifoTxSIZE.SIZE=1, FifoTxWR.WRITE =0 and

FifoTxRD.READ =62.
• There are 2 bytes available for transmit when FifoTxSIZE.SIZE=1, FifoTxWR.WRITE =1 and

FifoTxRD.READ =63.
• There are 2 bytes available for transmit when FifoTxSIZE.SIZE=1, FifoTxWR.WRITE =5 and

FifoTxRD.READ =3.

When a byte has been successfully written to the FIFO, the read pointer (FifoTxRD.READ) is auto-
matically incremented, taking wrap around effects of the circular buffer into account. Whenever the
write pointer FifoTxWR.WRITE and read pointer FifoTxRD.READ are equal, there are no bytes
available for transmission.

44.4.3 Location

The location of the circular buffer is defined by a base address (FifoTxADDR.ADDR), which is an
absolute address. The location of a circular buffer is aligned on a 1kbyte address boundary.
GRIP, Sep 2018, Version 2018.3 544 www.cobham.com/gaisler

GRLIB IP Core

44.4.4 Transmission procedure

When the channel is enabled (FifoTxCTRL.ENABLE=1), as soon as there is a difference between the
write and read pointer, a transmission will be started. Note that the channel should not be enabled if a
potential difference between the write and read pointers could be created, to avoid the data transmis-
sion to start prematurely.
A data transmission will begin with a fetch of the data from the circular buffer to a local buffer in the
FIFO controller. After a successful fetch, a write access will be performed to the FIFO.
The read pointer (FifoTxRD.READ) is automatically incremented after a successful transmission,
taking wrap around effects of the circular buffer into account. If there is at least one byte available in
the circular buffer, a new fetch will be performed.
If the write and read pointers are equal, no more prefetches and fetches will be performed, and trans-
mission will stop.
Interrupts are provided to aid the user during transmission, as described in detail later in this section.
The main interrupts are the TxError, TxEmpty and TxIrq which are issued on the unsuccessful trans-
mission of a byte due to an error condition on the AMBA bus, when all bytes have been transmitted
successfully and when a predefined number of bytes have been transmitted successfully.
Note that 32-bit wide read accesses past the address of the last byte or halfword available for trans-
mission can be performed as part of a burst operation, although no read accesses are made beyond the
circular buffer size.
All accesses to the AMBA AHB bus are performed as two consecutive 32-bit accesses in a burst, or as
a single 32-bit access in case of an AMBA AHB bus error.

44.4.5 Straight buffer

It is possible to use the circular buffer as a straight buffer, with a higher granularity than the 1kbyte
address boundary limited by the base address (FifoTxADDR.ADDR) field.
While the channel is disabled, the read pointer (FifoTxRD.READ) can be changed to an arbitrary
value pointing to the first byte to be transmitted, and the write pointer (FifoTxWR.WRITE) can be
changed to an arbitrary value.
When the channel is enabled, the transmission will start from the read pointer and continue to the
write pointer.

44.4.6 AMBA AHB error

An AHB error response occurring on the AMBA AHB bus while data is being fetched will result in a
TxError interrupt.
If the FifoCONF.ABORT bit is set to 0b, the channel causing the AHB error will re-try to read the
data being fetched from memory till successful.
If the FifoCONF.ABORT bit is set to 1b, the channel causing the AHB error will be disabled (Fifo-
TxCTRL.ENABLE is cleared automatically to 0 b). The read pointer can be used to determine which
data caused the AHB error. The interface will not start any new write accesses to the FIFO. Any ongo-
ing FIFO access will be completed and the FifoTxSTAT.TxOnGoing bit will be cleared. When the
channel is re-enabled, the fetch and transmission of data will resume at the position where it was dis-
abled, without losing any data.

44.4.7 Enable and disable

When an enabled transmit channel is disabled (FifoTxCTRL.ENABLE=0b), the interface will not
start any new read accesses to the circular buffer by means of DMA over the AMBA AHB bus. No
new write accesses to the FIFO will be started. Any ongoing FIFO access will be completed. If the
GRIP, Sep 2018, Version 2018.3 545 www.cobham.com/gaisler

GRLIB IP Core

data is written successfully, the read pointer (FifoTxRD.READ) is automatically incremented and the
FifoTxSTAT.TxOnGoing bit will be cleared. Any associated interrupts will be generated.
Any other fetched or pre-fetched data from the circular buffer which is temporarily stored in the local
buffer will be discarded, and will be fetched again when the transmit channel is re-enabled.
The progress of the any ongoing access can be observed via the FifoTxSTAT.TxOnGoing bit. The
FifoTxSTAT.TxOnGoing must be 0b before the channel can be re-configured safely (i.e. changing
address, size or read/write pointers). It is also possible to wait for the TxEmpty interrupt described
hereafter.
The channel can be re-enabled again without the need to re-configure the address, size and pointers.
No data transmission is started while the channel is not enabled.

44.4.8 Interrupts

During transmission several interrupts can be generated:
• TxEmpty: Successful transmission of all data in buffer
• TxIrq: Successful transmission of a predefined number of data
• TxError: AHB access error during transmission
The TxEmpty and TxIrq interrupts are only generated as the result of a successful data transmission,
after the FifoTxRD.READ pointer has been incremented.

44.5 Reception

The receive channel is defined by the following parameters:
• base address
• buffer size
• write pointer
• read pointer
The receive channel can be enabled or disabled.

44.5.1 Circular buffer

The receive channel operates on a circular buffer located in memory external to the FIFO controller.
The circular buffer can also be used as a straight buffer. The buffer memory is accessed via the
AMBA AHB master interface.
The size of the buffer is defined by the FifoRxSIZE.SIZE field, specifying the number 64 byte blocks
that fit in the buffer.

E.g. FifoRxSIZE.SIZE=1 means 64 bytes fit in the buffer.
Note however that it is not possible for the hardware to fill the buffer completely, leaving at least two
words in the buffer empty. This is to simplify wrap-around condition checking.
E.g. FifoRxSIZE.SIZE=1 means that 56 bytes fit in the buffer at any given time.

44.5.2 Write and read pointers

The write pointer (FifoRxWR.WRITE) indicates the position+1 of the last byte written to the buffer.
The write pointer operates on number of bytes, not on absolute or relative addresses.
The read pointer (FifoRxRD.READ) indicates the position+1 of the last byte read from the buffer. The
read pointer operates on number of bytes, not on absolute or relative addresses.
GRIP, Sep 2018, Version 2018.3 546 www.cobham.com/gaisler

GRLIB IP Core

The difference between the write and the read pointers is the number of bytes available in the buffer
for reception. The difference is calculated using the buffer size, specified by the FifoRxSIZE.SIZE
field, taking wrap around effects of the circular buffer into account.
Examples:
• There are 2 bytes available for read-out when FifoRxSIZE.SIZE=1, FifoRxWR.WRITE =2 and

FifoRxRD.READ=0.
• There are 2 bytes available for read-out when FifoRxSIZE.SIZE=1, FifoRxWR.WRITE =0 and

FifoRxRD.READ=62.
• There are 2 bytes available for read-out when FifoRxSIZE.SIZE=1, FifoRxWR.WRITE =1 and

FifoRxRD.READ=63.
• There are 2 bytes available for read-out when FifoRxSIZE.SIZE=1, FifoRxWR.WRITE =5 and

FifoRxRD.READ=3.

When a byte has been successfully received and stored, the write pointer (FifoRxWR.WRITE) is
automatically incremented, taking wrap around effects of the circular buffer into account.

44.5.3 Location

The location of the circular buffer is defined by a base address (FifoRxADDR.ADDR), which is an
absolute address. The location of a circular buffer is aligned on a 1kbyte address boundary.

44.5.4 Reception procedure

When the channel is enabled (FifoRxCTRL.ENABLE=1), and there is space available for data in the
circular buffer (as defined by the write and read pointer), a read access will be started towards the
FIFO, and then an AMBA AHB store access will be started. The received data will be temporarily
stored in a local store-buffer in the FIFO controller. Note that the channel should not be enabled until
the write and read pointers are configured, to avoid the data reception to start prematurely
After a datum has been successfully stored the FIFO controller is ready to receive new data. The write
pointer (FifoRxWR.WRITE) is automatically incremented, taking wrap around effects of the circular
buffer into account.
Interrupts are provided to aid the user during reception, as described in detail later in this section. The
main interrupts are the RxError, RxParity, RxFull and RxIrq which are issued on the unsuccessful
reception of data due to an AMBA AHB error or parity error, when the buffer has been successfully
filled and when a predefined number of data have been received successfully.
All accesses to the AMBA AHB bus are performed as two consecutive 32-bit accesses in a burst, or as
a single 32-bit access in case of an AMBA AHB bus error.

44.5.5 Straight buffer

It is possible to use the circular buffer as a straight buffer, with a higher granularity than the 1kbyte
address boundary limited by the base address (FifoRxADDR.ADDR) field.
While the channel is disabled, the write pointer (FifoRxWR.WRITE) can be changed to an arbitrary
value pointing to the first data to be received, and the read pointer (FifoRxRD.READ) can be changed
to an arbitrary value.
When the channel is enabled, the reception will start from the write pointer and continue to the read
pointer.
GRIP, Sep 2018, Version 2018.3 547 www.cobham.com/gaisler

GRLIB IP Core

44.5.6 AMBA AHB error

An AHB error response occurring on the AMBA AHB bus while data is being stored will result in an
RxError interrupt.
If the FifoCONF.ABORT bit is set to 0b, the channel causing the AHB error will retry to store the
received data till successful
If the FifoCONF.ABORT bit is set to 1b, the channel causing the AHB error will be disabled
(FifoRxCTRL.ENABLE is cleared automatically to 0b). The write pointer can be used to determine
which address caused the AHB error. The interface will not start any new read accesses to the FIFO.
Any ongoing FIFO access will be completed and the data will be stored in the local receive buffer.
The FifoRxSTAT.ONGOING bit will be cleared. When the receive channel is re-enabled, the recep-
tion and storage of data will resume at the position where it was disabled, without losing any data.

44.5.7 Enable and disable

When an enabled receive channel is disabled (FifoRxCTRL.ENABLE=0b), any ongoing data storage
on the AHB bus will not be aborted, and no new storage will be started. If the data is stored success-
fully, the write pointer (FifoRxWR.WRITE) is automatically incremented. Any associated interrupts
will be generated. The interface will not start any new read accesses to the FIFO. Any ongoing FIFO
access will be completed.
The channel can be re-enabled again without the need to re-configure the address, size and pointers.
No data reception is performed while the channel is not enabled.
The progress of the any ongoing access can be observed via the FifoRxSTAT.ONGOING bit. Note
that the there might be data left in the local store-buffer in the FIFO controller. This can be observed
via the FifoRxSTAT.RxByteCntr field. The data will not be lost if the channel is not reconfigured
before re-enabled.
To empty this data from the local store-buffer to the external memory, the channel needs to be ren-
abled. By setting the FifoRxIRQ.IRQ field to match the value of the FifoRxWR.WRITE field plus the
value of the FifoRxSTAT.RxByteCntr field, an emptying to the external memory is forced of any data
temporarily stored in the local store-buffer. Note however that additional data could be received in the
local store-buffer when the channel is re-enabled.
The FifoRxSTAT.ONGOING must be 0b before the channel can be re-configured safely (i.e. changing
address, size or read/write pointers).

44.5.8 Interrupts

During reception several interrupts can be generated:
• RxFull: Successful reception of all data possible to store in buffer
• RxIrq: Successful reception of a predefined number of data
• RxError: AHB access error during reception
• RxParity: Parity error during reception
The RxFull and RxIrq interrupts are only generated as the result of a successful data reception, after
the FifoRxWR.WRITE pointer has been incremented.

44.6 Operation

44.6.1 Global reset and enable

When the FifoCTRL.RESET bit is set to 1b, a reset of the core is performed. The reset clears all the
register fields to their default values. Any ongoing data transfers will be aborted.
GRIP, Sep 2018, Version 2018.3 548 www.cobham.com/gaisler

GRLIB IP Core

44.6.2 Interrupt

Seven interrupts are implemented by the FIFO interface:
Index: Name:Description:

0 TxIrq Successful transmission of block of data
1 TxEmptyCircular transmission buffer empty
2 TxErrorAMBA AHB access error during transmission
3 RxIrq Successful reception of block of data
4 RxFullCircular reception buffer full
5 RxErrorAMBA AHB access error during reception
6 RxParityParity error during reception

The interrupts are configured by means of the pirq VHDL generic. The setting of the singleirq VHDL
generic results in a single interrupt output, instead of multiple, configured by the means of the pirq
VHDL generic, and enables the read and write of the interrupt registers. When multiple interrupts are
implemented, each interrupt is generated as a one system clock period long active high output pulse.
When a single interrupt is implemented, it is generated as an active high level output.

44.6.3 Reset

After a reset the values of the output signals are as follows:
Signal: Value after reset:
FIFOO.WEnde-asserted
FIFOO.REnde-asserted

44.6.4 Asynchronous interfaces

The following input signals are synchronized to Clk:
• FIFOI.EFn
• FIFOI.FFn
• FIFOI.HFn
GRIP, Sep 2018, Version 2018.3 549 www.cobham.com/gaisler

GRLIB IP Core

44.7 Registers

The core is programmed through registers mapped into APB address space.

44.7.1 Configuration Register [FifoCONF]

Table 642.Configuration Register

Field: Description:
6: ABORT Abort transfer on AHB ERROR
5-4: DW Data width:

00b = none
01b = 8 bitFIFOO.Dout[7:0],

FIFOI.Din[7:0]
10b = 16 bitFIFOO.Dout[15:0]

FIFOI.Din[15:0]

Table 641.GRFIFO registers

APB address offset Register
0x000 Configuration Register
0x004 Status Register
0x008 Control Register
0x020 Transmit Channel Control Register
0x024 Transmit Channel Status Register
0x028 Transmit Channel Address Register
0x02C Transmit Channel Size Register
0x030 Transmit Channel Write Register
0x034 Transmit Channel Read Register
0x038 Transmit Channel Interrupt Register
0x040 Receive Channel Control Register
0x044 Receive Channel Status Register
0x048 Receive Channel Address Register
0x04C Receive Channel Size Register
0x050 Receive Channel Write Register
0x054 Receive Channel Read Register
0x058 Receive Channel Interrupt Register
0x060 Data Input Register
0x064 Data Output Register
0x068 Data Direction Register
0x100 Pending Interrupt Masked Status Register
0x104 Pending Interrupt Masked Register
0x108 Pending Interrupt Status Register
0x10C Pending Interrupt Register
0x110 Interrupt Mask Register
0x114 Pending Interrupt Clear Register

31 30 29 28 27 26 25 24 7 6 5 4 3 2 0
RESERVED Abo

rt
DW Par-

ity
WS

0 0 0 0
rw rw rw rw
GRIP, Sep 2018, Version 2018.3 550 www.cobham.com/gaisler

GRLIB IP Core

11b = spare/none

3: PARITY Parity type:
0b = even
1b = odd

2-0: WS Number of wait states, 0 to 7

Note that the transmit or receive channel active during the AMBA AHB error is disabled if the
ABORT bit is set to 1b. Note that all accesses on the affected channel will be disabled after an AMBA
AHB error occurs while the ABORT bit is set to 1b. The accesses will be disabled until the affected
channel is re-enabled setting the FifoTxCTRL.ENABLE or FifoRxCTRL.ENABLE bit, respectively.
Note that a wait states corresponds to an additional clock cycle added to the period when the read or
write strobe is asserted. The default asserted width is one clock period for the read or write strobe
when WS=0. Note that an idle gap of one clock cycle is always inserted between read and write
accesses, with neither the read nor the write strobe being asserted.
Note that an additional gap of one clock cycle with the read or write strobe de-asserted is inserted
between two accesses when WS is equal to or larger than 100b.

44.7.2 Status Register [FifoSTAT]

Table 643.Status register

5: SingleIrq Single interrupt output and interrupt registers when set to 1
*Reflect, VHDL generic /singleirq/

44.7.3 Control Register [FifoCTRL]

Table 644.Control Register

1: RESET Reset complete FIFO interface, all registers

44.7.4 Transmit Channel Control Register [FifoTxCTRL]

Table 645.Transmit Channel Control Register

0: ENABLE Enable channel

All bits are cleared to 0 at reset.

31 6 5 4 0
- SingleIrq -

*
r

31 2 1 0
Rese
t
0
w

31 1 0
Ena
ble
0
rw
GRIP, Sep 2018, Version 2018.3 551 www.cobham.com/gaisler

GRLIB IP Core

Note that in the case of an AHB bus error during an access while fetching transmit data, and the Fifo-
Conf.ABORT bit is 1b, then the ENABLE bit will be reset automatically.
At the time the ENABLE is cleared to 0b, any ongoing data writes to the FIFO are not aborted.

44.7.5 Transmit Channel Status Register [FifoTxSTAT]

Table 646.Transmit Channel Status Register

6: TxOnGoingAccess ongoing
4: TxIrq Successful transmission of block of data. cleared on read
3: TxEmpty Transmission buffer has been emptied. cleared on read
2: TxError AMB AHB access error during transmission. cleared on read
1: FF FIFO Full Flag
0: HF FIFO Half-Full Flag

44.7.6 Transmit Channel Address Register [FifoTxADDR]

Table 647.Transmit Channel Address Register

31-10: ADDR Base address for circular buffer

44.7.7 Transmit Channel Size Register [FifoTxSIZE]

Table 648.Transmit Channel Size Register

16-6: SIZE Size of circular buffer, in number of 64 bytes block

Valid SIZE values are 0, and between 1 and 1024. Note that the resulting behavior of invalid SIZE
values is undefined.
Note that only SIZE*64-4 bytes can be stored simultaneously in the buffer. This is to simplify wrap-
around condition checking.
The width of the SIZE field is configurable indirectly by means of the VHDL generic (ptrwidth)
which sets the width of the read and write data pointers. In the above example VHDL generic ptr-
width=16, making the SIZE field 11 bits wide.

32 7 6 5 4 3 2 1 0
TxO
nGo
ing

R TxIr
q

TxE
mpt
y

TxE
rror

FF HF

31 10 9 0
ADDR
0
rw

31 17 16 6 5 0
SIZE
0
rw
GRIP, Sep 2018, Version 2018.3 552 www.cobham.com/gaisler

GRLIB IP Core

44.7.8 Transmit Channel Write Register [FifoTxWR]

Table 649.Transmit Channel Write Register

15-0: WRITE Pointer to last written byte + 1

The WRITE field is written to in order to initiate a transfer, indicating the position +1 of the last byte
to transmit.
Note that it is not possible to fill the buffer. There is always one word position in buffer unused. Soft-
ware is responsible for not over-writing the buffer on wrap around (i.e. setting WRITE=READ).
Note that the LSB may be ignored for 16-bit wide FIFO devices.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).

44.7.9 Transmit Channel Read Register [FifoTxRD]

Table 650.Transmit Channel Read Register

15-0: READ Pointer to last read byte + 1

The READ field is written to automatically when a transfer has been completed successfully, indicat-
ing the position +1 of the last byte transmitted.
Note that the READ field can be used to read out the progress of a transfer.
Note that the READ field can be written to in order to set up the starting point of a transfer. This
should only be done while the transmit channel is not enabled.
Note that the READ field can be automatically incremented even if the transmit channel has been dis-
abled, since the last requested transfer is not aborted until completed.
Note that the LSB may be ignored for 16-bit wide FIFO devices.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).

44.7.10 Transmit Channel Interrupt Register [FifoTxIRQ]

Table 651.Transmit Channel Interrupt Register

15-0: IRQ Pointer+1 to a byte address from which the read of transmitted data shall result in an interrupt

Note that this indicates that a programmed amount of data has been sent. Note that the LSB may be
ignored for 16-bit wide FIFO devices.
The field is implemented as relative to the buffer base address (scaled with the SIZE field).

31 16 15 0
WRITE
0
rw

31 16 15 0
READ
0
rw

31 16 15 0
IRQ
0
rw
GRIP, Sep 2018, Version 2018.3 553 www.cobham.com/gaisler

GRLIB IP Core

44.7.11 Receive Channel Control Register [FifoRxCTRL]

Table 652.Receive Channel Control Register

0: ENABLE Enable channel

Note that in the case of an AHB bus error during an access while storing receive data, and the Fifo-
Conf.ABORT bit is 1b, then the ENABLE bit will be reset automatically.
At the time the ENABLE is cleared to 0b, any ongoing data reads from the FIFO are not aborted.

44.7.12 Receive Channel Status Register [FifoRxSTAT]

Table 653.Receive Channel Status Register

10-8: RxByteCntrNumber of bytes in local buffer
6: RxOnGoingAccess ongoing
5: RxParity Parity error during reception. Cleared on error.
4: RxIrq Successful reception of block of data. Cleared on error.
3: RxFull Reception buffer has been filled. Cleared on error.
2: RxError AMB AHB access error during reception. Cleared on error.
1: EF FIFO Empty Flag
0: HF FIFO Half-Full Flag

The circular buffer is considered as full when there are two words or less left in the buffer.

44.7.13 Receive Channel Address Register [FifoRxADDR]

Table 654.Receive Channel Address Register

31-10: ADDR Base address for circular buffer

31 2 1 0
Ena
ble
0
rw

31 11 10 8 7 6 5 4 3 2 1 0
RESERVED RxByteCntr R RxO

nGo
ing

RxP
arity

RxIr
q

RxF
ull

RxE
rror

EF HF

0 0 0 0 0 0 1 1
r r r* r* r* r* r r

31 10 9 0
ADDR
0
rw
GRIP, Sep 2018, Version 2018.3 554 www.cobham.com/gaisler

GRLIB IP Core

44.7.14 Receive Channel Size Register [FifoRxSIZE]

Table 655.Receive Channel Size Register

16-6: SIZE Size of circular buffer, in number of 64 byte blocks

Valid SIZE values are 0, and between 1 and 1024. Note that the resulting behavior of invalid SIZE
values is undefined.
Note that only SIZE*64-8 bytes can be stored simultaneously in the buffer. This is to simplify wrap-
around condition checking.
The width of the SIZE field is configurable indirectly by means of the VHDL generic (ptrwidth)
which sets the width of the read and write data pointers. In the above example VHDL generic ptr-
width=16, making the SIZE field 11 bits wide.

44.7.15 Receive Channel Write Register [FifoRxWR]

Table 656.Receive Channel Write Register

15-0: WRITE Pointer to last written byte +1

The field is implemented as relative to the buffer base address (scaled with SIZE field).
The WRITE field is written to automatically when a transfer has been completed successfully, indicat-
ing the position +1 of the last byte received.
Note that the WRITE field can be used to read out the progress of a transfer.
Note that the WRITE field can be written to in order to set up the starting point of a transfer. This
should only be done while the transmit channel is not enabled.
Note that the LSB may be ignored for 16-bit wide FIFO devices.

44.7.16 Receive Channel Read Register [FifoRxRD]

Table 657.Receive Channel Read Register

15-0: READ Pointer to last read byte +1

The field is implemented as relative to the buffer base address (scaled with SIZE field).
The READ field is written to in order to release the receive buffer, indicating the position +1 of the
last byte that has been read out.

31 17 16 6 5 0
SIZE
0
rw

31 16 15 0
WRITE
0
rw

31 16 15 0
READ
0
rw
GRIP, Sep 2018, Version 2018.3 555 www.cobham.com/gaisler

GRLIB IP Core

Note that it is not possible to fill the buffer. There is always one word position unused in the buffer.
Software is responsible for not over-reading the buffer on wrap around (i.e. setting WRITE=READ).
Note that the LSB may be ignored for 16-bit wide FIFO devices

44.7.17 Receive Channel Interrupt Register [FifoRxIRQ]

Table 658.Receive Channel Interrupt Register

15-0: IRQ Pointer+1 to a byte address to which the write of received data shall result in an interrupt

Note that this indicates that a programmed amount of data has been received.
The field is implemented as relative to the buffer base address (scaled with SIZE field).
Note that the LSB may be ignored for 16-bit wide FIFO devices.
Note that by setting the IRQ field to match the value of the Receive Channel Write Register.WRITE
field plus the value of the Receive Channel Status Register.RxByteCntr field, an emptying to the
external memory is forced of any data temporarily stored in the local buffer.

44.7.18 Data Input Register [FifoDIN]

Table 659.Data Input Register

15-0: DIN Input data FIFOI.Din[15:0]

Note that only the part of FIFOI.Din[15:0] not used by the FIFO can be used as general purpose input
output, see FifoCONF.DW.
Note that only bits dwidth-1 to 0 are implemented.

44.7.19 Data Output Register [FifoDOUT]

Table 660.Data Output Register

15-0: DOUT Output data FIFOO.Dout[15:0]

Note that only the part of FIFOO.Dout[15:0] not used by the FIFO can be used as general purpose
input output, see FifoCONF.DW.
Note that only bits dwidth-1 to 0 are implemented.

31 16 15 0
IRQ
0
rw

31 16 15 0
DIN
0
r

31 16 15 0
DOUT
0
rw
GRIP, Sep 2018, Version 2018.3 556 www.cobham.com/gaisler

GRLIB IP Core

44.7.20 Data Register [FifoDDIR]

Table 661.Data Direction Register

15-0: DDIR Direction: FIFOO.Dout[15:0]
0b = input = high impedance,
1b = output = driven

Note that only the part of FIFOO.Dout[15:0] not used by the FIFO can be used as general purpose
input output, see FifoCONF.DW.
Note that only bits dwidth-1 to 0 are implemented.

44.7.21 Interrupt registers

The interrupt registers give complete freedom to the software, by providing means to mask interrupts,
clear interrupts, force interrupts and read interrupt status.
When an interrupt occurs the corresponding bit in the Pending Interrupt Register is set. The normal
sequence to initialize and handle a module interrupt is:
• Set up the software interrupt-handler to accept an interrupt from the module.
• Read the Pending Interrupt Register to clear any spurious interrupts.
• Initialize the Interrupt Mask Register, unmasking each bit that should generate the module inter-

rupt.
• When an interrupt occurs, read the Pending Interrupt Status Register in the software interrupt-

handler to determine the causes of the interrupt.
• Handle the interrupt, taking into account all causes of the interrupt.
• Clear the handled interrupt using Pending Interrupt Clear Register.
Masking interrupts: After reset, all interrupt bits are masked, since the Interrupt Mask Register is zero.
To enable generation of a module interrupt for an interrupt bit, set the corresponding bit in the Inter-
rupt Mask Register.
Clearing interrupts: All bits of the Pending Interrupt Register are cleared when it is read or when the
Pending Interrupt Masked Register is read. Reading the Pending Interrupt Masked Register yields the
contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask Register.
Selected bits can be cleared by writing ones to the bits that shall be cleared to the Pending Interrupt
Clear Register.
Forcing interrupts: When the Pending Interrupt Register is written, the resulting value is the original
contents of the register logically OR-ed with the write data. This means that writing the register can
force (set) an interrupt bit, but never clear it.
Reading interrupt status: Reading the Pending Interrupt Status Register yields the same data as a read
of the Pending Interrupt Register, but without clearing the contents.
Reading interrupt status of unmasked bits: Reading the Pending Interrupt Masked Status Register
yields the contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask
Register, but without clearing the contents.

31 16 15 0
DDIR
0
rw
GRIP, Sep 2018, Version 2018.3 557 www.cobham.com/gaisler

GRLIB IP Core

The interrupt registers comprise the following:

6: RxParity Parity error during reception*
5: RxError AMBA AHB access error during reception*
4: RxFull Circular reception buffer full*
3: RxIrq Successful reception of block of data*
2: TxError AMBA AHB access error during transmission*
1: TxEmpty Circular transmission buffer empty*
0: TxIrq Successful transmission of block of data*

*See table 662.

44.8 Vendor and device identifiers

The module has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x035. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

44.9 Implementation

44.9.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

Table 662.Interrupt registers

Description Name Mode
Pending Interrupt Masked Status Register FifoPIMSR r
Pending Interrupt Masked Register FifoPIMR r
Pending Interrupt Status Register FifoPISR r
Pending Interrupt Register FifoPIR rw
Interrupt Mask Register FifoIMR rw
Pending Interrupt Clear Register FifoPICR w

Table 663.Interrupt registers template

31 7 6 5 4 3 2 1 0
R RxParity RxError RxFull RxIrq TxError TxEmpty TxIrq

0 0 0 0 0 0 0
* * * * * * *
GRIP, Sep 2018, Version 2018.3 558 www.cobham.com/gaisler

GRLIB IP Core

44.10 Configuration options

Table 664 shows the configuration options of the core (VHDL generics).

44.11 Signal descriptions

Table 665 shows the interface signals of the core (VHDL ports).

Table 664.Configuration options

Generic name Function Allowed range Default
hindex AHB master index. 0 - NAHBMST-1 0
pindex APB slave index 0 - NAPBSLV-1 0
paddr Addr field of the APB bar. 0 - 16#FFF# 0
pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#
pirq Interrupt line used by the GRFIFO. 0 - NAHBIRQ-1 0
dwidth Data width 16 16
ptrwidth Width of data pointers 16 - 16 16
singleirq Single interrupt output. A single interrupt is assigned to

the AMBA APB interrupt bus instead of multiple sepa-
rate ones. The single interrupt output is controlled by the
interrupt registers which are also enabled with this
VHDL generic.

0, 1 0

oepol Output enable polarity 0, 1 1

Table 665.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
AHBI * Input AMB master input signals -
AHBO * Output AHB master output signals -
FIFOI DIN[31:0] Input Data input -

PIN[3:0] Parity input -
EFN Empty flag Low
FFN Full flag Low
HFN Half flag Low

FIFOO DOUT[31:0] Output Data output -
DEN[31:0] Data output enable -
POUT[3:0] Parity output -
PEN[3:0] Parity output enable -
WEN Write enable Low
REN Read enable Low

* see GRLIB IP Library User’s Manual
GRIP, Sep 2018, Version 2018.3 559 www.cobham.com/gaisler

GRLIB IP Core

44.12 Signal definitions and reset values

The signals and their reset values are described in table 666.

44.13 Timing

The timing waveforms and timing parameters are shown in figure 130 and are defined in table 667.

Table 666.Signal definitions and reset values

Signal name Type Function Active Reset value
d[] Input/Output Data High Tri-state
p[] Input/Output Parity High Tri-state
wen Output Write Enable - Logical 1
ren Output Read Enable - Logical 1
efn Input Empty Flag - -
ffn Input Full Flag - -
hfn Input Half Flag - -

Table 667.Timing parameters

Name Parameter Reference edge Min Max Unit
tGRFIFO0 clock to output delay rising clk edge - TBD ns

tGRFIFO1 clock to non-tri-state delay rising clk edge TBD - ns

tGRFIFO2 clock to output delay rising clk edge - TBD ns

tGRFIFO3 clock to tri-state delay rising clk edge - TBD ns

tGRFIFO4 input to clock setup rising clk edge TBD - ns

tGRIFO5 input from clock hold rising clk edge TBD - ns

tGRIFO6 input to clock setup rising clk edge - TBD ns

tGRIFO7 input from clock hold rising clk edge TBD - ns

tGRIFO8 input assertion duration - TBD - clk periods

Figure 130. Timing waveforms

clk

d[], p[]
(output)

ren

ffn, efn, hfn

tGRFIFO0
wen

d[], p[]
(input)

tGRFIFO0

tGRFIFO0 tGRFIFO0

tGRFIFO1 tGRFIFO2 tGRFIFO3

tGRFIFO4

tGRFIFO5tGRFIFO6 tGRFIFO7

tGRFIFO8
GRIP, Sep 2018, Version 2018.3 560 www.cobham.com/gaisler

GRLIB IP Core

44.14 Library dependencies

Table 668 shows the libraries used when instantiating the core (VHDL libraries).

44.15 Instantiation

This example shows how the core can be instantiated.

grfifo0: grfifo
 generic map (
 hindex => GRFIFO_HINDEX,
 pindex => GRFIFO_PINDEX,
 paddr => GRFIFO_PADDR,
 pmask => 16#fff#,
 pirq => CFG_GRFIFO_IRQ,
 dwidth => CFG_GRFIFO_WIDTH,
 ptrwidth => CFG_GRFIFO_ABITS,
 singleirq => CFG_GRFIFO_SINGLE,
 oepol => 1)
 port map (
 rstn => rstn,
 clk => clk,
 apbi => apbi,
 apbo => apbo(GRFIFO_PINDEX),
 ahbi => ahbi,
 ahbo => ahbo(GRFIFO_HINDEX),
 fifoi => fifoi,
 fifoo => fifoo);

Table 668.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GRLIB AMBA Signals, component DMA2AHB definitions
GAISLER MISC Signals, component Component declarations, signals.
GRIP, Sep 2018, Version 2018.3 561 www.cobham.com/gaisler

GRLIB IP Core

45 GRADCDAC - ADC / DAC Interface

45.1 Overview

The block diagram shows a possible partitioning of the combined analogue-to-digital converter
(ADC) and digital-to-analogue converter (DAC) interface.
The combined analogue-to-digital converter (ADC) and digital-to-analogue converter (DAC) inter-
face is assumed to operate in an AMBA bus system where an APB bus is present. The AMBA APB
bus is used for data access, control and status handling.
The ADC/DAC interface provides a combined signal interface to parallel ADC and DAC devices.
The two interfaces are merged both at the pin/pad level as well as at the interface towards the AMBA
bus. The interface supports simultaneously one ADC device and one DAC device in parallel.
Address and data signals unused by the ADC and the DAC can be used for general purpose input out-
put, providing 0, 8, 16 or 24 channels.
The ADC interface supports 8 and 16 bit data widths. It provides chip select, read/convert and ready
signals. The timing is programmable. It also provides an 8-bit address output. The ADC conversion
can be initiated either via the AMBA interface or by internal or external triggers. An interrupt is gen-
erated when a conversion is completed.
The DAC interface supports 8 and 16 bit data widths. It provides a write strobe signal. The timing is
programmable. It also provides an 8-bit address output. The DAC conversion is initiated via the
AMBA interface. An interrupt is generated when a conversion is completed.

45.1.1 Function

The core implements the following functions:
• ADC interface conversion:
• ready feed-back, or
• timed open-loop
• DAC interface conversion:
• timed open-loop
• General purpose input output:
• unused data bus, and

Figure 131. Block diagram and usage example

GRADCDAC

AMBA
APB
Slave

AMBA Layer Control

A
M

B
A

 A
P

B

D[15:0]

AD667
ADC FSM
DAC FSM

GPIO

AD774

A[7:0]

WR*

CS*

R/C*

STS

TRIG*

DB[11:0]

A[3:0]

CS*

DB[11:0]

A0

CS*

R/C*

STS
GRIP, Sep 2018, Version 2018.3 562 www.cobham.com/gaisler

GRLIB IP Core

• unused address bus
• Status and monitoring:
• on-going conversion
• completed conversion
• timed-out conversion

Note that it is not possible to perform ADC and DAC conversions simultaneously. On only one con-
version can be performed at a time.

45.1.2 Interfaces

The core provides the following external and internal interfaces:
• Combined ADC/DAC interface
• programmable timing
• programmable signal polarity
• programmable conversion modes
• AMBA APB slave interface

The ADC interface is intended for amongst others the following devices:
Name:Width:Type:
AD574 12-bit R/C*, CE, CS*, RDY*, tri-state
AD674 12-bit R/C*, CE, CS*, RDY*, tri-state
AD774 12-bit R/C*, CE, CS*, RDY*, tri-state
AD670 8-bit R/W*, CE*, CS*, RDY, tri-state
AD571 10-bit Blank/Convert*, RDY*, tri-state
AD1671 12-bit Encode, RDY*, non-tri-state
LTC141414-bitConvert*, RDY, non-tri-state

The DAC interface is intended for amongst others the following devices:
 Name:Width:Type:

AD56110-bitParallel-Data-in-Analogue-out
AD56512-bitParallel-Data-in-Analogue-out
AD66712-bitParallel-Data-in-Analogue-out, CS*
AD76712-bitParallel-Data-in-Analogue-out, CS*
DAC08 8-bit Parallel-Data-in-Analogue-out

45.2 Operation

45.2.1 Interfaces

The internal interface on the on-chip bus towards the core is a common AMBA APB slave for data
access, configuration and status monitoring, used by both the ADC interface and the DAC interface.
GRIP, Sep 2018, Version 2018.3 563 www.cobham.com/gaisler

GRLIB IP Core

The ADC address output and the DAC address output signals are shared on the external interface.
The address signals are possible to use as general purpose input output channels. This is only realized
when the address signals are not used by either ADC or DAC.
The ADC data input and the DAC data output signals are shared on the external interface. The data
input and output signals are possible to use as general purpose input output channels. This is only
realized when the data signals are not used by either ADC or DAC.
Each general purpose input output channel shall be individually programmed as input or output. This
applies to both the address bus and the data bus. The default reset configuration for each general pur-
pose input output channel is as input. The default reset value each general purpose input output chan-
nel is logical zero.
Note that protection toward spurious pulse commands during power up shall be mitigated as far as
possible by means of I/O cell selection from the target technology.

45.2.2 Analogue to digital conversion

The ADC interface supports 8 and 16 bit wide input data.
The ADC interface provides an 8-bit address output, shared with the DAC interface. Note that the
address timing is independent of the acquisition timing.
The ADC interface shall provide the following control signals:
• Chip Select
• Read/Convert
• Ready
The timing of the control signals is made up of two phases:
• Start Conversion
• Read Result
The Start Conversion phase is initiated by one of the following sources, provided that no other con-
version is ongoing:
• Event on one of three separate trigger inputs
• Write access to the AMBA APB slave interface
Note that the trigger inputs can be connected to internal or external sources to the ASIC incorporating
the core. Note that any of the trigger inputs can be connected to a timer to facilitate cyclic acquisition.
The selection of the trigger source is programmable. The trigger inputs is programmable in terms of:
Rising edge or Falling edge. Triggering events are ignored if ADC or DAC conversion is in progress.
The transition between the two phases is controlled by the Ready signal. The Ready input signal is
programmable in terms of: Rising edge or Falling edge. The Ready input signaling is protected by
means of a programmable time-out period, to assure that every conversion terminates. It is also possi-
ble to perform an ADC conversion without the use of the Ready signal, by means of a programmable
conversion time duration. This can be seen as an open-loop conversion.
The Chip Select output signal is programmable in terms of:
• Polarity
• Number of assertions during a conversion, either
• Pulsed once during Start Conversion phase only,
• Pulsed once during Start Conversion phase and once during Read Result phase, or
• Asserted at the beginning of the Start Conversion phase and de-asserted at the end of the Read

Result phase
GRIP, Sep 2018, Version 2018.3 564 www.cobham.com/gaisler

GRLIB IP Core

The duration of the asserted period is programmable, in terms of system clock periods, for the Chip
Select signal when pulsed in either of two phases.
The Read/Convert signal is de-asserted during the Start Conversion phase, and asserted during the
Read Result phase. The Read/Convert output signal is programmable in terms of: Polarity. The setup
timing from Read/Convert signal being asserted till the Chip Select signal is asserted is programma-
ble, in terms of system clock periods. Note that the programming of Chip Select and Read/Convert
timing is implemented as a common parameter.
At the end of the Read Result phase, an interrupt is generated, indicating that data is ready for readout
via the AMBA APB slave interface. The status of an on-going conversion is possible to read out via
the AMBA APB slave interface. The result of a conversion is read out via the AMBA APB slave
interface. Note that this is independent of what trigger started the conversion.
An ADC conversion is non-interruptible. It is possible to perform at least 1000 conversions per sec-
ond.

45.2.3 Digital to analogue conversion

The DAC interface supports 8 and 16 bit wide output data. The data output signal is driven during the
conversion and is placed in high impedance state after the conversion.
The DAC interface provides an 8-bit address output, shared with the ADC interface. Note that the
address timing is independent of the acquisition timing.

CS

RC

Trig

Rdy

Data

Addr

Clk

WS WS

Start conversion

WS WS

Read result

Sample dataSettings: RCPOL=0
CSPOL=0
RDYPOL=1
TRIGPOL=1
RDYMODE=1
CSMODE=00
ADCWS=0

Figure 132. Analogue to digital conversion waveform, 0 wait states (WS)
GRIP, Sep 2018, Version 2018.3 565 www.cobham.com/gaisler

GRLIB IP Core

The DAC interface provides the following control signal: Write Strobe. Note that the Write Strobe
signal can also be used as a chip select signal. The Write Strobe output signal is programmable in
terms of: Polarity. The Write Strobe signal is asserted during the conversion. The duration of the
asserted period of the Write Strobe is programmable in terms of system clock periods.
At the end the conversion, an interrupt is generated. The status of an on-going conversion is possible
to read out via the AMBA APB slave interface. A DAC conversion is non-interruptible.

45.3 Operation

45.3.1 Interrupt

Two interrupts are implemented by the ADC/DAC interface:
Index:Name:Description:
0 ADC ADC conversion ready
1 DAC DAC conversion ready

The interrupts are configured by means of the pirq VHDL generic.

45.3.2 Reset

After a reset the values of the output signals are as follows:
Signal:Value after reset:
ADO.Aout[7:0]de-asserted
ADO.Aen[7:0]de-asserted
ADO.Dout[15:0]de-asserted
ADO.Den[15:0]de-asserted
ADO.WRde-asserted (logical one)
ADO.CSde-asserted (logical one)
ADO.RCde-asserted (logical one)

WR

Data

Addr

Clk

WS WS

Conversion

Settings: WRPOL=0
DACWS=0

Figure 133. Digital to analogue conversion waveform, 0 wait states (WS)

WS
GRIP, Sep 2018, Version 2018.3 566 www.cobham.com/gaisler

GRLIB IP Core

45.3.3 Asynchronous interfaces

The following input signals are synchronized to Clk:
• ADI.Ain[7:0]
• ADI.Din[15:0]
• ADI.RDY
• ADI.TRIG[2:0]

45.4 Registers

The core is programmed through registers mapped into APB address space.

45.4.1 Configuration Register [ADCONF]

Table 670.Configuration register

23-19: DACWS Number of DAC wait states, 0 to 31 [5 bits]
18: WRPOL Polarity of DAC write strobe:

0b = active low
1b = active high

17-16: DACDW DAC data width
00b = none
01b = 8 bit ADO.Dout[7:0]
10b = 16 bit ADO.Dout[15:0]
11b = none/spare

15-11: ADCWS Number of ADC wait states, 0 to 31 [5 bits]

Table 669.GRADCDAC registers

APB address offset Register
0x000 Configuration Register
0x004 Status Register
0x010 ADC Data Input Register
0x014 DAC Data Output Register
0x020 Address Input Register
0x024 Address Output Register
0x028 Address Direction Register
0x030 Data Input Register
0x034 Data Output Register
0x038 Data Direction Register

31 24 23 19 18 17 16
DACWS WR

POL
DACDW

0 0 0
rw rw rw

15 11 10 9 8 7 6 5 4 3 2 1 0
ADCWS RCP

OL
CSMODE CSP

OL
RD
YM
OD
E

RD
YP
OL

TRI
GP
OL

TRIG-
MODE

ADCDW

0 0 0 0 0 0 0 0 0
rw rw rw rw rw rw rw rw rw
GRIP, Sep 2018, Version 2018.3 567 www.cobham.com/gaisler

GRLIB IP Core

10: RCPOL Polarity of ADC read convert:

0b = active low read
1b = active high read

9-8: CSMODE Mode of ADC chip select:
00b = asserted during conversion and read phases
01b = asserted during conversion phase
10b = asserted during read phase
11b = asserted continuously during both phases

7: CSPOL Polarity of ADC chip select:0b = active low
1b = active high

6: RDYMODE:Mode of ADC ready:
0b = unused, i.e. open-loop
1b = used, with time-out

5: RDYPOL Polarity of ADC ready:
0b = falling edge
1b = rising edge

4: TRIGPOL Polarity of ADC triggers:
0b = falling edge
1b = rising edge

3-2: TRIGMODEADC trigger source:
00b = none
01b = ADI.TRIG[0]
10b = ADI.TRIG[1]
11b = ADI.TRIG[2]

1-0: ADCDW ADC data width:
00b = none
01b = 8 bit ADI.Din[7:0]
10b = 16 bit ADI.Din[15:0]
11b = none/spare

The ADCDW field defines what part of ADI.Din[15:0] is read by the ADC.
The DACDW field defines what part of ADO.Dout[15:0] is written by the DAC.
Parts of the data input/output signals used neither by ADC nor by DAC are available for the general
purpose input output functionality.
Note that an ADC conversion can be initiated by means of a write access via the AMBA APB slave
interface, thus not requiring an explicit ADC trigger source setting.

The ADCONF.ADCWS field defines the number of system clock periods, ranging from 1 to 32, for
the following timing relationships between the ADC control signals:
• ADO.RC stable before ADO.CS period
• ADO.CS asserted period, when pulsed
• ADO.TRIG[2:0] event until ADO.CS asserted period
• Time-out period for ADO.RDY: 2048 * (1+ADCONF.ADCWS)
• Open-loop conversion timing: 512 * (1+ADCONF.ADCWS)

The ADCONF.DACWS field defines the number of system clock periods, ranging from 1 to 32, for
the following timing relationships between the DAC control signals:
• ADO.Dout[15:0] stable before ADO.WR period
• ADO.WR asserted period
• ADO.Dout[15:0] stable after ADO.WR period
GRIP, Sep 2018, Version 2018.3 568 www.cobham.com/gaisler

GRLIB IP Core

45.4.2 Status Register [ADSTAT]

Table 671.Status register

6: DACNO DAC conversion request rejected (due to ongoing DAC or ADC conversion). Cleared on
rest.

5: DACRDY DAC conversion completed. Cleared on rest.
4: DACON DAC conversion ongoing
3: ADCTO ADC conversion timeout. Cleared on rest.
2: ADCNO ADC conversion request rejected (due to ongoing ADC or DAC conversion). Cleared on

rest.
1: ADCRDY ADC conversion completed. Cleared on rest.
0: ADCON ADC conversion ongoing

Note that the status bits can be used for monitoring the progress of a conversion or to ascertain that the
interface is free for usage.

45.4.3 ADC Data Input Register [ADIN

Table 672.ADC Data Input Register

]

15-0: ADCIN ADC input data A write access to the register initiates an analogue to digital
conversion, provided that no other ADC or DAC conversion is ongoing (otherwise the request
is rejected). A read access that occurs before an ADC conversion has been completed returns
the result from a previous conversion. ADI.Din[15:0]

Note that any data can be written and that it cannot be read back, since not relevant to the initiation of the conversion.
Note that only the part of ADI.Din[15:0] that is specified by means of bit ADCONF.ADCDW is used
by the ADC. The rest of the bits are read as zeros.
Note that only bits dwidth-1 to 0 are implemented.

45.4.4 DAC Data Output Register [ADOUT]

Table 673.DAC Data Output Register

15-0: DACOUT DAC output data A write access to the register initiates a digital to analogue
conversion, provided that no other DAC or ADC conversion is ongoing (otherwise the request
is rejected). ADO.Dout[15:0]

31 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RESERVED DA

CN
O

DA
CR
DY

DA
CO
N

AD
CTO

AD
CN
O

AD
CR
DY

AD
CO
N

0 0 0 0 0 0 0
r* r* r r* r* r* r

31 16 15 0
ADCIN
0
rw*

31 16 15 0
DACOUT
0
rw*
GRIP, Sep 2018, Version 2018.3 569 www.cobham.com/gaisler

GRLIB IP Core

Note that only the part of ADO.Dout[15:0] that is specified by means of ADCONF.DACDW is driven
by the DAC. The rest of the bits are not driven by the DAC during a conversion.
Note that only the part of ADO.Dout[15:0] which is specified by means of ADCONF.DACDW can be
read back, whilst the rest of the bits are read as zeros.
Note that only bits dwidth-1 to 0 are implemented.

45.4.5 Address Input Register [ADAIN]

Table 674.Address Input Register

7-0: AIN Input address ADI.Ain[7:0]

Note that only bits awidth-1 to 0 are implemented.

45.4.6 Address Output Register [ADAOUT]

Table 675.Address Output Register

7-0: AOUT Output address ADO.Aout[7:0]

Note that only bits awidth-1 to 0 are implemented.

45.4.7 Address Direction Register [ADADIR]

Table 676.Address Direction Register

7-0: ADIR Direction: ADO.Aout[7:0]
0b = input = high impedance,
1b = output = driven

Note that only bits awidth-1 to 0 are implemented.

31 8 7 0
AIN
0
r

31 8 7 0
AOUT
0
rw

31 8 7 0
ADIR
0
rw
GRIP, Sep 2018, Version 2018.3 570 www.cobham.com/gaisler

GRLIB IP Core

45.4.8 Data Input Register [ADDIN]

Table 677.Data Input Register

15-0: DIN Input data ADI.Din[15:0]

Note that only the part of ADI.Din[15:0] not used by the ADC can be used as general purpose input
output, see ADCONF.ADCDW.
Note that only bits dwidth-1 to 0 are implemented.

45.4.9 1Data Output Register [ADDOUT]

Table 678.Data Output Register

15-0: DOUT Output data ADO.Dout[15:0]

Note that only the part of ADO.Dout[15:0] neither used by the DAC nor the ADC can be used as gen-
eral purpose input output, see ADCONF.DACDW and ADCONF. ADCDW.
Note that only bits dwidth-1 to 0 are implemented.

45.4.10 Data Register [ADDDIR]

Table 679.Data Direction Register

15-0: DDIR Direction: ADO.Dout[15:0]
0b = input = high impedance,
1b = output = driven

Note that only the part of ADO.Dout[15:0] not used by the DAC can be used as general purpose input
output, see ADCONF.DACDW.
Note that only bits dwidth-1 to 0 are implemented.

45.5 Vendor and device identifiers

The module has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x036. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

31 16 15 0
DIN
0
r

31 16 15 0
DOUT
0
rw

31 16 15 0
DDIR
0
rw
GRIP, Sep 2018, Version 2018.3 571 www.cobham.com/gaisler

GRLIB IP Core

45.6 Implementation

45.6.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

45.7 Configuration options

Table 680 shows the configuration options of the core (VHDL generics).

45.8 Signal descriptions

Table 681 shows the interface signals of the core (VHDL ports).

Table 680.Configuration options

Generic Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0
paddr Addr field of the APB bar. 0 - 16#FFF# 0
pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#
pirq Interrupt line used by the GRADCDAC. 0 - NAHBIRQ-1 1
nchannel Number of input/outputs 1 - 32 24
npulse Number of pulses 1 - 32 8
invertpulse Invert pulse output when set 1 - 32 0
cntrwidth Pulse counter width 4 to 32 20
oepol Output enable polarity 0, 1 1

Table 681.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
ADI ADI.Ain[7:0] Input Common Address input -

ADI.Din[15:0] ADC Data input
ADI.RDY ADC Ready input
ADI.TRIG[2:0] ADC Trigger inputs

ADO ADO.Aout[7:0] Output Common Address output -
ADO.Aen[7:0] Common Address output enable
ADO.Dout[15:0] DAC Data output -
ADO.Den[15:0] DAC Data output enable
ADO.WRDAC Write Strobe
ADO.CSADC Chip Select
ADO.RCADC Read/Convert

* see GRLIB IP Library User’s Manual
Note that the VHDL generic oepol is used for configuring the logical level of ADO.Den and ADO.Aen while asserted.
GRIP, Sep 2018, Version 2018.3 572 www.cobham.com/gaisler

GRLIB IP Core

45.9 Signal definitions and reset values

The signals and their reset values are described in table 682.

45.10 Timing

The timing waveforms and timing parameters are shown in figure 134 and are defined in table 683.
Note that the input and output polarities of control and response signals are programmable. The fig-
ures shows operation where there are zero wait states. Note also that the address timing has no direct
correlation with the ADC and DAC accesses, since controlled by a separate set of registers.

Table 682.Signal definitions and reset values

Signal name Type Function Active Reset value
a[] Input/Output Address High Tri-state
d[] Input/Output Data High Tri-state
wr Output DAC Write Strobe - Logical 0
cs Output ADC Chip Select - Logical 0
rc Output ADC Read/Convert - Logical 0
rdy Input ADC Ready - -
trig[] Input ADC Trigger - -

Figure 134. Timing waveforms

tGRAD0

a[]

clk

tGRAD1

d[]
(output)

data[]
(input)

tGRAD0

rc

wr

trig[]

a[]

clk

cs

tGRAD2

tGRAD3

tGRAD2 tGRAD3

rdy

tGRAD1

tGRAD6 tGRAD7

tGRAD5

tGRAD1

tGRAD4

tGRAD7

tGRAD1

tGRAD1

tGRAD1

tGRAD6

tGRAD8 tGRAD8
GRIP, Sep 2018, Version 2018.3 573 www.cobham.com/gaisler

GRLIB IP Core
45.11 Library dependencies

Table 684 shows the libraries used when instantiating the core (VHDL libraries).

45.12 Instantiation

This example shows how the core can be instantiated.

TBD

Table 683.Timing parameters

Name Parameter Reference edge Min Max Unit
tGRAD0 a/d clock to output delay rising clk edge - TBD ns

tGRAD1 clock to output delay rising clk edge - TBD ns

tGRAD2 clock to a/d non-tri-state delay rising clk edge TBD - ns

tGRAD3 a/d clock to data tri-state delay rising clk edge - TBD ns

tGRAD4 a/d input to clock setup rising clk edge TBD - ns

tGRAD5 a/d input from clock hold rising clk edge TBD - ns

tGRAD6 input to clock setup rising clk edge - TBD ns

tGRAD7 input from clock hold rising clk edge TBD - ns

tGRAD8 input assertion duration - TBD - clk periods

Table 684.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER MISC Signals GRADCDAC component declaration
GRIP, Sep 2018, Version 2018.3 574 www.cobham.com/gaisler

GRLIB IP Core

46 GRFPU - High-performance IEEE-754 Floating-point unit

46.1 Overview

GRFPU is a high-performance FPU implementing floating-point operations as defined in the IEEE
Standard for Binary Floating-Point Arithmetic (IEEE-754) and the SPARC V8 standard (IEEE-1754).
Supported formats are single and double precision floating-point numbers. The advanced design com-
bines two execution units, a fully pipelined unit for execution of the most common FP operations and
a non-blocking unit for execution of divide and square-root operations.
The logical view of the GRFPU is shown in figure 135.

Figure 135. GRFPU Logical View

This document describes GRFPU from functional point of view. Chapter “Functional description”
gives details about GRFPU’s implementation of the IEEE-754 standard including FP formats, opera-
tions, opcodes, operation timing, rounding and exceptions. “Signals and timing” describes the
GRFPU interface and its signals. “GRFPU Control Unit” describes the software aspects of the
GRFPU integration into a LEON processor through the GRFPU Control Unit - GRFPC. For imple-
mentation details refer to the white paper, “GRFPU - High Performance IEEE-754 Floating-Point
Unit” (available at www.gaisler.com).

46.2 Functional description

46.2.1 Floating-point number formats

GRFPU handles floating-point numbers in single or double precision format as defined in the IEEE-
754 standard with exception for denormalized numbers. See section 46.2.5 for more information on
denormalized numbers.

46.2.2 FP operations

GRFPU supports four types of floating-point operations: arithmetic, compare, convert and move. The
operations implement all FP instructions specified by SPARC V8 instruction set, and most of the
operations defined in IEEE-754. All operations are summarized in table 685, with their opcodes, oper-
ands, results and exception codes. Throughputs and latencies and are shown in table 685.

op1

opid

flop

op2

start

 9

 8

64

64

rndmode

flushid

 2

 6

flush

res

idout

allow

exc

rdy

 3

 8

64

 6

cc 2

nonstd

Pipelined execution
unit

Iteration unit

GRFPU
clk

reset
GRIP, Sep 2018, Version 2018.3 575 www.cobham.com/gaisler

GRLIB IP Core

Arithmetic operations include addition, subtraction, multiplication, division and square-root. Each
arithmetic operation can be performed in single or double precision formats. Arithmetic operations
have one clock cycle throughput and a latency of four clock cycles, except for divide and square-root
operations, which have a throughput of 16 - 25 clock cycles and latency of 16 - 25 clock cycles (see

Table 685.: GRFPU operations

Operation OpCode[8:0] Op1 Op2 Result Exceptions Description
Arithmetic operations
FADDS
FADDD

001000001
001000010

SP
DP

SP
 DP

SP
DP

UNF, NV,
OF, UF, NX

Addition

FSUBS
FSUBD

001000101
001000110

SP
DP

SP
DP

SP
DP

UNF, NV,
OF, UF, NX

Subtraction

FMULS
FMULD
FSMULD

001001001
001001010
001101001

SP
DP
SP

SP
DP
SP

SP
DP
DP

UNF, NV,
OF, UF, NX
UNF, NV,
OF, UF, NX
UNF, NV,
OF, UF

Multiplication, FSMULD gives
exact double-precision product of
two single-precision operands.

FDIVS
FDIVD

001001101
001001110

SP
DP

SP
DP

SP
DP

UNF, NV,
OF, UF, NX,
DZ

Division

FSQRTS
FSQRTD

000101001
000101010

-
-

SP
DP

SP
DP

UNF, NV,
NX

Square-root

Conversion operations
FITOS
FITOD

011000100
011001000

- INT SP
DP

NX
-

Integer to floating-point conversion

FSTOI
FDTOI

011010001
011010010

- SP
DP

INT UNF, NV,
NX

Floating-point to integer conversion.
The result is rounded in round-to-
zero mode.

FSTOI_RND
FDTOI_RND

111010001
111010010

- SP
DP

INT UNF, NV,
NX

Floating-point to integer conversion.
Rounding according to RND input.

FSTOD
FDTOS

011001001
011000110

- SP
DP

DP
SP

UNF, NV
UNF, NV,
OF, UF, NX

Conversion between floating-point
formats

Comparison operations
FCMPS
FCMPD

001010001
001010010

SP
DP

SP
DP

CC NV Floating-point compare. Invalid
exception is generated if either oper-
and is a signaling NaN.

FCMPES
FCMPED

001010101
001010110

SP
DP

SP
DP

CC NV Floating point compare. Invalid
exception is generated if either oper-
and is a NaN (quiet or signaling).

Negate, Absolute value and Move
FABSS 000001001 - SP SP - Absolute value.
FNEGS 000000101 - SP SP - Negate.
FMOVS 000000001 SP SP - Move. Copies operand to result out-

put.
SP - single precision floating-point number
DP - double precision floating-point number
INT - 32 bit integer

CC - condition codes, see table 688
UNF, NV, OF, UF, NX - floating-point exceptions, see section 46.2.3
GRIP, Sep 2018, Version 2018.3 576 www.cobham.com/gaisler

GRLIB IP Core

table 686). Add, sub and multiply can be started on every clock cycle, providing high throughput for
these common operations. Divide and square-root operations have lower throughput and higher
latency due to complexity of the algorithms, but are executed in parallel with all other FP operations
in a non-blocking iteration unit. Out-of-order execution of operations with different latencies is easily
handled through the GRFPU interface by assigning an id to every operation which appears with the
result on the output once the operation is completed (see section 46.4).

Conversion operations execute in a pipelined execution unit and have throughput of one clock cycle
and latency of four clock cycles. Conversion operations provide conversion between different float-
ing-point numbers and between floating-point numbers and integers.
Comparison functions offering two different types of quiet Not-a-Numbers (QNaNs) handling are
provided. Move, negate and absolute value are also provided. These operations do not ever generate
unfinished exception (unfinished exception is never signaled since compare, negate, absolute value
and move handle denormalized numbers).

46.2.3 Exceptions

GRFPU detects all exceptions defined by the IEEE-754 standard. This includes detection of Invalid
Operation (NV), Overflow (OF), Underflow (UF), Division-by-Zero (DZ) and Inexact (NX) excep-
tion conditions. Generation of special results such as NaNs and infinity is also implemented. Over-
flow (OF) and underflow (UF) are detected before rounding. If an operation underflows the result is
flushed to zero (GRFPU does not support denormalized numbers or gradual underflow). A special
Unfinished exception (UNF) is signaled when one of the operands is a denormalized number which is
not handled by the arithmetic and conversion operations.

46.2.4 Rounding

All four rounding modes defined in the IEEE-754 standard are supported: round-to-nearest, round-to-
+inf, round-to--inf and round-to-zero.

46.2.5 Denormalized numbers

Denormalized numbers are not handled by the GRFPU arithmetic and conversion operations. A sys-
tem (microprocessor) with the GRFPU could emulate rare cases of operations on denormals in soft-
ware using non-FPU operations. A special Unfinished exception (UNF) is used to signal an arithmetic
or conversion operation on the denormalized numbers. Compare, move, negate and absolute value
operations can handle denormalized numbers and do not raise the unfinished exception. GRFPU does
not generate any denormalized numbers during arithmetic and conversion operations on normalized
numbers. If the infinitely precise result of an operation is a tiny number (smaller than minimum value
representable in normal format) the result is flushed to zero (with underflow and inexact flags set).

Table 686.: Throughput and latency

Operation Throughput Latency
FADDS, FADDD, FSUBS, FSUBD, FMULS, FMULD, FSMULD 1 4
FITOS, FITOD, FSTOI, FSTOI_RND, FDTOI, FDTOI_RND, FSTOD,
FDTOS

1 4

FCMPS, FCMPD, FCMPES, FCMPED 1 4
FDIVS 16 16
FDIVD 16.5 (15/18)* 16.5 (15/18)*
FSQRTS 24 24
FSQRTD 24.5 (23/26)* 24.5 (23/26)*
* Throughput and latency are data dependant with two possible cases with equal statistical possibility.
GRIP, Sep 2018, Version 2018.3 577 www.cobham.com/gaisler

GRLIB IP Core

46.2.6 Non-standard Mode

GRFPU can operate in a non-standard mode where all denormalized operands to arithmetic and con-
version operations are treated as (correctly signed) zeroes. Calculations are performed on zero oper-
ands instead of the denormalized numbers obeying all rules of the floating-point arithmetics including
rounding of the results and detecting exceptions.

46.2.7 NaNs

GRFPU supports handling of Not-a-Numbers (NaNs) as defined in the IEEE-754 standard. Opera-
tions on signaling NaNs (SNaNs) and invalid operations (e.g. inf/inf) generate the Invalid exception
and deliver QNaN_GEN as result. Operations on Quiet NaNs (QNaNs), except for FCMPES and
FCMPED, do not raise any exceptions and propagate QNaNs through the FP operations by delivering
NaN-results according to table 687. QNaN_GEN is 0x7fffe00000000000 for double precision results
and 0x7fff0000 for single precision results.

Table 687.: Operations on NaNs

Operand 2

Operand 1

FP QNaN2 SNaN2
none FP QNaN2 QNaN_GEN
FP FP QNaN2 QNaN_GEN
QNaN1 QNaN1 QNaN2 QNaN_GEN
SNaN1 QNaN_GEN QNaN_GEN QNaN_GEN
GRIP, Sep 2018, Version 2018.3 578 www.cobham.com/gaisler

GRLIB IP Core

46.3 Signal descriptions

Table 688 shows the interface signals of the core (VHDL ports). All signals are active high except for
RST which is active low.

Table 688.: Signal descriptions

Signal I/O Description
CLK I Clock
RESET I Reset
START I Start an FP operation on the next rising clock edge
NONSTD I Nonstandard mode. Denormalized operands are converted to zero.
FLOP[8:0] I FP operation. For codes see table 685.
OP1[63:0]
OP2[63:0]

I FP operation operands are provided on these one or both of these inputs. All 64 bits are used
for IEEE-754 double precision floating-point numbers, bits [63:32] are used for IEEE-754
single precision floating-point numbers and 32-bit integers.

OPID[7:0] I FP operation id. Every operation is associated with an id which will appear on the RESID
output when the FP operation is completed. This value shall be incremented by 1 (with wrap-
around) for every started FP operation. If flushing is used, FP operation id is 6 -bits wide
(OPID[5:0] are used for id, OPID[7:6] are tied to “00”). If flushing is not used (input signal
FLUSH is tied to ‘0’), all 8-bits (OPID[7:0]) are used.

FLUSH I Flush FP operation with FLUSHID.
FLUSHID[5:0] I Id of the FP operation to be flushed.
RNDMODE[1:0] I Rounding mode. 00 - rounding-to-nearest, 01 - round-to-zero, 10 - round-to-+inf, 11 - round-

to--inf.
RES[63:0] O Result of an FP operation. If the result is double precision floating-point number all 64 bits

are used, otherwise single precision or integer result appears on RESULT[63:32].
EXC[5:0] O Floating-point exceptions generated by an FP operation.

EXC[5] - Unfinished FP operation. Generated by an arithmetic or conversion operation with
denormalized input(s).
EXC[4] - Invalid exception.
EXC[3] - Overflow.
EXC[2] - Underflow.
EXC[1] - Division by zero.
EXC[0] - Inexact.

ALLOW[2:0] O Indicates allowed FP operations during the next clock cycle.
ALLOW[0] - FDIVS, FDIVD, FSQRTS and FSQRTD allowed
ALLOW[1] - FMULS, FMULD, FSMULD allowed
ALLOW[2] - all other FP operations allowed

RDY O The result of a FP operation will be available at the end of the next clock cycle.
CC[1:0] O Result (condition code) of an FP compare operation.

00 - equal
01 - operand1 < operand2
10 - operand1 > operand2
11 - unordered

IDOUT[7:0] O Id of the FP operation whose result appears at the end of the next clock cycle.
TESTEN I Test enable. When GRLIB has been configured to use asynchronous reset then TESTEN

selects if the internal reset signal should come from RESET or TESTRST.
TESTRST I Reset signal in test mode (TESTEN = High). Only used when GRLIB has been configured to

use asynchronous reset,
GRIP, Sep 2018, Version 2018.3 579 www.cobham.com/gaisler

GRLIB IP Core

46.4 Timing

An FP operation is started by providing the operands, opcode, rounding mode and id before rising
edge. The operands need to be provided a small set-up time before a rising edge while all other signals
are latched on rising edge.
The FPU is fully pipelined and a new operation can be started every clock cycle. The only exceptions
are divide and square-root operations which require 16 to 26 clock cycles to complete, and which are
not pipelined. Division and square-root are implemented through iterative series expansion algorithm.
Since the algorithms basic step is multiplication the floating-point multiplier is shared between multi-
plication, division and square-root. Division and square-root do not occupy the multiplier during the
whole operation and allow multiplication to be interleaved and executed parallelly with division or
square-root.
One clock cycle before an operation is completed, the output signal RDY is asserted to indicate that
the result of an FPU operation will appear on the output signals at the end of the next cycle. The id of
the operation to be completed and allowed operations are reported on signals RESID and ALLOW.
During the next clock cycle the result appears on RES, EXCEPT and CC outputs.
Figure 136 shows signal timing during four arithmetic operations on GRFPU.

Figure 136. Signal timing

46.5 Shared FPU

46.5.1 Overview

In multi-processor systems, a single GRFPU can be shared between multiple CPU cores providing an
area efficient solution. In this configuration, the GRFPU is extended with a wrapper. Each CPU core
issues a request to execute a specific FP operation to the wrapper, which performs fair arbitration
using the round-robin algorithm. When a CPU core has started a divide or square-root operation, the
FPU is not able to accept a new division or square-root until the current operation has finished. Also,
during the execution of a division or square-root, other operations cannot be accepted during certain
cycles. This can lead to the, currently, highest prioritized CPU core being prevented from issuing an
operation to the FPU. If this happens, the next CPU core that has a operation that can be started will
be allowed to access the FPU and the current arbitration order will be saved. The arbitration order will
be restored when the operation type that was prevented can be started. This allows the FPU resource

CLK

START

OPID

RDY

RES

IDOUT

ALLOW[2]

ALLOW[1]

ALLOW[0]

1

FADDS FDIVS FSUBS

2 3

1 3 2

0

0

OP1,

FLOP FADDS

OP2
GRIP, Sep 2018, Version 2018.3 580 www.cobham.com/gaisler

GRLIB IP Core

the be fairly shared between several CPU cores while at the same time allowing maximum utilization
of the FPU.
In shared FPU configuration, GRFPU uses an 8 bit wide id for each operation. The three high-order
bits are used to identify the CPU core which issued the FP operation, while the five low-order bits are
used to enumerate FP operations issued by one core. FP operation flushing is not possible in shared
FPU configuration.

46.5.2 Shared FPU and clock gating

Clock gating of LEON processors is typically implemented so that the clock for a processor core is
gated off when the processor is idle. The clock for a shared FPU is typically gated off when the con-
nected processors are all idle or have floating-point disabled.
This means that, in a shared FPU configuration, a processor may be clock gated off while the con-
nected FPU continues to be clocked. The power-down instruction may overtake a previously issued
floating-point instruction and cause the processor to be gated off before the floating-point operation
has completed. This can in turn lead to the processor not reacting to the completion of the floating-
point operation and to a subsequent processor freeze after the processor wakes up and continues to
wait for the completion of the floating-point operation.
In order to avoid this, software must make sure that all floating-point operations have completed
before the processor enters power-down. This is generally not a problem in real-world applications as
the power-down instruction is typically used in a idle loop and floating-point results have been stored
to memory before entering the idle loop. To make sure that there are no floating-point operations
pending, software should perform a store of the %fsr register before the power-down instruction.

46.6 Implementation

46.6.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers, except synchronization registers, if the GRLIB config pack-
age setting grlib_sync_reset_enable_all is set.
The core will use asynchronous reset for all registers, except synchronization registers, if the GRLIB
config package setting grlib_async_reset_enable is set.
GRIP, Sep 2018, Version 2018.3 581 www.cobham.com/gaisler

GRLIB IP Core

47 GRFPC - GRFPU Control Unit

The GRFPU Control Unit (GRFPC) is used to attach the GRFPU to the LEON integer unit (IU).
GRFPC performs scheduling, decoding and dispatching of the FP operations to the GRFPU as well as
managing the floating-point register file, the floating-point state register (FSR) and the floating-point
deferred-trap queue (FQ). Floating-point operations are executed in parallel with other integer instruc-
tions, the LEON integer pipeline is only stalled in case of operand or resource conflicts.
In the FT-version, all registers are protected with TMR and the floating-point register file is protected
using parity coding.

47.1 Floating-Point register file

The GRFPU floating-point register file contains 32 32-bit floating-point registers (%f0-%f31). The
register file is accessed by floating-point load and store instructions (LDF, LDDF, STD, STDF) and
floating-point operate instructions (FPop).

47.2 Floating-Point State Register (FSR)

The GRFPC manages the floating-point state register (FSR) containing FPU mode and status infor-
mation. All fields of the FSR register as defined in SPARC V8 specification are implemented and
managed by the GRFPU conforming to the SPARC V8 specification and the IEEE-754 standard.
Implementation-specific parts of the FSR managing are the NS (non-standard) bit and ftt field.
If the NS (non-standard) bit of the FSR register is set, all floating-point operations will be performed
in non-standard mode as described in section 46.2.6. When the NS bit is cleared all operations are per-
formed in standard IEEE-compliant mode.
Following floating-point trap types never occur and are therefore never set in the ftt field:

- unimplemented_FPop: all FPop operations are implemented
- hardware_error: non-resumable hardware error
- invalid_fp_register: no check that double-precision register is 0 mod 2 is performed
GRFPU implements the qne bit of the FSR register which reads 0 if the floating-point deferred-queue
(FQ) is empty and 1 otherwise.
The FSR is accessed using LDFSR and STFSR instructions.

47.3 Floating-Point Exceptions and Floating-Point Deferred-Queue

GRFPU implements the SPARC deferred trap model for floating-point exceptions (fp_exception). A
floating-point exception is caused by a floating-point instruction performing an operation resulting in
one of following conditions:
• an operation raises IEEE floating-point exception (ftt = IEEE_754_exception) e.g. executing

invalid operation such as 0/0 while the NVM bit of the TEM field id set (invalid exception
enabled).

• an operation on denormalized floating-point numbers (in standard IEEE-mode) raises unfin-
ished_FPop floating-point exception

• sequence error: abnormal error condition in the FPU due to the erroneous use of the floating-
point instructions in the supervisor software.

The trap is deferred to one of the floating-point instructions (FPop, FP load/store, FP branch) follow-
ing the trap-inducing instruction (note that this may not be next floating-point instruction in the pro-
gram order due to exception-detecting mechanism and out-of-order instruction execution in the
GRFPC). When the trap is taken the floating-point deferred-queue (FQ) contains the trap-inducing
instruction and up to seven FPop instructions that were dispatched in the GRFPC but did not com-
plete.
GRIP, Sep 2018, Version 2018.3 582 www.cobham.com/gaisler

GRLIB IP Core

After the trap is taken the qne bit of the FSR is set and remains set until the FQ is emptied. The
STDFQ instruction reads a double-word from the floating-point deferred queue, the first word is the
address of the instruction and the second word is the instruction code. All instructions in the FQ are
FPop type instructions. The first access to the FQ gives a double-word with the trap-inducing instruc-
tion, following double-words contain pending floating-point instructions. Supervisor software should
emulate FPops from the FQ in the same order as they were read from the FQ.
Note that instructions in the FQ may not appear in the same order as the program order since GRFPU
executes floating-point instructions out-of-order. A floating-point trap is never deferred past an
instruction specifying source registers, destination registers or condition codes that could be modified
by the trap-inducing instruction. Execution or emulation of instructions in the FQ by the supervisor
software gives therefore the same FPU state as if the instructions were executed in the program order.

47.4 Implementation

47.4.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers, except synchronization registers, if the GRLIB config pack-
age setting grlib_sync_reset_enable_all is set.
The GRFPC4 core will use asynchronous reset for all registers, except synchronization registers, if
the GRLIB config package setting grlib_async_reset_enable is set. The GRFPC core does not support
grlib_async_reset_enable.
GRIP, Sep 2018, Version 2018.3 583 www.cobham.com/gaisler

GRLIB IP Core

48 GRFPU Lite - IEEE-754 Floating-Point Unit

48.1 Overview

The GRFPU Lite floating-point unit implements floating-point operations as defined in IEEE Stan-
dard for Binary Floating-Point Arithmetic (IEEE-754) and SPARC V8 standard (IEEE-1754).
Supported formats are single and double precision floating-point numbers. The floating-point unit is
not pipelined and executes one floating-point operation at a time.

48.2 Functional Description

48.2.1 Floating-point number formats

The floating-point unit handles floating-point numbers in single or double precision format as defined
in IEEE-754 standard.

operand1

opcode

operand2

round

result

ctrl_out

except

cc

Iteration unit

GRFPU

clk

reset

Lite

ctrl_in

(Add/Sub/Mul/Div)

Unpack

Control

Pack

 unit
GRIP, Sep 2018, Version 2018.3 584 www.cobham.com/gaisler

GRLIB IP Core

48.2.2 FP operations

The floating-point unit supports four types of floating-point operations: arithmetic, compare, convert
and move. The operations, summarised in the table below, implement all FP instructions specified by
the SPARC V8 instruction set except FSMULD and instructions with quadruple precision.

Below is a table of worst-case throughput of the floating point unit.

Table 689.:Floating-point operations

Operation Op1 Op2 Result Exceptions Description
Arithmetic operations
FADDS
FADDD

SP
DP

SP
 DP

SP
DP

NV, OF, UF, NX Addition

FSUBS
FSUBD

SP
DP

SP
DP

SP
DP

NV, OF, UF, NX Subtraction

FMULS
FMULD

SP
DP

SP
DP

SP
DP

NV, OF, UF, NX
NV, OF, UF, NX

Multiplication

FDIVS
FDIVD

SP
DP

SP
DP

SP
DP

NV, OF, UF, NX,
DZ

Division

FSQRTS
FSQRTD

-
-

SP
DP

SP
DP

NV, NX Square-root

Conversion operations
FITOS
FITOD

- INT SP
DP

NX
-

Integer to floating-point conversion

FSTOI
FDTOI

- SP
DP

INT NV, NX Floating-point to integer conversion. The result is
rounded in round-to-zero mode.

FSTOD
FDTOS

- SP
DP

DP
SP

NV
NV, OF, UF, NX

Conversion between floating-point formats

Comparison operations
FCMPS
FCMPD

SP
DP

SP
DP

CC NV Floating-point compare. Invalid exception is gener-
ated if either operand is a signaling NaN.

FCMPES
FCMPED

SP
DP

SP
DP

CC NV Floating point compare. Invalid exception is gener-
ated if either operand is a NaN (quiet or signaling).

Negate, Absolute value and Move
FABSS - SP SP - Absolute value.
FNEGS - SP SP - Negate.
FMOVS SP SP - Move. Copies operand to result output.
SP - single precision float-
ing-point number
DP - double precision
floating-point number
INT - 32 bit integer

CC - condition codes
NV, OF, UF, NX - floating-point exceptions, see section 48.2.3

Table 690.Worst-case instruction timing

Instruction Throughput Latency
FADDS, FADDD, FSUBS, FSUBD,FMULS, FMULD, FITOS, FITOD,
FSTOI, FDTOI, FSTOD, FDTOS, FCMPS, FCMPD, FCMPES. FCMPED 8 8
FDIVS 31 31
FDIVD 57 57
FSQRTS 46 46
FSQRTD 65 65
GRIP, Sep 2018, Version 2018.3 585 www.cobham.com/gaisler

GRLIB IP Core

48.2.3 Exceptions

The floating-point unit detects all exceptions defined by the IEEE-754 standard. This includes detec-
tion of Invalid Operation (NV), Overflow (OF), Underflow (UF), Division-by-Zero (DZ) and Inexact
(NX) exception conditions. Generation of special results such as NaNs and infinity is also imple-
mented.

48.2.4 Rounding

All four rounding modes defined in the IEEE-754 standard are supported: round-to-nearest, round-to-
+inf, round-to--inf and round-to-zero.

48.3 Implementation

48.3.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.
GRIP, Sep 2018, Version 2018.3 586 www.cobham.com/gaisler

GRLIB IP Core

49 GRLFPC - GRFPU Lite Floating-point unit Controller

49.1 Overview

The GRFPU Lite Floating-Point Unit Controller (GRLFPC) is used to attach the GRFPU Lite float-
ing-point unit (FPU) to the LEON integer unit (IU). It performs decoding and dispatching of the float-
ing-point (FP) operations to the floating-point unit as well as managing the floating-point register file,
the floating-point state register (FSR) and the floating-point deferred-trap queue (FQ).
The GRFPU Lite floating-point unit is not pipelined and executes only one instruction at a time. To
improve performance, the controller (GRLFPC) allows the GRFPU Lite floating-point unit to execute
in parallel with the processor pipeline as long as no new floating-point instructions are pending.

49.2 Floating-Point register file

The floating-point register file contains 32 32-bit floating-point registers (%f0-%f31). The register
file is accessed by floating-point load and store instructions (LDF, LDDF, STD, STDF) and floating-
point operate instructions (FPop).
In the FT-version, the floating-point register file is protected using 4-bit parity per 32-bit word. The
controller is capable of detecting and correcting one bit error per byte. Errors are corrected using the
instruction restart function in the IU.

49.3 Floating-Point State Register (FSR)

The controller manages the floating-point state register (FSR) containing FPU mode and status infor-
mation. All fields of the FSR register as defined in SPARC V8 specification are implemented and
managed by the controller conform to the SPARC V8 specification and IEEE-754 standard.
The non-standard bit of the FSR register is not used, all floating-point operations are performed in
standard IEEE-compliant mode.
Following floating-point trap types never occur and are therefore never set in the ftt field:

- unimplemented_FPop: all FPop operations are implemented
- unfinished_FPop: all FPop operation complete with valid result
- invalid_fp_register: no check that double-precision register is 0 mod 2 is performed
The controller implements the qne bit of the FSR register which reads 0 if the floating-point deferred-
queue (FQ) is empty and 1 otherwise. The FSR is accessed using LDFSR and STFSR instructions.

49.4 Floating-Point Exceptions and Floating-Point Deferred-Queue

The floating-point unit implements the SPARC deferred trap model for floating-point exceptions (fp_-
exception). A floating-point exception is caused by a floating-point instruction performing an opera-
tion resulting in one of following conditions:
• an operation raises IEEE floating-point exception (ftt = IEEE_754_exception) e.g. executing

invalid operation such as 0/0 while the NVM bit of the TEM field id set (invalid exception
enabled).

• sequence error: abnormal error condition in the FPU due to the erroneous use of the floating-
point instructions in the supervisor software.

• hardware_error: uncorrectable parity error is detected in the FP register file
The trap is deferred to the next floating-point instruction (FPop, FP load/store, FP branch) following
the trap-inducing instruction. When the trap is taken the floating-point deferred-queue (FQ) contains
the trap-inducing instruction.
GRIP, Sep 2018, Version 2018.3 587 www.cobham.com/gaisler

GRLIB IP Core

After the trap is taken the qne bit of the FSR is set and remains set until the FQ is emptied. STDFQ
instruction reads a double-word from the floating-point deferred queue, the first word is the address of
the instruction and the second word is the instruction code.

49.5 Implementation

49.5.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.
GRIP, Sep 2018, Version 2018.3 588 www.cobham.com/gaisler

GRLIB IP Core

50 GRGPIO - General Purpose I/O Port

50.1 Overview

The general purpose input output port core is a scalable and provides optional interrupt support. The
port width can be set to 2 - 32 bits through the nbits VHDL generic. Interrupt generation and shaping
is only available for those I/O lines where the corresponding bit in the imask VHDL generic has been
set to 1.
Each bit in the general purpose input output port can be individually set to input or output, and can
optionally generate an interrupt. For interrupt generation, the input can be filtered for polarity and
level/edge detection.
It is possible to share GPIO pins with other signals. The output register can then be bypassed through
the bypass register.
The figure 137 shows a diagram for one I/O line.

50.2 Operation

The I/O ports are implemented as bi-directional buffers with programmable output enable. The input
from each buffer is synchronized by two flip-flops in series to remove potential meta-stability. The
synchronized values can be read-out from the I/O port data register. They are also available on the
GPIOO.VAL signals. The output enable is controlled by the I/O port direction register. A ‘1’ in a bit
position will enable the output buffer for the corresponding I/O line. The output value driven is taken
from the I/O port output register.
The core can be implemented with one of three different alternatives for interrupt generation. Either
each I/O line can drive a separate interrupt line on the APB interrupt bus, the interrupt line to use can
be assigned dynamically for each I/O line, or one interrupt line can be shared for all I/O lines. In the
fixed mapping with a separate interrupt line for each I/O line, the interrupt number is equal to the I/O
line index plus an offset given by the first interrupt line assigned to the core, pirq, (PIO[1] = interrupt
pirq+1, etc.). If the core has been implemented to support dynamic mapping of interrupts, each I/O
line can be mapped using the Interrupt map register(s) to an interrupt line starting at interrupt pirq.
When the core is implemented to drive one, fixed, shared interrupt line for all I/O lines, the core will
drive interrupt line pirq only. The value of pirq can be read out from the core’s AMBA plug’n’play
information.
Interrupt generation is controlled by three registers: interrupt mask, polarity and edge registers. To
enable an interrupt, the corresponding bit in the interrupt mask register must be set. If the edge regis-
ter is ‘0’, the interrupt is treated as level sensitive. If the polarity register is ‘0’, the interrupt is active

Figure 137. General Purpose I/O Port diagram

Q

Q

Q

D

D

D PAD

Direction

Output
Value

Input
Value
Q D

Input
Value

(GPIOO.VAL)

Input
Value (GPIOO.SIG_OUT)

Output
Value

(GPIOI.SIG_IN)
Alternate

Alternate enable
(GPIOI.SIG_EN)
GRIP, Sep 2018, Version 2018.3 589 www.cobham.com/gaisler

GRLIB IP Core

low. If the polarity register is ‘1’, the interrupt is active high. If the edge register is ‘1’, the interrupt is
edge-triggered. The polarity register then selects between rising edge (‘1’) or falling edge (‘0’).
The core can be implemented with a Interrupt flag register that can be used to determine if, and which,
GPIO pine that caused an interrupt to be assered. The core implements the Interrupt flag register, and
the Interrupt available register, if the IFL field in the core’s capability register is non-zero.
A GPIO pin can be shared with other signals. The ports that should have the capability to be shared
are specified with the bypass generic (the corresponding bit in the generic must be 1). The unfiltered
inputs are available through GPIOO.SIG_OUT and the alternate output value must be provided in
GPIOI.SIG_IN. The bypass register then controls whether the alternate output is chosen. The direc-
tion of the GPIO pin can also be shared, if the corresponding bit is set in the bpdir generic. In such
case, the output buffer is enabled when GPIOI.SIG_EN is active. The direction of the pin can also be
made to depend on the bypass register. See the documentation of the bpmode VHDL generic for
details.
A GPIO pin can also be toggled when a pulse is detected on an internal signal. If the pulse VHDL
generic is nonzero, then the Pulse register is available in the core.

50.3 Registers

The core is programmed through registers mapped into APB address space.
GRIP, Sep 2018, Version 2018.3 590 www.cobham.com/gaisler

GRLIB IP Core
Table 691. General Purpose I/O Port registers

APB address offset Register
0x00 I/O port data register
0x04 I/O port output register
0x08 I/O port direction register
0x0C Interrupt mask register
0x10 Interrupt polarity register
0x14 Interrupt edge register
0x18 Bypass register
0x1C Capability register
0x20 - 0x3C Interrupt map register(s). Address 0x20 + 4*n contains interrupt map

registers for IO[4*n : 3+4+n], if implemented.
0x40 Interrupt available register, if implemented
0x44 Interrupt flag register, if implemented
0x48 Input enable register, if implemented
0x4C Pulse register, if implemented
0x50 Input enable register, if implemented, logical-OR
0x54 I/O port output register, logical-OR
0x58 I/O port direction register, logical-OR
0x5C Interrupt mask register, logical-OR
0x60 Input enable register, if implemented, logical-AND
0x64 I/O port output register, logical-AND
0x68 I/O port direction register, logical-AND
0x6C Interrupt mask register, logical-AND
0x70 Input enable register, if implemented, logical-XOR
0x74 I/O port output register, logical-XOR
0x78 I/O port direction register, logical-XOR
0x7C Interrupt mask register, logical-XOR
GRIP, Sep 2018, Version 2018.3 591 www.cobham.com/gaisler

GRLIB IP Core

50.3.1

Table 692.0x00 - DATA - I/O port data register

I/O Port Data Register

50.3.2

Table 693.0x04 - OUTPUT - I/O port output register

I/O Port Output Register

50.3.3

Table 694.0x08 - DIRECTION - I/O port direction register

I/O Port Direction Register

50.3.4

Table 695.0x0C - IMASK - Interrupt mask register

Interrupt Mask Register

50.3.5

Table 696.0x10 - IPOL - Interrupt polarity register

Interrupt Polarity Register

31 nbits nbits-1 0

RESERVED DATA

0 *

r r

nbits-1: 0 I/O port input value (DATA) - Data value read from GPIO lines

31 nbits nbits-1 0

RESERVED DATA

0 0

r rw

nbits-1: 0 I/O port output value (DATA) - Output value for GPIO lines

31 nbits nbits-1 0

RESERVED DIR

0 0

r rw

nbits-1: 0 I/O port direction value (DIR) - 0=output disabled, 1=output enabled

31 nbits nbits-1 0

RESERVED MASK

0 0

r rw

nbits-1: 0 Interrupt mask (MASK) - 0=interrupt masked, 1=intrrupt enabled

31 nbits nbits-1 0

RESERVED POL

0 NR

r rw

nbits-1: 0 Interrupt polarity (POL) - 0=low/falling, 1=high/rising
GRIP, Sep 2018, Version 2018.3 592 www.cobham.com/gaisler

GRLIB IP Core

50.3.6

Table 697.0x14 - IEDGE - Interrupt edge register

Interrupt Edge Register

50.3.7

Table 698.0x18 - BYPASS - Bypass register

Bypass Register

50.3.8

Table 699.0x1C - CAP - Capability register

Capability Register

31 nbits nbits-1 0

RESERVED EDGE

0 NR

r rw

nbits-1: 0 Interrupt edge (EDGE) - 0=level, 1=edge

31 nbits nbits-1 0

RESERVED BYPASS

0 0

r rw

nbits-1: 0 Bypass.(BYPASS) - 0=normal output, 1=alternate output

31 18 17 16 15 13 12 8 7 5 4 0

RESERVED PU IER IFL r IRQGEN r NLINES

0 * * * 0 0 0 *

r r r r r r r r

18 PU: Pulse register implemented: If this field is ‘1’ then the core implements the Pulse register.
This field is available in revision 2 and above of the GPIO port. This field is read-only.

17 IER: Input Enable register implemented. If this field is ‘1’ then the core implements the Input enable
register.
This field is available in revision 2 and above of the GPIO port. This field is read-only.

16 IFL: Interrupt flag register implemented. If this field is ‘1’ then the core implements the Interrrupt
available and Interrupt flag registers (registers at offsets 0x40 and 0x44).
This field is available in revision 2 and above of the GPIO port. This field is read-only.

12 8 IRQGEN: Interrupt generation setting: If irqgen = 0, I/O line n will drive interrupt line pirq + n, up to
NAHBIRQ-1. No Interrupt map registers will be implemented. This is the default, and traditional,
implementation of the core.
If irqgen = 1, all I/O lines capable of generating interrupts will use interrupt pirq and no Interrupt
map registers are implemented.
If irqgen > 1, the core will include Interrupt map registers allowing software to dynamically map
which lines that should drive interrupt lines [pirq : pirq+irqgen-1].
The value of pirq can be read out from the core’s plug&play information.
This field is available in revision 2 and above of the GPIO port. This field is read-only.

4: 0 NLINES. Number of pins in GPIO port - 1. Compatibility note: This field is available in revision 2
and above of the GPIO port. This field is read-only.
GRIP, Sep 2018, Version 2018.3 593 www.cobham.com/gaisler

GRLIB IP Core

50.3.9

Table 700.0x20+un - IRQMAPRn - Interrupt map register n

Interrupt Map Register n

50.3.10

Table 701.0x40 - IAVAIL - Interrupt available register

Interrupt Available Register

50.3.11

Table 702.0x44 - IFLAG - Interrupt flag register

Interrupt Flag Register

50.3.12

Table 703.0x48 - IPEN - Input enable register

Input Enable Register

31 29 28 24 23 21 20 16 15 13 12 8 7 6 4 0

RESERVED IRQMAP[4*n] RESERVED IRQMAP[4*n+1] RESERVED IRQMAP[4*n+2] RESERVED IRQMAP[4*n+3]

0 un+i 0 un+i+1 0 un+i+2 0 uni+i+3

r rw r rw r rw r rw

31: 0 IRQMAP[i] : The field IRQMAP[i] determines to which interrupt I/O line i is connected. If IRQ-
MAP[i] is set to x, IO[i] will drive interrupt pirq+x. Where pirq is the first interrupt assigned to the
core. Several I/O can be mapped to the same interrupt.
The core has one IRQMAP field per I/O line. The Interrupt map register at offset 0x20+4*n contains
the IRQMAP fields for IO[4*n : 4*n+3]. This means that the fields for IO[0:3] are located on offset
0x20, IO[4:7] on offset 0x24, IO[8:11] on offset 0x28, and so on. An I/O line’s interrupt generation
must be enabled in the Interrupt mask register in order for the I/O line to drive the interrupt specified
by the IRQMAP field. The Interrupt map register(s) can only be written if the core was implemented
with support for interrupt mapping.

31 0

IMASK

*

r

31: 0 IMASK: Interrupt mask bit field. If IMASK[n] is 1 then GPIO line n can generate interrupts.
This register is not available in all implementations. See capability register.

31 0

IFLAG

0

wc

31: 0 IFLAG : If IFLAG[n] is set to ‘1’ then GPIO line n has generated an interrupt. Write ‘1’ to the orre-
sponding bit to clear. Writes of ‘0’ have no effect.
This register is not available in all implementations, see capability register.

31 0

IPEN

0

rw

31: 0 IPEN : If IPEN[n] is set to ‘1’ then values from GPIO line n will be visible in the data register. Oth-
erwise the GPIO line input is gated-off to disable input signal propagation.
This register is not available in all implementations, see capability register.
GRIP, Sep 2018, Version 2018.3 594 www.cobham.com/gaisler

GRLIB IP Core

50.3.13

Table 704.0x4C - PULSE - Pulse register

Pulse Register

50.3.14

Table 705.0x54-0x7C - LOR,LAND,LXOR - Logical-OR/AND/XOR registers

Logical-OR/AND/XOR Register

50.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x01A. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

50.5 Implementation

50.5.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core does not support grlib_async_reset_enable. See also the description for the syncrst VHDL
generic for how the core implements reset.

50.6 Configuration options

Table 706 shows the configuration options of the core (VHDL generics).

31 0

PULSE

0

rw

31: 0 PULSE : If PULSE[n] is set to ‘1’ then I/O port output register bit n will be inverted whenever
GPIOI.SIG_IN[n] is high.
This register is not available in all implementations, see capability register.

31 0

VALUE

-

w*

31: 0 The logical-OR/AND/XOR registers will update the corresponding register according to:
New value = <Old value> logical-op <Write data>
There exists logical-OR, AND and XOR registers for the Input enable, I/O port output, I/O port
direction and Interrupt mask registers.

Table 706.Configuration options

Generic Function Allowed range Default
pindex Selects which APB select signal (PSEL) will be used to

access the GPIO unit
0 to NAHBIRQ-1 0

paddr The 12-bit MSB APB address 0 to 16#FFF# 0
pmask The APB address mask 0 to 16#FFF# 16#FFF#
nbits Defines the number of bits in the I/O port 1 to 32 8
GRIP, Sep 2018, Version 2018.3 595 www.cobham.com/gaisler

GRLIB IP Core
imask Defines which I/O lines are provided with interrupt gen-
eration and shaping. Note that line 31 (out of lines 0 to
31 in a 32-bit GPIO port) cannot be configured to assert
interrupts.

0 - 16#7FFFFFFF# 0

oepol Select polarity of output enable signals. 0 = active low, 1
= active high.

0 - 1 0

syncrst Selects between synchronous (1) or asynchronous (0)
reset during power-up.
0: Logic is placed on the output enable signals to keep
them as inputs while reset is enabled.
1: The register controlling the output enable signals are
reset with an asynchronous reset.

0 - 1 0

bypass Defines which I/O lines are provided bypass capabilities.
Note that line 31 (out of lines 0 to 31 in a 32-bit GPIO
port) cannot be configured for bypass.

0 - 16#7FFFFFFF# 0

scantest Enable scan support for asyncronous-reset flip-flops 0 - 1 0
bpdir Defines which I/O lines are provided output enable

bypass capabilities. Note that line 31 (out of lines 0 to 31
in a 32-bit GPIO port) cannot be configured for bypass.

0 - 16#7FFFFFFF# 0

pirq First interrupt line that the core will drive. The core will
only drive interrupt lines up to line NAHBIRQ-1. If
NAHBIRQ is set to 32 and pirq is set to 16, the core will
only be able to generate interrupts for I/O lines 0 - 15.

0 - NAHBIRQ-1 0

irqgen This generic configures interrupt generation.
If irqgen = 0, I/O line n will drive interrupt line pirq + n,
up to NAHBIRQ-1. No Interrupt map registers will be
implemented. This is the default, and traditional, imple-
mentation of the core.
If irqgen = 1, all I/O lines capable of generating inter-
rupts will use interrupt pirq and no Interrupt map regis-
ters will be implemented.
If irqgen > 1, the core will include Interrupt map regis-
ters allowing software to dynamically map which lines
that should drive interrupt lines [pirq : pirq+irqgen-1]

0 - NAHBIRQ-1 0

iflagreg If this generic is set to 1 then the core will be imple-
mented with the Interrupt available and Interrupt flag
registers. If this generic is set to 1 then the IFL field in
the core’s capability register is also set.

0 - 1 0

bpmode Controls if output enable bypass depends on the bypass
register and the behaviour of the gpioi.sig_en inputs.
If bpmode = 0 then gpioi.sig_en(i) enables GPIO line i
and connects gpioi.sig_in(i) to the output, regardless of
the value in the bypass register.
If bpmode = 1 then the corresponding bit in the bypass
register must be set to ‘1’ for the output enable bypass to
be active. When the bypass register is active then the
gpioi.sig_en(i) controls the output enable of the corre-
sponding GPIO line and gpioi.sig_in(i) is connected to
the the corresponding output.
In both cases, bit i in the bpdir VHDL generic must be
set for the gpioi.sig_en(i) signal to have any effect.

0 - 1 0

inpen If this generic is non-zero, then the core will be imple-
mented with the Input enable register that can be used to
prevent input signal propagation.

0 - 1 0

Table 706.Configuration options

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 596 www.cobham.com/gaisler

GRLIB IP Core
50.7 Signal descriptions

Table 707 shows the interface signals of the core (VHDL ports).

50.8 Signal definitions and reset values

The signals and their reset values are described in table 708.

doutresv Reset value for output register 0
dirresv Reset value for direction register 0
bpresv Reset value for bypass register 0
inpresv Reset value for input enable register (if implemented) 0
pulse If this generic is non-zero, then the core will be imple-

mented with the Pulse register and corresponding func-
tionality.

0 - 1 0

Table 707.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
GPIOO OEN[31:0] Output I/O port output enable see oepol

DOUT[31:0] Output I/O port outputs -
VAL[31:0] Output The current (synchronized) value of the GPIO

signals
-

SIG_OUT[31:0] Output The current (unsynchronized) value of the GPIO
signals. Note that this value is affected by the
Input enable register, if implemented.

GPIOI DIN[31:0] Input I/O port inputs -
SIG_IN[31:0] Input Alternative output -
SIG_EN[31:0] Input Alternative output enable High

* see GRLIB IP Library User’s Manual

Table 708.Signal definitions and reset values

Signal name Type Function Active Reset value
gpio[] Input/Output General purpose input output - Tri-state

Table 706.Configuration options

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 597 www.cobham.com/gaisler

GRLIB IP Core

50.9 Timing

The timing waveforms and timing parameters are shown in figure 138 and are defined in table 709.

Note: The gpio inputs are re-synchronized internally. The signals do not have to meet any setup or
hold requirements.

50.10 Library dependencies

Table 710 shows libraries used when instantiating the core (VHDL libraries).

50.11 Component declaration

The core has the following component declaration.

ibrary gaisler;
use gaisler.misc.all;

entity grgpio is
 generic (
 pindex : integer := 0;
 paddr : integer := 0;
 pmask : integer := 16#fff#;
 imask : integer := 16#0000#;
 nbits : integer := 16-- GPIO bits

);
 port (

Table 709.Timing parameters

Name Parameter Reference edge Min Max Unit
tGRGPIO0 clock to output delay rising clk edge TBD TBD ns

tGRGPIO1 clock to non-tri-state delay rising clk edge TBD TBD ns

tGRGPIO2 clock to tri-state delay rising clk edge TBD TBD ns

tGRGPIO3 input to clock hold rising clk edge - - ns

tGRGPIO4 input to clock setup rising clk edge - - ns

Table 710.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER MISC Signals, component Component declaration

Figure 138. Timing waveforms

tGRGPIO0gpio[]

clk

tGRGPIO0

tGRGPIO1
gpio[]

tGRGPIO2

tGRGPIO3gpio[] tGRGPIO4

(output)

(output)

(input)
GRIP, Sep 2018, Version 2018.3 598 www.cobham.com/gaisler

GRLIB IP Core

 rst : in std_ulogic;
 clk : in std_ulogic;
 apbi : in apb_slv_in_type;
 apbo : out apb_slv_out_type;
 gpioi : in gpio_in_type;
 gpioo : out gpio_out_type
);
end;

50.12 Instantiation

This example shows how the core can be instantiated.

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

signal gpti : gptimer_in_type;

begin

gpio0 : if CFG_GRGPIO_EN /= 0 generate -- GR GPIO unit
 grgpio0: grgpio
 generic map(pindex => 11, paddr => 11, imask => CFG_GRGPIO_IMASK, nbits => 8)
 port map(rstn, clkm, apbi, apbo(11), gpioi, gpioo);

 pio_pads : for i in 0 to 7 generate
 pio_pad : iopad generic map (tech => padtech)
 port map (gpio(i), gpioo.dout(i), gpioo.oen(i), gpioi.din(i));
 end generate;
end generate;
GRIP, Sep 2018, Version 2018.3 599 www.cobham.com/gaisler

GRLIB IP Core

51 GRGPREG - General Purpose Register

51.1 Overview

The core provides a programmable register that drives an output vector that can be used to control
miscellaneous options in a design.

51.2 Operation

The core contains one register of configurable length that is mapped into APB address space. The
value of this register is propagated to an output vector. The reset value of the register can be specified
via VHDL generics, or via an input vector.

51.3 Registers

The core is programmed through registers mapped into APB address space.

51.3.1

Table 712.0x00 - GPREG0 - General purpose register

General Purpose Register

51.3.2

Table 713.0x04 - GRPEG1 - General purpose register (extended)

General Purpose Register (extended)

51.4 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x087. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

Table 711.General purpose register registers

APB address offset Register
0x00 General purpose register bits 31:0
0x04 General purpose register bits 63:0

31 nbits nbits-1 0

RESERVED REGISTER BITS

0 *

r rw

31:nbits RESERVED (not present if nbits >= 32)
nbits-1:0 Register bits. Position i corresponds to bit i in the core’s output vector

31 nbits-32 nbits-33 0

RESERVED REGISTER BITS

0 *

r rw

31:nbits-32 RESERVED (not present if nbits = 64 or nbits <= 32)
nbits-33:0 Register bits. Position i corresponds to bit 31+i in the core’s output vector (not present if nbits < 33)
GRIP, Sep 2018, Version 2018.3 600 www.cobham.com/gaisler

GRLIB IP Core

51.5 Implementation

51.5.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset for its internal registers.

51.6 Configuration options

Table 714 shows the configuration options of the core (VHDL generics).

51.7 Signal descriptions

Table 715 shows the interface signals of the core (VHDL ports).

51.8 Library dependencies

Table 716 shows the libraries used when instantiating the core (VHDL libraries).

51.9 Instantiation

This example shows how the core can be instantiated.
library ieee;

Table 714.Configuration options

Generic name Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0
paddr ADDR field of the APB BAR. 0 - 16#FFF# 0
pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#
nbits Number of register bits 1 - 64 16
rstval Reset value for bits 31:0 0 - 16#FFFFFFFF# 0
rstval2 Reset value for bits 63:32 0 - 16#FFFFFFFF# 0
extrst Use input vector resval to specify reset value. If this

generic is 0 the register reset value is determined by
VHDL generics rstval and rstval2. If this generic is 1,
the reset value is specified by the input vector resval.

0 - 1 0

Table 715.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
GRGPREGO N/A Output Value of register mapped into APB address space -
RESVAL N/A Input (Optionally) specifes register reset value -
* see GRLIB IP Library User’s Manual

Table 716.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER MISC Component, signals Component declaration, I2C signal definitions
GRIP, Sep 2018, Version 2018.3 601 www.cobham.com/gaisler

GRLIB IP Core

use ieee.std_logic_1164.all;

library grlib, techmap;
use grlib.amba.all;

library gaisler;
use gaisler.misc.all;

entity grgpreg_ex is
 port (
 clkm : in std_ulogic;
 rstn : in std_ulogic;

 -- I2C signals
 iic_scl : inout std_ulogic;
 iic_sda : inout std_ulogic
);
end;

architecture rtl of i2c_ex is
 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);

 -- Width of general purpose register
 constant GRGPREG_NBITS : integer := 9;

 signal gprego : std_logic_vector(GRGPREG_NBITS-1 downto 0);
 signal gpregresval : std_logic_vector(GRGPREG_NBITS-1 downto 0);
begin

 -- AMBA Components are instantiated here
 ...

 -- General purpose register
 grgpreg0 : grgpreg -- General purpose register
 generic map (
 pindex => 10,
 paddr => 16#0a0#,
 pmask => 16#fff#,
 nbits => GRGPREG_NBITS,
 rstval => 0, -- Not used
 rstval2 => 0, -- Not used
 extrst => 1) -- Use input vector for reset value
 port map (
 rst => rstn,
 clk => clkm,
 apbi => apbi,
 apbo => apbo(10),
 gprego => gprego,
 resval => gpregresval);
end;
GRIP, Sep 2018, Version 2018.3 602 www.cobham.com/gaisler

GRLIB IP Core

52 GRIOMMU - AHB/AHB bridge with access protection and address translation

52.1 Overview

The core is used to connect two AMBA AHB buses clocked by synchronous clocks with any fre-
quency ratio. The two buses are connected through an interface pair consisting of an AHB slave and
an AHB master interface. AHB transfer forwarding is performed in one direction, where AHB trans-
fers to the slave interface are forwarded to the master interface. The core can be configured to provide
access protection and address translation for AMBA accesses traversing over the core. Access protec-
tion can be provided using a bit vector to restrict access to memory. Access protection and address
translation can also be provided using page tables in main memory, providing full IOMMU function-
ality. Both protection strategies allow devices to be placed into a configurable number of groups that
share data structures located in main memory. The protection and address translation functionality
provides protection for memory assigned to processes and operating systems from unwanted accesses
by units capable of direct memory access.
Applications of the core include system partitioning, clock domain partitioning, system expansion and
secure software partitioning.
Features offered by the core include:
• Single and burst AHB transfer forwarding
• Access protection and address translation that can provide full IOMMU functionality
• Devices can be placed into groups where a group shares page tables / access restriction vectors
• Hardware table-walk
• Efficient bus utilization through (optional) use of SPLIT response, data prefetching and posted

writes. NOTE: SPLIT responses require an AHB arbiter that allows assertion of HSPLIT during
second cycle of SPLIT response. This is supported by GRLIB’s AHBCTRL IP core.

• Read and write combining, improves bus utilization and allows connecting cores with differing
AMBA access size restrictions.

• Deadlock detection logic enables use of two uni-directional bridges to build a bi-directional
bridge. The core can be connected with an another instance of the core, or with a uni-directional
AHB/AHB bridge core (AHB2AHB), to form a bi-directional bridge.

BUS
CONTROL

 SLAVE 1

AHB System bus

Figure 139. System with core providing access restricion/address translation for masters on AHB IO bus

 SLAVE 2

 MASTER 1 MASTER 2 MASTER N

BUS
CONTROL

 MASTER 2

AHB IO bus

 MASTER 3

 MASTER 1 MASTER N

MASTER I/F

GRIOMMU

SLAVE I/F

(PROM) (MAIN MEMORY)

(PROCESSOR) (PROCESSOR) (DEBUG LINK)

(ETHERNET)

(ETHERNET) (PCI)

(SPACEWIRE)

SLAVE (REG)
I/F
GRIP, Sep 2018, Version 2018.3 603 www.cobham.com/gaisler

GRLIB IP Core

52.2 Bridge operation

52.2.1 General

The first sub sections below describe the general AHB bridge function. The functionality providing
access restriction and address translation is described starting with section 52.3. In the description of
AHB accesses below the core propagates accesses from the IO bus to the System bus, see figure 139.
The address space occupied by the core on the IO bus is configurable and determined by Bank
Address Registers in the slave interface’s AHB Plug&Play configuration record.
The core is capable of handling single and burst transfers of all burst types. Supported transfer sizes
(HSIZE) are BYTE, HALF-WORD, WORD, DWORD, 4WORD and 8WORD.
For AHB write transfers write data is always buffered in an internal FIFO implementing posted
writes. For AHB read transfers the core uses GRLIB’s AMBA Plug&Play information to determine
whether the read data will be prefetched and buffered in an internal FIFO. If the target address for an
AHB read burst transfer is a prefetchable location the read data will be prefetched and buffered.
The core can be implemented to use SPLIT responses or to insert wait states when handling an access.
With SPLIT responses enabled, an AHB master initiating a read transfer to the core is always splitted
on the first transfer attempt to allow other masters to use the slave bus while the core performs read
transfer on the master bus. The descriptions of operation in the sections below assume that the core
has been implemented with support for AMBA SPLIT responses. The effects of disabling support for
AMBA SPLIT responses are described in section 52.2.11.
If interrupt forwarding is enabled the interrupts on the IO bus interrupt lines will be forwarded to the
system bus and vice versa.

52.2.2 AHB read transfers

When a read transfer is registered on the slave interface connected to the IO bus, the core gives a
SPLIT response. The master that initiated the transfer will be de-granted allowing other bus masters to
use the slave bus while the core performs a read transfer on the master side. The master interface then
requests the bus and starts the read transfer on the master side. Single transfers on the slave side are
normally translated to single transfers with the same AHB address and control signals on the master
side, however read combining can translate one access into several smaller accesses. Translation of
burst transfers from the slave to the master side depends on the burst type, burst length, access size
and core configuration.
If the read FIFO is enabled and the transfer is a burst transfer to a prefetchable location, the master
interface will prefetch data in the internal read FIFO. If the splitted burst on the slave side was an
incremental burst of unspecified length (INCR), the length of the burst is unknown. In this case the
master interface performs an incremental burst up to a specified address boundary (determined by the
VHDL generic rburst). The core can be configured to recognize an INCR read burst marked as
instruction fetch (indicated on HPROT signal). In this case the prefetching on the master side is com-
pleted at the end of a cache line (the cache line size is configurable through the VHDL generic iburst).
When the burst transfer is completed on the master side, the splitted master that initiated the transfer
(on the slave side) is allowed in bus arbitration by asserting the appropriate HSPLIT signal to the
AHB controller. The splitted master re-attempts the transfer and the core will return data with zero
wait states.
If the read FIFO is disabled, or the burst is to non-prefetchable area, the burst transfer on the master
side is performed using sequence of NONSEQ, BUSY and SEQ transfers. The first access in the burst
on the master side is of NONSEQ type. Since the master interface can not decide whether the splitted
burst will continue on the slave side or not, the system bus is held by performing BUSY transfers. On
the slave side the splitted master that initiated the transfer is allowed in bus arbitration by asserting the
HSPLIT signal to the AHB controller. The first access in the transfer is completed by returning read
data. The next access in the transfer on the slave side is extended by asserting HREADY low. On the
GRIP, Sep 2018, Version 2018.3 604 www.cobham.com/gaisler

GRLIB IP Core

master side the next access is started by performing a SEQ transfer (and then holding the bus using
BUSY transfers). This sequence is repeated until the transfer is ended on the slave side.
In case of an ERROR response on the master side the ERROR response will be given for the same
access (address) on the slave side. SPLIT and RETRY responses on the master side are re-attempted
until an OKAY or ERROR response is received.

52.2.3 AHB write transfers

The core implements posted writes. During the AHB write transfer on the slave side the data is buff-
ered in the internal write FIFO and the transfer is completed on the slave side by always giving an
OKAY response. The master interface requests the bus and performs the write transfer when the mas-
ter bus is granted. If the burst transfer crosses the write burst boundary (defined by VHDL generic
wburst), a SPLIT response is given. When the core has written the contents of the FIFO out on the
master side, the core will allow the master on the slave side to perform the remaining accesses of the
write burst transfer.
Writes are accepted with zero wait states if the core is idle and the incoming access is not locked. If
the incoming access is locked, each access will have one wait state. If write combining is disabled a
non-locked BUSY cycle will lead to a flush of the write FIFO. If write combining is enabled or if the
incoming access is locked, the core will not flush the write FIFO during the BUSY cycle.

52.2.4 Deadlock conditions

When two cores are used to form a bi-directional bridge, a deadlock situation can occur if the cores
are simultaneously accessed from both buses. The core that has been configured as a slave contains
deadlock detection logic which will resolve a deadlock condition by giving a RETRY response, or by
issuing SPLIT complete followed by a new SPLIT response. When the core resolves a deadlock while
prefetching data, any data in the prefetch buffer will be dropped when the core’s slave interface issues
the AMBA RETRY response. When the access is retried it may lead to the same memory locations
being read twice.
Deadlock detection logic for bi-directional configurations may lead to deadlocks in other parts of the
system. Consider the case where a processor on bus A on one side of the bidirectional bridge needs to
perform an instruction fetch over the bridge before it can release a semaphore located in memory on
bus A. Another processor on bus B, on the other side of the bridge, may spin on the semaphore wait-
ing for its release. In this scenario, the accesses from the processor on bus B could, depending on sys-
tem configuration, continuously trigger a deadlock condition where the core will drop data in, or be
prevented from initiating, the instruction fetch for the processor on bus A. Due to scenarios of this
kind the bridge should not be used in bi-directional configurations where dependencies as the one
described above exist between the buses connected by the bridge.
Other deadlock conditions exist with locked transfers, see section 52.2.5.

52.2.5 Locked transfers

The core supports locked transfers. The master bus will be locked when the bus is granted and remain
locked until the transfer completes on the slave side. Locked transfers can lead to deadlock condi-
tions, the core’s VHDL generic lckdac determines if and how the deadlock conditions are resolved.
With the VHDL generic lckdac set to 0, locked transfers may not be made after another read access
which received SPLIT until the first read access has received split complete. This is because the core
will return split complete for the first access first and wait for the first master to return. This will cause
deadlock since the arbiter is not allowed to change master until a locked transfer has been completed.
The AMBA specification requires that the locked transfer is handled before the previous transfer,
which received a SPLIT response, is completed.
With lckdac set to 1, the core will respond with an AMBA ERROR response to locked access that is
made while an ongoing read access has received a SPLIT response. With lckdac set to 2 the core will
GRIP, Sep 2018, Version 2018.3 605 www.cobham.com/gaisler

GRLIB IP Core

save state for the read access that received a SPLIT response, allow the locked access to complete,
and then complete the first access. All non-locked accesses from other masters will receive SPLIT
responses until the saved data has been read out.
If the core is used to create a bi-directional bridge there is one more deadlock condition that may arise
when locked accesses are made simultaneously in both directions. If the VHDL generic lckdac is set
to 0 the core will deadlock. If lckdac is set to a non-zero value the slave bridge will resolve the dead-
lock condition by issuing an AMBA ERROR response to the incoming locked access.

52.2.6 Read and write combining

Read and write combining allows the core to assemble or split AMBA accesses on the core’s slave
interface into one or several accesses on the master interface. This functionality can improve bus utili-
zation and also allows cores that have differing AMBA access size restrictions to communicate with
each other. The functionality attained by read and write combining depends on the VHDL generics
rdcomb (defines type of read combining), wrcomb (defines type of write combining), slvmstaccsz
(defines maximum AHB access size supported by the core’s slave interface) and mstmaccsz (defines
maximum AHB access size that can be used by core’s master interface). These VHDL generics are
described in section 52.13. The table below shows the effect of different settings. BYTE and HALF-
WORD accesses are special cases. The table does not list illegal combinations, for instance mst-
maccsz /= slvmaccsz requires that wrcomb /= 0 and rdcomb /= 0.

Table 717.Read and write combining

Access on slave interface Access size wrcomb rdcomb Resulting access(es) on master interface
BYTE or HALF-WORD sin-
gle read access to any area

- - - Single access of same size

BYTE or HALF-WORD
read burst to prefetchable
area

- - - Incremental read burst of same access size as on
slave interface, the length is the same as the
number of 32-bit words in the read buffer, but
will not cross the read burst boundary.

BYTE or HALF-WORD
read burst to non-prefetch-
able area

- - - Incremental read burst of same access size as on
slave interface, the length is the same as the
length of the incoming burst. The master inter-
face will insert BUSY cycles between the
sequential accesses.

BYTE or HALF-WORD sin-
gle write

- - - Single access of same size

BYTE or HALF-WORD
write burst

- - - Incremental write burst of same size and length,
the maximum length is the number of 32-bit
words in the write FIFO.

Single read access to any
area

Access size <=
mstmaccsz

- - Single access of same size

Single read access to any
area

Access size >
mstmaccsz

- 1 Sequence of single accesses of mstmaccsz. Num-
ber of accesses: (access size)/mstmaccsz

Single read access to any
area

Access size >
mstmaccsz

- 2 Burst of accesses of size mstmaccsz. Length of
burst: (access size)/mstmaccsz

Read burst to prefetchable
area

- - 0 Burst of accesses of incoming access size up to
address boundary defined by rburst.

Read burst to prefetchable
area

- - 1 or 2 Burst of accesses of size mstmaccsz up to
address boundary defined by rburst.

Read burst to non-prefetch-
able area

Access size <=
mstmaccsz

- - Incremental read burst of same access size as on
slave interface, the length is the same as the
length of the incoming burst. The master inter-
face will insert BUSY cycles between the
sequential accesses.
GRIP, Sep 2018, Version 2018.3 606 www.cobham.com/gaisler

GRLIB IP Core
Read and write combining prevents the bridge from propagating fixed length bursts and wrapping
bursts. See section 52.2.7 for a discussion on burst operation.
Read and write combining with VHDL generics wrcomb/rdcomb set to 1 cause the core to use single
accesses when dividing an incoming access into several smaller accesses. This means that another
master on the bus may write or read parts of the memory area to be accessed by the core before the
core has read or written all the data. In bi-directional configurations, an incoming access on the master
core may cause a collision that aborts the operation on the slave core. This may cause the core to read
the same memory locations twice. This is normally not a problem when accessing memory areas. The
same issues apply when using an AHB arbiter that performs early burst termination. The standard
GRLIB AHBCTRL core does not perform early burst termination.
To ensure that the core does not re-read an address, and that all data in an access from the core’s slave
interface is propagated out on the master interface without interruption the VHDL generics rdcomb
and wrcomb should both be set to 0 or 2. In addition to this, the AHB arbiter may not perform early
burst termination (early burst termination is not performed by the GRLIB AHBCTRL arbiter).
Read and write combining can be limited to specified address ranges. See description of the comb-
mask VHDL generic for more information. Note that if the core is implemented with support for
prefetch and read combining, it will not obey combmask for prefetch operations (burst read to
prefetchable areas). Prefetch operations will always be performed with the maximum allowed size on
the master interface.

52.2.7 Burst operation

The core can be configured to support all AMBA 2.0 burst types (single access, incrementing burst of
unspecified length, fixed length incrementing bursts and wrapping bursts). Single accesses and incre-
menting bursts of unspecified length have previously been discussed in this document. An incoming
single access will lead to one access, or multiple accesses for some cases with read/write combining,
on the other side of the bridge. An incoming incrementing burst of unspecified length to a prefetch-
able area will lead to the prefetch buffer (if available) being filled using the same access size, or the
maximum allowed access size if read/write combining is enabled, on the master interface.
If the core is used in a system where no fixed length bursts or incremental bursts will be used in
accesses to the bridge, then set the allbrst generic to 0 and skip the remainder of this section.
The VHDL generic allbrst controls if the core will support fixed length and wrapping burst accesses.
If allbrst is set to 0, the core will treat all burst accesses as incrementing of unspecified length. For
fixed length and wrapping bursts this can lead to performance penalties and malfunctions. Support for

Read burst to non-prefetch-
able area

Access size >
mstmaccsz

- 1 or 2 Burst of accesses of size mstmaccsz. Length of
burst:
(incoming burst length)*(access size)/mstmaccsz

Single write Access size <=
mstmaccsz

- - Single write access of same size

Single write Access size >
mstmaccsz

1 - Sequence of single access of mstmaccsz. Num-
ber of accesses: (access size)/mstmaccsz.

Single write Access size >
mstmaccsz

2 - Burst of accesses of mstmaccsz. Length of burst:
(access size)/mstmaccsz.

Write burst - 0 - Burst of same size as incoming burst, up to
address boundary defined by VHDL generic
wburst.

Write burst - 1 or 2 - Burst write of maximum possible size. The core
will use the maximum size (up to mstmaccsz)
that it can use to empty the write buffer.

Table 717.Read and write combining

Access on slave interface Access size wrcomb rdcomb Resulting access(es) on master interface
GRIP, Sep 2018, Version 2018.3 607 www.cobham.com/gaisler

GRLIB IP Core

fixed length and wrapping bursts is enabled by setting allbrst to 1 or 2. Table 52.2.7 describes how the
core will handle different burst types depending on the setting of allbrst.

Table 718.Burst handling

Value of
allbrst
generic

Access type* Undefined length
incrementing burst
INCR

Fixed length incrementing
burst
INCR{4,8,16}

Wrapping burst
WRAP{4,8,16}

0 Reads to
non-
prefetchable
area

Incrementing burst with
BUSY cycles inserted.
Same behaviour with
read and write combin-
ing.

Fixed length burst with
BUSY cycles inserted. If the
burst is short then the burst
may end with a BUSY cycle.
If access combining is used
the HBURST signal will get
incorrect values.

Malfunction. Not supported

Reads to
prefetchable
area

Incrementing burst of maximum allowed size, filling
prefetch buffer, starting at address boundary defined by
prefetch buffer.

Malfunction. Not supported

Write burst Incrementing burst Incrementing burst, if write
combining is enabled, and
triggered, the burst will be
translated to an increment-
ing burst of undefined
length. VHDL generic
wrcomb should not be set to
1 (but to 0 or 2) in this case

Write combining is not sup-
ported. Same access size will be
used on both sides of the bridge.

1 Reads to
non-
prefetchable
area

Incrementing burst with
BUSY cycles inserted.
Same behaviour with
read and write combin-
ing.

Same burst type with BUSY
cycles inserted. If read com-
bining is enabled, and trig-
gered by the incoming access
size, an incremental burst of
unspecified length will be
used. If the burst is short then
the burst may end with a
BUSY cycle.

Same burst type with BUSY
cycles inserted. If read combin-
ing is enabled, and triggered by
the incoming access size, an
incremental burst of unspecified
length will be used. This will
cause AMBA violations if the
wrapping burst does not start
from offset 0.

Reads to
prefetchable
area

Incrementing burst of
maximum allowed size,
filling prefetch buffer.

For reads, the core will perform full (or part that fits in prefetch
buffer) fixed/wrapping burst on master interface and then
respond with data. No BUSY cycles are inserted.
If the access made to the slave interface is larger than the maxi-
mum supported access size on the master interface then a incre-
menting burst of unspecified length will be used to fill the
prefetch buffer. This (read combining) is not supported for wrap-
ping bursts.

Write burst Same as for allbrst = 0
2 Reads to

non-
prefetchable
area

Incrementing burst with
BUSY cycles inserted.
Same behaviour with
read and write combin-
ing.

Reads are treated as a prefetchable burst. See below.

Reads to
prefetchable
area

Incrementing burst of
maximum allowed size,
filling prefetch buffer,
starting at address
boundary defined by
prefetch buffer.

Core will perform full (or part that fits in prefetch buffer) fixed/
wrapping burst on master interface and then respond with data.
No BUSY cycles are inserted.
If the access made to the slave interface is larger than the maxi-
mum supported access size on the master interface then a incre-
menting burst of unspecified length will be used to fill the
prefetch buffer. This (read combining) is not supported for wrap-
ping bursts.

Write burst Same as for allbrst = 0
* Access to prefetchable area where the core’s prefetch buffer is ised (VHDL generic pfen /= 0).
GRIP, Sep 2018, Version 2018.3 608 www.cobham.com/gaisler

GRLIB IP Core
52.2.8 Transaction ordering, starvation and AMBA arbitration schemes

The core is configured at implementation to use one of two available schemes to handle incoming
accesses. The core will issue SPLIT responses when it is busy and on incoming read accesses. If the
core has been configured to use first-come, first-served ordering it will keep track of the order of
incoming accesses and serve the requests in the same order. If first-come, first-served ordering is dis-
abled the core will give some advantage to the master it has a response for and then allow all masters
in to arbitration simultaneously, moving the decision on which master that should be allowed to
access the core to the bus arbitration.
When designing a system containing a core the expected traffic patterns should be analyzed. The
designer must be aware how SPLIT responses affect arbitration and how the selected transaction
ordering in the core will affect the system. The two different schemes are further described in sections
52.2.9 and 52.2.10.

52.2.9 First-come, first-served ordering

First-come, first served ordering is used when the VHDL generic fcfs is non-zero.
With first-come, first-served ordering the core will keep track of the order of incoming accesses. The
accesses will then be served in the same order. For instance, if master 0 initiates an access to the core,
followed by master 3 and then master 5, the core will propagate the access from master 0 (and respond
with SPLIT on a read access) and then respond with SPLIT to the other masters. When the core has a
response for master 0, this master will be allowed in arbitration again by the core asserting HSPLIT.
When the core has finished serving master 0 it will allow the next queued master in arbitration, in this
case master 3. Other incoming masters will receive SPLIT responses and will not be allowed in arbi-
tration until all previous masters have been served.
An incoming locked access will always be given precedence over any other masters in the queue.
A burst that has initiated a pre-fetch operation will receive SPLIT and be inserted last in the master
queue if the burst is longer than the maximum burst length that the core has been configured for.
It should be noted that first-come, first-served ordering may not work well in systems where an AHB
master needs to have higher priority compared to the other masters. The core will not prioritize any
master, except for masters performing locked accesses.

52.2.10 Bus arbiter ordering

Bus arbiter ordering is used when VHDL generic fcfs is set to zero.
When several masters have received SPLIT and the core has a response for one of these masters, the
master with the queued response will be allowed in to bus arbitration by the core asserting the corre-
sponding HSPLIT signal. In the following clock cycle, all other masters that have received SPLIT
responses will also be allowed in bus arbitration as the core asserts their HSPLIT signals simultane-
ously. By doing this the core defers the decision on the master to be granted next to the AHB arbiter.
The core does not show any preference based on the order in which it issued SPLIT responses to mas-
ters, except to the master that initially started a read or write operation. Care has been taken so that the
core shows a consistent behavior when issuing SPLIT responses. For instance, the core could be sim-
plified if it could issue a SPLIT response just to be able to change state, and not initiate a new opera-
tion, to an access coming after an access that read out prefetched data. When the core entered its idle
state it could then allow all masters in bus arbitration and resume normal operation. That solution
could lead to starvation issues such as:
T0: Master 1 and Master 2 have received SPLIT responses, the core is prefetching data for Master 1
T1: Master 1 is allowed in bus arbitration by setting the corresponding HSPLIT
T2: Master 1 reads out prefetch data, Master 2 HSPLIT is asserted to let Master 2 in to bus arbitration
GRIP, Sep 2018, Version 2018.3 609 www.cobham.com/gaisler

GRLIB IP Core

T3: Master 2 performs an access, receives SPLIT, however the core does not initiate an access, it just
stalls in order to enter its idle state.
T4: Master 2 is allowed in to bus arbitration, Master 1 initiates an access that leads to a prefetch and
Master 1 receives a SPLIT response
T5: Master 2 performs an access, receives SPLIT since the core is prefetching data for master 1
T6: Go back to T0
This pattern will repeat until Master 1 backs away from the bus and Master 2 is able to make an access
that starts an operation over the core. In most systems it is unlikely that this behavior would introduce
a bus lock. However, the case above could lead to an unexpectedly long time for Master 2 to complete
its access. Please note that the example above is illustrative and the problem does not exist in the core
as the core does not issue SPLIT responses to (non-locked) accesses in order to just change state but a
similar pattern could appear as a result of decisions taken by the AHB arbiter if Master 1 is given
higher priority than Master 2.
In the case of write operations the scenario is slightly different. The core will accept a write immedi-
ately and will not issue a SPLIT response. While the core is busy performing the write on the master
side it will issue SPLIT responses to all incoming accesses. When the core has completed the write
operation on the master side it will continue to issue SPLIT responses to any incoming access until
there is a cycle where the core does not receive an access. In this cycle the core will assert HSPLIT for
all masters that have received a SPLIT response and return to its idle state. The first master to access
the core in the idle state will be able to start a new operation. This can lead to the following behavior:
T0: Master 1 performs a write operation, does NOT receive a SPLIT response
T1: Master 2 accesses the core and receives a SPLIT response
T2: The core now switches state to idle since the write completed and asserts HSPLIT for Master 2.
T3: Master 1 is before Master 2 in the arbitration order and we are back at T0.
In order to avoid this last pattern the core would have to keep track of the order in which it has issued
SPLIT responses and then assert HSPLIT in the same order. This is done with first-come, first-served
ordering described in section 52.2.9.

52.2.11 AMBA SPLIT support

Support for AMBA SPLIT responses is enabled/disabled through the VHDL generic split. SPLIT sup-
port should be enabled for most systems. The benefits of using SPLIT responses is that the bus on the
core’s slave interface side can be free while the core is performing an operation on the master side.
This will allow other masters to access the bus and generally improve system performance. The use of
SPLIT responses also allows First-come, first-served transaction ordering.
For configurations where the core is the only slave interface on a bus, it can be beneficial to imple-
ment the core without support for AMBA SPLIT responses. Removing support for SPLIT responses
reduces the area used by the core and may also reduce the time required to perform accesses that tra-
verse the core. It should be noted that building a bi-directional core without support for SPLIT
responses will increase the risk of access collisions.
If SPLIT support is disabled the core will insert wait states where it would otherwise issue a SPLIT
response. This means that the arbitration ordering will be left to the bus arbiter and the core cannot be
implemented with the First-come, first-served transaction ordering scheme. The core will still issue
RETRY responses to resolve dead lock conditions, to split up long burst and also when the core is
busy emptying it’s write buffer on the master side.
The core may also be implemented with dynamic SPLIT support, this allows the use of SPLIT
responses to be configurable via the core’s register interface (see SP field in the core’s Control regis-
ter).
GRIP, Sep 2018, Version 2018.3 610 www.cobham.com/gaisler

GRLIB IP Core

52.2.12 Core latency

The delay incurred when performing an access over the core depends on several parameters such as
core configuration, the operating frequency of the AMBA buses, AMBA bus widths and memory
access patterns. This section deals with latencies in the core’s bridge function. Access protection
mechanisms may add additional delays, please refer to the description of access protection for a
description of any additional delays.
Table 719 below shows core behavior in a system where both AMBA buses are running at the same
frequency and the core has been configured to use AMBA SPLIT responses. Table 720 further down
shows core behavior in the same system without support for SPLIT responses.

While the transitions shown in tables 719 and 720 are simplified they give an accurate view of the
core delay. If the master interface needs to wait for a bus grant or if the read operation receives wait
states, these cycles must be added to the cycle count in the tables. The behavior of the core with a fre-

Table 719.Example of single read with FFACT = 1, and SPLIT support

Clock cycle Core slave side activity Core master side activity
0 Discovers access and transitions from idle state Idle
1 Slave side waits for master side, SPLIT response

is given to incoming access, any new incoming
accesses also receive SPLIT responses.

Discovers slave side transition. Master interface output
signals are assigned.

2 If bus access is granted, perform address phase. Other-
wise wait for bus grant.

3 Register read data and transition to data ready state.
4 Discovers that read data is ready, assign read

data output and assign SPLIT complete
Idle

5 SPLIT complete output is HIGH
6 Typically a wait cycle for the SPLIT:ed master to

be allowed into arbitration. Core waits for master
to return. Other masters receive SPLIT
responses.

7 Master has been allowed into arbitration and per-
forms address phase. Core keeps HREADY high

8 Access data phase. Core has returned to idle
state.

Table 720.Example of single read with FFACT = 1, without SPLIT support

Clock cycle Core slave side activity Core master side activity
0 Discovers access and transitions from idle state Idle
1 Slave side waits for master side, wait states are

inserted on the AMBA bus.
Discovers slave side transition. Master interface output
signals are assigned.

2 Bus access is granted, perform address phase.
3 Register read data and transition to data ready state.
4 Discovers that read data is ready, assign

HREADY output register and data output regis-
ter.

Idle

5 HREADY is driven on AMBA bus. Core has
returned to idle state
GRIP, Sep 2018, Version 2018.3 611 www.cobham.com/gaisler

GRLIB IP Core

quency factor of two between the buses is shown in tables 721 and 722 (best case, delay may be larger
depending on which slave clock cycle an access is made to the core).

Table 723 below lists the delays incurred for single operations that traverse the bridge while the bridge
is in its idle state. The second column shows the number of cycles it takes the master side to perform
the requested access, this column assumes that the master slave gets access to the bus immediately
and that each access is completed with zero wait states. The table only includes the delay incurred by
traversing the core. For instance, when the access initiating master reads the core’s prefetch buffer,
each additional read will consume one clock cycle. However, this delay would also have been present
if the master accessed any other slave.
Write accesses are accepted with zero wait states if the bridge is idle, this means that performing a
write to the idle core does not incur any extra latency. However, the core must complete the write
operation on the master side before it can handle a new access on the slave side. If the core has not
transitioned into its idle state, pending the completion of an earlier access, the delay suffered by an
access be longer than what is shown in the tables in this section. Accesses may also suffer increased
delays during collisions when the core has been instantiated to form a bi-directional bridge. Locked
accesses that abort on-going read operations will also mean additional delays.

Table 721.Example of single read with FFACT = 2, Master freq. > Slave freq, without SPLIT support

Slave side
clock cycle

Core slave side activity Master side
clock cycle

Core master side activity

0 Discovers access and transitions from idle
state

0 Discovers slave side transition. Master inter-
face output signals are assigned.

1 Slave side waits for master side, wait states
are inserted on the AMBA bus.2 1 Bus access is granted, perform address

phase.3
4 2 Register read data and transition to data

ready state.5
6 Discovers that read data is ready, assign

HREADY output register and data output
register.

3 Idle

7 HREADY is driven on AMBA bus. Core
has returned to idle state

Table 722.Example of single read with FFACT = 2, Master freq. > Slave freq, without SPLIT support

Slave side
clock cycle

Core slave side activity Master side
clock cycle

Core master side activity

0 Discovers access and transitions from idle
state

0 Idle
1

1 Slave side waits for master side, wait states
are inserted on the AMBA bus.

2 Discovers slave side transition. Master inter-
face output signals are assigned.

3 Bus access is granted, perform address
phase.

2 Discovers that read data is ready, assign
HREADY output register and data output
register.

4 Register read data and transition to data
ready state.

5 Idle
3 HREADY is driven on AMBA bus. Core

has returned to idle state
6
7

GRIP, Sep 2018, Version 2018.3 612 www.cobham.com/gaisler

GRLIB IP Core

If the core has been implemented to use AMBA SPLIT responses there will be an additional delay
where, typically, one cycle is required for the arbiter to react to the assertion of HSPLIT and one clock
cycle for the repetition of the address phase.
Note that if the core has support for read and/or write combining, the number of cycles required for
the master will change depending on the access size and length of the incoming burst access. For
instance, in a system where the bus in the core’s master side is wider than the bus on the slave side,
write combining will allow the core to accept writes with zero wait states and then combine several
accesses into one or several larger access. Depending on memory controller implementation this
could reduce the time required to move data to external memory, and will reduce the load on the mas-
ter side bus.

52.2.13 Endianness

The core is designed for big-endian systems.

52.3 General access protection and address translation

52.3.1 Overview

The core provides two types of access protection. The first option is to use a bit vector to implement
access restriction on a memory page basis. The second option is to use a page-table to provide access
restriction and address translation. Regardless of the protection strategy, the core provides means to
assign masters on the IO bus in groups where each group can be associated with a data structure
(access restriction vector or page table) in memory. The core can be implemented to support a dynam-
ically configurable page size from 4 to 512 KiB, or a fixed page size of 4 KiB.
When a master on the IO bus initiates an access to be propagated by the core, the core will first look at
the incoming master’s group assignment setting to determine to which group the master belongs.
When the group is known, the core can propagate or inhibit the access based on the group’s attributes,
or determine the address of the in-memory data structures to use for access checks (and possibly
address translation). The in-memory data structure may be cached by the core, otherwise the informa-
tion will be fetched from main memory.
Once the core has the necessary information to process the incoming access, the access will be either
allowed to propagate through the core or, in case the access is to a restricted memory location, be
inhibited. If the access is inhibited, the core will issue an AMBA ERROR response to the master if the
incoming access is a read access. The core implements posted writes, therefore write operations will
not receive an AMBA ERROR response. An interrupt can, optionally, be asserted when an access is
inhibited. The AHB failing access register can be configured to log the first or most recent access that
was inhibited.
When enabled, the core always checks access permissions when a master initiates an access. For the
access protection and translation operation to be effective the masters are required to adhere to the
AMBA 2.0 specification and not issue burst transfers that cross a 1 KiB address boundary.

Table 723.Access latencies

Access Master acc. cycles Slave cycles Delay incurred by performing access over core
Single read 3 1 1 * clkslv + 3 * clkmst

Burst read with prefetch 2 + (burst length)x 2 2 * clkslv + (2 + burst length)* clkmst

Single writexx (2) 0 0

Burst writexx (2 + (burst length)) 0 0

x A prefetch operation ends at the address boundary defined by the prefetch buffer’s size
xx The core implements posted writes, the number of cycles taken by the master side can only affect the next access.
GRIP, Sep 2018, Version 2018.3 613 www.cobham.com/gaisler

GRLIB IP Core

It is possible for masters to access the core’s register interface through the core. In this case the core
will perform an access to itself on the System AHB bus. For configurations where the core is used to
form a bi-directional core, any data structures read by the core must be located on the same bus as the
core’s master interface. The core cannot access data structures that are placed on the same bus as mas-
ters that the core protects against, in other words data structures must be accessible on a slave on the
System bus, see figure 139.

52.3.2 Delays incurred from access protection

The time required for the core’s master interface to start an access may be delayed by access protec-
tion checks. Table 724 below shows the added delays, please refer to section 52.2.12 for a description
of delays from the core’s bridge operation.

52.4 Access Protection Vector

The Access Protection Vector (APV) consists of a continuous bit vector where each bit determines the
access rights to a memory page. The bit vector provides access restriction on the full 4 GiB AMBA
address space. The required size of the bit vector depends on the page size used by the core, see table
below:

Each group can have a bit vector with a base address specified by a field in the group’s Group Control
Register. When a master performs an access to the core, the master’s group number is used to select
one of the available bit vectors. The AMBA access size used to fetch the vector is fixed at implemen-
tation time and can be read out from the core’s Capability register 1. If the AMBA access size to use is
32-bits (WORD sized) and the page size is 4 KiB, bits 31:17 of the incoming address (HADDR) are
used to index a word in the bit vector, and bits HADDR[16:12] are used to select one of the 32 bits in
the word. For each increase in AMBA access size (DWORD, 4WORD, 8WORD), one bit less of the

Table 724.Access protection check latencies

Protection mode Delay in clock cycles on master side
Disabled 0
Write-protection only and read access 0
Master assigned to group in passthrough or inactive group 1
Access Protection Vector, cache hit 1
Access Protection Vector cache miss, cache disabled/not implemented Minimumx 4 clock cycles
IOMMU Protection, cache hit 1
IOMMU Protection, TLB miss, TLB disabled/not implemented Minimumx 4 clock cycles
x The core may suffer additional AMBA bus delays when accessing the vector in memory. 4 cycles is the minimum time
required and assumes that the core is instantly granted access to the bus and that data is delivered with zero wait states.

Table 725.Bit vector size vs. page size

Page size Bit vector size
4 KiB 128 KiB
8 KiB 64 KiB
16 KiB 32 KiB
32 KiB 16 KiB
64 KiB 8 KiB
128 KiB 4 KiB
256 KiB 2 KiB
512 KiB 1 KiB
GRIP, Sep 2018, Version 2018.3 614 www.cobham.com/gaisler

GRLIB IP Core

physical address is used to index the vector and this bit is instead used to select one specific bit in the
data read from memory. Similarly, for each increase in page size one bit less of the physical address is
used.
The lowest page is protected by the most significant bit in the bit vector. This means that page 0 is
protected by the most significant bit in byte 0 read from the bit vector’s base address (using big endian
addressing). When performing WORD accesses, the lowest page is protected by bit 31 in the accessed
word (using the bit numbering convention used throughout this document).
If the bit at the selected position is ‘0’, the access to the page is allowed and the core will propagate
the access. If the selected bit is ‘1’, and the access is an read access, an AMBA ERROR response is
given to the master initiating the access. If the selected bit is ‘1’, and the access is a write access, the
write is inhibited (not propagated through the core).

52.4.1 Access Protection Vector cache

The core can be implemented with an internal memory that caches the Access Protection Vector. The
cache size is configurable at implementation time and depends on a number of parameters that can be
read out via Capability registers 0 and 1. If the core has been implemented with IOMMU functionality
and a IOMMU Translation Lookaside Buffer (TLB), the RAMs in the APV cache will be shared with
the IOMMU TLB.
The cache is implemented as a direct-mapped cache built up of one data RAM and one tag RAM. The
number of locations in each RAM is the number of lines in the cache. The width of the data RAM
(cache line size) is the same as the size of the AMBA accesses used to fetch the APV from main mem-
ory. The width and contents of the tag RAM depends on the number of supported groups, cache line
size and number of lines in the cache.
The address used to select a position in the RAMs, called the set address, must have log2(number of
lines in the cache) bits. The number of address bits taken from the physical address required to
uniquely address one position in the bit vector depends on the cache line size. The number of required
bits for each allowed cache line size is shown in table 726 below.

If the core has support for more than one group, the cache must also be tagged with the group ID. The
number of bits required to uniquely select one group is log2(number of groups).
This means that in order to be able to cache the full bit vectors for all supported groups the cache
address (set address) must have log2(number of groups) + (required physical address bits) address
bits. The number of required lines in the cache to be able to hold all vectors is:
cache lines = (number of groups) * (220 / (cache line size))

If the cache size is not large enough to hold a copy of each position in the bit vector, part of the phys-
ical address and group will be placed in the cache tag RAM instead. If the number of lines in the cache
allows keeping a cached data of all positions in all bit vectors, the set address and tag data arrange-
ment shown in table 727 will be used.
For the set address/tag RAM tables below the following values are used:

Table 726.Cache line size vs. physical address bits

Cache line
size in bits

Bits of physical address needed to identify one position depending on page size

4 KiB 8 KiB 16 KiB 32 KiB 64 KiB 128 KiB 256 KiB 512 KiB
32 15 14 13 12 11 10 9 8
64 14 13 12 11 10 9 8 7
128 13 12 11 10 9 8 7 6
256 12 11 10 9 8 7 6 5
GRIP, Sep 2018, Version 2018.3 615 www.cobham.com/gaisler

GRLIB IP Core

SB = Set address bits = log2(cache line size)
HB = Required number of bits of physical address = See table 726 above.
GB = Required number of bits to select one group = log2(number of groups)

If the number of lines in the cache allows part of the group ID to be part of the set address, the
arrangement will be:

If the number of lines in the cache only allows part of the required physical address to be part of the
set address, the arrangement will be:

In the first arrangement, where (set address bits) = (group ID bits) + (physical address bits), there
will never be a collision in the cache. In the two other arrangements there is not room for all positions
in the bit vector(s). This means that a cached copy for one memory page can be replaced with the bit
vector for another memory page. Since the physical address is used as the set address, accesses from a
master assigned to one group may evict cached bit vector data belonging to another group. This may
not be wanted in systems where interference between groups of masters should be minimized. In
order to minimize inter-group interference, the core can be implemented with support for using as
much of the group ID as possible in the set address, this functionality is called group-set-addressing.
The core has support for group-set-addressing if the CA field in Capability register 0 is non-zero. If
the number of set address bits (cache lines) is large enough to cache all bit vectors, the set address and

Table 727.Set address bits = (group ID bits) + (Physical address bits)
Set address:
31 (HB+BG-1) HB (HB-1) 0

Not present Group ID Physical address

Contents of Tag RAM:
31 0

Not present V

0 Valid (V) - Signals that addressed position in cache contains valid data

Table 728.Set address bits < (group ID bits) + (Physical address bits)
Set address:
31 SB HB HB-1 0

Not present Part of Group ID Physical address

Contents of Tag RAM:
31 0

Not present Part of Group ID V

0 Valid (V) - Signals that addressed position in cache contains valid data

Table 729.Set address bits < (group ID bits) + (Physical address bits)
Set address:
31 SB 0

Not present Low bits of physical address

Contents of Tag RAM:
31 HB-SB 1 0

Not present Group ID High bits of physical address V

0 Valid (V) - Signals that addressed position in cache contains valid data
GRIP, Sep 2018, Version 2018.3 616 www.cobham.com/gaisler

GRLIB IP Core

tag RAM arrangement will be as described by table 727. If the number of set address bits will allow
the whole group ID to be part of the set address, the arrangement will be:

If only part of the group ID can be used for the set address, the arrangement will be:

Group-set-addressing is enabled via the GS field in the core’s Control register.

52.4.2 Constraining the memory area covered by the APV cache

In a typical system, the normal case for an AMBA master core is to perform accesses to main mem-
ory. In order to reduce latency, the protection data for these accesses is ideally cached within the core.
However, main memory is not likely to occupy the full AMBA address range. If accesses outside a
certain access range is expected to be rare, and if it is not critical if these accesses suffer a higher
latency, it can be beneficial to restrict the memory range for which the core caches the Access Protec-
tion Vector. The benefit of this is that the cache size can be reduced while the same hit rate is kept for
the specified memory area, alternatively the hit rate could possibly be increased while keeping the
cache size constant.
The core can be configured at implementation to only cache the bit vector for a specified memory
range. Capability register 1 contains an address and a mask that describes this area. Bit vector data for
the specified memory range will be cached by the core. Bit vector data for accesses made outside the
memory range will not be placed in the cache, and will instead be fetched for memory on each access.
The impact of having a non-zero mask in Capability register 1 is that for each ‘1’ in the mask, one
physical address bit can be removed from the cache set address in the examples given earlier in this
section.

52.4.3 Access Protection Vector cache flush operation

If the contents of a vector is modified the core cache must be flushed by writing to the TLB/Cache
Flush Register. The TLB/Cache Flush register contains fields to flush the entire cache or to flush the
lines belonging to a specified group. In order to flush entries for a specific group, group-set-address-
ing must be implemented and enabled. Performing a group flush without group-set-addressing may
only flush part of the cache and can lead to unexpected behavior.
The core will not propagate any transfers while a cache flush operation is in progress.

Table 730.Group set address: Set address bits < (group ID bits) + (Physical address bits)
Set address:
31 SB GB-1 0

Not present Low bits of physical address Group ID

Contents of Tag RAM:
31 1 0

Not present High bits of physical address V

0 Valid (V) - Signals that addressed position in cache contains valid data

Table 731.Group set address: Set address bits < (group ID bits)
Set address:
31 GB-SB-1 0

Not present Low part of Group ID

Contents of Tag RAM:
31 1 0

Not present Physical address High part of group ID V

0 Valid (V) - Signals that addressed position in cache contains valid data
GRIP, Sep 2018, Version 2018.3 617 www.cobham.com/gaisler

GRLIB IP Core

52.5 IO Memory Management Unit (IOMMU) functionality

The IOMMU functionality of the core provides address translation and access protection on the full 4
GiB AMBA address space. The size of the address range where addresses are translated is specified
by the IOMMU Translation Range (ITR) field in the core’s Control register:
Size of translated address range in MiB = 16 MiB * 2ITR

The maximum allowed value of the ITR field is eight, which means that the IOMMU can provide
address translation to an area of size 16*28 = 4096 MiB, which is the full 32-bit address space. When
ITR is set to eight and a page size of 4 KiB is used, bits 31:12 of the incoming IO address are trans-
lated to physical addresses, using IO Page Tables entries describes below. Bits 11:0 of the incoming
access are propagated through the IOMMU. For each increase in page size one more bit will be
directly propagated through the IOMMU instead of being translated.
If ITR is less then eight the most significant bits of the IO address must match the value of the
TMASK field in Capability register 2. If an access is outside the range specified by TMASK the
access will be inhibited. Table 732 shows the the effect of different ITR values. As an example, with
ITR set to 2, the IOMMU will perform address translation for a range that spans 64 MiB. This range
will be located at offset TMASK[31:26]. Accesses to addresses that do not have their most significant
bits set to match TMASK[31:26] will be inhibited. The table also shows the number of pages within
the decoded range and the memory required to hold the translation information (page tables) in main
memory. The pgsz value is the value of the PGSZ field in the control register.

Table 732.Effects of IOMMU Translation Range setting

ITR Size of translated range TMASK bits used Number of pages Size of page tables
0 16 MiB TMASK[31:24] 4096 / 2pgsz 16 / 2pgsz KiB
1 32 MiB TMASK[31:25] 8192 / 2pgsz 32 / 2pgsz KiB
2 64 MiB TMASK[31:26] 16384 / 2pgsz 64 / 2pgszKiB
3 128 MiB TMASK[31:27] 32768 / 2pgsz 128 / 2pgsz KiB
4 256 MiB TMASK[31:28] 655536 / 2pgsz 256 / 2pgsz KiB
5 512 MiB TMASK[31:29] 131072 / 2pgsz 512 / 2pgsz KiB
6 1024 MiB TMASK[31:30] 262144 / 2pgsz 1 / 2pgsz MiB
7 2048 MiB TMASK[31] 524288 / 2pgsz 2 / 2pgsz MiB
8 4096 MiB TMASK not used 1048576 / 2pgsz 4 / 2pgsz MiB
GRIP, Sep 2018, Version 2018.3 618 www.cobham.com/gaisler

GRLIB IP Core

52.5.1 IO Page Table Entry

Address translation is performed by looking up translation information in a one-level table present in
main memory. Part of the incoming address is used to index the table that consists of IO Page Table
Entries. The format of an IO Page Table Entry (IOPTE) is shown in table 733 below.

When the core has IOMMU protection enabled all, incoming accesses from masters belonging to an
active group, which is not in pass-through mode, will be matched against TMASK. If an access is out-
side the range specified by ITR/TMASK, the access will be inhibited and may receive an AMBA
ERROR response (not applicable when the access is a posted write).
If the incoming access is within the range specified by ITR/TMASK, the core will use the incoming
IO address to index the page table containing the address translation information for the master/IO
address. The core may be implemented with an Translation Lookaside Buffer (TLB) that may hold a
cached copy of the translation information. Otherwise the translation information will be fetched from
main memory. The base address of the page table to use is given by the Group Configuration register
to which the master performing the access is assigned. Please see the register description of the Group
Configuration register for constraints on the page table base address. The core will use bits X:Y to
index the table, where X depends on the value of the ITR field in the core’s Control register, and Y
depends on the page size (Y = 12 + PGSZ field in Control register).
When the core has fetched the translation information (IOPTE) for the accesses page it will check the
IOPTE’s Valid (V) and Writeable (W) fields. If the IOPTE is invalid, the access will be inhibited. If
the Writeable (W) field is unset and the access is a write access, the access will be inhibited. Other-
wise the core will, for a page size of 4 KiB, use the IOPTE field PPAGE, bits 27:8, and bits 11:0 of the
incoming IO address to form the physical address to use when the access is propagated by the core
(physical address: PPAGE[27:8] & IOADDR[11:0]).
If the valid (V) bit of the IOPTE is ‘0’ the core may or may not store the IOPTE in the TLB (if imple-
mented). This is controlled via the SIV field in the core’s Control register.

52.5.2 Prefetch operations and IOMMU protection

During normal bridge operation, and with Access Protection Vector protection, the core determines if
data for an access can be prefetched by looking at the IO address and the System bus plug and play

Table 733.IOMMU Page Table Entry (IOPTE)
31 8 7 6 5 4 3 2 1 0

PPAGE C R BO BS W V R

31:8 Physical Page (PPAGE) - Bits 27:8 of this field corresponds to physical address bits 31:12 of the
page. With a 4 KiB page size, PPAGE[27:8] is concatenated with the incoming IO address bits [11:0]
to form the translated address. For each increase in page size one bit less of PPAGE is used and one
bit more of the incoming IO address is used: this means that with a 16 KiB page size ,
PPAGE[27:10] will be concatenated with the incoming IO address bits [13:0] to form the translated
address.
Bits 31:27 of this field are currently discarded by the IOMMU and are present in the data structure
for forward compatibility with systems using 36-bit AMBA address space.

7 Cacheable (C) - This field is currently not used by the IOMMU
6:5 RESERVED
4 Bus select Override (BO) - If this field is set to ‘1’ then the bus selection is made via the IOPTE.BS

field.
3 Bus Select (BS) - Overrides master configuration register BS field when BO field in this PTE is set.
2 Writeable (W) - If this field is ‘1’ write access is allowed to the page. If this field is ‘0’, only read

accesses are allowed.
1 Valid (V) - If this field is ‘1’ the PTE is valid. If this field is ‘0’, accesses to the page covered by this

PTE will be inhibited.
0 RESERVED
GRIP, Sep 2018, Version 2018.3 619 www.cobham.com/gaisler

GRLIB IP Core

information. This operation cannot be done without introducing additional delays when the core is
using IOMMU protection. The incoming IO address must first be translated before it can be deter-
mined if the access is to a memory area that can be prefetched. In order to minimize delays the core
makes the assumption that any incoming burst access is to a prefetchable area. The result is that when
using IOMMU protection all burst accesses will result in the core performing a prefetch operation.

52.5.3 Translation Lookaside Buffer operation

The core can be implemented with an internal memory that caches IO Page Table Entries. This mem-
ory is referred to as a Translation Lookaside Buffer (TLB). The TLB size is configurable at imple-
mentation time and depends on a number of parameters that can be read out via Capability registers 0
and 2. If the core has been implemented with Access Protection Vector functionality and an APV
cache, the RAMs for the APV cache will be shared with the IOMMU TLB.
The TLB is implemented as a direct-mapped cache built up of one data RAM and one tag RAM. The
number of locations in each RAM is the number of entries in the TLB. The width of the data RAM
(entry size) is the same as the size of the AMBA accesses used to fetch page table entries from main
memory. The width and contents of the tag RAM depends on the number of supported groups, entry
size and number of entries in the TLB.
The address used to select a position in the RAMs, called the set address, must have log2(number of
entries in the TLB) bits. The number of address bits taken from the physical address required to
uniquely address one position in the TLB depends on the entry size. The number of required bits for
each allowed entry size is shown in table 726 below, the values in the third column is the number of
address bits that must be used to accommodate the largest translatable range (maximum value of ITR
field in the core’s Control register). Note that an entry size larger than 32 bits results in an TLB that
holds multiple IOPTEs per entry.

If the core has support for more than one group, the TLB entries must also be tagged with the group
ID. The number of bits required to uniquely select one group is log2(number of groups).
This means that in order to be able to cache the page tables for all supported groups the TLB address
(set address) must have log2(number of groups) + (required physical address bits) address bits. The
number of required entries in the TLB to be able to hold all vectors is:
TLB entries = (number of groups) * (220 / (entry size))

If the TLB is not large enough to hold a copy of each position in the page table, part of the physical
address and group will be placed in the tag RAM. The core will implement the TLB depending on the
parameters mentioned above. If the number of entries in the TLB allows keeping a copy of all posi-
tions in all page tables, the set address and tag data arrangement shown in table 735 will be used.
For the set address/tag RAM tables below the following values are used:

Table 734.TLB entry size vs. physical address bits

Entry
size in
bits

Entry
size in
IOPTEs

Bits of physical address needed to identify one position depending on page size

4 KiB 8 KiB 16 KiB 32 KiB 64 KiB 128 KiB 256 KiB 512 KiB
32 1 20 19 18 17 16 15 14 13
64 2 19 18 17 16 15 14 13 12
128 4 18 17 16 15 14 13 12 11
256 8 17 16 15 14 13 12 11 10
GRIP, Sep 2018, Version 2018.3 620 www.cobham.com/gaisler

GRLIB IP Core

SB = Set address bits = log2(number of TLB entries)
HB = Required number of bits of physical address = See table 734 above.
GB = Required number of bits to select one group = log2(number of groups)

If the number of entries in the TLB allows part of the group ID to be part of the set address, the
arrangement will be:

If the number of entries in the TLB only allows part of the required physical address to be part of the
set address, the arrangement will be:

In the first arrangement, where (set address bits) = (group ID bits) + (physical address bits), there
will never be a collision in the TLB. In the two other arrangements there is not room for all entries in
the page table(s). This means that a cached IOPTE for one memory page can be replaced with the
IOPTE for another memory page. Since the physical address is used as the set address, accesses from
a master assigned to one group may evict cached IOPTE’s belonging to another group. This may not
be wanted in systems where interference between groups of masters should be minimized. In order to
minimize inter-group interference, the core can be implemented with support for using as much of the
group ID as possible in the set address, this functionality is called group-set-addressing.
The core has support for group-set-addressing if the IT field in Capability register 0 is non-zero. If the
number of set address bits (TLB entries) is large enough to cache all page tables, the set address and

Table 735.Set address bits = (group ID bits) + (Physical address bits)
Set address:
31 (HB+BG-1) HB (HB-1) 0

Not present Group ID Physical address

Contents of Tag RAM:
31 0

Not present V

0 Valid (V) - Signals that addressed position in cache contains valid data

Table 736.Set address bits < (group ID bits) + (Physical address bits)
Set address:
31 SB HB HB-1 0

Not present Part of Group ID Physical address

Contents of Tag RAM:
31 0

Not present Part of Group ID V

0 Valid (V) - Signals that addressed position in cache contains valid data

Table 737.Set address bits < (group ID bits) + (Physical address bits)
Set address:
31 SB 0

Not present Low bits of physical address

Contents of Tag RAM:
31 HB-SB 1 0

Not present Group ID High bits of physical address V

0 Valid (V) - Signals that addressed position in cache contains valid data
GRIP, Sep 2018, Version 2018.3 621 www.cobham.com/gaisler

GRLIB IP Core

tag RAM arrangement will be as described by table 735. If the number of set address bits will allow
the whole group ID to be part of the set address, the arrangement will be:

If only part of the group ID can be used for the set address, the arrangement will be:

Group-set-addressing is enabled via the GS field in the core’s Control register.

52.5.4 TLB flush operation

If the contents of a page table is modified the TLB must be flushed by writing to the TLB/Cache Flush
Register. The TLB/Cache Flush register contains fields to flush the entire TLB or to flush the entries
belonging to a specified group. In order to flush entries for a specific group, group-set-addressing
must be implemented and enabled. Performing a group flush without group-set-addressing may only
flush part of the TLB and can lead to unexpected behavior.
When working in IOMMU mode, the core can be configured to not store a IOPTE in the TLB if the
IOPTE’s valid (V) bit is cleared. This behavior is controller via the SIV field in the core’s Control reg-
ister.
The core will not propagate any transfers while a flush operation is in progress.

52.6 Fault-tolerance

In order to attain fault-tolerance the core should be implemented with inferred memory technology for
the read buffer, write buffer and any FCFS buffer. This will implement the buffers in flip-flops and the
core must then be implemented using techniques such as radiation hardened registers or TMR inser-
tion.
The Access Protection Vector cache and IOMMU TLB can be implemented with the same options as
above or using non-protected memory cells. When using non-protected memory cells the core can be
implemented to use byte-parity to protect entries in the cache/TLB. If an error is detected it will be
processed as a cache/TLB miss and the data will be re-read from main memory. A detected error will
also be reported via the core’s status register and the core also has support for signaling errors via its
statistic output.
Errors can be injected in the Access Protection Vector cache and IOMMU TLB via the Data and Tag
RAM Error Injection registers.

Table 738.Group set address: Set address bits < (group ID bits) + (Physical address bits)
Set address:
31 SB (GB-1) 0

Not present Low bits of physi-
cal address

Group ID

Contents of Tag RAM:
31 1 0

Not present High bits of physical address V

0 Valid (V) - Signals that addressed position in cache contains valid data

Table 739.Group set address: Set address bits < (group ID bits)
Set address:
31 GB-SB-1 0

Not present Low part of group ID

Contents of Tag RAM:
31 1 0

Not present Physical address High part of Group ID V

0 Valid (V) - Signals that addressed position in cache contains valid data
GRIP, Sep 2018, Version 2018.3 622 www.cobham.com/gaisler

GRLIB IP Core

52.7 Statistics

In order to record statistics, a LEON4 Statistics Unit should be connected to the core. The core has the
following statistics outputs:

52.8 Multi-bus bridge

The core can be instantiated in a version with two AHB master interfaces. These interfaces can be
connected to separate AHB buses. The top-level entity griommu_mb contains additional signals for
the second AHB master interface. Using the griommu_mb entity will enable bus select fields in the
core’s master configuration registers and the LB field in the core’s control register. The bus select
fields in the Master configuration registers allows the user to select which AHB master interface that
should be used for accesses initiated by a specific master. The control register field LB selects which
AHB master interfaces that should be used when the core fetches IOPTEs or APV bit vector data from
memory.
Note that the bus selection in registers is active even if the core is disabled through the core’s control
register.

52.9 ASMP support

In some systems there may be a need to have separated instances of software each controlling a group
of masters. In this case, sharing of the IOMMU register interface may not be wanted as it would allow
software to modify the protection settings for a group of masters that belongs to another software
instance. The core can be implemented with ASMP support to support systems where software enti-
ties are separated by address space. In this case, the core’s register interface is mirrored on different 4
KiB pages. Different write protection settings can be set for each mirrored block of registers. This
allows use of a memory management unit to control that software running can write to one, and only
one, subset of registers.
When ASMP support is enabled, the field NARB in Capability register 0 is non-zero. The value of
NARB tells how many ASMP register blocks that are available. Each ASMP register block mirrors
the standard register set described in section 52.10 with the addition that some registers may be write
protected. Table 741 contains a column that shows if a register is writable when accessed from an
ASMP register block. The core’s Control register, Master configuration register(s), Diagnostic cache
registers, the ASMP access control register(s) can never be written via ASMP register block. These
registers are only available in the first register set starting at the core register set base address. ASMP
register block n is mapped at an offset n*0x1000 from the core’s register base address.

Software should first set up the IOMMU and assign the masters into groups. Then the ASMP control
registers should be configured to constrain which registers that can be written from each ASMP block.
After this initialization is done, other parts of the software environment can be brought up.

Table 740.IOMMU Statistics

Output Description
hit High for one cycle during TLB/cache hit.
miss High for one cycle during TLB/cache miss
pass High for one cycle during passthrough access
accok High for one cycle during access allowed
accerr High for one cycle during access denied
walk High while core is busy performing a table walk or accessing the access protection vector
lookup High while core is performing cache lookup/table walk
perr High for one cycle when core detects a parity error in the APV cache
GRIP, Sep 2018, Version 2018.3 623 www.cobham.com/gaisler

GRLIB IP Core

As an example, consider the case where OS A will control masters 0, 1 and 4 while OS B will control
masters 2 and 3. In this case it may be appropriate to map masters 0, 1 and 4 to group 0 and master 2
and 3 to group 1. The ASMP access control registers can then be configured to only allow accesses to
the Group control register for group 0 from ASMP register block 1 and likewise only allow accesses
to the Group control register for group 1 from ASMP register block 2.
OS A will then map in ASMP register block 1 (registers within page located at core base offset +
0x1000) and OS B will then map in ASMP register block 2 (registers within page located at core base
offset + 0x2000). This way OS a will be able to change the base address and the properties of group 0,
containing its masters, without being able to change the protection mechanisms of group 1 belonging
to OS B. Note that since an OS is able to flush the TLB/cache it is able to impact the I/O performance
of masters assigned to other OS instances. Also note that care must be taken when clearing status bits
and setting the mask register that controls interrupt generation.

52.10 Registers

The core is programmed through registers mapped into AHB I/O address space. All accesses to regis-
ter address space must be made with word (32-bit) accesses.

Table 741.GRIOMMU registers

AHB address offset Register Writable in ASMP block
0x00 Capability register 0 No
0x04 Capability register 1 No
0x08 Capability register 2 No
0x0C Reserved -
0x10 Control register No
0x14 TLB/cache flush register Yes, protected**
0x18 Status register Yes, protected**
0x1C Interrupt mask register Yes, protected**
0x20 AHB Failing Access register No
0x24 - 0x3C Reserved, must not be accessed -
0x40 - 0x7C Master configuration registers.

Master n configuration register is located at offset 0x40 + n*0x4.
No

0x80-0xBC Group control registers.
Group n’s control register is located at offset 0x80 + n*0x4.

Yes, protected**

0xC0 Diagnostic cache access register No
0xC4 - 0xE0 Diagnostic cache access data registers 0 - 7 No
0xE4 Diagnostic cache access tag register No
0xE8 Data RAM error injection register No
0xEC Tag RAM error injection register No
0xF0 - 0xFF Reserved, must not be accessed No
0x100 - 0x13F ASMP access control registers.

The control register for ASMP block n is located at offset
0x100+n*0x4.

No

* Register is duplicated in ASMP register block at offset 0x1000 + register offset. The number of ASMP register blocks is
given by the NARB field in Capability register 0. ASMP register block n starts at offset n*0x1000. Register is only writ-
able if allowed by the corresponding ASMP access control register field.
GRIP, Sep 2018, Version 2018.3 624 www.cobham.com/gaisler

GRLIB IP Core

52.10.1

Table 742.0x00 - LAP0 - Capability register 0

Capability Register 0

31 30 29 28 27 24 23 20 19 18 17 16 15 14 13 12 11 9 8 7 4 3 0

A AC CA CP RESERVED NARB CS FT ST I IT IA IP RESERVED MB GRPS MSTS

* * * * 0 * * * * * * * * 0 * * *

r r r r r r r r r r r r r r r r r

31 Access Protection Vector (A) - If this bit is ‘1’, the core has support for Access Protection Vector
30 Access Protection Vector Cache (AC) - If this bit is ‘1’, the core has a internal cache for Access Pro-

tection vector lookups.
29 Access Protection Vector Cache Addressing (CA):

0: Core only supports standard addressing, group number is used as tag
1: Core supports using group ID as part of cache set address

28 Access Protection Vector Cache Pipeline (CP) - If this bit is set to ‘1’ the core has a pipeline stage
added on the APV cache’s address. This means one cycle additional latency.

27:24 RESERVED
23:20 ASMP Register Blocks (NARB) - This field contains the number of ASMP register blocks that the

core implements. If this field is non-zero the core has NARB ASMP register blocks with the first
block starting at offset 0x1000 and the last block starting at offset NARB*0x1000.

19 Configurable Page Size (CS) - If this bit is ‘1’ the core supports several page sizes and the size is set
via the Control register field PGSZ. If this bit is ‘0’, a fixed page size of 4 KiB is used.

18:17 Fault Tolerance (FT) - “00” - No fault tolerance, “01” - APV cache and/or IOMMU TLB is protected
by parity

16 Statistics (S) - If this field is ‘1’ the core collects statistics
15 IOMMU functionality enable (I) - If this bit is ‘1’, the core has support for IOMMU functionality.
14 IOMMU TLB (IT) - If this bit is ‘1’, the core has an IOMMU Translation Lookaside Buffer (TLB)
13 IOMMU Addressing (IA):

0: Core only supports standard addressing, group number is used as tag
1: Core supports using group ID as part of TLB set address

12 IOMMU TLB Address Pipeline (IP) - If this bit is set to ‘1’ the core has a pipeline stage added on the
TLB’s address. This means one cycle additional latency.

11:9 RESERVED
8 Multi-bus (MB) - Set to 1 if core is connected to two system buses.
7:4 Number of groups (GRPS) - Number of groups that the core has been implemented to support - 1.
3:0 Numbers of masters (MSTS) - Number of masters that the core has been implemented to support - 1.

Reset value: Implementation dependent
GRIP, Sep 2018, Version 2018.3 625 www.cobham.com/gaisler

GRLIB IP Core

52.10.2 Capability Register 1

Table 743.0x04 - LAP1 - Capability register 1
31 20 19 16 15 8 7 5 4 0

CADDR CMASK CTAGBITS CISIZE CLINES

* * * * *

r r r r r

31:20 Access Protection Vector Cacheable Address (CADDR) - If the CMASK field of this register is non-
zero the CADDR and CMASK fields specify the base address of the memory area protected by the
part of the bit vector that can be cached by the core.

19:16 Access Protection Vector Cacheable Mask (CMASK) - Number of ‘1’s in the Access Protection Vec-
tor Cachable mask. If the core is implemented with a Access Protection Vector cache and this value
is non-zero, the CMASK field together with the CADDR field specify a memory area protected by a
part of the bit vector that can be cached by the core. The CMASK value corresponds to the number
of most significant bits of the CADDR field that are matched against the incoming AMBA address
when determining if the protection bits for the memory area should be cached. As an example, if
CMASK is 1 and CADDR is 0x000, the core will cache protection information for the address range
0x00000000 - 0x7FFFFFFF. With the same mask and CADDR = 0x800, the core would cache pro-
tection information for the address range 0x80000000 - 0xFFFFFFFF.

15:8 Access Protection Vector Cache Tag bits (CTAGBITS) - The width in bits of the Access Protection
Vector cache’s tags.

7:5 Access Protection Vector Access size (CSIZE) - This field indicates the AMBA access size used
when accessing the Access Protection Vector in main memory. This is also the cache line size for the
APV cache (if enabled). The values are:
000: 32-bit (4 byte)
001: 64-bit (8 byte)
010: 128-bit (16 byte)
011: 256-bit (32-byte)

4:0 Access Protection Vector Cache Lines (CLINES) - Number of lines in the Access Protection Vector
cache. The number of lines in the cache is 2CLINES.
GRIP, Sep 2018, Version 2018.3 626 www.cobham.com/gaisler

GRLIB IP Core

52.10.3

Table 744.0x04 - CAP2 - Capability register 2

Capability Register 2

52.10.4 Control Register

31 24 23 20 19 18 17 16 15 8 7 5 4 0

TMASK RESERVED MTYPE TTYPE TTAGBITS ISIZE TLBENT

* 0 * * * * *

r r r r r r r

31:24 Translation Mask (TMASK) - The incoming IO address bits IOADDR[31:24] must match this field,
depending on the setting of the ITR field in the core’s Control register, for an address translation
operation to be performed.

23:20 RESERVED
19:18 IOMMU Type (MTYPE) - Shows IOMMU implementation type. This field is always 0, other values

are reserved for future versions of the core. If this field is non-zero, it should trigger a software alert
as future versions of the core may not be backward compatible.

17:16 TLB Type (TTYPE) - Show implementation of Translation Lookaside Buffer. This field is always 0,
other values are reserved for future versions of the core. If this field is non-zero, it should trigger a
software alert as future versions of the core may not be backward compatible.

15:8 TLB Tag bits (TTAGBITS) - The width in bits of the TLB tag.
7:5 IOMMU Access size (ISIZE) - This field indicates the AMBA access size used when accessing page

tables in main memory. This is also the line size for the TLB (if enabled). The values are:
000: 32-bit (4 byte)
001: 64-bit (8 byte)
010: 128-bit (16 byte)
011: 256-bit (32-byte)

4:0 TLB entries (TLBENT) - Number of entries in the TLB. The number of entries is 2TLBENT.
Reset value: implementation dependent

Table 745.0x10 - CTRL - Control register
31 21 20 18 17 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED PGSZ LB SP ITR DP SIV HPROT AU WP DM GS CE PM EN

0 0 0 0 0 0 0 0 0 0 0 0 0 * 0

r rw rw rw rw rw rw rw rw rw rw rw rw rw rw

31:21 RESERVED
20:18 Page Size (PGSZ) - The value in this field determines the page size mapped by page table entries and

bit vector positions. Valid values are:
000: 4 KiB
001: 8 KiB
010: 16 KiB
011: 32 KiB
100: 64 KiB
101: 128 KiB
110: 256 KiB
111: 512 KiB
This field is only writable if the CS field in Capability register 0 is non-zero.

17 Lookup bus (LB) - The value of this bit controls AHB master interface to use for fetching bit vector
and/or page table entries from memory when the core has been implemented with support for multi-
ple buses (multiple AHB master interfaces). If this field is ‘0’, the first master interface will be used
for vector/table lookups. If this field is ‘1’, the second master interface will be used for lookups.
This field is only writable if the MB field in Capability register 0 is non-zero.
GRIP, Sep 2018, Version 2018.3 627 www.cobham.com/gaisler

GRLIB IP Core
16 SPLIT support (SP) - The value of this bit controls if the core can issue AMBA SPLIT responses to
masters on the IO bus. If this bit is ‘1’ the core will use AMBA SPLIT responses. If this bit is ‘0’, the
core will insert waitstates and not issue AMBA SPLIT responses. This bit is read-only if the core has
been implemented with support for only one response mode. If this bit is writable, software must
make sure that the IO bus is free and that the core is not handling any ongoing accesses before
changing the value of this bit. The core performs rudimentary checks in order to determine if the
slave side is idle before changing SPLIT behavior. Therefore AMBA SPLIT responses may not be
disabled or enabled immediately after this bit is written.

15:12 IOMMU Translation Range (ITR) - This field defines the size of the address range translated by the
core’s IOMMU functionality. The size of the decoded address range is 16 MiB * 2ITR and the
decoded memory area is located on an address with the most significant bits specified by the
TMASK field in Capability register 2, unless ITR = 8 in which case the whole address space is cov-
ered by the translated range.

11 Disable Prefetch (DP) - When this bit is ‘1’ the core will not perform any prefetch operations. This
bit is read only if the core has been implemented without support for prefetching data. During nor-
mal operation prefetch of data improves performance and should be enabled (the value of this bit
should be ‘0’). Prefetching may need to be disabled in scenarios where IOMMU protection is
enabled, which leads to a prefetch operation on every incoming burst access, and when the core is
used in bi-directional bridge configurations where dead locks may be resolved by the core dropping
prefetch data.

10 Save Invalid IOPTE (SIV) - If this field is ‘1’ the core will save IOPTEs that have their valid (V) bit
set to ‘0’ if the core has been implemented with a TLB. If this field is ‘0’ the core will not buffer an
IOPTE with valid (V) set to ‘0’ and perform an page table lookup every time the page covered by the
IOPTE is accessed. If the value of this field is changed, a TLB flush must be made to remove any
existing IOPTEs from the core’s internal buffer. Also if this field is set to ‘0’, any diagnostic accesses
to the TLB should not set the IOPTE valid bit to ‘0’ unless the Tag valid bit is also set to ‘0’.
This field is only accessible if the core has support for IOMMU protection and is implemented with
a Translation Lookaside Buffer (TLB).

Table 745.0x10 - CTRL - Control register
GRIP, Sep 2018, Version 2018.3 628 www.cobham.com/gaisler

GRLIB IP Core
9:8 HPROT encoding (HPROT) - The value of this field will be assigned to the AMBA AHB HPROT
signal bits 3:2 when the core is fetching protection data from main memory. HPROT(3) signals if the
access is cacheable and HPROT(2) signals if the access is bufferable.
This field is only used when the core has been implemented with support for Access Protection Vec-
tor or IOMMU functionality.

7 Always Update (AU) - If this bit is set to ‘0’ the AHB failing access register will only be updated if
the Access Denied (AD) bit in the Status register is ‘0’ when the access is denied. Otherwise the
AHB failing access register will be updated each time an access is denied, regardless of the Access
Denied (AD) bit’s value.

6 Write Protection only (WP) - If this bit is set to ‘1’ the core will only used the Access Protection Vec-
tor to protect against write accesses. Read accesses will be propagated over the core without any
access restriction checks. This will improve the latency for read operations.
This field has no effect when the core is using IOMMU protection (PM field = “01”). When using
IOMMU protection all accesses to the range determined by TMASK and ITR will be checked
against the page table, unless the access is from a master that is assigned to an inactive group or a
group in pass-through mode.

5 Diagnostic Mode (DM) - If this bit is set to ‘1’ the core’s internal buffers can be accessed via the
Diagnostic interface (see Diagnostic cache access register) when the DE field of the Status register
has been set by the core. Set this bit to ‘0’ to leave Diagnostic mode. While in this mode the core will
not forward any incoming AMBA accesses.

4 Group-Set-addressing (GS) - When this bit is set to ‘1’, the core will use the group number as part of
the Access Protection Vector cache set address. This bit can only be set if fields A and CA, or I and
IA, of Capability register 0 are non-zero.

3 Cache/TLB Enable (CE) - When this bit is set to ‘1’, the core’s internal cache/TLB is enabled. Note
that the core can be implemented without internal cache/TLB. Capability register 0, fields AC and IT
show if the core has internal cache.

2:1 Protection Mode (PM) - This value selects the protection mode to use. “00” selects Group Mode and/
or Access Protection Vector mode (if available). “01” selects IOMMU mode. This field is read only
if the core only has support for one mode setting.

0 Enable (EN) - Core enable. If this bit is set to 1 the core is enabled. If this bit is set to 0 the core is
disabled and in pass-through mode. After writing this bit software should read back the value. The
change has not taken effect before the value of this bit has changed. The bit transition may be
blocked if the core is in diagnostic access mode or otherwise occupied.

Table 745.0x10 - CTRL - Control register
GRIP, Sep 2018, Version 2018.3 629 www.cobham.com/gaisler

GRLIB IP Core

52.10.5

Table 746.0x14 - FLUSH - TLB/cache flush register

TLB/cache Flush Register

52.10.6

Table 747.0x18 - STAT - Status register

Status Register

31 8 7 4 3 2 1 0

RESERVED FGRP RES GF F

0 0 0 0 0

r rw r rw rw

31:1 RESERVED
7:4 Flush Group (FGRP) - This field specifies the group to be used for a Group Flush, see GF field

below.
3:2 RESERVED
1 Group Flush (GF) - When this bit is written to ‘1’ the cache entries for the group selected by the

FGRP field will be flushed. More precisely the core will use the FGRP field as (part of the) set
address when performing the flush. This flush option is only available if the core has support for
group set addressing (CA field of Capability register 1 is non-zero). This flush option must only be
used if the GS bit in the Control register is set to ‘1’, otherwise old data may still be marked as valid
in the Access Protection Vector cache or IOMMU TLB. This bit will be reset to ‘0’ when a flush
operation has completed. A flush operation also affects the FL and FC fields in the Status register.

0 Flush (F) - When this bit is written to ‘1’ the core’s internal cache will be flushed. This bit will be
reset to ‘0’ when a flush operation has completed. A flush operation also affects the FL and FC fields
in the Status register.

31 6 5 4 3 2 1 0

RESERVED PE DE FC FL AD TE

0 0 0 0 0 0 0

r uc uc uc uc uc uc

31:6 RESERVED
5 Parity Error (PE) - The core sets this bit to ‘1’ when it detects a parity error in the tag or data RAM

of the APV cache. This field is cleared by writing ‘1’ to this position, writes of ‘0’ have no effect.
4 Diagnostic Mode Enabled (DE) - If this bit is set to ‘1’ the core is in Diagnostic Mode where the

core’s internal buffers can be accessed via the Diagnostic access registers. While in this mode the
core will not forward any incoming AMBA accesses.

3 Flush Completed (FC) - The core sets this bit to ‘1’ when a flush operation completes. This field is
cleared by writing ‘1’ to this position, writes of ‘0’ have no effect.

2 Flush started (FL) - The core sets this bit to ‘1’ when a Flush operation has started. This field is
cleared by writing ‘1’ to this position, writes of ‘0’ have no effect.

1 Access Denied (AD) - The core denied an AMBA access. This field is cleared by writing ‘1’ to this
position, writes of ‘0’ have no effect.

0 Translation Error (TE) - The core received an AMBA ERROR response while accessing the bit vec-
tor or page tables in memory. This also leads to the incoming AMBA access being inhibited.
Depending on the status of the Control register’s AU field and this register’s AD field this may also
lead to an update of the AHB Failing Access register.
GRIP, Sep 2018, Version 2018.3 630 www.cobham.com/gaisler

GRLIB IP Core

52.10.7

Table 748.0x1C - IMASK - Interrupt mask register

Interrupt Mask Register

52.10.8

Table 749.0x20 - AHBFAS - failing access register

Failing Access Register

52.10.9 Master Configuration Register(s)

31 6 5 4 3 2 1 0

RESERVED PEI R FCI FLI ADI TEI

0 0 0 0 0 0 0

r rw rw rw rw rw rw

31:6 RESERVED
5 Parity Error Interrupt (PEI) - If this bit is set to ‘1’ an interrupt will be generated when the PE bit in

the Status register transitions from ‘0’ to ‘1’.
4 RESERVED
3 Flush Completed Interrupt (FCI) - If this bit is set to ‘1’ an interrupt will be generated when the FC

bit in the Status register transitions from ‘0’ to ‘1’.
2 Flush Started Interrupt (FLI) - If this bit is set to ‘1’ an interrupt will be generated when the FL bit in

the Status register transitions from ‘0’ to ‘1’..
1 Access Denied Interrupt (ADI) - If this bit is set to ‘1’ an interrupt will be generated when the AD bit

in the Status register transitions from ‘0’ to ‘1’.
0 Translation Error Interrupt (TEI) - If this bit is set to ‘1’ an interrupt will be generated when the TE

bit in the Status register transitions from ‘0’ to ‘1’.
Reset value: 0x00000000

31 5 4 3 0

FADDR[31:5] FW FMASTER

0 0 0

r r r

31:5 Failing Address (FADDR[31:5]) - Bits 31:5 of IO address in access that was inhibited by the core.
This field is updated depending on the value of the Control register AU field and the Status register
AD field.

4 Failing Write (FW) - If this bit is set to ‘1’ the failed access was a write access, otherwise the failed
access was a read access. This field is updated depending on the value of the Control register AU
field and the Status register AD field.

3:0 Failing Master (FMASTER) - Index of the master that initiated the failed access. This field is
updated depending on the value of the Control register AU field and the Status register AD field.

Reset value: 0x00000000

Table 750.0x40-0x7C - MSTLFGO-15 - Master configuration register(s)
31 24 23 12 11 5 4 3 0

VENDOR DEVICE RESERVED BS GROUP

* * 0 0 0

r r r rw rw

31: 24 Vendor ID (VENDOR) - GRLIB Plug’n’play Vendor ID of master
23: 12 Device ID (DEVICE) - GRLIB Plug’n’play Device ID of master
11: 5 RESERVED
GRIP, Sep 2018, Version 2018.3 631 www.cobham.com/gaisler

GRLIB IP Core
4 Bus select for master (BS) - Master n’s bus select register is located at register address offset 0x40 +
n*0x4. This field specifies the the bus to use for accesses initiated by AHB master n. This field is
only available if the MB field in Capability register 0 is non-zero. Bus selection is active even if the
core control register enable bit is zero.

3:0 Group assignment for master - Master n’s group assignment field is located at register address offset
0x40 + n*0x4. This field specifies the group to which a master is assigned.

Table 750.0x40-0x7C - MSTLFGO-15 - Master configuration register(s)
GRIP, Sep 2018, Version 2018.3 632 www.cobham.com/gaisler

GRLIB IP Core

52.10.10

Table 751.0x80-0xAC - GRPCTRCO-15 - Group control register(s)

 Group Control Register(s)

52.10.11 Diagnostic Cache Access Register

31 1 0

BASE[31:2+SIZE] P AG

0 0 0

rw rw rw

31: 2 Base address (BASE) - Group n’s control register is located at offset 0x80 + n*0x4. This field con-
tains the base address of the data structure for the group.
The number of bits writeable in the data structure base address depends on the access size used to
fetch entries in the Access Protection Vector and/or the IOMMU page table. The access size is given
in the ISIZE and CSIZE Capability register fields.
This field is only writable if the core has been implemented with support for Access Protection Vec-
tor and/or IOMMU functionality.

1 Pass-through (P) - If this bit is set to ‘1’ and the group is active (see bit 0 below) the core will pass-
through all accesses made by master in this group and not use the address specified by BASE to per-
form look-ups in main memory. Note that this also means that the access will pass through untrans-
lated when the core is using IOMMU protection (even if the access is outside the translated range
defined by TMASK in Capability register 2).
If this bit is set to ‘0’, the core will use the contents in its cache, or in main memory, to perform
checks and possibly address translation on incoming accesses.
If the core has been implemented without support for Access Protection Vector and IOMMU, this
field is disabled.

0 Active Group (AG) - Indicates if the group is active. If this bit is set to ‘0’, all accesses made by mas-
ters assigned to this group will be blocked.
If the core has been implemented without support for Access Protection Vector and IOMMU,
accesses will be propagated if this bit is set to ‘1’. If the core has been implemented with support for
Access Protection Vector and/or IOMMU the core will check the P field of this register and possibly
also the in-memory data structure before allowing or blocking the access.

Table 752.0xC0 - DIAGCTRL - Diagnostic cache access register
31 30 29 22 21 20 19 18 0

DA RW RESERVED DP TP R SETADDR

0 0 0 0 0 0 NR

rw rw r rw rw r rw*

31 Diagnostic Access (DA) - When this bit is set to ‘1’ the core will perform a diagnostic operation to
the cache address specified by the SETADDR field. When the operation has finished this bit will be
reset to ‘0’.

30 Read/Write (RW) - If this bit is ‘1’ and the A field is set to ‘1’ the core will perform a read operation
to the cache. The result will be available in the Diagnostic cache access tag and data register(s). If
this bit is set to ‘0’ and the A field is set to ‘1’, the core will write the contents of the Diagnostic
cache access tag and data registers to the internal cache.

29:22 RESERVED
21 Data Parity error (DP) - This bit is set to ‘1’ if a parity error has been detected in the word read from

the cache’s data RAM. This bit can be set even if no diagnostic cache access has been made and it
can also be set after a cache write operation. This bit is read-only.

20 Tag Parity error (TP) - This bit is set to ‘1’ if a parity error has been detected in the word read from
the cache’s tag RAM. This bit can be set even if no diagnostic cache access has been made and it can
also be set after a cache write operation. This bit is read-only.

19 RESERVED
GRIP, Sep 2018, Version 2018.3 633 www.cobham.com/gaisler

GRLIB IP Core
18:0 Cache Set Address (SETADDR) - Set address to use for diagnostic cache access. When a read oper-
ation has been performed, this field should not be changed until all wanted data has been read from
the Diagnostic cache access data and tag registers. Changing this field invalidates the contents of the
data and tag registers.

* This register can only be accessed if the core has an internal cache and the DE bit in the Status register is set

Table 752.0xC0 - DIAGCTRL - Diagnostic cache access register
GRIP, Sep 2018, Version 2018.3 634 www.cobham.com/gaisler

GRLIB IP Core

52.10.12

Table 753.0xC4-0xE0 - DIAG0 - Diagnostic cache access data register 0 - 7

 Diagnostic Cache Access Data Register 0 - 7

52.10.13

Table 754.0xE4 - DIAG 7 - Diagnostic cache access tag register

 Diagnostic Cache Access Tag Register

52.10.14

Table 755.0xE8 - DERRI - Data RAM error injection register

 Data RAM Error Injection Register

52.10.15

Table 756.0xEC - TERRI - Tag RAM error injection register

 Tag RAM Error Injection Register

31 0

CDATAn

NR

rw*

31:0 Cache data word n (CDATAn) - The core has 8 Diagnostic cache access data registers. Diagnostic
cache access data register n holds data bits [31+32*n:32*n] in the cache line.

* This register can only be accessed if the core has an internal cache and the DE bit in the Status register is set
Reset value: Undefined

31 0

TAG V

NR

rw*

31:1 Cache tag (TAG) - The size of the tag depends on cache size. The contents of the tag depends on
cache size and addressing settings.

0 Valid (V) - Valid bit of tag
* This register can only be accessed if the core has an internal cache and the DE bit in the Status register is set
Reset value: Undefined

31 0

DPERRINJ

0

rw

31:0 Data RAM Parity Error Injection (DPERRINJ) - Bit DPERRINJ[n] in this register is XOR:ed with
the parity bit for data bits [7+8*n:8*n] in the data RAM.

* This register can only be accessed if the core has an internal cache and the FT field in Capability register 0 is non-zero
Reset value: 0x00000000

31 0

TPERRINJ

0

rw

0 Tag RAM Parity Error Injection (TPERRINJ) - Bit TPERRINJ[n] in this register is XOR:ed with the
parity bit for tag bits [7+8*n:8*n] in the tag RAM.

* This register can only be accessed if the core has an internal cache and the FT field in Capability register 0 is non-zero
Reset value: 0x00000000
GRIP, Sep 2018, Version 2018.3 635 www.cobham.com/gaisler

GRLIB IP Core

52.10.16

Table 757.0x100-0x10C - ASMPCTRL - ASMP access control register(s)

 ASMP Access Control Register

52.11 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x04F. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.
If implemented, the core’s second AHB master interface has 0x01 (Cobham Gaisler) and device iden-
tifier 0x010.

52.12 Implementation

52.12.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core does not support grlib_async_reset_enable. All registers that react on the reset signal will
have a synchronous reset.

52.12.2 Technology mapping

The core has two technology mapping generics memtech and fcfsmtech. memtech selects which mem-
ory technology that will be used to implement the FIFO memories. fcfsmtech selects the memory tech-
nology to be used to implement the First-come, first-served buffer, if FCFS is enaled.

52.12.3 RAM usage

The core instantiates one or several syncram_2p blocks from the technology mapping library (TECH-
MAP). If prefetching is enabled max(mstmaccsz, slvaccsz)/32 syncram_2p block(s) with organization
(max(rburst,iburst)-max(mstmaccsz, slvaccsz)/32) x 32 is used to implement read FIFO
(max(rburst,iburst) is the size of the read FIFO in 32-bit words). max(mstmaccsz, slvaccsz)/32 syn-

31 19 18 17 16 15 0

RESERVED FC SC MC GRPACCSZCTRL

0 0 0 0 0

r rw rw rw rw

31: 19 RESERVED
18 Flush register access control (FC) - If this bit is set to ‘1’ in the ASMP control register at offset

0x100 + n*0x4 then the TLB/cache flush register in ASMP register block n is writable. Otherwise
writes to the TLB/cache flush register in ASMP register block n will be inhibited.

17 Status register access control (SC) - If this bit is set to ‘1’ in the ASMP control register at offset
0x100 + n*0x4 then the Status register in ASMP register block n is writable. Otherwise writes to the
Status register in ASMP register block n will be inhibited.

16 Mask register access control (MC) - If this bit is set to ‘1’ in the ASMP control register at offset
0x100 + n*0x4 then the Master register in ASMP register block n is writable. Otherwise writes to the
Mask register in ASMP register block n will be inhibited.

15:0 Group control register access control (GRPACCSZCTRL) - ASMP register block n’s group access
control field is located at register address offset 0x100 + n*0x4. This field specifies which of the
Group control registers that are writable from an ASMP register block. If GRPACCSZCTRL[i] in
the ASMP access control register at offset 0x100 + n*0x4 is set to ‘1’ then Group control register i is
writable from ASMP register block n.

Reset value: 0x00000000
GRIP, Sep 2018, Version 2018.3 636 www.cobham.com/gaisler

GRLIB IP Core

cram_2p block(s) with organization (wburst - max(mstmaccsz, slvaccsz)/32) x 32, is always used to
implement the write FIFO (where wburst is the size of the write FIFO in 32-bit words).
If the core has support for first-come, first-served ordering then one fcfs x 4 syncram_2p block will be
instantiated, using the technology specified by the VHDL generic fcfsmtech.
If the core has an Access Protection Vector cache and/or IOMMU TLB, the cache/TLB will be imple-
mented using one syncramft block for the tag RAM and one syncramft block for the data RAM.

52.13 Configuration options

Table 758 shows the configuration options of the core (VHDL generics).

Table 758.Configuration options (VHDL generics)

Generic Function Allowed range Default
memtech Memory technology
iohsindex Slave I/F AHB index on IO bus 0 to NAHBMST-1 0
syshmindex Master I/F AHB index on System bus 0 to NAHBMST-1 0
syshmindex2 Master I/F AHB index for second AHB interface. Only

available if the entity griommu_mb is instantiated.
0 to NAHBMST-1 0

syshsindex Index for register slave AHB I/F connected to same bus
as core Master I/F

0 to NAHBMST-1 0

syshmaddr ADDR field of AHB slave BAR 0 on system bus 0 - 16#FFF# 0
syshmask MASK field of AHB slave BAR 0 on system bus. The

requied value of this generic depends on the setting of
generic narb (see below).

0 - 16#FFF# 16#FFF#

syshirq Interrupt line to use for IOMMU interrupts 1 - NAHBIRQ-1 1
dir 0 - clock frequency on the master bus is lower than or

equal to the frequency on the slave bus
1 - clock frequency on the master bus is higher than or
equal to the frequency on the slave bus
(for VHDL generic ffact = 1 the value of dir does not
matter)

0 - 1 0

ffact Frequency scaling factor between AHB clocks on master
and slave buses.

1 - 15 2

slv Slave bridge. Used in bi-directional bridge configuration
where slv is set to 0 for master bridge and 1 for slave
bridge. When a deadlock condition is detected slave
bridge (slv=1) will give RETRY response to current
access, effectively resolving the deadlock situation.
This generic must only be set to 1 for a bridge where the
frequency of the bus connecting the master interface is
higher or equal to the frequency of the AHB bus con-
necting to the bridge’s slave interface. Otherwise a race
condition during access collisions may cause the bridge
to deadlock.

0 - 1 0

pfen Prefetch enable. Enables read FIFO. 0 - 1 0
irqsync Interrupt forwarding. Forward interrupts from slave

interface to master interface and vice versa.
0 - no interrupt forwarding, 1 - forward interrupts 1 - 15,
2 - forward interrupts 0 - 31.
Since interrupts are forwarded in both directions, inter-
rupt forwarding should be enabled for one bridge only in
a bi-directional AHB/AHB bridge.

0 - 2 0
GRIP, Sep 2018, Version 2018.3 637 www.cobham.com/gaisler

GRLIB IP Core
wburst Length of write bursts in 32-bit words. Determines write
FIFO size and write burst address boundary. If the
wburst generic is set to 2 the bridge will not perform
write bursts over a 2x4=8 byte boundary. This generic
must be set so that the buffer can contain two of the max-
imum sized accesses that the bridge can handle.

2 - 32 8

iburst Instruction fetch burst length. This value is only used if
the generic ibrsten is set to 1. Determines the length of
prefetching instruction read bursts on the master side.
The maximum of (iburst,rburst) determines the size of
the core’s read buffer FIFO.

4 - 8 8

rburst Incremental read burst length. Determines the maximum
length of incremental read burst of unspecified length
(INCR) on the master interface. The maximum of rburst
and iburst determine the read burst boundary. As an
example, if the maximum value of these generics is 8 the
bridge will not perform read bursts over a 8x4=32 byte
boundary.
This generic must be set so that the buffer can contain
two of the maximum sized accesses that the bridge can
handle.
For systems where AHB masters perform fixed length
burst (INCRx , WRAPx) rburst should not be less than
the length of the longest fixed length burst.

4 - 32 8

bar0 Address area 0 decoded by the bridge’s slave interface.
Appears as memory address register (BAR0) on the
slave interface. The generic has the same bit layout as
bank address registers with bits [19:18] suppressed (use
functions ahb2ahb_membar and ahb2ahb_iobar in gais-
ler.misc package to generate this generic).

0 - 1073741823 0

bar1 Address area 1 (BAR1) 0 - 1073741823 0
bar2 Address area 2 (BAR2) 0 - 1073741823 0
bar3 Address area 3 (BAR2) 0 - 1073741823 0
sbus The number of the AHB bus to which the slave interface

is connected. The value appears in bits [1:0] of the user-
defined register 0 in the slave interface configuration
record and master configuration record.

0-3 0

mbus The number of the AHB bus to which the master inter-
face is connected. The value appears in bits [3:2] of the
user-defined register 0 in the slave interface configura-
tion record and master configuration record.

0-3 0

ioarea Address of the I/O area containing the configuration area
for AHB bus connected to the bridge’s master interface.
This address appears in the bridge’s slave interface user-
defined register 1. In order for a master on the slave
interface’s bus to access the configuration area on the
bus connected to the bridge’s master interface, the I/O
area must be mapped on one of the bridge’s BARs.
If this generic is set to 0, some tools, such as Cobham
Gaisler’s GRMON debug monitor, will not perform
Plug’n’Play scanning over the bridge.

0 - 16#FFF# 0

ibrsten Instruction fetch burst enable. If set, the bridge will per-
form bursts of iburst length for opcode access
(HPROT[0] = ‘0’), otherwise bursts of rburst length will
be used for both data and opcode accesses.

0 - 1 0

Table 758.Configuration options (VHDL generics)

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 638 www.cobham.com/gaisler

GRLIB IP Core
lckdac Locked access error detection and correction. Locked
accesses may lead to deadlock if a locked access is made
while an ongoing read access has received a SPLIT
response. The value of lckdac determines how the core
handles this scenario:
0: Core will deadlock
1: Core will issue an AMBA ERROR response to the
locked access
2: Core will allow both accesses to complete.
If the core is used to create a bidirectional bridge, a dead-
lock condition may arise when locked accesses are made
simultaneously in both directions. With lckdac set to 0
the core will deadlock. With lckdac set to a non-zero
value the slave bridge will issue an ERROR response to
the incoming locked access.

0 - 2 0

slvmaccsz The maximum size of accesses that will be made to the
bridge’s slave interface. This value must equal mst-
maccsz unless rdcomb /= 0 and wrcomb /= 0.

32 - 256 32

mstmaccsz The maximum size of accesses that will be performed by
the bridge’s master interface. This value must equal mst-
maccsz unless rdcomb /= 0 and wrcomb /= 0.

32 - 256 32

rdcomb Read combining. If this generic is set to a non-zero value
the core will use the master interface’s maximum AHB
access size when prefetching data and allow data to be
read out using any other access size supported by the
slave interface.
If slvmaccsz > 32 and mstmaccsz > 32 and an incoming
single access, or access to a non-prefetchable area, is
larger than the size supported by the master interface the
bridge will perform a series of small accesses in order to
fetch all the data. If this generic is set to 2 the core will
use a burst of small fetches. If this generic is set to 1 the
bridge will not use a burst unless the incoming access
was a burst.
Read combining is only supported for single accesses
and incremental bursts of unspecified length.

0 - 2 0

wrcomb Write combining. If this generic is set to a non-zero
value the core may assemble several small write accesses
(that are part of a burst) into one or more larger accesses
or assemble one or more accesses into several smaller
accesses. The settings are as follows:
0: No write combining
1: Combine if burst can be preserved
2: Combine if burst can be preserved and allow single
accesses to be converted to bursts (only applicable if
slvmaccsz > 32)
Only supported for single accesses and incremental
bursts of unspecified length

0 - 2 0

Table 758.Configuration options (VHDL generics)

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 639 www.cobham.com/gaisler

GRLIB IP Core
combmask Read/write combining mask. This generic determines
which ranges that the core can perform read/write com-
bining to (only available when rdcomb respectively
wrcomb are non-zero). The value given for combmask is
treated as a 16-bit vector with LSB bit (right-most) indi-
cating address 0x0 - 0x10000000. Making an access to
an address in an area marked as ‘0’ in combmask is
equivalent to making an access over a bridge with
rdcomb = 0 and wrcomb = 0. However, combmask is not
taken into account when the core performs a prefetch
operation (see pfen generic). When a prefetch operation
is initiated, the core will always use the maximum sup-
ported access size (when rdcomb /= 0).

0 - 16#FFFF# 16#FFFF#

allbrst Support all burst types
2: Support all types of burst and always prefetch for
wrapping and fixed length bursts.
1: Support all types of bursts
0: Only support incremental bursts of unspecified length
See section 52.2.7 for more information.
When allbrst is enabled, the core’s read buffer (size set
via rburst/iburst generics) must have at least 16 slots.

0 - 2 0

ifctrlen Interface control enable. When this generic is set to 1 the
input signals ifctrl.mstifen and ifctrl.slvifen can be used
to force the AMBA slave respectively master interface
into an idle state. This functionality is intended to be
used when the clock of one interface has been gated-off
and any stimuli on one side of the bridge should not be
propagated to the interface on the other side of the
bridge.
When this generic is set to 0, the ifctrl.* input signals are
unused.

0 - 1 0

fcfs First-come, first-served operation. When this generic is
set to a non-zero value, the core will keep track of the
order of incoming accesses and handle the requests in the
same order. If this generic is set to zero the bridge will
not preserve the order and leave this up to bus arbitra-
tion. If FCFS is enabled the value of this generic must be
higher or equal to the number of masters that may per-
form accesses over the bridge.

0 - NAHBMST 0

fcfsmtech Memory technology to use for FCFS buffer. When
VHDL generic fcfs is set to a non-zero value, the core
will instantiate a 4 bit x fcfs buffer to keep track of the
incoming master indexes. This generic decides the mem-
ory technology to use for the buffer.

0 - NTECH 0 (inferred)

scantest Enable scan support 0 - 1 0
split Use AMBA SPLIT responses. When this generic is set to

1 the core will issue AMBA SPLIT responses. When this
generic is set to 0 the core will insert waitstates instead
and may also issue AMBA RETRY responses. If this
generic is set to 0, the fcfs generic must also be set to 0,
otherwise a simulation failure will be asserted.

0 - 1 1

dynsplit Dynamic SPLIT responses. If this generic is non-zero
the Control register field SP will be writable. This allows
software to control if the core should use AMBA SPLIT
responses or waitstates on the IO bus. The VHDL
generic split must be set to 1 if this generic is set to 1.

0 - 1 0

Table 758.Configuration options (VHDL generics)

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 640 www.cobham.com/gaisler

GRLIB IP Core
nummst Number of masters connected to the bus that the core’s
slave interface connects to.

1 - NAHBMST-1 1

numgrp Number of groups 1 - NAHBMST-1 1
stat Enable statistics outputs 0 - 1 0
apv Include support for Access Protection Vector (APV).

Setting this generic to 1 includes support.
0 - 1 1

apvc_en Access Protection Vector cache. 0: disabled, 1: enabled. 0 - 1 0
apvc_ways Number of ways in Access Protection Vector cache 1 - 1 1
apvc_lines Number of lines in each way of the Access Protection

vector cache. The total size of the data cache in bytes
will be apvc_ways * tbw_accsz/8 * apvc_lines. This
value must be a power of two.
If the core is implemented with an IOMMU TLB, the
maximum value of this generic and VHDL generic tlb_-
num determines the number of lines in the cache.

16

apvc_tech Access Protection Vector cache memory technology.
This generic decides the technology setting for the
cache’s tag and data RAM.

0 - NTECH 0 (inferred)

apvc_gseta Allow use of group ID as part of cache set address. This
allows cache addressing scheme 2 to be used. The value
0 disables the use of group ID as part of the cache set
address and 1 enables the functionality. If the core is
implemented with an IOMMU TLB and VHDL generic
tlb_gseta is set to non-zero value, this will also enable
apvc_gseta.
This generic may only be set to a non-zero value if
VHDL generic numgrp > 1.

0 - 1 0

apvc_caddr If generic apvc_cmask is non-zero this generic specifies
the base address of the memory area that the core will
cache protection information for.The area is specified in
the same way as addresses for AHB slaves. To cache
protection information for the block 0x40000000 -
0x7FFFFFFF, set this generic to 0x400 and apvc_cmask
to 0xC00.

0 - 16#FFF# 0

apvc_cmask Specifies size of memory block for which protection
information will be cached by the core. If this generic is
zero the core will cache protection information for the
full AMBA address range. If this generic is 0x800 the
core will cache information for half the AMBA address
range, the base address for the cacheable area is speci-
fied by apvc_caddr.

0 - 16#FFF# 0

apvc_pipe Insert pipelining registers on APV cache.
The master -> group -> cache path may become critical
in a design. If there are timing problem on the tag or
cache RAM address inputs, set this generic to 1 and suf-
fer one cycle in additional penalty on cache accesses.
If the core is implemented with an IOMMU TLB and
VHDL generic tlb_pipe is set to non-zero value, this will
also enable apvc_pipe.

0 - 1 0

iommu Enable IOMMU functionality 0 - 1 0
iommutype Selects type of IOMMU functionality. Set to 0 0 - 1 0

Table 758.Configuration options (VHDL generics)

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 641 www.cobham.com/gaisler

GRLIB IP Core
tlb_num Number of entries in the IOMMU translation lookaside
buffer (TLB). A value of zero here implements the core
without a TLB. The width of an entry is determined
through the VHDL generic tbw_accsz. The total size of
the TLB in bytes will be tbw_accsz/8 * tlb_num. This
value must be a power of two.
If the core has been implemented with an APV cache,
the maximum value of this generic and VHDL generic
apvc_lines determines the number of entries in the TLB.

0 - 64 0

tlb_type Selects TLB implementation. Set to 0. 0 - 1 0
tlb_tech TLB memory technology. This generic decides the tech-

nology setting to use for implementing the TLB. In the
current version of the bridge this generic and VHDL
generic apvc_tech must have the same value.

0 - NTECH 0 (inferred)

tlb_gseta Allow use of group ID as part of TLB set address. This
allows cache addressing scheme 2 to be used. The value
0 disables the use of group ID as part of the TLB set
address and 1 enables the functionality. If the core is
implemented with an APV cache and VHDL generic
apvc_gseta is set to non-zero value, this will also enable
tlb_gseta.
This generic may only be set to a non-zero value if
VHDL generic numgrp > 1.

0 - 1 0

tlb_pipe Insert pipelining registers on TLB address.
The master -> group -> TLB path may become critical in
a design. If there are timing problem on the tag or cache
RAM address inputs, set this generic to 1 and suffer one
cycle in additional penalty on cache accesses.
If the core is implemented with an APV cache and
VHDL generic apvc_pipe is set to non-zero value, this
will also enable tlb_pipe.

0 - 1 0

tmask Translation mask. Specifies the value that the most sig-
nificant bits of the IO address must have for an address
to be translated. Bits 7:0 of this value specified
TMASK[31:24]. The default value 0xff is recom-
mended. However, this may not work well if the IO bus
has a GRLIB plug’n’play area.
Note that tmask must specify an address range that is
covered by one of the core’s memory bars. Otherwise the
core will not be selected by the AHB bus controller when
the tmask area is accessed.

0 - 16#ff# 16#ff#

tbw_accsz AMBA access size to use when fetching entries of the
Access Protection Vector and/or the IOMMU page table.
This value also sets the Access Protection Vector cache
line size and the TLB entry size. This value must not
exceed the maximum access size for the AHB master
interface.

32 - mstmaccsz 32

dpagesz Support for dynamic page size. If this generic is set to 1
the core will support selecting the page size via the Con-
trol register. If this generic is set to 0, the page size is
fixed to 4 KiB.

0 - 1 0

ft Fault tolerance. This setting determines if the APV cache
and/or TLB tag and data RAMs should be protected
against faults. Possible values are:
0 - disabled, 1 - byte parity

0 - 1 0

Table 758.Configuration options (VHDL generics)

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 642 www.cobham.com/gaisler

GRLIB IP Core
narb Number of ASMP register blocks. The core will be
implemented with narb ASMP register blocks. the
required syshmask settings for different narb values are:
narb 0 : hmask 0xfff, narb 1 : hmask 0xfe, narb 2 -3 :
hmask 0xfc, narb 4-7 : hmask 0xf80, narb 8 - 15 : hmask
0xf00

multiirq Enable interrupt propagation for second AHB master
interface. This generic is only available if the the entity
griommu_mb is instantiated. If this generic is set to ‘1’,
interrupt propagation, as configured via the irqsync
generic, will also be done for the second AHB master
interface.

0 - 1 0

Table 758.Configuration options (VHDL generics)

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 643 www.cobham.com/gaisler

GRLIB IP Core

52.14 Signal descriptions

Table 759 shows the interface signals of the core (VHDL ports).

Table 759.Signal descriptions (VHDL ports)

Signal name Field Type Function Active
RST Input Reset Low
HCLKSYS Input AHB system bus clock -
HCLKIO Input AHB IO bus clock -
IO_AHBSI * Input AHB slave input signals -
IO_AHBSO * Output AHB slave output signals -
IO_AHBPNP * Input AHB master output vector signals (on io/slave i/f

side). Used to decode plug’n’play vendor/device
ID of masters so that these values can be visible
in the Master control register(s).

-

SYS_AHBMI * Input AHB master input signals -
SYS_AHBMO * Output AHB master output signals -
SYS_AHBPNP * Input AHB slave input vector signals (on system/mas-

ter i/f side). Used to decode cachability and
prefetchability Plug&Play information on bus
connected to the bridge’s master interface.

-

SYS_AHBMI2 * Input AHB master input signals, second interface.
Only available on griommu_mb entity.

-

SYS_AHBMO2 * Output AHB master output signals, second interface.
Only available on griommu_mb entity.

-

SYS_AHBPNP2 * Input AHB slave input vector signals (on system/mas-
ter i/f side). Used to decode cachability and
prefetchability Plug&Play information on bus
connected to the bridge’s second master inter-
face. Only available on griommu_mb entity.

-

SYS_AHBSI * Input AHB slave input signals -
SYS_AHBSO * Output AHB slave output signals -
WLK_AHBMI * Input AHB master input signals -
WLK_AHBMO * Output AHB master output signals -
LCKI slck

blck
mlck

Input Used in systems with multiple AHB/AHB
bridges (e.g. bi-directional AHB/AHB bridge) to
detect deadlock conditions. Tie to “000” in sys-
tems with only uni-directional AHB/AHB bus.

High

LCKO slck
blck
mlck

Output Indicates possible deadlock condition High

STATO
(clocked by
HCLKSYS)

hit Output High for one cycle during TLB/cache hit. High
miss Output High for one cycle during TLB/cache miss High
pass Output High for one cycle during passthrough access High
accok Output High for one cycle during access allowed High
accerr Output High for one cycle during access OK High
walk Output High while core is busy performing a table walk

or accessing the access protection vector
High

lookup Output High while core is performing cache lookup/
table walk

High

perr Output High for one cycle when core detects a parity
error in the APV cache

High
GRIP, Sep 2018, Version 2018.3 644 www.cobham.com/gaisler

GRLIB IP Core
52.15 Library dependencies

Table 760 shows the libraries used when instantiating the core (VHDL libraries).

52.16 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.iommu.all;

entity griommu_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 ... -- other signals
);
end;

architecture rtl of griommu_ex is

 -- AMBA signals, system bus
 signal proc_ahbsi : ahb_slv_in_type;
 signal proc_ahbso : ahb_slv_out_vector;
 signal proc_ahbmi : ahb_mst_in_type;
 signal proc_ahbmo : ahb_mst_out_vector;

 -- AMBA signals, IO bus
 signal io_ahbsi : ahb_slv_in_type;
 signal io_ahbso : ahb_slv_out_vector;

IFCTRL mstifen Input Enable master interface. This input signal is
unused if the VHDL generic ifctrlen is 0. If
VHDL generic ifctrlen is 1 this signal must be
set to ‘1’ in order to enable the core’s AMBA
master interface, otherwise the master interface
will always be idle and will not respond to stim-
uli on the core’s AMBA slave interface.

High

slvifen Input Enable slave interface. This input signal is
unused if the VHDL generic ifctrlen is 0. If
VHDL generic ifctrlen is 1 this signal must be
set to ‘1’ in order to enable the core’s AMBA
slave interface, otherwise the interface will
always be ready and the bridge will not propa-
gate stimuli on the core’s AMBA slave interface
to the core’s AMBA master interface.

High

* see GRLIB IP Library User’s Manual

Table 760.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER MISC Component Component declaration

Table 759.Signal descriptions (VHDL ports)

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 645 www.cobham.com/gaisler

GRLIB IP Core

 signal io_ahbmi : ahb_mst_in_type;
 signal io_ahbmo : ahb_mst_out_vector;

 signal nolock : griommu_ctrl_type;
 signal noifctrl : griommu_ifctrl_type;
 signal dbgifctrl : griommu_ifctrl_type;
 signal griommu_stato : griommu_stat_type;

begin

nolock <= griommu_ctrl_none;
noifctrl <= griommu_ifctrl_none

-- Instantiate clock generators and AHBCTRL cores here
....
....
-- GRIOMMU
iommu: griommu
 generic map (
 memtech => memtech,
 iohsindex => 0,
 syshmindex => 4,
 syshsindex => 4,
 syshaddr => 16#200#,
 syshmask => 16#FFE#,
 syshirq => 1,
 slv => 0,
 dir => 1,
 ffact => 1,
 pfen => 1,
 wburst => 8,
 iburst => 8,
 rburst => 8,
 irqsync => 0, -- No interrupt synchronization
 bar0 => ahb2ahb_membar(16#000#, '0', '0', 16#800#),
 bar1 => ahb2ahb_membar(16#800#, '0', '0', 16#800#),
 sbus => 1,
 mbus => 0,
 ioarea => 16#FFF#,
 ibrsten => 0,
 lckdac => 0,
 slvmaccsz => 32, -- Maximum allowed access size by masters on io bus
 mstmaccsz => 128, -- Maximum allowed access size on system bus
 rdcomb => 2,
 wrcomb => 2B,
 allbrst => 0,
 ifctrlen => 0,
 fcfs => IO_NAHBM*CFG_IOMMU_FCFS,
 fcfsmtech => 0,
 scantest => scantest,
 split => CFG_IOMMU_FCFS,
 nummst => IO_NAHBM, -- Number of masters to support
 numgrp => CFG_IOMMU_NUMGRP,
 stat => CFG_IOMMU_STAT,
 apv => CFG_IOMMU_APV,
 apv_accsz => CFG_IOMMU_APVACCSZ,
 apvc_en => CFG_IOMMU_APVCEN,
 apvc_ways => 1, -- Only valid value
 apvc_lines => CFG_IOMMU_APVCLINES,
 apvc_tech => CFG_IOMMU_APVCTECH,
 apvc_gseta => CFG_IOMMU_APVCGSETA,
 apvc_caddr => CFG_IOMMU_APVCCADDR,
 apvc_cmask => CFG_IOMMU_APVCCMASK,
 apvc_pipe => CFG_IOMMU_APVCPIPE,
 iommu => CFG_IOMMU_IOMMU,
 iommutype => CFG_IOMMU_IOMMUTYPE,
 tlb_num => CFG_IOMMU_TLBNUM,
 tlb_type => CFG_IOMMU_TLBTYPE,
 tlb_tech => CFG_IOMMU_TLBTECH,
 tlb_gseta => CFG_IOMMU_TLBGSETA,
GRIP, Sep 2018, Version 2018.3 646 www.cobham.com/gaisler

GRLIB IP Core

 tlb_pipe => CFG_IOMMU_TLBPIPE,
 tmask => 16#ff#,
 tbw_accsz => CFG_IOMMU_TBWACCSZ,
 ft => CFG_IOMMU_FT)
 port map (
 rstn => rstn,
 hclksys => clkm,
 hclkio => clkm,
 io_ahbsi => io_ahbsi,
 io_ahbso => io_ahbso(0),
 io_ahbpnp => io_ahbmo(IO_NAHBM-1 downto 0),
 sys_ahbmi => sys_ahbmi,
 sys_ahbmo => sys_ahbmo(4),
 sys_ahbpnp => sys_ahbso,
 sys_ahbsi => io_ahbsi,
 sys_ahbso => io_ahbso(4),
 lcki => nolock,
 lcko => open,
 stato => griommu_stato,
 ifctrl => noifctrl);

end;
GRIP, Sep 2018, Version 2018.3 647 www.cobham.com/gaisler

GRLIB IP Core

53 GRPCI2 - 32-bit PCI(Initiator/Target) / AHB(Master/Slave) bridge

53.1 Overview

The GRPCI2 core is a bridge between the PCI bus and the AMBA AHB bus. The core is capable of
connecting to the PCI bus via both a target and a initiator/master interface. The connection to the
AMBA bus is an AHB master interface for the PCI target functionality and an AHB slave interface for
the PCI initiator functionality. The core also contains a DMA controller. For the DMA functionality,
the core uses the PCI initiator to connect to the PCI bus and an AHB master to connect to the AMBA
bus. Configuration registers in the core are accessible via a AMBA APB slave interface.
The PCI and AMBA interfaces belong to two different clock domains. Synchronization is performed
inside the core through FIFOs with configurable depth.
The PCI interface is compatible with the 2.3 PCI Local Bus Specification.

53.2 Configuration

The core has configuration registers located both in PCI Configuration Space (Compliant with the 2.3
PCI Local Bus Specification) and via an AMBA APB slave interface (for core function control and
DMA control). This section defines which configuration options that are implemented in the PCI con-
figuration space together with a list of capabilities implemented in the core. For a more detailed
description of the core registers and DMA controller registers, see section Registers.

53.2.1 Configuration & Capabilities

Which of the core capabilities that are implemented is configured through VHDL generics at core
instantiation. The implemented configuration can be determined by reading the Status & Capability
register accessible via the APB slave interface.
• The PCI vendor and device ID is set with the VHDL generic vendorid and deciceid.
• The PCI class code and revision ID is set with the VHDL generic classcode and revisionid.
• 32-bit PCI initiator interface is implemented when the VHDL generic master is enabled.
• 32-bit PCI target interface is implemented when the VHDL generic target is enabled.

Figure 140. Block diagram

PCI

AHB BUS

PCI BUS

32-bit

32, 64 or 128-bit

PCI

AHB
Master

AHB
Slave

AHB
Master

FIFO FIFO FIFO

Target Initiator
DMA
Ctrl

APB BUS

32-bit

APB
Slave
GRIP, Sep 2018, Version 2018.3 648 www.cobham.com/gaisler

GRLIB IP Core

• DMA controller is implemented when the VHDL generic dma is enabled.
• The depth and number of FIFOs is configured with the VHDL generic fifo_depth and fifo_count.
• PCI BARs. The default size and number of BARs implemented is configured with the VHDL

generic bar0 to bar5.
• User defined register in Extended PCI Configuration Space can be enabled with the VHDL

generic ext_cap_pointer.
• Device interrupt generation is enabled with the VHDL generic deviceirq.
• PCI interrupt sampling and forwarding is enabled with the VHDL generic hostirq.
• Support for two PCI functions is enabled with the VHDL generic multifunc.

53.2.2 PCI Configuration Space

The core implements the following registers in the PCI Configuration Space Header. For more
detailed information regarding each field in these registers please refer to the PCI Local Bus Specifi-
cation.

Table 761.GRPCI2: Implemented registers in the PCI Configuration Space Header

PCI address offset Register
0x00 Device ID, Vendor ID
0x04 Status, Command
0x08 Class Code, Revision ID
0x0C BIST, Header Type, Latency Timer, Cache Line Size
0x10 - 0x24 Base Address Registers
0x34 Capabilities Pointer
0x3C Max_Lat, Min_Gnt, Interrupt Pin, Interrupt Line
GRIP, Sep 2018, Version 2018.3 649 www.cobham.com/gaisler

GRLIB IP Core

53.2.2.1 Device ID and Vendor ID register

53.2.2.2 Status and Command Register

Table 762.0x00-0x10 - Device ID and Vendor ID register
31 16 15 0

Device ID Vendor ID

* *

r r

31 : 16 Device ID, Set by the deviceid VHDL generic.
15 : 0 Vendor ID, Set by the vendorid VHDL generic.

Table 763.G0x04 - STSCMD - Status and Command register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 11 10 9 8 7 6 5 4 3 2 1 0

D
P
E

S
S
E

R
M
A

R
T
A

S
T
A

DEV
SEL

timing

M
D
P
E

F
B
B
C

R
E
S

66
M
H
z

CL IS RESERVED ID Not
Imp

SE R
E
S

P
E
R

Not
Imp

M
W
I

Not
Imp

BM MS Not
Imp

0 0 0 0 0 0b01 0 0 0 * 1 0 0 0 0 0 0 0 0 0 0 0 0 0

wc wc wc wc wc r r r r r r r rw r rw r rw r rw r rw rw r

31 Detected Parity Error
30 Signaled System Error
29 Received Master Abort
28 Received Target Abort
27 Signaled Target Abort
26: 25 DEVSEL timing, Returns “01“ indicating medium
24 Master Data Parity Error
23 Fast Back-to-Back Capable, Returns zero. (Read only)
22 RESERVED
21 66 MHz Capable (Read only)

NOTE: In this core this bit has been defined as the status of the M66EN signal rather than the capa-
bility of the core. For a 33 MHz design, this signal should be connected to ground and this status bit
will have the correct value of ‘0’. For a 66 MHz design, this signal is pulled-up by the backplane and
this status bit will have the correct value of ‘1’. For a 66 MHz capable design inserted in a 33 MHz
system, this bit will then unfortunate only indicate a 33 MHz capable device.

20 Capabilities List, Returns one (Read only)
19 Interrupt Status (Read only)
18: 11 RESERVED
10 Interrupt Disable
9 NOT IMPLEMENTED, Returns zero.
8 SERR# Enable
7 RESERVED
6 Parity Error Response
5 NOT IMPLEMENTED, Returns zero.
4 Memory Write and Invalidate Enable
3 NOT IMPLEMENTED, Returns zero.
2 Bus Master
1 Memory Space
0 NOT IMPLEMENTED, Returns zero.
GRIP, Sep 2018, Version 2018.3 650 www.cobham.com/gaisler

GRLIB IP Core

53.2.2.3 Class Code and Revision ID Register

53.2.2.4 BIST, Header Type, Latency Timer, and Cache Line Size Register

53.2.2.5 Base Address Registers

53.2.2.6 Capabilities Pointer Register

Table 764.0x08 - CCRID - Class Code and Revision ID register
31 8 7 0

Class Code Revision ID

* *

r r

31 : 8 Class Code, Set by the classcode VHDL generic.
7 : 0 Revision ID, Set by the revisionid VHDL generic.

Table 765.0x0C- CCFG - BIST, Header Type, Latency Timer, and Cache Line Size register
31 24 23 16 15 8 7 0

BIST Header Type Latency Timer Cache Line Size

0 0 0 0

r r rw rw

31 : 24 NOT IMPLEMENTED, Returns zeros
23 : 16 Header Type, Returns 00
15 : 8 Latency Timer, All bits are writable.
7 : 0 NOT IMPLEMENTED, Returns zero.

Table 766.0xC0-0x24 - BASEADDR - Base Address Registers
31 4 3 2 1 0

Base Address PF Type MS

0 * 0 0

rw r r r

31 : 4 Base Address. The size of the BAR is determine by how many of the bits (starting from bit 31) are
implemented. Bits not implemented returns zero.

3 Prefetchable, Returns zero indicating non-prefetchable.
2 : 1 Type, Returns zero.
0 Memory Space Indicator

Table 767.0x34 - CAPP - Capabilities Pointer Register
31 8 7 0

RESERVED Capabilities Pointer

0 *

r r

31 : 8 RESERVED
7 : 0 Capabilities Pointer. Indicates the first item in the list of capabilities of the Extended PCI Configura-

tion Space. This offset is set with the VHDL generic cap_pointer.
GRIP, Sep 2018, Version 2018.3 651 www.cobham.com/gaisler

GRLIB IP Core

53.2.2.7 Max_Lat, Min_Gnt, Interrupt Pin and Interrupt Line Register

53.2.3 Extended PCI Configuration Space

This section describes the first item in the list of capabilities implemented in the Extended PCI Con-
figuration Space. This capability is core specific and contains the PCI to AMBA address mapping and
the option to change endianess of the PCI bus.
When user defined capability list items are implemented, the next pointer defines the offset of this list
item. The AMBA address mapping for these registers can be accessed in the core specific item (first
list item). The registers implemented in this AMBA address range must be compliant to the capability
list items defined in the 2.3 PCI Local Bus Specification.

Table 768.0x3C - CCFG2 - Max_Lat, Min_Gnt, Interrupt Pin and Interrupt Line register
31 24 23 16 15 8 7 0

Max_Lat Min_Gnt Interrupt Pin Interrupt Line

0 0 * 0

r r r rw

31 : 24 NOT IMPLEMENTED, Returns zero
23 : 16 NOT IMPLEMENTED, Returns zero
15 : 8 Interrupt Pin, Indicates INTA# when VHDL generic deviceirq is 1, otherwise zero is returned (Read

only)
7 : 0 Interrupt Line

Table 769.GRPCI2: Internal capabilities of the Extended PCI Configuration Space

PCI address offset (with the Capabilities
pointer as base) Register
0x00 Length, Next Pointer, ID
0x04 - 0x18 PCI BAR to AHB address mapping
0x1C Extended PCI Configuration Space to AHB address mapping
0x20 AHB IO base address and PCI bus config (endianess switch)
0x24 - 0x38 PCI BAR size and prefetch
0x3C AHB master burst limit
GRIP, Sep 2018, Version 2018.3 652 www.cobham.com/gaisler

GRLIB IP Core

53.2.3.1 Length, Next Pointer and ID

53.2.3.2 PCI BAR to AHB Address Mapping Register

53.2.3.3 Extended PCI Configuration Space to AHB Address Mapping Register

53.2.3.4 AHB IO Base Address and PCI Bus Config

Table 770. Length, Next pointer and ID (address offset 0x00)
31 24 23 16 15 8 7 0

RESERVED Length Next Pointer Capability ID

31 : 24 RESERVED.
23 : 16 Length, Returns 0x40. (Read only)
15 : 8 Pointer to the next item in the list of capabilites.This offset is set with the VHDL generic ext_-

cap_pointer. (Read only)
7 : 0 Capability ID, Returns 0x09 indicating Vendor Specific. (Read only)

Table 771. PCI BAR to AHB address mapping register (address offset 0x04 - 0x18)
31 0

PCI BAR to AHB address mapping

31 : 0 32-bit mapping register for each PCI BAR. Translate an access to a PCI BAR to a AHB base
address. The size of the BAR determine how many bits (starting form bit 31) are implemented. Bits
non implemented returns zero.

Table 772. Extended PCI Configuration Space to AHB address mapping register (address offset 0x1C)
31 8 7 0

Extended PCI Configuration Space to AHB address mapping RESERVED

31 : 8 Translates an access to the Extended PCI Configuration Space (excluding the address range for the
internal register located in this configuration space) to a AHB address.

7 : 0 RESERVED

Table 773. AHB IO base address and PCI bus config (endianess register) (address offset 0x20)
31 20 19 1 0

AHB IO base address RESERVED DISEN Endian

31 : 8 Base address of the AHB IO area. (Read only, not replicated for each PCI function)
19 : 2 RESERVED
1 Target access discard time out enable. When set to ‘1’, the target will discard a pending access if no

retry of the access is detected during 2**15 PCI clock cycles. (Not replicated for each PCI function)
0 PCI bus endianess switch. 1: defines the PCI bus to be little-endian, 0: defines the PCI bus to be big-

endian. Reset value is set be the conv_endian VHDL generic. (Not replicated for each PCI function)
GRIP, Sep 2018, Version 2018.3 653 www.cobham.com/gaisler

GRLIB IP Core

53.2.3.5 PCI BAR Size and Prefetch Register

53.2.3.6 AHB Master Prefetch Burst Limit

53.2.4 Multi-Function

The core supports up to two PCI functions starting from function 0. Each function has its own PCI
configuration space located at offset 0x0 for function 0 and offset 0x100 for function 1. Some regis-
ters in the Extended PCI configuration space is shared between all functions. All functions also share
the same Vendor ID.

53.3 Operation

53.3.1 Access support

The core supports both single and burst accesses on the AMBA AHB bus and on the PCI bus. For
more information on which PCI commands that are supported, see the PCI target section and for burst
limitations see the Burst section.

53.3.2 FIFOs

The core has separate FIFOs for each data path: PCI target read, PCI target write, PCI master read,
PCI master write, DMA AHB-to-PCI, and DMA PCI-to-AHB. The number and depth of the FIFOs
for each data path is configurable by VHDL generics.

53.3.3 Byte enables and byte twisting (endianess)

The core has the capability of converting endianess between the two busses. This means that all byte
lanes can be swapped by the core as shown in figure below.

Table 774. PCI BAR size and prefetch register (address offset 0x24 - 0x38)
31 4 3 2 1 0

PCI BAR size mask Pre RESERVED Type

31 : 4 A size mask register for each PCI BAR. When bit[n] is set to ‘1’ bit[n] in the PCI BAR register is
implemented and can return a non-zero value. All bits from the lowest bit set to ‘1’ up to bit 31 need
to be set to ‘1’. When bit 31 is ‘0’, this PCI BAR is disabled. The number of implemented bits in this
field depends in the VHDL generic barminsize. The minimal size of the BAR is not allowed to be
smaller than the internal FIFO.

3 Prefetch bit in PCI BAR register
2 : 1 RESERVED
0 BAR type. 0 = Memory BAR, 1 = IO BAR

Table 775. AHB master burst limit (address offset 0x3C)
31 30 16 15 0

SRF RESERVED Burst length

31 Store Read FIFO. When set to 1, the prefetched FIFO will be stored until the next PCI access when
the PCI target terminates the access with disconnect without data.

30 : 16 RESERVED
15 : 0 Maximum number of beats - 1 in the burst. (Maximum value is 0xFFFF => 0x10000 beats => 65kB

address)
GRIP, Sep 2018, Version 2018.3 654 www.cobham.com/gaisler

GRLIB IP Core
Table 776 defines the supported AHB address/size and PCI byte enable combinations.

As the AHB bus in GRLIB is defined as big-endian, the core is able to define the PCI bus as little-
endian (as defined by the PCI Local Bus Specification) with endianess conversion or define the PCI
bus as big-endian without endianess conversion.
The endianess of the PCI bus is configured via the core specific Extended PCI Configuration Space.
The default value is set by a VHDL generic conv_endian.

53.3.4 PCI configuration cycles

Accesses to PCI Configuration Space are not altered by the endianess settings. The PCI Configuration
Space is always defined as little-endian (as specified in the PCI Local Bus Specification). This means
that the PCI target does not change the byte order even if the endianess conversion is enabled and the
PCI master always converts PCI Configuration Space accesses to little-endian.

Table 776.AHB address/size <=> PCI byte enable combinations.

AHB HSIZE AHB ADDRESS[1:0] Little-endian CBE[3:0] Big-endian CBE[3:0]
00 (8-bit) 00 1110 0111
00 (8-bit) 01 1101 1011
00 (8-bit) 10 1011 1101
00 (8-bit) 11 0111 1110
01 (16-bit) 00 1100 0011
01 (16-bit) 10 0011 1100
10 (32-bit) 00 0000 0000

Figure 141. GRPCI2 byte twisting

PCI bus

AHB bus 31-24 23-16 15-8 7-0

31-24 23-16 15-8 7-0

GRPCI2

Address 3

Address 3

Address 0

Address 0
GRIP, Sep 2018, Version 2018.3 655 www.cobham.com/gaisler

GRLIB IP Core

Data stored in a register in the PCI Configuration Space as 0x12345678 (bit[31:0]) is transferred to
the AHB bus as 0x78563412 (bit[31:0]). This means that non-8-bit accesses to the PCI Configuration
Space must be converted in software to get the correct byte order.

53.3.5 Memory and I/O accesses

Memory and I/O accesses are always affected by the endianess conversion setting. The core should
define the PCI bus as little-endian in the following scenarios: When the core is the PCI host and little-
endian peripherals issues DMA transfers to host memory. When the core is a peripheral device and
issues DMA transfers to a little-endian PCI host.

53.3.6 Bursts

PCI bus: The PCI target terminates a burst when no FIFO is available (the AMBA AHB master is not
able to fill or empty the FIFO fast enough) or when the burst reached the length specified by the
“AHB master burst limit” register. This register defines a boundary which a burst can not cross i.e.
when set to 0x400 beats (address boundary at 4kB) the core only prefetch data up to this boundary and
then terminates the burst with a disconnect.
The PCI master stops the burst when the latency timer times out (see the PCI Local Bus Specification
for information on the latency timer) or for reads when the burst reaches the limit defined by “PCI
master prefetch burst limit” register (if AHB master performing the access is unmasked). If the master
is masked in this register, the limit is set to 1kB. The PCI master do not prefetch data across this
address boundary.
AHB bus: As long as FIFOs are available for writes and data in a FIFO is available for read, the AHB
slave do not limit the burst length. The burst length for the AHB master is limited by the FIFO depth.
The AHB master only burst up to the FIFO boundary. Only linear-incremental burst mode is sup-
ported.
DMA: DMA accesses are not affected by the “AHB master prefetch burst limit“ register or the “PCI
master prefetch burst limit“ register.
All FIFOs are filled starting at the same word offset as the bus access (i.e. with a FIFO of depth 8
words and the start address of a burst is 0x4, the first data word is stored in the second FIFO entry and
only 7 words can be stored in this FIFO).

53.3.7 Host operation

The core provides a system host input signal that must be asserted (active low) for PCI system host
operations. The status of this signal is available in the Status & Capability register accessible via the
APB slave interface. The device is only allowed to generate PCI configuration cycles when this signal
is asserted (device is the system host).
For designs intended to be host or peripherals only the PCI system host signal can be tied low or high
internally in the design. For multi-purpose designs it should be connected to a pin. The PCI Industrial
Computer Manufacturers Group (PCIMG) cPCI specification uses pin C2 on connector P2 for this
purpose. The pin should have a pull-up resistor since peripheral slots leave it unconnected.
An asserted PCI system host signal makes the PCI target respond to configuration cycles when no
IDSEL signal is asserted (none of AD[31:11] are asserted). This is done for the PCI master to be able
to configure its own PCI target.

53.4 PCI Initiator interface

The PCI master interface is accessible via the AMBA AHB slave interface. The AHB slave interface
occupies 1MB to 2GB of the AHB memory address space and 128kB to 256kB of AHB I/O address
space. An access to the AHB memory address area is translated to a PCI memory cycle. An access to
the first 64kB of the AHB IO area is translated to a PCI I/O cycle. The next 64kB are translated to PCI
GRIP, Sep 2018, Version 2018.3 656 www.cobham.com/gaisler

GRLIB IP Core

configuration cycles. When the PCI trace buffer is implemented, it is accessible via the last 128kB of
the AHB I/O area.

53.4.1 Memory cycles

A single read access to the AHB memory area is translated into a PCI memory read access, while a
burst read translates into a PCI memory read multiple access. A write to this memory area is translated
into a PCI write access.
The address translation is determined by AHB master to PCI address mapping registers accessible via
the APB slave interface. Each AHB master on the AMBA AHB bus has its own mapping register.
These registers contain the MSBs of the PCI address.
When the PCI master is busy performing a transaction on the PCI bus and not able to accept new
requests, the AHB slave interface will respond with an AMBA RETRY response. This occurs on
reads when the PCI master is fetching the requested data to fill the read FIFO or on writes when no
write FIFO is available. This means that all masters on the AMBA bus accessing the AHB slave inter-
face must be round-robin arbitrated without prioritization to avoid deadlock situations.

53.4.2 I/O cycles

Accesses to the lowest 64kB of the AHB I/O address area are translated into PCI I/O cycles. The
address translation is determined by the “AHB to PCI mapping register for PCI I/O”. This register sets
the 16 MSB of the PCI address. The “AHB to PCI mapping register for PCI I/O” is accessible via the
APB slave interface. When the “IB” (PCI IO burst) bit in the Control register (accessible via the APB
slave interface) is cleared, the PCI master does not perform burst I/O accesses.

53.4.3 Configuration cycles

Accesses to the second 64kB address block (address offset range 64kB to 128kB) of the AHB I/O
address area is translated into PCI configuration cycles. The AHB address is translated into PCI con-
figuration address different for type 0 and type 1 PCI configuration cycles. When the “bus number”
field in the control register (accessible via the APB slave interface) is zero, type 0 PCI configuration
cycles is issued. When the “bus number“ field is non-zero, type 1 PCI configuration cycles are issued
to the PCI bus determine by this field. The AHB I/O address mapping to PCI configuration address
for type 0 and type 1 PCI configuration cycles is defined in table 777 and table 778.
Only the system host is allowed to generate PCI configuration cycles. The core provides a system host
input signal that must be asserted (active low) for PCI system host operations. The status of this signal
is available in the Status & Capability register accessible via the APB slave interface.When the “CB”
(PCI Configuration burst) bit in the Control register (accessible via the APB slave interface) is
cleared, the PCI master does not perform burst configuration accesses.
GRIP, Sep 2018, Version 2018.3 657 www.cobham.com/gaisler

GRLIB IP Core

53.4.3.1 Mapping of AHB I/O address to PCI Configuration Cycle, type 0

53.4.3.2 Mapping of AHB I/O address to PCI Configuration Cycle, type 1

53.4.4 Error handling

When a read access issued by the PCI master is terminated with target-abort or master-abort, the AHB
slave generates an AMBA ERROR response when the “ER” bit in the control register is set. When the
“EI“ bit in the control register is set, an AMBA interrupt is generated for the error. The interrupt status
field in the control register indicates the cause of the error.

53.4.5 Bus parking

The PCI initiator supports bus parking and will drive the PCI bus to a defined state when granted
without requesting the bus. In systems with one single initiator the grant input to the PCI interface can
be constantly asserted.

53.5 PCI Target interface

The PCI Target occupies memory areas in the PCI address space corresponding to the BAR registers
in the PCI Configuration Space. Each BAR register (BAR0 to BAR5) defines the address allocation in
the PCI address space. The size of each BAR is set by the “BAR size and prefetch” registers accessi-
ble via the core specific Extended PCI Configuration Space. The size of a BAR can be determined by
checking the number of implemented bits in the BAR register. Non-implemented bits returns zero and
are read only. The size of the BAR is not allowed to be smaller then the size of the internal FIFO.

53.5.1 Supported PCI commands

These are the PCI commands that are supported by the PCI target.
• PCI Configuration Read/Write: Burst and single access to the PCI Configuration Space. These

accesses are not transferred to the AMBA AHB bus except for the access of the user defined
capability list item in the Extended PCI Configuration Space.

Table 777. GRPCI2 Mapping of AHB I/O address to PCI configuration cycle, type 0
31 16 15 11 10 8 7 2 1 0

AHB ADDRESS MSB IDSEL FUNC REGISTER BYTE

31: 16 AHB address MSBs: Not used for PCI configuration cycle address mapping.
15: 11 IDSEL: This field is decoded to drive PCI AD[IDSEL+10]. Each of the signals AD[31:11] are sup-

pose to be connected (by the PCI back plane) to one corresponding IDSEL line.
10: 8 FUNC: Selects function on a multi-function device.
7: 2 REGISTER: Used to index a PCI DWORD in configuration space.
1: 0 BYTE: Used to set the CBE correctly for non PCI DWORD accesses.

Table 778. GRPCI2 Mapping of AHB I/O address to PCI configuration cycle, type 1
31 16 15 11 10 8 7 2 1 0

AHB ADDRESS MSB DEVICE FUNC REGISTER BYTE

31: 16 AHB address MSBs: Not used for PCI configuration cycle address mapping.
15: 11 DEVICE: Selects which device on the bus to access.
10: 8 FUNC: Selects function on a multi-function device.
7: 2 REGISTER: Used to index a PCI DWORD in configuration space.
1: 0 BYTE: Used to set the CBE correctly for non PCI DWORD accesses.
GRIP, Sep 2018, Version 2018.3 658 www.cobham.com/gaisler

GRLIB IP Core

• Memory Read: A read command to the PCI memory BAR is transferred to a single read access

on the AMBA AHB bus.
• Memory Read Multiple, Memory Read Line: A read multiple command to the PCI memory

BAR is transferred to a burst access on the AMBA AHB bus. This burst access prefetch data to
fill the maximum amount of data that can be stored in the FIFO.

• Memory Write, Memory Write and Invalidate: These command are handled similarly and are
transferred to the AMBA AHB bus as a single or burst access depending on the length of the PCI
access (a single or burst access).

• IO Read: A read command to the PCI IO BAR is transferred to a single read access on the
AMBA AHB bus.

• IO Write: A write command to the PCI IO BAR is transferred to the AMBA AHB bus as a sin-
gle access.

53.5.2 Implemented PCI responses

The PCI target can terminate a PCI access with the following responses.
• Retry: This response indicates the PCI target is busy by either fetching data for the AMBA AHB

bus on a PCI read or emptying the write FIFO for a PCI write. A new PCI read access will always
be terminated with a retry at least one time before the PCI target is ready to deliver data.

• Disconnect with data: Terminate the transaction and transfer data in the current data phase. This
occurs when the PCI master request more data and the next FIFO is not yet available or for a PCI
burst access with the Memory Read command.

• Disconnect without data: Terminate the transaction without transferring data in the current data
phase. This occurs if the CBE change within a PCI burst write.

• Target Abort: Indicates that the current access caused an internal error and the target is unable to
finish the access. This occurs when the core receives a AMBA AHB error during a read opera-
tion.

53.5.3 Supported byte-enables (CBE)

The PCI-target only supports aligned 8-, 16-, and 32-bit accesses. The supported combinations of
CBE are 0000, 1110, 1101, 1011, 0111, 1100, 0011. All other combinations of CBE are interpret as a
32-bit access (CBE = 0000) except for writes with CBE set to 1111, which is treated as a no-operation
(no write will be performed).

53.5.4 PCI to AHB translation

Each PCI BAR has translation register (mapping register) to translate the PCI access to a AMBA
AHB address area. These mapping registers are accessible via the core specific Extended PCI Config-
uration Space. The number of implemented bits in these registers correspond to the size of (and num-
ber of implemented bits in) the BARs registers.

53.5.5 PCI system host signal

When the PCI system host signal is asserted the PCI target responds to configuration cycles when no
IDSEL signal is asserted (none of AD[31:11] are asserted). This is done for the PCI master, in a sys-
tem host position, to be able to configure its own PCI target.
GRIP, Sep 2018, Version 2018.3 659 www.cobham.com/gaisler

GRLIB IP Core

53.5.6 Error handling

The PCI target terminates the access with target-abort when the PCI target requests data from the
AHB bus which results in an error response on the AHB bus. Because the writes to the PCI target is
posted, no error is reported on write AHB errors.
When a PCI master is terminated with a retry response it is mandatory for that master to retry this
access until the access is completed or terminated with target-abort. If the master never retries the
access, the PCI target interface would be locked on this access and never accept any new access. To
recover from this situation, the PCI target has a option to discard an access if it is not retried within
2**15 clock cycles. This discard time out can be enabled via the “AHB IO base address and PCI bus
config” located in the core specific Extended PCI Configuration Space.

53.6 DMA Controller

The DMA engine is descriptor base and uses two levels of descriptors.

53.6.1 DMA channel

The first level is a linked list of DMA channel descriptors. Each descriptor has a pointer to its data
descriptor list and a pointer to the next DMA channel. The last DMA channel descriptor should
always points to the first DMA channel for the list to be a closed loop. The descriptor needs to be
aligned to 4 words (0x10) in memory and have the following structure.

53.6.1.1 DMA Channel Control

The number of enabled DMA channels must be stored in the “Number of DMA channels“ field in the
DMA control register accessible via the APB slave interface.

53.6.2 Data descriptor

The second descriptor level is a linked list of data transfers. The last descriptor in this list needs to be
a disabled descriptor. To add a new data transfer, this disabled descriptor is updated to reflect the data
transfer and to point to a new disabled descriptor. The control word in the descriptor should be

Table 779.GRPCI2: DMA channel descriptor structure

Descriptor address offset Descriptor word
0x00 DMA channel control
0x04 Next DMA channel (32-bit address to next DMA channel descrip-

tor).
0x08 Next data descriptor in this DMA channel (32-bit address to next

data descriptor).
0x0C RESERVED

Table 780. GRPCI2 DMA channel control
31 25 24 22 21 20 19 16 15 0

EN RESERVED CID Type RESERVED Data descriptor count

31 Channel descriptor enable (for version < 2, this bit should always be set to ‘1’).
30: 25 RESERVED
24: 22 Channel ID. Each DMA channel needs a ID to determine the source of a DMA interrupt.
21: 20 Descriptor type. 01 = DMA channel descriptor.
19: 16 RESERVED
15: 0 Maximum number of data descriptors to be executed before moving to the next DMA channel. 0

indicates that all data descriptors should be executed before moving to the next DMA channel.
GRIP, Sep 2018, Version 2018.3 660 www.cobham.com/gaisler

GRLIB IP Core

updated last to enable the valid descriptor. To make sure the DMA engine reads this new descriptor,
the enable bit in the DMA control register should be updated. The descriptor needs to be aligned to 4
words (0x10) in memory and have the following structure.

53.6.2.1 DMA Data Control

53.6.3 Data transfer

The DMA engine starts by reading the descriptor for the first DMA channel. If the DMA channel is
enabled the first data descriptor in this channel is read and executed. When the transfer is done the
data descriptor is disabled and status is written to the control word. If no error occurred during the
transfer, the error bit is not set and the transfer length field is unchanged. If the transfer was termi-
nated because of an error, the error bit is set in the control word and the length field indicates where in
the transfer the error occurred. If no error has occurred, the next data descriptor is read and executed.
When a disabled data descriptor is read or the maximum number of data descriptors has been exe-
cuted, the DMA channel descriptor is updated to point to the next data descriptor and the DMA engine
moves on to the next DMA channel.
When a disabled channel descriptor is read, the DMA controller will move on to the next DMA chan-
nel without reading in any data descriptors form the disabled channel (Only applies to version 2 of the
core).
When the DMA is disabled (via the APB interface), the channel descriptor is updated to point to the
next data descriptor (Only applies to version 2 of the core).
The DMA engine will stop when an error is detected or when no enabled data descriptors is found.
The error type is indicated by bit 7 to bit 11 in the DMA control register. The error type bits must be
cleared (by writing ‘1’) before the DMA can be reenabled.

Table 781.GRPCI2: DMA data descriptor structure

Descriptor address offset Descriptor word
0x00 DMA data control
0x04 32-bit PCI start address
0x08 32-bit AHB start address
0x0C Next data descriptor in this DMA channel (32-bit address to next

data descriptor).

Table 782. GRPCI2 DMA data control
31 30 29 28 22 21 20 19 18 16 15 0

EN IE DR BE RESERVED Type ER RESERVED LEN

31 Data descriptor enable.
30 Interrupt generation enable.
29 Transfer direction. 0: PCI to AMBA, 1: AMBA to PCI.
28 PCI bus endianess switch. 1: defines the PCI bus to be little-endian for this transfer, 0: defines the

PCI bus to be big-endian for this transfer.
27: 22 RESERVED (Must be set to zero)
21: 20 Descriptor type. 00 = DMA data descriptor.
19 Error status
18: 16 RESERVED
15: 0 Transfer length. The number of word of the transfer is (this field)+1.
GRIP, Sep 2018, Version 2018.3 661 www.cobham.com/gaisler

GRLIB IP Core

53.6.4 Interrupt

The DMA controller has an interrupt enable bit in the DMA control register (accessible via the APB
slave interface) which enables interrupt generation.
Each data descriptor has an interrupt enable bit which determine if the core should generate a interrupt
when the descriptor has been executed.
The VHDL generic irqmode determines if the DMA engine assert the same interrupt as the PCI core
or the DMA uses the irq signal following the PCI core interrupt, see the IRQ mode field in the Status
and Capability register for irq routing information.

53.7 PCI trace buffer

53.7.1 Trace data

The data from the trace buffer is accessible in the last 128 kB block of the AHB I/O address area.
Each 32-bit word in the first 64kB of this block represents a sample of the AD PCI signal. The second
64kB of the block is the corresponding PCI control signal. Each 32-bit word is defined in table 783.

53.7.1.1 PCI Control Signal Trace (32-bit word)

53.7.2 Triggering function

The core can be programmed to trigger on any combination of the PCI AD and PCI Control signals by
setting up the desired pattern and mask in the PCI trace buffer registers accessible via the APB slave
interface. Each bit the PCI AD signal and any PCI control signal can be masked (mask bit equal to
zero) to always match the triggering condition.
The “Trig count” field in the “PCI trace buffer: counter & mode” register defines how many times the
trigger condition should occur before the trace buffer disarms and eventually stops sampling. The
number of samples stored after the triggering condition occurs defines by the “Delayed stop“ + 2.
To start sampling, the trace buffer needs to be armed by writing one to the start bit in the “PCI trace
buffer: Control“ register. The state of the trace buffer can be determine by reading the Armed and
Enable/Running bit in the control register. When the Armed bit is set, the triggering condition has not
occurred. The Enable/Running bit indicates that the trace buffer still is storing new samples. When the
delayed stop field is set to a non zero value, the Enabled bit is not cleared until all samples are stored
in the buffer). The trace buffer can also be disarmed by writing the “stop” bit in the “PCI trace buffer:
control” register.
When the trace buffer has been disarmed, the “trig index” in the “PCI trace buffer: control” register is
updated with index of trace entry which match the triggering condition. The address offset of this
entry is the value of the “trig index“ field times 4.

Table 783. GRPCI2 PCI control signal trace (32-bit word)
31 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

RESERVED CBE[3:0] F
R
A
M
E

I
R
D
Y

T
R
D
Y

S
T
O
P

D
E
V
S
E
L

P
A
R

P
E
R
R

S
E
R
R

I
D
S
E
L

R
E
Q

G
N
T

L
O
C
K

R
S
T

RES

31: 20 RESERVED
19: 3 The state of the PCI control signals.
2: 0 RESERVED
GRIP, Sep 2018, Version 2018.3 662 www.cobham.com/gaisler

GRLIB IP Core

53.7.3 Trace Buffer APB interface

A separate APB register can optionally be enabled for access of the PCI trace buffer. The register lay-
out is the same as the core APB interface but only registers related to the PCI trace buffer is access-
able. The trace buffer data is located at offset 0x20000 for PCI AD and offset 0x30000 for PCI control
signals.

53.8 Interrupts

The core is capable of sampling the PCI INTA-D signals and forwarding the interrupt to the APB bus.
The PCI INTA-D signals can be connected to one APB irq signal or to 4 different irq signals. This is
configured by the VHDL generic irqmode. The “host INT mask” field in the control register is used
only for sampling the valid PCI INT signal.
The core supports PCI interrupt generation. For single function configuration the dirq signal is sam-
pled and forwarded to the PCI INTA signal. For a multi function (and multi interrupt) configured
device, each bit of the dirq signal is connected to one of the PCI INTA..D signal (dirq[0] => INTA,
dirq[1] => INTB, ...). The core has a mask bit (the “device INT mask“ field in the control register) for
each bit in the dirq vector. The core also has a PCI interrupt force bit in the control register to be able
to force the PCI INT asserted. For a multi interrupt configuration the PCI interrupt force bit is masked
by the “device INT mask” to be able to assert all PCI INT signals separately.
When the system error PCI signal (SERR) is asserted the core sets the system error bit in the “core
interrupt status” field in the Status & Capability register. If the system interrupts is enabled the core
will also generate a interrupt on the APB bus.

53.9 Registers

The core is configured via registers mapped into the APB memory address space.

Table 784.GRPCI2: APB registers

APB address offset Register
0x00 Control
0x04 Status & Capability (Read only)
0x08 PCI master prefetch burst limit
0x0C AHB to PCI mapping for PCI IO
0x10 DMA Control & Status
0x14 DMA descriptor base
0x18 DMA channel active (read only)
0x1C RESERVED
0x20 - 0x34 PCI BAR to AHB address mapping (Read only)
0x38 RESERVED
0x3C RESERVED
0x40 - 0x7C AHB master to PCI memory address mapping
0x80 PCI trace buffer: control & status
0x84 PCI trace buffer: counter & mode
0x88 PCI trace buffer: AD pattern
0x8C PCI trace buffer: AD mask
0x90 PCI trace buffer: Ctrl signal pattern
0x94 PCI trace buffer: Ctrl signal mask
0x98 PCI trace buffer: AD state
0x9C PCI trace buffer: Ctrl signal state
GRIP, Sep 2018, Version 2018.3 663 www.cobham.com/gaisler

GRLIB IP Core

53.9.1

Table 785. 0x00 - CTRL - Control register

Control Register

53.9.2 Status and Capability Register

31 30 29 28 27 26 25 24 23 16 15 12 11 10 9 8 7 4 3 0

RE MR TR R SI PE ER EI Bus Number RESERVED D
F
A

IB CB DIF Device INT mask Host INT mask

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rw rw rw r rw rw rw rw rw r rw rw rw rw rw rw

31 PCI reset. When set, the PCI reset signal is asserted. Needs to be cleared to deassert PCI reset.
30 PCI master reset. Set to reset the cores PCI master. This bit is self clearing.
29 PCI target reset. Set to reset the cores PCI target. This bit is self clearing.
28 RESERVED
27 When set, Interrupt is enabled for System error (SERR)
26 When set, AHB error response is enabled for Parity error
25 When set, AHB error response is enabled for Master and Target abort.
24 When set, Interrupt is enabled for Master and Target abort and Parity error.
23: 16 When not zero, type 1 configuration cycles is generated.This field is also used as the Bus Number in

type 1 configuration cycles.
15: 12 RESERVED
11 Disable internal AHB-slave / DMA fair arbitration (DFA). When this bit is set, the arbitration is done

when the current transfer has complete.
10 When set, burst accesses may be generated by the PCI master for PCI IO cycles
9 When set, burst accesses may be generated by the PCI master for PCI configuration cycles.
8 Device interrupt force. When set, a PCI interrupt is forced.
7: 4 Device interrupt mask. When bit[n] is set dirq[n] is unmasked
3: 0 Host interrupt mask

bit[3] = 1: unmask INTD.
bit[2] = 1: unmask INTC.
bit[1] = 1: unmask INTB.
bit[0] = 1: unmask INTA.

Table 786. 0x04 - STATCAP - Status and Capability register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 12 11 8 7 5 4 2 1 0

H
o
s
t

M
S
T

T
A
R

D
M
A

DI HI IRQ
mode

T
r
a
c
e

R
E
S

F
H

C
F
G
D
O

C
F
G
E
R

Core interrupt status Host interrupt
status

RES FDEPTH FNUM

* * * * * * * * 0 0 0 0 0 * 0 * *

r r r r r r r r r r wc wc wc r r r r

31 When zero, the core is inserted in the System slot and is allowed to act as System Host.
30 Master implemented
29 Target implemented
28 DMA implemented
27 Device drives PCI INTA
26 Device samples PCI INTA..D (for host operations)

25: 24 APB IRQ mode
00: PCI INTA..D, Error interrupt and DMA interrupt on the same IRQ signal
01: PCI INTA..D and Error interrupt on the same IRQ signal. DMA interrupt on IRQ+1
10: PCI INTA..D on IRQ..IRQ+3. Error interrupt and DMA interrupt on IRQ.
11: PCI INTA..D on IRQ..IRQ+3. Error interrupt on IRQ. DMA interrupt on IRQ+4

23 PCI trace buffer implemented
GRIP, Sep 2018, Version 2018.3 664 www.cobham.com/gaisler

GRLIB IP Core
22 RESERVED
21 Fake device in system slot (Host). This bit should always be written with ‘0’. Only for debugging.
20 PCI configuration access done, PCI configuration error status valid.
19 Error during PCI configuration access

18: 12 Interrupt status:
bit[6]: PCI target access discarded due to time out (access not retried for 2**15 PCI clock cycles)
bit[5]: System error
bit[4]: DMA interrupt
bit[3]: DMA error
bit[2]: Master abort.
bit[1]: Target abort.
bit[0]: Parity error.

11: 8 Host interrupt status
bit[3] = 0: indicates that INTD is asserted.
bit[2] = 0: indicates that INTC is asserted.
bit[1] = 0: indicates that INTB is asserted.
bit[0] = 0: indicates that INTA is asserted.

7: 5 RESERVED
4: 2 Words in each FIFO = 2**(FIFO depth)
1: 0 Number of FIFOs

Table 786. 0x04 - STATCAP - Status and Capability register
GRIP, Sep 2018, Version 2018.3 665 www.cobham.com/gaisler

GRLIB IP Core

53.9.3

Table 787. 0x08 - BCIM - PCI master prefetch burst limit

Master Prefetch Burst Limit

53.9.4

Table 788. 0x0C - AHB2PCI - AHB to PCI mapping for PCI IO

AHB to PCI Mapping for PCI IO

53.9.5

Table 789. 0x10 - DMACTRL - GRPCI2 DMA control and status register

DMA Control and Status Register

31 24 23 16 15 8 7 0

AHB master unmask RESERVED Burst length

0 0 0xFF

rw r rw

31 : 16 When bit[n] is set, the prefetch burst of AHB master n is limited by the “Burst length” field.
15 : 8 RESERVED
7 : 0 Maximum number of beats - 1 in the burst. (Maximin value is 0xFF => 0x100 beats => 1kB address)

31 16 15 0

AHB to PCI IO RESERVED

0 0

rw r

31 : 16 Used as the MSBs of the base address for a PCI IO access.
15 : 0 RESERVED

31 30 - 20 19 12 11 10 9 8 7 6 4 3 2 1 0

SAFE RES CHIRQ MA TA PE AE DE Number of DMA channels ACTIVE DIS IE EN

1 0 0 0 0 0 0 0 0 0 0 0 0

rw r wc wc wc wc wc wc rw r rw rw rw

31 Safety guard for update of control fields. Needs to be set to ‘1’ for the control fields to be updated.
30 : 20 RESERVED
19 : 12 Channel IRQ status. Set to ‘1’ when a descriptor is configured to signal interrupt. bit[0] corresponds

to the channel with ID 0, bit[1] corresponds to the channel with ID 1, ... Clear by writing ‘1’.
11 Master abort during PCI access. Clear by writing ‘1’
10 Target abort during PCI access. Clear by writing ‘1’
9 Parity error during PCI access. Clear by writing ‘1’
8 Error during AHB data access. Clear by writing ‘1’
7 Error during descriptor access. Clear by writing ‘1’.
6 : 4 Number of DMA channels (Guarded by bit[31], safety guard)
3 DMA is active (read only)
2 DMA disable/stop. Writing ‘1’ to this bit disables the DMA.
1 Interrupt enable (Guarded by bit[31], safety guard).
0 DMA enable/start. Writing ‘1’ to this bit enables the DMA.
GRIP, Sep 2018, Version 2018.3 666 www.cobham.com/gaisler

GRLIB IP Core

53.9.6

Table 790. 0x14 - DMABASE - DMA descriptor base address (/ Active Descriptor) register

DMA Descriptor Base Address (/ Active Descriptor) Register

53.9.7

Table 791. 0x18 - DMACHAN - DMA channel active register

DMA Channel Active Register

53.9.8

Table 792. 0x20-0x34 - PCI2AHB - PCI BAR to AHB address mapping register

PCI BAR to AHB Address Mapping Register

53.9.9

Table 793. 0x40-0x7C - AHBM2PCI - AHB master to PCI memory address mapping register

AHB Master to PCI Memory Address Mapping Register

31 0

DMA descriptor base address

0

rw

31 : 0 Base address of the DMA descriptor table. When running, this register points to the active descriptor.

31 0

DMA descriptor base address

0

rw

31 : 0 Base address of the active DMA channel.

31 0

PCI BAR to AHB address mapping

0

rw

31 : 0 32-bit mapping register for each PCI BAR. Translate an access to a PCI BAR to a AHB base
address.

31 0

AHB master to PCI memory address mapping

0

rw

31 : 0 32-bit mapping register for each AHB master. Translate an access from a specific AHB master to a
PCI base address. The size of the AHB slave address area determine how many bits (starting from bit
31) are implemented. Bits not implemented returns zero. The mapping register for AHB master 0 is
located at offset 0x40, AHB master 1 at offset 0x44, and so on up to AHB master 15 at offset 0x7C.
Mapping registers are only implemented for existing AHB masters.
GRIP, Sep 2018, Version 2018.3 667 www.cobham.com/gaisler

GRLIB IP Core

53.9.10

Table 794. 0x80 - TCTRC - PCI trace Control and Status register

 PCI Trace Control and Status Register

53.9.11

Table 795. 0x84 - TMODE - PCI trace counter and mode register

 PCI Trace Counter and Mode Register

53.9.12

Table 796. 0x88 - TADP - PCI trace AD pattern register

 PCI Trace AD Pattern Register

53.9.13

Table 797. 0x8C - TADM - PCI trace AD mask register

 PCI Trace AD Mask Register

31 16 15 14 13 12 11 4 3 2 1 0

TRIG INDEX AR EN RES DEPTH RES SO SA

NR 0 0 0 * 0

r r r r r r w w

31: 16 Index of the first entry of the trace.
15 Set when trace buffer is armed (started but the trig condition has not occurred).
14 Set when trace buffer is running
13: 12 RESERVED
11: 4 Number of buffer entries = 2**DEPTH
3: 2 RESERVED
1 Stop tracing. (Write only)
0 Start tracing. (Write only)

31 28 27 24 23 16 15 0

RES Trace mode Trig count Delayed stop

0 0 0 0

r rw rw rw

31: 28 RESERVED
27: 24 Tracing mode

00: Continuos sampling
01: RESERVED
10: RESERVED
11: RESERVED

23: 16 The number of times the trig condition should occur before the trace is disarmed.
15: 0 The number of entries stored after the trace buffer has been disarmed. (Should not be lager than

number of buffer entries - 2).

31 0

PCI AD pattern

NR

rq

31: 0 AD pattern to trig on

31 0

PCI AD mask

NR

rw

31: 0 Mask for the AD pattern. When mask bit[n] = 0 pattern bit[n] will always be a match.
GRIP, Sep 2018, Version 2018.3 668 www.cobham.com/gaisler

GRLIB IP Core

53.9.14

Table 798. 0x90 - TCP - PCI trace Ctrl signal pattern register

 PCI Trace Ctrl Signal Pattern Register

53.9.15

Table 799. 0x94 - TCM - PCI trace Ctrl signal mask register

 PCI Trace Ctrl Signal Mask Register

53.9.16

Table 800. 0x98 - TADS - PCI trace PCI AD state register

 PCI Trace PCI AD State Register

53.9.17

Table 801. 0x9C - TCS - PCI trace PCI Ctrl signal state register

 PCI Trace PCI Ctrl Signal State Register

31 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

RESERVED CBE[3:0] F
R
A
M
E

I
R
D
Y

T
R
D
Y

S
T
O
P

D
E
V
S
E
L

P
A
R

P
E
R
R

S
E
R
R

I
D
S
E
L

R
E
Q

G
N
T

L
O
C
K

R
S
T

RES

0 NR NR NR NR NR NR NR NR NR NR NR NR NR NR 0

r rw rw rw rw rw rw rw rw rw rw rw rw rw rw r

31: 20 RESERVED
19: 3 PCI Ctrl signal pattern to trig on
2: 0 RESERVED

31 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

RESERVED CBE[3:0] F
R
A
M
E

I
R
D
Y

T
R
D
Y

S
T
O
P

D
E
V
S
E
L

P
A
R

P
E
R
R

S
E
R
R

I
D
S
E
L

R
E
Q

G
N
T

L
O
C
K

R
S
T

RES

0 NR NR NR NR NR NR NR NR NR NR NR NR NR NR 0

r rw rw rw rw rw rw rw rw rw rw rw rw rw r

31: 20 RESERVED
19: 3 Mask for the Ctrl signal pattern. When mask bit[n] = 0 pattern bit[n] will always be a match.
2: 0 RESERVED

31 0

Sampled PCI AD signal

NR

r

31: 0 The state of the PCI AD signal.

31 20 19 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0

RESERVED CBE[3:0] F
R
A
M
E

I
R
D
Y

T
R
D
Y

S
T
O
P

D
E
V
S
E
L

P
A
R

P
E
R
R

S
E
R
R

I
D
S
E
L

R
E
Q

G
N
T

L
O
C
K

R
S
T

RES

0 NR NR NR NR NR NR NR NR NR NR NR NR NR NR NR

r r r r r r r r r r r r r r r r

31: 20 RESERVED
19: 3 The state of the PCI Ctrl signals.
2: 0 RESERVED
GRIP, Sep 2018, Version 2018.3 669 www.cobham.com/gaisler

GRLIB IP Core

53.10 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x07C. The DMA engine
has device identifier 0x07D. The separate APB interface for the PCI Trace-Buffer has device identi-
fier 0x07E. For description of vendor and device identifier see GRLIB IP Library User’s Manual

53.11 Implementation

53.11.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual). By default, the core makes use of synchronous reset and resets a subset of its
internal registers in the system clock domain.
The deassertion of the PCI reset is synchronized to the PCI clock and delayed 3 clock cycles.
The core can be configured to drive the AHB reset on the PCI reset signal. This option is used when
the backplane does not have logic to drive the PCI reset.
The PCI reset signal can optionally be forwarded to the AHB reset via the ptarst signal. This function-
ality can be used then the AMBA clock domain needs to be reset when the PCI reset is asserted.
The core require that the PCI and AMBA clock domain is reset at the same time, i.e. the PCI reset and
the AMBA reset needs to be asserted at the same time.

53.11.2 Technology mapping

The core has a technology mapping VHDL generic, memtech, which controls how the memory cell
used will be implemented. See the GRLIB Users’s Manual for available settings.

53.11.3 RAM usage

The FIFOs in the core is implemented with the syncram_2pft (with separate clocks for each port)
component from the technology mapping library (TECHMAP). Each data path implements its FIFOs
in a separate 32-bit wide syncram_2pft component. The depth of each of these RAMs is the FIFO
depth * number of FIFOs.

53.11.4 Pull-ups

Please refer to the PCI Local Bus Specification on which of the PCI signals needs to have pull-ups for
correct operations.

53.11.5 PHY

All logic and registers directly controlled by the PCI bus signals has be placed in a separate entity.
This makes it easier to control the setup-, hold- and clock-to-out timing for the PCI bus signals. This
logic can also be implemented as a netlist which can be manually placed before running place-and-
route for the entire design. A netlist is provided for Axcelerator and RTAX targets.
GRIP, Sep 2018, Version 2018.3 670 www.cobham.com/gaisler

GRLIB IP Core

53.12 Configuration options

Table 802 shows the configuration options of the core (VHDL generics).

Table 802.Configuration options

Generic name Function Allowed range Default
memtech The memory technology used for the internal FIFOs. 0 - NTECH 0
tbmemtech The memory technology used for trace buffers 0 - NTECH 0
oepol Polarity of the pad output enable signal. 0 = active low, 1

= active high.
0 - 1 0

hmindex AHB master index. 0 - NAHBMST-1 0
hdmindex DMA AHB master index. 0 - NAHBMST-1 0
hsindex AHB slave index. 0 - NAHBSLV-1 0
haddr ADDR field of the AHB BAR (for PCI memory access). 0 - 16#FFF# 16#000#
hmask MASK field of the AHB BAR. 0 - 16#FFF# 16#000#
ioaddr ADDR field of the AHB IO BAR (for PCI configuration

and PCI IO access).
0 - 16#FFF# 16#000#

pindex APB slave index 0 - APBMAX-1 0
paddr APB interface base address 0 - 16#FFF# 0
pmask APB interface address mask 0 - 16#FFF# 16#FFF#
irq Interrupt line used by the core. 0 - NAHBIRQ-1 0
irqmode IRQ routing option:

00: PCI INTA..D, Error interrupt and DMA interrupt on
the same IRQ signal
01: PCI INTA..D and Error interrupt on the same IRQ
signal. DMA interrupt on IRQ+1
10: PCI INTA..D on IRQ..IRQ+3. Error interrupt and
DMA interrupt on IRQ.
11: PCI INTA..D on IRQ..IRQ+3. Error interrupt on
IRQ. DMA interrupt on IRQ+4

0 - 3 0

master Enable the PCI master 0 - 1 1
target Enable the PCI target 0 - 1 1
dma Enable the PCI dma 0 - 1 1
tracebuffer Enable and number of entries of the PCI trace buffer,

Allowed values is 0, 32, 64, 128, ..., 16384.
0 - 16384 0

confspace Enable the PCI Configuration Space when PCI target is
disabled

0 - 1 1

vendorid PCI vendor ID 0 - 16#FFFF# 0
deviceid PCI device ID 0 - 16#FFFF# 0
classcode PCI class code 0 - 16#FFFFFF# 0
revisionid PCI revision ID 0 - 16#FF# 0
cap_pointer Enabled and sets the offset of the first item in the

Extended PCI Configuration Space
0 - 16#C0# 0

ext_cap_pointer Offset of the first user defined item in the capability list 0 - 16#FC# 0
iobase AHB base address of the AHB I/O area 0 - 16#FFF# 16#FFF#
extcfg Default value of the user defined Extended PCI Configu-

ration Space to AHB address mapping.
0 - 16#FFFFFFF# 0

bar0 Sets the default size of BAR0 in address bits. 0 - 31 0
bar1 Sets the default size of BAR1 in address bits. 0 - 31 0
bar2 Sets the default size of BAR2 in address bits. 0 - 31 0
bar3 Sets the default size of BAR3 in address bits. 0 - 31 0
GRIP, Sep 2018, Version 2018.3 671 www.cobham.com/gaisler

GRLIB IP Core
bar4 Sets the default size of BAR4 in address bits. 0 - 31 0
bar5 Sets the default size of BAR5 in address bits. 0 - 31 0
bar0_map Set the default PCI BAR to AHB address mapping for

BAR0
0 - 16#FFFFFF# 0

bar1_map Set the default PCI BAR to AHB address mapping for
BAR1

0 - 16#FFFFFF# 0

bar2_map Set the default PCI BAR to AHB address mapping for
BAR2

0 - 16#FFFFFF# 0

bar3_map Set the default PCI BAR to AHB address mapping for
BAR3

0 - 16#FFFFFF# 0

bar4_map Set the default PCI BAR to AHB address mapping for
BAR4

0 - 16#FFFFFF# 0

bar5_map Set the default PCI BAR to AHB address mapping for
BAR5

0 - 16#FFFFFF# 0

bartype Bit[5:0] set the reset value of the prefetch bit for the
BAR. bit[n] corresponds to BARn
.
Bit[13:8] set the reset value of the BAR type bit for the
BAR. bit[n + 8] corresponds to BARn.

0 - 16#FFFF# 0

barminsize Sets the minimal supported BAR size in address bits.
The minimal BAR size is not allowed to be smaller then
the internal FIFO (or barminsize >= 2 + fifo_depth).

5 - 31 12

fifo_depth Depth of each of the FIFOs in the data path. Depth =
2**fifo_depth.The minimal BAR size is not allowed to
be smaller then the internal FIFO (or barminsize >= 2 +
fifo_depth).

3 - 7 3

fifo_count Number of FIFOs in the data path 2 - 4 2
conv_endian Default value of the endianess conversion setting 0 - 1 1
deviceirq Enable the device to drive the PCI INTA signal 0 - 1 1
deviceirqmask Default value of the irq mask for the dirq input 0 - 16#F# 16#0#
hostirq Enable the core to sample the PCI INTA-D signals to

drive a AHB irq.
0 - 1 1

hostirqmask Default value for the PCI INTA-D signals. 0 - 16#F# 16#0#
nsync Number of synchronization registers between the two

clock domains.
0 - 2 2

hostrst Mode of the reset signal.
0: PCI reset is input only
1: The AHB reset is driven on the PCI reset when
PCII.HOST is asserted
2: The AHB reset is driven on the PCI reset.

0 - 2 0

bypass When 1, logic is implemented to bypass the pad on sig-
nals driven by the core.

0 - 1 1

ft Enable fault-tolerance against SEU errors 0 - 1 0

Table 802.Configuration options

Generic name Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 672 www.cobham.com/gaisler

GRLIB IP Core
scantest Enable support for scan test 0 - 1 0
debug Enables debug output signals 0 - 1 0
tbapben Enables a separate APB interface for access of the Trace-

Buffer.
0 - 1 0

tbpindex Trace-Buffer APB slave index 0 - APBMAX-1 0
tbpaddr Trace-Buffer APB interface base address 0 - 16#FFF# 0
tbmask Trace-Buffer APB interface address mask 0 - 16#FFF# 16#FFF#
netlist Enables a netlist implementation of the logic controlled

by the PCI bus signals (GRPCI2_PHY).
0 - 1 0

masters Controls which AHB masters belongs to PCI function0 0 - 16#FFFF# 16#FFFF#
multifunc Enables Multi-Function support 0 - 1 0
multiint Enables support to drive all PCI interrupt sig-

nalsINTA...D
0 - 1 0

mf1_deviceid PCI device ID (PCI function1) 0 - 16#FFFF# 0
mf1_classcode PCI class code (PCI function1) 0 - 16#FFFFFF# 0
mf1_revisionid PCI revision ID (PCI function1) 0 - 16#FF# 0
mf1_bar0 Sets the default size of BAR0 in address bits. (PCI func-

tion1)
0 - 31 0

mf1_bar1 Sets the default size of BAR1 in address bits. (PCI func-
tion1)

0 - 31 0

mf1_bar2 Sets the default size of BAR2 in address bits. (PCI func-
tion1)

0 - 31 0

mf1_bar3 Sets the default size of BAR3 in address bits. (PCI func-
tion1)

0 - 31 0

mf1_bar4 Sets the default size of BAR4 in address bits. (PCI func-
tion1)

0 - 31 0

mf1_bar5 Sets the default size of BAR5 in address bits. (PCI func-
tion1)

0 - 31 0

mf1_bartype Bit[5:0] set the reset value of the prefetch bit for the
BAR. bit[n] corresponds to BARn
.
Bit[13:8] set the reset value of the BAR type bit for the
BAR. bit[n + 8] corresponds to BARn.

0 - 16#FFFF# 0

mf1_bar0_map Set the default PCI BAR to AHB address mapping for
BAR0 (PCI function1)

0 - 16#FFFFFF# 0

mf1_bar1_map Set the default PCI BAR to AHB address mapping for
BAR1 (PCI function1)

0 - 16#FFFFFF# 0

mf1_bar2_map Set the default PCI BAR to AHB address mapping for
BAR2 (PCI function1)

0 - 16#FFFFFF# 0

mf1_bar3_map Set the default PCI BAR to AHB address mapping for
BAR3 (PCI function1)

0 - 16#FFFFFF# 0

mf1_bar4_map Set the default PCI BAR to AHB address mapping for
BAR4 (PCI function1)

0 - 16#FFFFFF# 0

mf1_bar5_map Set the default PCI BAR to AHB address mapping for
BAR5 (PCI function1)

0 - 16#FFFFFF# 0

mf1_cap_pointer Enabled and sets the offset of the first item in the
Extended PCI Configuration Space (PCI function1)

0 - 16#C0# 0

mf1_ext_-
cap_pointer

Offset of the first user defined item in the capability list
(PCI function1)

0 - 16#FC# 0

Table 802.Configuration options

Generic name Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 673 www.cobham.com/gaisler

GRLIB IP Core
53.13 Signal descriptions

Table 803 shows the interface signals of the core (VHDL ports).

The PCII.HOST signal selects of the core should operate as a system host or peripheral device.

53.14 Library dependencies

Table 804 shows the libraries used when instantiating the core (VHDL libraries).

53.15 Instantiation

This example shows how the core can be instantiated.

library ieee;

mf1_extcfg Default value of the user defined Extended PCI Configu-
ration Space to AHB address mapping. (PCI function1)

0 - 16#FFFFFFF# 0

mf1_masters Controls which AHB masters belongs to PCI function1 0 - 16#FFFF# 16#0000#

Table 803.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
PCICLK N/A Input PCI Clock -
AHBSI *1 Input AHB slave input signals -
AHBSO *1 Output AHB slave output signals -
AHBMI *1 Input AHB master input signals -
AHBMO *1 Output AHB master output signals -
AHBDMI *1 Input DMA AHB master input signals -
AHBDMO *1 Output DMA AHB master output signals -
APBI *1 Input APB slave input signals -
APBO *1 Output APB slave output signals -
PCII *2 Input PCI input signals -
PCIO *2 Output PCI output signals -
DIRQ Input Interrupt signals High
TBAPBI *1,*3 Input Trace-Buffer APB slave input signals -
TBAPBO *1, *3 Output Trace-Buffer APB slave output signals -
PTARST N/A, *3 Output PCI reset to AMBA reset output signal Low
DEBUG N/A, *3 Output Debug signals -
*1) see GRLIB IP Library User’s Manual.
*2) see PCI Local Bus Specification
*3) Can be left unconnected, if not used.

Table 804.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER PCI Component Component declaration

Table 802.Configuration options

Generic name Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 674 www.cobham.com/gaisler

GRLIB IP Core

use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.stdlib.all;
use grlib.tech.all;
library gaisler;
use gaisler.pci.all;

.

.
signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_type;
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector;
signal ahbmi : ahb_mst_in_type;
signal ahbmo : ahb_mst_out_vector;

signal pcii : pci_in_type;
signal pcio : pci_out_type;

begin

pci0 : grpci2
generic map (
 memtech => memtech,
 oepol => OEPOL,
 hmindex => CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG,
 hdmindex => CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG+1,
 hsindex => 4,
 haddr => 16#c00#,
 hmask => 16#f00#,
 ioaddr => 16#000#,
 pindex => 4,
 paddr => 4,
 irq => 0,
 irqmode => 0,
 master => CFG_GRPCI2_MASTER,
 target => CFG_GRPCI2_TARGET,
 dma => CFG_GRPCI2_DMA,
 tracebuffer => CFG_GRPCI2_TRACE,
 vendorid => CFG_GRPCI2_VID,
 deviceid => CFG_GRPCI2_DID,
 classcode => CFG_GRPCI2_CLASS,
 revisionid => CFG_GRPCI2_RID,
 cap_pointer => CFG_GRPCI2_CAP,
 ext_cap_pointer => CFG_GRPCI2_NCAP,
 iobase => CFG_AHBIO,
 extcfg => CFG_GRPCI2_EXTCFG,
 bar0 => CFG_GRPCI2_BAR0,
 bar1 => CFG_GRPCI2_BAR1,
 bar2 => CFG_GRPCI2_BAR2,
 bar3 => CFG_GRPCI2_BAR3,
 bar4 => CFG_GRPCI2_BAR4,
 bar5 => CFG_GRPCI2_BAR5,
 fifo_depth => log2(CFG_GRPCI2_FDEPTH),
 fifo_count => CFG_GRPCI2_FCOUNT,
 conv_endian => CFG_GRPCI2_ENDIAN,
 deviceirq => CFG_GRPCI2_DEVINT,
 deviceirqmask => CFG_GRPCI2_DEVINTMSK,
 hostirq => CFG_GRPCI2_HOSTINT,
 hostirqmask => CFG_GRPCI2_HOSTINTMSK,
 nsync => 2,
 hostrst => 2,
 bypass => CFG_GRPCI2_BYPASS)
port map (
 rstn,
 clkm,
 pciclk,
 gnd(3 downto 0),
 pcii,
 pcio,
GRIP, Sep 2018, Version 2018.3 675 www.cobham.com/gaisler

GRLIB IP Core

 apbi,
 apbo(4),
 ahbsi,
 ahbso(4),
 ahbmi,
 ahbmo(CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG),
 ahbdmi,
 ahbmo(CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG+1);

pcipads0 : pcipads generic map (padtech => padtech, host => 1, oepol => OEPOL,
 noreset => 0, drivereset => 1) -- PCI pads
 port map (pci_rst, pci_gnt, pci_idsel, pci_lock, pci_ad, pci_cbe,
 pci_frame, pci_irdy, pci_trdy, pci_devsel, pci_stop, pci_perr,
 pci_par, pci_req, pci_serr, pci_host, pci_66, pcii, pcio);
;

GRIP, Sep 2018, Version 2018.3 676 www.cobham.com/gaisler

GRLIB IP Core

54 GRPULSE - General Purpose Input Output

54.1 Overview

The General Purpose Input Output interface is assumed to operate in an AMBA bus system where the
APB bus is present. The AMBA APB bus is used for control and status handling.
The General Purpose Input Output interface provides a configurable number of channels. Each chan-
nel is individually programmed as input or output. Additionally, a configurable number of the chan-
nels are also programmable as pulse command outputs. The default reset configuration for each
channel is as input. The default reset value each channel is logical zero.
The pulse command outputs have a common counter for establishing the pulse command length. The
pulse command length defines the logical one (active) part of the pulse. It is possible to select which
of the channels shall generate a pulse command. The pulse command outputs are generated simultane-
ously in phase with each other, and with the same length (or duration). It is not possible to generate
pulse commands out of phase with each other.
Each channel can generate a separate internal interrupt. Each interrupt is individually programmed as
enabled or disabled, as active high or active low level sensitive, or as rising edge or falling edge sensi-
tive.

54.1.1 Function

The core implements the following functions:
• Input
• Output
• Output pulse commands
• Input interrupts
• Status and monitoring

54.1.2 Interfaces

The core provides the following external and internal interfaces:
• Discrete input and output interface
• AMBA APB slave interface, with sideband signals as per [GRLIB] including:
• interrupt bus
• configuration information
• diagnostic information
GRIP, Sep 2018, Version 2018.3 677 www.cobham.com/gaisler

GRLIB IP Core

54.2 Registers

The core is programmed through registers mapped into APB address space.

54.2.1 Input Register

Table 806.0x00 - GPIOIN - Input Register

23-0: IN Input Data

Note that only bits nchannel-1 to 0 are implemented.

54.2.2 Output Register

Table 807.0x04 - GPIOOUT - Output Register

All bits are cleared to 0 at reset.
Note that only bits nchannel-1 to 0 are implemented.

Table 805.GRPULSE registers

APB address offset Register
0x00 Input Register
0x04 Output Register
0x08 Direction Register
0x0C Interrupt Mask Register
0x10 Interrupt Polarity Register
0x14 Interrupt Edge Register
0x18 Pulse Register
0x1C Pulse Counter Register

31 24 23 0
RESERVED IN
0 *
r r

31 24 23 0
RESERVED OUT
0 0
r r

23: 0 OUT Output Data
GRIP, Sep 2018, Version 2018.3 678 www.cobham.com/gaisler

GRLIB IP Core

54.2.3 Direction Register

Table 808.0x08 - GPIODIR - Direction Register

All bits are cleared to 0 at reset.
Note that only bits nchannel-1 to 0 are implemented.

54.2.4 Pulse Register

Table 809.0x18 - GPIOPULSE - Pulse Register

23-0: PULSE Pulse enable:
0b=output,
1b=pulse command output

All bits are cleared to 0 at reset.
Only channels configured as outputs are possible to enable as command pulse outputs.
Note that only bits npulse-1 to 0 are implemented.

54.2.5 Pulse Counter Register

Table 810.0x1C - GPIONTR - Pulse Counter Register

23-0: CNTR Pulse counter value

The pulse counter is decremented each clock period, and does not wrap after reaching zero.
Command pulse channels, with the corresponding output data and pulse enable bits set, are (asserted)
while the pulse counter is greater than zero.
Setting CNTR to 0 does not give a pulse.
Setting CNTR to 1 does give a pulse with of 1 Clk period.
Setting CNTR to 255 does give a pulse with of 255 Clk periods.
Note that only bits cntrwidth-1 to 0 need be implemented.

31 24 23 0
RESERVED DIR
0 0
r rw

23: 0 DIR Direction:
0b=input,
1b=output

31 24 23 0
RESERVED PULSE
0 0
r rw

31 24 23 0
RESERVED CNTR
0 0
r rw
GRIP, Sep 2018, Version 2018.3 679 www.cobham.com/gaisler

GRLIB IP Core

54.2.6 Interrupt Mask Register

Table 811.0x0C - GPIOMASK - Interrupt Mask Register

23-16: MASK Interrupt enable, 0b=disable, 1b=enable

Note that only bits that are enabled by the imask VHDL generic and that are in the range nchannel-1
to 0 are implemented.

54.2.7 Interrupt Polarity Register

Table 812.0x10 - GPIOPOL - Interrupt Polarity Register

23-16: POL Interrupt polarity, 0b=active low or falling edge, 1b=active high or rising edge

Note that only bits that are enabled by the imask VHDL generic and that are in the range nchannel-1
to 0 are implemented.

54.2.8 Interrupt Edge Register

Table 813.0x14 - GPIOEDGE - Interrupt Edge Register

23-16: EDGE Interrupt edge or level, 0b=level, 1b=edge

Note that only bits that are enabled by the imask VHDL generic and that are in the range nchannel-1
to 0 are implemented.

54.3 Operation

54.3.1 Interrupt

Two interrupts are implemented by the interface:
Index:Name:Description:
0 PULSEPulse command completed
31:0 IRQ Filtered input interrupt

The PULSE interrupt is configured by means of the pirq VHDL generic.

31 24 23 16 15 0
RESERVED MASK RESERVED
0 0 0
r rw r

31 24 23 16 15 0
RESERVED POL RESERVED
0 0 0
r rw r

31 24 23 16 15 0
RESERVED EDGE RESERVED
0 0 0
r rw r
GRIP, Sep 2018, Version 2018.3 680 www.cobham.com/gaisler

GRLIB IP Core

The IRQ interrupts are configured by means of the imask and ioffset VHDL generics, where imask
enables individually the input interrupts, and ioffset adds an offset to the resulting index on the inter-
rupt bus.

54.3.2 Reset

After a reset the values of the output signals are as follows:
Signal:Value after reset:
GPIOO.Dout[31:0]de-asserted
GPIOO.OEn[31:0]de-asserted

54.3.3 Asynchronous interfaces

The following input signals are synchronized to Clk:
• GPIOI.Din[31:0]

54.4 Vendor and device identifiers

The module has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x037. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

54.5 Implementation

54.5.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core does not support grlib_async_reset_enable. See also the description for the syncrst VHDL
generic for how the core implements reset.
GRIP, Sep 2018, Version 2018.3 681 www.cobham.com/gaisler

GRLIB IP Core

54.6 Configuration options

Table 814 shows the configuration options of the core (VHDL generics).

54.7 Signal descriptions

Table 815 shows the interface signals of the core (VHDL ports).

54.8 Signal definitions and reset values

The signals and their reset values are described in table 816.

Table 814.Configuration options

Generic name Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0
paddr Addr field of the APB bar. 0 - 16#FFF# 0
pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#
pirq Interrupt line used by the GRPULSE. 0 - NAHBIRQ-1 1
nchannel Number of input/outputs 1 - 32 24
npulse Number of pulses 1 - 32 8
imask Interrupt mask 0 - 16#FFFFFFFF# 16#FF00#
ioffset Interrupt offset 0-32 8
invertpulse Invert pulse output when set 1 - 32 0
cntrwidth Pulse counter width 4 to 32 20
syncrst Use synchronous reset

0: Core makes use of synchronous reset only
1: Output registers and registers controlling output
enable are implemented with asynchronous reset.

0, 1 0

oepol Output enable polarity 0, 1 1

Table 815.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
GPIOI * Input -
GPIOO * Output -
* see GRLIB IP Library User’s Manual

Table 816.Signal definitions and reset values

Signal name Type Function Active Reset value
gpio[] Input/Output General purpose input output - Tri-state
GRIP, Sep 2018, Version 2018.3 682 www.cobham.com/gaisler

GRLIB IP Core

54.9 Timing

The timing waveforms and timing parameters are shown in figure 142 and are defined in table 817.

54.10 Library dependencies

Table 818 shows the libraries used when instantiating the core (VHDL libraries).

54.11 Instantiation

This example shows how the core can be instantiated.
TBD

Table 817.Timing parameters

Name Parameter Reference edge Min Max Unit
tGRPULSE0 clock to output delay rising clk edge - TBD ns

tGRPULSE1 clock to non-tri-state delay rising clk edge TBD - ns

tGRPULSE2 clock to tri-state delay rising clk edge - TBD ns

tGRPULSE3 input to clock hold rising clk edge TBD - ns

tGRPULSE4 input to clock setup rising clk edge TBD - ns

Table 818.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER MISC Signals, Components Signal and component declarations

Figure 142. Timing waveforms

tGRPULSE0gpio[]

clk

tGRPULSE0

tGRPULSE1
gpio[]

tGRPULSE2

tGRPULSE3gpio[] tGRPULSE4

(output)

(output)

(input)
GRIP, Sep 2018, Version 2018.3 683 www.cobham.com/gaisler

GRLIB IP Core

55 GRPWM - Pulse Width Modulation Generator

55.1 Overview

GRPWM is a pulse width modulation (PWM) generator that supports several outputs, with different
frequencies. The core is configured through a set of APB registers, described in section 55.3. The core
supports both asymmetric and symmetric PWM generation. Each of the PWM outputs can be config-
ured to be either a single PWM signal or a pair of PWM signals (where the two signals are each oth-
ers’ inverse), with configurable amount of dead band time in between them. The core also supports
programming of the output polarity, setting the outputs to fixed values, and configurable interrupt
schemes. Hardware support to simplify the generation of a PWM signal that emulate an arbitrary
repetitive waveform is also included.

55.2 Operation

55.2.1 System clock scaling

In order to support a wide range of system clock and PWM frequencies the core includes programma-
ble clock scalers. Each scaler is clocked by the system clock and decrement on each clock cycle.
When a scaler underflows it is reloaded with the value of its reload register and a tick is generated.
This tick can then be used to increment (or decrement) one or more PWM counters. The reload
value(s) of the scaler(s) can be read and written through the APB register called Scaler reload regis-
ter, described in section 55.3. The number of system clock scalers is configurable through the VHDL
generic nscalers and the width of the scaler(s) is determined by the VHDL generic sbits.

55.2.2 Asymmetric and symmetric PWM generation

An asymmetric PWM is a pulse signal that is inactive at the beginning of its period and after a certain
amount of time goes active, and then stays active for the rest of the period. A symmetric PWM is a
pulse signal that is inactive for a certain amount of time at the beginning of the period and a certain
amount of time at the end of the period, and stays active in between. The two inactive time periods are
normally, but not necessarily, equally long.
For the core to generate a PWM, independent of whether asymmetric or symmetric method is used,
software need to do the following (also see section 55.3 for more detailed description of register inter-
face):
• Enable the core by writing the en bit in Core control register.
• Configure the scaler (see section 55.2.1) and set the PWM period in the PWM period register.
• Write the PWM compare register with the value at which the PWM’s counter should match and

switch the outputs.
• If dead band time should be generated, write the value at which the current PWM’s dead band

time counter should match to the PWM dead band compare register. Also set the dben bit in the
PWM control register to 1. See section 55.2.4 for information on dead band time.

• Set the meth bit in PWM control register to either asymmetric och symmetric.
• Set the polarity of the PWM output be setting the pol bit in the PWM control register.
• If the PWM output should be paired with its inverse then set the pair bit in the PWM control reg-

ister to 1, otherwise set it to 0. Note that each PWM always has two ouputs, but if the pair bit is
set to 0 then the second output is constantly inactive or 0 when the PWM control register bit pz is
set to 1.

• Program the interrupt, see section 55.2.5.
• Enable the PWM generation by writing the en bit in PWM control register to 1.
GRIP, Sep 2018, Version 2018.3 684 www.cobham.com/gaisler

GRLIB IP Core

• If software wants the PWM output(s) to assume fix value(s) it can write the fix bits in the PWM

control register appropriately.
Specific configuration required for symmetric PWM if dual compare mode should be used:
• If the core should update the PWM’s compare register twice every PWM period, then set the

dcomp bit in the PWM control register to a 1.
• If the dcomp bit in the PWM control register is set, and it is desired that the two inactive time

periods are not of equal length, software needs to continuously update the PWM compare regis-
ter with new values. Since the core updates its internal register at the start of and middle of the
PWM period, software need to update the PWM compare register sometime during the first half
of the period.

Note that the core’s internal period register is updated from the PWM period register at the start of
every period, both for asymmetric and symmetric PWM generation.

55.2.3 Waveform PWM generation

That, which in this document is referred to as a waveform PWM is not a PWM generated in a different
way than the asymmetric or symmetric methods described above. In fact a waveform PWM is either
generated asymmetrically or symmetrically. The difference is that when the compare registers are
loaded with new values they are read from an internal RAM instead of the PWM compare register.
The advantage with this is that if software wants to, for example, generate a PWM signals that emu-
lates a sine wave, it can load a number of compare values into the RAM before starting the PWM gen-
eration. Once started, the core will read the RAM, increasing the address at every compare match, and
generate the same pattern over and over without the need for software intervention. Note that any pat-
tern that is loaded into the RAM is generated, the core is not limited to a sine wave. This feature is
supported if the wpwm bit in Capability register 2 is set to 1. The core only support one waveform
PWM and it is always the PWM with the highest index. The index is determined by the VHDL
generic npwm. If for example npwm = 4, then it is only PWM four that can be put in waveform mode.
For details on how to configure the waveform mode and read/write the RAM please see the descrip-
tion of the Waveform configuration register, Waveform RAM, word X registers, and PWM control reg-
ister in section 55.3.

55.2.4 Dead band time

It is often desired to have a delay between when one of the PWM signals of a PWM pair goes inactive
and when the other signal goes active. This delay is called dead band time. By default the core does
not generate any dead band time, but can be configured to do so by setting the dben bit in the PWM
control register to 0b1. When dead band time is enabled the core will start a counter each time a PWM
pair switch its outputs. The output going inactive is not delayed while the output going active is
delayed until the counter matches the value in the PWM dead band compare register. To support a
wide range of applications the amount of dead band time inserted is programmable. The number of
bits used in the PWM dead band compare register is configurable through the VHDL generic dbbits,
and also a four bit system clock scaler can be enabled for each PWM’s dead band counter by setting
the dbscaler VHDL generic to 1.

55.2.5 Interrupts

Interrupts can programmed individually for each PWM to be generated at PWM compare match, at
PWM period match, or not generated at all. This is programmed in each PWM’s PWM control regis-
ter. Each PWM also has a 6-bit interrupt counter that can be used to scale down the frequency at
which the interrupts occur. When an interrupt is generated the bit in the Interrupt pending register for
the PWM in question is set. The bits in the Interrupt pending register stay set until software clears
them by writing 1 to them. Through the sepirq and npwm VHDL generics the core supports several
different interrupt numbers, this is described in section 55.6.
GRIP, Sep 2018, Version 2018.3 685 www.cobham.com/gaisler

GRLIB IP Core

When an interrupt is generated, or when the interrupt scaler counter is increased, an output tick is gen-
erated on the core’s tick output signal. The output tick bit has the same index as the PWM in question.

55.3 Registers

The core is programmed through registers mapped into APB address space.

Table 819.GRPWM registers

APB address offset Register
0x00 Core control register
0x04 Scaler reload register
0x08 Interrupt pending register
0x0C Capability register 1
0x10 Capability register 2
0x14* Waveform configuration registers
0x18 - 0x1C Reserved, always zero.
0x20** PWM period register
0x24** PWM compare register
0x28** PWM dead band compare register
0x2C** PWM control register
0x8000*** Waveform RAM, word 0
0x8004*** Waveform RAM, word 1
... ...
0xFFFC*** Waveform RAM, word 8191
* This register is only implemented if the wpwm bit (bit 0) in Capability register 2 is set to 1.
** This register is implemented once for every PWM (value of npwm VHDL generic decides the number of registers),
with an offset of 0x10 from the previous PWM’s register. The functionality is the same for each PWM.
*** The implementation of this register depends on if the wpwm bit (bit 0) in Capability register 2 is set to 1 and if the
waveform RAM is large enough (the value of the field wabits in Capability register 2 reports the number of address bits -
1 that is used for the waveform RAM).
GRIP, Sep 2018, Version 2018.3 686 www.cobham.com/gaisler

GRLIB IP Core

55.3.1

Table 820.0x00 - CTRL - Core control register

Core Control Register

55.3.2

Table 821.0x04 - SCALER - Scaler reload register

Scaler Reload Register

55.3.3

Table 822.0x08 - IPEND - Interrupt pending register

Interrupt Pending Register

31 x+13 x+12 12 11 10 8 7 1 0

R noup R scalersel R en

0 0 0 0 0 0

r rw r rw r rw

31:x+13 Reserved, always zero. x is the value of bits 2:0 in Capability register 1

12+x:12 No update bits for each PWM. x is the value of bits 2:0 in Capability register 1. Bit 12 is for the first PWM,
bit 13 for the second etc. If a bit is set to 0b1 then that PWM’s internal period register, compare register,
and dead band compare registers are not updated from the corresponding APB registers. These bits can be
used by software if it wants to change more than one of the values and it is required that all values change
in the same PWM period. It can also be used to synhronize the use of new values for different PWMs.
Reset value 0b0..0.

11 Reserved, always zero.
10:8 System clock scaler select bits. These bits determine which of the implemented system clock scalers’

reload value that can be read/written from the Scaler reload register.These bits are only present if the
nscalers generic is greater than 1. Reset value is 0b000

7:1 Reserved, always zero.
0 Core enable bit. 0b0 = Core is disabled, no operations are performed and all outputs are disabled. 0b1 =

Core is enabled, PWM outputs can be generated. Reset value is 0b0.

31 sbits sbits-1 0

R reload

0 all 1

r rw

31:sbits Reserved, always zero. If sbits = 32 then this field is not present. (sbits is the value of the sbits
generic)

(sbits-1):0 The value of this field is used to reload the system clock scaler when it underflows. If the core is con-
figured with more than one scaler (nscalers generic greater than 1) then the scalersel bits in the Core
control register determine which of the scalers that is read/written. Reset value is 0b1..1 (all ones).

31 npwm npwm-1 0

R irq pending

0 0

r wc

31:npwm Reserved, always zero.
(npwm-1):0 Interrup pending bits for the PWM(s). When an interrupt event for a specific PWM occurs the core

sets the corresponding bit in the interrupt pending register and generates an interrupt. Software can
read this register to see which PWM that generated the interrupt.
GRIP, Sep 2018, Version 2018.3 687 www.cobham.com/gaisler

GRLIB IP Core

55.3.4

Table 823.0x0C - CAP1 - Capability register 1

Capability Register 1

55.3.5

Table 824.0x10 - CAP2 - Capability register 2

Capability Register 2

31 29 28 27 26 25 24 23 22 21 20 16 15 13 12 8 7 3 2 0

R def-
pol

dcm
ode

sepirq R sym
pwm

asyp
wm

dbsc
aler

dbbits nscalers sbits pbits npwm

0 * * * 0 * * * * * * * *

r r r r r r r r r r r r r

31:29 Reserved, always zero.
28 0 = Default polarity is active low (outputs are high after reset/power-up). 1 = Default polarity is active high

(outputs are low after reset/power-up).
27 0 = Dual compare mode not implemented. 1 = Dual compare mode implemented.
26:25 Reports interrupt configuration. Value of sepirq VHDL generic. Read only.
24 Reserved, always zero.
23 0 = Symmetric PWM generation is not implemented. 1 = Symmetric PWM generation is implemented. Value

of sympwm VHDL generic. Read only.
22 0 = Asymmetric PWM generation is not implemented. 1 = Asymmetric PWM generation is implemented.

Value of asympwm VHDL generic. Read only.
21 0 = Dead band time scaler(s) is not implemented. 1 = Dead band time scaler(s) is implemented. Value of

dbscaler VHDL generic. Read only.
20:16 Reports number of bits, -1, for the PWM’s dead band time counters. Value of the dbbits VHDL generic - 1.

Read only.
15:13 Reports number of implemented scalers, -1. Value of the nscalers VHDL generic - 1. Read only.
12:
8

Reports number of bits for the scalers, -1. Value of the sbits VHDL generic - 1. Read only.

7:3 Reports number of bits for the PWM counters, -1. Value of the pbits VHDL generic - 1. Read only.
2:0 Reports number of implemented PWMs. Value of the npwm VHDL generic - 1. Read only.

31 11 10 9 6 5 1 0

R wsync wabits wdbits wpwm

0 * * * *

r r r r r

31:11 Reserved, always zero
10 1 if Waveform PWM synch signal generation is implemented, 0 if not. Value of VHDL generic

wsync. Read only
9:6 Reports the number of address bits - 1 used for the waveform RAM. Value is log2(wdepth) - 1,

where wdepth is the VHDL generic wdepth. Read only.
5:1 Reports number of bits -1 for each word in the waveform RAM. Value of VHDL generic wbits - 1.

Read only
0 1 if waveform PWM generation is implemented, 0 if not. Value of VHDL generic wavepwm. Read

only
GRIP, Sep 2018, Version 2018.3 688 www.cobham.com/gaisler

GRLIB IP Core

55.3.6

Table 825.0x14 - WCFG - Waveform configuration register

Waveform Configuration Register

55.3.7

Table 826.0x20 - PPERIOD - PWM period register

PWM Period Register

31 30 29 28 wabits
+17

wabits
+16

16 15 wabits
+1

wabits 0

wsynccfg wsen R wsynccomp R wstopaddr

0 0 0 0 0 all 1

rw rw r rw r rw

31:30 These bits are used to configure at which point in the PWM period matching the wsynccomp field (see
description below) that the wsync ouput will be set high. 0b00 = The wsync ouput will be set at the start
of the PWM period. 0b01 = The output will be set at the first compare match. 0b10 = If the meth bit in
the PWM Control Register is set to one (symmetric) for the waveform PWM, then the output will be set
at the middle of the PWM period. 0b11 = If the meth bit is set to one for the waveform PWM, then the
output will be set at the second compare match.

29 Enables/disables the waveform sync signal. This bit is only present if the wsync bit in Capability register
2 is set to 1. Reset value is 0b0

28:wabits+1
7

Reserved, always zero. wabits is the value of the wabits field in Capability register 2. Note that this field
is not present if wabits is 12.

16+wabits:1
6

wabits is the value of the wabits field in Capability register 2. The number of words in the waveform
RAM is the same as the maximum number of PWM periods that will occur before the waveform is
restarted. The value of this field is used as an offset into the waveform PWM. A counter is increased
every PWM period and when the counter matches this value the wsync output of the core will be set to 1
sometime during that period. These bits are only present if the wsync bit in Capability register 2 is set to
1. Reset value is 0b0..0.

15:wabits+1 Reserved, always zero.
wabits:0 The value of this field is used by the core to wrap when accessing the waveform RAM. wabits is the

value of the wabits field in Capability register 2. This field is reset to 0b1..1 (all ones) so that by default
the core reads the whole RAM. If software wants to put a waveform in the RAM that does not fill the
whole RAM it should set these bits to the address where the last waveform PWM compare value will be
stored.

31 pbits pbits-1 0

R per

0 0

r rw

31:pbits Reserved, always zero. If pbits = 32 then this field is not present. (pbits is the value of the pbits
generic)

(pbits-1):0 When the PWM counter reaches this value a PWM period has passed. Depending on the method
used to generate the PWM the output could then be switched. When this register is written the actual
PWM period value used inside the core is not updated immediately, instead a shadow register is used
to hold the new value until a new PWM period starts. Reset value 0b0..0 (all zeroes).
GRIP, Sep 2018, Version 2018.3 689 www.cobham.com/gaisler

GRLIB IP Core

55.3.8

Table 827.0x24 - PCOMP - PWM compare register

PWM Compare Register

55.3.9

Table 828.0x28 - PDEAD - PWM dead band compare register

PWM Dead Band Compare Register

55.3.10 PWM Control Register

31 pbits pbits-1 0

R comp

0 0

r rw

31:pbits Reserved, always zero. If pbits = 32 then this field is not present. (pbits is the value of the pbits
generic)

(pbits-1):0 When the PWM counter reaches this value the PWM output is switched. Depending on the method
used to generate the PWM this register is used once or twice during each PWM period. When this
register is written the actual PWM compare value used inside the core is not updated immediately,
instead a shadow register is used to hold the new value until a new PWM period starts. Reset value
0b0..0 (all zeroes).

31 dbbits dbbits-1 0

R dbcomp

0 0

r rw

31:dbbits Reserved, always zero. If dbbits = 32 then this field is not present. (dbbits is the value of the dbbits
generic)

(dbbits-1):0 The dead band time has passed once the dead band counter reach the value of this field. When this
register is written the actual compare value used inside the core is not updated immediately, instead a
shadow register is used to hold the new value until a new PWM period starts. Reset value 0b0..0 (all
zeroes).

Table 829.0x2C - PCTRL - PWM control register
31 27 26 25 22 21 20 15 14 13 12 10 9 8 7 6 5 3 2 1 0

R flip dbscaler dbe
n

irqscaler irqt irqe
n

scalersel wen dcen pz met
h

fix pair pol en

0 0 0 0 0 0 0 0 0 0 0 * 0 1 * 0

r rw rw rw rw rw rw rw rw* rw* r rw rw rw rw rw

31:27 Reserved, always zero.
26 Output flip bit. When this bit is set to 0b1 the PWM outputs are flipped.
25:22 Dead band scaler. These bits are used to scale the system clock when generating dead band time. This

field is only present if the dbscaler generic is set to 1. When these bits are written the dead band scaler
register inside the core is not updated immediately. Instead these bits are written to a reload register
which updates the actual scaler when it underflows. This is done in order to prevent the dead band scaler
register to change during the actual dead band time. Reset value is 0b0..0 (all zeroes).

21 Dead band enable. 0b0 = Dead band time generation is disabled, no dead band time will be inserted when
the PWM output switch from deactive to active. 0b1 = Dead band time will be inserted when the PWM
output switch from deactive to active. Reset value is 0b0.

20:15 Interrupt scaler. Determines how many compare/period matches that need to occur before an interrupt is
generated. All zeroes means that an interrupt will occur every compare/period match, a one means that
an interrupt will occur every second match etc. Note that when generating a symmetric PWM two com-
pare matches occur during a PWM period but when generating an asymmetric PWM only one compare
match occur during a period. Reset value is 0b0..0 (all zeroes).

14 Interrupt type. 0b0 = Generate interrupt on PWM period match. 0b1 = Generate interrupt on PWM com-
pare match. Reset value is 0b0.

13 Interrupt enable/disable bit. 0b0 = Interrupt is disabled. 0b1 = Interrupt is enabled. Reset value is 0b0.
GRIP, Sep 2018, Version 2018.3 690 www.cobham.com/gaisler

GRLIB IP Core
55.3.11

Table 830.0x8000 - 0xFFFC - Waveform RAM, word X

Waveform RAM, Word X

55.4 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x04A. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

12:10 Scaler select bits. These bits are used to select which of the system clock scalers that will be used when
generating the current PWM. This field is only present when the nscalers generic is greater than 1. These
bits can only be set if the PWM is disabled, i.e. en bit (see below) set to 0b0. Reset value is 0b000.

9 Waveform PWM enable. This bit can only be set if the current PWM is the PWM with the highest index
(determined by the generic npwm) and if the wavepwm field in Capability register 2 is set to 1. Also the
PWM need to be disabled, i.e. en bit (see below) set to 0b0. When this bit is set the core will reload the
internal PWM compare registers with values from the waveform RAM instead of values from the PWM
compare register. Reset value is 0b0.

8 Dual compare mode enable. If this bit is set to 0b1 and the meth bit (see below) is set to 0b1 (symmetric)
then the core will update its internal PWM compare register twice every PWM period, once when the
counter is zero and once when a period match occur and the counter starts counting downwards again. In
this way it is possible to have two different compare values, one when counter is counting upwards and
one when counter is counting downwards. If this bit is 0b0 the compare register is only updated when the
counter is zero. This bit has no effect if an asymmetric PWM is generated. Reset value is 0b0. This bit is
only present if the dcmode bit in the Capability register is set.

7 When this pair_zero bit is set to 0b1 and the pair bit is set to 0b0 the complement output is always set to
zero. When this bit is set to 0b0 and the pair bit is set to 0b0 the complement output is inactive (depend-
ing on the polarity). When the pair bit is set to 0b1, this bit has no function.

6 PWM generation method select bit. This bit selects if an asymmetric or symmetric PWM will be gener-
ated, where 0b0 = asymmetric and 0b1 = symmetric. . The asymmetric and symmetric methods are only
available if the generics asympwm and sympwm respectively are set to 1. This bit can only be set if the
PWM is disabled, i.e. en bit (see below) set to 0b0. The core prevents software from setting this bit to an
invalid value. Reset value is 0b0 if asymmetric PWM is supported otherwise 0b1.

5:3 PWM fix value select bits. These bits can be used to set the PWM output to a fix value. If bit 3 is set to
0b1 then bit 4 decides what value the PWM output will have. If the pair bit (see below) is set to 0b1
while bit 3 is set to 0b1 as well then bit 5 determines what value the complement output will have. Reset
value is 0b000.

2 PWM pair bit. If this bit is set to 0b1 a complement output for this PWM will be generated, creating a
PWM pair instead of a single PWM. The complement output will be the first ouput’s inverse, with the
exception that dead band time might be added when the values switch from deactive to active. Reset
value is 0b1.

1 PWM polarity select bit. 0b0 = PWM is active low, 0b1 = PWM is active high. This bit can only be set if
the PWM is disabled, i.e. en bit (see below) set to 0b0. Reset value equals defpol bit in Capability Regis-
ter 1.

0 PWM enable/disable bit. 0b0 = PWM is disabled. 0b1 = PWM is enabled. When this bit is set to 1 (from
0) and the wen bit (see bit 9 above) is set the core’s internal address counter for the waveform RAM is
reset. Reset value is 0b0.

31 wbits+1 wbits 0

R waveform data

0 NR

r rw

31:wbits+1 Reserved, always zero. wbits is the value of the wdbits field in Capability register 2. Note
that this field is not present if wbits = 31.

wbits:0 wbits is the value of the wdbits field in Capability register 2. Data in the waveform RAM at
the address which the current register maps to can be read/written through these bits. This
register can only be read/written if either the wen bit or en bit in the associated PWM’s PWM
control register are set to 0.

Table 829.0x2C - PCTRL - PWM control register
GRIP, Sep 2018, Version 2018.3 691 www.cobham.com/gaisler

GRLIB IP Core

55.5 Implementation

55.5.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core does not support grlib_async_reset_enable. The registers driving PWM output are always
implemented with asynchronous reset.

55.5.2 RAM usage

The core maps all usage of RAM on the syncram (or syncramft if ft generic is not set to 0) component
from the technology mapping library (TECHMAP). RAM is only used if the core is configured with
support for generation of a waveform PWM (wavepwm generic set to 1). The size of the instantiated
RAM is determined by the wbits and wdepth generics. wdepth is the number of words that the RAM
can hold, and wbits is the number of bits in each word. Fault tolerance - byte parity DMR or TMR -
can be added to the RAM by setting the ft generic to 1 or 2. Note that the ft generic need to be set to 0
if the core is used together with the GPL version of GRLIB, since that version does not support any
fault tolerance.

55.6 Configuration options

Table 831 shows the configuration options of the core (VHDL generics).

Table 831.Configuration options

Generic name Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0
paddr ADDR field of the APB BAR. 0 - 16#FFF# 0
pmask MASK field of the APB BAR. Need to be set to

16#F00# or smaller if the generic wavepwm is set to 1.
0 - 16#FFF# 16#F00#

pirq APB irq number. 0 - NAHBIRQ-1 0
memtech Memory technology used for waveform buffer. This

generic has no impact if wavepwm is 0.
0 - NTECH inferred

npwm Number of PWM outputs. 1 - 8 3
pbits Number of bits used for each PWM. 1 - 32 16
sbits Number of bits in the system clock scaler(s). 1 - 32 16
nscalers Number of system clock scalers. 1 - 8 1
dbbits Number of bits used for the dead band configuration for

each PWM.
1 - 32 8

dbscaler Decides if a scaler is implemeted for the dead band con-
figuration for each PWM. 1 = A four bit system clock
scaler is implemented for each PWM. 0 = No scaling of
the system clock when calculating the dead band time is
implemented.

0 - 1 1

asympwm Decides if assymetric PWM generation is implemented.
This generic can not be set to 0 if the sympwm generic is
set to 0 as well.

0 - 1 1

sympwm Decides if symmetric PWM generation is implemented.
This generic can not be set to 0 if the asympwm generic
is set to 0 as well.

0 - 1 1
GRIP, Sep 2018, Version 2018.3 692 www.cobham.com/gaisler

GRLIB IP Core
dcmode Enables dual compare mode. Core then supports updates
of the PWM’s compare registers twice during every
(symmetric) PWM period. This generic has no effect if
sympwm is set to 0.

0 - 1 0

wavepwm Decides if the core implements support for generating a
waveform PWM. If this generic is set to 1 then a RAM
block of size wdepth*wbits bits will be instantiated.

0 - 1 1

wbits The number of bits in each of the wdepth words in the
internal RAM that holds the waveform. This generic has
no impact if wavepwm is 0. This generic can not be
larger than the pbits generic.

1 - 32 8

wdepth The number of wbits wide words that need to fit in the
internal buffer holding the waveform. If wdepth is not a
power of two then the actual number of words that will
fit in the buffer is the closest power of two above wdepth.
This generic has no impact if wavepwm is 0.

1 - 8192 512

wsync If this generic is set the core supports the generation of a
synchronization signal. The synchronization signal can
be configured to go active any time during the waveform
PWM. This generic has no impact if wavepwm is 0.

0 - 1 1

sepirq 0 = One irq number (value of pirq generic) is used for all
PWMs. 1 = Each PWM has it’s own irq number, starting
with the value of pirq and counting up to pirq+(npwm-1).
2 = The interrupt configuration depend on the npwm
generic in the following way:
If npwm < 3, each PWM has its own irq (pirq and possi-
bly pirq+1). If npwm = 3 the PWMs share irq (pirq). If 3
< npwm < 6 the first three PWMs share irq (pirq) and the
remaining PWM(s) have their own irq (pirq+1 and possi-
bly pirq+2). If npwm >= 6 the first three PWMs share irq
number pirq, the second three PWMs share irq number
pirq+1, and (if implemented) the last two PWMs have
their own irq (pirq+2 and pirq+3).

0 - 2 0

ft This generic determines if fault tolerance should be
added to the RAM that holds the waveform PWM. This
generic has no impact if wavepwm is 0. 0 = no fault toler-
ance, 1 = Byte parity DMR, 2 = TMR. Note that this
generic need to be set to 0 if the core is used together
with the GPL verison of GRLIB, since that version does
not include any fault tolerance.

0 - 2 0

defpol This generic sets the default polarity of the PWM out-
puts. 0 = Active low polarity, outputs are high after reset/
power-up. 1 = Active high polarity, outputs are low after
reset/power-up.

0 - 1 1

Table 831.Configuration options

Generic name Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 693 www.cobham.com/gaisler

GRLIB IP Core

55.7 Signal descriptions

Table 832 shows the interface signals of the core (VHDL ports).

55.8 Signal definitions and reset values

The signals and their reset values are described in table 833.

55.9 Library dependencies

Table 834 shows the libraries used when instantiating the core (VHDL libraries).

Table 832.Signal descriptions

Signal name Field Type Function Active
rst N/A Input Reset Logical 0
clk N/A Input Clock -
apbi * Input APB slave input signals -
apbo * Output APB slave output signals -
o pwm(x:0)** Output PWM signals ***

wavesync**** Output Waveform PWM synchronization signal Logical 1
tick(y:0)***** Output PWM synchronization tick outputs Logical 1

* see GRLIB IP Library User’s Manual
** The width depends on core configuration in the following way: x = <number of PWMs>*2-1 (<number of PWMs> =
value of VHDL generic npwm)
*** Depends on core configuration.
**** Signal is only driven if the waveform PWM and and waveform sync functionality are implemented (VHDL generics
wavepwm and wsync need to be set to 1).
***** The width depends on core configuration in the following way: y = <number of PWMs>-1 (<number of PWMs> =
value of VHDL generic npwm)

Table 833.Signal definitions and reset values

Signal name Type Function Active Reset value
pwm(x:0)* Output PWM signals ** **
wavesync*** Output Optional synchronization signal Logical 1 Logical 0
tick(y:0)**** Output PWM synchronization tick outputs Logical 1 Logical 0
* The width depends on core configuration in the following way: x = <number of PWMs>*2-1 (<number of PWMs> =
value of VHDL generic npwm)
** Depends on core configuration.
*** Signal is only driven if the waveform PWM and and waveform sync functionality are implemented (VHDL generics
wavepwm and wsync need to be set to 1).
**** The width depends on core configuration in the following way: y = <number of PWMs>-1 (<number of PWMs> =
value of VHDL generic npwm)

Table 834.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER PWM Signals, component Component declaration
TECHMAP GENCOMP Constants, components Components etc. for technology mapping.
GRIP, Sep 2018, Version 2018.3 694 www.cobham.com/gaisler

GRLIB IP Core

55.10 Timing

The timing waveforms and timing parameters are shown in figure 143 and are defined in table 835.

55.11 Instantiation

This example shows how the core can be instantiated. The instantiated core has all its generics, except
pindex, paddr, and pirq at their default values. The impact of the generics can be seen in table 831.

library ieee, grlib, gaisler;
use ieee.std_logic_1164.all;
use grlib.amba.all;
use gaisler.pwm.all;

entity grpwm_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;
 pwm : out std_logic_vector(5 downto 0)
);
end;

architecture rtl of grpwm_ex is

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);

 -- GRPWM signals
 signal pwm : grpwm_out_type;

begin

 -- AMBA Components are instantiated here
 ...

 -- GRPWM core
 grpwm0 : grpwm
 generic map (pindex => 10, paddr => 10, pirq => 10)
 port map (rstn, clk, apbi, apbo(10), pwm);

Table 835.Timing parameters

Name Parameter Reference edge Min Max Unit
tGRPWM0 clock to output delay rising clk edge TBD TBD ns

tGRPWM1 clock to non-tri-state delay rising clk edge - - ns

tGRPWM2 clock to tri-state delay rising clk edge - - ns

Figure 143. Timing waveforms

tGRPWM0pwm[]

clk

tGRPWM0

tGRPWM1
pwm[]

tGRPWM2

(output)

(output)
GRIP, Sep 2018, Version 2018.3 695 www.cobham.com/gaisler

GRLIB IP Core

 -- Pads for GRPWM core
 pwm_pad : outpadv generic map (tech => padtech, width => 6)
 port map (pwmo, pwm.pwm);

end;
GRIP, Sep 2018, Version 2018.3 696 www.cobham.com/gaisler

GRLIB IP Core

56 GRRT - MIL-STD-1553B / AS15531 Remote Terminal Back-End

56.1 Overview

This core provides the back-end logic for a MIL-STD-1553B Remote Terminal, taking care of the
details of the bus protocol. The core provides a simple signaling interface, that can be converted by a
front-end to bus master accesses, direct block-RAM, FIFO or register accesses, depending on require-
ments.
The RT supports single or dual-redundant buses, and all types of transfers allowed by the 1553B stan-
dard. The back-end includes 1553 codec, RT protocol handling state machines, and terminal fail-safe
timers.

56.2 Electrical interface

The core is connected to the MIL-STD-1553B bus wire through single or dual transceivers, isolation
transformers and transformer or stub couplers as shown in figure 145. If single-redundancy is used,
the unused bus receive P/N signals should be tied both-high or both-low. The transmit enable output is

1553B codec

Figure 144. GRRT block diagram showing interfacing signals

aoutin
aoutp
aoutn
ainen
ainp
ainn
aoutin
aoutp
aoutn
ainen
ainp
ainn

Terminal
aoutp_fb
aoutn_fb
boutp_fb
boutn_fb

timeoutA timeoutB

RT Protocol

Interface
Logic

validcmdA

validcmdB fail-safe
timers

Handler

phase
transfer

resp
tfrerror
txdata
rxdata

datardy
datarw

rtaddr
rtaddrp
ad31en

stamp
rtsync
rtreset
GRIP, Sep 2018, Version 2018.3 697 www.cobham.com/gaisler

GRLIB IP Core

inverted (called transmitter inhibit) as is the standard on most transceivers. See the standard and the
respective component’s data sheets for more information on the electrical connection.

56.3 Operation

56.3.1 Address configuration

The core’s RT address is set through RT address and parity input signals. If the parity is not odd (the
exclusive-or of the RT address lines and parity line is zero), the back-end will not respond to com-
mands from the bus.
There is also an input bootstrap signal ad31en, determining whether the address 31 should be treated
as a normal RT address or as the broadcast address. If ad31en is high and the RT is configured to
address 31, it will respond on this address. If ad31en is low, then the RT will use address 31 as broad-
cast address and never respond on this address regardless of address configuration.

56.3.2 Transfer handling

Each transfer is processed in the following four stages:
• Idle (phase=”00”) - waiting for command on the bus, “transfer” signal outputs at undefined
• Legalize (phase=”01”) - Waiting for front-end to respond to legalization request by setting resp

inputs to legal (resp=”01”) or illegal (resp=”10”).
• Transfer (phase=”11”) - Transferring data words.

Table 836.Possble address configurations

ad31en rtaddr rtaddrp Regular address Broadcast address
0 0..30 Correct =rtaddr 31

Wrong None None
31 Correct (0) None 31

Wrong (1) None None
1 0,2,...,30 Correct =rtaddr None

Wrong None None
31 Correct (0) =rtaddr(=31) None

Wrong (1) None None

ainen

aoutn

ainp

ainn

aoutp

aoutin
Bus A

binen

boutn

binp

binn

boutp

boutin
Bus BGRRT

Terminal boundary
Figure 145. Interface between core and MIL-STD-1553B bus (dual-redundant, transformer coupled)
GRIP, Sep 2018, Version 2018.3 698 www.cobham.com/gaisler

GRLIB IP Core

• Commit (phase=”10”) - Transfer completed, successfully if tferror=0. Waiting for frontend to

deassert resp input, then goes back to idle.
After the front-end has legalized or illegalized the command by setting resp to “01” or “10”, it should
keep the resp signal set until the transfer has completed. In the idle and commit stages, the response
should be set back to unknown (“00”). The core will delay going from idle to legalize state if the
response signal is already set. This acts as a handshake and prevents earlier responses from getting
used multiple times.

56.3.3 Data transfers

During the transfer phase, data words are transferred depending on direction (transfer bit 10).
For receive transfers, received data words will be available on the rxdata output when the datarw sig-
nal is high. For transmit transfers, outgoing data words are read from the txdata input when the datarw
signal is high.
To provide flow control, the datardy input signals whether the user logic is ready for the datarw signal
to be asserted.
The number of words to be transferred is given by bits 4:0 of the transfer output signal, all all-zero
value indicates 32 data words. An exception to this is for mode commands with data, where the word
count is always 1. In case of error, less words than expected may be transferred.

56.3.4 Error handling

Normally, the best way to handle errors in an RT is to ignore the failed command and let the BC per-
form the error recovery appropriate for the system. The design of the 1553 bus means the BC can
always see an error occured so there is no need to signal this separately.
To simplify the user logic design, transfers will always go through all the four phases and spend at
least one cycle in each state, even if an error occurs during the transfer. If an error occurs during the
transfer or the request was illegalized by the user logic, the tfrerror output signal is asserted and kept
high until the core has left the commit phase.

56.3.5 Response-time requirements

The core will wait for the user logic in three cases:
1. In the legalize phase, waiting for command legalization.
2. In the transfer phase, waiting for the datardy signal to go high.
3, In the commit phase, waiting for the resp signal to go low.
In these cases, the user logic must respond within a limited time in order for the core to continue. Fail-
ing to meet these limits will result in the RT not responding to the command or not sending the full
word count. It does not cause any permanent error so after the user logic has caught up, it will again
work as before.
For the datardy signaling, the maximum tolerated delay is 20 us (400 cycles at 20 MHz), which is the
time it takes to send a data word on the 1553 bus.
To analyze the maximum value tolerated for the legalization interface one must consider the bus
switching requirement, where another command may arrive on the other bus at any time and override
the current command. This could happen while an old transfer is still in the legalize phase. Since the
GRRT always processes commands through all four phases, the old command must be legalized, then
go to the commit phase and wait for resp to go low, then the new command needs to be legalized. All
this must complete within 8.5 us (170 cycles at 20 MHz).
GRIP, Sep 2018, Version 2018.3 699 www.cobham.com/gaisler

GRLIB IP Core

56.3.6 Mode commands

The following mode commands without external data are supported by the core and can not be illegal-
ized:
• Synchronize - will assert the rtsync output one cycle
• Transmit status word - transmits the current value of the 1553 status word
• Transmit last command - transmits the current value of the 1553 status word followed by the last

valid command word received by the RT.
• Transmitter shutdown - Shuts down the transmitter on the other bus than the one where the com-

mand
• Override transmitter shutdown - Cancels an earlier transmitter shutdown command
• Inhibit terminal flag - Masks the terminal flag bit
• Override inhibit terminal flag bit - Cancels an earlier inhibit terminal flag command
• Reset remote terminal - Clears the transmitter shutdown and inhibit terminal flag status, and

asserts the rtreset output for one cycle. The front-end can use this to reset the core, if appropriate.
They will be handled internally by the core, keeping the phase at idle state during the command.
The following mode commands without data are not supported and will be treated as an illegal com-
mand (the core will respond with the message error status bit set):
• Dynamic bus control (only applicable to backup bus controllers)
• Initiate self test (no self test implemented)

56.3.7 Mode commands with external data

Three mode commands with external data are supported by the core:
• Synchronize with data word - One received data word is transferred
• Transmit vector word - One data word to transmit is transferred
• Transmit BIT word - One data word is transferred
These will be handled using the same four-phase scheme as regular data transfers, however to identify
the mode command bits 9:5 of the transfer output will be set to “00000” or “11111” and bits 4:0 are set
to the mode command number. As for regular transfers, it is also possible for the front-end to illegal-
ize these two commands if they are not implemented.
Not supported (always illegalized) mode commands with data are:
• Selected Transmitter Shutdown (not applicable for dual-redundant RTs)
• Override Selected Transmitter Shutdown (not applicable for dual-redundant RTs)

56.3.8 Timestamping

The core has a stamp output which is asserted for one cycle when the command word is received. This
is mainly useful together with the rtsync for accurately time-stamping the synchronize mode com-
mand for time synchronization purposes.

56.4 Implementation

56.4.1 Clocking

The core operates in two clock domains, the front-end clock domain and the codec clock domain, with
internal synchronization between the domains. The codec clock must be 20 or 24 MHz, configured
GRIP, Sep 2018, Version 2018.3 700 www.cobham.com/gaisler

GRLIB IP Core

via the codecfreq generic, but the front-end clock can be any frequency from 10 MHz and up. All the
signals interfacing the front-end are synchronous to the front-end clock.
If the front-end clock is the same (20 or 24 MHz) clock as the codec, the generic sameclk can be set to
1 to remove the internal synchronization registers to save some area.

56.4.2 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual).
The core has two separate reset inputs for the two clock domain’s registers. The resets can be config-
ured as either synchronous or asynchronous.

56.5 Configuration options

Table 837 shows the configuration options of the core (VHDL generics).

56.6 Signal descriptions

Tables 838 shows the interface signals of the core (VHDL ports).

Table 837.Configuration options

Generic Function Allowed range Default
codecfreq Codec clock frequency, 20 or 24 MHz 20 or 24 20
sameclk Set to 1 if codec clock and user clock are tied to the same

clock signal (removes synchronization registers)
0-1 1

syncrst Chooses between synchronous (‘1’) or asynchronous
(‘0’) reset.

0 - 1 1

Table 838.Signal descriptions on AMBA side

Signal name Type Function Active
CLK Input Clock, front-end clock domain -
RST Input Reset, deasserted synchronously to CLK Low
CLK1553 Input Codec clock
RST1553 Input Reset, deasserted synchronously to CLK1553 Low
RTADDR Input RT address (bootstrap signal) -
RTADDRP Input Odd parity for RTADDR (bootstrap signal) -
RTSTAT Input RT status bits

Bit 3 - Service request
Bit 2 - Busy
Bit 1 - Subsystem flag
Bit 0 - Terminal flag

AD31EN Input Address 31 configuration:
0 = Address 31 is broadcast address
1 = Address 31 is valid normal RT address
Should be kept constant during operation

-

RTSYNC Output Asserted for synchonize mode command High
RTRESET Output Asserted for reset remote terminal mode com-

mand
High

STAMP Output Asserted when receiving a valid command word High
GRIP, Sep 2018, Version 2018.3 701 www.cobham.com/gaisler

GRLIB IP Core
56.7 Library dependencies

Table 839 shows libraries used when instantiating the core (VHDL libraries).

PHASE Output Transfer phase:
00 = Idle
01 = Legalize
11 = Transfer
10 = Commit

-

TRANSFER Output Transfer description, see section
Bit 11 - Broadcast
Bit 10 - TX/RX
Bit 9:5 - Subaddress / mode code indicator
Bit 4:0 - Word count/mode code

-

RESP Input Transfer legality response:
00 = Unknown/Idle
01 = Legal
10 = Illegal

-

TFRERROR Output Asserted when an error occurs during transfer
TXDATA Input Data for transmit (RT-to-BC) commands -
RXDATA Output Data for receive (BC-to-RT) commands -
DATARDY Input Ready for read/write High
DATARW Output Data word read or write High
AOUTIN Output Bus A Transmitter Inhibit High inhibit,

Low enable
AOUTP Output Bus A Transmit Data, Positive -
AOUTN Output Bus A Transmit Data, Negative -
AINEN Output Bus A Receiver Enable High
AINP Input Bus A Receive Data, Positive -
AINN Input Bus A Receive Data, Negative -
BOUTIN Output Bus B Transmitter Inhibit High inhibit,

Low enable
BOUTP Output Bus B Transmit Data, Positive -
BOUTN Output Bus B Transmit Data, Negative -
BINEN Output Bus B Receiver Enable High
BINP Input Bus B Receive Data, Positive -
BINN Input Bus B Receive Data, Negative -
AOUTP_FB Input Feedback signal for fail-safe timers, tie to corre-

sponding output signal.
-

AOUTN_FB
BOUTP_FB
BOUTN_FB

Table 839.Library dependencies

Library Package Imported unit(s) Description
GAISLER GR1553B_PKG Component Component declaration

Table 838.Signal descriptions on AMBA side

Signal name Type Function Active
GRIP, Sep 2018, Version 2018.3 702 www.cobham.com/gaisler

GRLIB IP Core
GRIP, Sep 2018, Version 2018.3 703 www.cobham.com/gaisler

GRLIB IP Core

57 GRSPW - SpaceWire codec with AHB host Interface and RMAP target

57.1 Overview

The SpaceWire core provides an interface between the AHB bus and a SpaceWire network. It imple-
ments the SpaceWire standard (ECSS-E-ST-50-12C) with the protocol identification extension
(ECSS-E-ST-50-51C). The optional Remote Memory Access Protocol (RMAP) target implements the
ECSS standard (ECSS-E-ST-50-52C).
The core is configured through a set of registers accessed through an APB interface. Data is trans-
ferred through DMA channels using an AHB master interface.
Currently, there is one DMA channel but the core can easily be extended to use separate DMA chan-
nels for specific protocols. The core can also be configured to have either one or two ports.
There can be up to four clock domains: one for the AHB interface (system clock), one for the trans-
mitter and one or two for the receiver depending on the number of configured ports. The receiver
clock can be twice as fast and the transmitter clock four times as fast as the system clock whose fre-
quency should be at least 10 MHz.
The core only supports byte addressed 32-bit big-endian host systems.

57.2 Operation

57.2.1 Overview

The main sub-blocks of the core are the link-interface, the RMAP target and the AMBA interface. A
block diagram of the internal structure can be found in figure 146.
The link interface consists of the receiver, transmitter and the link interface FSM. They handle com-
munication on the SpaceWire network. The AMBA interface consists of the DMA engines, the AHB
master interface and the APB interface. The link interface provides FIFO interfaces to the DMA
engines. These FIFOs are used to transfer N-Chars between the AMBA and SpaceWire domains
during reception and transmission.
The RMAP target is an optional part of the core which can be enabled with a VHDL generic. The
RMAP target handles incoming packets which are determined to be RMAP commands instead of the
receiver DMA engine. The RMAP command is decoded and if it is valid, the operation is performed

Figure 146. Block diagram

TRANSMITTER

RXCLK

TXCLK

RXCLK

TRANSMITTER
FSM

LINKINTERFACE

SEND

RMAP

D(1:0)

S(1:0)

FSM

RECOVERY
RECEIVER0

RXCLK
RECOVERY

RXCLK

FSM

TRANSMITTER
DMA ENGINE

RECEIVER
DMA ENGINE

TRANSMITTER

RMAP
RECEIVER

N-CHAR
FIFO

RECEIVER
AHB FIFO

RECEIVER DATA
PARALLELIZATION

AHB
MASTER INTERFACE

REGISTERS APB
INTERFACE

D0

S0

S1
RECEIVER1

D1
GRIP, Sep 2018, Version 2018.3 704 www.cobham.com/gaisler

GRLIB IP Core

on the AHB bus. If a reply was requested it is automatically transmitted back to the source by the
RMAP transmitter.
The core is controlled by writing to a set of user registers through the APB interface and three signals:
tick-in, rmapen and clkdiv10. The controlled parts are clock-generation, DMA engines, RMAP target
and the link interface.
The link interface, DMA engines, RMAP target and AMBA interface are described in section 57.3,
57.4, 57.5 and 57.7 respectively.

57.2.2 Protocol support

The core only accepts packets with a destination address corresponding to the one set in the node
address register. Packets with address mismatch will be silently discarded (except in promiscuous
mode which is covered in section 57.4.10). The node address register is initialized to the default
address 254 during reset. It can then be changed to other values by writing to the register.
The core has support for the protocol ID specified in ECSS-E-ST-50-51C. It is used for identifying
RMAP commands that should be received by the RMAP target. Other packets are stored to the DMA
channel. This is only applicable if the RMAP target is present and enabled. When the RMAP target is
not present or disabled all the bytes after the address are treated as normal cargo.
RMAP commands are identified using the protocol ID (0x01) and the instruction field. They are han-
dled separately from other packets if the hardware RMAP target is enabled. When enabled, all RMAP
commands are processed, executed and replied in hardware. RMAP replies received are always stored
to the DMA channel. If the RMAP target is disabled, all packets are stored to the DMA channel. More
information on the RMAP protocol support is found in section 57.7.
RMAP packets arriving with the extended protocol ID (0x000001) are stored to the DMA channel
which means that the hardware RMAP target will not work if the incoming RMAP packets use the
extended protocol ID. Note also that packets with the reserved extended protocol identifier (ID =
0x000000) are not ignored by the core. It is up to the client receiving the packets to ignore them.
When transmitting packets, the address and protocol-ID fields must be included in the buffers from
where data is fetched. They are not automatically added by the core.
Figure 147 shows the packet types supported by the core. The core also allows reception and trans-
mission with extended protocol identifiers but without support for RMAP CRC calculations and the
RMAP target.

57.3 Link interface

The link interface handles the communication on the SpaceWire network and consists of a transmitter,
receiver, a FSM and FIFO interfaces. An overview of the architecture is found in figure 146.

57.3.1 Link interface FSM

The FSM controls the link interface (a more detailed description is found in the SpaceWire standard).
The low-level protocol handling (the signal and character level of the SpaceWire standard) is handled
by the transmitter and receiver while the FSM in the host domain handles the exchange level.

Figure 147. The SpaceWire packet types supported by the GRSPW.

Addr ProtID Dn-2..D3D2D1D0 Dn-1 EOP

Addr D0 Dm-2..D4D3D2D1 Dm-1 EOP
GRIP, Sep 2018, Version 2018.3 705 www.cobham.com/gaisler

GRLIB IP Core

The link interface FSM is controlled through the control register. The link can be disabled through the
link disable bit, which depending on the current state, either prevents the link interface from reaching
the started state or forces it to the error-reset state. When the link is not disabled, the link interface
FSM is allowed to enter the started state when either the link start bit is set or when a NULL character
has been received and the autostart bit is set.
The current state of the link interface determines which type of characters are allowed to be transmit-
ted which together with the requests made from the host interfaces determine what character will be
sent.
Time-codes are sent when the FSM is in the run-state and a request is made through the time-interface
(described in section 57.3.5).
When the link interface is in the connecting- or run-state it is allowed to send FCTs. FCTs are sent
automatically by the link interface when possible. This is done based on the maximum value of 56 for
the outstanding credit counter and the currently free space in the receiver N-Char FIFO. FCTs are sent
as long as the outstanding counter is less than or equal to 48 and there are at least 8 more empty FIFO
entries than the counter value.
N-Chars are sent in the run-state when they are available from the transmitter FIFO and there are
credits available. NULLs are sent when no other character transmission is requested or the FSM is in
a state where no other transmissions are allowed.
The credit counter (incoming credits) is automatically increased when FCTs are received and
decreased when N-Chars are transmitted. Received N-Chars are stored to the receiver N-Char FIFO
for further handling by the DMA interface. Received Time-codes are handled by the time-interface.

57.3.2 Transmitter

The state of the FSM, credit counters, requests from the time-interface and requests from the DMA-
interface are used to decide the next character to be transmitted. The type of character and the charac-
ter itself (for N-Chars and Time-codes) to be transmitted are presented to the low-level transmitter
which is located in a separate clock-domain.
This is done because one usually wants to run the SpaceWire link on a different frequency than the
host system clock. The core has a separate clock input which is used to generate the transmitter clock.
More information on transmitter clock generation is found in section 57.8.2. Since the transmitter
often runs on high frequency clocks (> 100 MHz) as much logic as possible has been placed in the
system clock domain to minimize power consumption and timing issues.
The transmitter logic in the host clock domain decides what character to send next and sets the proper
control signal and presents any needed character to the low-level transmitter as shown in figure 148.
The transmitter sends the requested characters and generates parity and control bits as needed. If no
requests are made from the host domain, NULLs are sent as long as the transmitter is enabled. Most of
the signal and character levels of the SpaceWire standard is handled in the transmitter. External LVDS
drivers are needed for the data and strobe signals.

Transmitter Clock Domain Host Clock Domain

Transmitter

D

S

Send Time-code
Send FCT
Send NChar
Time-code[7:0]
NChar[8:0]

Figure 148. Schematic of the link interface transmitter.
GRIP, Sep 2018, Version 2018.3 706 www.cobham.com/gaisler

GRLIB IP Core

A transmission FSM reads N-Chars for transmission from the transmitter FIFO. It is given packet
lengths from the DMA interface and appends EOPs/EEPs and RMAP CRC values if requested. When
it is finished with a packet the DMA interface is notified and a new packet length value is given.

57.3.3 Receiver

The receiver detects connections from other nodes and receives characters as a bit stream on the data
and strobe signals. It is also located in a separate clock domain which runs on a clock generated from
the received data and strobe signals. More information on the clock-generation can be found in sec-
tion 57.8.2.
The receiver is activated as soon as the link interface leaves the error reset state. Then after a NULL is
received it can start receiving any characters. It detects parity, escape and credit errors which causes
the link interface to enter the error reset state. Disconnections are handled in the link interface part in
the system clock domain because no receiver clock is available when disconnected.
Received Characters are flagged to the host domain and the data is presented in parallel form. The
interface to the host domain is shown in figure 149. L-Chars are the handled automatically by the host
domain link interface part while all N-Chars are stored in the receiver FIFO for further handling. If
two or more consecutive EOPs/EEPs are received all but the first are discarded.
There are no signals going directly from the transmitter clock domain to the receiver clock domain
and vice versa. All the synchronization is done to the system clock.

57.3.4 Dual port support

The core can be configured to include an additional SpaceWire port. With dual ports the transmitter
drives an additional pair of data/strobe output signals and one extra receiver is added to handle a sec-
ond pair of data/strobe input signals.
One of the ports is set as active (how the active port is selected is explained below) and the transmitter
drives the data/strobe signals of the active port with the actual output values as explained in section
57.3.2. The inactive port is driven with zero on both data and strobe.
Both receivers will always be active but only the active port’s interface signals (see figure 149) will be
propagated to the link interface FSM. Each time the active port is changed, the link will be reset so
that the new link is started in a controlled manner.
When the noportforce register is zero the portsel register bit selects the active link and when set to one
it is determined by the current link activity. In the latter mode the port is changed when no activity is
seen on the currently active link while there is activity on the deselected receive port. Activity is
defined as a detected null. This definition is selected so that glitches (e.g. port unconnected) do not
cause unwanted port switches.

57.3.5 Time interface

The time interface is used for sending Time-codes over the SpaceWire network and consists of a time-
counter register, time-ctrl register, tick-in signal, tick-out signal, tick-in register field and a tick-out

Receiver Clock Domain Host Clock Domain

Receiver

D

S

Got Time-code
Got FCT

Got NChar
Time-code[7:0]
NChar[7:0]

Figure 149. Schematic of the link interface receiver.

Got EEP
Got EOP
GRIP, Sep 2018, Version 2018.3 707 www.cobham.com/gaisler

GRLIB IP Core

register field. There are also two control register bits which enable the time receiver and transmitter
respectively.
Each Time-code sent from the core is a concatenation of the time-ctrl and the time-counter register.
There is a timetxen bit which is used to enable Time-code transmissions. It is not possible to send
time-codes if this bit is zero.
Received Time-codes are stored to the same time-ctrl and time-counter registers which are used for
transmission. The timerxen bit in the control register is used for enabling time-code reception. No
time-codes will be received if this bit is zero.
The two enable bits are used for ensuring that a node will not (accidentally) both transmit and receive
time-codes which violates the SpaceWire standard. It also ensures that a the master sending time-
codes on a network will not have its time-counter overwritten if another (faulty) node starts sending
time-codes.
The time-counter register is set to 0 after reset and is incremented each time the tick-in signal is
asserted for one clock-period and the timetxen bit is set. This also causes the link interface to send the
new value on the network. Tick-in can be generated either by writing a one to the register field or by
asserting the tick-in signal. A Tick-in should not be generated too often since if the time-code after the
previous Tick-in has not been sent the register will not be incremented and no new value will be sent.
The tick-in field is automatically cleared when the value has been sent and thus no new ticks should
be generated until this field is zero. If the tick-in signal is used there should be at least 4 system-clock
and 25 transmit-clock cycles between each assertion.
A tick-out is generated each time a valid time-code is received and the timerxen bit is set. When the
tick-out is generated the tick-out signal will be asserted one clock-cycle and the tick-out register field
is asserted until it is cleared by writing a one to it.
The current time counter value can be read from the time register. It is updated each time a Time-code
is received and the timerxen bit is set. The same register is used for transmissions and can also be
written directly from the APB interface.
The control bits of the Time-code are always stored to the time-ctrl register when a Time-code is
received whose time-count is one more than the nodes current time-counter register. The time-ctrl reg-
ister can be read through the APB interface. The same register is used during time-code transmissions.
It is possible to have both the time-transmission and reception functions enabled at the same time.

57.4 Receiver DMA engine

The receiver DMA engine handles reception of data from the SpaceWire network to different DMA
channels. Currently there is only one receive DMA channel available but the core has been written so
that additional channels can be easily added if needed.

57.4.1 Basic functionality

The receiver DMA engine reads N-Chars from the N-Char FIFO and stores them to a DMA channel.
Reception is based on descriptors located in a consecutive area in memory that hold pointers to buf-
fers where packets should be stored. When a packet arrives at the core it reads a descriptor from mem-
ory and stores the packet to the memory area pointed to by the descriptor. Then it stores status to the
same descriptor and increments the descriptor pointer to the next one.

57.4.2 Setting up the core for reception

A few registers need to be initialized before reception can take place. First the link interface need to
be put in the run state before any data can be sent. The DMA channel has a maximum length register
which sets the maximum size of packet that can be received to this channel. Larger packets are trun-
cated and the excessive part is spilled. If this happens an indication will be given in the status field of
the descriptor. The minimum value for the receiver maximum length field is 4 and the value can only
GRIP, Sep 2018, Version 2018.3 708 www.cobham.com/gaisler

GRLIB IP Core

be incremented in steps of four bytes. If the maximum length is set to zero the receiver will not func-
tion correctly.
The node address register needs to be set to hold the address of this SpaceWire node. Packets received
with the incorrect address are discarded. Finally, the descriptor table and control register must be ini-
tialized. This will be described in the two following sections.

57.4.3 Setting up the descriptor table address

The core reads descriptors from an area in memory pointed to by the receiver descriptor table address
register. The register consists of a base address and a descriptor selector. The base address points to
the beginning of the area and must start on a 1 kbytes aligned address. It is also limited to be 1 kbytes
in size which means the maximum number of descriptors is 128.
The descriptor selector points to individual descriptors and is increased by 1 when a descriptor has
been used. When the selector reaches the upper limit of the area it wraps to the beginning automati-
cally. It can also be set to wrap automatically by setting a bit in the descriptors. The idea is that the
selector should be initialized to 0 (start of the descriptor area) but it can also be written with another 8
bytes aligned value to start somewhere in the middle of the area. It will still wrap to the beginning of
the area.
If one wants to use a new descriptor table the receiver enable bit has to be cleared first. When the
rxactive bit for the channel is cleared it is safe to update the descriptor table register. When this is fin-
ished and descriptors are enabled the receiver enable bit can be set again.

57.4.4 Enabling descriptors

As mentioned earlier one or more descriptors must be enabled before reception can take place. Each
descriptor is 8 byte in size and the layout can be found in the tables below. The descriptors should be
written to the memory area pointed to by the receiver descriptor table address register. When new
descriptors are added they must always be placed after the previous one written to the area. Otherwise
they will not be noticed.
A descriptor is enabled by setting the address pointer to point at a location where data can be stored
and then setting the enable bit. The WR bit can be set to cause the selector to be set to zero when
reception has finished to this descriptor. IE should be set if an interrupt is wanted when the reception
has finished. The DMA control register interrupt enable bit must also be set for this to happen.
The descriptor packet address should be word aligned. All accesses on the bus are word accesses so
complete words will always be overwritten regardless of whether all 32-bit contain received data.
Also if the packet does not end on a word boundary the complete word containing the last data byte
will be overwritten. If the rxunaligned or rmap VHDL generic is set to 1 this restriction is removed
GRIP, Sep 2018, Version 2018.3 709 www.cobham.com/gaisler

GRLIB IP Core

and any number of bytes can be received to any packet address without excessive bytes being over-
written.

57.4.5 Setting up the DMA control register

The final step to receive packets is to set the control register in the following steps: The receiver must
be enabled by setting the rxen bit in the DMA control register (see section 57.9). This can be done
anytime and before this bit is set nothing will happen. The rxdescav bit in the DMA control register is
then set to indicate that there are new active descriptors. This must always be done after the descrip-
tors have been enabled or the core might not notice the new descriptors. More descriptors can be acti-
vated when reception has already started by enabling the descriptors and writing the rxdescav bit.
When these bits are set reception will start immediately when data is arriving.

57.4.6 The effect to the control bits during reception

When the receiver is disabled all packets going to the DMA-channel are discarded. If the receiver is
enabled the next state is entered where the rxdescav bit is checked. This bit indicates whether there are
active descriptors or not and should be set by the external application using the DMA channel each
time descriptors are enabled as mentioned above. If the rxdescav bit is ‘0’ and the nospill bit is ‘0’ the
packets will be discarded. If nospill is one the core waits until rxdescav is set.
When rxdescav is set the next descriptor is read and if enabled the packet is received to the buffer. If
the read descriptor is not enabled, rxdescav is set to ‘0’ and the packet is spilled depending on the
value of nospill.
The receiver can be disabled at any time and will cause all packets received afterwards to be dis-
carded. If a packet is currently received when the receiver is disabled the reception will still be fin-
ished. The rxdescav bit can also be cleared at any time. It will not affect any ongoing receptions but

Table 840.GRSPW receive descriptor word 0 (address offset 0x0)
31 30 29 28 27 26 25 24 0

TR DC HC EP IE WR EN PACKETLENGTH

31 Truncated (TR) - Packet was truncated due to maximum length violation.
30 Data CRC (DC) - 1 if a CRC error was detected for the data and 0 otherwise.
29 Header CRC (HC) - 1 if a CRC error was detected for the header and 0 otherwise.
28 EEP termination (EP) - This packet ended with an Error End of Packet character.
27 Interrupt enable (IE) - If set, an interrupt will be generated when a packet has been received if the

receive interrupt enable bit in the DMA channel control register is set.
26 Wrap (WR) - If set, the next descriptor used by the GRSPW will be the first one in the descriptor

table (at the base address). Otherwise the descriptor pointer will be increased with 0x8 to use the
descriptor at the next higher memory location. The descriptor table is limited to 1 kbytes in size and
the pointer will be automatically wrap back to the base address when it reaches the 1 kbytes bound-
ary.

25 Enable (EN) - Set to one to activate this descriptor. This means that the descriptor contains valid con-
trol values and the memory area pointed to by the packet address field can be used to store a packet.

24: 0 Packet length (PACKETLENGTH) - The number of bytes received to this buffer. Only valid after
EN has been set to 0 by the GRSPW.

Table 841.GRSPW receive descriptor word 1 (address offset 0x4)
31 0

PACKETADDRESS

31: 0 Packet address (PACKETADDRESS) - The address pointing at the buffer which will be used to store
the received packet. If the rxunaligned and rmap VHDL generics are both set to zero only bit 31 to 2
are used.
GRIP, Sep 2018, Version 2018.3 710 www.cobham.com/gaisler

GRLIB IP Core

no more descriptors will be read until it is set again. Rxdescav is also cleared by the core when it reads
a disabled descriptor.

57.4.7 Address recognition and packet handling

When the receiver N-Char FIFO is not empty, N-Chars are read by the receiver DMA engine. The
first character is interpreted as the logical address which is compared to the node address register. If it
does not match, the complete packet is discarded (up to and including the next EOP/EEP).
If the address matches the next action taken depends on whether RMAP is enabled or not. If RMAP is
disabled all packets are stored to the DMA channel and depending on the conditions mentioned in the
previous section, the packet will be received or not. If the packet is received the complete packet
including address and protocol ID but excluding EOP/EEP is stored to the address indicated in the
descriptor, otherwise the complete packet is discarded.
If RMAP is enabled the protocol ID and 3rd byte in the packet is first checked before any decisions
are made. If incoming packet is an RMAP packet (ID = 0x01) and the command type field is 01b the
packet is processed by the RMAP command handler which is described in section 57.6. Otherwise the
packet is processed by the DMA engine as when RMAP is disabled.
At least 2 non EOP/EEP N-Chars need to be received for a packet to be stored to the DMA channel. If
it is an RMAP packet 3 N-Chars are needed since the command byte determines where the packet is
processed. Packets smaller than the minimum size are discarded.

57.4.8 Status bits

When the reception of a packet is finished the enable bit in the current descriptor is set to zero. When
enable is zero, the status bits are also valid and the number of received bytes is indicated in the length
field. The DMA control register contains a status bit which is set each time a packet has been
received. The core can also be made to generate an interrupt for this event as mentioned in section
57.4.4.
RMAP CRC logic is included in the implementation if the rmapcrc or rmap VHDL generic set to 1.
The RMAP CRC calculation is always active for all received packets and all bytes except the EOP/
EEP are included. The packet is always assumed to be a RMAP packet and the length of the header is
determined by checking byte 3 which should be the command field. The calculated CRC value is then
checked when the header has been received (according to the calculated number of bytes) and if it is
non-zero the HC bit is set indicating a header CRC error.
The CRC value is not set to zero after the header has been received, instead the calculation continues
in the same way until the complete packet has been received. Then if the CRC value is non-zero the
DC bit is set indicating a data CRC error. This means that the core can indicate a data CRC error even
if the data field was correct when the header CRC was incorrect. However, the data should not be used
when the header is corrupt and therefore the DC bit is unimportant in this case. When the header is not
corrupted the CRC value will always be zero when the calculation continues with the data field and
the behaviour will be as if the CRC calculation was restarted
If the received packet is not of RMAP type the header CRC error indication bit cannot be used. It is
still possible to use the DC bit if the complete packet is covered by a CRC calculated using the RMAP
CRC definition. This is because the core does not restart the calculation after the header has been
received but instead calculates a complete CRC over the packet. Thus any packet format with one
CRC at the end of the packet calculated according to RMAP standard can be checked using the DC
bit.
If the packet is neither of RMAP type nor of the type above with RMAP CRC at the end, then both the
HC and DC bits should be ignored.
GRIP, Sep 2018, Version 2018.3 711 www.cobham.com/gaisler

GRLIB IP Core

57.4.9 Error handling

If a packet reception needs to be aborted because of congestion on the network, the suggested solution
is to set link disable to ‘1’. Unfortunately, this will also cause the packet currently being transmitted to
be truncated but this is the only safe solution since packet reception is a passive operation depending
on the transmitter at the other end. A channel reset bit could be provided but is not a satisfactory solu-
tion since the untransmitted characters would still be in the transmitter node. The next character
(somewhere in the middle of the packet) would be interpreted as the node address which would prob-
ably cause the packet to be discarded but not with 100% certainty. Usually this action is performed
when a reception has stuck because of the transmitter not providing more data. The channel reset
would not resolve this congestion.
If an AHB error occurs during reception the current packet is spilled up to and including the next
EEP/EOP and then the currently active channel is disabled and the receiver enters the idle state. A bit
in the channels control/status register is set to indicate this condition.

57.4.10 Promiscuous mode

The core supports a promiscuous mode where all the data received is stored to the DMA channel
regardless of the node address and possible early EOPs/EEPs. This means that all non-eop/eep N-
Chars received will be stored to the DMA channel. The rxmaxlength register is still checked and
packets exceeding this size will be truncated.
RMAP commands will still be handled by the RMAP target when promiscuous mode is enabled if the
rmapen bit is set. If it is cleared, RMAP commands will also be stored to the DMA channel.

57.5 Transmitter DMA engine

The transmitter DMA engine handles transmission of data from the DMA channel to the SpaceWire
network. There is one DMA channel available but the core has been written so that additional DMA
channels can be easily added if needed.

57.5.1 Basic functionality

The transmit DMA engine reads data from the AHB bus and stores them in the transmitter FIFO for
transmission on the SpaceWire network. Transmission is based on the same type of descriptors as for
the receiver and the descriptor table has the same alignment and size restrictions. When there are new
descriptors enabled the core reads them and transfer the amount data indicated.

57.5.2 Setting up the core for transmission

Four steps need to be performed before transmissions can be done with the core. First the link inter-
face must be enabled and started by writing the appropriate value to the ctrl register. Then the address
to the descriptor table needs to be written to the transmitter descriptor table address register and one or
more descriptors must also be enabled in the table. Finally, the txen bit in the DMA control register
should be written with a one which triggers the transmission. These steps will be covered in more
detail in the next sections.

57.5.3 Enabling descriptors

The descriptor table address register works in the same way as the receiver’s corresponding register
which was covered in section 57.4.
To transmit packets one or more descriptors have to be initialized in memory which is done in the fol-
lowing way: The number of bytes to be transmitted and a pointer to the data has to be set. There are
two different length and address fields in the transmit descriptors because there are separate pointers
for header and data. If a length field is zero the corresponding part of a packet is skipped and if both
are zero no packet is sent. The maximum header length is 255 bytes and the maximum data length is
GRIP, Sep 2018, Version 2018.3 712 www.cobham.com/gaisler

GRLIB IP Core

16 Mbyte - 1. When the pointer and length fields have been set the enable bit should be set to enable
the descriptor. This must always be done last. The other control bits must also be set before enabling
the descriptor.
The transmit descriptors are 16 bytes in size so the maximum number in a single table is 64. The dif-
ferent fields of the descriptor together with the memory offsets are shown in the tables below.
The HC bit should be set if RMAP CRC should be calculated and inserted for the header field and
correspondingly the DC bit should be set for the data field. This field is only used by the core when
the CRC logic is available (rmap or rmapcrc VHDL generic set to 1). The header CRC will be calcu-
lated from the data fetched from the header pointer and the data CRC is generated from data fetched
from the data pointer. The CRCs are appended after the corresponding fields. The NON-CRC bytes
field is set to the number of bytes in the beginning of the header field that should not be included in
the CRC calculation. The CRCs are sent even if the corresponding length is zero.
When both header and data length are zero no packet is sent not even an EOP.

57.5.4 Starting transmissions

When the descriptors have been initialized, the transmit enable bit in the DMA control register has to
be set to tell the core to start transmitting. New descriptors can be activated in the table on the fly
(while transmission is active). Each time a set of descriptors is added the transmit enable register bit
should be set. This has to be done because each time the core encounters a disabled descriptor this
register bit is set to 0.

Table 842.GRSPW transmit descriptor word 0 (address offset 0x0)
31 18 17 16 15 14 13 12 11 8 7 0

RESERVED DC HC LE IE WR EN NONCRCLEN HEADERLEN

31: 18 RESERVED
17 Append data CRC (DC) - Append CRC calculated according to the RMAP specification after the

data sent from the data pointer. The CRC covers all the bytes from this pointer. A null CRC will
be sent if the length of the data field is zero.

16 Append header CRC (HC) - Append CRC calculated according to the RMAP specification after the
data sent from the header pointer. The CRC covers all bytes from this pointer except a number of
bytes in the beginning specified by the non-crc bytes field. The CRC will not be sent if the header
length field is zero.

15 Link error (LE) - A Link error occurred during the transmission of this packet.
14 Interrupt enable (IE) - If set, an interrupt will be generated when the packet has been transmitted and

the transmitter interrupt enable bit in the DMA control register is set.
13 Wrap (WR) - If set, the descriptor pointer will wrap and the next descriptor read will be the first one

in the table (at the base address). Otherwise the pointer is increased with 0x10 to use the descriptor at
the next higher memory location.

12 Enable (EN) - Enable transmitter descriptor. When all control fields (address, length, wrap and crc)
are set, this bit should be set. While the bit is set the descriptor should not be touched since this
might corrupt the transmission. The GRSPW clears this bit when the transmission has finished.

11: 8 Non-CRC bytes (NONCRCLEN)- Sets the number of bytes in the beginning of the header which
should not be included in the CRC calculation. This is necessary when using path addressing since
one or more bytes in the beginning of the packet might be discarded before the packet reaches its
destination.

7: 0 Header length (HEADERLEN) - Header Length in bytes. If set to zero, the header is skipped.

Table 843.GRSPW transmit descriptor word 1 (address offset 0x4)
31 0

HEADERADDRESS

31: 0 Header address (HEADERADDRESS) - Address from where the packet header is fetched. Does not
need to be word aligned.
GRIP, Sep 2018, Version 2018.3 713 www.cobham.com/gaisler

GRLIB IP Core
57.5.5 The transmission process

When the txen bit is set the core starts reading descriptors immediately. The number of bytes indicated
are read and transmitted. When a transmission has finished, status will be written to the first field of
the descriptor and a packet sent bit is set in the DMA control register. If an interrupt was requested it
will also be generated. Then a new descriptor is read and if enabled a new transmission starts, other-
wise the transmit enable bit is cleared and nothing will happen until it is enabled again.

57.5.6 The descriptor table address register

The internal pointer which is used to keep the current position in the descriptor table can be read and
written through the APB interface. This pointer is set to zero during reset and is incremented each
time a descriptor is used. It wraps automatically when the 1 kbytes limit for the descriptor table is
reached or it can be set to wrap earlier by setting a bit in the current descriptor.
The descriptor table register can be updated with a new table anytime when no transmission is active.
No transmission is active if the transmit enable bit is zero and the complete table has been sent or if
the table is aborted (explained below). If the table is aborted one has to wait until the transmit enable
bit is zero before updating the table pointer.

57.5.7 Error handling

Abort Tx
The DMA control register contains a bit called Abort TX which if set causes the current transmission
to be aborted, the packet is truncated and an EEP is inserted. This is only useful if the packet needs to
be aborted because of congestion on the SpaceWire network. If the congestion is on the AHB bus this
will not help (This should not be a problem since AHB slaves should have a maximum of 16 wait-
states). The aborted packet will have its LE bit set in the descriptor. The transmit enable register bit is
also cleared and no new transmissions will be done until the transmitter is enabled again.
AHB error
When an AHB error is encountered during transmission the currently active DMA channel is disabled
and the transmitter goes to the idle mode. A bit in the DMA channel’s control/status register is set to
indicate this error condition and, if enabled, an interrupt will also be generated. Further error handling
depends on what state the transmitter DMA engine was in when the AHB error occurred. If the
descriptor was being read the packet transmission had not been started yet and no more actions need
to be taken.
If the AHB error occurs during packet transmission the packet is truncated and an EEP is inserted.
Lastly, if it occurs when status is written to the descriptor the packet has been successfully transmitted
but the descriptor is not written and will continue to be enabled (this also means that no error bits are
set in the descriptor for AHB errors).

Table 844.GRSPW transmit descriptor word 2 (address offset 0x8)
31 24 23 0

RESERVED DATALEN

31: 24 RESERVED
23: 0 Data length (DATALEN) - Length of data part of packet. If set to zero, no data will be sent. If both

data- and header-lengths are set to zero no packet will be sent.

Table 845.GRSPW transmit descriptor word 3(address offset 0xC)
31 0

DATAADDRESS

31: 0 Data address (DATAADDRESS) - Address from where data is read. Does not need to be word
aligned.
GRIP, Sep 2018, Version 2018.3 714 www.cobham.com/gaisler

GRLIB IP Core

The client using the channel has to correct the AHB error condition and enable the channel again. No
more AHB transfers are done again from the same unit (receiver or transmitter) which was active
during the AHB error until the error state is cleared and the unit is enabled again.
Link error
When a link error occurs during the transmission the remaining part of the packet is discarded up to
and including the next EOP/EEP. When this is done status is immediately written (with the LE bit set)
and the descriptor pointer is incremented. The link will be disconnected when the link error occurs but
the core will automatically try to connect again provided that the link-start bit is asserted and the link-
disabled bit is deasserted. If the LE bit in the DMA channel’s control register is not set the transmitter
DMA engine will wait for the link to enter run-state and start a new transmission immediately when
possible if packets are pending. Otherwise the transmitter will be disabled when a link error occurs
during the transmission of the current packet and no more packets will be transmitted until it is
enabled again.

57.6 RMAP

The Remote Memory Access Protocol (RMAP) is used to implement access to resources in the node
via the SpaceWire Link. Some common operations are reading and writing to memory, registers and
FIFOs. The core has an optional hardware RMAP target which is enabled with a VHDL generic. This
section describes the basics of the RMAP protocol and the target implementation.

57.6.1 Fundamentals of the protocol

RMAP is a protocol which is designed to provide remote access via a SpaceWire network to memory
mapped resources on a SpaceWire node. It has been assigned protocol ID 0x01. It provides three oper-
ations write, read and read-modify-write. These operations are posted operations which means that a
source does not wait for an acknowledge or reply. It also implies that any number of operations can be
outstanding at any time and that no timeout mechanism is implemented in the protocol. Time-outs
must be implemented in the user application which sends the commands. Data payloads of up to 16
Mb - 1 is supported in the protocol. A destination can be requested to send replies and to verify data
before executing an operation. A complete description of the protocol is found in the RMAP standard.

57.6.2 Implementation

The core includes a taget for RMAP commands which processes all incoming packets with protocol
ID = 0x01 and type field (bit 7 and 6 of the 3rd byte in the packet) equal to 01b. When such a packet
is detected it is not stored to the DMA channel, instead it is passed to the RMAP receiver.
The core implements all three commands defined in the standard with some restrictions. First of all
the optional error code 12 is not implemented and support is only provided for 32-bit big-endian sys-
tems. This means that the first byte received is the msb in a word. The command handler will not
receive RMAP packets using the extended protocol ID which are always dumped to the DMA chan-
nel.
The RMAP receiver processes commands. If they are correct and accepted the operation is performed
on the AHB bus and a reply is formatted. If an acknowledge is requested the RMAP transmitter auto-
matically send the reply. RMAP transmissions have priority over DMA channel transmissions.
Packets with a mismatching destination logical address are never passed to the RMAP target. There is
a user accessible destination key register which is compared to destination key field in incoming
packets. If there is a mismatch and a reply has been requested the error code in the reply is set to 3.
Replies are sent if and only if the ack field is set to ‘1’.
GRIP, Sep 2018, Version 2018.3 715 www.cobham.com/gaisler

GRLIB IP Core

Detection of all error codes except code 12 is supported. When a failure occurs during a bus access the
error code is set to 1 (General Error). There is predetermined order in which error-codes are set in the
case of multiple errors in the core. It is shown in table 846.

Read accesses are performed on the fly, that is they are not stored in a temporary buffer before trans-
mission. This means that the error code 1 will never be seen in a read reply since the header has
already been sent when the data is read. If the AHB error occurs the packet will be truncated and
ended with an EEP.
Errors up to and including Invalid Data CRC (number 8) are checked before verified commands. The
other errors do not prevent verified operations from being performed.
The details of the support for the different commands are now presented. All defined commands
which are received but have an option set which is not supported in this specific implementation will
not be executed and a possible reply is sent with error code 10.

57.6.3 Write commands

The write commands are divided into two subcategories when examining their capabilities: verified
writes and non-verified writes. Verified writes have a length restriction of 4 B and the address must be
aligned to the size. That is 1 B writes can be done to any address, 2 B must be halfword aligned, 3 B
are not allowed and 4 B writes must be word aligned. Since there will always be only one AHB oper-
ation performed for each RMAP verified write command the incrementing address bit can be set to
any value.
Non-verified writes have no restrictions when the incrementing bit is set to 1. If it is set to 0 the num-
ber of bytes must be a multiple of 4 and the address word aligned. There is no guarantee how many
words will be written when early EOP/EEP is detected for non-verified writes.

57.6.4 Read commands

Read commands are performed on the fly when the reply is sent. Thus if an AHB error occurs the
packet will be truncated and ended with an EEP. There are no restrictions for incrementing reads but
non-incrementing reads have the same alignment restrictions as non-verified writes. Note that the
“Authorization failure” error code will be sent in the reply if a violation was detected even if the
length field was zero. Also note that no data is sent in the reply if an error was detected i.e. if the status
field is non-zero.

Table 846.The order of error detection in case of multiple errors in the GRSPW. The error detected first has number 1.

Detection Order Error Code Error
1 2 Unused RMAP packet type or command code
2 3 Invalid destination key
3 9 Verify buffer overrun
4 11 RMW data length error
5 10 Authorization failure
6* 1 General Error (AHB errors during non-verified writes)
7 5/7 Early EOP / EEP (if early)
8 4 Invalid Data CRC
9 1 General Error (AHB errors during verified writes or RMW)
10 7 EEP
11 6 Cargo Too Large
*The AHB error is not guaranteed to be detected before Early EOP/EEP or Invalid Data CRC. For very long accesses
the AHB error detection might be delayed causing the other two errors to appear first.
GRIP, Sep 2018, Version 2018.3 716 www.cobham.com/gaisler

GRLIB IP Core

57.6.5 RMW commands

All read-modify-write sizes are supported except 6 which would have caused 3 B being read and writ-
ten on the bus. The RMW bus accesses have the same restrictions as the verified writes. As in the ver-
ified write case, the incrementing bit can be set to any value since only one AHB bus operation will be
performed for each RMW command. Cargo too large is detected after the bus accesses so this error
will not prevent the operation from being performed. No data is sent in a reply if an error is detected
i.e. the status field is non-zero.

57.6.6 Control

The RMAP command handler mostly runs in the background without any external intervention, but
there are a few control possibilities.
There is an enable bit in the control register of the core which can be used to completely disable the
RMAP command handler. When it is set to ‘0’ no RMAP packets will be handled in hardware, instead
they are all stored to the DMA channel.
There is a possibility that RMAP commands will not be performed in the order they arrive. This can
happen if a read arrives before one or more writes. Since the command handler stores replies in a buf-
fer with more than one entry several commands can be processed even if no replies are sent. Data for
read replies is read when the reply is sent and thus writes coming after the read might have been per-
formed already if there was congestion in the transmitter. To avoid this the RMAP buffer disable bit
can be set to force the command handler to only use one buffer which prevents this situation.
The last control option for the command handler is the possibility to set the destination key which is
found in a separate register.
GRIP, Sep 2018, Version 2018.3 717 www.cobham.com/gaisler

GRLIB IP Core

Table 847.GRSPW hardware RMAP handling of different packet type and command fields.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Command Action

Reserved
Command
/ Response

Write /
Read

Verify
data
before
write

Acknow-
ledge

Increment
Address

0 0 - - - - Response Stored to DMA-channel.
0 1 0 0 0 0 Not used Does nothing. No reply is sent.
0 1 0 0 0 1 Not used Does nothing. No reply is sent.
0 1 0 0 1 0 Read single

address
Executed normally. Address has
to be word aligned and data size
a multiple of four. Reply is sent.
If alignment restrictions are vio-
lated error code is set to 10.

0 1 0 0 1 1 Read incre-
menting
address.

Executed normally. No restric-
tions. Reply is sent.

0 1 0 1 0 0 Not used Does nothing. No reply is sent.
0 1 0 1 0 1 Not used Does nothing. No reply is sent.
0 1 0 1 1 0 Not used Does nothing. Reply is sent with

error code 2.
0 1 0 1 1 1 Read-Mod-

ify-Write
increment-
ing address

Executed normally. If length is
not one of the allowed rmw val-
ues nothing is done and error
code is set to 11. If the length
was correct, alignment restric-
tions are checked next. 1 byte
can be rmw to any address. 2
bytes must be halfword aligned.
3 bytes are not allowed. 4 bytes
must be word aligned. If these
restrictions are violated nothing
is done and error code is set to
10. If an AHB error occurs error
code is set to 1. Reply is sent.

0 1 1 0 0 0 Write, sin-
gle-address,
do not verify
before writ-
ing, no
acknowledge

Executed normally. Address has
to be word aligned and data size
a multiple of four. If alignment is
violated nothing is done. No
reply is sent.

0 1 1 0 0 1 Write, incre-
menting
address, do
not verify
before writ-
ing, no
acknowledge

Executed normally. No restric-
tions. No reply is sent.

0 1 1 0 1 0 Write, sin-
gle-address,
do not verify
before writ-
ing, send
acknowledge

Executed normally. Address has
to be word aligned and data size
a multiple of four. If alignment is
violated nothing is done and
error code is set to 10. If an AHB
error occurs error code is set to 1.
Reply is sent.
GRIP, Sep 2018, Version 2018.3 718 www.cobham.com/gaisler

GRLIB IP Core
57.7 AMBA interface

The AMBA interface consists of an APB interface, an AHB master interface and DMA FIFOs. The
APB interface provides access to the user registers which are described in section 57.9. The DMA
engines have 32-bit wide FIFOs to the AHB master interface which are used when reading and writ-
ing to the bus.
The transmitter DMA engine reads data from the bus in bursts which are half the FIFO size in length.
A burst is always started when the FIFO is half-empty or if it can hold the last data for the packet. The
burst containing the last data might have shorter length if the packet is not an even number of bursts in
size.

0 1 1 0 1 1 Write, incre-
menting
address, do
not verify
before writ-
ing, send
acknowledge

Executed normally. No restric-
tions. If AHB error occurs error
code is set to 1. Reply is sent.

0 1 1 1 0 0 Write, single
address, ver-
ify before
writing, no
acknowledge

Executed normally. Length must
be 4 or less. Otherwise nothing is
done. Same alignment restric-
tions apply as for rmw. No reply
is sent.

0 1 1 1 0 1 Write, incre-
menting
address, ver-
ify before
writing, no
acknowledge

Executed normally. Length must
be 4 or less. Otherwise nothing is
done. Same alignment restric-
tions apply as for rmw. If they
are violated nothing is done. No
reply is sent.

0 1 1 1 1 0 Write, single
address, ver-
ify before
writing, send
acknowledge

Executed normally. Length must
be 4 or less. Otherwise nothing is
done and error code is set to 9.
Same alignment restrictions
apply as for rmw. If they are vio-
lated nothing is done and error
code is set to 10. If an AHB error
occurs error code is set to 1.
Reply is sent.

0 1 1 1 1 1 Write, incre-
menting
address, ver-
ify before
writing, send
acknowledge

Executed normally. Length must
be 4 or less. Otherwise nothing is
done and error code is set to 9.
Same alignment restrictions
apply as for rmw. If they are vio-
lated nothing is done and error
code is set to 10. If an AHB error
occurs error code is set to 1.
Reply is sent.

1 0 - - - - Unused Stored to DMA-channel.
1 1 - - - - Unused Stored to DMA-channel.

Table 847.GRSPW hardware RMAP handling of different packet type and command fields.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Command Action

Reserved
Command
/ Response

Write /
Read

Verify
data
before
write

Acknow-
ledge

Increment
Address
GRIP, Sep 2018, Version 2018.3 719 www.cobham.com/gaisler

GRLIB IP Core

The receiver DMA works in the same way except that it checks if the FIFO is half-full and then per-
forms a burst write to the bus which is half the fifo size in length. The last burst might be shorter. If
the rmap or rxunaligned VHDL generics are set to 1 the interface also handles byte accesses. Byte
accesses are used for non word-aligned buffers and/or packet lengths that are not a multiple of four
bytes. There might be 1 to 3 single byte writes when writing the beginning and end of the received
packets.

57.7.1 APB slave interface

As mentioned above, the APB interface provides access to the user registers which are 32-bits in
width. The accesses to this interface are required to be aligned word accesses. The result is undefined
if this restriction is violated.

57.7.2 AHB master interface

The core contains a single master interface which is used by both the transmitter and receiver DMA
engines. The arbitration algorithm between the channels is done so that if the current owner requests
the interface again it will always acquire it. This will not lead to starvation problems since the DMA
engines always deassert their requests between accesses.
The AHB accesses are always word accesses (HSIZE = 0x010) of type incremental burst with unspec-
ified length (HBURST = 0x001) if VHDL generics rmap and rxunaligned are disabled. The AHB
accesses can be of size byte, halfword and word (HSIZE = 0x000, 0x001, 0x010) otherwise. Byte and
halfword accesses are always NONSEQ. Note that read accesses are always word accesses (HSIZE =
0x010), which can result in destructive read.
The burst length will be half the AHB FIFO size except for the last transfer for a packet which might
be smaller. Shorter accesses are also done during descriptor reads and status writes.
The AHB master also supports non-incrementing accesses where the address will be constant for sev-
eral consecutive accesses. HTRANS will always be NONSEQ in this case while for incrementing
accesses it is set to SEQ after the first access. This feature is included to support non-incrementing
reads and writes for RMAP.
If the core does not need the bus after a burst has finished there will be one wasted cycle (HTRANS =
IDLE).
BUSY transfer types are never requested and the core provides full support for ERROR, RETRY and
SPLIT responses.

57.8 Implementation

57.8.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual).

57.8.2 Clock-generation

Figure 150 shows the clock recovery scheme for the receiver. Data and strobe are coupled directly
from their pads to an xor gate which generates the clock. The output from the xor is then connected to
a clock network. The specific type of clock network depends on the technology used. The xor gate is
actually all that logically belongs to the Rx clock recovery module in figure 150.
The clock output drives all flip-flops in the receiver module found in figure 146. The data signal
which is used for generating the clock is also coupled to the data inputs of several flip-flops clocked
GRIP, Sep 2018, Version 2018.3 720 www.cobham.com/gaisler

GRLIB IP Core

by the Rx clock as seen in figure 150. Care must be taken so that the delay from the data and strobe
signals through the clock network are longer than the delay to the data input + setup time.

The transmitter clock is generated from the txclk input. A separate clock input is used to allow the
transmitter to be run at much higher frequencies than the system clock. The SpaceWire node contains
a clock-divider which divides the txclk signal to the wanted frequency. The transmitter clock should
be 10 MHz during initialization and any frequency above 2 MHz in the run-state.
There is an input signal called clkdiv10 which sets the clock divisor value during initialization and the
reset value for the user accessible clock divisor register. The user register value will be used in run-
state. The resulting tx clock frequency will be txclk/(clock divisor value+1). So if no clock division is
wanted, the clock divisor should be set to 0.
Since only integer values are allowed for the clock division and the required init-frequency is 10 Mhz
the frequency of the txclk input must be a multiple of 10 MHz. The clock divisor value is 8-bits wide
so the maximum txclk frequency supported is 2.56 GHz (note that there is also a restriction on the
relation between the system and transmit clock frequencies).

57.8.3 Timers

There are two timers in the core: one for generating the 6.4/12.8 us periods and one for disconnect
timing. They run on the system (AMBA) clock and the frequency must be at least 10 MHz to guaran-
tee disconnect timing limits.
There are two user accessible registers which are used to the set the number of clock cycles used for
the timeout periods. These registers are described in section 57.9.
The reset value for the timer registers can be set in two different ways selected by the usegen VHDL
generic. If usegen is set to 1, the sysfreq VHDL generic is used to generate reset values for the discon-
nect, 6.4 us and 12.8 us timers. Otherwise, the input signals dcrstval and timerrstval will be used as
reset values. If the system clock frequency is 10 MHz or above the disconnect time will be within the
limits specified in the SpaceWire standard.

57.8.4 Synchronization

The VHDL generic nsync selects how many synchronization registers are used between clock
domains. The default is one and should be used when maximum performance is needed. It allows the
transmitter to be clocked 4 times faster than the system clock and the receiver 2 times faster. These are
theoretical values without consideration for clock skew and jitter. Note also that the receiver clocks
data at both negative and positive edges. Thus, the bitrate is twice as high as the clock-rate.
The synchronization limits the Tx and Rx clocks to be at most 4 and 2 times faster than the system
clock. But it might not be possible to achieve such high clock rates for the Tx and Rx clocks for all
technologies.
The asynchronous reset to the receiver clock domain has to have a maximum delay of one receiver
clock cycle to ensure correct operation. This is needed because the receiver uses has a completely

D

S

D

D

Q

Q

Figure 150. The clocking scheme for the receiver. The clock is
GRIP, Sep 2018, Version 2018.3 721 www.cobham.com/gaisler

GRLIB IP Core

asynchronous reset. To make sure that nothing bad happens the is a synchronous reset guard which
prevents any signals from being assigned before all registers have their reset signals released.

57.8.5 Fault-tolerance

The core can optionally be implemented with fault-tolerance against SEU errors in the FIFO memo-
ries. The fault-tolerance is enabled through the ft VHDL generic. Possible options are byte parity pro-
tection (ft = 1) or TMR registers (ft = 2). Note: the GPL version of GRLIB does not include fault-
tolerance, and the core will not work unless the ft VHDL generic is 0.

57.8.6 Synthesis

Since the receiver and transmitter may run on very high frequency clocks their clock signals have
been coupled through a clock buffer with a technology wrapper. This clock buffer will utilize a low
skew net available in the selected technology for the clock.
The clock buffer will also enable most synthesis tools to recognize the clocks and it is thus easier to
find them and place constraints on them. The fact there are three clock domains in the GRSPW of
which all are possibly high frequency clocks makes it necessary to declare all paths between the clock
domains as false paths.
In Synplify this is most easily done by declaring all the clocks to be in different clockgroups in the sdc
file (if Synplify does not automatically put them in different groups). This will disable any timing
considerations between the clock domains and these constraints will also propagate to the place and
route tool.
The type of clock buffer is selectable with a VHDL generic and the value zero provides a normal feed
through which lets the synthesis tool infer the type of net used.

57.8.7 Technology mapping

The core has three generics for technology mapping: tech, techfifo and memtech. Tech selects the tech-
nology used for the clock buffers and also adds reset to some registers for technologies where they
would otherwise cause problems with gate-level simulations. Techfifo selects whether memtech
should be used to select the technology for the FIFO memories (the RMAP buffer is not affected by
the this generic) or if they should be inferred. Tech and memtech can be set to any value from 0 to
NTECH as defined in the GRLIB.TECH package.

57.8.8 RAM usage

The core maps all RAM memories on the syncram_2p component if the ft generic is 0 and to the syn-
cram_2pft component for other values. The syncrams are located in the technology mapping library
(TECHMAP). The organization of the different memories are described below. If techfifo and/or
memtech is set to 0 the synthesis tool will infer the memories. Either RAM blocks or flip-flops will be
used depending on the tool and technology. The number of flip-flops used is syncram depth x syncram
width for all the different memories. The receiver AHB FIFO with fifosize 32 will for example use
1024 flips-flops.
Receiver ahb FIFO
The receiver AHB fifo consists of one syncram_2p block with a width of 32-bits. The depth is deter-
mined by the configured FIFO depth. Table 848 shows the syncram organization for the allowed con-
figurations.
GRIP, Sep 2018, Version 2018.3 722 www.cobham.com/gaisler

GRLIB IP Core
Transmitter ahb FIFO
The transmitter AHB fifo consists of one syncram_2p block with a width of 32-bits. The depth is
determined by the configured FIFO depth. Table 849 shows the syncram organization for the allowed
configurations.

Receiver N-Char FIFO
The receiver N-Char fifo consists of one syncram_2p block with a width of 10-bits. The depth is
determined by the configured FIFO depth. Table 850 shows the syncram organization for the allowed
configurations.

RMAP buffer
The RMAP buffer consists of one syncram_2p block with a width of 8-bits. The depth is determined
by the number of configured RMAP buffers. Table 851 shows the syncram organization for the
allowed configurations.

Table 848.syncram_2p sizes for GRSPW receiver AHB FIFO.

Fifosize Syncram_2p organization
4 4x32
8 8x32
16 16x32
32 32x32

Table 849.syncram_2p sizes for transmitter AHB FIFO.

Fifosize Syncram_2p organization
4 4x32
8 8x32
16 16x32
32 32x32

Table 850.syncram_2p sizes for the receiver N-Char FIFO.

Fifosize Syncram_2p organization
16 16x10
32 32x10
64 64x10

Table 851.syncram_2p sizes for RMAP buffer memory.

RMAP buffers Syncram_2p organization
2 64x8
4 128x8
8 256x8
GRIP, Sep 2018, Version 2018.3 723 www.cobham.com/gaisler

GRLIB IP Core

57.9 AXI support

The core is designed for an AMBA system but can be adapted for AXI using the AHBM2AXI
adapter.

57.10 Registers

The core is programmed through registers mapped into APB address space.

Table 852.GRSPW registers

APB address offset Register
0x0 Control
0x4 Status/Interrupt-source
0x8 Node address
0xC Clock divisor
0x10 Destination key
0x14 Time
0x18 Timer and Disconnect
0x20 DMA channel 1 control/status
0x24 DMA channel 1 rx maximum length
0x28 DMA channel 1 transmit descriptor table address.
0x2C DMA channel 1 receive descriptor table address.
GRIP, Sep 2018, Version 2018.3 724 www.cobham.com/gaisler

GRLIB IP Core

57.10.1 Control Register

Table 853.0x00 - CTRL - control register
31 30 29 28 27 26 25 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

RA RX RC R PO RESERVED PS NP R RD RE RESERVED TR TT LI TQ R RS PM TI IE AS LS LD

* * * 0 * 0 0 * 0 0 * 0 0 0 NR NR 0 0 0 0 0 * 0 0

r r r r r r rw* rw* r rw* rw* r rw rw rw rw rw rw* rw rw rw rw rw rw

31 RMAP available (RA) - Set to one if the RMAP command handler is available. Only readable.
30 RX unaligned access (RX) - Set to one if unaligned writes are available for the receiver. Only read-

able.
29 RMAP CRC available (RC) - Set to one if RMAP CRC is enabled in the core. Only readable.
28: 27 RESERVED
26 Number of ports (PO) - The number of available SpaceWire ports minus one. Only readable.
25: 22 RESERVED
21 Port select (PS) - Selects the active port when the no port force bit is zero. ‘0’ selects the port con-

nected to data and strobe on index 0 while ‘1’ selects index 1. Only available if the ports VHDL
generic is set to 2. Reset value: ‘0’.

20 No port force (NP) - Disable port force. When disabled the port select bit cannot be used to select the
active port. Instead, it is automatically selected by checking the activity on the respective receive
links. Only available if the ports VHDL generic is set to 2. Reset value: ‘0’ if the RMAP command
handler is not available. If available the reset value is set to the value of the rmapen input signal.

19: 18 RESERVED
17 RMAP buffer disable (RD) - If set only one RMAP buffer is used. This ensures that all RMAP com-

mands will be executed consecutively. Only available if the rmap VHDL generic is set to 1. Reset
value: ‘0’.

16 RMAP Enable (RE) - Enable RMAP command handler. Only available if rmap VHDL generic is set
to 1. Reset value: ‘1’.

15: 12 RESERVED
11 Time Rx Enable (TR) - Enable time-code receptions. Reset value: ‘0’.
10 Time Tx Enable (TT) - Enable time-code transmissions. Reset value: ‘0’.
9 Link error IRQ (LI) - Generate interrupt when a link error occurs. Not reset.
8 Tick-out IRQ (TQ) - Generate interrupt when a valid time-code is received. Not reset.
7 RESERVED
6 Reset (RS) - Make complete reset of the SpaceWire node. Self clearing. Reset value: ‘0’.
5 Promiscuous Mode (PM) - Enable Promiscuous mode. Reset value: ‘0’.
4 Tick In (TI) - The host can generate a tick by writing a one to this field. This will increment the timer

counter and the new value is transmitted after the current character is transferred. A tick can also be
generated by asserting the tick_in signal. Reset value: ‘0’.

3 Interrupt Enable (IE) - If set, an interrupt is generated when one or both of bit 8 to 9 is set and its cor-
responding event occurs. Reset value: ‘0’.

2 Autostart (AS) - Automatically start the link when a NULL has been received. Reset value: ‘0’ if the
RMAP command handler is not available. If available the reset value is set to the value of the
rmapen input signal.

1 Link Start (LS) - Start the link, i.e. allow a transition from ready to started state. Reset value: ‘0’.
0 Link Disable (LD) - Disable the SpaceWire codec. Reset value: ‘0’.
GRIP, Sep 2018, Version 2018.3 725 www.cobham.com/gaisler

GRLIB IP Core

57.10.2 Status Register

Table 854.0x04 - STS - status register

57.10.3 Node Address Register

Table 855.0x08 - NODEADDR - node address register

31 24 23 21 20 10 9 8 7 6 5 4 3 2 1 0

RESERVED LS RESERVED AP EE IA WE R PE DE ER CE TO

0 0 0 0 0 0 0 0 0 0 0 0 0

r r r rw* wc wc wc r wc wc wc wc wc

31: 24 RESERVED
23: 21 Link State (LS) - The current state of the start-up sequence. 0 = Error-reset, 1 = Error-wait, 2 =

Ready, 3 = Started, 4 = Connecting, 5 = Run. Reset value: 0.
20: 10 RESERVED
9 Active port (AP) - Shows the currently active port. ‘0’ = Port 0 and ‘1’ = Port 1 where the port num-

bers refer to the index number of the data and strobe signals. Only available if the ports generic is set
to 2.

8 Early EOP/EEP (EE) - Set to one when a packet is received with an EOP after the first byte for a
non-rmap packet and after the second byte for a RMAP packet. Cleared when written with a one.
Reset value: ‘0’.

7 Invalid Address (IA) - Set to one when a packet is received with an invalid destination address field,
i.e it does not match the nodeaddr register. Cleared when written with a one. Reset value: ‘0’.

6 Write synchronization Error (WE) - A synchronization problem has occurred when receiving N-
Chars. Cleared when written with a one. Reset value: ‘0’.

5 RESERVED
4 Parity Error (PE) - A parity error has occurred. Cleared when written with a one. Reset value: ‘0’.
3 Disconnect Error (DE) - A disconnection error has occurred. Cleared when written with a one. Reset

value: ‘0’.
2 Escape Error (ER) - An escape error has occurred. Cleared when written with a one. Reset value: ‘0’.
1 Credit Error (CE) - A credit has occurred. Cleared when written with a one. Reset value: ‘0’.
0 Tick Out (TO) - A new time count value was received and is stored in the time counter field. Cleared

when written with a one. Reset value: ‘0’.

31 8 7 0

RESERVED NODEADDR

0 *

r rw

31: 8 RESERVED
7: 0 Node address (NODEADDR) - 8-bit node address used for node identification on the SpaceWire

network. Reset value: 254 (taken from the nodeaddr VHDL generic when /= 255, else from the
rmapnodeaddr input signal)
GRIP, Sep 2018, Version 2018.3 726 www.cobham.com/gaisler

GRLIB IP Core

57.10.4 Clock Divisor Register

Table 856.0x0C - CLKDIV - clock divisor register

57.10.5 Destination Key

Table 857.0x10 - DKEY - destination key

57.10.6 Time Register

Table 858.0x14 - TIME - time register

31 16 15 8 7 0

RESERVED CLKDIVSTART CLKDIVRUN

0 * *

r rw rw

31: 16 RESERVED
15: 8 Clock divisor startup (CLKDIVSTART) - 8-bit Clock divisor value used for the clock-divider

during startup (link-interface is in other states than run). The actual divisor value is Clock Divi-
sor register + 1. Reset value: clkdiv10 input signal.

7: 0 Clock divisor run (CLKDIVRUN) - 8-bit Clock divisor value used for the clock-divider when the
link-interface is in the run-state. The actual divisor value is Clock Divisor register + 1. Reset value:
clkdiv10 input signal.

31 8 7 0

RESERVED DESTKEY

0 *

r rw

31: 8 RESERVED
7: 0 Destination key (DESTKEY) - RMAP destination key. Only available if the rmap VHDL generic is

set to 1. Reset value: 0 (taken from the deskey VHDL generic)

31 8 7 6 5 0

RESERVED TCTRL TIMECNT

0 0 0

r rw rw

31: 8 RESERVED
7: 6 Time control flags (TCTRL) - The current value of the time control flags. Sent with time-code

resulting from a tick-in. Received control flags are also stored in this register. Reset value: ‘0’.
5: 0 Time counter (TIMECNT) - The current value of the system time counter. It is incremented for each

tick-in and the incremented value is transmitted. The register can also be written directly but the
written value will not be transmitted. Received time-counter values are also stored in this register.
Reset value: ‘0’.
GRIP, Sep 2018, Version 2018.3 727 www.cobham.com/gaisler

GRLIB IP Core

57.10.7 Timer and Disconnect Register

Table 859.0x18 - TDR - timer and disconnect register.

57.10.8 DMA Control Register

31 22 21 12 11 0

RESERVED DISCONNECT TIMER64

31: 22 RESERVED
21: 12 Disconnect (DISCONNECT) - Used to generate the 850 ns disconnect time period. The disconnect

period is the number is the number of clock cycles in the disconnect register + 3. So to get a 850 ns
period, the smallest number of clock cycles that is greater than or equal to 850 ns should be calcu-
lated and this values - 3 should be stored in the register. Reset value is set with VHDL generics or
with input signals depending on the value of the usegen VHDL generic.

11: 0 6.4 us timer (TIMER64) - Used to generate the 6.4 and 12.8 us time periods. Should be set to the
smallest number of clock cycles that is greater than or equal to 6.4 us. Reset value is set with VHDL
generics or with input signals depending on the value of the usegen VHDL generic.

Table 860.0x20 - DMACTRL - dma control register
31 17 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED LE RESERVED NS RD RX AT RA TA PR PS AI RI TI RE TE

0 0 0 0 0 0 0 0 0 0 0 NR NR NR 0 0

r rw r rw rw r r wc wc wc wc rw rw rw rw rw

31: 17 RESERVED
16 Link error disable (LE) - Disable transmitter when a link error occurs. No more packets will be trans-

mitted until the transmitter is enabled again. Reset value: ‘0’.
15: 13 RESERVED
12 No spill (NS) - If cleared, packets will be discarded when a packet is arriving and there are no active

descriptors. If set, the GRSPW will wait for a descriptor to be activated.
11 Rx descriptors available (RD) - Set to one, to indicate to the GRSPW that there are enabled descrip-

tors in the descriptor table. Cleared by the GRSPW when it encounters a disabled descriptor: Reset
value: ‘0’.

10 RX active (RX) - Is set to ‘1’ if a reception to the DMA channel is currently active otherwise it is ‘0’.
Only readable.

9 Abort TX (AT) - Set to one to abort the currently transmitting packet and disable transmissions. If no
transmission is active the only effect is to disable transmissions. Self clearing. Reset value: ‘0’.

8 RX AHB error (RA) - An error response was detected on the AHB bus while this receive DMA
channel was accessing the bus. Cleared when written with a one. Reset value: ‘0’.

7 TX AHB error (TA) - An error response was detected on the AHB bus while this transmit DMA
channel was accessing the bus. Cleared when written with a one. Reset value: ‘0’.

6 Packet received (PR) - This bit is set each time a packet has been received. never cleared by the SW-
node. Cleared when written with a one. Reset value: ‘0’.

5 Packet sent (PS) - This bit is set each time a packet has been sent. Never cleared by the SW-node.
Cleared when written with a one. Reset value: ‘0’.

4 AHB error interrupt (AI) - If set, an interrupt will be generated each time an AHB error occurs when
this DMA channel is accessing the bus. Not reset.

3 Receive interrupt (RI) - If set, an interrupt will be generated each time a packet has been received.
This happens both if the packet is terminated by an EEP or EOP. Not reset.

2 Transmit interrupt (TI) - If set, an interrupt will be generated each time a packet is transmitted. The
interrupt is generated regardless of whether the transmission was successful or not. Not reset.
GRIP, Sep 2018, Version 2018.3 728 www.cobham.com/gaisler

GRLIB IP Core
57.10.9 RX Maximum Length Register

Table 861.0x24 - DMAMAXLEN - RX maximum length register.

57.10.10

Table 862.0x28 - DMATYDESC - transmitter descriptor table address register.

Transmitter Descriptor Table Address Register

57.10.11

Table 863.0x2C - DMARXDESC - receiver descriptor table address register.

Receiver Descriptor Table Address Register

57.11 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x1F. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

1 Receiver enable (RE) - Set to one when packets are allowed to be received to this channel. Reset
value: ‘0’.

0 Transmitter enable (TE) - Write a one to this bit each time new descriptors are activated in the table.
Writing a one will cause the SW-node to read a new descriptor and try to transmit the packet it points
to. This bit is automatically cleared when the SW-node encounters a descriptor which is disabled.
Reset value: ‘0’.

31 25 24 2 1 0

RESERVED RXMAXLEN R

0 NR 0

r rw r

31: 25 RESERVED
24: 2 RX maximum length (RXMAXLEN) - Receiver packet maximum length in bytes. Only bits 24 - 2

are writable. Bits 1 - 0 are always 0. Not reset.
1: 0 RESERVED

31 10 9 4 3 0

DESCBASEADDR DESCSEL RESERVED

NR 0 0

rw rw r

31: 10 Descriptor table base address (DESCBASEADDR) - Sets the base address of the descriptor table.
Not reset.

9: 4 Descriptor selector (DESCSEL) - Offset into the descriptor table. Shows which descriptor is cur-
rently used by the GRSPW. For each new descriptor read, the selector will increase with 16 and
eventually wrap to zero again. Reset value: 0.

3: 0 RESERVED

31 10 9 3 2 0

DESCBASEADDR DESCSEL RESERVED

NR 0 0

rw rw r

31: 10 Descriptor table base address (DESCBASEADDR) - Sets the base address of the descriptor table.
Not reset.

9: 3 Descriptor selector (DESCSEL) - Offset into the descriptor table. Shows which descriptor is cur-
rently used by the GRSPW. For each new descriptor read, the selector will increase with 8 and even-
tually wrap to zero again. Reset value: 0.

2: 0 RESERVED

Table 860.0x20 - DMACTRL - dma control register
GRIP, Sep 2018, Version 2018.3 729 www.cobham.com/gaisler

GRLIB IP Core

57.12 Configuration options

Table 864 shows the configuration options of the core (VHDL generics).

57.13 Signal descriptions

Table 865 shows the interface signals of the core (VHDL ports). As indicated in the table the core
consists of two different entities, called GRSPW and GRSPW_PHY. The GRSPW entity is the main
part and includes most core’s functionality, while the GRSPW_PHY only handles the receiver clock

Table 864.Configuration options

Generic Function Allowed range Default
tech Technology for clock buffers 0 - NTECH inferred
hindex AHB master index. 0 - NAHBMST-1 0
pindex APB slave index 0 - NAPBSLV-1 0
paddr Addr field of the APB bar. 0 - 16#FFF# 0
pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#
pirq Interrupt line used by GRSPW. 0 - NAHBIRQ-1 0
sysfreq Frequency of clock input “clk” in kHz. - 10000
usegen Use values calculated from sysfreq generic as reset values

for 6.4 us timer and disconnect timer.
0 - 1 1

nsync Number of synchronization registers.
Warning: Value 2 only to be used when bit rate is equal or
less than the system clock frequency.

1 - 2 1

rmap Include hardware RMAP target. RMAP CRC logic will
also be added.
If set to 2 the core will only implement the RMAP target,
provide a limited APB interface, enable time code recep-
tion and its interrupt.

0 - 2 0

rmapcrc Enable RMAP CRC logic. 0 - 1 0
fifosize1 Sets the number of entries in the 32-bit receiver and trans-

mitter AHB fifos.
4 - 32 32

fifosize2 Sets the number of entries in the 9-bit receiver fifo (N-
Char fifo).

16 - 64 64

rxclkbuftype Select clock buffer type for receiver clock. 0 does not
select a buffer, instead i connects the input directly to the
output (synthesis tools may still infer a buffer). 1 selects
hardwired clock while 2 selects routed clock.

0 - 2 0

rxunaligned Receiver unaligned write support. If set, the receiver can
write any number of bytes to any start address without
writing any excessive bytes.

0 - 1 0

rmapbufs Sets the number of buffers to hold RMAP replies. 2 - 8 4
ft Enable fault-tolerance against SEU errors 0 - 2 0
scantest Enable support for scan test 0 - 1 0
techfifo Implement FIFO with RAM cells (1) or flip-flops (0) 0 - 1 1
netlist Use netlist rather then RTL code 0 - 1 0
ports Sets the number of ports 1 - 2 1
memtech Technology for RAM blocks 0 - NTECH inferred
nodeaddr Sets the reset value for the core’s node address.

Value 255 enables rmapnodeaddr input instead.
0 - 254
255

254

destkey Sets the reset value for the core’s destination key. 0 - 255 0
GRIP, Sep 2018, Version 2018.3 730 www.cobham.com/gaisler

GRLIB IP Core

generation and the lower parts of the PHY layer. One GRSPW_PHY entity is used per port. See sec-
tion 57.17 for information on how to interface GRSPW with GRSPW_PHY.

Table 865. Signal descriptions

Entity Signal name Field Type Function Active
GRSPW RST N/A Input Reset Low

CLK N/A Input Clock -
RXCLK[1:0] N/A Input Receiver clock. One clock per port. -
TXCLK N/A Input Transmitter default run-state clock -
AHBMI * Input AHB master input signals -
AHBMO * Output AHB master output signals -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
SWNI D[1:0] Input Data input synchronous to RXCLK (ris-

ing edge). One bit per port.
-

ND[9:0] Input Data input synchronous to RXCLK (fall-
ing edge). Five bits per port.

TICKIN Input Time counter tick input High
CLKDIV10 Input Clock divisor value used during initial-

ization and as reset value for the clock
divisor register

-

RMAPEN Input Reset value for the rmapen control regis-
ter bit

-

RMAPNODEADDR Input Reset value for nodeaddr register bits
when nodeaddr VHDL generic /= 255

-

DCRSTVAL Input Reset value for disconnect timer. Used if
usegen VHDL generic is set to 0.

-

TIMERRSTVAL Input Reset value for 6.4 us timer. Used if use-
gen VHDL generic is set to 0.

-

DCONNECT[3:0] Input Disconnect strobes. Two bits per port.
SWNO D[1:0] Output SpaceWire data output. One bit per port. -

S[1:0] Output SpaceWire strobe output. One bit per
port.

-

TICKOUT Output Time counter tick output High
LINKDIS Output Linkdisabled status High
RMAPACT Output RMAP command processing active High
RXRST Output Receiver reset. Low
GRIP, Sep 2018, Version 2018.3 731 www.cobham.com/gaisler

GRLIB IP Core
57.14 Signal definitions and reset values

The signals and their reset values are described in table 866.

57.15 Timing

The timing waveforms and timing parameters are shown in figure 151 and are defined in table 867.
The SpaceWire jitter and skew timing waveforms and timing parameters are shown in figure 152 and
are defined in table 868.

GRSPW_PHY RXRST N/A Input Receiver reset. Low
DI N/A Input SpaceWire data input. -
SI N/A Input SpaceWire strobe input. -
RXCLKO N/A Output Receiver clock recovered from data and

strobe input.
-

DO N/A Ouput Recovered data, synchronous to
RXCLKO (rising edge).

-

NDO[4:0] N/A Ouput Recovered data, synchronous to
RXCLKO (falling edge)

-

DCON-
NECT[1:0]

N/A Ouput Disconnect strobe signals. -

TESTEN N/A Input Scan test enable High
TESTCLK N/A Input Scan test clock. Used inside the GRSP-

W_PHY entity instead of recovered
RXCLK when TESTEN is active.

-

* see GRLIB IP Library User’s Manual

Table 866.Signal definitions and reset values

Signal name Type Function Active Reset value
spw_clk Input Transmitter default run-state clock Rising edge -
spw_rxd Input, LVDS Data input, positive High -
spw_rxdn Input, LVDS Data input, negative Low -
spw_rxs Input, LVDS Strobe input, positive High -
spw_rxsn Input, LVDS Strobe input, negative Low -
spw_txd Output, LVDS Data output, positive High Logical 0
spw_txdn Output, LVDS Data output, negative Low Logical 1
spw_txs Output, LVDS Strobe output, positive High Logical 0
spw_txsn Output, LVDS Strobe output, negative Low Logical 1

Table 865. Signal descriptions

Entity Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 732 www.cobham.com/gaisler

GRLIB IP Core
Table 867.Timing parameters

Name Parameter Reference edge Min Max Unit
tSPW0 transmit clock period - TBD - ns

tSPW1 clock to output delay rising spw_clk edge TBD TBD ns

tSPW2 input to clock hold - - - not applicable

tSPW3 input to clock setup - - - not applicable

tSPW4 output data bit period - - clk periods
- tSPW0 -

TBD
tSPW0
+TBD

ns

tSPW5 input data bit period - TBD - ns

tSPW6 data & strobe edge separation - TBD - ns

tSPW7 data & strobe output skew - - TBD ns

Figure 151. Timing waveforms

tSPW1spw_txd, spw_txdn

spw_clk

tSPW1

tSPW2spw_rxd, spw_rxdn tSPW3

spw_txs, spw_txsn

spw_rxs, spw_rxsn

tSPW0

spw_txd, spw_txdn

spw_txs, spw_txsn

tSPW4

tSPW4

tSPW4

spw_rxd, spw_rxdn

spw_rxs, spw_rxsn

tSPW5

tSPW5

tSPW5

spw_txd, spw_txdn

spw_txs, spw_txsn

tSPW7

tSPW6

tSPW6
GRIP, Sep 2018, Version 2018.3 733 www.cobham.com/gaisler

GRLIB IP Core
57.16 Library dependencies

Table 869 shows libraries used when instantiating the core (VHDL libraries).

57.17 Instantiation

This example shows how the core can be instantiated.
Normally di, si, do and so should be connected to input and output pads configured with LVDS driv-
ers. How this is done is technology dependent.
The GRSPW in the example is a 2-port core configured with non-ft memories of size 4, 64 and 8
entries for AHB FIFOs, N-Char FIFO and RMAP buffers respectively. The system frequency (clk) is
40 MHz and the transmitter frequency (txclk) is 20 MHz.
The memory technology is inferred which means that the synthesis tool will select the appropriate
components. The rx clk buffer uses a hardwired clock.
The hardware RMAP command handler is enabled which also automatically enables rxunaligned and
rmapcrc. Finally, the DMA channel interrupt line is 2 and the number of synchronization registers is
1.

Table 868.Skew and jitter timing parameters

Name Parameter Reference edge Min Max Unit
tskew skew between data and strobe - - TBD ns

tjitter jitter on data or strobe - - TBD ns

tds minimum separation between
data and strobe edges

- TBD - ns

tdclk delay from edge of data or strobe
to the receiver flip-flop

- - TBD ns

thold hold timer on receiver flip-flop - TBD - ns

tui unit interval (bit period) - TBD - ns

Table 869.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER SPACEWIRE Signals, component Component and record declarations.

Figure 152. Skew and jitter timing waveforms

tskew

tdclk
tjitter

thold

tui

tds

tjitter

d ideal

s ideal

d

s

receive clock
GRIP, Sep 2018, Version 2018.3 734 www.cobham.com/gaisler

GRLIB IP Core
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.spacewire.all;

entity spacewire_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- spacewire signals
 di : in std_logic_vector(1 downto 0);
 si : in std_logic_vector(1 downto 0);
 do : out std_logic_vector(1 downto 0);
 so : out std_logic_vector(1 downto 0)
);
end;

architecture rtl of spacewire_ex is

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

 -- Spacewire signals
 signal swni : grspw_in_type;
 signal swno : grspw_out_type;
 signal rxclk : std_logic_vector(1 downto 0);

begin

 -- AMBA Components are instantiated here
 ...

 -- GRSPW
 sw0 : grspw
 generic map (tech => inferred, hindex => 5, pindex => 7, paddr => 7, nsync => 1,
 rmap => 1, rxunaligned => 0, rmapcrc => 0, rxclkbuftype => 0, sysfreq => 40000,
 pirq => 2, fifosize1 => 4, fifosize2 => 64, rmapbufs => 8, ft => 0, ports => 2)
 port map (rstn, clk, rxclk, apbi, apbo(7), ahbmi, ahbmo(5), swni, swno);

 phy0 : grspw_phy
 generic map (tech => inferred, rxclkbuftype => 0, scantest => 0)
 port map (rxrst => swno.rxrst, di => di(0), si => si(0),
 rxclko => rxclk(0), do => swni.d(0), ndo => swni.nd(4 downto 0),
 dconnect => swni.dconnect(1 downto 0));

 phy1 : grspw_phy
 generic map (tech => inferred, rxclkbuftype => 0)
 port map (rxrst => swno.rxrst, di => di(1), si => si(1),
 rxclko => rxclk(1), do => swni.d(1), ndo => swni.nd(9 downto 5),
 dconnect => swni.dconnect(3 downto 2));

 swni.rmapen <= ‘1’;
 swni.clkdiv10 <= “00000001”;
 swni.tickin <= ‘0’;
 do(0) <= swno.d(0);
 so(0) <= swno.s(0);
 do(1) <= swno.d(1);
 so(1) <= swno.s(1);
end;
GRIP, Sep 2018, Version 2018.3 735 www.cobham.com/gaisler

GRLIB IP Core

57.18 API

A simple Application Programming Interface (API) is provided together with the GRSPW. The API is
located in $(GRLIB)/software/spw. The files are rmapapi.c, spwapi.c, rmapapi.h, spwapi.h. The
spwapi.h file contains the declarations of the functions used for configuring the GRSPW and transfer-
ring data. The corresponding definitions are located in spwapi.c. The rmapapi is structured in the
same manner and contains a function for building RMAP packets.
These functions could be used as a simple starting point for developing drivers for the GRSPW. The
different functions are described in this section.

57.18.1 GRSPW Basic API

The basic GRSPW API is based on a struct spwvars which stores all the information for a single
GRSPW core. The information includes its address on the AMBA bus as well as SpaceWire parame-
ters such as node address and clock divisor. A pointer to this struct is used as a input parameter to all
the functions. If several cores are used, a separate struct for each core is created and used when the
specific core is accessed.

The following functions are available in the basic API:

int spw_setparam(int nodeaddr, int clkdiv, int destkey, int nospill, int timetxen, int
timerxen, int rxmaxlen, int spwadr, struct spwvars *spw);

Table 870.The spwvars struct

Field Description Allowed range
regs Pointer to the GRSPW -
nospill The nospill value used for the core. 0 - 1
rmap Indicates whether the core is configured with RMAP. Set by

spw_init.
0 - 1

rxunaligned Indicates whether the core is configured with rxunaligned support.
Set by spw_init.

0 - 1

rmapcrc Indicates whether the core is configured with RMAPCRC support.
Set by spw_init.

0 - 1

clkdiv The clock divisor value used for the core. 0 - 255
nodeaddr The node address value used for the core. 0 - 255
destkey The destination key value used for the core. 0 - 255
rxmaxlen The Receiver maximum length value used for the core. 0 - 33554431
rxpnt Pointer to the next receiver descriptor. 0 - 127
rxchkpnt Pointer to the next receiver descriptor that will be polled. 0 - 127
txpnt Pointer to the next transmitter descriptor. 0 - 63
txchkpnt Pointer to the next transmitter descriptor that will be polled. 0 - 63
timetxen The timetxen value used for this core. 0 - 1
timerxen The timerxen value used for this core. 0 - 1
txd Pointer to the transmitter descriptor table. -
rxd Pointer to the receiver descriptor table -
GRIP, Sep 2018, Version 2018.3 736 www.cobham.com/gaisler

GRLIB IP Core

Used for setting the different parameters in the spwvars struct. Should always be run first after creat-
ing a spwvars struct. This function only initializes the struct. Does not write anything to the Space-
Wire core.

int spw_init(struct spwvars *spw);

Initializes the GRSPW core located at the address set in the struct spw. Sets the following registers:
node address, destination key, clock divisor, receiver maximum length, transmitter descriptor table
address, receiver descriptor table address, ctrl and dmactrl. All bits are set to the values found in the
spwvars struct. If a register bit is not present in the struct it will be set to zero. The descriptor tables
are allocated to an aligned area using malloc. The status register is cleared and lastly the link interface
is enabled. The run state frequency will be set according to the value in clkdiv.

int set_txdesc(int pnt, struct spwvars *spw);

Table 871.Return values for spw_setparam

Value Description
0 The function completed successfully
1 One or more of the parameters had an illegal value

Table 872.Parameters for spw_setparam

Parameter Description Allowed range
nodeaddr Sets the node address value of the struct spw passed to the function. 0-255
clkdiv Sets the clock divisor value of the struct spw passed to the function. 0-255
destkey Sets the destination key of the struct spw passed to the function. 0-255
nospill Sets the nospill value of the struct spw passed to the function. 0 - 1
timetxen Sets the timetxen value of the struct spw passed to the function. 0 - 1
timerxen Sets the timerxen value of the struct spw passed to the function. 0 - 1
rxmaxlen Sets the receiver maximum length field of the struct spw passed to

the function.
0 - 225-1

spwadr Sets the address to the GRSPW core which will be associated with
the struct passed to the function.

0 - 232-1

Table 873.Return values for spw_init

Value Description
0 The function completed successfully
1 One or more of the parameters could not be set correctly or the link failed to initialize.

Table 874.Parameters for spw_init

Parameter Description Allowed range
spw The spwvars struct associated with the GRSPW core that should be

initialized.
-

GRIP, Sep 2018, Version 2018.3 737 www.cobham.com/gaisler

GRLIB IP Core

Sets a new address to the transmitter descriptor table address register. Should only be used when no
transmission is active. Also resets the pointers for spw_tx and spw_checktx (Explained in the section
for those functions).

int set_rxdesc(int pnt, struct spwvars *spw);

Sets a new address to the Receiver descriptor table address register. Should only be used when no
transmission is active. Also resets the pointers for spw_rx and spw_checkrx (Explained in the section
for those functions).

void spw_disable(struct spwvars *spw);

Disables the GRSPW core (the link disable bit is set to ‘1’).

Table 875.Return values for spw_txdesc

Value Description
0 The function completed successfully
1 The new address could not be written correctly

Table 876.Parameters for spw_txdesc

Parameter Description Allowed range
pnt The new address to the descriptor table area 0 - 232-1
spw Pointer to the spwvars struct associated with GRSPW core that

should be configured
-

Table 877.Return values for spw_rxdesc

Value Description
0 The function completed successfully
1 The new address could not be written correctly

Table 878.Parameters for spw_rxdesc

Parameter Description Allowed range
pnt The new address to the descriptor table area 0 - 232-1
spw Pointer to the spwvars struct associated with GRSPW core that

should be configured
-

GRIP, Sep 2018, Version 2018.3 738 www.cobham.com/gaisler

GRLIB IP Core
void spw_enable(struct spwvars *spw);

Enables the GRSPW core (the link disable bit is set to ‘0’).

void spw_start(struct spwvars *spw);

Starts the GRSPW core (the link start bit is set to ‘1’).

void spw_stop(struct spwvars *spw);

Stops the GRSPW core (the link start bit is set to ‘0’).

int spw_setclockdiv(struct spwvars *spw);

Sets the clock divisor register with the clock divisor value stored in the spwvars struct.

Table 879.Parameters for spw_disable

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW core that

should be configured
-

Table 880.Parameters for spw_enable

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW core that

should be configured
-

Table 881.Parameters for spw_start

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW core that

should be configured
-

Table 882.Parameters for spw_start

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW core that

should be configured
-

Table 883.Return values for spw_setclockdiv

Value Description
0 The function completed successfully
1 The new clock divisor value is illegal.
GRIP, Sep 2018, Version 2018.3 739 www.cobham.com/gaisler

GRLIB IP Core
int spw_set_nodeadr(struct spwvars *spw);

Sets the node address register with the node address value stored in the spwvars struct.

int spw_set_rxmaxlength(struct spwvars *spw);

Sets the Receiver maximum length register with the rxmaxlen value stored in the spwvars struct.

int spw_tx(int crc, int skipcrcsize, int hsize, char *hbuf, int dsize, char *dbuf, struct
spwvars *spw);

Transmits a packet. Separate header and data buffers can be used. If CRC logic is available the GSPW
inserts RMAP CRC values after the header and data fields if crc is set to one. This function only sets a
descriptor and initiates the transmission. Spw_checktx must be used to check if the packet has been
transmitted. A pointer into the descriptor table is stored in the spwvars struct to keep track of the next
location to use. It is incremented each time the function returns 0.

Table 884.Parameters for spw_setclockdiv

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW core that

should be configured
-

Table 885.Return values for spw_set_nodeadr

Value Description
0 The function completed successfully
1 The new node address value is illegal.

Table 886.Parameters for spw_set_nodeadr

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW core that

should be configured
-

Table 887.Return values for spw_set_rxmaxlength

Value Description
0 The function completed successfully
1 The new node address value is illegal.

Table 888.Parameters for spw_set_rxmaxlength

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW core that

should be configured
-

Table 889.Return values for spw_tx

Value Description
0 The function completed successfully
1 There are no free transmit descriptors currently available
2 There was illegal parameters passed to the function
GRIP, Sep 2018, Version 2018.3 740 www.cobham.com/gaisler

GRLIB IP Core
int spw_rx(char *buf, struct spwvars *spw);

Enables a descriptor for reception. The packet will be stored to buf. Spw_checkrx must be used to
check if a packet has been received. A pointer in the spwvars struct is used to keep track of the next
location to use in the descriptor table. It is incremented each time the function returns 0.

int spw_checkrx(int *size, struct rxstatus *rxs, struct spwvars *spw);

Checks if a packet has been received. When a packet has been received the size in bytes will be stored
in the size parameter and status is found in the rxs struct. A pointer in the spwvars struct is used to
keep track of the location in the descriptor table to poll. It is incremented each time the function
returns nonzero.

Table 890.Parameters for spw_tx

Parameter Description Allowed range
crc Set to one to append RMAP CRC after the header and data fields.

Only available if hardware CRC is available in the core.
0 - 1

skipcrcsize The number of bytes in the beginning of a packet that should not be
included in the CRC calculation

0 - 15

hsize The size of the header in bytes 0 - 255
hbuf Pointer to the header data -
dsize The size of the data field in bytes 0 - 224-1
dbuf Pointer to the data area. -
spw Pointer to the spwvars struct associated with GRSPW core that

should transmit the packet
-

Table 891.Return values for spw_rx

Value Description
0 The function completed successfully
1 There are no free receive descriptors currently available

Table 892.Parameters for spw_rx

Parameter Description Allowed range
buf Pointer to the data area. -
spw Pointer to the spwvars struct associated with GRSPW core that

should receive the packet
-

Table 893.Return values for spw_checkrx

Value Description
0 No packet has been received
1 A packet has been received

Table 894.Parameters for spw_checkrx

Parameter Description Allowed range
size When the function returns 1 this variable holds the number of bytes

received
-

rxs When the function returns 1 this variable holds status information -
spw Pointer to the spwvars struct associated with GRSPW core that

should be polled
-

GRIP, Sep 2018, Version 2018.3 741 www.cobham.com/gaisler

GRLIB IP Core
int spw_checktx(struct spwvars *spw);

Checks if a packet has been transmitted. A pointer is used to keep track of the location in the descrip-
tor table to poll. It is incremented each time the function returns nonzero.

void send_time(struct spwvars *spw);

Sends a new time-code. Increments the time-counter in the GRSPW and transmits the value.

int check_time(struct spwvars *spw);

Check if a new time-code has been received.

Table 895.The rxstatus struct

Field Description Allowed range
truncated Packet was truncated 0 - 1
dcrcerr Data CRC error bit was set. Only indicates an error if the packet

received was an RMAP packet.
0 - 1

hcrcerr Header CRC error bit was se.t. Only indicates an error if the packet
received was an RMAP packet.

0 - 1

eep Packet was terminated with EEP 0 - 1

Table 896.Return values for spw_checktx

Value Description
0 No packet has been transmitted
1 A packet has been correctly transmitted
2 A packet has been incorrectly transmitted

Table 897.Parameters for spw_checktx

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW core that

should be polled
-

Table 898.Parameters for send time

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW core that

should be polled
-

Table 899.Return values for check_time

Value Description
0 No time-code has been received
1 A new time-code has been received

Table 900.Parameters for check_time

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW core that

should be polled
-

GRIP, Sep 2018, Version 2018.3 742 www.cobham.com/gaisler

GRLIB IP Core

int get_time(struct spwvars *spw);

Get the current time counter value.

void spw_reset(struct spwvars *spw);

Resets the GRSPW.

void spw_rmapen(struct spwvars *spw);

Enables hardware RMAP. Has no effect if the RMAP command handler is not available in GRSPW.

void spw_rmapdis(struct spwvars *spw);

Disables hardware RMAP. Has no effect if the RMAP command handler is not available in GRSPW

int spw_setdestkey(struct spwvars *spw);

Set the destination key of the GRSPW. Has no effect if the RMAP command handler is not available.
The value from the spwvars struct is used.

Table 901.Return values for get_time

Value Description
0 - 63 Returns the current time counter value

Table 902.Parameters for get_time

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW core that

should be polled
-

Table 903.Parameters for spw_reset

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW core that

should be reset
-

Table 904.Parameters for spw_rmapen

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW core that

should be set
-

Table 905.Parameters for spw_rmapdis

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW core that

should be set
-

Table 906.Return values for spw_setdestkey

Value Description
0 The function completed successfully
1 The destination key parameter in the spwvars struct contains an illegal value
GRIP, Sep 2018, Version 2018.3 743 www.cobham.com/gaisler

GRLIB IP Core
57.18.2 GRSPW RMAP API

The RMAP API contains only one function which is used for building RMAP headers.
int build_rmap_hdr(struct rmap_pkt *pkt, char *hdr, int *size);

Builds a RMAP header to the buffer pointed to by hdr. The header data is taken from the rmap_pkt
struct.

Table 907.Parameters for spw_setdestkey

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW core that

should be set.
-

Table 908.Return values for build_rmap_hdr

Value Description
0 The function completed successfully
1 One or more of the parameters contained illegal values

Table 909.Parameters for build_rmap_hdr

Parameter Description Allowed range
pkt Pointer to a rmap_pkt struct which contains the data from which the

header should be built
hdr Pointer to the buffer where the header will be built
spw Pointer to the spwvars struct associated with GRSPW core that

should be set
-

GRIP, Sep 2018, Version 2018.3 744 www.cobham.com/gaisler

GRLIB IP Core
Table 910.rmap_pkt struct fields

Field Description Allowed Range
type Selects the type of packet to build. writecmd, readcmd,

rmwcmd, writerep, readrep,
rmwrep

verify Selects whether the data should be verified before writing yes, no
ack Selects whether an acknowledge should be sent yes, no
incr Selects whether the address should be incremented or not yes, no
destaddr Sets the destination address 0 - 255
destkey Sets the destination key 0 - 255
srcaddr Sets the source address 0 - 255
tid Sets the transaction identifier field 0 - 65535
addr Sets the address of the operation to be performed. The extended

address field is currently always set to 0.
0 - 232-1

len The number of bytes to be writte, read or read-modify-written 0 - 224-1
status Sets the status field 0 - 11
dstspalen Number of source path address bytes to insert before the destination

address
0 - 228

dstspa Pointer to memory holding the destination path address bytes -
srcspalen Number of source path address bytes to insert in a command. For a

reply these bytes are placed before the return address
0 - 12

srcspa Pointer to memory holding the source path address bytes -
GRIP, Sep 2018, Version 2018.3 745 www.cobham.com/gaisler

GRLIB IP Core

57.19 Appendix A Clarifications of the GRSPW implementation of the standard

6.3.1 page 9 RMAP draft F
"The user application at destination will be informed that there was an error
 in the data transferred. The source will be informed of the data error if the
 acknowledge bit in the command has been set."

We view the RMAP command handler as both protocol parser and user application. All commands
are parsed in the first stage and various (internal) status bits are set. The next step (which can be
viewed as the user application) will make the decision of how to act upon the received command from
these bits. Therefore, the various errors that can occur are not externally observable.
If an error occurs when the command handler is accessing the AHB bus through the DMA interface
errors will be externally observable using the AHB status register in GRLIB.

6.3.6 page 13 RMAP draft F
“The Write Command packet arrives at the destination and its header is found to be in error. This fact
is added to the error statistics in the destination node.”
This text does not state how and if these statistics should be observable. At the moment the error han-
dling is internal to the RMAP command handler and therefore no statistics are internally observable.
A counter for this particular error might be added in the future.

6.3.6 page 15 RMAP draft F
"These various errors will be reported to the user application running on the
destination node (Write Data Error Indication)."
Again the RMAP command handler is the user application and all these errors are handled internally.

6.5.6 page 31 RMAP draft F
"The source user application, in fact immediately rejects this as an authorisation
failure as the command is trying to RMW an area of protected memory."

It should probably be destination user application instead of source. It is unclear what immediately
means. Should it be rejected before any accesses are done on the bus and thus requiring the RMAP
command handler to include a complete bus decoding. The GRSPW does (probably) not comply to
this paragraph at the moment. If a bus error occurs a general error code will be returned.

6.5.6 page 32
"If the header of the RMW reply packet is received intact but the data field is
corrupted as indicated by an incorrect data field length (too long or too short)
or by a CRC error, then an error can be flagged to the application immediately
(RMW Data Failure) without having to wait for an application timeout."
GRIP, Sep 2018, Version 2018.3 746 www.cobham.com/gaisler

GRLIB IP Core

This is not applicable to the GRSPW since it does not handle replies. However this is practically an
unnecessary comment since it is not specified in the standard in which manner received replies are
indicated to the higher layers.
GRIP, Sep 2018, Version 2018.3 747 www.cobham.com/gaisler

GRLIB IP Core

58 GRSPW2 - SpaceWire codec with AHB host Interface and RMAP target

58.1 Overview

The SpaceWire core provides an interface between the AHB bus and a SpaceWire network. It imple-
ments the SpaceWire standard (ECSS-E-ST-50-12C) with the protocol identification extension
(ECSS-E-ST-50-51C). The optional Remote Memory Access Protocol (RMAP) target implements the
ECSS standard (ECSS-E-ST-50-52C).
The SpaceWire interface is configured through a set of registers accessed through an APB interface.
Data is transferred through DMA channels using an AHB master interface. The number of DMA
channels is configurable from one to four.
The core can also be configured with two SpaceWire ports with manual or automatic switching
between them.
There can be up to four clock domains: one for the AHB interface (system clock), one for the trans-
mitter and one or two for the receiver depending on the number of configured ports.
The core only supports byte addressed 32-bit big-endian host systems. Transmitter outputs can be
either Single Data Rate (SDR) or Double Data Rate (DDR). The receiver can be connected either to
an Cobham SpaceWire transceiver or recover the data itself using a self-clocking scheme or sampling
(SDR or DDR).

58.2 Operation

58.2.1 Overview

The main sub-blocks of the core are the link interface, the RMAP target and the AMBA interface. A
block diagram of the internal structure can be found in figure 153.
The link interface consists of the receiver, transmitter, and the link interface FSM. They handle com-
munication on the SpaceWire network. The PHY block provides a common interface for the receiver
to the four different data recovery schemes and is external to this core. A short description is found in
section 58.3.5. The complete documentation is found in the GRSPW2_PHY section of GRLIB IP
Core User’s Manual. The AMBA interface consists of the DMA engines, the AHB master interface
and the APB interface. The link interface provides FIFO interfaces to the DMA engines. These FIFOs

Figure 153. Block diagram

TRANSMITTER

TXCLK

TRANSMITTER
FSM

LINKINTERFACE

SEND

RMAP

D(1:0)

S(1:0)

FSM

RECEIVER0

FSM

TRANSMITTER
DMA ENGINE

RECEIVER
DMA ENGINE

TRANSMITTER

RMAP
RECEIVER

N-CHAR
FIFO

RECEIVER
AHB FIFO

RECEIVER DATA
PARALLELIZATION

AHB
MASTER INTERFACE

REGISTERS APB
INTERFACE

D0

S0

RECEIVER1

PHY

PHY

D

DV

D1

S1

D

DV
GRIP, Sep 2018, Version 2018.3 748 www.cobham.com/gaisler

GRLIB IP Core

are used to transfer N-Chars between the AMBA and SpaceWire domains during reception and trans-
mission.
The RMAP target is an optional part of the core which can be enabled with a VHDL generic. The
RMAP target handles incoming packets which are determined to be RMAP commands instead of the
receiver DMA engine. The RMAP command is decoded and if it is valid, the operation is performed
on the AHB bus. If a reply was requested it is automatically transmitted back to the source by the
RMAP transmitter.
The link interface, DMA engines, RMAP target and AMBA interface are described in section 58.3,
58.6, 58.8 and 58.9 respectively.

58.2.2 Protocol support

The core only accepts packets with a valid destination address in the first received byte. Packets with
address mismatch will be silently discarded (except in promiscuous mode, which is covered in section
58.6.10).
The second byte is sometimes interpreted as a protocol ID a described hereafter. The RMAP protocol
(ID=0x1) is the only protocol handled separately in hardware while other packets are stored to a DMA
channel. If the RMAP target is present and enabled all RMAP commands will be processed, executed
and replied automatically in hardware. Otherwise RMAP commands are stored to a DMA channel in
the same way as other packets. RMAP replies are always stored to a DMA channel. More information
on the RMAP protocol support is found in section 58.8. When the RMAP target is not present or dis-
abled, there is no need to include a protocol ID in the packets and the data can start immediately after
the address.
All packets arriving with the extended protocol ID (0x00) are stored to a DMA channel. This means
that the hardware RMAP target will not work if the incoming RMAP packets use the extended proto-
col ID. Note also that packets with the reserved extended protocol identifier (ID = 0x000000) are not
ignored by the core. It is up to the client receiving the packets to ignore them.
When transmitting packets, the address and protocol-ID fields must be included in the buffers from
where data is fetched. They are not automatically added by the core.
Figure 154 shows the packet types accepted by the core. The core also allows reception and transmis-
sion with extended protocol identifiers but without support for RMAP CRC calculations and the
RMAP target.

When a package is received with a protocol ID = 0x02 (CCSDS) the core can, if enabled, automati-
cally calculate and check the CCSDS/CCITT CRC-16 and 16-bit ISO-checksum (J.G. Fletcher, ISO
8473-1:1998) assuming this is included in the package.

58.2.3 Endianness

The core is designed for big-endian systems.

58.3 Link interface

The link interface handles the communication on the SpaceWire network and consists of a transmitter,
receiver, a FSM and FIFO interfaces. An overview of the architecture is found in figure 153.

Figure 154. The SpaceWire packet types supported by the core.

Addr ProtID Dn-2..D3D2D1D0 Dn-1 EOP

Addr D0 Dm-2..D4D3D2D1 Dm-1 EOP
GRIP, Sep 2018, Version 2018.3 749 www.cobham.com/gaisler

GRLIB IP Core

58.3.1 Link interface FSM

The FSM controls the link interface (a more detailed description is found in the SpaceWire standard).
The low-level protocol handling (the signal and character level of the SpaceWire standard) is handled
by the transmitter and receiver while the FSM handles the exchange level.
The link interface FSM is controlled through the Control register (CTRL). The link can be disabled
through the CTRL.LD bit, which depending on the current state, either prevents the link interface
from reaching the started state or forces it to the error-reset state. When the link is not disabled, the
link interface FSM is allowed to enter the started-state when either the CTRL.LS bit is set or when a
NULL character has been received and the CTRL.AS bit is set.
The state of the link interface determines which type of characters that are allowed to be transmitted,
which together with the requests made from the host interfaces determine what character will be sent.
Time-codes are sent when the FSM is in the run-state and a request is made through the time-interface
(described in section 58.4).
When the link interface is in the connecting- or run-state it is allowed to send FCTs. FCTs are sent
automatically by the link interface when possible. This is done based on the maximum value of 56 for
the outstanding credit counter and the currently free space in the receiver N-Char FIFO. FCTs are sent
as long as the outstanding counter is less than or equal to 48 and there are at least 8 more empty FIFO
entries than the counter value.
N-Chars are sent in the run-state when they are available from the transmitter FIFO and there are
credits available. NULLs are sent when no other character transmission is requested, or when the
FSM is in a state where no other transmissions are allowed.
The credit counter (incoming credits) is automatically increased when a FCTs is received, and
decreased when N-Chars are transmitted. Received N-Chars are stored to the receiver N-Char FIFO
for further handling by the DMA interface. Received Time-codes are handled by the time-interface.

58.3.2 Transmitter

The state of the FSM, credit counters, requests from the time-interface and requests from the DMA-
interface are used to decide the next character to be transmitted. The type of character and the charac-
ter itself (for N-Chars and Time-codes) to be transmitted are presented to the low-level transmitter
which is located in a separate clock-domain.
This is done because one usually wants to run the SpaceWire link on a different frequency than the
host system clock. The core has a separate clock input which is used to generate the transmitter clock.
More information on transmitter clock generation is found in section 58.11.2. Since the transmitter
often runs on high frequency clocks (> 100 MHz) as much logic as possible has been placed in the
system clock domain to minimize power consumption and timing issues.
The transmitter logic in the host clock domain decides what character to send next and sets the proper
control signal and presents any needed character to the low-level transmitter as shown in figure 155.
The transmitter sends the requested characters and generates parity and control bits as needed. If no
requests are made from the host domain, NULLs are sent as long as the transmitter is enabled. Most of
the signal and character levels of the SpaceWire standard is handled in the transmitter. External LVDS
drivers are needed for the data and strobe signals. The outputs can be configured as either single- or
GRIP, Sep 2018, Version 2018.3 750 www.cobham.com/gaisler

GRLIB IP Core

double data rate. The latter increases maximum bitrate significantly but is not available for all techo-
nologies.

A transmission FSM reads N-Chars for transmission from the transmitter FIFO. It is given packet
lengths from the DMA interface and appends EOPs/EEPs and RMAP/CCSDS-CRC (or ISO-check-
sum) values if requested. When it is finished with a packet the DMA interface is notified and a new
packet length value is given.

58.3.3 Receiver

The receiver detects connections from other nodes and receives characters as a bit stream recovered
from the data and strobe signals by the GRSPW2_PHY module, which presents it as a data and data-
valid signal. The receiver and GRSPW2_PHY are located in a separate clock domain which runs on a
clock outputed by the GRSPW2_PHY. More information on the clock-generation can be found in sec-
tion 58.11.2.
The receiver is activated as soon as the link interface leaves the error reset state. Then after a NULL is
received it can start receiving any characters. It detects parity, escape and credit errors which causes
the link interface to enter the error reset state. Disconnections are handled in the link interface part in
the tx clock domain because no receiver clock is available when disconnected.
Received Characters are flagged to the host domain and the data is presented in parallel form. The
interface to the host domain is shown in figure 156. L-Chars are the handled automatically by the host
domain link interface part while all N-Chars are stored in the receiver FIFO for further handling. If
two or more consecutive EOPs/EEPs are received all but the first one are discarded.

58.3.4 Dual port support

The core can be configured to include an additional SpaceWire port. With dual ports the transmitter
drives an additional pair of data/strobe output signals and one extra receiver is added to handle a sec-
ond pair of data/strobe input signals.
One of the ports is set as active (how the active port is selected is explained below) and the transmitter
drives the data/strobe signals of the active port with the actual output values as explained in section
58.3.2. The inactive port is driven with zero on both data and strobe.

Transmitter Clock Domain Host Clock Domain

Transmitter

D

S

Send Time-code
Send FCT
Send NChar
Time-code[7:0]
NChar[8:0]

Figure 155. Schematic of the link interface transmitter.

Receiver Clock Domain Host Clock Domain

Receiver

D

DV

Got Time-code
Got FCT

Got NChar
Time-code[7:0]
NChar[7:0]

Figure 156. Schematic of the link interface receiver.

Got EEP
Got EOP
GRIP, Sep 2018, Version 2018.3 751 www.cobham.com/gaisler

GRLIB IP Core

Both receivers will always be active but only the active port’s interface signals (see figure 156) will be
propagated to the link interface FSM. Each time the active port is changed, the link will be reset so
that the new link is started in a controlled manner.
When the CTRL.NP bit is zero, the CTRL.PS bit selects the active port. When the CTRL.NP bit is set
to one, the active port is automatically selected during initialization. For the latter mode, the port on
which the first bit is received will be selected as the active port. If the initialization attempt fails on
that port the link is reset and the active port is again sected based on which port the first bit is
received.

58.3.5 Receiver PHY

The receiver supports four different input data recovery schemes: self-clocking (xor), sampling SDR,
sampling DDR and the Cobham SpaceWire transceiver. These four recovery types are handled in the
PHY module and data is presented to the receiver as a data and data-valid signal. This part of the
receiver must often be constrained and placing it in a separate module makes this process easier with
the most common synthesis tools. The input type is selected using the VHDL generic input_type.
More information about the PHY can be found in the GRSPW2_PHY section of the GRLIP IP Core
User’s Manual.

58.3.6 Setting link-rate

The register field CLKDIV.CLKDIVSTART determines the link-rate during initialization (all states
up to and including the connecting-state). The register is also used to calculate the link interface FSM
timeouts (6.4 us and 12.8 us, as defined in the SpaceWire standard). The CLKDIV.CLKDIVSTART
field should always be set so that a 10 Mbit/s link-rate is achieved during initialization. In that case the
timeout values will also be calculated correctly.
To achieve a 10 Mbit/s link-rate, the CLKDIV.CLKDIVSTART field should be set according to the
following formulas:
With single data rate (SDR) outputs:
CLKDIV.CLKDIVSTART = (<frequency in MHz of TXCLK> / 10) - 1

With double data rate (DDR) outputs, or when connected to Cobham SpaceWire transceiver:
CLKDIV.CLKDIVSTART = (2 x <frequency in MHz of TXCLK> / 10) - 1

The link-rate in run-state is controlled with the run-state divisor, the CLKDIV.CLKDIVRUN register
field. The link-rate in run-state is calculated according to the following formulas:
With SDR outputs:
<link-rate in Mbits/s> = <frequency in MHz of TXCLK> / (CLKDIV.CLKDIVRUN+1)

With DDR outputs / Cobham SpaceWire transceiver:
<link-rate in Mbits/s> = 2 x <frequency in MHz of TXCLK> / (CLKDIV.CLKDIVRUN+1)

The value of CLKDIV.CLKDIVRUN only affects the link-rate in run-state, and does not affect the 6.4
us or 12.8 us timeouts values.
Note that when using DDR ouputs, or when connected to Cobham SpaceWire transceiver, there is a
limitation in the usable clock divisor values. All even values (except 0) will result in the same bitrate
as the one higher odd number.
GRIP, Sep 2018, Version 2018.3 752 www.cobham.com/gaisler

GRLIB IP Core

An example of clock divisor and resulting link-rate, with a TXCLK frequency of 50 MHz, is shown in
the table 911. Also see 58.11.2 for information on clock requirements.

58.4 Time-code distribution

Time-codes are control codes that consists of two control flags (bits 7:6) and a time value (bits 5:0),
and they are used to distribute time over the SpaceWire network. The current time value (value of lat-
est received or transmitted time-code), and control flags, can be read from the Time-code register
(TC).

58.4.1 Receiving time-codes

When a control-code is received, and either the control flags (bits 7:6) have value “00”, or both con-
trol flag filtering and interrupt receive is disabled (CTRL.TF bit, and INTCFG.IR bit both set to 0),
then the received control code is considered to be a Time-Code. If Time-Code reception is enabled
(CTRL.TR bit set to 1) then the received time value is stored in the TC.TIMECNT field. If the
received time value equals TC.TIMECNT+1 (modulo 64), then the Time-Code is considered valid.
When a valid Time-Code is received, in addition to the time value being updated, the received control
flags are stored to the TC.TCTRL field. Also, when a valid Time-Code is received, the TICKOUT
output signal is asserted for one system clock cycle, the STS.TO bit is set to 1, and an AMBA inter-
rupt is generated if the CTRL.IE bit and CTRL.TQ bit are both set to 1.
For all received control codes, Time-Codes or not, the control flags together with the time value are
outputted on the TIMEOUT[7:0] signals, and the TICKOUTRAW signal is asserted for one system
clock cycle.

58.4.2 Transmitting time-codes

Time-codes can be transmitted either through the AMBA APB registers or through the signals
TICKIN, TICKINRAW, TIMEIN, and TICKINDONE.
In order to send a Time-code, Time-Code transmission must be enabled by setting the CTRL.TT bit to
1. To transmit a time-code through the register interface the CTRL.TI bit should be written to 1. When
the bit is written the current time value (TC.TIMECNT field) is incremented, and a Time-Code con-
sisting of the new time value together with the current control flags (TC.TCTRL field) is sent. The
CTRL.TI bit will stay high until the Time-Code has been transmitted. If time-code transmission is dis-
abled, writing the CTRL.TI bit has no effect.

Table 911.SpaceWire link-rate example with 50 MHz TXCLK

Clock divisor value

Link-rate in Mbit/s

SDR outputs
DDR outputs / Cobham
SpaceWire transceiver

0 50 100
1 25 50
2 16.67 25
3 12.5 25
4 10 16.67
5 8.33 16.67
6 7.14 12.5
7 6.25 12.5
8 5.56 10
9 5 10
GRIP, Sep 2018, Version 2018.3 753 www.cobham.com/gaisler

GRLIB IP Core

To transmit a time-code using the TICKIN signal the sender must wait until the TICKINDONE output
is low, then assert TICKIN. When TICKINDONE is asserted again, the TICKIN signal should be de-
asserted the same cycle. Following this procedure will make the core transmit a Time-Code consisting
of the current control flags and the current time value + 1 (modulo 64). This also requires that time-
code transmission is enabled through the CTRL.TT bit.
To transmit a Time-Code using the TICKINRAW signal the sender must wait until TICKINDONE is
low, then assert TICKINRAW and place the value of the Time-Code to be sent on the TIMEIN[7:0]
signals. When TICKINDONE is asserted again, the TICKINRAW signal should be de-asserted the
same cycle. Note that sending Time-Codes by using TICKINRAW does not require that Time-Code
transmission is enabled from the Control register. However, in order to send Time-Codes with control
flags different than “00”, interrupt transmit must be disabled (INTCTRL.IT bit set to 0). If interrupt
transmit is enabled then control codes “10” are interpreted as interrupt-codes, while control codes
“01” and “11” are discarded.
Note that the link interface must be in run-state in order to be able to send a Time-Code.

58.5 Interrupt distribution

The core supports interrupt distribution functionality. Whether or not this functionality is imple-
mented is indicated by the CTRL.ID bit, and the number of supported interrupt numbers is indicated
by the INTCFG.NUMINT field. Either 1, 2, 4, or 32 interrupt numbers (in the range 0-31) can be sup-
ported. When less than 32 interrupt numbers are supported it is programmable through the INTCFG
register which interrupt numbers in the range 0-31 that are allowed to be sent and received. When
extended interrupt mode is enabled (INTCFG.EE bit set to 1), the supported interrupt number in
“interrupt mode” is extended to 0-63).
The interrupts are distributed as control codes with the control flags (bits 7:6) set to “10”. Bit 5 of the
control code specifies if the code is an interrupt-code (bit 5 = ‘0’) or an interrupt-acknowledge-code
(bit 5 = ‘1’). An interrupt-code is generated by the source of the interrupt event, while the interrupt-
acknowledge-code is sent by the interrupt handler for the corresponding interrupt number. When
extended interrupt mode is enabled (INTCFG.EE bit set to 1), then interrupt-acknowledge-code is
interpret as interrupt-codes in the range 32-63.
An Interrupt distribution ISR register holds the current state of all the interrupt numbers in the Space-
Wire network. A bit in the ISR register is set to 1 when an interrupt-code with the corresponding inter-
rupt number is received / transmitted, and the bit is set to 0 when an interrupt-acknowledge-code with
the corresponding interrupt number is received / transmitted.
Each interrupt number also has its own timer that is used to clear the ISR bit if an interrupt-acknowl-
edge-code is not received before the timer expires. There is also a timer for each interrupt-number that
controls the minimum time between and interrupt-code and interrupt-acknowledge-code (and vice
versa), in order to allow propagation of the codes through the whole network before a new code with
the same interrupt number is sent.

58.5.1 Interrupt distribution timers

Each interrupt number has three corresponding timers, called the ISR timer, INT/ACK-timer, and ISR
change timer. Whether or not these timers are implemented in hardware, and how large they are, can
be detected by probing the ISRTIMER, IATIMER, and ICTIMER registers respectively.
If the ISR timers are enabled (ISRTIMER.EN bit set to 1), the ISR timer is started and reloaded with
the value from the ISRTIMER.RL field each time an interrupt-code is received such that the corre-
sponding ISR bit is set to 1. If a matching interrupt-acknowledge-code is received, the corresponding
ISR timer is stopped. If the ISR timer expires before an interrupt-acknowledge-code is received, the
corresponding ISR bit is cleared. The purpose of the ISR timer is to recover from situations where an
interrupt-acknowledge-code is lost. If an interrupt-acknowledge-code is lost and there were no ISR
GRIP, Sep 2018, Version 2018.3 754 www.cobham.com/gaisler

GRLIB IP Core

timer, then the corresponding ISR bit would stay set forever, and prevent future interrupt-codes with
that interrupt number to be distributed. It is important to configure the reload value for the ISR timer
correctly. The reload value shall not be less than the worst network propagation delay for the inter-
rupt-code, plus the maximum delay in the interrupt handler, plus the worst network propagation delay
for the interrupt-acknowledge-code. Note that use of the ISR timer is mandatory, so if the hardware
timers are either disabled or not implemented, software must handle the timers.
The INT/ACK-timer is used to control the minimum time between an interrupt-code and interrupt-
acknowledge-code with the same interrupt number, and vice versa. The purpose of the INT/ACK-
timer is to make sure that each interrupt- / interrupt-acknowledge-code gets enough time to propagate
through the complete network before the next interrupt- / interrupt-acknowledge-code is sent, ensur-
ing that no interrupt- / interrupt-acknowledge-code is received out of order. If the INT/ACK-timers
are enabled (IATIMER.EN bit set to 1), then each time an interrupt- / interrupt-acknowledge-code is
received the corresponding INT/ACK-timer is started and reloaded with the value from the
IATIMER.RL field. As long as the timer is running, an interrupt- / interrupt-acknowledge-code with
that interrupt number will not be sent.
The ISR change timer is used to control the minimum time between two consecutive changes to the
same ISR bit. The purpose of the timer is to protect against unexpected occurrences of interrupt- /
interrupt-acknowledge-codes that could occur, for example, due to a network malfunction or a bab-
bling idiot. If the ISR change timers are enabled (ICTIMER.EN bit set to 1), then the timer for an ISR
bit is started and reloaded with the value from the ICTIMER.RL field each time a received interrupt- /
interrupt-acknowledge-code makes the ISR bit change value. Until the timer has expired, the corre-
sponding ISR bit is not allowed to change value, and any received interrupt- / interrupt-acknowledge-
codes with that interrupt number are discarded.

58.5.2 Receiving interrupt- / interrupt-acknowledge-codes

When a control code with control flags set to “10” is received, and interrupt receive is enable (IR bit
in Interrupt distribution control register set to 1), the control code is considered an interrupt-code if bit
5 is 0, and an interrupt-acknowledge-code if bit 5 is 1. If an interrupt-code is received and the inter-
rupt number’s corresponding ISR bit is already set to 1, or an interrupt-acknowledge-code when the
ISR bit is 0, then the received interrupt- / interrupt-acknowledge-code is discarded without any further
action.
When an interrupt-code is received, and the corresponding ISR bit is 0, the ISR bit is set to 1. If the
interrupt number’s corresponding bit in the Interrupt tick-out mask register is set to 1 then the corre-
sponding bit in the Interrupt-code receive register is set to 1, the TICKOUT signal is asserted for one
clock cycle (if the INTCTRL.IT bit is 1), and an AMBA interrupt is generated (if the IE bit in the
Control register, and IQ bit in the Interrupt distribution control register are both set to 1). If the inter-
rupt number’s corresponding bit in the Interrupt-code auto acknowledge mask register is set to 1, then
an interrupt-acknowledge-code will be automatically sent once the INT/ACK-timer has expired, and
the ISR bit will be cleared again.
When an interrupt-acknowledge-code is received, and the corresponding ISR bit is 1, the ISR bit is set
to 0. If the interrupt number’s corresponding bit in the Interrupt tick-out mask register is set to 1, and
the interrupt-code that made the ISR bit get set to 1 in the first place was sent by software (through
register access), then the corresponding bit in the Interrupt-acknowledge-code receive register is set to
1. The TICKOUT signal is asserted for one clock cycle as well (if the INTCTRL.AT bit is 1), and an
AMBA interrupt is generated (if the IE bit in the Control register, and IQ bit in the Interrupt distribu-
tion control register are both set to 1).
Note that all received control codes, interrupt- / interrupt-acknowledge-codes or not, are outputted on
the TIMEOUT[7:0] signals, and the TICKOUTRAW signal is asserted for one clock cycle.
For more details regarding interrupt- / interrupt-acknowledge-code reception, please see the descrip-
tion of the interrupt distribution registers in section 58.12.
GRIP, Sep 2018, Version 2018.3 755 www.cobham.com/gaisler

GRLIB IP Core

58.5.3 Transmitting interrupt- / interrupt-acknowledge-codes

Interrupt- / interrupt-acknowledge-codes can be transmitted either through the AMBA APB registers
or through the signals TICKINRAW, TIMEIN, and TICKINDONE.
To transmit an interrupt- / interrupt-acknowledge-code through the register interface the II bit in the
Interrupt distribution control register should be written to 1. When the bit is written the value of the
TXINT field determine which interrupt- / interrupt-acknowledge-code that will be sent.
To transmit an interrupt- / interrupt-acknowledge-code using the TICKINRAW signal the sender must
wait until TICKINDONE is low, then assert TICKINRAW and place the value of the interrupt- / inter-
rupt-acknowledge-code to be sent on the TIMEIN[7:0] signals. When TICKINDONE is asserted
again, the TICKINRAW signal should be de-asserted the same cycle.
Both methods of sending an interrupt- / interrupt-acknowledge-code requires that interrupt transmis-
sion is enabled (IT bit in Interrupt distribution control register set to 1). The actual sending of the
interrupt- / interrupt-acknowledge-code is delayed until the corresponding INT/ACK-timer has
expired.
For more details regarding interrupt- / interrupt-acknowledge-code transmission, please see the
description of the interrupt distribution registers in section 58.12.

58.5.4 Interrupt-code generation

Interrupt-codes can be generated automatically due to a number of internal events. Which events that
should force an interrupt-code to be sent, and what interrupt-number to use, is controlled from the
Interrupt distribution control register, and the DMA control/status register. Interrupt transmission
must also be enabled (IT bit in Interrupt distribution control register) for interrupt-codes to be gener-
ated. Internally generated interrupt-codes are sent in the same manner as interrupt-codes transmitted
through the register interface and the TICKINRAW signal, as described in section 58.5.3. For more
details regarding interrupt-code generation please see the description of the Interrupt distribution con-
trol register and DMA control/status register in section 58.12.

58.6 Receiver DMA channels

The receiver DMA engine handles reception of data from the SpaceWire network to different DMA
channels.

58.6.1 Address comparison and channel selection

Packets are received to different channels based on the address and whether a channel is enabled or
not. When the receiver N-Char FIFO contains one or more characters, N-Chars are read by the
receiver DMA engine. The first character is interpreted as the logical address and is compared with
the addresses of each channel starting from 0. The packet will be stored to the first channel with an
matching address. The complete packet including address and protocol ID but excluding EOP/EEP is
stored to the memory address pointed to by the descriptors (explained later in this section) of the
channel.
Each SpaceWire address register has a corresponding mask register. Only bits at an index containing a
zero in the corresponding mask register are compared. This way a DMA channel can accept a range of
addresses. There is a Default address register which is used for address checking in all implemented
DMA channels that do not have separate addressing enabled and for RMAP commands in the RMAP
target. With separate addressing enabled the DMA channels’ own address/mask register pair is used
instead.
If an RMAP command is received it is only handled by the target if the Default address register
(including mask) matches the received address. Otherwise the packet will be stored to a DMA channel
if one or more of them has a matching address. If the address does not match neither the default
address nor one of the DMA channels’ separate register, the packet is still handled by the RMAP tar-
GRIP, Sep 2018, Version 2018.3 756 www.cobham.com/gaisler

GRLIB IP Core

get if enabled since it has to return the invalid address error code. The packet is only discarded (up to
and including the next EOP/EEP) if an address match cannot be found and the RMAP target is dis-
abled.
Packets, other than RMAP commands, that do not match neither the default address register nor the
DMA channels’ address register will be discarded. Figure 157 shows a flowchart of packet reception.
At least 2 non EOP/EEP N-Chars needs to be received for a packet to be stored to the DMA channel
unless the promiscuous mode is enabled in which case 1 N-Char is enough. If it is an RMAP packet
with hardware RMAP enabled 3 N-Chars are needed since the command byte determines where the
packet is processed. Packets smaller than these sizes are discarded.
GRIP, Sep 2018, Version 2018.3 757 www.cobham.com/gaisler

GRLIB IP Core

Start Reception

Receive
2 bytes

rmap enabled

defaddr*!defmask =
rxaddr*!defmask

Yes

 Receive
1 byte

RMAP command
No

Yes

No

Set DMA channel
number to 0

Process RMAP
command

Separate addressing

No

Yes

dma(n).addr*

rxaddr*!dma(n).mask

Channel enabled

Increment
channel number

and
pid =1 and

defaddr*!defmask =
rxaddr*!defmask

!dma(n).mask=

Last DMA channel

No

Yes

Store packet to
DMA channel

No

No

Yes

RMAP enabled

Discard packet

Yes

Yes

No

Figure 157. Flow chart of packet reception.

No
GRIP, Sep 2018, Version 2018.3 758 www.cobham.com/gaisler

GRLIB IP Core

58.6.2 Basic functionality of a channel

Reception is based on descriptors located in a consecutive area in memory that hold pointers to buf-
fers where packets should be stored. When a packet arrives at the core the channel which should
receive it is first determined as described in the previous section. A descriptor is then read from the
channels’ descriptor area and the packet is stored to the memory area pointed to by the descriptor.
Lastly, status is stored to the same descriptor and increments the descriptor pointer to the next one.
The following sections will describe DMA channel reception in more detail.

58.6.3 Setting up the core for reception

A few registers need to be initialized before reception to a channel can take place. First the link inter-
face need to be put in the run state before any data can be sent. The DMA channel has a maximum
length register which sets the maximum packet size in bytes that can be received to this channel.
Larger packets are truncated and the excessive part is spilled. If this happens an indication will be
given in the status field of the descriptor. The minimum value for the receiver maximum length field
is 4 and the value can only be incremented in steps of four bytes up to the maximum value 33554428.
If the maximum length is set to zero the receiver will not function correctly.
Either the Default address register or the channel specific address register (the accompanying mask
register must also be set) needs to be set to hold the address used by the channel. A control bit in the
DMA channel control register determines whether the channel should use default address and mask
registers for address comparison or the channel’s own registers. Using the default register the same
address range is accepted as for other channels with default addressing and the RMAP target while the
separate address provides the channel its own range. If all channels use the default registers they will
accept the same address range and the enabled channel with the lowest number will receive the
packet.
Finally, the descriptor table and Control register must be initialized. This will be described in the two
following sections.

58.6.4 Setting up the descriptor table address

The core reads descriptors from an area in memory pointed to by the receiver descriptor table address
register. The register consists of a base address and a descriptor selector. The base address points to
the beginning of the area and must start on an address that is aligned to the size of the descriptor table.
The size of the descriptor table can be determined from the formula: STS.NRXD*8. The STS.NRXD
field shows the number of entries in the descriptor table, and each descriptor size is 8 bytes.
The descriptor selector points to individual descriptors and is increased by 1 when a descriptor has
been used. When the selector reaches the upper limit of the area it wraps to the beginning automati-
cally. It can also be set to wrap at a specific descriptor before the upper limit by setting the wrap bit in
the descriptor. The idea is that the selector should be initialized to 0 (start of the descriptor area) but it
can also be written with another 8 bytes aligned value to start somewhere in the middle of the area. It
will still wrap to the beginning of the area.
If one wants to use a new descriptor table the receiver enable bit has to be cleared first. When the
rxactive bit for the channel is cleared it is safe to update the descriptor table register. When this is fin-
ished and descriptors are enabled the receiver enable bit can be set again.

58.6.5 Enabling descriptors

As mentioned earlier one or more descriptors must be enabled before reception can take place. Each
descriptor is 8 byte in size and the layout can be found in the tables below. The descriptors should be
written to the memory area pointed to by the receiver descriptor table address register. When new
descriptors are added they must always be placed after the previous one written to the area. Otherwise
they will not be noticed.
GRIP, Sep 2018, Version 2018.3 759 www.cobham.com/gaisler

GRLIB IP Core

A descriptor is enabled by setting the address pointer to point at a location where data can be stored
and then setting the enable bit. The WR bit can be set to cause the selector to be set to zero when
reception has finished to this descriptor. IE should be set if an interrupt is wanted when the reception
has finished. The DMA control register interrupt enable bit must also be set for an interrupt to be gen-
erated.
The descriptor packet address should be word aligned. All accesses on the bus are word accesses so
complete words will always be overwritten regardless of whether all 32-bit contain received data.
Also if the packet does not end on a word boundary the complete word containing the last data byte
will be overwritten. If the rxunaligned or rmap VHDL generics are set to 1, this restriction is removed
and any number of bytes can be received to any packet address without excessive bytes being over-
written.

58.6.6 Setting up the DMA control register

The final step to receive packets is to set the control register in the following steps: The receiver must
be enabled by setting the rxen bit in the DMA control register (see section 58.12). This can be done
anytime and before this bit is set nothing will happen. The rxdescav bit in the DMA control register is
then set to indicate that there are new active descriptors. This must always be done after the descrip-
tors have been enabled or the core might not notice the new descriptors. More descriptors can be acti-
vated when reception has already started by enabling the descriptors and writing the rxdescav bit.
When these bits are set reception will start immediately when data is arriving.

Table 912.GRSPW2 receive descriptor word 0 (address offset 0x0)
31 30 29 28 27 26 25 24 0

TR DC HC EP IE WR EN PACKETLENGTH

31 Truncated (TR) - Packet was truncated due to maximum length violation.
30 Data CRC (DC) - 1 if a CRC error was detected for the data and 0 otherwise. If the Protocol ID

of the received package is 0x02 a 1 indicates a CCSDS/CCITT CRC-16 error was detected.
29 Header CRC (HC) - 1 if a CRC error was detected for the header and 0 otherwise. If the Protocol ID

of the received package is 0x02 a 1 indicates a 16-bit ISO-Checksum error was detected.
28 EEP termination (EP) - This packet ended with an Error End of Packet character.
27 Interrupt enable (IE) - If set, an interrupt will be generated when a packet has been received if the

receive interrupt enable bit in the DMA channel control register is set.
26 Wrap (WR) - If set, the next descriptor used by the GRSPW will be the first one in the descriptor

table (at the base address). Otherwise the descriptor pointer will be increased with 0x8 to use the
descriptor at the next higher memory location. The descriptor table is limited to 1 kbytes in size and
the pointer will be automatically wrap back to the base address when it reaches the 1 kbytes bound-
ary.

25 Enable (EN) - Set to one to activate this descriptor. This means that the descriptor contains valid con-
trol values and the memory area pointed to by the packet address field can be used to store a packet.

24: 0 Packet length (PACKETLENGTH) - The number of bytes received to this buffer. Only valid after
EN has been set to 0 by the GRSPW.

Table 913.GRSPW2 receive descriptor word 1 (address offset 0x4)
31 0

PACKETADDRESS

31: 0 Packet address (PACKETADDRESS) - The address pointing at the buffer which will be used to store
the received packet. If the rxunaligned and rmap VHDL generics are both set to zero only bit 31 to 2
are used.
GRIP, Sep 2018, Version 2018.3 760 www.cobham.com/gaisler

GRLIB IP Core

58.6.7 The effect to the control bits during reception

When the receiver is disabled all packets going to the DMA-channel are discarded if the packet’s
address does not fall into the range of another DMA channel. If the receiver is enabled and the address
falls into the accepted address range, the next state is entered where the rxdescav bit is checked. This
bit indicates whether there are active descriptors or not and should be set by the external application
using the DMA channel each time descriptors are enabled as mentioned above. If the rxdescav bit is
‘0’ and the nospill bit is ‘0’ the packets will be discarded. If nospill is ‘1’ the core waits until rxdescav
is set and the characters are kept in the N-Char fifo during this time. If the fifo becomes full further N-
char transmissions are inhibited by stopping the transmission of FCTs.
When rxdescav is set the next descriptor is read and if enabled the packet is received to the buffer. If
the read descriptor is not enabled, rxdescav is set to ‘0’ and the packet is spilled depending on the
value of nospill.
The receiver can be disabled at any time and will stop packets from being received to this channel. If
a packet is currently received when the receiver is disabled the reception will still be finished. The
rxdescav bit can also be cleared at any time. It will not affect any ongoing receptions but no more
descriptors will be read until it is set again. Rxdescav is also cleared by the core when it reads a dis-
abled descriptor.

58.6.8 Status bits

When the reception of a packet is finished the enable bit in the current descriptor is set to zero. When
enable is zero, the status bits are also valid and the number of received bytes is indicated in the length
field. The DMA control register contains a status bit which is set each time a packet has been
received. The core can also be made to generate an interrupt for this event.
RMAP CRC logic is included in the implementation if the rmapcrc or rmap VHDL generics are set to
1. The RMAP CRC calculation is always active for all received packets and all bytes except the EOP/
EEP are included. The packet is always assumed to be an RMAP packet and the length of the header
is determined by checking byte 3 which should be the command field. The calculated CRC value is
then checked when the header has been received (according to the calculated number of bytes) and if
it is non-zero the HC bit is set indicating a header CRC error.
The CRC value is not set to zero after the header has been received, instead the calculation continues
in the same way until the complete packet has been received. Then if the CRC value is non-zero the
DC bit is set indicating a data CRC error. This means that the core can indicate a data CRC error even
if the data field was correct when the header CRC was incorrect. However, the data should not be used
when the header is corrupt and therefore the DC bit is unimportant in this case. When the header is not
corrupted the CRC value will always be zero when the calculation continues with the data field and
the behaviour will be as if the CRC calculation was restarted
If the received packet is not of RMAP type the header CRC error indication bit cannot be used. It is
still possible to use the DC bit if the complete packet is covered by a CRC calculated using the RMAP
CRC definition. This is because the core does not restart the calculation after the header has been
received but instead calculates a complete CRC over the packet. Thus any packet format with one
CRC at the end of the packet calculated according to RMAP standard can be checked using the DC
bit.
CCSDS/CCITT CRC-16 and 16-bit ISO Checksum logic is included in the implementation when the
VHDL generct ccsdscrc are set to 1. When a package is received with a protocol ID equal to 0x02
(CCSDS), the core will use the CCSDS CRC/ISO-checksum logic instead of RMAP CRC logic to
calculate the CRC. The result is presented by the same status bits as for the RMAP head/data CRC
error, but the interpretation of these bits is changed to ISO-checksum/CCSDS CRC error instead.
If the packet is neither of RMAP type nor of the type above with RMAP CRC at the end, then both the
HC and DC bits should be ignored.
GRIP, Sep 2018, Version 2018.3 761 www.cobham.com/gaisler

GRLIB IP Core

58.6.9 Error handling

If a packet reception needs to be aborted because of congestion on the network, the suggested solution
is to set link disable to ‘1’. Unfortunately, this will also cause the packet currently being transmitted to
be truncated but this is the only safe solution since packet reception is a passive operation depending
on the transmitter at the other end. A channel reset bit could be provided but is not a satisfactory solu-
tion since the untransmitted characters would still be in the transmitter node. The next character
(somewhere in the middle of the packet) would be interpreted as the node address which would prob-
ably cause the packet to be discarded but not with 100% certainty. Usually this action is performed
when a reception has stuck because of the transmitter not providing more data. The channel reset
would not resolve this congestion.
If an AHB error occurs during reception the current packet is spilled up to and including the next
EEP/EOP and then the currently active channel is disabled and the receiver enters the idle state. A bit
in the channels control/status register is set to indicate this condition.

58.6.10 Promiscuous mode

The core supports a promiscuous mode where all the data received is stored to the first DMA channel
enabled regardless of the node address and possible early EOPs/EEPs. This means that all non-EOP/
EEP N-Chars received will be stored to the DMA channel. The rxmaxlength register is still checked
and packets exceeding this size will be truncated.
RMAP commands will still be handled by the hardware RMAP target when promiscuous mode is
enabled, if the RMAP enable bit in the core’s Control register is set. If the RMAP enable bit is cleared,
RMAP commands will also be stored to a DMA channel.

58.7 Transmitter DMA channels

The transmitter DMA engine handles transmission of data from the DMA channels to the SpaceWire
network. Each receive channel has a corresponding transmit channel which means there can be up to
4 transmit channels. It is however only necessary to use a separate transmit channel for each receive
channel if there are also separate entities controlling the transmissions. The use of a single channel
with multiple controlling entities would cause them to corrupt each other’s transmissions. A single
channel is more efficient and should be used when possible.
Multiple transmit channels with pending transmissions are arbitrated in a round-robin fashion.

58.7.1 Basic functionality of a channel

A transmit DMA channel reads data from the AHB bus and stores them in the transmitter FIFO for
transmission on the SpaceWire network. Transmission is based on the same type of descriptors as for
the receiver and the descriptor table has the same alignment and size restrictions. When there are new
descriptors enabled the core reads them and transfer the amount data indicated.

58.7.2 Setting up the core for transmission

Four steps need to be performed before transmissions can be done with the core. First the link inter-
face must be enabled and started by writing the appropriate value to the ctrl register. Then the address
to the descriptor table needs to be written to the transmitter descriptor table address register and one or
more descriptors must also be enabled in the table. Finally, the txen bit in the DMA control register is
written with a one which triggers the transmission. These steps will be covered in more detail in the
next sections.

58.7.3 Enabling descriptors

The core reads descriptors from an area in memory pointed to by the transmit descriptor table address
register. The register consists of a base address and a descriptor selector. The base address points to
GRIP, Sep 2018, Version 2018.3 762 www.cobham.com/gaisler

GRLIB IP Core

the beginning of the area and must start on an address that is aligned to the size of the descriptor table.
The size of the descriptor table can be determined from the formula: STS.NTXD*16. The STS.NTXD
field shows the number of entries in the descriptor table, and each descriptor size is 16 bytes.
To transmit packets one or more descriptors have to be initialized in memory which is done in the fol-
lowing way: The number of bytes to be transmitted and a pointer to the data has to be set. There are
two different length and address fields in the transmit descriptors because there are separate pointers
for header and data. If a length field is zero the corresponding part of a packet is skipped and if both
are zero no packet is sent. The maximum header length is 255 bytes and the maximum data length is
16 Mbyte - 1. When the pointer and length fields have been set the enable bit should be set to enable
the descriptor. This must always be done last. The other control bits must also be set before enabling
the descriptor.
The transmit descriptors are 16 bytes in size so the maximum number in a single table is 64. The dif-
ferent fields of the descriptor together with the memory offsets are shown in the tables below.
The HC bit should be set if RMAP CRC should be calculated and inserted for the header field and
correspondingly the DC bit should be set for the data field. This field is only used by the core when
the CRC logic is available (rmap or rmapcrc VHDL generic set to 1). The header CRC will be calcu-
lated from the data fetched from the header pointer and the data CRC is generated from data fetched
from the data pointer. The CRCs are appended after the corresponding fields. The NON-CRC bytes
field is set to the number of bytes in the beginning of the header field that should not be included in
the CRC calculation.
When the CCSDS/CCITT CRC-16 and 16-bit ISO-checksum logic is available (VHDL generic ccsd-
scrc set to 1) the core uses the CRC-type filed to determine which CRC logic should be used to calcu-
late the data checksum. When the CCSDS CRC/ISO-checksum logic is not available, the CRC-type
field is assumed to be 00 (RMAP CRC).
The CRCs are sent even if the corresponding length is zero, but when both lengths are zero no packet
is sent not even an EOP.

58.7.4 Starting transmissions

When the descriptors have been initialized, the transmit enable bit in the DMA control register has to
be set to tell the core to start transmitting. New descriptors can be activated in the table on the fly
(while transmission is active). Each time a set of descriptors is added the transmit enable bit in the
corresponding DMA channel control/status register should be set. This has to be done because each
time the core encounters a disabled descriptor this register bit is set to 0.

Table 914.GRSPW2 transmit descriptor word 0 (address offset 0x0)
31 20 19 18 17 16 15 14 13 12 11 8 7 0

RESERVED CRC-T DC HC LE IE WR EN NONCRCLEN HEADERLEN

31: 20 RESERVED
19: 18 CRC type (CRC-T) - Defines the type of data CRC to use.

00: RMAP CRC
01: CCSDS/CCITT CRC-16
10: 16-bit ISO Checksum (J.G. Fletcher, ISO 8473-1:1998)
11: Reserved

17 Append data CRC (DC) - Append CRC calculated according to the RMAP specification (or
CCSDS/CCITT CRC-16 or 16-bit ISO-checksum when available) after the data sent from the
data pointer. The CRC covers all the bytes from this pointer. A null CRC will be sent if the
length of the data field is zero.

16 Append header CRC (HC) - Append CRC calculated according to the RMAP specification after the
data sent from the header pointer. The CRC covers all bytes from this pointer except a number of
bytes in the beginning specified by the non-crc bytes field. The CRC will not be sent if the header
length field is zero.
GRIP, Sep 2018, Version 2018.3 763 www.cobham.com/gaisler

GRLIB IP Core
58.7.5 The transmission process

When the transmitter enable bit in the DMA channel control/status register is set the core starts read-
ing descriptors immediately. The number of bytes indicated are read and transmitted. When a trans-
mission has finished, status will be written to the first field of the descriptor and a packet sent bit is set
in the DMA control register. If an interrupt was requested it will also be generated. Then a new
descriptor is read and if enabled a new transmission starts, otherwise the transmit enable bit is cleared
and nothing will happen until it is enabled again.

58.7.6 The descriptor table address register

The internal pointer which is used to keep the current position in the descriptor table can be read and
written through the APB interface. This pointer is set to zero during reset and is incremented each
time a descriptor is used. It wraps automatically when the limit for the descriptor table is reached, or it
can be set to wrap earlier by setting a bit in the current descriptor.
The descriptor table register can be updated with a new table anytime when no transmission is active.
No transmission is active if the transmit enable bit is zero and the complete table has been sent or if

15 Link error (LE) - A Link error occurred during the transmission of this packet.
14 Interrupt enable (IE) - If set, an interrupt will be generated when the packet has been transmitted and

the transmitter interrupt enable bit in the DMA control register is set.
13 Wrap (WR) - If set, the descriptor pointer will wrap and the next descriptor read will be the first one

in the table (at the base address). Otherwise the pointer is increased with 0x10 to use the descriptor at
the next higher memory location.

12 Enable (EN) - Enable transmitter descriptor. When all control fields (address, length, wrap and crc)
are set, this bit should be set. While the bit is set the descriptor should not be touched since this
might corrupt the transmission. The core clears this bit when the transmission has finished.

11: 8 Non-CRC bytes (NONCRCLEN)- Sets the number of bytes in the beginning of the header which
should not be included in the CRC calculation. This is necessary when using path addressing since
one or more bytes in the beginning of the packet might be discarded before the packet reaches its
destination.

7: 0 Header length (HEADERLEN) - Header Length in bytes. If set to zero, the header is skipped.

Table 915.GRSPW2 transmit descriptor word 1 (address offset 0x4)
31 0

HEADERADDRESS

31: 0 Header address (HEADERADDRESS) - Address from where the packet header is fetched. Does not
need to be word aligned.

Table 916.GRSPW2 transmit descriptor word 2 (address offset 0x8)
31 24 23 0

RESERVED DATALEN

31: 24 RESERVED
23: 0 Data length (DATALEN) - Length in bytes of data part of packet. If set to zero, no data will be sent.

If both data- and header-lengths are set to zero no packet will be sent.

Table 917.GRSPW2 transmit descriptor word 3(address offset 0xC)
31 0

DATAADDRESS

31: 0 Data address (DATAADDRESS) - Address from where data is read. Does not need to be word
aligned.

Table 914.GRSPW2 transmit descriptor word 0 (address offset 0x0)
GRIP, Sep 2018, Version 2018.3 764 www.cobham.com/gaisler

GRLIB IP Core

the table is aborted (explained below). If the table is aborted one has to wait until the transmit enable
bit is zero before updating the table pointer.

58.7.7 Error handling

Abort Tx
The DMA control register contains a bit called Abort TX which if set causes the current transmission
to be aborted, the packet is truncated and an EEP is inserted. This is only useful if the packet needs to
be aborted because of congestion on the SpaceWire network. If the congestion is on the AHB bus this
will not help (This should not be a problem since AHB slaves should have a maximum of 16 wait-
states). The aborted packet will have its LE bit set in the descriptor. The transmit enable register bit is
also cleared and no new transmissions will be done until the transmitter is enabled again.
AHB error
When an AHB error is encountered during transmission the currently active DMA channel is disabled
and the transmitter goes to the idle mode. A bit in the DMA channel’s control/status register is set to
indicate this error condition and, if enabled, an interrupt will also be generated. Further error handling
depends on what state the transmitter DMA engine was in when the AHB error occurred. If the
descriptor was being read the packet transmission had not been started yet and no more actions need
to be taken.
If the AHB error occurs during packet transmission the packet is truncated and an EEP is inserted.
Lastly, if it occurs when status is written to the descriptor the packet has been successfully transmitted
but the descriptor is not written and will continue to be enabled (this also means that no error bits are
set in the descriptor for AHB errors).
The client using the channel has to correct the AHB error condition and enable the channel again. No
more AHB transfers are done again from the same unit (receiver or transmitter) which was active
during the AHB error until the error state is cleared and the unit is enabled again.
Link error
When a link error occurs during the transmission, the remaining part of the packet is discarded up to,
and including, the next EOP/EEP. When this is done, status is immediately written back to the
descriptor (with the LE bit set) and the descriptor pointer is incremented. The link will be discon-
nected when the link error occurs but the core will automatically try to connect again, provided that
the link-start bit (LS bit in Control register) is asserted, and the link-disabled bit (LD bit in Control
register) is deasserted. If the LE bit in the DMA channel’s control register is not set the transmitter
DMA engine will wait for the link to enter run-state, and start a new transmission immediately when
possible, assuming there are packets pending. If the LE bit in the DMA channel’s control register is
set, the transmitter will be disabled when a link error occurs during a transmission of a packet. In that
case, no more packets will be transmitted until the transmitter is enabled again. See description of the
DMA channel’s control register for more details.

58.8 RMAP

The Remote Memory Access Protocol (RMAP) is used to implement access to resources in the node
via the SpaceWire link. Some common operations are reading and writing to memory, registers and
FIFOs. The core has an optional hardware RMAP target. Whether or not the RMAP target is imple-
mented is indicated by the CTRL.RA bit. This section describes the basics of the RMAP protocol and
the target implementation.

58.8.1 Fundamentals of the protocol

RMAP is a protocol which is designed to provide remote access via a SpaceWire network to memory
mapped resources on a SpaceWire node. It has been assigned protocol ID 0x01. It provides three oper-
ations: write, read and read-modify-write. These operations are posted operations, which means that a
GRIP, Sep 2018, Version 2018.3 765 www.cobham.com/gaisler

GRLIB IP Core

source does not wait for an acknowledge or reply. It also implies that any number of operations can be
outstanding at any time and that no timeout mechanism is implemented in the protocol. Time-outs
must instead be implemented in the user application which sends the commands. Data payloads of up
to 224 - 1 bytes is supported by the protocol. A destination can be requested to send replies and to ver-
ify data before executing an operation. For a complete description of the protocol, see the RMAP
standard (ECSS-E-ST-50-52C).

58.8.2 Implementation

The core includes a target for RMAP commands which processes all incoming packets with protocol
ID = 0x01, type field (bit 7 and 6 of the 3rd byte in the packet) equal to 01b and an address falling in
the range set by the default address and mask register. When such a packet is detected it is not stored
to the DMA channel, instead it is passed to the RMAP receiver.
The core implements all three commands defined in the standard with some restrictions. Support is
only provided for 32-bit big-endian systems. This means that the first byte received is the msb in a
word. The target will not receive RMAP packets using the extended protocol ID which are always
dumped to the DMA channel.
The RMAP receiver processes commands. If they are correct and accepted the operation is performed
on the AHB bus and a reply is formatted. If an acknowledge is requested the RMAP transmitter auto-
matically send the reply. RMAP transmissions have priority over DMA channel transmissions.
There is a user accessible destination key register which is compared to destination key field in
incoming packets. If there is a mismatch and a reply has been requested the error code in the reply is
set to 3. Replies are sent if and only if the ack field is set to ‘1’.
When a failure occurs during a bus access the error code is set to 1 (General Error). There is predeter-
mined order in which error-codes are set in the case of multiple errors in the core. It is shown in table
918.

Read accesses are performed on the fly, that is they are not stored in a temporary buffer before trans-
mitting. This means that the error code 1 will never be seen in a read reply since the header has
already been sent when the data is read. If the AHB error occurs the packet will be truncated and
ended with an EEP.
Errors up to and including Invalid Data CRC (number 8) are checked before verified commands. The
other errors do not prevent verified operations from being performed.

Table 918.The order of error detection in case of multiple errors. The error detected first has number 1.

Detection Order Error Code Error
1 12 Invalid destination logical address
2 2 Unused RMAP packet type or command code
3 3 Invalid destination key
4 9 Verify buffer overrun
5 11 RMW data length error
6 10 Authorization failure
7* 1 General Error (AHB errors during non-verified writes)
8 5/7 Early EOP / EEP (if early)
9 4 Invalid Data CRC
10 1 General Error (AHB errors during verified writes or RMW)
11 7 EEP
12 6 Cargo Too Large
*The AHB error is not guaranteed to be detected before Early EOP/EEP or Invalid Data CRC. For very long accesses
the AHB error detection might be delayed causing the other two errors to appear first.
GRIP, Sep 2018, Version 2018.3 766 www.cobham.com/gaisler

GRLIB IP Core

The details of the support for the different commands are now presented. All defined commands
which are received but have an option set which is not supported in this specific implementation will
not be executed and a possible reply is sent with error code 10.

58.8.3 Write commands

The write commands are divided into two subcategories when examining their capabilities: verified
writes and non-verified writes. Verified writes have a length restriction of 4 bytes and the address
must be aligned to the size. That is 1 byte writes can be done to any address, 2 bytes must be halfword
aligned, 3 bytes are not allowed and 4 bytes writes must be word aligned. Since there will always be
only one AHB operation performed for each RMAP verified write command the incrementing
address bit can be set to any value.
Non-verified writes have no restrictions when the incrementing bit is set to 1. If it is set to 0 the num-
ber of bytes must be a multiple of 4 and the address word aligned. There is no guarantee how many
words will be written when early EOP/EEP is detected for non-verified writes.

58.8.4 Read commands

Read commands are performed on the fly when the reply is sent. Thus if an AHB error occurs the
packet will be truncated and ended with an EEP. There are no restrictions for incrementing reads but
non-incrementing reads have the same alignment restrictions as non-verified writes. Note that the
“Authorization failure” error code will be sent in the reply if a violation was detected even if the
length field was zero. Also note that no data is sent in the reply if an error was detected i.e. if the status
field is non-zero.

58.8.5 RMW commands

All read-modify-write sizes are supported except 6 which would have caused 3 B being read and writ-
ten on the bus. The RMW bus accesses have the same restrictions as the verified writes. As in the ver-
ified write case, the incrementing bit can be set to any value since only one AHB bus operation will be
performed for each RMW command. Cargo too large is detected after the bus accesses so this error
will not prevent the operation from being performed. No data is sent in a reply if an error is detected
i.e. the status field is non-zero.

58.8.6 Control

The RMAP target mostly runs in the background without any external intervention, but there are a
few control possibilities.
There is an enable bit in the control register of the core which can be used to completely disable the
RMAP target. When it is set to ‘0’ no RMAP packets will be handled in hardware, instead they are all
stored to the DMA channel.
There is a possibility that RMAP commands will not be performed in the order they arrive. This can
happen if a read arrives before one or more writes. Since the target stores replies in a buffer with more
than one entry several commands can be processed even if no replies are sent. Data for read replies is
read when the reply is sent and thus writes coming after the read might have been performed already
if there was congestion in the transmitter. To avoid this the RMAP buffer disable bit can be set to
force the target to only use one buffer which prevents this situation.
The last control option for the target is the possibility to set the destination key which is found in a
separate register.
GRIP, Sep 2018, Version 2018.3 767 www.cobham.com/gaisler

GRLIB IP Core

Table 919.GRSPW2 hardware RMAP handling of different packet type and command fields.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Command Action

Reserved
Command
/ Response

Write /
Read

Verify
data
before
write

Acknow-
ledge

Increment
Address

0 0 - - - - Response Stored to DMA-channel.
0 1 0 0 0 0 Not used Does nothing. No reply is sent.
0 1 0 0 0 1 Not used Does nothing. No reply is sent.
0 1 0 0 1 0 Read single

address
Executed normally. Address has
to be word aligned and data size
a multiple of four. Reply is sent.
If alignment restrictions are vio-
lated error code is set to 10.

0 1 0 0 1 1 Read incre-
menting
address.

Executed normally. No restric-
tions. Reply is sent.

0 1 0 1 0 0 Not used Does nothing. No reply is sent.
0 1 0 1 0 1 Not used Does nothing. No reply is sent.
0 1 0 1 1 0 Not used Does nothing. Reply is sent with

error code 2.
0 1 0 1 1 1 Read-Mod-

ify-Write
increment-
ing address

Executed normally. If length is
not one of the allowed rmw val-
ues nothing is done and error
code is set to 11. If the length
was correct, alignment restric-
tions are checked next. 1 byte
can be rmw to any address. 2
bytes must be halfword aligned.
3 bytes are not allowed. 4 bytes
must be word aligned. If these
restrictions are violated nothing
is done and error code is set to
10. If an AHB error occurs error
code is set to 1. Reply is sent.

0 1 1 0 0 0 Write, sin-
gle-address,
do not verify
before writ-
ing, no
acknowledge

Executed normally. Address has
to be word aligned and data size
a multiple of four. If alignment is
violated nothing is done. No
reply is sent.

0 1 1 0 0 1 Write, incre-
menting
address, do
not verify
before writ-
ing, no
acknowledge

Executed normally. No restric-
tions. No reply is sent.

0 1 1 0 1 0 Write, sin-
gle-address,
do not verify
before writ-
ing, send
acknowledge

Executed normally. Address has
to be word aligned and data size
a multiple of four. If alignment is
violated nothing is done and
error code is set to 10. If an AHB
error occurs error code is set to 1.
Reply is sent.
GRIP, Sep 2018, Version 2018.3 768 www.cobham.com/gaisler

GRLIB IP Core
58.9 AMBA interface

The AMBA interface consists of an APB interface, an AHB master interface and DMA FIFOs. The
APB interface provides access to the user registers which are described in section 58.12. The DMA
engines have 32-bit wide FIFOs to the AHB master interface which are used when reading and writ-
ing to the bus.
The transmitter DMA engine reads data from the bus in bursts which are half the FIFO size in length.
A burst is always started when the FIFO is half-empty or if it can hold the last data for the packet. The
burst containing the last data might have shorter length if the packet is not an even number of bursts in
size.

0 1 1 0 1 1 Write, incre-
menting
address, do
not verify
before writ-
ing, send
acknowledge

Executed normally. No restric-
tions. If AHB error occurs error
code is set to 1. Reply is sent.

0 1 1 1 0 0 Write, single
address, ver-
ify before
writing, no
acknowledge

Executed normally. Length must
be 4 or less. Otherwise nothing is
done. Same alignment restric-
tions apply as for rmw. No reply
is sent.

0 1 1 1 0 1 Write, incre-
menting
address, ver-
ify before
writing, no
acknowledge

Executed normally. Length must
be 4 or less. Otherwise nothing is
done. Same alignment restric-
tions apply as for rmw. If they
are violated nothing is done. No
reply is sent.

0 1 1 1 1 0 Write, single
address, ver-
ify before
writing, send
acknowledge

Executed normally. Length must
be 4 or less. Otherwise nothing is
done and error code is set to 9.
Same alignment restrictions
apply as for rmw. If they are vio-
lated nothing is done and error
code is set to 10. If an AHB error
occurs error code is set to 1.
Reply is sent.

0 1 1 1 1 1 Write, incre-
menting
address, ver-
ify before
writing, send
acknowledge

Executed normally. Length must
be 4 or less. Otherwise nothing is
done and error code is set to 9.
Same alignment restrictions
apply as for rmw. If they are vio-
lated nothing is done and error
code is set to 10. If an AHB error
occurs error code is set to 1.
Reply is sent.

1 0 - - - - Unused Stored to DMA-channel.
1 1 - - - - Unused Stored to DMA-channel.

Table 919.GRSPW2 hardware RMAP handling of different packet type and command fields.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Command Action

Reserved
Command
/ Response

Write /
Read

Verify
data
before
write

Acknow-
ledge

Increment
Address
GRIP, Sep 2018, Version 2018.3 769 www.cobham.com/gaisler

GRLIB IP Core

The receiver DMA works in the same way except that it checks if the FIFO is half-full and then per-
forms a burst write to the bus which is half the fifo size in length. The last burst might be shorter. If
the rmap or rxunaligned VHDL generics are set to 1 the interface also handles byte accesses. Byte
accesses are used for non word-aligned buffers and/or packet lengths that are not a multiple of four
bytes. There might be 1 to 3 single byte writes when writing the beginning and end of the received
packets.

58.9.1 APB slave interface

As mentioned above, the APB interface provides access to the user registers which are 32-bits in
width. The accesses to this interface are required to be aligned word accesses. The result is undefined
if this restriction is violated.

58.9.2 AHB master interface

The core contains a single master interface which is used by both the transmitter and receiver DMA
engines. The arbitration algorithm between the channels is done so that if the current owner requests
the interface again it will always acquire it. This will not lead to starvation problems since the DMA
engines always deassert their requests between accesses.
The AHB accesses are always word accesses (HSIZE = 0x010) of type incremental burst with unspec-
ified length (HBURST = 0x001) if the RMAP target is not implemented (RA bit in Control register =
0) and unaligned transfers are not supported (RX bit in the Control register = 0). If either the RMAP
target is implemented, or unaligned transfers are supported, then AHB accesses can be of size byte,
halfword and word (HSIZE = 0x000, 0x001, 0x010) otherwise. Byte and halfword accesses are
always NONSEQ. Note that read accesses are always word accesses (HSIZE = 0x010), which can
result in destructive read.
The burst length will be half the AHB FIFO size except for the last transfer for a packet which might
be smaller. Shorter accesses are also done during descriptor reads and status writes.
The AHB master also supports non-incrementing accesses where the address will be constant for sev-
eral consecutive accesses. HTRANS will always be NONSEQ in this case while for incrementing
accesses it is set to SEQ after the first access. This feature is included to support non-incrementing
reads and writes for RMAP.
If the core does not need the bus after a burst has finished there will be one wasted cycle (HTRANS =
IDLE).
BUSY transfer types are never requested and the core provides full support for ERROR, RETRY and
SPLIT responses.

58.10 SpaceWire Plug-and-Play

The core supports parts of the SpaceWire Plug-and-Play protocol. The supported fields are listed in
table 922, and explained in more detail in tables 923 through 937. Table 922 also shows which type of
SpaceWire Plug-and-Play access type (read, write, compare-and-swap) that is allowed for the field.
Note that two different amount of SpaceWire Plug-and-Play support may be included. Either only
device identification through the Device Information fields is supported, or device configuration
through the SpaceWire Protocol fields is supported as well. The amount of support is indicated by the
CTRL.PNPA field. Note also that the CTRL.PE must be set in order to enable the SpaceWire Plug-
and-Play support.
The SpaceWire Plug-and-Play protocol uses standard RMAP commands and replies with the same
requirements as presented in section 58.8, but with the following differences:
• Protocol Identifier field of a command shall be set to 0x03.
• A command’s address fields shall contain a word address. The SpaceWire Plug-and-Play

addresses are encoded as shown in table 920.
GRIP, Sep 2018, Version 2018.3 770 www.cobham.com/gaisler

GRLIB IP Core

• The increment bit in the command’s instruction field shall be set to 1, otherwise a reply with Sta-

tus field set to 0x0A (authorization failure) is sent.
• RMAP read-modify-write command is replaced by a compare-and-swap command. The com-

mand’s data fields shall contain the new data to be written, while the mask fields shall contain the
value that the current data must match in order for the new data to be written. If there is a mis-
match, a reply with Status field set to 0x0A (authorization failure) is sent.

• The reply packet’s Status field can contain the additional status codes described in table 921.

Table 920. SpaceWire Plug-and-Play address encoding
31 24 23 19 18 14 13 0

Application Index Protocol Index FieldSet ID Field ID

Table 921. SpaceWire Plug-and-Play status codes

Value Description
0xF0 Unauthorized access - A write, or compare-and-swap command, with an address other then the

Device ID field’s address, arrived when the core was not configured (Device ID field = 0), or the
command did not match the owner information saved in the Link Information field and Owner
Address fields.

0xF1 Reserved field set - A read, write, or compare-and-swap command’s address field points to a non
existing field set. 1)

0xF2 Read-only field - A write, or compare-and-swap command’s address points to a read-only field.
0xF3 Compare-and-swap-only-field - A write command’s address points to a field that is only writable

through a compare-and-swap-only.
Note 1: An access to a non existing field, within a existing field set, does not generate an error response. The data returned
in a read access is zero, while a write access has no effect.

Table 922. SpaceWire Plug-and-Play support

SpW PnP
Address Name Acronym Service - Field set - Field

Access
type

0x00000000 SpaceWire Plug-and-Play - Device Ven-
dor and Product ID

PNPVEND Device Information - Device Iden-
tification - Device Vendor and
Product ID

read

0x00000001 SpaceWire Plug-and-Play - Version PNPVER Device Information - Device Iden-
tification - Version

read

0x00000002 SpaceWire Plug-and-Play - Device Sta-
tus

PNPDEVSTS Device Information - Device Iden-
tification - Device Status

read

0x00000003 SpaceWire Plug-and-Play - Active Links PNPALINK Device Information - Device Iden-
tification - Active Links

read

0x00000004 SpaceWire Plug-and-Play - Link Infor-
mation

PNPLINFO Device Information - Device Iden-
tification - Link Information

read

0x00000005 SpaceWire Plug-and-Play - Owner
Address 0

PNPOA0 Device Information - Device Iden-
tification - Owner Address 0

read

0x00000006 SpaceWire Plug-and-Play - Owner
Address 1

PNPOA1 Device Information - Device Iden-
tification - Owner Address 1

read

0x00000007 SpaceWire Plug-and-Play - Owner
Address 2

PNPOA2 Device Information - Device Iden-
tification - Owner Address 2

read

0x00000008 SpaceWire Plug-and-Play - Device ID PNPDEVID Device Information - Device Iden-
tification - Device ID

read,
cas
GRIP, Sep 2018, Version 2018.3 771 www.cobham.com/gaisler

GRLIB IP Core
The layout of the SpaceWire Plug-and-Play registers used in this section is the same as for
the registers described in section 58.12, and is exemplified in table 947. The reset value field

0x00000009 SpaceWire Plug-and-Play - Unit Vendor
and Product ID

PNPUVEND Device Information - Device Iden-
tification - Unit Vendor and Prod-
uct ID

read

0x0000000A SpaceWire Plug-and-Play - Unit Serial
Number

PNPUSN Device Information - Device Iden-
tification - Unit Serial Number

read

0x00004000 SpaceWire Plug-and-Play - Vendor
String Length

PNPVSTRL Device Information - Vendor /
Product String - Vendor String
Length

read

0x00006000 SpaceWire Plug-and-Play - Product
String Length

PNPPSTRL Device Information - Vendor /
Product String - Product String
Length

read

0x00008000 SpaceWire Plug-and-Play - Protocol
Count

PNPPCNT Device Information - Protocol
Support - Protocol Count

read

0x00008001 SpaceWire Plug-and-Play - Protocol
Identification 1

PNPPID1 Device Information - Protocol
Support - Protocol Identification 1

read

0x00008002 SpaceWire Plug-and-Play - Protocol
Identification 2

PNPPID2 Device Information - Protocol
Support - Protocol Identification 2

read

0x0000C000 SpaceWire Plug-and-Play - Application
Count

PNPACNT Device Information - Application
Support- Application Count

read

0x00080000 SpaceWire Plug-and-Play - Time-Code
Counter 1)

PNPTCC SpaceWire Protocol - Device Con-
figuration - Time-Code Counter

read,
write,
cas

0x00084008 SpaceWire Plug-and-Play - Link Status

1)

PNPLSTS SpaceWire Protocol - Link Config-
uration - Link Status

read,
write,
cas

0x00084009 SpaceWire Plug-and-Play - Link Control
1)

PNPLCTRL SpaceWire Protocol - Link Config-
uration - Link Control

read,
write,
cas

0x00100000 SpaceWire Plug-and-Play - Maximum
Write Length 1)

PNPMWLEN SpaceWire PnP Protocol - Protocol
Information - Maximum Write
Length

read

0x00100001 SpaceWire Plug-and-Play - Maximum
Read Length 1)

PNPMRLEN SpaceWire PnP Protocol - Protocol
Information - Maximum Read
Length

read

Note 1: Register is only available when device configuration through SpaceWire Plug-and-Play is supported, which is
indicated by the value of the CTRL.PNPA field.

Table 922. SpaceWire Plug-and-Play support

SpW PnP
Address Name Acronym Service - Field set - Field

Access
type
GRIP, Sep 2018, Version 2018.3 772 www.cobham.com/gaisler

GRLIB IP Core

and bit-field type definitions are also the same as in section 58.12, and are explained in tables
948 and 949 respectively.

Table 923.0x00000000 - PNPVEND - SpaceWire Plug-and-Play - Device Vendor and Product ID
31 16 15 0

VEND PROD

* *

r r

31: 16 Vendor ID (VEND) - SpaceWire vendor ID assigned at implementation time. Value taken from the VHDL
generic pnpvendid.

15: 0 Product ID (PROD) - Product ID assigned at implementation time. Value taken from the VHDL generic pnppro-
did.

Table 924.0x00000001 - PNPVER - SpaceWire Plug-and-Play - Version
31 24 23 16 15 8 7 0

MAJOR MINOR PATCH RESERVED

* * * *

r r r r

31: 24 Major version number (MAJOR) - Major version number set at implementation time. Value taken from the
VHDL generic pnpmajorid.

23: 16 Minor version number (MINOR) - Minor version number set at implementation time. Value taken from the
VHDL generic pnpminorid.

15: 8 Patch / Build number (PATCH) - Patch / Build number set at implementation time. Value taken from the VHDL
generic pnppatchid.

7: 0 RESERVED

Table 925.0x00000002 - PNPDEVSTS - SpaceWire Plug-and-Play - Device Status
31 8 7 0

RESERVED STATUS

0x000000 0x00

r r

31: 8 RESERVED
7: 0 Device status (STATUS) - Constant value of 0x00.

Table 926.0x00000003 - PNPALINK - SpaceWire Plug-and-Play - Active Links
31 2 1 0

RESERVED AC R

0x00000000 0 0

r r r

31: 20 RESERVED
19: 1 Link active (AC) - Indicates if the link interface is in run-state. 0 = Not run-state, 1 = run-state.
0 RESERVED
GRIP, Sep 2018, Version 2018.3 773 www.cobham.com/gaisler

GRLIB IP Core

Table 927.0x00000004 - PNPLINFO -SpaceWire Plug-and-Play - Link Information
31 24 23 22 21 20 16 15 13 12 8 7 6 5 4 0

OLA OAL R OL RES RL T U R LC

0x00 0x0 0 0x0 0x0 0x0 1 0 0 0x13

r r r r r r r r r r

31: 24 Owner logical address (OLA) - Shows the value of the Initiator Logical Address field from the last successful
compare-and-swap command that set the Device ID field.

23: 22 Owner address length (OAL) - Shows how many of the three Owner Address fields that contain valid data.
21 RESERVED
20: 16 Owner link (OL) - Shows the number of the port which was used for the last successful operation to set the value

of the Device ID field.
15: 13 RESERVED
12: 8 Return link (RL) - Shows the number of the port through which the reply to the current read command will be

transmitted.
7 Device type (T) - Constant value of 0, indicating a node.
6 Unit information (U) - Indicates if the unit identification information (Unit Vendor and Product ID field, and

Unit Serial Number field) are valid. 0 = invalid, 1 = valid. This bit will be 0 after reset / power-up. Once the Unit
Vendor and Product ID field has been written with a non-zero value, this bit will be set to 1.

5 RESERVED
4: 0 Link count (LC) - Shows the number of router ports. Constant value of 0x13.

Table 928.0x00000005 - PNPOA0 - SpaceWire Plug-and-Play - Owner Address 0
31 0

RA

0x00000000

r

31: 0 Reply address (RA) - Shows byte 0-3 of the Reply Address from the last successful compare-and-swap com-
mand that set to the Device ID field. If there was no Reply Address, then this field is zero.

Table 929.0x00000006 - PNPOA1 - SpaceWire Plug-and-Play - Owner Address 1
31 0

RA

0x00000000

r

31: 0 Reply address (RA) - Shows byte 4-7 of the Reply Address from the last successful compare-and-swap com-
mand that set to the Device ID field. If the Reply Address was four bytes or less, then this field is zero.

Table 930.0x00000007 - PNPOA2 - SpaceWire Plug-and-Play - Owner Address 2
31 0

RA

0x00000000

r

31: 0 Reply address (RA) - Shows byte 8-11 of the Reply Address from the last successful compare-and-swap com-
mand that set to the Device ID field. If the Reply Address was eight bytes or less, then this field is zero.
GRIP, Sep 2018, Version 2018.3 774 www.cobham.com/gaisler

GRLIB IP Core

Table 931.0x00000008 - PNPDEVID - SpaceWire Plug-and-Play - Device ID
31 0

DID

0x00000000

cas

31: 0 Device ID (DID) - Shows the device identifier. This field is set to zero after reset / power-up, and when the link-
interface is not in run-state.

Table 932.0x00000009 - PNPUVEND - SpaceWire Plug-and-Play - Unit Vendor and Product ID
31 16 15 0

VEND PROD

* *

r r

31: 16 Unit vendor ID (VEND) - Shows the unit vendor identifier. This field is read-only through the SpaceWire Plug-
and-Play protocol, however it is writable through an APB register (see section 58.12). Reset value is taken
from the input signal PNPUVENDID. Whenever this field, or the PROD field, is set to a non-zero value, the
PNPLINFO.U bit is set to 1.

15: 0 Unit product ID (PROD) - Shows the unit product identifier. This field is read-only through the SpaceWire Plug-
and-Play protocol, however it is writable through an APB register (see section 58.12). Reset value is taken from
the input signal PNPUPRODID. Whenever this field, or the VEND field, is set to a non-zero value, the
PNPLINFO.U bit is set to 1.

Table 933.0x0000000A - PNPUSN - SpaceWire Plug-and-Play - Unit Serial Number
31 0

USN

*

r

31: 0 Unit serial number (USN) - Shows the unit serial number. This field is read-only through the SpaceWire Plug-
and-Play protocol, however it is writable through the APB register (see section 58.12). Reset value is taken from
the input signal PNPUSN.

Table 934.0x00004000 - PNPVSTRL - SpaceWire Plug-and-Play - Vendor String Length
31 15 14 0

RESERVED LEN

0x00000 0x0000

r r

31: 15 RESERVED
14: 0 Vendor string length (LEN) - Constant value of 0, indicating that no vendor string is present.

Table 935.0x00006000 - PNPPSTRL - SpaceWire Plug-and-Play - Product String Length
31 15 14 0

RESERVED LEN

0x00000 0x0000

r r

31: 15 RESERVED
14: 0 Product string length (LEN) - Constant value of 0, indicating that no product string is present.
GRIP, Sep 2018, Version 2018.3 775 www.cobham.com/gaisler

GRLIB IP Core

Table 936.0x00008000 - PNPPCNT - SpaceWire Plug-and-Play - Protocol Count
31 5 4 0

RESERVED PC

0x0000000 *

r r

31: 5 RESERVED
4: 0 Protocol count (PC) - Constant value of 0 when only device identification is supported (CTRL.PNPA = 1). Con-

stant value of 2 when device configuration is supported (CTRL.PNPA = 2).

Table 937.0x0000C000 - PNPACNT - SpaceWire Plug-and-Play - Application Count
31 8 7 0

RESERVED AC

0x000000 0x00

r r

31: 8 RESERVED
7: 0 Application count (AC) - Constant value of 0, indicating that no applications can be managed by using Space-

Wire Plug-and-Play.

Table 938.0x00080000 - PNPTCC - SpaceWire Plug-and-Play - Time-Code Counter
31 6 5 0

RESERVED TC

0x0000000 0x00

r rw*

31: 6 RESERVED
5: 0 Time Count (TC) - Current time value. This bitfield can be reset by writing zero to it. Writing any other value

has no effect. Double map of TC.TIMECNT value (see TC register in section 58.12 for a functional descrip-
tion).

Table 939.0x00084008 - PNPLSTS - SpaceWire Plug-and-Play - Link Status
31 30 29 19 18 16 15 8 7 6 5 4 3 2 1 0

ND LT RESERVED LS RESERVED R CE ER PE DE R IA R

1 1 0x000 0x0 0x00 0 0 0 0 0 0 0 0

r r r r r r rw* rw* rw* rw* r rw* r

31 Network discovery (ND) - Constant value of 1, indicating that the link can be used for network discovery.
30 Link type (LT) - Constant value of 1, indicating that the link is a SpaceWire link.
29: 19 RESERVED
18: 16 Link State (LS) - The current state of the link interface. 0 = Error-reset, 1 = Error-wait, 2 = Ready, 3 = Started, 4

= Connecting, 5 = Run.
25: 8 RESERVED
7 RESERVED
6 Credit Error (CE) - A credit has occurred. Cleared when complete PNPLSTS is written with zero.
5 Escape Error (ER) - An escape error has occurred. Cleared when complete PNPLSTS is written with zero.
4 Parity Error (PE) - A parity error has occurred. Cleared when complete PNPLSTS is written with zero.
3 Disconnect Error (DE) - A disconnection error has occurred. Cleared when complete PNPLSTS is written with

zero.
2 RESERVED
1 Invalid Address (IA) - Set to one when a packet is received with an invalid destination address field, i.e it does

not match the DEFADDR register. Cleared when complete PNPLSTS is written with zero.
0 RESERVED
GRIP, Sep 2018, Version 2018.3 776 www.cobham.com/gaisler

GRLIB IP Core
58.11 Implementation

58.11.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual).
There are five input resets, in order to cover every clock domain: AMBA reset (rst), transmitter syn-
chronous reset (txsyncrst), receiver synchronous reset for port 0 (rxsyncrst0), receiver synchronous
reset for port 1 (rxsyncrst1) and a receiver asynchronous reset shared by both ports (rxasyncrst).
Additionally, the core outputs two internal resets: the register reset, swno.ctrlregrst (bit 6 of the Con-
trol Register. See 58.13.1. Control Register), and the internal reset for synchronization between trans-
mitter and receivers, swno.rxrst.
The core does not implement any kind of internal reset generation or synchronization, the input resets
are completely independent. The reset generation shall be done in a higher instance, taking into
account the clock domains and also the output resets of the core. A description of how the resets shall
be combined and generated can be found below. Cobham Gaisler advise to follow these guidelines
unless indicated otherwise.

Table 940.0x00084009 - PNPLCTRL - SpaceWire Plug-and-Play - Link Control
31 5 4 3 2 1 0

RESERVED TT R LD LS AS

0 0 0 0 *

rw r rw rw rw

31: 5 RESERVED
4 Time-Code transmission (TT) - Enable Time-Code transmission.
3 RESERVED
2 Link Disable (LD) - Disable the SpaceWire codec link-interface.
1 Link Start (LS) - Start the link, i.e. allow a transition from ready-state to started-state.
0 Autostart (AS) - Automatically start the link when a NULL has been received. Reset value is set from input sig-

nal RMAPEN if RMAP target is available (CTRL.RA bit = 1), otherwise the reset value is ‘0’.

Table 941.0x00100000 - PNPMWLEN - SpaceWire Plug-and-Play - Maximum Write Length
31 15 14 0

RESERVED LEN

0x00000 0x0002

r r

31: 15 RESERVED
14: 0 Length (LEN) - Constant value, indicating the maximum number of fields that can be written with a single write

command.

Table 942.0x00100001 - PNPMRLEN - SpaceWire Plug-and-Play - Maximum Read Length
31 15 14 0

RESERVED LEN

0x00000 0x4000

r r

31: 15 RESERVED
14: 0 Length (LEN) - Constant value, indicating the maximum number of fields that can be read with a single read

command.
GRIP, Sep 2018, Version 2018.3 777 www.cobham.com/gaisler

GRLIB IP Core

• The AMBA reset is the combination of the external reset and the output register reset negated
(swno.ctrlregrst), as it is active high. Then, the reset is synchronized with the AMBA clock by using a
reset generator. Its output is the AMBA reset, rst.
• The transmitter reset is the combination of the external reset and the output register reset negated
(swno.ctrlregrst), as it is active high. Then, the reset is synchronized with the transmitter clock by
using a reset generator. Its output is the transmitter reset, txsyncrst.
• The asynchronous reset for both receiver channels is simply the output synchronization reset,
swno.rxrst, connected directly to the input rxasyncrst.
• The synchronous reset for each receiver channel is the output receiver reset, swno.rxrst, synchro-
nized with the appropriate clock domain by using a reset generator. Its output is the synchronous reset
for the specific receiver port, rxsyncrst0 or rxsyncrst1.
In order to avoid the process of generating all these resets, GRLIB includes a wrapper called grspwm
which instantiates either GRSPW or GRSPW2. If the latter is chosen, there is a generic to directly
implement the previous reset generators in the wrapper itself, so the top entity does not need to gener-
ate the resets anymore. Further information about the proper way of combining the reset signals or
using the wrapper can be found in 58.20. Instantiation, including an example for both possibilities.

58.11.2 Clock-generation

The receiver module found in figure 153 should be clocked with a clock outputed by the GRSPW2_-
PHY module. See the example instantiation in this section and the GRSPW2_PHY section of the
GRLIB IP Core User’s Manual for more information on how to connect this clock.
The transmitter clock is generated from the TXCLK input. A separate clock input is used to allow the
transmitter to be run at much higher frequencies than the system clock. The SpaceWire node contains
a clock-divider which divides the TXCLK signal to the wanted frequency. The transmitter clock
should be 10 MHz during initialization and any frequency above 2 MHz in the run-state.
There is an input signal called CLKDIV10 which sets the reset values for the user accessible clock
divisor registers. There is one register value which is used during initialisation and one which is used
in run-state. See 58.3.6 for details on how to set the clock divisor values.
Since only integer values are allowed for the clock division and the required init-frequency is 10 Mhz
the frequency of the txclk input must be a multiple of 10 MHz. The clock divisor value is 8-bits wide
so the maximum txclk frequency supported is 2.56 GHz (note that there is also a restriction on the
relation between the system and transmit clock frequencies).

58.11.3 Timers

There are two timers in the core: one for generating the 6.4/12.8 us periods and one for disconnect
timing.
The timeout periods are generated from the tx clock whose frequency must be at least 10 MHz to
guarantee disconnect timing limits. The same clock divisor is used as for the tx clock during initialisa-
tion so it must be set correctly for the link timing to work.

58.11.4 Synchronization

The transmitter and receiver bit rates can be eight times higher than the system clock frequency. This
includes a large margin for clock skew and jitter so it might be possible to run at even higher rate dif-
ferences. Note also that the receiver clocks data at both negative and positive edges for the input
modes 0 and 1 so the bitrate is twice the clock frequency. There is no direct relationship between
bitrate and frequency for the sampling modes.
The clock synchronization is just one limiting factor for the clock frequency, it might for example not
be possible to achieve the highest possible frequency for certain technologies.
GRIP, Sep 2018, Version 2018.3 778 www.cobham.com/gaisler

GRLIB IP Core

The asynchronous reset to the receiver clock domain has to have a maximum delay of one receiver
clock cycle to ensure correct operation. This is needed because the receiver uses a completely asyn-
chronous reset. To make sure that nothing bad happens the is a synchronous reset guard which pre-
vents any signals from being assigned before all registers have their reset signals released.
In the sampling modes this asynchronous reset can be removed if both the receiver and transmitter
runs on the same clock. The core is configured to use the same receiver and transmitter clock by set-
ting the rxtx_sameclk generic to 1.

58.11.5 Fault-tolerance

The core can optionally be implemented with fault-tolerance against SEU errors in the FIFO memo-
ries. The fault-tolerance is enabled through the ft VHDL generic. Possible options are byte parity pro-
tection (ft = 1) or TMR registers (ft = 2).

58.11.6 Synthesis

The fact there are three clock domains in the core of which all are possibly high frequency clocks
makes it necessary to declare all paths between the clock domains as false paths. In Synplify this is
most easily done by declaring all the clocks to be in different clockgroups in the sdc file (if Synplify
does not automatically put them in different groups). This will disable any timing considerations
between the clock domains and these constraints will also propagate to the place and route tool.

58.11.7 Technology mapping

The core has three generics for technology mapping: tech, techfifo and memtech. Tech selects the tech-
nology used for the clock buffers and also adds reset to some registers for technologies where they
would otherwise cause problems with gate-level simulations. Techfifo selects whether memtech
should be used to select the technology for the FIFO memories (the RMAP buffer is not affected by
the this generic) or if they should be inferred. Tech and memtech can be set to any value from 0 to
NTECH as defined in the GRLIB.TECH package.

58.11.8 RAM usage

The core maps all RAM memories on the syncram_2p component if the ft generic is 0 and to the syn-
cram_2pft component for other values. The syncrams are located in the technology mapping library
(TECHMAP). The organization of the different memories are described below. If techfifo and/or
memtech is set to 0 the synthesis tool will infer the memories. Either RAM blocks or flip-flops will be
used depending on the tool and technology. The number of flip-flops used is syncram depth x syncram
width for all the different memories. The receiver AHB FIFO with fifosize 32 will for example use
1024 flips-flops.
Receiver ahb FIFO
The receiver AHB fifo consists of one syncram_2p block with a width of 32-bits. The depth is deter-
mined by the configured FIFO depth. Table 943 shows the syncram organization for the allowed con-
figurations.

Transmitter ahb FIFO

Table 943.syncram_2p sizes for GRSPW2 receiver AHB FIFO.

Fifosize Syncram_2p organization
4 4x32
8 8x32
16 16x32
32 32x32
64 64x32
GRIP, Sep 2018, Version 2018.3 779 www.cobham.com/gaisler

GRLIB IP Core

The transmitter AHB fifo consists of one syncram_2p block with a width of 32-bits. The depth is
determined by the configured FIFO depth. Table 944 shows the syncram organization for the allowed
configurations.

Receiver N-Char FIFO
The receiver N-Char fifo consists of one syncram_2p block with a width of 10-bits. The depth is
determined by the configured FIFO depth. Table 945 shows the syncram organization for the allowed
configurations.

RMAP buffer
The RMAP buffer consists of one syncram_2p block with a width of 8-bits. The depth is determined
by the number of configured RMAP buffers. Table 946 shows the syncram organization for the
allowed configurations.

58.12 AXI support

The core is designed for an AMBA system but can be adapted for AXI using the AHBM2AXI
adapter.

Table 944.syncram_2p sizes for transmitter AHB FIFO.

Fifosize Syncram_2p organization
4 4x32
8 8x32
16 16x32
32 32x32
64 64x32

Table 945.syncram_2p sizes for the receiver N-Char FIFO.

Fifosize Syncram_2p organization
16 16x10
32 32x10
64 64x10

Table 946.syncram_2p sizes for RMAP buffer memory.

RMAP buffers Syncram_2p organization
2 64x8
4 128x8
8 256x8
GRIP, Sep 2018, Version 2018.3 780 www.cobham.com/gaisler

GRLIB IP Core

58.13 Registers

The core is programmed through registers mapped into APB address space. The registers are listed in
table, 950 and described in detail in the subsequent tables. Addresses not listed in table 950 are
reserved. A read access to a reserved register, or reserved field with a register, will always return zero,
and a write access has no effect. The register layout used is exemplified in table 947, and the values
used in the reset value row and field type row are explained in tables 948 and 949.

Table 947.<APB ddress offset> - <Register acronym> - <Register name>
31 24 23 16 15 8 7 0

EF3 EF2 EF1 EF0

<Reset value for EF3> <Reset value for EF2> <Reset value for EF1> <Reset value for EF0>

<Bit-field type for EF3> <Bit-field type for EF2> <Bit-field type for EF1> <Bit-field type for EF0>

31: 24 Example bit-field 3 (EF3) - <Bit-field description>
23: 16 Example bit-field 2 (EF2) - <Bit-field description>
15: 8 Example bit-field 1 (EF1) - <Bit-field description>
7: 0 Example bit-field 0 (EF0) - <Bit-field description>

Table 948. Reset value definitions

Value Description
0 Reset value 0. Used for single-bit fields.
1 Reset value 1. Used for single-bit fields.
0xNN Hexadecimal representation of reset value. Used for multi-bit fields.
n/r Field not reseted
* Special reset condition, described in textual description of the bit-field. Used for example when reset

value is taken from an input signal.

Table 949. Bit-field type definitions

Value Description
r Read-only. Writes have no effect.
rw Readable and writable.
rw* Readable and writeable. Special condition for write, described in textual description of the bit-field.
wc Write-clear. Readable, and cleared when written with a 1. Writing 0 has no effect.
GRIP, Sep 2018, Version 2018.3 781 www.cobham.com/gaisler

GRLIB IP Core

Table 950.GRSPW2 registers

APB address offset Register acronym Register name
0x00 CTRL Control
0x04 STS Status
0x08 DEFADDR Default address
0x0C CLKDIV Clock divisor
0x10 DKEY Destination key
0x14 TC Time-code
0x18 - 0x1C - RESERVED
0x20, 0x40, 0x60, 0x80 DMACTRL DMA control/status, channel 1 - 4 1)

0x24, 0x44, 0x64, 0x84 DMAMAXLEN DMA RX maximum length, channel 1 - 4 1)

0x28, 0x48, 0x68, 0x88 DMATXDESC DMA transmit descriptor table address, channel 1 - 4 1)

0x2C, 0x4C, 0x6C, 0x8C DMARXDESC DMA receive descriptor table address, channel 1 - 4 1)

0x30, 0x50, 0x70, 0x90 DMAADDR DMA address, channel 1 - 4 1)

0x34, 0x54, 0x74, 0x94 - RESERVED
0x38, 0x58, 0x78, 0x98 - RESERVED
0x3C, 0x5C, 0x7C, 0x9C - RESERVED
0xA0 INTCTRL Interrupt distribution control 2)

0xA4 INTRX Interrupt receive 2)

0xA8 ACKRX / INTRXEXT Interrupt-acknowledge receive / Interrupt receive extended
2)

0xAC INTTO Interrupt timeout 2) 5)

0xB0 INTTOEXT Interrupt timeout extended 2) 5)

0xB4 TICKMASK Interrupt tick-out mask 2)

0xB8 TICKMASKEXT / AUTO-
ACK

Interrupt auto acknowledge mask / Interrupt tick-out mask
extended 2)

0xBC INTCFG Interrupt distribution configuration 2)

0xC0 - RESERVED
0xC4 ISR Interrupt distribution ISR2)

0xC8 ISREXT Interrupt distribution Extended ISR 2)

0xCC - RESERVED
0xD0 PRESCALER Interrupt distribution prescaler reload 3)

0cD4 ISRTIMER Interrupt distribution ISR timer reload 3)

0xD8 IATIMER Interrupt distribution INT / ACK timer reload 3)

0xDC ICTIMER Interrupt distribution change timer reload 3)

0xE0 PNPVEND SpaceWire PnP Device Vendor and Product ID 4)

0xE4 PNPLINKINFO SpaceWire PnP Link Information 4)

0xE8 PNPOA0 SpaceWire PnP Owner Address 0 4)

0xEC PNPOA1 SpaceWire PnP Owner Address 1 4)

0xF0 PNPOA2 SpaceWire PnP Owner Address 2 4)

0xF4 PNPDEVID SpaceWire PnP Device ID 4)

0xF8 PNPUVEND SpaceWire PnP Unit Vendor and Product ID 4)

0xFC PNPUSN SpaceWire PnP Unit Serial Number 4)
GRIP, Sep 2018, Version 2018.3 782 www.cobham.com/gaisler

GRLIB IP Core
Note 1: Registers for non implemented DMA channels are reserved. Number of implemented DMA channels is indicated
by the NCH field in the Control register.
Note 2: Register is only available if the interrupt distribution is supported, which is indicated by the value of the CTRL.ID
bit.
Note 3: Register is only available if support for the corresponding timer is implemented, otherwise the register is reserved.
This can be detected by probing the RL field of corresponding register.
Note 4: Register is only available if the SpaceWire Plug-and-Play is supported, which is indicated by the value of the
CTRL.PNPA field.
Note 5: Register is only available if support for the Interrupt distribution ISR timer is implemented. This ca be detected by
probing the ISRTIMER.RL field.

Table 950.GRSPW2 registers

APB address offset Register acronym Register name
GRIP, Sep 2018, Version 2018.3 783 www.cobham.com/gaisler

GRLIB IP Core

58.13.1 Control Register

Table 951.0x00 - CTRL - Control
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RA RX RC NCH PO CC ID R LE PS NP PNPA RD RE PE R TL TF TR TT LI TQ R RS PM TI IE AS LS LD

* * * * * * * 0 0 0 * * 0 * * 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0

r r r r r r r r rw rw rw r rw rw rw r rw rw rw rw rw rw r rw rw rw rw rw rw rw

31 RMAP available (RA) - Set to one if the RMAP target is available. Value determined by the rmap
VHDL generic.

30 RX unaligned access (RX) - Set to one if unaligned writes are available for the receiver. Value deter-
mined by the rxunaligned VHDL generic.

29 RMAP CRC available (RC) - Set to one if RMAP CRC is enabled in the core. Value determined by
the rmapcrc VHDL generic.

28: 27 Number of DMA channels (NCH) - The number of available DMA channels minus one (Number of
channels = NCH+1). Value determined by the dmachan VHDL generic.

26 Number of ports (PO) - The number of available SpaceWire ports minus one. Value determined by
the ports VHDL generic.

25 CCSDS/CCITT CRC-16 and 16-bit ISO-checksum available (CC) - Set to one if this crc logic is
enabled in the core. Value determined by the ccsdscrc VHDL generic.

24 Interrupt distribution available (ID) - Set to 1 if interrupt distribution support is available, otherwise
set to 0. If set to 1, then the INTCTRL.NUMINT field indicates the number of supported interrupt
numbers. Value determined by the interruptdist VHDL generic (ID = 1 if interruptdist /= 0).

23 RESERVED
22 Loop-back enable (LE). The value of this bit is driven on the LOOPBACK output signal.
21 Port select (PS) - Selects the active port when the CTRL.NP bit is zero. ‘0’ selects the port connected

to data and strobe on index 0, while ‘1’ selects index data and strobe on 1. Only available in two-port
configurations, which is indicated by CTRL.PO bit. This bit is reserved in one-port-configurations.

20 No port force (NP) - Disable port force. When this bit is set, the CTRL.PS bit cannot be used to
select the active port. Instead, the active port is automatically selected by checking the activity on the
respective receive links. Only available in two-port configurations, which is indicated by CTRL.PO
bit. Reserved bit in one-port configurations. Reset value is set from input signal RMAPEN if RMAP
target is available (indicated by CTRL.RA bit), otherwise the reset value is ‘0’.

19: 18 SpaceWire Plug-and-Play available (PNPA) - Indicates SpaceWire Plug-and-Play support. 0 = No
support, 1 = Support for the device identification, 2 = Support for device identification and configu-
ration. See section 58.10 for details. Value determined by the pnp VHDL generic.

17 RMAP buffer disable (RD) - If set, only one RMAP buffer is used. This ensures that all RMAP com-
mands will be executed consecutively. Only available if the rmap VHDL generic is set to 1, other-
wise the bit is reserved.

16 RMAP Enable (RE) - Enable RMAP target. Only available if rmap VHDL generic is set to 1, other-
wise the bit is reserved. Reset value take from RMAPEN input signal.

15 SpaceWire Plug-and-Play enable (PE) - Enable SpaceWire Plug-and-Play support. Only available if
the CTRL.PA bit is 1, otherwise this bit is reserved. Reset value taken from the PNPEN input signal.

14 RESERVED
13 Transmitter enable lock control (TL) - Enables / disables the transmitter enable lock functionality

described by the DMACTRL.TL bit. 0 = Disabled, 1 = Enabled.
12 Time-code control flag filter (TF) - When set to 1, a received time-code must have its control flag

bits set to “00” to be considered valid. When set to 0, all control flag bits are allowed. Note that if the
interrupt code receive enable bit (INTCFG.IR) is set to 1, then the only time-code control flag bits of
“00” are allowed, regardless of the setting of this bit.

11 Time Rx Enable (TR) - Enable time-code reception.
10 Time Tx Enable (TT) - Enable time-code transmission.
9 Link error IRQ (LI) - Enables / disables AMBA interrupt generation when a link error occurs. Note

that the CTRL.IE bit also must be set for this bit to have any effect.
8 Tick-out IRQ (TQ) - Enables / disables AMBA interrupt generation when a valid time-code is

received. Note that the CTRL.IE bit also must be set for this bit to have any effect.
7 RESERVED
GRIP, Sep 2018, Version 2018.3 784 www.cobham.com/gaisler

GRLIB IP Core
6 Reset (RS) - Make complete reset of the SpaceWire node. Self clearing.
5 Promiscuous Mode (PM) - Enable promiscuous mode. See section 58.6.10.
4 Tick In (TI) - The host can generate a tick by writing a one to this bit. This incrementd the timer

counter (TC.TIMECNT), and the new value is transmitted. This bit will stay high until the time-code
has been sent. Note that the link interface must be in run-state for the time-code to be sent.

3 Interrupt Enable (IE) - If set, AMBA interrupt generation is enabled for the events that are individu-
ally maskable by the CTRL.TQ, CTRL.LI, INTCTRL.IQ, INTCTRL.AQ, and INTCTRL.TQ bits.

2 Autostart (AS) - Automatically start the link when a NULL has been received. Reset value is set
from input signal RMAPEN if RMAP target is available (CTRL.RA bit = 1), otherwise the reset
value is ‘0’.

1 Link Start (LS) - Start the link, i.e. allow a transition from ready-state to started-state.
0 Link Disable (LD) - Disable the SpaceWire codec.

Table 951.0x00 - CTRL - Control
GRIP, Sep 2018, Version 2018.3 785 www.cobham.com/gaisler

GRLIB IP Core

58.13.2 Status Register

Table 952.0x04 - STS - Status

58.13.3

Table 953.0x08 - DEFADDR - Default address

Default Address Register

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED NRXD NTXD LS RESERVED AP EE IA RES PE DE ER CE TO

0x00 * * 0x0 0x000 0 0 0 0x0 0 0 0 0 0

r r r r r r wc wc r wc wc wc wc wc

31: 28 RESERVED
27: 26 Number of receive descriptors (NRXD) - Shows the size of the DMA receive descriptor table. 0b00

= 128, 0b01 = 256, 0b10 = 512, 0b11 = 1024
25 24 Number of transmit descriptors (NTXD) - Shows the size of the DMA transmit descriptor table.

0b00 = 64, 0b01 = 128, 0b10 = 256, 0b11 = 512
23: 21 Link State (LS) - The current state of the start-up sequence. 0 = Error-reset, 1 = Error-wait, 2 =

Ready, 3 = Started, 4 = Connecting, 5 = Run.
20: 10 RESERVED
9 Active port (AP) - Shows the currently active port. ‘0’ = Port 0 and ‘1’ = Port 1 where the port num-

bers refer to the index number of the data and strobe signals. Only available if the ports generic is set
to 2.

8 Early EOP/EEP (EE) - Set to one when a packet is received with an EOP after the first byte for a
non-rmap packet and after the second byte for an RMAP packet.

7 Invalid Address (IA) - Set to one when a packet is received with an invalid destination address field,
i.e it does not match the DEFADDR register.

6: 5 RESERVED
4 Parity Error (PE) - A parity error has occurred.
3 Disconnect Error (DE) - A disconnection error has occurred.
2 Escape Error (ER) - An escape error has occurred.
1 Credit Error (CE) - A credit has occurred.
0 Tick Out (TO) - A new time count value was received and is stored in the time counter field.

31 16 15 8 7 0

RESERVED DEFMASK DEFADDR

0x0000 0x00 *

r rw rw

31: 8 RESERVED
15: 8 Default mask (DEFMASK) - Default mask used for node identification on the SpaceWire network.

This field is used for masking the address before comparison. Both the received address and the
DEFADDR.DEFADDR field are anded with the inverse of this field before the address check.

7: 0 Default address (DEFADDR) - Default address used for node identification on the SpaceWire net-
work. Reset value: 254 (taken from the nodeaddr VHDL generic when /= 255, else from the RMAP-
NODEADDR input signal)
GRIP, Sep 2018, Version 2018.3 786 www.cobham.com/gaisler

GRLIB IP Core

58.13.4

Table 954.0x0C - CLKDIV - Clock divisor

Clock Divisor Register

58.13.5

Table 955.0x10 - DKEY - Destination key

Destination Key Register

58.13.6

Table 956.0x14 - TC - Time-code

Time-code Register

31 16 15 8 7 0

RESERVED CLKDIVSTART CLKDIVRUN

0x0000 * *

r rw rw

31: 16 RESERVED
15: 8 Clock divisor startup (CLKDIVSTART) - The value of this field is used as a clock divider during

startup (link interface is in other states than run-state). See 58.3.6 for details on how to set this
field. Reset value taken from the CLKDIV10 input signal.

7: 0 Clock divisor run (CLKDIVRUN) - The value of this field is used as a clock divider when the link-
interface is in run-state. See 58.3.6 for details on how to set this field. Reset value taken from the
CLKDIV10 input signal.

31 8 7 0

RESERVED DESTKEY

0x000000 *

r rw

31: 8 RESERVED
7: 0 Destination key (DESTKEY) - RMAP destination key. Only available if the rmap VHDL generic is

set to 1. Set from destkey VHDL generic.

31 8 7 6 5 0

RESERVED TCTRL TIMECNT

0x000000 0x0 0x00

r rw rw

31: 8 RESERVED
7: 6 Time control flags (TCTRL) - The current value of the time-code control flags. Sent in a time-code

each time the TICKIN signal is set, or the CTRL.TI bit is written. This field is also updated with the
control flags from all received time-codes, and with the value of the TIMEIN[7:6] signals if TICK-
INRAW is asserted.

5: 0 Time counter (TIMECNT) - The current time value. Incremented, and transmitted in a time-code,
each time the TICKIN signal is set, or the CTRL.TI bit is written. This field is also updated with the
time value from all received time-codes, and with the value of the TIMEIN[5:0] signals if TICKIN-
RAW is asserted. Note that the register can be written, but that the written value is not transmitted,
since the value is incremented before transmission.
GRIP, Sep 2018, Version 2018.3 787 www.cobham.com/gaisler

GRLIB IP Core

58.13.7 DMA Control/Status

Table 957.0x20, 0x40, 0x60, 0x80 - DMACTRL - DMA control/status
31 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INTNUM RES EP TR IE IT RP TP TL LE SP SA EN NS RD RX AT RA TA PR PS AI RI TI RE TE

* 0

rw r wc wc rw rw wc wc wc rw rw rw rw rw rw r rw wc wc wc wc rw rw rw rw rw

31: 26 Interrupt-number (INTNUM) - The interrupt-number used for this DMA channel when sending an
interrupt-code that was generated due to any of the events maskable by the DMACTRL.IE and
DMACTRL.IT bits. Reset value is taken from the IRQTXDEFAULT input signal. Field is only pres-
ent if interrupt distribution is supported, which is indicated by the CTRL.ID bit. Note that this field
must be set to a value within the range defined by the INCTRL.NUMINT and INTCTRL.BASEINT
fields. A value outside the range will result in no interrupt-code being sent. This field is only avail-
able when distributed interrupt is implemented.

25: 24 RESERVED
23 EEP termination (EP) - Set to 1 when a received packet for the corresponding DMA channel ended

with an Error End of Packet (EEP) character.
22 Truncated (TR) - Set to 1 when a received packet for the corresponding DMA channel is truncated

due to a maximum length violation.
21 Interrupt-code transmit enable on EEP (IE) - When set to 1, and the interrupt-code transmit enable

bit (INTCTRL.IT) is set, an interrupt-code is generated when a received packet on this DMA chan-
nel ended with an Error End of Packet (EEP) character. Field is only present if interrupt distribution
is supported, which is indicated by the CTRL.ID bit. This field is only available when distributed
interrupt is implemented.

20 Interrupt-code transmit enable on truncation (IT) - When set to 1, and the interrupt-code transmit
enable (INTCTRL.IT) bit in the Interrupt distribution control register is set, an interrupt-code is gen-
erated when a received packet on this DMA channel is truncated due to a maximum length violation.
Field is only present if interrupt distribution is supported, which is indicated by the CTRL.ID bit.
This field is only available when distributed interrupt is implemented.

19 Receive packet IRQ (RP) - This bit is set to 1 when an AMBA interrupt was generated due to the fact
that a packet was received for the corresponding DMA channel.

18 Transmit packet IRQ (TP) - This bit is set to 1 when an AMBA interrupt was generated due to the
fact that a packet was transmitted for the corresponding DMA channel.

17 Transmitter enable lock (TL) - This bit is set to 1 if the CTRL.TL bit is set, and the transmitter for the
corresponding DMA channel is disabled due to a link error (controlled by the DMACTRL.LE bit).
While this bit is set, it is not possible to re-enable the transmitter (e.g. not possible to set the DMAC-
TRL.TE bit to 1).

16 Link error disable (LE) - Disable transmitter when a link error occurs. No more packets will be trans-
mitted until the transmitter is enabled again.

15 Strip pid (SP) - Remove the pid byte (second byte) of each packet. The address byte (first byte) will
also be removed when this bit is set, independent of the value of the DMACTRL.SA bit.

14 Strip addr (SA) - Remove the addr byte (first byte) of each packet.
13 Enable addr (EN) - Enable separate node address for this channel.
12 No spill (NS) - If cleared, packets will be discarded when a packet is arriving and there are no active

descriptors. If set, the core will wait for a descriptor to be activated.
11 Rx descriptors available (RD) - Set to one, to indicate to the core that there are enabled descriptors in

the descriptor table. Cleared by the core when it encounters a disabled descriptor.
10 RX active (RX) - Is set to ‘1’ if a reception to the DMA channel is currently active, otherwise it is

‘0’.
9 Abort TX (AT) - Set to one to abort the currently transmitting packet and disable transmissions. If no

packet is currently being transmitted, the only effect is to disable transmissions. Self clearing.
GRIP, Sep 2018, Version 2018.3 788 www.cobham.com/gaisler

GRLIB IP Core
8 RX AHB error (RA) - An error response was detected on the AHB bus while this receive DMA
channel was accessing the bus.

7 TX AHB error (TA) - An error response was detected on the AHB bus while this transmit DMA
channel was accessing the bus.

6 Packet received (PR) - This bit is set each time a packet has been received.
5 Packet sent (PS) - This bit is set each time a packet has been sent.
4 AHB error interrupt (AI) - If set, an interrupt will be generated each time an AHB error occurs when

this DMA channel is accessing the bus.
3 Receive interrupt (RI) - If set, an interrupt will be generated when a packet is received, if the inter-

rupt enable (IE) bit in the corresponding receive descriptor is set as well. This happens both if the
packet is terminated by an EEP or EOP.

2 Transmit interrupt (TI) - If set, an interrupt will be generated when a packet is transmitted, if the
interrupt enable (IE) bit in the corresponding transmit descriptor is set as well. The interrupt is gener-
ated regardless of whether the transmission was successful or not.

1 Receiver enable (RE) - Set to one when packets are allowed to be received to this channel.
0 Transmitter enable (TE) - Enables the transmitter for the corresponding DMA channel. Setting this

bit to 1 will cause the SW-node to read a new descriptor and try to transmit the packet it points to.
Note that it is only possible to set this bit to 1 if the TL bit is 0. This bit is automatically cleared when
the SW-node encounters a descriptor which is disabled, or if a link error occurs during the transmis-
sion of a packet, and the LE bit is set.

Table 957.0x20, 0x40, 0x60, 0x80 - DMACTRL - DMA control/status
GRIP, Sep 2018, Version 2018.3 789 www.cobham.com/gaisler

GRLIB IP Core

58.13.8

Table 958.0x24, 0x44, 0x64, 0x84 - DMAMAXLEN - DMA RX maximum length

DMA RX Maximum Length

58.13.9

Table 959.0x28, 0x48, 0x68, 0x88 - DMATXDESC - DMA transmit descriptor table address

DMA Transmit Descriptor Table Address

58.13.10

Table 960.0x2C, 0x4C, 0x6C, 0x8C - DMARXDESC - DMA receive descriptor table address

 DMA Receive Descriptor Table Address

31 25 24 2 1 0

RESERVED RXMAXLEN RES

0x00 n/r 0x0

r rw r

31: 25 RESERVED
24: 2 RX maximum length (RXMAXLEN) - Receiver packet maximum length, counted in 32-bit words.
1: 0 RESERVED

31 x+1 x 4 3 0

DESCBASEADDR DESCSEL RESERVED

n/r 0x00 0x0

rw rw r

31: x+1 Descriptor table base address (DESCBASEADDR) - Sets the base address of the descriptor table.
The number of bits in this field depends on the size of the DMA transmit descriptor table. The value
of x is given by the formula: 9 + STS.NTXD.

x: 4 Descriptor selector (DESCSEL) - Offset into the descriptor table. Shows which descriptor is cur-
rently used by the core. For each new descriptor read, the selector will increase with 16 and eventu-
ally wrap to zero again. The number of bits in this field depends on the size of the DMA transmit
descriptor table. The value of x is given by the formula: 9 + STS.NTXD.

3: 0 RESERVED

31 x+1 x 3 2 0

DESCBASEADDR DESCSEL RESERVED

n/r 0x00 0x0

rw rw r

31: 10 Descriptor table base address (DESCBASEADDR) - Sets the base address of the descriptor table.
The number of bits in this field depends on the size of the DMA receive descriptor table. The value
of x is given by the formula: 9 + STS.NRXD.

9: 3 Descriptor selector (DESCSEL) - Offset into the descriptor table. Shows which descriptor is cur-
rently used by the core. For each new descriptor read, the selector will increase with 8 and eventually
wrap to zero again. The number of bits in this field depends on the size of the DMA receive descrip-
tor table. The value of x is given by the formula: 9 + STS.NRXD

2: 0 RESERVED
GRIP, Sep 2018, Version 2018.3 790 www.cobham.com/gaisler

GRLIB IP Core

58.13.11

Table 961.0x30, 0x50, 0x70, 0x90 - DMAADDR - DMA address

 DMA Address

58.13.12 Interrupt Distribution Control

31 16 15 8 7 0

RESERVED MASK ADDR

0x0000 n/r n/r

r rw rw

31: 8 RESERVED
15: 8 Mask (MASK) - Mask used for node identification on the SpaceWire network. This field is used for

masking the address before comparison. Both the received address and the ADDR field are anded
with the inverse of MASK before the address check.

7: 0 Address (ADDR) - Address used for node identification on the SpaceWire network for the corre-
sponding dma channel when the EN bit in the DMA control register is set.

Table 962.0xA0 - INTCTRL - Interrupt distribution control
31 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 8 7 6 5 0

INTNUM RS EE IA RES TQ AQ IQ RES AA AT IT RES ID II TXINT

* 0 0 0 0 0 0 0 0 0 0 0 0x00 0 0 *

rw rw rw rw r rw rw rw r rw rw rw r wc rw rw

31: 26 Interrupt number (INTNUM) - The interrupt-number used when sending an interrupt-code that was
generated due to any of the events maskable by the RS, ER or IA bits. Reset value is taken from the
IRQTXDEFAULT input signal. Note that this field must be set to a value within the range defined by
the NUMINT and BASEINT fields. A value outside the range will result in no interrupt-code being
sent.

25 Interrupt-code transmit on run-state entry (RS) - If set to 1, and interrupt-code with the interrupt
number specified in the INTNUM field is sent each time the link interface enters run-state.

24 Interrupt-code transmit on early EOP/EEP (EE) - If set to 1, an interrupt-code with the interrupt
number specified in the INTNUM field is sent each time an event occurs such that the STS.EE bit is
set to 1 (even if the bit was already set when the event occurrepriod).

23 Interrupt-code transmit on invalid address (IA) - If set to 1, an interrupt-code with the interrupt num-
ber specified in the INTNUM field is sent each time an event occurs such that the STS.IA bit is set to
1 (even if the bit was already set when the event occurred).

22: 21 RESERVED
20 Interrupt-code timeout IRQ enable (TQ) - When set to 1, an AMBA interrupt is generated when a bit

in the INTTO register is set. Note that the IE bit in the Control register also must be set for this bit to
have any effect. Bit is only available if support for the Interrupt distribution ISR timer is imple-
mented.

19 Interrupt-code-acknowledge receive IRQ enable (AQ) - When set to 1, an AMBA interrupt is gener-
ated when an interrupt-acknowledge-code is received for which the corresponding bit in the Interrupt
tick-out mask register is set, and the core was the source of the matching interrupt-code. Note that
the IE bit in the Control register also must be set for this bit to have any effect.

18 Interrupt-code receive IRQ enable (IQ) - When set to 1, an AMBA interrupt is generated when an
interrupt-code is received for which the corresponding bit in the Interrupt tick-out mask register is
set to 1. Note that the IE bit in the Control register also must be set for this bit to have any effect.

17: 16 RESERVED
15 Handle all interrupt acknowledgement codes (AA) - Is set to 0, only those received interrupt

acknowledgement codes that match an interrupt code sent by software are handled. If set to 1, all
received interrupt acknowledgement codes are handled.

14 Interrupt acknowledgement / extended interrupt tickout enable (AT) - When set to 1, the internal
tickout signal is set when an interrupt acknowledgement code or extended interrupt code is received
such that a bit in the AUTOACK / INTRXEXT register is set to 1 (even if the bit was already set
when the code was received).
GRIP, Sep 2018, Version 2018.3 791 www.cobham.com/gaisler

GRLIB IP Core
13 Interrupt tickout enable (IT) - When set to 1, the internal tickout signal is set when an interrupt code
is received such that a bit in the INTRX register is set to 1 (even if the bit was already set when the
code was received).

12: 8 RESERVED
7 Interrupt-code discarded (ID) - This bit is set to 1 when and interrupt-code that software tried to send

by writing the II bit was discarded, either because there already was a pending request to send an
interrupt-code with the same interrupt-number, or because the corresponding ISR bit is 1. There is a
one clock cycle delay between the II bit being written and this bit being set.

6 Interrupt-code tick-in (II) - When this field is written to 1 the interrupt- / interrupt-acknowledge-
code specified in the TXINT field will be sent. The actual sending of the interrupt- / interrupt-
acknowledge-code might be delayed, depending on the value for the corresponding ISR bit and INT/
ACK-timer. Note that the interrupt-code transmit enable bit (IT) must be set to ‘1’, otherwise writing
this bit has no effect. This bit is automatically cleared and always reads ‘0’. Writing a ‘0’ has no
effect.

5: 0 Transmit interrupt- / interrupt-code (TXINT) - The interrupt- / interrupt-acknowledge-code that the
core will send when the Interrupt-code tick-in bit (II) is written with 1. Reset value for bit 5 is ‘0’,
while bits 4:0 are set from the input signal IRQTXDEFAULT. Note that bits 4:0 of this field must be
set to a value within the range defined by the NUMINT and BASEINT fields. A value outside the
range will result in no interrupt-code being sent.

Table 962.0xA0 - INTCTRL - Interrupt distribution control
GRIP, Sep 2018, Version 2018.3 792 www.cobham.com/gaisler

GRLIB IP Core

58.13.13

Table 963.0xA4 - INTRX - Interrupt-code receive

 Interrupt Receive

58.13.14

Table 964.0xA8 - ACKRX / INTRXEXT - Interrupt-acknowledge-code receive / Interrupt receive extended

 Interrupt-acknowledge-code Receive

58.13.15

Table 965.0xAC - INTTO - Interrupt timeout

 Interrupt Timeout

58.13.16 Interrupt Timeout

Table 966.0xB0 - INTTOEXT - Interrupt timeout extended

 Extended

31 0

RXIRQ

0x00000000

wc

31: 0 Received interrupt-code (RXIRQ) - Each bit corresponds to the interrupt number with the same
number as the bit index. The core sets a bit to 1 when it receives an interrupt-code for which the cor-
responding bit in the Interrupt tick out mask register is set to 1. Note that the number of implemented
bits depends on the number of supported interrupts (INTCTRL.NUMINT field).

31 0

RXACK / INTRXEXT

0x00000000

wc

31: 0 Received interrupt-acknowledge-code (RXACK) / Interrupt receive extended (INTRXEXT) - Each
bit corresponds to the interrupt number with the same number as the bit index. The core sets a bit to
1 when it receives a interrupt-acknowledge-code for which the corresponding bit in the Interrupt tick
out mask register is set, and for which the matching interrupt-code was sent by software (valid for
interrupt-acknowledge). Note that the number of implemented bits depends on the number of sup-
ported interrupts (INTCTRL.NUMINT field). When extended interrupt mode is enabled this register
is an extension of the Interrupt Receive register for interrupt 32-63.

31 0

INTTO

0x00000000

wc

31: 0 Interrupt-code timeout (INTTO) - Each bit corresponds to the interrupt number with the same num-
ber as the bit index. The core sets a bit to 1 when an interrupt-code that was sent by software doesn’t
receive an interrupt-acknowledge-code for the duration of a timeout period (specified in the Interrupt
distribution ISR timer reload registers), and if the corresponding bit in the Interrupt-code tick out
mask register is set. Note that the number of implemented bits depends on the number of supported
interrupts (INTCTRL.NUMINT field).

31 0

INTTOEXT

0x00000000

wc

31: 0 Interrupt timeout extended (INTTOEXT) - When extended interrupt mode is enabled, each bit corre-
sponds to the interrupt number between 32 and 63. The core sets a bit to 1 when an interrupt-code
that was sent by software and the time specified in the Interrupt distribution ISR timer reload regis-
ters has past and if the corresponding bit in the Interrupt-code tick out mask register is set. Note that
the number of implemented bits depends on the number of supported interrupts (INTC-
TRL.NUMINT field).
GRIP, Sep 2018, Version 2018.3 793 www.cobham.com/gaisler

GRLIB IP Core

58.13.17

Table 967.0xB4 - TICKMASK - Interrupt tick-out mask

 Interrupt Tick-out Mask

58.13.18

Table 968.0xB8 - AUTOACK / TICKMASKEXT - Interrupt-code auto acknowledge mask / Interrupt tick-out mask
extended.

 Interrupt-code Auto Acknowledge Mask

58.13.19Interrupt Distribution Configuration

Table 969.0xBC - INTCFG - Interrupt distribution control

31 0

MASK

0x00000000

rw*

31: 0 Interrupt tick-out mask (MASK) - Each bit corresponds to the interrupt number with the same value
as the bit index. If a bit is set, the TICKOUT signal as well as the corresponding bit in the Interrupt-
code receive register, Interrupt-acknowledge-code receive register, and Interrupt-code timeout regis-
ter is set when respective event occurs. Note that the number of implemented bits depends on the
number of supported interrupts (INTCTRL.NUMINT field).

31 0

AAMASK

0x00000000

rw*

31: 0 Auto acknowledge mask (AAMASK) - For each bit set to 1, the core will automatically send an
interrupt-acknowledge-code when it receives an interrupt-code with the corresponding interrupt
number. If the interrupt distribution timers are implemented (VHDL generic intiatimerbits /= 0) and
enabled, then the core will reload the INT-to-ACK timer and wait until it expires before the inter-
rupt-acknowledge-code is sent. Note that the number of implemented bits depends on the number of
supported interrupts (INTCFG.NUMINT field). When extended interrupt mode is enabled this regis-
ter is an extension of the Interrupt Tick-out Mask register.

31 26 25 20 19 14 13 8 7 4 3 2 1 0

INTNUM3 INTNUM2 INTNUM1 INTNUM0 NUMINT PR IR IT EE

* * * * 0 0 0 0 0

rw rw rw r rw rw rw rw

31: 26 Interrupt number (INTNUM3) - Defines the which interrupt number to support when the device sup-
ports less then 32 interrupts.

25: 20 Interrupt number (INTNUM2) - Defines the which interrupt number to support when the device sup-
ports less then 32 interrupts.

19: 14 Interrupt number (INTNUM1) - Defines the which interrupt number to support when the device sup-
ports less then 32 interrupts.

13: 8 Interrupt number (INTNUM0) - Defines the which interrupt number to support when the device sup-
ports less then 32 interrupts.

7: 4 Number of interrupts (NUMINT) - Indicates the number of supported interrupts according to the for-
mula: Number of interrupts = 2NUMINT.

3 Interrupt- / interrupt-acknowledge-code priority (PR) - When set to 0, interrupt-codes have priority
over interrupt-acknowledge-codes when there are multiple codes waiting to be sent. When set to 1,
interrupt-acknowledge-codes have priority.

2 Interrupt receive enable (IR) - Enable interrupt- / interrupt-acknowledge-code reception.
1 Interrupt transmit enable (IT) - Enable interrupt- / interrupt-acknowledge-code transmission. Must

be set to 1 in order for any interrupt- / interrupt-acknowledge-codes to be sent.
0 Enable external interrupt (EE) - Enable the external interrupt mode, which enable the core to use and

interpret the interrupt-acknowledge-code as interrupt 32-63.
GRIP, Sep 2018, Version 2018.3 794 www.cobham.com/gaisler

GRLIB IP Core

58.13.20 Interrupt Distribution ISR

Table 970.0xC4 - ISR - Interrupt distribution ISR

58.13.21 Interrupt Distribution ISR Extended

Table 971.0xC4 - ISREXT - Interrupt distribution ISR extended

58.13.22

Table 972.0xD0 - PRESCALER - Interrupt distribution prescaler reload

 Interrupt Distribution Prescaler Reload

31 0

ISR

0x00000000

wc

31: 0 Interrupt distribution ISR (ISR) - Each bit index holds the ISR bit value for the corresponding inter-
rupt number. A bit value of 1 indicates that a interrupt-code with the corresponding interrupt number
has been received, and that it has not yet been acknowledged (and not yet timed-out). A bit value of
0 indicates that either no interrupt-code with that interrupt number has been received, or that the
interrupt has been acknowledged (or timed out). This register is write-clear, but should normally
only be used for diagnostics and/or FDIR. Note that the number of implemented bits depends on the
number of supported interrupts (INTCTRL.NUMINT field).

31 0

ISR

0x00000000

wc

31: 0 Interrupt distribution ISR (ISR) - Each bit index holds the ISR bit value for the corresponding inter-
rupt number. A bit value of 1 indicates that a interrupt-code with the corresponding interrupt number
has been received, and that it has not yet been acknowledged (and not yet timed-out). A bit value of
0 indicates that either no interrupt-code with that interrupt number has been received, or that the
interrupt has been acknowledged (or timed out). This register is write-clear, but should normally
only be used for diagnostics and/or FDIR. Note that the number of implemented bits depends on the
number of supported interrupts (INTCTRL.NUMINT field).

31 30 0

R RL

0 *

r rw

31 RESERVED
30: 0 Prescaler reload (RL) - Reload value for the interrupt distribution prescaler. The prescaler runs on

the system clock, and an internal tick is generated every RL+1 cycle. The number of bits imple-
mented for this field is set by the VHDL generic intscalerbits, and might be lower than the 31
depicted here. Any unimplemented bits are reserved. Reset value set from the input signal INTPRE-
LOAD.
GRIP, Sep 2018, Version 2018.3 795 www.cobham.com/gaisler

GRLIB IP Core

58.13.23

Table 973.0xD4 - ISRTIMER - Interrupt distribution ISR timer reload

 Interrupt Distribution ISR Timer Reload

58.13.24

Table 974.0xD8 - IATIMER - Interrupt distribution INT / ACK timer reload

 Interrupt Distribution INT/ACK Timer Reload

58.13.25

Table 975.0xDC - ICTIMER - Interrupt distribution change timer reload

 Interrupt Distribution Change Timer Reload

31 30 0

EN RL

1 *

rw rw

31 Timer enable (EN) - Enables the use of ISR timer for each ISR bit. One global timer enable bit used
for all ISR bits. If this bit is set to 1, the timer for each ISR bit is reloaded with the value in the RL
field when the ISR bit is set. If the timer expires before an interrupt-code-acknowledge has been
received, then ISR bit is cleared.

30: 0 Timer reload (RL) - Common reload value for the interrupt distribution ISR timers. The number of
bits implemented for this field is set by the VHDL generic intisrtimerbits, and might be lower than
the 31 depicted here. Any unimplemented bits are reserved. Reset value set from the input signal
INTTRELOAD.

31 30 0

EN RL

1 *

rw rw

31 Timer enable (EN) - Enables the use of timers to control the time between an interrupt-code and an
interrupt-acknowledge-code, and vice versa. One global timer enable bit is used for all ISR bits. If
this bit is set to 1, the timer for each ISR bit is reloaded with the value in the RL field each time an
interrupt-code is received. The core will then wait until the timer expires before an interrupt-code-
acknowledge with the same interrupt number is sent. The same applies when an interrupt-code-
acknowledge is received and a new interrupt-code with the same number should be sent.

30: 0 Timer reload (RL) - The number of bits implemented for this field is set by the VHDL generic intia-
timerbits, and might be lower than the 31 depicted here. Any unimplemented bits are reserved. Reset
value set from the input signal INTIARELOAD.

31 30 0

EN RL

1 *

rw rw

31 Timer enable (EN) - Enables the use of timers to control the time that must pass between two
changes in value for the same ISR bit. One global timer enable bit is used for all ISR bits. If this bit
is set to 1, the timer for each ISR bit is reloaded with the value in the RL field each time the ISR bit
changes value. All potential interrupt- / interrupt-acknowledge-codes received before the timer
expires is discarded.

30: 0 Timer reload (RL) - The number of bits implemented for this field is set by the VHDL generic intc-
timerbits, and might be lower than the 31 depicted here. Any unimplemented bits are reserved. Reset
value set from the input signal INTCRELOAD.
GRIP, Sep 2018, Version 2018.3 796 www.cobham.com/gaisler

GRLIB IP Core

58.13.26

Table 976.0xE0 - PNPVEND - SpaceWire Plug-and-Play - Device Vendor and Product ID

 SpaceWire Plug-and-Play - Device Vendor and Product ID

58.13.27

Table 977.0xE4 - PNPLINFO -SpaceWire Plug-and-Play - Link Information

 SpaceWire Plug-and-Play - Link Information

58.13.28

Table 978.0xE8 - PNPOA0 - SpaceWire Plug-and-Play - Owner Address 0

 SpaceWire Plug-and-Play - Owner Address 0

58.13.29

Table 979.0xEC - PNPOA1 - SpaceWire Plug-and-Play - Owner Address 1

 SpaceWire Plug-and-Play - Owner Address 1

58.13.30

Table 980.0xF0 - PNPOA2 - SpaceWire Plug-and-Play - Owner Address 2

 SpaceWire Plug-and-Play - Owner Address 2

31 16 15 0

VEND PROD

* *

r r

Note: Register is double mapped from SpaceWire Plug-and-Play address space into APB address space. See section 58.10
for details.

31 24 23 22 21 20 16 15 13 12 8 7 6 5 4 0

OLA OAL R OL RES RL T U R LC

0x00 0x0 0 0x0 0x0 0x0 1 0 0 0x13

r r r r r r r r r r

Note: Register is double mapped from SpaceWire Plug-and-Play address space into APB address space. See section 58.10
for details.

31 0

RA

0x00000000

r

Note: Register is double mapped from SpaceWire Plug-and-Play address space into APB address space. See section 58.10
for details.

31 0

RA

0x00000000

r

Note: Register is double mapped from SpaceWire Plug-and-Play address space into APB address space. See section 58.10
for details.

31 0

RA

0x00000000

r

Note: Register is double mapped from SpaceWire Plug-and-Play address space into APB address space. See section 58.10
for details.
GRIP, Sep 2018, Version 2018.3 797 www.cobham.com/gaisler

GRLIB IP Core

58.13.31

Table 981.0xF4 - PNPDEVID - SpaceWire Plug-and-Play - Device ID

 SpaceWire Plug-and-Play - Device ID

58.13.32

Table 982.0xF8 - PNPUVEND - SpaceWire Plug-and-Play - Unit Vendor and Product ID

 SpaceWire Plug-and-Play - Unit Vendor and Product ID

58.13.33

Table 983.0xFC - PNPUSN - SpaceWire Plug-and-Play - Unit Serial Number

 SpaceWire Plug-and-Play - Unit Serial Number

58.14 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x29. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

31 0

DID

0x00000000

r

Note: Register is double mapped from SpaceWire Plug-and-Play address space into APB address space. See section 58.10
for details.

31 16 15 0

VEND PROD

* *

rw rw

Note: Register is double mapped from SpaceWire Plug-and-Play address space into APB address space. See section 58.10
for details. This register is read-only in SpaceWire Plug-and-Play interface, while it is writable from the APB address space.

31 0

USN

*

rw

Note: Register is double mapped from SpaceWire Plug-and-Play address space into APB address space. See section 58.10
for details. This register is read-only in SpaceWire Plug-and-Play interface, while it is writable from the APB address space.
GRIP, Sep 2018, Version 2018.3 798 www.cobham.com/gaisler

GRLIB IP Core

58.15 Configuration options

Table 984 shows the configuration options of the core (VHDL generics).

Table 984.Configuration options

Generic Function Allowed values Default
tech Selects technology for transmitter DDR registers (if out-

put_type=1) and enables a reset of additional registers for
ASIC technologies.

0 - NTECH inferred

hindex AHB master index. 0 - NAHBMST-1 0
pindex APB slave index 0 - NAPBSLV-1 0
paddr Addr field of the APB bar. 0 - 16#FFF# 0
pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#
pirq Interrupt line used by GRSPW2. 0 - NAHBIRQ-1 0
rmap Include hardware RMAP target. RMAP CRC logic will

also be added.
If set to 2 the core will only implement the RMAP target,
provide a limited APB interface, enable time code recep-
tion and its interrupt.

0 - 2 0

rmapcrc Enable RMAP CRC logic. 0 - 1 0
ccsdscrc Enables CCSDS/CCITT CRC-16 and 16-bit ISO-check-

sum (J.G. Fletcher, ISO 8473-1:1998) logic. For the core to
calculate CRC rmap or rmapcrc also need to be set to 1.

0 - 1 0

fifosize1 Sets the number of entries in the 32-bit receiver and trans-
mitter AHB fifos.

4 - 64 32

fifosize2 Sets the number of entries in the 9-bit receiver fifo (N-
Char fifo).

16 - 64 64

rxunaligned Receiver unaligned write support. If set, the receiver can
write any number of bytes to any start address without
writing any excessive bytes.

0 - 1 0

rmapbufs Sets the number of buffers to hold RMAP replies. 2 - 8 4
ft Enable fault-tolerance against SEU errors. The core can

optionally be implemented with fault-tolerance against
SEU errors in the FIFO memories. The fault-tolerance is
enabled through the ft VHDL generic to 1 or 2. Possible
options are byte parity protection (ft = 1) or TMR registers
(ft = 2).

0 - 2 0

scantest Enables scantest support 0 - 1 0
techfifo Enables technology specific RAM blocks selected with

memtech. When disabled the memtech generic will have
no effect.

0 - 1 1

ports Sets the number of ports 1 - 2 1
dmachan Sets the number of DMA channels 1 - 4 1
memtech Selects technology for RAM blocks. 0 - NTECH DEFMEMTECH
input_type Select receiver type. 0 = Self clocking (xor), 1 = Interface

for Cobham SpaceWire transceiver, 2 = Single data rate
sampling, 3 and 4 = Double data rate sampling, 5 = Self-
clocking with external recovery, 6 = Self-clocking with
external recovery and DDR register for data.. This generic
must be set to the same value as the GRSPW2_PHY
generic with the same name.

0 - 6 0

output_type Select transmitter type. 0 = Single data rate, 1 = Double
data rate, 2 = Interface for Cobham SpaceWire transceiver.

0 - 2 0
GRIP, Sep 2018, Version 2018.3 799 www.cobham.com/gaisler

GRLIB IP Core
rxtx_sameclk Set to one if the same clock net is connected to both the
receiver and transmitter (which means this feature is only
applicable when the receiver uses sampling). This will
remove some unnecessary synchronization registers.

0 - 1 0

netlist Select pre-synthesized netlist instead of synthesizing from
source. When enabled the specific netlist is selected with
the tech generic.

0 - 1 0

nodeaddr When set to 0 - 254: Generic specifies the reset value for
the node address (DEFADDR.DEFADDR field).
When set to 255: Reset value for the node address is taken
from the RMAPNODEADDR input signal.

0 - 255 254

destkey Sets the reset value for the core’s destination key. 0 - 255 0
interruptdist Enables interrupt distribution support and sets the number

of supported interrupts.
0, 1, 2, 4, 8, 16, 32 0

intscalerbits Sets the number of bits for the interrupt distribution pres-
caler. 0 = No Interrupt distribution prescaler implemented.

0 - 31 0

intisrtimerbits Sets the number of bits for the Interrupt distribution ISR
timers. 0 = No Interrupt distribution ISR timer imple-
mented.

0 - 31 0

intiatimerbits Sets the number of bits for the Interrupt distribution INT /
ACK timers. 0 = No Interrupt distribution INT / ACK tim-
ers implemented.

0 - 31 0

intctimerbits Sets the number of bits for the Interrupt distribution
change timers. 0 = No Interrupt distribution change timers
implemented.

0 - 31 0

tickinasync Determines whether the TICKIN, TICKINRAW, and
TIMEIN signals are synchrnous or asynchronous to CLK.
0 = synchronous, 1 = asynchronous

0 - 1 0

pnp Enabled / disables support for SpaceWire Plug-and-Play 0 - 1 0
pnpvendid Specifies the SpaceWire Plug-and-Play Device Vendor ID 0 - 16#FFFF# 0
pnpprodid Specifies the SpaceWire Plug-and-Play Device Product ID 0 - 16#FFFF# 0
pnpmajorver Specifies the device’s SpaceWire Plug-and-Play Major

Version
0 - 16#FFFF# 0

pnpminorver Specifies the device’s SpaceWire Plug-and-Play Minor
Version

0 - 16#FFFF# 0

pnppatch Specifies the device’s SpaceWire Plug-and-Play Patch/
Build Number

0 - 16#FFFF# 0

num_txdesc Specifies the number of entries in the transmit descriptor
table

64, 128, 256, 512 64

num_rxdesc Specifies the number of entries in the receive descriptor
table

128, 256, 512, 1024 128

rstsrctmr Enables the Triple Module Redundancy for the asynchro-
nous reset nets of the core

0 - 1 0

Table 984.Configuration options

Generic Function Allowed values Default
GRIP, Sep 2018, Version 2018.3 800 www.cobham.com/gaisler

GRLIB IP Core

58.16 Signal descriptions

Table 985 shows the interface signals of the core (VHDL ports).

Table 985. Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
RXASYNCRST N/A Input Asynchronous reset for ports 0 and 1 of the

receiver
Low

RXSYNCRST0 N/A Input Synchronous reset for port 0 of the receiver Low
RXCLK0 N/A Input Receiver clock for port 0 -
RXSYNCRST1 N/A Input Synchronous reset for port 1 of the receiver Low
RXCLK1 N/A Input Receiver clock for port 1. Unused in one-port

configurations.
-

TXSYNCRST N/A Input Synchronous reset for the transmitter Low
TXCLK N/A Input Transmitter default run-state clock -
TXCLKN N/A Input Transmitter inverted default run-state clock.

Only used in DDR transmitter mode for technol-
ogies not supporting local generation of inverted
clock.

-

AHBMI * Input AMB master input signals -
AHBMO * Output AHB master output signals -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
SWNI D[3:0] Input Data input. Bits 3:2 are unused in one-port con-

figurations.
-

DV[3:0] Input Data valid. Bits 3:2 are unused in one-port con-
figurations.

-

DCONNECT[3:0] Input Disconnect. Bits 3:2 are unused in one-port con-
figurations.

DCONNECT2[3:0] Input Disconnect. Bits 3:2 are unused in one-port con-
figurations. This is a copy of DCONNECT, as
part of the triplication of the combinational logic
related to asynchronous reset nets.

DCONNECT3[3:0] Input Disconnect. Bits 3:2 are unused in one-port con-
figurations. This is a copy of DCONNECT, as
part of the triplication of the combinational logic
related to asynchronous reset nets.

TICKIN Input Time counter tick input. Increments internal
time-counter and transmits the new value.

High

TICKINRAW Input Raw tick input. Send time-code or interrupt- /
interrupt-acknowledge-code from TIMEIN sig-
nal. TICKINRAW must be deasserted the same
clock cycle as the output signal TICKINDONE
is asserted.

High

TIMEIN[7:0] Input The time-code or interrupt- / interrupt-acknowl-
edge-code sent when TICKINRAW is asserted.

CLKDIV10[7:0] Input Reset value for the Clock divisor register. -
RMAPEN Input Reset value for the CTRL.RE bit (RMAP enable

bit in the Control register).
-

GRIP, Sep 2018, Version 2018.3 801 www.cobham.com/gaisler

GRLIB IP Core
RMAPNODEADDR[7:0] Input Reset value for the node address
(DEFADDR.DEFADDR field) when the
nodeaddr VHDL generic = 255. Unused if
nodeaddr /= 255.

-

INTPRELOAD[30:0] Input Reset value for the Interrupt distribution pres-
caler reload register

-

INTTRELOAD[30:0] Input Reset value for the Interrupt distribution ISR
timer reload register

-

INTIARELOAD[30:0] Input Reset value the Interrupt distribution INT / ACK
timer reload register

-

INTCRELOAD[30:0] Input Reset value the Interrupt distribution change
timer reload register

-

IRQTXDEFAULT[5:0] Input Reset value for the differemt transmit interrupt
numbers for the interrupt distribution

-

PNPEN Input Reset value for the SpaceWire Plug-and-Play
enable bit (CTRL.PE)

-

PNPUVENDID Input Reset value for the SpaceWire Plug-and-Play
Unit Vendor ID (PNPUVEND.VEND field)

-

PNPUPRODID Input Reset value for the SpaceWire Plug-and-Play
Unit Product ID (PNPUVEND.PROD field)

-

PNPUSN Input Reset value for the SpaceWire Plug-and-Play
Unit Serial Number (PNPUSN register)

-

Table 985. Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 802 www.cobham.com/gaisler

GRLIB IP Core
SWNO D[3:0] Output Data output. Bits 3:2 are unused in one-port con-
figurations.

-

S[3:0] Output Strobe output. Bits 3:2 are unused in one-port
configurations.

-

TICKOUT Output Tick-out signal that is asserted when a valid
time-code or interrupt- / interrupt-acknowledge-
code has been received.

High

TICKOUTRAW Output Tick-out that is always asserted when a time-
code or interrupt- / interrupt-acknowledge-code
is received.

High

TIMEOUT[7:0] Output Contains the received time-code or interrupt- /
interrupt-acknowledge-code when TICK-
OUTRAW is asserted.

TICKINDONE Output Asserted when a time-code or interupt- / inter-
rupt-acknowledge-code sent via the TICKIN-
RAW signal has been accepted for transmission.
TICKINRAW must be deasserted the same clock
cycle as TICKINDONE is asserted.

High

RXDAV Output Asserted for one CLK cycle when a character
has been receved on the SpaceWire link.

High

RXDATAOUT[8:0] Output When RXDAV is asserted, these signals contain
the received character.

LINKDIS Output Asserted when the link is disabled High
LOOPBACK Output Reflects the value of the loopback bit in the Con-

trol register. Can be used to control on-chip loop-
back for test purposes.

High

RXRST Output Internal reset generated by the transmitter for
synchronization purpose between transmitter and
both receiver channels. It shall be used to gener-
ate the asynchronous and synchronous receiver
resets.

Low

CTRLREGRST Output Register reset. It corresponds to the bit 6 of the
Control Register (see 58.13.1. Control Register).
It shall be used negated (it is active high) to gen-
erate the AMBA and transmitter resets.

High

* see GRLIB IP Library User’s Manual

Table 985. Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 803 www.cobham.com/gaisler

GRLIB IP Core

58.17 Signal definitions and reset values

The signals and their reset values are described in table 986.

58.18 Timing

The timing waveforms and timing parameters are shown in figure 158 and are defined in table 987.
The SpaceWire jitter and skew timing waveforms and timing parameters are shown in figure 159 and
are defined in table 988.

Table 986.Signal definitions and reset values

Signal name Type Function Active Reset value
spw_clk Input Transmitter default run-state clock Rising edge -
spw_rxd Input, LVDS Data input, positive High -
spw_rxdn Input, LVDS Data input, negative Low -
spw_rxs Input, LVDS Strobe input, positive High -
spw_rxsn Input, LVDS Strobe input, negative Low -
spw_txd Output, LVDS Data output, positive High Logical 0
spw_txdn Output, LVDS Data output, negative Low Logical 1
spw_txs Output, LVDS Strobe output, positive High Logical 0
spw_txsn Output, LVDS Strobe output, negative Low Logical 1
GRIP, Sep 2018, Version 2018.3 804 www.cobham.com/gaisler

GRLIB IP Core
Table 987.Timing parameters

Name Parameter Reference edge Min Max Unit
tSPW0 transmit clock period - TBD - ns

tSPW1 clock to output delay rising spw_clk edge TBD TBD ns

tSPW2 input to clock hold - - - not applicable

tSPW3 input to clock setup - - - not applicable

tSPW4 output data bit period - - clk periods
- tSPW0 -

TBD
tSPW0
+TBD

ns

tSPW5 input data bit period - TBD - ns

tSPW6 data & strobe edge separation - TBD - ns

tSPW7 data & strobe output skew - - TBD ns

Figure 158. Timing waveforms

tSPW1spw_txd, spw_txdn

spw_clk

tSPW1

tSPW2spw_rxd, spw_rxdn tSPW3

spw_txs, spw_txsn

spw_rxs, spw_rxsn

tSPW0

spw_txd, spw_txdn

spw_txs, spw_txsn

tSPW4

tSPW4

tSPW4

spw_rxd, spw_rxdn

spw_rxs, spw_rxsn

tSPW5

tSPW5

tSPW5

spw_txd, spw_txdn

spw_txs, spw_txsn

tSPW7

tSPW6

tSPW6
GRIP, Sep 2018, Version 2018.3 805 www.cobham.com/gaisler

GRLIB IP Core
58.19 Library dependencies

Table 989 shows libraries used when instantiating the core (VHDL libraries).

58.20 Instantiation

This example shows how the core can be instantiated.
Normally di, si, do and so should be connected to input and output pads configured with LVDS driv-
ers. How this is done is technology dependent.
The core in the example is configured with non-ft memories of size 32, 32 and 4 entries for AHB
FIFOs, N-Char FIFO and RMAP buffers respectively.
The memory technology is inferred which means that the synthesis tool will select the appropriate
components.
The hardware RMAP target is enabled which also automatically enables rxunaligned and rmapcrc.
The core can be instantiated directly (grspw2) or using a wrapper (grspwm). In the first case, the top
level instance is in charge of generating the resets appropriately, whereas the wrapper may include the
reset generation and synchronization if the generic internalrstgen is set to 1 (default value).

Table 988.Skew and jitter timing parameters

Name Parameter Reference edge Min Max Unit
tskew skew between data and strobe - - TBD ns

tjitter jitter on data or strobe - - TBD ns

tds minimum separation between
data and strobe edges

- TBD - ns

tdclk delay from edge of data or strobe
to the receiver flip-flop

- - TBD ns

thold hold timer on receiver flip-flop - TBD - ns

tui unit interval (bit period) - TBD - ns

Table 989.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER SPACEWIRE Signals, component Component and record declarations.

Figure 159. Skew and jitter timing waveforms

tskew

tdclk
tjitter

thold

tui

tds

tjitter

d ideal

s ideal

d

s

receive clock
GRIP, Sep 2018, Version 2018.3 806 www.cobham.com/gaisler

GRLIB IP Core

Example of direct instantiation, including reset generators:
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.spacewire.all;

entity spacewire_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- spacewire signals
 spw_rxdp : in std_ulogic;
 spw_rxdn : in std_ulogic;
 spw_rxsp : in std_ulogic;
 spw_rxsn : in std_ulogic;
 spw_txdp : out std_ulogic;
 spw_txdn : out std_ulogic;
 spw_txsp : out std_ulogic;
 spw_txsn : out std_ulogic;

 spw_rxtxclk : in std_ulogic;
 spw_rxclkn : in std_ulogic
);
end;

architecture rtl of spacewire_ex is

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

 -- Spacewire signals
 signal swni : grspw_in_type;
 signal swno : grspw_out_type;
 signal dtmp : std_ulogic;
 signal stmp : std_ulogic;
 signal rxclk0 : std_ulogic;
 -- Only 1 port in this design. rxclk1 is unused. Instantiate
 -- two PHY’s (grspw2_phy) if two ports are enabled in the receiver
 signal rxclk1 : std_ulogic := ‘0’;

 -- Internal resets
 signal tmp_reset : std_ulogic;
 signal mrst : std_ulogic;
 signal rxasyncrst: std_ulogic;
 signal rxsyncrst0: std_ulogic;
 signal rxsyncrst1: std_ulogic := ‘0’; -- Unused in this design
 signal txsyncrst : std_ulogic;

begin

 -- AMBA Components are instantiated here

 spw_phy0 : grspw2_phy
 generic map(
 scantest => 0,
 tech => 0,
 input_type => 3)
 port map(
 rstn => rstn,
 rxclki => spw_rxtxclk,
 rxclkin => spw_rxclkn,
 nrxclki => spw_rxtxclk,
GRIP, Sep 2018, Version 2018.3 807 www.cobham.com/gaisler

GRLIB IP Core

 di => dtmp,
 si => stmp,
 do => swni.d(1 downto 0),
 dov => swni.dv(1 downto 0),
 dconnect => swni.dconnect(1 downto 0),
 dconnect2 => swni.dconnect2(1 downto 0),
 dconnect3 => swni.dconnect3(1 downto 0),
 rxclko => rxclk0);

 -- Internal reset generators (TX, RX0 and RX1 clock domains)

 -- The AMBA and TX resets take into account the bit 6 of the Control
 -- Register (software reset)
 tmp_reset <= rstn and not swno.ctrlregrst;

 -- CLK domain (synchronous reset)
 AMBA_rst : rstgen
 port map (tmp_reset, clk, vcc, mrst, open);

 -- TX domain (synchronous reset)
 txrst : rstgen
 port map (tmp_reset, spw_rxtxclk, vcc, txsyncrst, open);

 -- RX domain (asynchronous reset)
 rxasyncrst <= swno.rxrst;

 -- RX domain (synchronous reset)
 rxsyncrst0 : rstgen
 port map (swno.rxrst, rxclk0, vcc, rxsyncrst0, open);
 -- RXCLK1 is unused. Uncomment if two ports are enabled
 --rxsyncrst1 : rstgen
 --port map (swno.rxrst, rxclk1, vcc, rxsyncrst1, open);

 sw0 : grspw2
 generic map(
 tech => 0,
 hindex => 0,
 pindex => 10,
 paddr => 10,
 pirq => 10,
 ports => 1,
 dmachan => 1,
 rmap => 1,
 rmapcrc => 1,
 fifosize1 => 32,
 fifosize2 => 32,
 rxunaligned => 1,
 rmapbufs => 4,
 output_type => 1,
 input_type => 3,
 rxtx_sameclk => 1)
 port map(mrst, clk, rxasyncrst, rxsyncrst0, rxclk0, rxsyncrst1, rxclk1,
 txsyncrst, spw_rxtxclk, spw_rxtxclk, ahbmi, ahbmo(0), apbi, apbo(10),
 swni, swno);

 swni.tickin <= ’0’; swni.rmapen <= ’1’;
 swni.clkdiv10 <= conv_std_logic_vector(SPW_TX_FREQ_KHZ/10000-1, 8);

 spw_rxd_pad : inpad_ds generic map (padtech, lvds, x25v)
 port map (spw_rxdp, spw_rxdn, dtmp);
 spw_rxs_pad : inpad_ds generic map (padtech, lvds, x25v)
 port map (spw_rxsp, spw_rxsn, stmp);
 spw_txd_pad : outpad_ds generic map (padtech, lvds, x25v)
 port map (spw_txdp, spw_txdn, swno.d(0), gnd(0));
 spw_txs_pad : outpad_ds generic map (padtech, lvds, x25v)
 port map (spw_txsp, spw_txsn, swno.s(0), gnd(0));
 ...

Example using the wrapper and the internal reset generators enabled. Replace the reset generators and
the GRSPW2 core with the following wrapper:
GRIP, Sep 2018, Version 2018.3 808 www.cobham.com/gaisler

GRLIB IP Core
sw0 : grspwm

generic map(

tech => fabtech,

hindex => CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG+CFG_GRETH+i,

pindex => 13+i,

paddr => 13+i,

pirq => 8+i,

sysfreq => CPU_FREQ,

nsync => 1,

rmap => CFG_SPW_RMAP,

rmapcrc => CFG_SPW_RMAPCRC,

fifosize1 => CFG_SPW_AHBFIFO,

fifosize2 => CFG_SPW_RXFIFO,

rxclkbuftype => 1,

memtech => memtech,

rmapbufs => CFG_SPW_RMAPBUF,

ft => CFG_SPW_FT,

ports => CFG_SPW_PORTS,

dmachan => CFG_SPW_DMACHAN,

netlist => CFG_SPW_NETLIST,

spwcore => 2, -- GRSPW2 is instantiated

input_type => CFG_SPW_INPUT,

output_type => CFG_SPW_OUTPUT,

rxtx_sameclk => CFG_SPW_RTSAME,

rxunaligned => CFG_SPW_RXUNAL,

internalrstgen => 1) -- The wrapper will instantiate internally the reset generators

port map(rst => rstn, clk => clkm, rxasyncrst => gnd,

rxsyncrst0 => gnd, rxclk0 => spw_rxclk0,

rxsyncrst1 => gnd, rxclk1 => spw_rxclk1,

txsyncrst => gnd, txclk => spw_txclk, txclkn => spw_txclk,

ahbmi => ahbmi, ahbmo => ahbmo(CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG+CFG_GRETH+i),

apbi => apbi, apbo => apbo(13),

swni => spwi, swno => spwo);

It is important to note that the input resets are tied to GND in the second example, as these signals
are internally generated in the wrapper and therefore nor generated neither used in the top level
entity.

58.21 Constraints

This section contains example constraints for GRSPW2.

0. Define a clock called 'spw_clk'
1. spw_peri = SpaceWire Maximum clock frequency
2. tech_lib_setup = Setup timing for FlipFlop used in technology
3. tech_lib_hold = Hold timing for FlipFlop used in technology

SpaceWire (LVDS)
set spw_rx_rise_max [expr $spw_peri / 2 - $tech_lib_setup]
set spw_rx_rise_min [expr $tech_lib_hold]
set spw_rx_fall_max [expr $spw_peri / 2 - $tech_lib_setup]
set spw_rx_fall_min [expr $tech_lib_hold]

set spw_tx_max [expr $tech_lib_setup]
set spw_tx_min [expr -1 * $tech_lib_hold]
GRIP, Sep 2018, Version 2018.3 809 www.cobham.com/gaisler

GRLIB IP Core
for { set port 0 } { $port < 2 } { incr port } {
Inputs
set_input_delay -max -clock [get_clocks spw_clk] $spw_rx_rise_max [get_ports
lvds_rxp[[expr $port + 1]]] -add
set_input_delay -min -clock [get_clocks spw_clk] $spw_rx_rise_min [get_ports
lvds_rxp[[expr $port + 1]]] -add
set_input_delay -max -clock [get_clocks spw_clk] $spw_rx_fall_max [get_ports
lvds_rxp[[expr $port + 1]]] -add -clock_fall
set_input_delay -min -clock [get_clocks spw_clk] $spw_rx_fall_min [get_ports
lvds_rxp[[expr $port + 1]]] -add -clock_fall

set_input_delay -max -clock [get_clocks spw_clk] $spw_rx_rise_max [get_ports
lvds_rxn[[expr $port + 1]]] -add
set_input_delay -min -clock [get_clocks spw_clk] $spw_rx_rise_min [get_ports
lvds_rxn[[expr $port + 1]]] -add
set_input_delay -max -clock [get_clocks spw_clk] $spw_rx_fall_max [get_ports
lvds_rxn[[expr $port + 1]]] -add -clock_fall
set_input_delay -min -clock [get_clocks spw_clk] $spw_rx_fall_min [get_ports
lvds_rxn[[expr $port + 1]]] -add -clock_fall

}

for { set port 0 } { $port < 2 } { incr port } {
set_output_delay -clock [get_clocks spw_clk] -max $spw_tx_max [get_ports lvds_txp[[expr
$port + 1]]] -add
set_output_delay -clock [get_clocks spw_clk] -min $spw_tx_min [get_ports lvds_txp[[expr
$port + 1]]] -add_delay

set_output_delay -clock [get_clocks spw_clk] -max $spw_tx_max [get_ports lvds_txn[[expr
$port + 1]]] -add
set_output_delay -clock [get_clocks spw_clk] -min $spw_tx_min [get_ports lvds_txn[[expr
$port + 1]]] -add_delay

}

58.22 API

A simple Application Programming Interface (API) is provided together with the GRSPW2. The API
is located in $(GRLIB)/software/spw. The files are rmapapi.c, spwapi.c, rmapapi.h, spwapi.h. The
spwapi.h file contains the declarations of the functions used for configuring the GRSPW2 and trans-
ferring data. The corresponding definitions are located in spwapi.c. The rmapapi is structured in the
same manner and contains a function for building RMAP packets.
These functions could be used as a simple starting point for developing drivers for the GRSPW2. The
different functions are described in this section.

58.22.1 GRSPW2 Basic API

The basic GRSPW2 API is based on a struct spwvars which stores all the information for a single
GRSPW2 core. The information includes its address on the AMBA bus as well as SpaceWire parame-
ters such as node address and clock divisor. A pointer to this struct is used as a input parameter to all
the functions. If several cores are used, a separate struct for each core is created and used when the
specific core is accessed.
GRIP, Sep 2018, Version 2018.3 810 www.cobham.com/gaisler

GRLIB IP Core
The following functions are available in the basic API:

int spw_setparam(int nodeaddr, int clkdiv, int destkey, int nospill, int timetxen, int
timerxen, int rxmaxlen, int spwadr, struct spwvars *spw);

Used for setting the different parameters in the spwvars struct. Should always be run first after creat-
ing a spwvars struct. This function only initializes the struct. Does not write anything to the Space-
Wire core.

Table 990.The spwvars struct

Field Description Allowed range
regs Pointer to the GRSPW2 -
nospill The nospill value used for the core. 0 - 1
rmap Indicates whether the core is configured with RMAP. Set by

spw_init.
0 - 1

rxunaligned Indicates whether the core is configured with rxunaligned support.
Set by spw_init.

0 - 1

rmapcrc Indicates whether the core is configured with RMAPCRC support.
Set by spw_init.

0 - 1

clkdiv The clock divisor value used for the core. 0 - 255
nodeaddr The node address value used for the core. 0 - 255
destkey The destination key value used for the core. 0 - 255
rxmaxlen The Receiver maximum length value used for the core. 0 - 33554431
rxpnt Pointer to the next receiver descriptor. 0 - 127
rxchkpnt Pointer to the next receiver descriptor that will be polled. 0 - 127
txpnt Pointer to the next transmitter descriptor. 0 - 63
txchkpnt Pointer to the next transmitter descriptor that will be polled. 0 - 63
timetxen The timetxen value used for this core. 0 - 1
timerxen The timerxen value used for this core. 0 - 1
txd Pointer to the transmitter descriptor table. -
rxd Pointer to the receiver descriptor table -

Table 991.Return values for spw_setparam

Value Description
0 The function completed successfully
1 One or more of the parameters had an illegal value
GRIP, Sep 2018, Version 2018.3 811 www.cobham.com/gaisler

GRLIB IP Core
int spw_init(struct spwvars *spw);

Initializes the GRSPW2 core located at the address set in the struct spw. Sets the following registers:
node address, destination key, clock divisor, receiver maximum length, transmitter descriptor table
address, receiver descriptor table address, ctrl and dmactrl. All bits are set to the values found in the
spwvars struct. If a register bit is not present in the struct it will be set to zero. The descriptor tables
are allocated to an aligned area using malloc. The status register is cleared and lastly the link interface
is enabled. The run state frequency will be set according to the value in clkdiv.

int set_txdesc(int pnt, struct spwvars *spw);

Sets a new address to the transmitter descriptor table address register. Should only be used when no
transmission is active. Also resets the pointers for spw_tx and spw_checktx (Explained in the section
for those functions).

Table 992.Parameters for spw_setparam

Parameter Description Allowed range
nodeaddr Sets the node address value of the struct spw passed to the function. 0-255
clkdiv Sets the clock divisor value of the struct spw passed to the function. 0-255
destkey Sets the destination key of the struct spw passed to the function. 0-255
nospill Sets the nospill value of the struct spw passed to the function. 0 - 1
timetxen Sets the timetxen value of the struct spw passed to the function. 0 - 1
timerxen Sets the timerxen value of the struct spw passed to the function. 0 - 1
rxmaxlen Sets the receiver maximum length field of the struct spw passed to

the function.
0 - 225-1

spwadr Sets the address to the GRSPW2 core which will be associated with
the struct passed to the function.

0 - 232-1

Table 993.Return values for spw_init

Value Description
0 The function completed successfully
1 One or more of the parameters could not be set correctly or the link failed to initialize.

Table 994.Parameters for spw_init

Parameter Description Allowed range
spw The spwvars struct associated with the GRSPW2 core that should be

initialized.
-

Table 995.Return values for spw_txdesc

Value Description
0 The function completed successfully
1 The new address could not be written correctly
GRIP, Sep 2018, Version 2018.3 812 www.cobham.com/gaisler

GRLIB IP Core
int set_rxdesc(int pnt, struct spwvars *spw);

Sets a new address to the Receiver descriptor table address register. Should only be used when no
transmission is active. Also resets the pointers for spw_rx and spw_checkrx (Explained in the section
for those functions).

void spw_disable(struct spwvars *spw);

Disables the GRSPW2 core (the link disable bit is set to ‘1’).

void spw_enable(struct spwvars *spw);

Enables the GRSPW2 core (the link disable bit is set to ‘0’).

Table 996.Parameters for spw_txdesc

Parameter Description Allowed range
pnt The new address to the descriptor table area 0 - 232-1
spw Pointer to the spwvars struct associated with GRSPW2 core that

should be configured
-

Table 997.Return values for spw_rxdesc

Value Description
0 The function completed successfully
1 The new address could not be written correctly

Table 998.Parameters for spw_rxdesc

Parameter Description Allowed range
pnt The new address to the descriptor table area 0 - 232-1
spw Pointer to the spwvars struct associated with GRSPW2 core that

should be configured
-

Table 999.Parameters for spw_disable

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW2 core that

should be configured
-

GRIP, Sep 2018, Version 2018.3 813 www.cobham.com/gaisler

GRLIB IP Core
void spw_start(struct spwvars *spw);

Starts the GRSPW2 core (the link start bit is set to ‘1’).

void spw_stop(struct spwvars *spw);

Stops the GRSPW2 core (the link start bit is set to ‘0’).

int spw_setclockdiv(struct spwvars *spw);

Sets the clock divisor register with the clock divisor value stored in the spwvars struct.

int spw_set_nodeadr(struct spwvars *spw);

Table 1000.Parameters for spw_enable

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW2 core that

should be configured
-

Table 1001.Parameters for spw_start

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW2 core that

should be configured
-

Table 1002.Parameters for spw_start

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW2 core that

should be configured
-

Table 1003.Return values for spw_setclockdiv

Value Description
0 The function completed successfully
1 The new clock divisor value is illegal.

Table 1004.Parameters for spw_setclockdiv

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW2 core that

should be configured
-

GRIP, Sep 2018, Version 2018.3 814 www.cobham.com/gaisler

GRLIB IP Core

Sets the node address register with the node address value stored in the spwvars struct.

int spw_set_rxmaxlength(struct spwvars *spw);

Sets the Receiver maximum length register with the rxmaxlen value stored in the spwvars struct.

int spw_tx(int crc, int skipcrcsize, int hsize, char *hbuf, int dsize, char *dbuf, struct
spwvars *spw);

Transmits a packet. Separate header and data buffers can be used. If CRC logic is available the GSPW
inserts RMAP CRC values after the header and data fields if crc is set to one. This function only sets a
descriptor and initiates the transmission. Spw_checktx must be used to check if the packet has been
transmitted. A pointer into the descriptor table is stored in the spwvars struct to keep track of the next
location to use. It is incremented each time the function returns 0.

Table 1005.Return values for spw_set_nodeadr

Value Description
0 The function completed successfully
1 The new node address value is illegal.

Table 1006.Parameters for spw_set_nodeadr

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW2 core that

should be configured
-

Table 1007.Return values for spw_set_rxmaxlength

Value Description
0 The function completed successfully
1 The new node address value is illegal.

Table 1008.Parameters for spw_set_rxmaxlength

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW2 core that

should be configured
-

Table 1009.Return values for spw_tx

Value Description
0 The function completed successfully
1 There are no free transmit descriptors currently available
2 There was illegal parameters passed to the function
GRIP, Sep 2018, Version 2018.3 815 www.cobham.com/gaisler

GRLIB IP Core
int spw_rx(char *buf, struct spwvars *spw);

Enables a descriptor for reception. The packet will be stored to buf. Spw_checkrx must be used to
check if a packet has been received. A pointer in the spwvars struct is used to keep track of the next
location to use in the descriptor table. It is incremented each time the function returns 0.

int spw_checkrx(int *size, struct rxstatus *rxs, struct spwvars *spw);

Checks if a packet has been received. When a packet has been received the size in bytes will be stored
in the size parameter and status is found in the rxs struct. A pointer in the spwvars struct is used to
keep track of the location in the descriptor table to poll. It is incremented each time the function
returns nonzero.

Table 1010.Parameters for spw_tx

Parameter Description Allowed range
crc Set to one to append RMAP CRC after the header and data fields.

Only available if hardware CRC is available in the core.
0 - 1

skipcrcsize The number of bytes in the beginning of a packet that should not be
included in the CRC calculation

0 - 15

hsize The size of the header in bytes 0 - 255
hbuf Pointer to the header data -
dsize The size of the data field in bytes 0 - 224-1
dbuf Pointer to the data area. -
spw Pointer to the spwvars struct associated with GRSPW2 core that

should transmit the packet
-

Table 1011.Return values for spw_rx

Value Description
0 The function completed successfully
1 There are no free receive descriptors currently available

Table 1012.Parameters for spw_rx

Parameter Description Allowed range
buf Pointer to the data area. -
spw Pointer to the spwvars struct associated with GRSPW2 core that

should receive the packet
-

Table 1013.Return values for spw_checkrx

Value Description
0 No packet has been received
1 A packet has been received

Table 1014.Parameters for spw_checkrx

Parameter Description Allowed range
size When the function returns 1 this variable holds the number of bytes

received
-

rxs When the function returns 1 this variable holds status information -
spw Pointer to the spwvars struct associated with GRSPW2 core that

should be polled
-

GRIP, Sep 2018, Version 2018.3 816 www.cobham.com/gaisler

GRLIB IP Core
int spw_checktx(struct spwvars *spw);

Checks if a packet has been transmitted. A pointer is used to keep track of the location in the descrip-
tor table to poll. It is incremented each time the function returns nonzero.

void send_time(struct spwvars *spw);

Sends a new time-code. Increments the time-counter in the GRSPW2 and transmits the value.

int check_time(struct spwvars *spw);

Check if a new time-code has been received.

Table 1015.The rxstatus struct

Field Description Allowed range
truncated Packet was truncated 0 - 1
dcrcerr Data CRC error bit was set. Only indicates an error if the packet

received was an RMAP packet.
0 - 1

hcrcerr Header CRC error bit was se.t. Only indicates an error if the packet
received was an RMAP packet.

0 - 1

eep Packet was terminated with EEP 0 - 1

Table 1016.Return values for spw_checktx

Value Description
0 No packet has been transmitted
1 A packet has been correctly transmitted
2 A packet has been incorrectly transmitted

Table 1017.Parameters for spw_checktx

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW2 core that

should be polled
-

Table 1018.Parameters for send time

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW2 core that

should be polled
-

Table 1019.Return values for check_time

Value Description
0 No time-code has been received
1 A new time-code has been received

Table 1020.Parameters for check_time

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW2 core that

should be polled
-

GRIP, Sep 2018, Version 2018.3 817 www.cobham.com/gaisler

GRLIB IP Core

int get_time(struct spwvars *spw);

Get the current time counter value.

void spw_reset(struct spwvars *spw);

Resets the GRSPW2.

void spw_rmapen(struct spwvars *spw);

Enables hardware RMAP. Has no effect if the RMAP command handler is not available in GRSPW2.

void spw_rmapdis(struct spwvars *spw);

Disables hardware RMAP. Has no effect if the RMAP command handler is not available in GRSPW2

int spw_setdestkey(struct spwvars *spw);

Set the destination key of the GRSPW2. Has no effect if the RMAP command handler is not available.
The value from the spwvars struct is used.

Table 1021.Return values for get_time

Value Description
0 - 63 Returns the current time counter value

Table 1022.Parameters for get_time

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW2 core that

should be polled
-

Table 1023.Parameters for spw_reset

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW2 core that

should be reset
-

Table 1024.Parameters for spw_rmapen

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW2 core that

should be set
-

Table 1025.Parameters for spw_rmapdis

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW2 core that

should be set
-

Table 1026.Return values for spw_setdestkey

Value Description
0 The function completed successfully
1 The destination key parameter in the spwvars struct contains an illegal value
GRIP, Sep 2018, Version 2018.3 818 www.cobham.com/gaisler

GRLIB IP Core
58.22.2 GRSPW2 RMAP API

The RMAP API contains only one function which is used for building RMAP headers.
int build_rmap_hdr(struct rmap_pkt *pkt, char *hdr, int *size);

Builds an RMAP header to the buffer pointed to by hdr. The header data is taken from the rmap_pkt
struct.

Table 1027.Parameters for spw_setdestkey

Parameter Description Allowed range
spw Pointer to the spwvars struct associated with GRSPW2 core that

should be set.
-

Table 1028.Return values for build_rmap_hdr

Value Description
0 The function completed successfully
1 One or more of the parameters contained illegal values

Table 1029.Parameters for build_rmap_hdr

Parameter Description Allowed range
pkt Pointer to an rmap_pkt struct which contains the data from which the

header should be built
hdr Pointer to the buffer where the header will be built
spw Pointer to the spwvars struct associated with GRSPW2 core that

should be set
-

GRIP, Sep 2018, Version 2018.3 819 www.cobham.com/gaisler

GRLIB IP Core
Table 1030.rmap_pkt struct fields

Field Description Allowed Range
type Selects the type of packet to build. writecmd, readcmd,

rmwcmd, writerep, readrep,
rmwrep

verify Selects whether the data should be verified before writing yes, no
ack Selects whether an acknowledge should be sent yes, no
incr Selects whether the address should be incremented or not yes, no
destaddr Sets the destination address 0 - 255
destkey Sets the destination key 0 - 255
srcaddr Sets the source address 0 - 255
tid Sets the transaction identifier field 0 - 65535
addr Sets the address of the operation to be performed. The extended

address field is currently always set to 0.
0 - 232-1

len The number of bytes to be writte, read or read-modify-written 0 - 224-1
status Sets the status field 0 - 11
dstspalen Number of source path address bytes to insert before the destination

address
0 - 228

dstspa Pointer to memory holding the destination path address bytes -
srcspalen Number of source path address bytes to insert in a command. For a

reply these bytes are placed before the return address
0 - 12

srcspa Pointer to memory holding the source path address bytes -
GRIP, Sep 2018, Version 2018.3 820 www.cobham.com/gaisler

GRLIB IP Core

59 GRSPW2_GEN - GRSPW2 wrapper with Std_Logic interface

59.1 Overview

The GRSPW2_GEN wrapper provides an interface to the GRSPW2 core only using Std_Logic sig-
nals instead of GRLIB records. The GRLIB AMBA plug and play extensions have also been
removed. This document describes the signal interface and how they map to the signal names in
GRLIB. For a user manual on the core function please refer to the GRSPW2 section. An example
instantiation of the core can be found at the end of this document.
GRIP, Sep 2018, Version 2018.3 821 www.cobham.com/gaisler

GRLIB IP Core

59.2 Signal descriptions

Table 985 shows the interface signals of the core (VHDL ports).

Table 1031. Signal descriptions

Signal name Type Function
Activ
e GRLIB signal name

RST Input Reset Low RST
CLK Input System (AMBA) Clock. - CLK
RXASYNCRST Input Receiver asynchronous reset for both ports 0

and 1
Low RXASYNCRST

RXSYNCRST0 Input Receiver synchronous reset for port 0 Low RXSYNCRST0
RXCLK0 Input Receiver clock for port 0. - RXCLK0
RXSYNCRST1 Input Receiver synchronous reset for port 1 Low RXSYNCRST1
RXCLK1 Input Receiver clock for port 1. Unused if the

VHDL generic ports is 2.
- RXCLK1

TXSYNCRST Input Transmitter synchronous reset Low TXSYNCRST
TXCLK Input Transmitter clock - TXCLK
TXCLKN Input Transmitter inverted clock. Only used in

DDR transmitter mode for technologies not
supporting local generation of inverted
clock.

- TXCLKN

HGRANT Input See AMBA manual. - AHBMI.HGRANT
HREADY Input See AMBA manual. - AHBMI.HREADY
HRESP[1:0] Input See AMBA manual. - AHBMI.HRESP
HRDATA[31:0] Input See AMBA manual. - AHBMI.HRDATA
HBUSREQ Output See AMBA manual. - AHBMO.HBUSREQ
HLOCK Output See AMBA manual. - AHBMO.HLOCK
HTRANS[1:0] Output See AMBA manual. - AHBMO.HTRANS
HADDR[31:0] Output See AMBA manual. - AHBMO.HADDR
HWRITE Output See AMBA manual. - AHBMO.HWRITE
HSIZE[2:0] Output See AMBA manual. - AHBMO.HSIZE
HBURST[2:0] Output See AMBA manual. - AHBMO.HBURST
HPROT[3:0] Output See AMBA manual. - AHBMO.HPROT
HWDATA[31:0] Output See AMBA manual. - AHBMO.HWDATA
GRIP, Sep 2018, Version 2018.3 822 www.cobham.com/gaisler

GRLIB IP Core
PSEL Input See AMBA manual. - APBI.PSEL
PENABLE Input See AMBA manual. - APBI.PENABLE
PADDR[31:0] Input See AMBA manual. - APBI.PADDR
PWRITE Input See AMBA manual. - APBI.PWRITE
PWDATA[31:0] Input See AMBA manual. - APBI.PWDATA
PRDATA[31:0] Output See AMBA manual. - APBO.PRDATA
D[3:0] Input SpaceWire Data input - SWNI.D
DV[3:0] Input SpaceWire Data valid. High SWNI.DV
DCONNECT[3:0] Input SpaceWire Disconnect. - SWNI.DCONNECT
DCONNECT2[3:0] Input SpaceWire Disconnect. Copy of DCON-

NECT (triplication of the asynchronous
resets logic)

- SWNI.DCONNECT2

DCONNECT3[3:0] Input SpaceWire Disconnect. Copy of DCON-
NECT (triplication of the asynchronous
resets logic)

- SWNI.DCONNECT3

DO[3:0] Output SpaceWire Data output. - SWNO.D
SO[3:0] Output SpaceWire Strobe output. - SWNO.S
TICKIN Input Time counter tick input. Increments internal

time-counter and transmits the new value.
High SWNI.TICKIN

TICKINRAW Input Raw tick input. Send time-code from timein
input.

High SWNI.TICKINRAW

TIMEIN[7:0] Input Raw tick input. Send time-code from timein
input.

- SWNI.TIMEIN

TICKINDONE Output Asserted when a time-code has been
accepted for transmission when tickinraw is
asserted. Tickinraw must be deasserted the
same clock cycle as tickindone is asserted.

High SWNO.TICKINDONE

TICKOUT Output Time counter tick output. Asserted when a
valid time-code has been received

High SWNO.TICKOUT

TICKOUTRAW Output Tick out which is always set when a time-
code is received.

High SWNO.TICKOUTRAW

TIMEOUT[7:0] Output Contains the received time-code when tick-
inraw is asserted.

- SWNO.TIMEOUT

IRQ Output Common interrupt line for the core. Asserted
one clock cycle for each interrupt.

High N/A

CLKDIV10[7:0] Input Clock divisor value used during initialization
and as reset value for the clock divisor regis-
ter

- SWNI.CLKDIV10

LINKDIS Output Asserted when the link is disabled High SWNO.LINKDIS
TESTRST Output Scan test reset Low -
TESTEN Input Scan test enable High -
RMAPEN Input Reset value for the rmapen control register

bit
High SWNI.RMAPEN

RXDAV Output Asserted each cycle a character has been
receved on the SpaceWire link.

High SWNO.RXDAV

RXDATAOUT[8:0
]

Output Contains the received character when rxdav
is asserted

- SWNO.RXDATAOUT

Table 1031. Signal descriptions

Signal name Type Function
Activ
e GRLIB signal name
GRIP, Sep 2018, Version 2018.3 823 www.cobham.com/gaisler

GRLIB IP Core
59.3 Instantiation

This example shows how the core can be instantiated. The reset generators have been instantiated
according to the implementation section in GRSPW2 (refer to 58.11.1. Reset for further information).
Normally di, si, do and so should be connected to input and output pads configured with LVDS driv-
ers. How this is done is technology dependent. Instead the single ended inputs and outputs are con-
nected directly to the external interface. The example uses only one port and the output is in SDR
mode which means parts of the SpaceWire input and output vectors are unused.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.spacewire.all;

entity spacewire_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;
 txclk : in std_ulogic;
 --ahb mst in
 hgrant : in std_ulogic;
 hready : in std_ulogic;
 hresp : in std_logic_vector(1 downto 0);
 hrdata : in std_logic_vector(31 downto 0);
 --ahb mst out
 hbusreq : out std_ulogic;
 hlock : out std_ulogic;
 htrans : out std_logic_vector(1 downto 0);
 haddr : out std_logic_vector(31 downto 0);
 hwrite : out std_ulogic;
 hsize : out std_logic_vector(2 downto 0);
 hburst : out std_logic_vector(2 downto 0);
 hprot : out std_logic_vector(3 downto 0);
 hwdata : out std_logic_vector(31 downto 0);
 --apb slv in
 psel : in std_ulogic;
 penable : in std_ulogic;
 paddr : in std_logic_vector(31 downto 0);
 pwrite : in std_ulogic;
 pwdata : in std_logic_vector(31 downto 0);
 --apb slv out
 prdata : out std_logic_vector(31 downto 0);
 --spw in
 di : in std_ulogic;
 si : in std_ulogic;
 --spw out
 do : out std_ulogic;

CTRLREGRST Output Register reset. It corresponds to the bit 6 of
the Control Register (see 58.13.1. Control
Register). It shall be used negated (it is
active high) to generate the AMBA and
transmitter resets.

High SWNO.CTRLREGRST

RXRST Output Internal reset generated by the transmitter for
synchronization purpose between transmitter
and both receiver channels. It shall be used
to generate the asynchronous and synchro-
nous receiver resets.

Low SWNO.RXRST

Table 1031. Signal descriptions

Signal name Type Function
Activ
e GRLIB signal name
GRIP, Sep 2018, Version 2018.3 824 www.cobham.com/gaisler

GRLIB IP Core

 so : out std_ulogic;
 --time iface
 tickin : in std_ulogic;
 tickout : out std_ulogic;
 --misc
 irq : out std_logic;
 clkdiv10 : in std_logic_vector(7 downto 0);
 rmapen : in std_ulogic;
);
end;

architecture rtl of spacewire_ex is
 signal rxclko : std_ulogic;
 signal d : std_logic_vector(3 downto 0);
 signal do_int : std_logic_vector(3 downto 0);
 signal so_int : std_logic_vector(3 downto 0);
 signal dv : std_logic_vector(3 downto 0);
 signal dconnect : std_logic_vector(3 downto 0);
 signal dconnect2 : std_logic_vector(3 downto 0);
 signal dconnect3 : std_logic_vector(3 downto 0);
 signal timein : std_logic_vector(7 downto 0);
 signal tickinraw : std_ulogic;
 signal testen : std_ulogic;
 signal testrst : std_ulogic;

 -- Internal resets
 signal tmp_reset : std_ulogic;
 signal mrst : std_ulogic;
 signal rxasyncrst: std_ulogic;
 signal rxsyncrst0: std_ulogic;
 signal rxsyncrst1: std_ulogic;
 signal txsyncrst : std_ulogic;

begin

 do <= do_int(0);
 so <= so_int(0);
 tickinraw <= ’0’;
 testrst <= ’0’;
 testen <= ’0’;

 spw_phy0 : grspw2_phy
 generic map(
 scantest => 0,
 tech => 0,
 input_type => 3)
 port map(
 rstn => rstn,
 rxclki => rxclk0,
 rxclkin => rxclk0,
 nrxclki => rxclk0,
 di => di,
 si => si,
 do => d(1 downto 0),
 dov => dv(1 downto 0),
 dconnect => dconnect(1 downto 0),
 dconnect2 => dconnect2(1 downto 0),
 dconnect3 => dconnect3(1 downto 0),
 rxclko => rxclko);

 -- Internal reset generators (TX, RX0 and RX1 clock domains)

 -- The AMBA and TX resets take into account the bit 6 of the Control
 -- Register (software reset)
 tmp_reset <= rstn and not ctrlregrst;

 -- CLK domain (synchronous reset)
 AMBA_rst : rstgen
 port map (tmp_reset, clk, vcc, mrst, open);

 -- TX domain (synchronous reset)
GRIP, Sep 2018, Version 2018.3 825 www.cobham.com/gaisler

GRLIB IP Core

 txrst : rstgen
 port map (tmp_reset, spw_rxtxclk, vcc, txsyncrst, open);

 -- RX domain (asynchronous reset)
 rxasyncrst <= rxrst;

 -- RX domain (synchronous reset)
 rxsyncrst0 : rstgen
 port map (rxrst, rxclk0, vcc, rxsyncrst0, open);

 rxsyncrst1 : rstgen
 port map (rxrst, rxclk1, vcc, rxsyncrst1, open);

 sw0 : grspw2_gen
 generic map(
 tech => 0,
 ports => 1,
 dmachan => 1,
 rmap => 0,
 rmapcrc => 1,
 fifosize1 => 32,
 fifosize2 => 32,
 rxunaligned => 1,
 rmapbufs => 4,
 output_type => 1,
 input_type => 3,
 rxtx_sameclk => 1)
 port map(
 rst => mrst,
 clk => clk,
 rxasyncrst => rxasyncrst,
 rxsyncrst0 => rxsyncrst0,
 rxclk0 => rxclk0,
 rxsyncrst1 => rxsyncrst1,
 rxclk1 => rxclk1,
 txsyncrst => txsyncrst,
 txclk => txclk,
 txclkn => txclkn,
 --ahb mst in
 hgrant => hgrant,
 hready => hready,
 hresp => hresp,
 hrdata => hrdata,
 --ahb mst out
 hbusreq => hbusreq,
 hlock => hlock,
 htrans => htrans,
 haddr => haddr,
 hwrite => hwrite,
 hsize => hsize,
 hburst => hburst,
 hprot => hprot,
 hwdata => hwdata,
 --apb slv in
 psel => psel,
 penable => penable,
 paddr => paddr,
 pwrite => pwrite,
 pwdata => pwdata,
 --apb slv out
 prdata => prdata,
 --spw in
 d => d,
 dv => dv,
 dconnect => dconnect,
 dconnect2 => dconnect2,
 dconnect3 => dconnect3,
 --spw out
 do => do_int,
 so => so_int,
 --time iface
GRIP, Sep 2018, Version 2018.3 826 www.cobham.com/gaisler

GRLIB IP Core

 tickin => tickin,
 tickinraw => tickinraw,
 timein => timein,
 tickindone => open,
 tickout => tickout,
 tickoutraw => open,
 timeout => open,
 --irq
 irq => irq,
 --misc
 clkdiv10 => clkdiv10,
 linkdis => open,
 testrst => testrst,
 testen => testen,
 --rmapen
 rmapen => rmapen,
 --parallel rx data out
 rxdav => open,
 rxdataout => open,
 -- Reset interconnection
 ctrlregrst => ctrlregrst,
 rxrst => rxrst);
GRIP, Sep 2018, Version 2018.3 827 www.cobham.com/gaisler

GRLIB IP Core

60 GRSPW2_PHY - GRSPW2 Receiver Physical Interface

60.1 Overview

The GRSPW2_PHY provides a common interface for the receiver modules in GRSPW2, GRSP-
WROUTER, and GRSPW_CODEC to the actual data recovery circuit. The data can be recovered in
four different ways: Self-clocking (xor on data and strobe), Single Data Rate (SDR) sampling, Double
Data Rate (DDR) sampling and from an SpaceWire transceiver. The GRSPW2_PHY presents the data
with a data, and a data-valid signal, as well as outputs the clock used by the receiver modules. One
GRSPW2_PHY core is needed for each SpaceWire link (data and strobe pair).

60.2 Operation

As mentioned above the core supports four different input schemes, configurable through the VHDL
generic input_type. The GRSPW2, GRSPWROUTER and GRSPW_CODEC cores also each have a
generic named input_type, and it is important that it is set to the same value as for GRSPW2_PHY.
The four different input schemes are explained in more detail in the following subsections.

60.2.1 Self-clocking (input_type = 0)

In self-clocking mode the receiver clock is recovered from the SpaceWire data and strobe by using an
xor gate. The recovered clock is then used to clock the registers to which the data is stored. The recov-
ered clock is coupled to the GRSPW2_PHY output signal RXCLKO, which should be connected to
the receiver clock input of GRSPW2 / GRSPWROUTER / GRSPW_CODEC.
Since data will appear on both the rising and falling edge of the recovered clock there must be two
registers, one for each edge. Figure 161 shows the clock recovery scheme. As can be seen in the fig-
ure, the SpaceWire data input is used for generating the reciver clock as well as input of several flip-
flops. Care must be taken so that the delay from the data and strobe signals through the clock network
is longer than the delay to the flip-flop’s data input + setup time.
For self-clocking mode, the core’s RXCLKI and RXCLKIN inputs are unused. The NRXCLKI input
is unused if scan test support is not implemented (scantest generic set to 0). If scan test mode is imple-
mented (scantest generic set to 1) then the NRXCLKI input is used as the receiver clock during scan
test (TESTEN input high), otherwise it is not used. Details on how to connect the other input / output
signals are found in section 60.5.

RECEIVER
Data

Strobe

PHY

D(1:0)

DV(1:0)

Figure 160. Data connection between the GRSPW2_PHY and the
GRSPW2 / GRSPWROUTER / GRSPW_CODEC receiver.

D

S

D

D

Q

Q

Figure 161. The clocking scheme for self clocking mode. The clock is
recovered from the SpaceWire data and strobe signals using an xor gate.
GRIP, Sep 2018, Version 2018.3 828 www.cobham.com/gaisler

GRLIB IP Core

60.2.2 Cobham transceiver (input_type = 1)

When using the Cobham transceiver the RxClk output from the transceiver shall be connected to the
RXCLKI input of GRSPW2_PHY. RxDR and RxDF should be connected to DI and SI respectively.
The GRSPW2_PHY outputs DO, DOV and DCONNECT are generated in the same way as for the
self-clocking mode.
RXCLKIN is unused in this configuration. NRXCLKI is unused if scan test support is not imple-
mented (SCANTEST generic set to 0). If scan test support is implemented (SCANTEST generic set to
1) the NRXCLKI is used in the following way: When not in scan test mode (TESTEN input is low)
the NRXCLKI input should be the inverse of the RXCLKI input, and when in scan test mode
(TESTEN input is high) the NRXCLKI input should be the same clock as the RXCLKI input. Details
on how to connect the other input / output signals is found in section 60.5.

60.2.3 SDR sampling (input_type = 2)

In this mode the sampling clock should be connected to the RXCLKI input. RXCLKIN and NRX-
CKLI are unused in this mode. Details on how to connect the other input / output signals is found in
section 60.5.
The core internally detects new data on the data line. Since only one bit can be detected each clock
cycle only bit 0 of the data signal to the receiver (DO output) is used. Normally the sampling fre-
quency has to be at least 1,5 higher than the maximum bitrate for correct operation.

60.2.4 DDR sampling (input_type = 3)

The sampling clock should be connected to RXCLKI. If the selected technology does not have DDR
primitives that automatically generate the inverted clock then the inverted sampling clock has to be
connected to RXCLKIN. NRXCLKI is unused in this mode. Details on how to connect the other input
/ output signals is found in section 60.5.
The core internally detects new data on the data line. There can be two bits detected each clock cycle
so both data signals to the receive (DO output) have to be used. The sampling frequency times two has
to be at least 1,5 times the maximum bitrate.

60.2.5 DDR sampling with internal pad (input_type = 4)

Same as DDR sampling (input_type = 3) except that both DDR registers and input pads are instanti-
ated within the GRSPW2_PHY. This option can be used on technologies where DDR registers and
pads must be instantiated as one entity. This option (input_type = 4) should not be used unless recom-
mended by Cobham Gaisler. If input_type = 4 is selected then the level and voltage of the instantiated
pads are specified via the VHDL generics input_level and input_voltage, and external pads should not
be instantiated for the SpaceWire input signals.

60.2.6 Self-clocking with external clock recovery (input_type = 5)

Same as self-clocking (input_type = 0) except that the clock recovery is done externally to the GRSP-
W2_PHY. The rxclki input is used to clock the receiver registers within the core.
The core’s RXCLKIN input is unused. The NRXCLKI input is unused if scan test support is not
implemented (scantest generic set to 0). If scan test mode is implemented (scantest generic set to 1)
then the NRXCLKI input is used as the receiver clock during scan test (TESTEN input high), other-
wise it is not used.

60.2.7 Self-clocking with external clock recovery and DDR register (input_type = 6)

Same as self-clocking with external clock recovery (input_type = 5) except that a DDR register is
used internally in GRSPW2_PHY for the incoming data.
GRIP, Sep 2018, Version 2018.3 829 www.cobham.com/gaisler

GRLIB IP Core

60.3 Configuration options

Table 1032 shows the configuration options of the core (VHDL generics).

60.4 Scan support

Scan support is enabled by setting the SCANTEST generic to 1. When enabled, the asynchronous
reset of any flip-flop will be connected to TESTRT when TESTEN = ‘1’.

Table 1032.Configuration options

Generic Function Allowed range Default
scantest Enable scantest mode 0 - 1 0
tech Selects technology for DDR registers when input_type =

3, 4 or 6, as well as technology for clock buffer when
input_type = 0, 5, 6 and rxclkbuftype /= 0.

0 - NTECH 1

input_type Selects receiver type. 0 = Self clocking (xor), 1 = Inter-
face for SpaceWire transceiver, 2 = Single data rate sam-
pling, 3 and 4 = Double data rate sampling, 5 = Self-
clocking with external recovery, 6 = Self-clocking with
external recovery and DDR register for data. This
generic must be set to the same value as the GRSPW2 /
GRSPWROUTER / GRSPW_CODEC generic with the
same name.

0 - 4 0

input_level Selects level for pads instantiated within PHY. Only used
when input_type = 4.

- 0

inpput_voltage Selects voltage for pads insantiated within PHY. Only
used when input_type = 4.

- 0

rxclkbuftype Selects clock buffer type for receiver clock. 0 = No clock
buffer (synthesis tools may still infer a buffer). 1 = Hard-
wired clock, 2 = Routed clock.

0 - 2 0

rstsrctmr Enables the Triple Module Redundancy for the asyn-
chronous reset nets of the core

0 - 1 0
GRIP, Sep 2018, Version 2018.3 830 www.cobham.com/gaisler

GRLIB IP Core

60.5 Signal descriptions

Table 1033 shows the interface signals of the model (VHDL ports).

Table 1033.Signal descriptions

Signal name Field Type Function Active
RSTN - Input Reset Low
RXCLKI - Input Receiver clock input. See sections 60.2.1

through 60.2.1 for details on how this signal is
used for respective input type.

-

RXCLKIN - Input The inverse of RXCLKI should be inputed here.
See sections 60.2.1 through 60.2.1 for details on
how this signal is used for respective input type.

-

NRXCLKI - Input The inverse of RXCLKI should be inputed here.
See sections 60.2.1 through 60.2.1 for details on
how this signal is used for respective input type.

-

DI - Input SpaceWire data input. When using a transceiver
(input_type = 1), the transceiver’s RxDR output
should be connected to this input.

-

SI - Input SpaceWire strobe input. When using a trans-
ceiver (input_type = 1), the transceiver’s RxDF
output should be connected to this input.

-

DO(1:0) - Output Recovered data. Synchronous to RXCLKO.
Should be connected to data inputs on GRSPW2
/ GRSPWROUTER / GRSPW_CODEC.

-

DOV(1:0) - Output Data valid. Synchronous to RXCLKO. Should
be connected to data valid inputs on GRSPW2 /
GRSPWROUTER / GRSPW_CODEC.

High

DCONNECT(1:0) - Output Disconnect strobe signals. Synchronous to
RXCLKO. Should be connected to the discon-
nect inputs on GRSPW2 / GRSPWROUTER /
GRSPW_CODEC.

-

DCONNECT2
(1:0)

- Output If the generic rstsrctmr is set to 1 (TMR
enabled), it is a replication of DCONNECT. It
should be connected to the disconnect inputs on
GRSPW2 / GRSPW_CODEC.
If the generic rstsrctmr is set to 0 (TMR dis-
abled), this signal is set to low and has no use.

-

DCONNECT3
(1:0)

- Output If the generic rstsrctmr is set to 1 (TMR
enabled), it is a replication of DCONNECT. It
should be connected to the disconnect inputs on
GRSPW2 / GRSPW_CODEC.
If the generic rstsrctmr is set to 0 (TMR dis-
abled), this signal is set to low and has no use.

-

RXCLKO - Output Receiver clock output. Should be connected to
receiver clock inputs on GRSPW2 / GRSP-
WROUTER / GRSPW_CODEC.

-

TESTRST - Input Scan test reset. Low
TESTEN - Input Scan test enable. High
GRIP, Sep 2018, Version 2018.3 831 www.cobham.com/gaisler

GRLIB IP Core

60.6 Library dependencies

Table 1034 shows the libraries used when instantiating the model (VHDL libraries).

60.7 Instantiation

This example shows how the core can be instantiated in DDR mode (input_type = 3). rxclkin is used
if the technology cannot generate the inverted clock in the DDR register otherwise it can be left float-
ing. nrxclki is not needed at all for this mode and spw_rxtxclk is only connected not to violate VHDL
syntax. Only one port is used so the same clock is coupled to both receiver clock inputs.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.spacewire.all;

entity spacewire_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- spacewire signals
 spw_rxdp : in std_ulogic;
 spw_rxdn : in std_ulogic;
 spw_rxsp : in std_ulogic;
 spw_rxsn : in std_ulogic;
 spw_txdp : out std_ulogic;
 spw_txdn : out std_ulogic;
 spw_txsp : out std_ulogic;
 spw_txsn : out std_ulogic;

 spw_rxtxclk : in std_ulogic;
 spw_rxclkn : in std_ulogic
);
end;

architecture rtl of spacewire_ex is

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

 -- Spacewire signals
 signal swni : grspw_in_type;
 signal swno : grspw_out_type;
 signal spw_rxclk : std_logic_vector(1 downto 0);
 signal dtmp : std_ulogic;
 signal stmp : std_ulogic;
 signal rxclko : std_ulogic;
begin

 -- AMBA Components are instantiated here

 spw_phy0 : grspw2_phy
 generic map(
 scantest => 0,

Table 1034.Library dependencies

Library Package Imported unit(s) Description
GAISLER SPACEWIRE component Component declaration.
GRIP, Sep 2018, Version 2018.3 832 www.cobham.com/gaisler

GRLIB IP Core

 tech => memtech,
 input_type => 3)
 port map(
 rstn => rstn,
 rxclki => spw_rxtxclk,
 rxclkin => spw_rxclkn,
 nrxclki => spw_rxtxclk,
 di => dtmp,
 si => stmp,
 do => swni.d(1 downto 0),
 dov => swni.dov(1 downto 0),
 dconnect => swni.dconnect(1 downto 0),
 dconnect2 => swni.dconnect2(1 downto 0),
 dconnect3 => swni.dconnect3(1 downto 0),
 rxclko => rxclko);

 sw0 : grspw2
 generic map(
 tech => memtech,
 hindex => 0,
 pindex => 10,
 paddr => 10,
 pirq => 10,
 ports => 1,
 dmachan => 1,
 rmap => 0,
 rmapcrc => 1,
 fifosize1 => 32,
 fifosize2 => 32,
 rxunaligned => 1,
 rmapbufs => 4,
 output_type => 1,
 input_type => 3,
 rxtx_sameclk => 1)
 port map(rstn, clkm, rxclko, rxclko, spw_rxtxclk, spw_rxtxclk, ahbmi,
 ahbmo(0), apbi, apbo(10), swni, swno);

 swni.tickin <= ’0’; swni.rmapen <= ’1’;
 swni.clkdiv10 <= conv_std_logic_vector(SPW_TX_FREQ_KHZ/10000-1, 8);

 spw_rxd_pad : inpad_ds generic map (padtech, lvds, x25v)
 port map (spw_rxdp, spw_rxdn, dtmp);
 spw_rxs_pad : inpad_ds generic map (padtech, lvds, x25v)
 port map (spw_rxsp, spw_rxsn, stmp);
 spw_txd_pad : outpad_ds generic map (padtech, lvds, x25v)
 port map (spw_txdp, spw_txdn, swno.d(0), gnd(0));
 spw_txs_pad : outpad_ds generic map (padtech, lvds, x25v)
 port map (spw_txsp, spw_txsn, swno.s(0), gnd(0));
 ...
GRIP, Sep 2018, Version 2018.3 833 www.cobham.com/gaisler

GRLIB IP Core

61 GRSPW_CODEC - SpaceWire encoder-decoder

61.1 Overview

The SpaceWire encoder-decoder implements an encoder-decoder compliant to the SpaceWire stan-
dard (ECSS-E-50-12C). It provides a generic host-interface consisting of control signals, status sig-
nals, time-code interface and 9-bit wide data buses connecting to a pair of FIFOs.
The core can also be configured with two SpaceWire ports with manual or automatic switching
between them.
Transmitter outputs can be either Single Data Rate (SDR), Double Data Rate (DDR) or connected to
an SpaceWire transceiver. The receiver can be connected either to an SpaceWire transceiver or
recover the data itself using a self-clocking scheme or sampling (SDR or DDR).
The core is practically identical to the encoder-decoder used in the GRSPW2, the only difference
being the host-interface.

61.2 Operation

61.2.1 Overview

A block diagram of the internal structure of the core can be found in figure 162. It consists of the
receiver, transmitter and the link interface FSM. They handle communication on the SpaceWire net-
work. The PHY blocks provides a common interface for the receiver to the four different data recov-
ery schemes and is external to this core. A short description is found in section 61.2.6. The complete
documentation is found in the GRSPW2_PHY section of the GRIP user manual.
Time-codes are transmitted through a signal interface as specified in the SpaceWire standard.

61.2.2 Link-interface FSM

The link-interface FSM controls the link interface (a more detailed description is found in the Space-
Wire standard). The low-level protocol handling (the signal and character level of the SpaceWire stan-
dard) is handled by the transmitter and receiver while the FSM handles the exchange level.
The link-interface FSM is controlled through the control signals. The link can be disabled through the
link disabled signal, which depending on the current state, either prevents the link-interface from
reaching the started state or forces it to the error-reset state. When the link is not disabled, the link

Figure 162. Block diagram

TRANSMITTER

TXCLK

LINK INTERFACE

TRANSMITTER
D(1:0)

S(1:0)

FSM

RECEIVER0

FIFO

RECEIVER
FIFO

D0

S0

RECEIVER1

PHY

PHY

D

DV

D1

S1

D

DV

CONTROL SIGNALS

STATUS SIGNALS
GRIP, Sep 2018, Version 2018.3 834 www.cobham.com/gaisler

GRLIB IP Core

interface FSM is allowed to enter the started state when either the link start signal is asserted or when
a NULL character has been received and the autostart signal is asserted.
The current state of the link-interface determines which type of characters are allowed to be transmit-
ted which together with the requests made from the host interface determine what character will be
sent.
Time-codes are sent when the FSM is in the run-state and a request is made through the time-interface
(described in section 61.2.8).
When the link-interface is in the connecting- or run-state it is allowed to send FCTs. FCTs are sent
automatically by the link-interface when possible. This is done based on the maximum value of 56 for
the outstanding credit counter and the currently free space in the receiver FIFO. FCTs are sent as long
as the outstanding counter is less than or equal to 48 and there are at least 8 more empty FIFO entries
than the counter value.
N-Chars are sent in the run-state when they are available from the transmitter FIFO and there are
credits available. NULLs are sent when no other character transmission is requested or the FSM is in
a state where no other transmissions are allowed.
The credit counter (incoming credits) is automatically increased when FCTs are received and
decreased when N-Chars are transmitted. Received N-Chars are stored to the receiver N-Char FIFO
while received Time-codes are handled by the time-interface.

61.2.3 Transmitter

The state of the FSM, credit counters, requests from the time-interface and requests from the transmit-
ter FIFO are used to decide the next character to be transmitted. The type of character and the charac-
ter itself (for N-Chars and Time-codes) to be transmitted are presented to the low-level transmitter
which is located in a separate clock-domain.
This is done because the SpaceWire link is usually run on a different frequency than the host system
clock. The core has a separate clock input which is used to generate the transmitter clock. More infor-
mation on transmitter clock generation is found in section 61.5.2. Since the transmitter often runs on
high frequency clocks (> 100 MHz) as much logic as possible has been placed in the system clock
domain to minimize power consumption and timing issues.
The transmitter logic in the host clock domain decides what character to send next and sets the proper
control signal and presents any needed character to the low-level transmitter as shown in figure 163.
The transmitter sends the requested characters and generates parity and control bits as needed. If no
requests are made from the host domain, NULLs are sent as long as the transmitter is enabled. Most of
the signal and character levels of the SpaceWire standard is handled in the transmitter. External LVDS
drivers are needed for the data and strobe signals. The outputs can be configured as either single- or
double data rate. The latter increases maximum bitrate significantly but is not available for all techo-
nologies.

Transmitter Clock Domain Host Clock Domain

Transmitter

D

S

Send Time-code
Send FCT
Send NChar
Time-code[7:0]
NChar[8:0]

Figure 163. Schematic of the link interface transmitter.
GRIP, Sep 2018, Version 2018.3 835 www.cobham.com/gaisler

GRLIB IP Core

61.2.4 Receiver

The receiver detects connections from other nodes and receives characters as a bit stream recovered
from the data and strobe signals by the GRSPW2_PHY module which presents it as a data and data-
valid signal. Both the receiver and GRSPW2_PHY are located in a separate clock domain which runs
on a clock outputed by the PHY. More information on the clock-generation can be found in section
61.5.2.
The receiver is activated as soon as the link-interface leaves the error reset state. Then after a NULL is
received it can start receiving any characters. It detects parity, escape and credit errors which causes
the link interface to enter the error-reset state. Disconnections are handled in the link-interface part in
the tx clock domain because no receiver clock is available when disconnected.
Received characters are flagged to the host domain and the data is presented in parallel form. The
interface to the host domain is shown in figure 164. L-Chars are the handled automatically by the host
domain link-interface part while all N-Chars are stored in the receiver FIFO for further handling. If
two or more consecutive EOPs/EEPs are received all but the first are discarded.

61.2.5 Dual port support

The core can be configured to include an additional SpaceWire port. With dual ports the transmitter
drives an additional pair of data/strobe output signals and one extra receiver is added to handle a sec-
ond pair of data/strobe input signals.
One of the ports is set as active (how the active port is selected is explained below) and the transmitter
drives the data/strobe signals of the active port with the actual output values as explained in section
61.2.3. The inactive port is driven with zero on both data and strobe.
Both receivers will always be active but only the active port’s interface signals (see figure 164) will be
propagated to the link interface FSM. Each time the active port is changed, the link will be reset so
that the new link is started in a controlled manner.
When the noportforce signal is zero, the portsel signal selects the active port. When the noportforce
signal is set to one, the active port is automatically selected during initialization. For the latter mode,
the port on which the first bit is received will be selected as the active port. If the initialization attempt
fails on that port the link is reset and the active port is again sected based on which port the first bit is
received.

61.2.6 Receiver PHY

The receiver supports four different input data recovery schemes: self-clocking (xor), sampling SDR,
sampling DDR and the SpaceWire transceiver. These four recovery types are handled in the PHY
module and data is presented to the receiver as a data and data-valid signal. This part of the receiver
must often be constrained and placing it in a separate module makes this process easier with the most
common synthesis tools. The input type is selected using a VHDL generic. More information about
the PHY can be found in the GRSPW2_PHY section of the GRIP user manual.

Receiver Clock Domain Host Clock Domain

Receiver

D

DV

Got Time-code
Got FCT

Got NChar
Time-code[7:0]
NChar[7:0]

Got EEP
Got EOP

Figure 164. Schematic of the link interface receiver.
GRIP, Sep 2018, Version 2018.3 836 www.cobham.com/gaisler

GRLIB IP Core

61.2.7 Setting link-rate

The input signal IDIVISOR determines the link-rate during initialization (all states up to and includ-
ing the connecting-state). The value of this input signal is also used to calculate the link interface FSM
timeouts (6.4 us and 12.8 us, as defined in the SpaceWire standard). The IDIVISOR signal should
always be set so that a 10 Mbit/s link-rate is achieved during initialization. In that case the timeout
values will also be calculated correctly.
To achieve a 10 Mbit/s link-rate, the IDIVISOR signal should be set according to the following for-
mulas:
With single data rate (SDR) outputs:
IDIVISOR = (<frequency in MHz of TXCLK> / 10) - 1

With double data rate (DDR) outputs, or when connected to Cobham SpaceWire transceiver:
IDIVISOR = (2 x <frequency in MHz of TXCLK> / 10) - 1

The link-rate in run-state is controlled with the run-state divisor, the RDIVISOR input signal. The
link-rate in run-state is calculated according to the following formulas:
With SDR outputs:
<link-rate in Mbits/s> = <frequency in MHz of TXCLK> / (RDIVISOR+1)

With DDR outputs / Cobham SpaceWire transceiver:
<link-rate in Mbits/s> = 2 x <frequency in MHz of TXCLK> / (RDIVISOR+1)

The value of RDIVISOR only affects the link-rate in run-state, and does not affect the 6.4 us or 12.8
us timeouts values.
Note that when using DDR ouputs, or when connected to Cobham SpaceWire transceiver, there is a
limitation in the usable clock divisor values. All even values (except 0) will result in the same bitrate
as the one higher odd number.
An example of clock divisor and resulting link-rate, with a TXCLK frequency of 50 MHz, is shown in
the table 1035. Also see 61.5.2 for information on clock requirements.

61.2.8 Time interface

The time interface is used for sending Time-codes over the SpaceWire network and consists of a
timein signal, timectrlin signal, tickin signal, timeout signal, timectrlout signal and a tickout signal.

Table 1035.SpaceWire link-rate example with 50 MHz TXCLK

Clock divisor value

Link-rate in Mbit/s

SDR outputs
DDR outputs / Cobham
SpaceWire transceiver

0 50 100
1 25 50
2 16.67 25
3 12.5 25
4 10 16.67
5 8.33 16.67
6 7.14 12.5
7 6.25 12.5
8 5.56 10
9 5 10
GRIP, Sep 2018, Version 2018.3 837 www.cobham.com/gaisler

GRLIB IP Core

Each Time-code sent from the core is a concatenation of the timectrlin and the timein signal. It is
transmitted each time tickin is kept asserted until the tickin_done output is asserted. Time-codes are
only transmitted when the link-interface FSM is in run-state and when the previous character trans-
mission is finished. This can cause a delay between when the assertion of tickin_done after tickin has
been asserted. If tickin is not kept asserted until tickin_done is asserted the time-code will not be
transmitted. Figure 165 shows an example of how a time-code is transmitted.

Received Time-codes are presented on the timectrlout and timectrl signals. They are valid when the
tickout output is asserted. A tickout is generated each time a valid time-code is received. When the
tickout is generated the tick-out signal will be asserted one clock-cycle. Figure 166 shows how time-
codes are received.

61.3 Receiver interface

The receiver interface consists of the following signals connected to the receiver FIFO: rxicharav,
rxicharcnt, rxichar, rxiread. Rxicharav is asserted when there are one or more characters available in
the receiver FIFO while rxicharcnt shows the actual number available. Rxiread should be asserted for
one cycle when rxicharav is asserted to read out a character. The character will be available on rxichar
the cycle following the assertion of rxiread. Figure 167 shows an example of reading characters from
the receiver FIFO.

Figure 165. Transmitting a time-code using tickin, timein and timectrlin.

timein

tickin

clk

T0

tickin_done

timectrlin C0

Figure 166. Receiving time-codes using tickout, timeout and timectrlout.

timeout

tickout

clk

timectrlout

T0 T1

C0 C1
GRIP, Sep 2018, Version 2018.3 838 www.cobham.com/gaisler

GRLIB IP Core
61.3.1 Link errors

When an link error occurs during reception an EEP is automatically inserted into the Receiver FIFO if
the previous character written to the FIFO was not an EOP or EEP.

61.4 Transmitter interface

The transmitter interface consists of the following signals: txiwrite, txichar, txiflush, txicharcnt, txi-
full. Txifull is asserted when the transmitter FIFO is full while txicharcnt shows the actual number of
characters currently in the FIFO. Txiwrite should be asserted for one cycle to write the value on
txichar into the FIFO. Txiflush should be asserted for one cycle to discard all characters in the FIFO.
No new characters should be written to the FIFO the same or the following cycle that txiflush is
asserted. Figure 168 shows an example of writing characters to the transmitter FIFO.

Figure 167. Receiving characters through the FIFO interface.

rxichar

rxiread

clk

D0

rxicharav

1 1rxicharcnt 0 00

D2

Figure 168. Transmitting characters through the FIFO interface.

txichar

txiwrite

clk

D0 D1

txifull

64 64txicharcnt 6363
GRIP, Sep 2018, Version 2018.3 839 www.cobham.com/gaisler

GRLIB IP Core
61.4.1 Link errors

When a link error occurs characters read from the transmitter FIFO by the transmission logic will be
discarded up to and including the next EOP or EEP character.

61.5 Implementation

61.5.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual).
There are five input resets, in order to cover every clock domain: AMBA reset (rst), transmitter syn-
chronous reset (txsyncrst), receiver synchronous reset for port 0 (rxsyncrst0), receiver synchronous
reset for port 1 (rxsyncrst1) and a receiver asynchronous reset shared by both ports (rxasyncrst).
Additionally, the core outputs an internal reset for synchronization between transmitter and receivers,
lio.rxrst.
The core does not implement any kind of internal reset generation or synchronization, the input resets
are completely independent. The reset generation shall be done in a higher instance, taking into
account the clock domains and also the output reset of the core. A description of how the resets shall
be combined and generated can be found below. Cobham Gaisler advise to follow these guidelines
unless indicated otherwise.
• The AMBA reset is the external reset synchronized with the AMBA clock by using a reset gener-
ator.
• The transmitter reset is the external reset synchronized with the transmitter clock by using a reset
generator.
• The asynchronous reset for both receiver channels is simply the output synchronization reset,
lio.rxrst, connected directly to the input rxasyncrst.
• The synchronous reset for each receiver channel is the output receiver reset, lio.rxrst, synchro-
nized with the appropriate clock domain by using a reset generator. Its output is the synchronous reset
for the specific receiver port, rxsyncrst0 or rxsyncrst1.
Further information about the proper way of combining the reset signals or using the wrapper can be
found in 61.13. Instantiation.

Figure 169. Use of txiflush.

txichar

txiwrite

clk

D0 D1

txifull

0 0txicharcnt 64

txiflush

1 2
GRIP, Sep 2018, Version 2018.3 840 www.cobham.com/gaisler

GRLIB IP Core

61.5.2 Clock-generation

The receiver module found in figure 162 should be clocked with a clock outputed by the GRSPW2_-
PHY module. See the example instantiation in this section and the GRSPW2_PHY section of the grip
manual for more information on how to connect this clock.
The transmitter clock is generated from the txclk input. A separate clock input is used to allow the
transmitter to be run at much higher frequencies than the system clock. The SpaceWire node contains
a clock-divider which divides the txclk signal to the wanted frequency. The transmitter clock should
be 10 MHz during initialization and any frequency above 2 MHz in the run-state.
There is an input signal called clkdiv10 which sets the frequency during initialisation and one called
clkdiv which is used in run-state. See 61.2.7 for details on how to set the clock divisor values.
Since only integer values are allowed for the clock division and the required init-frequency is 10 Mhz
the frequency of the txclk input must be a multiple of 10 MHz. The clock divisor value is 8-bits wide
so the maximum txclk frequency supported is 2.56 GHz (note that there is also a restriction on the
relation between the system and transmit clock frequencies).

61.5.3 Timers

There are two timers in the codec: one for generating the 6.4/12.8 us periods and one for disconnect
timing.
The timeout periods are generated from the tx clock whose frequency must be at least 10 MHz to
guarantee disconnect timing limits. The same clock divisor is used as for the tx clock during initialisa-
tion so it must be set correctly for the link timing to work.

61.5.4 Synchronization

The transmitter and receiver bit rates can be eight times higher than the system clock frequency. This
includes a large margin for clock skew and jitter so it might be possible to run at even higher rate dif-
ferences. Note also that the receiver clocks data at both negative and positive edges for the input
modes 0 and 1 so the bitrate is twice the clock frequency. There is no direct relationship between
bitrate and frequency for the sampling modes.
The clock synchronization is just one limiting factor for the clock frequency, it might for example not
be possible to achieve the highest possible frequency for certain technologies.
The asynchronous reset to the receiver clock domain has to have a maximum delay of one receiver
clock cycle to ensure correct operation. This is needed because the receiver uses a completely asyn-
chronous reset. To make sure that nothing bad happens there is a synchronous reset guard which pre-
vents any signals from being assigned before all registers have their reset signals released.
In the sampling modes this asynchronous reset can be removed if both the receiver and transmitter
runs on the same clock. In that case set the RXTX_SAMECLK generic to 1.

61.5.5 Fault-tolerance

The core can optionally be implemented with fault-tolerance against SEU errors in the FIFO memo-
ries. The fault-tolerance is enabled through the ft VHDL generic. Possible options are byte parity pro-
tection (ft = 1) or TMR registers (ft = 2). Note: the GPL version of GRLIB does not include fault-
tolerance, and the core will not work unless the ft VHDL generic is 0.

61.5.6 Synthesis

The fact there are three clock domains in the core of which all are possibly high frequency clocks
makes it necessary to declare all paths between the clock domains as false paths. In Synplify this is
most easily done by declaring all the clocks to be in different clockgroups in the sdc file (if Synplify
GRIP, Sep 2018, Version 2018.3 841 www.cobham.com/gaisler

GRLIB IP Core

does not automatically put them in different groups). This will disable any timing considerations
between the clock domains and these constraints will also propagate to the place and route tool.

61.5.7 Technology mapping

The core has two generics for technology mapping: tech and techfifo. Tech selects the technology for
DDR registers (if applicable) and FIFO memories. Techfifo selects whether tech should be used to
select the technology for the FIFO memories or if they should be inferred. Tech and memtech can be
set to any value from 0 to NTECH as defined in the GRLIB.TECH package.

61.5.8 RAM usage

The core maps all RAM memories on the syncram_2p component if the ft generic is 0 and to the syn-
cram_2pft component for other values. The syncrams are located in the technology mapping library
(TECHMAP). The organization of the different memories are described below. If techfifo and/or
memtech is set to 0 the synthesis tool will infer the memories. Either RAM blocks or flip-flops will be
used depending on the tool and technology. The number of flip-flops used is syncram depth x syncram
width for all the different memories.
Transmitter FIFO
The transmitter FIFO consists of one syncram_2p block with a width of 9-bits. The depth is deter-
mined by the configured FIFO depth. Table 1036 shows the syncram organization for the allowed
configurations.

Receiver FIFO
The receiver FIFO consists of one syncram_2p block with a width of 9-bits. The depth is determined
by the configured FIFO depth. Table 1037 shows the syncram organization for the allowed configura-
tions.

61.6 Registers

There are no user accessible registers in the core.

Table 1036.syncram_2p sizes for the transmitter FIFO.

Fifosize Syncram_2p organization
16 16x9
32 32x9
64 64x9
... ...
2048 2048x9

Table 1037.syncram_2p sizes for the receiver FIFO.

Fifosize Syncram_2p organization
16 16x9
32 32x9
64 64x9
... ...
2048 2048x9
GRIP, Sep 2018, Version 2018.3 842 www.cobham.com/gaisler

GRLIB IP Core

61.7 Vendor and device identifiers

The vendor and device identifiers are only applicable for cores with AHB interfaces.

61.8 Configuration options

Table 1038 shows the configuration options of the core (VHDL generics).

61.9 Signal descriptions

Table 1039 shows the interface signals of the core (VHDL ports).

Table 1038.Configuration options

Generic Function Allowed range Default
ports Sets the number of ports 1 - 2 1
input_type Select receiver type. 0 = Self clocking (xor), 1 = Interface

for SpaceWire transceiver, 2 = Single data rate sampling, 3
and 4 = Double data rate sampling, 5 = Self-clocking with
external recovery, 6 = Self-clocking with external recovery
and DDR register for data.. This generic must be set to the
same value as the GRSPW2_PHY generic with the same
name.

0 - 6 0

output_type Select transmitter type. 0 = single data rate, 1 = double data
rate, 2 = interface for SpaceWire transceiver

0 - 2 0

rxtx_sameclk Set to one if the same clock net is connected to both the
receiver and transmitter (which means this feature is only
applicable when the receiver uses sampling). This will
remove some unnecessary synchronization registers.

0 - 1 0

fifosize Sets the number of entries in the 9-bit wide transmitter and
receiver FIFOs.

16 - 2048 64

tech Technology for FIFO memories. 0 - NTECH inferred
scantest Enable scantest features. 0 - 1 0
techfifo Enable GRLIB technology mapped FIFO memories. If not

enabled a behavioral model is used and the result will be
synthesis tool dependent.

0 - 1 0

ft Enable fault-tolerance against SEU errors 0 - 2 0
rstsrctmr Enables the Triple Module Redundancy for the asynchro-

nous reset nets of the core
0 - 1 0

Table 1039. Signal descriptions

Signal name Field Type Function Active
RST N/A Input AMBA Reset Low
CLK N/A Input AMBA Clock -
RXASYNCRST N/A Input Asynchronous reset for ports 0 and 1 of the

receiver
Low

RXSYNCRST0 N/A Input Synchronous reset for port 0 of the receiver Low
RXCLK0 N/A Input Receiver clock for port 0. -
RXSYNCRST1 N/A Input Synchronous reset for port 1 of the receiver Low
RXCLK1 N/A Input Receiver clock for port 1. Unused if the VHDL

generic ports is 2.
-

TXSYNCRST N/A Input Synchronous reset for the transmitter Low
TXCLK N/A Input Transmitter default run-state clock -
GRIP, Sep 2018, Version 2018.3 843 www.cobham.com/gaisler

GRLIB IP Core
TXCLKN N/A Input Transmitter inverted default run-state clock.
Only used in DDR transmitter mode for technol-
ogies not supporting local generation of inverted
clock.

-

TESTEN N/A Input Scan test enable High
TESTRST N/A Output Scan test reset Low
LII D[3:0] Input Data input. Should be connected to the GRSP-

W2_PHY. Each bit is valid when the bit at the
corresponding index in the DV signal is asserted.
Bits (1:0) are used for port 0 and bits (3:2) are
used for port 1 if enabled. If only one bit is
received during one clock cycle then only the bit
at the lower index is valid. If both bits are valid
then the one at the lower index was the one
received first. Bits (1:0) should be sycnhronous
to RXCLK0 and bits (3:2) to RXCLK1.

-

DV[3:0] Input Data valid qualifier for the D input. High
DCONNECT[3:0] Input Disconnect reset. When asserted the correspond-

ing disconnect counter will be reset. The count-
ers connected to bits (1:0) apply to port 0 while
(3:2) apply to port 1 if enabled.

Low

DCONNECT2[3:0] Input Disconnect. Bits 3:2 are unused in one-port con-
figurations. This is a copy of DCONNECT, as
part of the triplication of the combinational logic
related to asynchronous reset nets.

Low

DCONNECT3[3:0] Input Disconnect. Bits 3:2 are unused in one-port con-
figurations. This is a copy of DCONNECT, as
part of the triplication of the combinational logic
related to asynchronous reset nets.

Low

LINKDISABLED Input Disables the SpaceWire link High
LINKSTART Input Starts the SpaceWire link High
AUTOSTART Input Enables the autostart feature for the SpaceWire

link
High

PORTSEL Input Selects the active port if the NOPORTFORCE
signal is set to 0 and the core is configured with
dual ports.

-

NOPORTFORCE Input Disables forced portselection using the PORT-
SEL signal and lets the core automatically select
the active link.

High

RDIVISOR[7:0] Input Clock divisor value used for generating the
transmit frequency from the txclk input in run-
state. Bit 0 is the least significant. See 61.2.7 for
details on how to set this input signal.

-

IDIVISOR[7:0] Input Clock divisor value used for generating the
transmit frequency from the txclk input during
initialization (started and connecting states). Bit
0 is the least significant. See 61.2.7 for details on
how to set this input signal.

-

RXIREAD Input Receiver FIFO read. Assert for one cycle (syn-
chronous to CLK) and the next character will be
available on the RXICHAR output the next clock
cycle if available in the FIFO.

High

Table 1039. Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 844 www.cobham.com/gaisler

GRLIB IP Core
RXIFIFORST Input Empty the receiver FIFO. When asserted for one
cycle (synchronous to CLK) all characters cur-
rently present in the FIFO will be discarded. The
reset will have taken on the second cycle after
the reset. The first cycle after characters may still
be present.

High

TXIWRITE Input Transmitter FIFO write. Assert for one cycle
(synchronous to CLK) to write the character on
the TXICHAR input into the FIFO on the rising
edge of the clock.

High

TXICHAR[8:0] Input Transmit character input to FIFO. Characters are
transmitted in the order they are written into the
FIFO. Bit 0 is the SpaceWire control bit. When
set to 1 only bits (2:1) are transmitted (EOP or
EEP). Bits are transmitted in order beginning at
the lowest index.

-

TXIFIFORST Input Empty the transmitter FIFO. When asserted for
one cycle (synchronous to CLK) all characters
currently present in the FIFO will be discarded.
New characters shall not be written to the trans-
mitter FIFO the same cycle or the cycle after
TXIFIFORST is asserted.

High

TICKIN Input Time counter tick input. Should be asserted one
clock cycle (synchronous to CLK) to transmit a
time-code. If the FSM is not in run-state no time-
code will be transmitted and the tick will not be
registered. The TICKIN_DONE output can be
used to verify that the time-code has been trans-
mitted,

High

TIMECTRLIN[1:0] Input Control bits for time-code. Transmitted in order
starting at the lowest index when tickin is
asserted. The controlbits are transmitted after the
time-count value.

-

TIMEIN[5:0] Input Time-count value for time-code. Transmitted in
order starting at the lowest index when tickin is
asserted.

-

Table 1039. Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 845 www.cobham.com/gaisler

GRLIB IP Core
LIO DO[3:0] Output Data output. Bit 0 is the standard output for port
0 and bit 2 for port 1 if enabled. Bit 1 is used for
port 0 and bit 3 for port 1 if the core is connected
to an external PHY.

-

SO[3:0] Output Strobe output. Bit indexes are used correspond-
ingly to the DO output.

-

STATE[2:0] Output Current linkinterface FSM state. 0=error-reset,
1=error-wait, 2=ready, 3=started, 4=connecting,
5=run.

-

ACTPORT Output 0=port 0 is active and 1=port 1 is active. Unused
if the second port is not enabled.

-

DCONNECTERR Output Asserted for one clock cycle (synchronous to
CLK) when a disconnect error is detected.

High

CREDERR Output Asserted for one clock cycle (synchronous to
CLK) when a credit error is detected.

High

ESCERR Output Asserted for one clock cycle (synchronous to
CLK) when an escape error is detected.

High

PARERR Output Asserted for one clock cycle (synchronous to
CLK) when a parity error is detected.

High

RXICHARAV Output Asserted when one or more characters are avail-
able in the receiver FIFO. Synchronous to CLK.

High

RXICHARCNT[6:0] Output Number of characters present in the receiver
FIFO. Synchronous to CLK.

-

RXICHAR[8:0] Output Character read from the receiver FIFO. Valid the
clock cycle following the assertion of the
RXIREAD input. Synchronous to CLK. Bit 0
corresponds to the SpaceWire control bit and
when set to 1 only bits (2:1) are valid (EOP or
EEP).

-

TXICHARCNT[6:0] Output Number of characters present in the transmitter
FIFO. Synchronous to CLK.

-

TXIFULL Output Asserted when the transmitter FIFO is full. Syn-
chronous to CLK.

High

TXIEMPTY Output Asserted when the transmitter FIFO is empty.
Synhronous to CLK.

High

TICKIN_DONE Output Asserted for one cycle when the time-code has
been transmitted resulting from an assertion of
TICKIN. When TICKIN_DONE is asserted the
TICKIN should be deasserted the same cycle if it
is not desired that another time-code should be
deasserted.

High

TICKOUT Output Time-code tickout output. Asserted for one clock
cycle (synchronous to CLK) when a time-code
has been received. When asserted the TIMEOUT
and TIMECTRLOUT outputs are valid.

High

TIMEOUT[7:0] Output Time-code output. Synchronous to CLK. -
RXRST Output Internal reset generated by the transmitter for

synchronization purpose between transmitter and
both receiver channels. It shall be used to gener-
ate the asynchronous and synchronous receiver
resets.

Low

Table 1039. Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 846 www.cobham.com/gaisler

GRLIB IP Core

61.10 Signal definitions and reset values

The signals and their reset values are described in table 1040.

61.11 Timing

The timing waveforms and timing parameters are shown in figure 170 and are defined in table 1041.
The SpaceWire jitter and skew timing waveforms and timing parameters are shown in figure 171 and
are defined in table 1042.

Table 1040.Signal definitions and reset values

Signal name Type Function Active Reset value
spw_clk Input Transmitter default run-state clock Rising edge -
spw_rxd Input, LVDS Data input, positive High -
spw_rxdn Input, LVDS Data input, negative Low -
spw_rxs Input, LVDS Strobe input, positive High -
spw_rxsn Input, LVDS Strobe input, negative Low -
spw_txd Output, LVDS Data output, positive High Logical 0
spw_txdn Output, LVDS Data output, negative Low Logical 1
spw_txs Output, LVDS Strobe output, positive High Logical 0
spw_txsn Output, LVDS Strobe output, negative Low Logical 1
GRIP, Sep 2018, Version 2018.3 847 www.cobham.com/gaisler

GRLIB IP Core
Table 1041.Timing parameters

Name Parameter Reference edge Min Max Unit
tSPW0 transmit clock period - TBD - ns

tSPW1 clock to output delay rising spw_clk edge TBD TBD ns

tSPW2 input to clock hold - - - not applicable

tSPW3 input to clock setup - - - not applicable

tSPW4 output data bit period - - clk periods
- tSPW0 -

TBD
tSPW0
+TBD

ns

tSPW5 input data bit period - TBD - ns

tSPW6 data & strobe edge separation - TBD - ns

tSPW7 data & strobe output skew - - TBD ns

Figure 170. Timing waveforms

tSPW1spw_txd, spw_txdn

spw_clk

tSPW1

tSPW2spw_rxd, spw_rxdn tSPW3

spw_txs, spw_txsn

spw_rxs, spw_rxsn

tSPW0

spw_txd, spw_txdn

spw_txs, spw_txsn

tSPW4

tSPW4

tSPW4

spw_rxd, spw_rxdn

spw_rxs, spw_rxsn

tSPW5

tSPW5

tSPW5

spw_txd, spw_txdn

spw_txs, spw_txsn

tSPW7

tSPW6

tSPW6
GRIP, Sep 2018, Version 2018.3 848 www.cobham.com/gaisler

GRLIB IP Core
61.12 Library dependencies

Table 1043 shows libraries used when instantiating the core (VHDL libraries).

61.13 Instantiation

This example shows how the core can be instantiated.
Normally di, si, do and so should be connected to input and output pads configured with LVDS driv-
ers. How this is done is technology dependent.
The core in the example is configured with non-ft technology mapped FIFOs of size 64. It uses DDR
sampling on the input and the combined sampling/transmitter frequency (spw_rxtxclk) is 50MHz.
The minimum amount of signals that need to be driven to put the codec in a deterministic initial state
is shown.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.tech.all;
library gaisler;
use gaisler.spacewire.all;

Table 1042.Skew and jitter timing parameters

Name Parameter Reference edge Min Max Unit
tskew skew between data and strobe - - TBD ns

tjitter jitter on data or strobe - - TBD ns

tds minimum separation between
data and strobe edges

- TBD - ns

tdclk delay from edge of data or strobe
to the receiver flip-flop

- - TBD ns

thold hold timer on receiver flip-flop - TBD - ns

tui unit interval (bit period) - TBD - ns

Table 1043.Library dependencies

Library Package Imported unit(s) Description
GAISLER SPACEWIRE Signals, component Component and record declarations.

Figure 171. Skew and jitter timing waveforms

tskew

tdclk
tjitter

thold

tui

tds

tjitter

d ideal

s ideal

d

s

receive clock
GRIP, Sep 2018, Version 2018.3 849 www.cobham.com/gaisler

GRLIB IP Core

entity spacewire_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- spacewire signals
 spw_rxdp : in std_ulogic;
 spw_rxdn : in std_ulogic;
 spw_rxsp : in std_ulogic;
 spw_rxsn : in std_ulogic;
 spw_txdp : out std_ulogic;
 spw_txdn : out std_ulogic;
 spw_txsp : out std_ulogic;
 spw_txsn : out std_ulogic;

 spw_rxtxclk : in std_ulogic;
 spw_rxclkn : in std_ulogic;
 testen : in std_ulogic;
 testrst : in std_ulogic
);
end;

architecture rtl of spacewire_ex is

 -- Spacewire signals
 signal lii : grspw_codec_in_type;
 signal lio : grspw_codec_out_type;
 signal di : std_ulogic;
 signal si : std_ulogic;
 signal rxclko : std_ulogic;

 -- Internal resets
 signal mrst : std_ulogic;
 signal rxasyncrst: std_ulogic;
 signal rxsyncrst0: std_ulogic;
 signal rxsyncrst1: std_ulogic;
 signal txsyncrst : std_ulogic;

begin

 spw_phy0 : grspw2_phy
 generic map(
 scantest => 0,
 tech => memtech,
 input_type => 3)
 port map(
 rstn => rstn,
 rxclki => spw_rxtxclk,
 rxclkin => spw_rxclkn,
 nrxclki => spw_rxtxclk,
 di => di,
 si => si,
 do => lii.d(1 downto 0),
 dov => lii.dv(1 downto 0),
 dconnect => lii.dconnect(1 downto 0),
 dconnect2 => lii.dconnect2(1 downto 0),
 dconnect3 => lii.dconnect3(1 downto 0),
 rxclko => rxclko);

 -- Internal reset generators (TX, RX0 and RX1 clock domains)

 -- CLK domain (synchronous reset)
 AMBA_rst : rstgen
 port map (rstn, clk, vcc, mrst, open);

 -- TX domain (synchronous reset)
 txrst : rstgen
 port map (rstn, spw_rxtxclk, vcc, txsyncrst, open);

 -- RX domain (asynchronous reset)
 rxasyncrst <= lio.rxrst;
GRIP, Sep 2018, Version 2018.3 850 www.cobham.com/gaisler

GRLIB IP Core
 -- RX domain (synchronous reset)
 rxsyncrst0 : rstgen
 port map (lio.rxrst, rxclk0, vcc, rxsyncrst0, open);
 rxsyncrst1 : rstgen
 port map (lio.rxrst, rxclk1, vcc, rxsyncrst1, open);

 codec : grspw_codec
 generic map(
 ports => 1,
 input_type => 0,
 output_type => 3,
 rxtx_sameclk => 1,
 fifosize => 64,
 tech => 11,
 scantest => 0,
 techfifo => 1,
 ft => 0)
 port map(
 rst => mrst,
 clk => clk,
 rxasyncrst => rxasyncrst,
 rxsyncrst0 => rxsyncrst0,
 rxclk0 => rxclk0,
 rxsyncrst1 => rxsyncrst1,
 rxclk1 => rxclk1,
 txsyncrst => txsyncrst,
 txclk => spw_rxtxclk,
 txclkn => spw_rxtxclk,
 testen => testen,
 testrst => testrst,
 lii => lii,
 lio => lio);

 lii.linkdisabled <= ’1’;
 lii.linkstart <= ’0’;
 lii.autostart <= ’0’;
 lii.portsel <= ’0’;
 lii.noportforce <= ’0’;
 lii.idivisor <= conv_std_logic_vector(4, 8);
 lii.rdivisor <= conv_std_logic_vector(0, 8);

 lii.rxiread <= ’0’;
 lii.txiwrite <= ’0’;
 lii.txichar <= (others => ’0’);
 lii.txiflush <= ’0’;
 lii.tickin <= ’0’;
 lii.timectrlin <= (others => ’0’);

 spw_rxd_pad : inpad_ds generic map (padtech, lvds, x25v)
 port map (spw_rxdp, spw_rxdn, di);
 spw_rxs_pad : inpad_ds generic map (padtech, lvds, x25v)
 port map (spw_rxsp, spw_rxsn, si);
 spw_txd_pad : outpad_ds generic map (padtech, lvds, x25v)
 port map (spw_txdp, spw_txdn, lio.d(0), gnd(0));
 spw_txs_pad : outpad_ds generic map (padtech, lvds, x25v)
 port map (spw_txsp, spw_txsn, lio.s(0), gnd(0));
 ...
GRIP, Sep 2018, Version 2018.3 851 www.cobham.com/gaisler

GRLIB IP Core

62 GRSPW_CODEC_GEN - GRSPW_CODEC wrapper with Std_Logic interface

62.1 Overview

The GRSPW_CODEC_GEN wrapper provides an interface to the GRSPW_CODEC core only using
Std_Logic signals instead of GRLIB records. The GRLIB AMBA plug and play extensions have also
been removed. This document describes the signal interface and how they map to the signal names in
GRLIB. An example instantiation of the core can be found at the end of this document.

62.2 Signal descriptions

Table 1039 shows the interface signals of the core (VHDL ports).

Table 1044. Signal descriptions

Signal name Type Function Active GRLIB signal name
RST Input AMBA reset Low RST
CLK Input System (AMBA) Clock. - CLK
RXASYNCRST Input Receiver asynchronous reset for both ports 0 and

1
Low RXASYNCRST

RXSYNCRST0 Input Receiver synchronous reset for port 0 Low RXSYNCRST0
RXCLK0 Input Receiver clock for port 0. - RXCLK0
RXSYNCRST1 Input Receiver synchronous reset for port 1 Low RXSYNCRST1
RXCLK1 Input Receiver clock for port 1. Unused if the VHDL

generic ports is 2.
- RXCLK1

TXSYNCRST Input Transmitter synchronous reset Low TXSYNCRST
TXCLK Input Transmitter default run-state clock - TXCLK
TXCLKN Input Transmitter inverted default run-state clock.

Only used in DDR transmitter mode for technol-
ogies not supporting local generation of inverted
clock.

- TXCLKN

TESTEN Input Scan test enable High TESTEN
TESTRST Output Scan test reset Low TESTRST
D[3:0] Input Data input. Should be connected to the GRSP-

W2_PHY. Each bit is valid when the bit at the
corresponding index in the DV signal is asserted.
Bits (1:0) are used for port 0 and bits (3:2) are
used for port 1 if enabled. If only one bit is
received during one clock cycle then only the bit
at the lower index is valid. If both bits are valid
then the one at the lower index was the one
received first. Bits (1:0) should be sycnhronous
to RXCLK0 and bits (3:2) to RXCLK1.

- LII.D

DV[3:0] Input Data valid qualifier for the D input. High LII.DV
DCONNECT[3:0] Input Disconnect reset. When asserted the correspond-

ing disconnect counter will be reset. The count-
ers connected to bits (1:0) apply to port 0 while
(3:2) apply to port 1 if enabled.

Low LII.DCONNECT

DCONNECT2
[3:0]

Input SpaceWire Disconnect reset. Copy of DCON-
NECT (triplication of the asynchronous resets
logic).

Low LII.DCONNECT2

DCONNECT3
[3:0]

Input SpaceWire Disconnect reset. Copy of DCON-
NECT (triplication of the asynchronous resets
logic).

Low LII.DCONNECT3

LINKDISABLED Input Disables the SpaceWire link High LII.LINKDISABLED
GRIP, Sep 2018, Version 2018.3 852 www.cobham.com/gaisler

GRLIB IP Core
LINKSTART Input Starts the SpaceWire link High LII.LINKSTART
AUTOSTART Input Enables the autostart feature for the SpaceWire

link
High LII.AUTOSTART

PORTSEL Input Selects the active port if the NOPORTFORCE
signal is set to 0 and the core is configured with
dual ports.

- LII.PORTSEL

NOPORTFORCE Input Disables forced portselection using the PORT-
SEL signal and lets the core automatically select
the active link.

High LII.NOPORTFORCE

RDIVISOR[7:0] Input Clock divisor value used for generating the
transmit frequency from the txclk input in run-
state. Bit 0 is the least significant.

- LII.RDIVISOR

IDIVISOR[7:0] Input Clock divisor value used for generating the
transmit frequency from the txclk input during
initialization (started and connecting states). This
value is also used to generate the disconnect tim-
ing and the FSM timeouts (6.4 us and 12.8 us).
Bit 0 is the least significant.

- LII.IDIVISOR

RXIREAD Input Receiver FIFO read. Assert for one cycle (syn-
chronous to CLK) and the next character will be
available on the RXICHAR output the next clock
cycle if available in the FIFO.

High LII.RXIREAD

RXIFIFORST Input Empty the receiver FIFO. When asserted for one
cycle (synchronous to CLK) all characters cur-
rently present in the FIFO will be discarded. The
reset will have taken on the second cycle after
the reset. The first cycle after characters may still
be present.

High LII.RXIFIFORST

TXIWRITE Input Transmitter FIFO write. Assert for one cycle
(synchronous to CLK) to write the character on
the TXICHAR input into the FIFO on the rising
edge of the clock.

High LII.TXIWRITE

TXICHAR[8:0] Input Transmit character input to FIFO. Characters are
transmitted in the order they are written into the
FIFO. Bit 0 is the SpaceWire control bit. When
set to 1 only bits (2:1) are transmitted (EOP or
EEP). Bits are transmitted in order beginning at
the lowest index.

- LII.TXICHAR

TXIFIFORST Input Empty the transmitter FIFO. When asserted for
one cycle (synchronous to CLK) all characters
currently present in the FIFO will be discarded.
New characters shall not be written to the trans-
mitter FIFO the same cycle or the cycle after
TXIFIFORST is asserted.

High LII.TXIFIFORST

TICKIN Input Time counter tick input. Should be asserted one
clock cycle (synchronous to CLK) to transmit a
time-code. If the FSM is not in run-state no time-
code will be transmitted and the tick will not be
registered. The TICKIN_DONE output can be
used to verify that the time-code has been trans-
mitted,

High LII.TICKIN

TIMEIN[7:0] Input Time-code input. Transmitted in order starting at
the lowest index when tickin is asserted.

- LII.TIMEIN

Table 1044. Signal descriptions

Signal name Type Function Active GRLIB signal name
GRIP, Sep 2018, Version 2018.3 853 www.cobham.com/gaisler

GRLIB IP Core
DO[3:0] Output Data output. Bit 0 is the standard output for port
0 and bit 2 for port 1 if enabled. Bit 1 is used for
port 0 and bit 3 for port 1 if the core is connected
to an external Aeroflex PHY.

- LIO.DO

SO[3:0] Output Strobe output. Bit indexes are used correspond-
ingly to the DO output.

- LIO.SO

STATE[2:0] Output Current linkinterface FSM state. 0=error-reset,
1=error-wait, 2=ready, 3=started, 4=connecting,
5=run.

- LIO.STATE

ACTPORT Output 0=port 0 is active and 1=port 1 is active. Unused
if the second port is not enabled.

- LIO.ACTPORT

DCONNECTERR Output Asserted for one clock cycle (synchronous to
CLK) when a disconnect error is detected.

High LIO.DCONNECTERR

CREDERR Output Asserted for one clock cycle (synchronous to
CLK) when a credit error is detected.

High LIO.CREDERR

ESCERR Output Asserted for one clock cycle (synchronous to
CLK) when an escape error is detected.

High LIO.ESCERR

PARERR Output Asserted for one clock cycle (synchronous to
CLK) when a parity error is detected.

High LIO.PARERR

RXICHARAV Output Asserted when one or more characters are avail-
able in the receiver FIFO. Synchronous to CLK.

High LIO.RXICHARAV

RXICH-
ARCNT[11:0]

Output Number of characters present in the receiver
FIFO. Synchronous to CLK.

- LIO.RXICHARCNT

RXICHAR[8:0] Output Character read from the receiver FIFO. Valid the
clock cycle following the assertion of the
RXIREAD input. Synchronous to CLK. Bit 0
corresponds to the SpaceWire control bit and
when set to 1 only bits (2:1) are valid (EOP or
EEP).

- LIO.RXICHAR

TXICH-
ARCNT[11:0]

Output Number of characters present in the transmitter
FIFO. Synchronous to CLK.

- LIO.TXICHARCNT

TXIFULL Output Asserted when the transmitter FIFO is full. Syn-
chronous to CLK.

High LIO.TXIFULL

TXIEMPTY Output Asserted when the transmitter FIFO is empty.
Synhronous to CLK.

High LIO.TXIEMPTY

TXIFIFORSTACT Output FIFO reset active. Used in router when writing
EEP after reset.

High LIO.TXIFIFORSTACT

Table 1044. Signal descriptions

Signal name Type Function Active GRLIB signal name
GRIP, Sep 2018, Version 2018.3 854 www.cobham.com/gaisler

GRLIB IP Core
62.3 Instantiation

This example shows how the core can be instantiated. It also includes the reset generators.
Normally di, si, do and so should be connected to input and output pads configured with LVDS driv-
ers. How this is done is technology dependent.
The core in the example is configured with non-ft technology mapped FIFOs of size 64. It uses DDR
sampling on the input and the combined sampling/transmitter frequency (spw_rxtxclk) is 50MHz.
The minimum amount of signals that need to be driven to put the codec in a deterministic initial state
is shown.

library grlib;
use grlib.tech.all;
library gaisler;
use gaisler.spacewire.all;

entity spacewire_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;
 -- spacewire signals
 spw_rxdp : in std_ulogic;
 spw_rxdn : in std_ulogic;
 spw_rxsp : in std_ulogic;
 spw_rxsn : in std_ulogic;
 spw_txdp : out std_ulogic;
 spw_txdn : out std_ulogic;
 spw_txsp : out std_ulogic;
 spw_txsn : out std_ulogic;
 spw_rxtxclk : in std_ulogic;
 spw_rxclkn : in std_ulogic;
 testen : in std_ulogic;
 testrst : in std_ulogic
);
end;

architecture rtl of spacewire_ex is

 signal di : std_ulogic;

TICKIN_DONE Output Asserted for one cycle when the time-code has
been transmitted resulting from an assertion of
TICKIN. When TICKIN_DONE is asserted the
TICKIN should be deasserted the same cycle if it
is not desired that another time-code should be
deasserted.

High LIO.TICKIN_DONE

TICKOUT Output Time-code tickout output. Asserted for one clock
cycle (synchronous to CLK) when a time-code
has been received. When asserted the TIMEOUT
output is valid.

High LIO.TICKOUT

TIMEOUT[7:0] Output Time-code output. Synchronous to CLK. - LIO.TIMEOUT
MERROR Output Asserted one clock cycle when an EDAC mem-

ory error is detected.
High LIO.MERROR

RXRST Output Internal reset generated by the transmitter for
synchronization purpose between transmitter and
both receiver channels. It shall be used to gener-
ate the asynchronous and synchronous receiver
resets.

Low LIO.RXRST

Table 1044. Signal descriptions

Signal name Type Function Active GRLIB signal name
GRIP, Sep 2018, Version 2018.3 855 www.cobham.com/gaisler

GRLIB IP Core

 signal si : std_ulogic;
 signal d : std_logic_vector(3 downto 0);
 signal dv : std_logic_vector(3 downto 0);
 signal dconnect : std_logic_vector(3 downto 0);
 signal dconnect2 : std_logic_vector(3 downto 0);
 signal dconnect3 : std_logic_vector(3 downto 0);
 signal do : std_logic_vector(3 downto 0);
 signal so : std_logic_vector(3 downto 0);
 signal rxclko : std_ulogic;
 signal linkdisabled : std_ulogic;
 signal linkstart : std_ulogic;
 signal autostart : std_ulogic;
 signal portsel : std_ulogic;
 signal noportforce : std_ulogic;
 signal rdivisor : std_logic_vector(7 downto 0);
 signal idivisor : std_logic_vector(7 downto 0);
 signal rxiread : std_ulogic;
 signal rxififorst : std_ulogic;
 signal txiwrite : std_ulogic;
 signal txichar : std_logic_vector(8 downto 0);
 signal txififorst : std_ulogic;
 signal tickin : std_ulogic;
 signal timein : std_logic_vector(7 downto 0);
 signal do : std_logic_vector(3 downto 0);
 signal so : std_logic_vector(3 downto 0);
 signal state : std_logic_vector(2 downto 0);
 signal actport : std_ulogic;
 signal dconnecterr : std_ulogic;
 signal crederr : std_ulogic;
 signal escerr : std_ulogic;
 signal parerr : std_ulogic;
 signal rxicharav : std_ulogic;
 signal rxicharcnt : std_logic_vector(11 downto 0);
 signal rxichar : std_logic_vector(8 downto 0);
 signal txicharcnt : std_logic_vector(11 downto 0);
 signal txifull : std_ulogic;
 signal txiempty : std_ulogic;
 signal tickin_done : std_ulogic;
 signal tickout : std_ulogic;
 signal timeout : std_logic_vector(7 downto 0);
 signal merror : std_ulogic;

 -- Internal resets
 signal mrst : std_ulogic;
 signal rxasyncrst: std_ulogic;
 signal rxsyncrst0: std_ulogic;
 signal rxsyncrst1: std_ulogic;
 signal txsyncrst : std_ulogic;

begin

 spw_rxd_pad : inpad_ds generic map (tech => padtech, level => lvds)
 port map (spw_rxd, spw_rxdn, di);
 spw_rxs_pad : inpad_ds generic map (tech => padtech, level => lvds)
 port map (spw_rxs, spw_rxsn, si);

 spw_phy0 : grspw2_phy
 generic map(
 scantest => 0,
 tech => memtech,
 input_type => 3)
 port map(
 rstn => rstn,
 rxclki => spw_rxtxclk,
 rxclkin => spw_rxclkn,
 nrxclki => spw_rxtxclk,
 di => di,
 si => si,
 do => d(1 downto 0),
 dov => dv(1 downto 0),
 dconnect => dconnect(1 downto 0),
GRIP, Sep 2018, Version 2018.3 856 www.cobham.com/gaisler

GRLIB IP Core

 dconnect2 => dconnect2(1 downto 0),
 dconnect3 => dconnect3(1 downto 0),
 rxclko => rxclk0);

 d(3 downto 2) <= "00"; -- For second port
 dv(3 downto 2) <= "00"; -- For second port
 dconnect(3 downto 2) <= "00"; -- For second port
 dconnect2(3 downto 2) <= "00"; -- For second port
 dconnect3(3 downto 2) <= "00"; -- For second port

 -- Internal reset generators (TX, RX0 and RX1 clock domains)

 -- CLK domain (synchronous reset)
 AMBA_rst : rstgen
 port map (rstn, clk, vcc, mrst, open);

 -- TX domain (synchronous reset)
 txrst : rstgen
 port map (rstn, spw_rxtxclk, vcc, txsyncrst, open);

 -- RX domain (asynchronous reset)
 rxasyncrst <= rxrst;

 -- RX domain (synchronous reset)
 rxsyncrst0 : rstgen
 port map (rxrst, rxclk0, vcc, rxsyncrst0, open);
 rxsyncrst1 : rstgen
 port map (rxrst, rxclk1, vcc, rxsyncrst1, open);

 codec : grspw_codec_gen
 generic map(
 ports => 1,
 input_type => 0,
 output_type => 3,
 rxtx_sameclk => 1,
 fifosize => 64,
 tech => 11,
 scantest => 0,
 techfifo => 1,
 ft => 0)
 port map(
 rst => mrst,
 clk => clk,
 rxasyncrst => rxasyncrst,
 rxsyncrst0 => rxsyncrst0,
 rxclk0 => rxclk0,
 rxsyncrst1 => rxsyncrst1,
 rxclk1 => rxclk1,
 txsyncrst => txsyncrst,
 txclk => spw_rxtxclk,
 txclkn => spw_rxtxclk,
 testen => testen,
 testrst => testrst,
 d => d,
 dv => dv,
 dconnect => dconnect,
 dconnect2 => dconnect2,
 dconnect3 => dconnect3,
 do => do,
 so => so,
 linkdisabled => linkdisabled,
 linkstart => linkstart,
 autostart => autostart,
 portsel => portsel,
 noportforce => noportforce,
 rdivisor => rdivisor,
 idivisor => idivisor,
 state => state,
 actport => actport,
 dconnecterr => dconnecterr,
 crederr => crederr,
GRIP, Sep 2018, Version 2018.3 857 www.cobham.com/gaisler

GRLIB IP Core

 escerr => escerr,
 parerr => parerr,
 rxicharav => rxicharav,
 rxicharcnt => rxicharcnt,
 rxichar => rxichar,
 rxiread => rxiread,
 rxififorst => rxififorst,
 txicharcnt => txicharcnt,
 txifull => txifull,
 txiempty => txiempty,
 txiwrite => txiwrite,
 txichar => txichar,
 txififorst => txififorst,
 txififorstact => txififorstact,
 tickin => tickin,
 timein => timein,
 tickin_done => tickin_done,
 tickout => tickout,
 timeout => timeout,
 merror => merror,
 rxrst => rxrst);

 linkdisabled <= ’1’;
 linkstart <= ’0’;
 autostart <= ’0’;
 portsel <= ’0’;
 noportforce <= ’0’;
 idivisor <= conv_std_logic_vector(4, 8);
 rdivisor <= conv_std_logic_vector(0, 8);

 rxiread <= ’0’;
 txiwrite <= ’0’;
 txichar <= (others => ’0’);
 txiflush <= ’0’;
 tickin <= ’0’;
 timein <= (others => ’0’);

 spw_rxd_pad : inpad_ds generic map (padtech, lvds, x25v)
 port map (spw_rxdp, spw_rxdn, di);
 spw_rxs_pad : inpad_ds generic map (padtech, lvds, x25v)
 port map (spw_rxsp, spw_rxsn, si);
 spw_txd_pad : outpad_ds generic map (padtech, lvds, x25v)
 port map (spw_txdp, spw_txdn, do(0), gnd(0));
 spw_txs_pad : outpad_ds generic map (padtech, lvds, x25v)
 port map (spw_txsp, spw_txsn, so(0), gnd(0));
 ...
GRIP, Sep 2018, Version 2018.3 858 www.cobham.com/gaisler

GRLIB IP Core

63 GRSPWROUTER - SpaceWire router

63.1 Overview

The SpaceWire router core implements a SpaceWire routing switch as defined in the ECSS-E-ST-50-
12C standard. It supports from 2 to 31 ports in addition to the mandatory configuration port where
each port (except the configuration port) can be individually configured to be SpaceWire links, FIFO
interfaces or AMBA interfaces. The AMBA ports are limited to a maximum of 16 in a single router.
Status and configuration are read and written through a RMAP target at port 0. There is an optional
AHB slave interface for accessing the router configuration registers. Group adaptive routing and
packet distribution are fully supported (two ports up to all ports can be assigned to an address). Sys-
tem time-distribution is also supported. The router is designed to be technology independent and con-
figurable. This enables it to be implemented in all technologies supported by the GRLIB IP library
and also to remove optional features to save area.
It provides an RMAP target for configuration at port 0 used for accessing internal configuration and
status registers. In addition to this there are three different external port types: SpaceWire links, FIFO
interfaces and AMBA interfaces. An AHB slave interface is also provided for accessing the port 0
registers from the AHB bus. Group adaptive routing and packet distribution are fully supported (two
ports up to all ports can be assigned to an address). System time-distribution is also supported. Timers
are available for each port to prevent deadlock situations.

63.2 Operation

The router ports are interconnected using a non-blocking switch matrix which can connect any input
port to any output port. Access to each output port is arbitrated using a round-robin arbitration
scheme. A single routing-table is used for the whole router. Access to the table is also arbitrated using
a round-robin scheme.

Figure 172. Block diagram
GRIP, Sep 2018, Version 2018.3 859 www.cobham.com/gaisler

GRLIB IP Core

The ports consist of configuration port 0 and three different types of external ports: SpaceWire links,
FIFO interfaces and AMBA interfaces. Up to 31 external ports are supported and each can be individ-
ually configured to one of the three supported types.
All the ports regardless of their type have the same interface to the switch matrix and behave in the
same manner. The difference in behavior is on the external side of the port. The SpaceWire ports pro-
vide standard SpaceWire link interfaces using either on- or off-chip LVDS. The FIFO interfaces store
characters in two FIFOs which are accessed using 9-bit wide data paths with read/write signals. Lastly
the AMBA ports transfer characters from and to an AHB bus using DMA. The four different port
types are described in further detail in sections 63.3, 63.4, 63.5 and 63.6.

63.2.1 Endianness

The core is designed for big-endian systems.

63.2.2 Port numbering

The ports are numbered in the following order: configuration port, SpW ports, AMBA ports, FIFO
ports. The configuration port is always present and has number 0. If SpW ports are present in the
router they are numbered starting from number 1. If AMBA ports are present they are numbered start-
ing from the last SpW ports. If no SpW ports are present the AMBA ports start at number 1. Lastly,
the FIFO ports are numbered starting after the last AMBA port, SpW port or at number 1 depending
on if AMBA ports and SpW ports are present respectively.
For example if 7 SpW ports and 4 FIFO ports are included in the router they will have port numbers 1-
7 and 8-11. If 16 SpW ports, 2 AMBA ports and 7 FIFO ports are included they have port numbers 1-
16, 17-18 and 19-25 respectively.

63.2.3 Routing table

A single routing table is provided. The access to this routing table is arbitrated using a round-robin
arbiter with each port being of equal priority. The operation is pipelined and one lookup can be done
each cycle. This way the maximum latency is equal to the number of ports in the router minus one.
The impact on throughput should be negligible provided that packets are not incoming at the same
time. The probability for this is higher when the traffic only consist of very small packets sent contin-
uously (the average size being about the same as the number of ports). This should be a very uncom-
mon case. Latency is still bounded and probably negligible in comparison to other latencies in most
systems. The benefit is a reduced area enabling the router to be implemented with a higher number of
ports on many FPGA technologies.
Since the latency for the lookup is very small and deterministic there is not much to gain by having
configurable priorities for this. Priorities are instead used for arbitrating packets contending for an
output port as described in the next section.
The routing table and all the configuration registers are configured through an RMAP target or an
optional AHB slave interface which use the same routing table as the logic handling packet traffic.
They do not introduce any extra latency because they have lower priority than the packet traffic and
thus are only allowed access on cycles when no lookup is needed for packets. This can slow down
configuration accesses but they are probably mostly done before packet traffic starts and very seldom
afterwards.
Logical addresses have a routing table entry containing a priority bit, header deletion enable bit and a
entry enable bit. The routing table entry is enabled by writing a 1 to the enable bit. It can be disabled
again by writing a 0. The contents of the routing table is undetermined after reset and should not be
read. When a routing table entry is disabled, packets with a destination address corresponding to that
entry will be discarded and the invalid address error bit asserted.
Before the routing table entry is enabled the corresponding port setup register must be initialized. The
port setup register should be written with ones to one or more bits to enable packets to be transmitted
GRIP, Sep 2018, Version 2018.3 860 www.cobham.com/gaisler

GRLIB IP Core

on the ports corresponding to the bit numbers. See sections 63.2.5 and 63.2.6 for more details on how
to use the port setup register. If the port setup register is not initialized but the routing table entry is
enabled packets with that logical address will be discarded and the invalid address error bit asserted.
The mechanism is the same for path addresses except that they do not have a routing table entry and
header deletion is always enabled. Packets will be routed to the output corresponding to the path
address in the packet even if the port setup register has not been initialized. For group adaptive routing
and packet distribution to be used the port setup register must be initialized also for path addresses.
The routing table entries are also marked as invalid before they have been written the first time. When
the entries are invalid, packets with the corresponding logical address will be discarded and an invalid
address error bit asserted.

63.2.4 Output port arbitration

Each output port is arbitrated individually using two priority levels with round-robin at each level.
Each path or logical address can be configured to be high or low priority. In this case the delays can be
very long (compared to when arbiting for access to the routing table) before the next arbitration
because packets can be very large and the speed of the data consumer and the link itself cannot be
known. In this case priority assignments can have a large impact on the amount of bandwidth a source
port can use on a destination port.
The priority for path addresses is set in the port’s control register with the port number corresponding
to the path address. For logical addresses the priority is set in the routing table entry.

63.2.5 Group adaptive routing

Group adaptive routing is used to enable a packet to be transmitted on several different paths. For
example a packet with address 45 can be enabled to be transmitted on port 1 and 2. If port 1 is busy
when a packet with address 45 arrives it is transmitted on port 2 instead if not busy.
Group adaptive routing is used if bit 0 in the port setup register for the corresponding path or logical
address is 0. Each bit in the register corresponds to the port with the same number as the bit index. So
if bit 5 is set to 1 at address offset 0x80 it means that incoming packets with logical address 32 can be
transmitted on port 5. If only one bit is set for an address all packets with that address will be transmit-
ted on that port. If one or more bits are set the group adaptive function is used and the packet is trans-
mitted on the first available port with a bit set to 1 starting from the lowest number. A port being
available means that no other packet transmission is active at the moment and also for SpaceWire
links that the link is in run-state. For path addresses the bit corresponding to the path address will
always be set. This is done as specified in the standard which requires a packet with a path address to
be transmitted on the port with the same number as the address. The standard does not mention what
should happen when group adaptive routing is used for path addresses but in this router the bit corre-
sponding to the port number of the path address is always set so that the packet can be transmitted on
that port also when group adaptive routing is used.
For logical addresses the corresponding routing table entry and port setup register must be valid for
the packet to be routed (otherwise it is discarded). There is no default port as with path addresses so at
least one bit in the port setup register must be 1 for the packet to be routed otherwise it is discarded.

63.2.6 Packet distribution

Packet distribution can be used to implement multicast and broadcast addresses. Packets with logical
address 50 can for example be configured to be transmitted on ports 1, 2 and 3 while address 51 can
be configured to be transmitted on all ports (broadcast).
When packet distribution is enabled the group adaptive routing register is used to determine the ports
that a packet should be transmitted on. Packet distribution is enabled for a path or logical address by
setting bit 0 in the corresponding port setup register to 1. The packet will be transmitted on all the
ports with a bit set to 1 in the register. This means that if one of the ports enabled for packet distribu-
GRIP, Sep 2018, Version 2018.3 861 www.cobham.com/gaisler

GRLIB IP Core

tion is busy the router will wait for it to become free before transmitting on any of the ports. Due to
the wormhole routing implementation the slowest link will determine the speed at which a packet is
transmitted on all the ports.
When packet distribution is used with path addresses the port with the same number as the address
will always be enabled (as for group adaptive routing).

63.2.7 Port disable

The disable port bit in the port’s control register can be used to disable a port for data traffic. It will
behave just like if the physical port was not existing. Packets transmitted to it will be spilt and the
invalid address bit on the source port is set. Packets received to the port will be silently discarded, no
status bits are set.
All ports except the configuration port (0) and port 1 can be disabled to prevent the situation of all
ports being locked out from happening.

63.2.8 Timers

Timer functionality can be optionally implemented by setting the timerbits VHDL generic to a non-
zero value. Timers are individually enabled for each port by writing the timer enable bit in the port
control register. When timers are enabled during packet transmission on a port the timer is reset each
time a character is transmitted. If the timer expires the packet will be discarded and an EEP is inserted
on all the ports to which the packet was transmitted (can be more than one if packet distribution was
used). It does not matter if it is the output port or source port which is stalling. The blocking situation
is always detected at the source port which handles the spilling. It also does not matter if the stall is
caused by the link being stopped or lack of credits, the discard mechanism is always the same. When
the timers are not implemented or disabled the source and destination ports will always block until the
blocking situation is resolved.
The timers use a global prescaler and an individual timer per port. Both the prescaler and the individ-
ual timer tick rate can be configured through the configuration port.
In group adaptive routing mode the packet will be spilt if no characters have been transmitted for the
timeout period after being assigned to a port. For packet distribution a packet will be spilt if no char-
acter has been transmitted for the timeout period after being assigned to all the ports. This means that
it is enough for one port to stall for the packet to timeout and be spilt.
The behavior described above also means that the timeout is handled in the same way regardless of
the port type (SpW, FIFO or AMBA).
If a destination port is disabled it behaves as if it is not existing and will not be used thus being spilt
immediately. Timers are not applicable in that case. For group adaptive routing and packet distribu-
tion disabled ports are also masked before transmission starts and will not affect timers.
Details for the different scenarios will be listed in the remaining sub-sections.

63.2.8.1 Timers not present in the implementation or disabled

If timers are not available or disabled packets will always wait indefinitely regardless of stall reason.
In the case that timers are present but are enabled on some ports and disabled on others it is always the
source port that determines whether the timer will be active or not. This means that if a packet arrives
at port 2 which has its timer enabled and it is routed to port 4 which has timers disabled a timer will be
active for that packet routing and transmission. The same applies for group adaptive routing and
packet distribution.

63.2.8.2 Timer enabled and output port not in run state

The timer is started when the packet arrives and if the link has not entered run-state until the timer
expires the packet will be spilt. No EEP will be written to the destination port in this case. If the link
GRIP, Sep 2018, Version 2018.3 862 www.cobham.com/gaisler

GRLIB IP Core

start on request feature has been enabled the router will try to start the link but still only waits for the
timeout period for the link to start.

63.2.8.3 Timer enabled and output port in run state but busy with other transmission

The packet will wait indefinitely until the destination port becomes free. In the case that the destina-
tion port is stalled the port currently sourcing the packet for it has to have its timer enabled and spill
the packet before the new port can be allocated for it. If the port stalls again the new port will also spill
its packet after the timeout period. In this case and EEP will be written to the destination port since the
transmission of the packet had started.

63.2.8.4 Timer enabled and group adaptive routing is enabled, ports not running

The timer is started when the packet arrives and if no port has been allocated until the timer expires
the packet will be spilt. If link start on request is enabled the router will try to start all the links.

63.2.8.5 Timer enabled and group adaptive routing enabled, ports running but busy

The packet will wait until one port becomes free and then start transmitting. The timer is not started
while waiting for busy ports.

63.2.8.6 Timer enabled and packet distribution enabled, ports not running

If at least one of the destination ports is not running the timer is started and the packet will be dis-
carded if all the ports are not running when the timer expires.

63.2.8.7 Timer enabled and packet distribution enabled, ports running but busy

If at least one port is busy but all are running when packet distribution is enabled the packet will wait
indefinitely. When the transmission has started the timer is restarted each time a character is transmit-
ted and if the timer expires the remaining part of the packet is spilt and an EEP written to all the desti-
nation ports.

63.2.8.8 Timer functionality when accessing the configuration port

Timers work in the same way when accessing the configuration port as for the other ports. When the
command is being received by the RMAP target the timer on the source port will trigger if the source
of the command is too slow, spill the remaining part of the packet and insert an EEP to the configura-
tion port. The RMAP target will always be able to receive the characters quick enough. If the source is
too slow when the reply is sent the configuration port’s timer will trigger and the remaining part of the
packet is spilled and an EEP is inserted. This is to prevent the configuration port from being locked up
by a malfunctioning source port.

63.2.9 On-chip memories

The router can have several memories on-chip. They are usually selected from technology specific
RAM blocks but generic models can also be used which either make the synthesis tool infer the mem-
ories or use registers instead.
There are two memory blocks in the routing table, one for the port setup registers and one for the rout-
ing table. The port setup memory bit width is equal to the number of ports including the configuration
port with depth 256. The routing table is 256 locations deep and 2 bits wide.
Each port excluding the configuration port also have FIFO memories. The SpaceWire ports have one
FIFO per direction (rx, tx) which are 9-wide. The depth is controlled with the fifosize VHDL generic.
The FIFO ports have the exact same FIFO configuration as the SpaceWire ports controlled by the
same generic.
GRIP, Sep 2018, Version 2018.3 863 www.cobham.com/gaisler

GRLIB IP Core

The AMBA ports have one 9-bit wide receiver FIFO controlled by the fifosize generic and two 32-bit
wide AHB FIFOs. The depth of the latter two is controlled with the fifosize2 generic (see the AMBA
port section for more information).
All of the memories are instantiated using either the syncram_2p of syncram_2pft components from
GRLIB (see the syncram_2p section in the GRIP manual for more information) depending on the
value of the ft generic. If ft is set to 0 the syncram_2p is used and there is no fault-tolerance support. If
ft is nonzero the syncram_2pft component is chosen and there are two variants of fault-tolerance
depending on the value. Setting ft=1 selects parity and ft=2 selects TMR.
Parity is used to protect the memories and up to four bits per word can be corrected and there is a sig-
nal indicating an uncorrectable error. TMR is used to protect the memories and a voter determines the
correct result. No errors are detectable for TMR and thus the error signal is not used.
If a memory error occurs in the port setup table or the routing table the memory error (ME) bit in the
router configuration/status register is set and remains set until cleared by the user. If a memory error is
detected in any of the ports FIFO memories the memory error (ME) bit in the respective port status
register is set and remains set until cleared by the user. The ME bits are only set for uncorrectable
errors.
When an uncorrectable error is detected in the port setup or routing table when a packet is being
routed it will be discarded. Unocrrectable errors in the FIFO memories are not handled since they only
affect the contents of the routed packet not the operation of the router itself. These type of errors
should be caught by CRC checks if used in the packet.
The ME bit for the ports is only usable for detecting errors and statistics since there is no need to cor-
rect the error manually since the packet has already been routed when it is detected. The ME indica-
tion for the routing table and port setup registers can be used for starting a scrubbing operation if
detected. There is also an option of having automatic scrubbing (see section 63.2.9.1)
If one or more of the memory error bits described above are set the signal ro.merror will be asserted.

63.2.9.1 Autoscrub

An autoscrubbing feature can be optionally enabled using the autoscrub VHDL generic.
With autoscrubbing the routing table and port setup registers will be periodically read and rewritten.
This is done to prevent buildup of SEUs to cause an uncorrectable error in the memories. It will run in
the background and has no impact on routing table lookup for traffic but can delay configuration
accesses with two cycles.
The scrubber starts at address 0 and simultaneously writes one location in the port setup memory and
the routing table memory. It then waits for a timeout period until it writes the next word. Eventually
the last location is reached and the process starts over from address 0.
The period between each word refresh is approximately 226 core clock cycles. The scrubber uses a
free slot when data traffic does not need to perform a table lookup to read and write the memories
which causes a small undeterminism in the period.

63.2.10 Plug and play support

The configuration port optionally also supports the SpaceWire Plug and Play protocol draft A issue
2.1 (enabled with a VHDL generic). Currently the complete protocol is not supported but only the
device identification and network management services. These services are enough to identify the
router, the number of ports etc and once identified the user can access all the features the other two
services provide using the registers accessible through the RMAP target. The level of support will
change in later versions of the core. Since the protocol has not been standardized yet it should only be
used for testing purposes.
GRIP, Sep 2018, Version 2018.3 864 www.cobham.com/gaisler

GRLIB IP Core

The PnP protocol uses standard RMAP packets but with protocol ID 2 instead of 1. The supported
commands and the address space is defined in the SpW PnP specification.

63.2.11 System time-distribution

The router contains a global time-counter register which handles system time-distribution. All the dif-
ferent port types support time-code transmission. Incoming time-codes on the ports are checked
against the time-counter which is then updated. If time-code was determined to have a count value
one more modulo 64 than the previous value then a tick is generated and the time-code is forwarded to
all the other ports. The time-codes are also forwarded to the FIFO and AMBA ports where they
appear on their respective external interfaces. Time-codes can also be transmitted from the FIFO and
AMBA ports. In that case they are also compared to the time-counter and propagated to the other
ports if valid.
The current router master time-counter and control flag values can be read through the configuration
port (see the time-code register in section 63.8).
In default mode the router does not check the control flags so time-codes will be accepted regardless
of their value. If the TF bit in the router configuration/status register is set to 1 time-code control flag
filtering is enabled and the time-codes are required to have the control flags set to “00” to be accepted,
otherwise they are dropped when received.
After reset all the ports are enabled to receive and transmit time-codes. The TE bit in a port’s control
register can be set to 0 to disable time-code transmission and reception on that port.
Time-code transfers can also be disabled globally using a signal (ri.timecodeen).

63.2.12 Invalid address error

An invalid address error occurs when a port receives a packet with an destination address that belongs
to one or more of the three following groups:
1. Destination address is a path address corresponding to a non-existing port number. For example if
the router only has 8 ports and a packet has destination address 15 this error will occur. If a router has
31 ports (32 including the configuration port) this error cannot occur.
2. Destination address is a logical address corresponding to a routing table entry which has not been
configured. The routing table entries start at address 0x480.
3. Destination address is a logical address corresponding to a port setup register which has not been
configured. The port setup registers start at address 0x80 for logical addresses.
4. The destination port determined either through physical or logical address has the disable (DI) bit
set in the port control register.

63.2.13 Packet counters

Counters for characters and packets can be optionally enabled using the charcntbits and pktcntbits
VHDL generics respectively.
Each port except port 0 has a separate character counter for incoming and outgoing characters. Only
SpaceWire data characters are counted (not EOP, EEP). The counters saturate at the maximum value
and can be cleared through register access. The counter is accessed through the configuration port.
Characters deleted due to header deletion are counted on the incoming port but not on the outgoing.
Each port also has separate incoming and outgoing packet counters. Each EOP/EEP preceded by at
least one data character is counted as one packet.
GRIP, Sep 2018, Version 2018.3 865 www.cobham.com/gaisler

GRLIB IP Core

63.2.14 Global configuration features

63.2.14.1Self addressing

Normally the ports are allowed to address themselves i.e. a packet is received on a port with a destina-
tion address configured to be transmitted on the same port (which the packet was received on). This
can be disabled by setting the self addressing enable (SA) bit in the router configuration/status register
to 0. The reset value of this bit is set using a signal (ri.selfaddren signal).
This also applies to group adaptive routing and packet distribution. When group adaptive routing is
enabled for an address a packet with that destination address will be spilt due to self-addressing only
if the packet is actually routed to the source port. That is if ports 1 and 2 are enabled for address 1 and
a packet with address 1 arrives and it is routed to port 2 the transfer will be performed normally. If it is
routed to port 1 and self-addressing is disabled it will be discarded.
For packet distribution the packet will always be discarded if the source port is included in the list of
destination ports since the packet will be sent to all destinations.

63.2.14.2Link start on request

Ports can be configured to start automatically when a packet is waiting to be transmitted on it. This is
done by setting the LS bit in the router configuration/status register to 1. If the port link is disabled it
will override the start feature and the link will not start. The reset value of this bit is set using a signal
(ri.linkstartreq signal). This feature is only applicable for SpaceWire ports.
If the linkstart bit for the port is set the setting for the link start on request bit will have no effect. The
link will continue to be started until a ‘0’ is written to the linkstart bit of the port or if the auto discon-
nect feature is enabled (see next section).

63.2.14.3Auto disconnect

If the link was started by the link start feature the auto disconnect feature can be enabled to automati-
cally stop the link if inactive during a timeout period. This will only be possible if the timer feature is
available (timerbits VHDL generic is nonzero). The auto disconnect feature is enabled by setting the
AD bit in the router configuration/status register. The reset value is set using a signal (ri.autodconnect
signal). This feature is only applicable to SpaceWire ports.
The link will be disconnected under the following conditions. The link start on request feature is
enabled and the link was not in run-state when the packet arrived at the output port. Then the link will
be disconnected when the packet transmission has finished (output port free), the transmit FIFO is
empty, no receive operation is active and the timeout period has expired since the last of the require-
ments for disconnect (the ones listed here) became true.

63.3 SpaceWire ports

When a port is configured as a SpaceWire link it consists of a SpaceWire codec with FIFO interfaces.
This is the same SpaceWire codec core (GRSPW_CODEC) provided in GRLIB as a separate core. It
is a very versatile core providing several external interface types. The receiver can be configured as
self-clocking (XOR gate based), SDR-, DDR sampling or with an interface to an Cobham SpW trans-
ceiver (UT200SpWPHY01). The transmitter can also be configured with SDR, DDR or SpWPHY
outputs. Both internal and external LVDS transceivers are supported. All the configurable parameters
for the link are accessible through the router configuration port (see the register section for the config-
urable parameters). For more detailed information about the codec itself see the SpaceWire codec sec-
tion in the GRLIB IP library manual.
GRIP, Sep 2018, Version 2018.3 866 www.cobham.com/gaisler

GRLIB IP Core

63.3.1 Redundant ports

Redundant ports can be optionally enabled for SpaceWire ports. The redundant port is part of the
codec implementation and provides an extra set of SpaceWire transmit and receive signals. Only one
of the links can be active at each time and data transferred on that router port will be received and
transmitted on the active link. The active link can be dynamically configured to be forced or deter-
mined automatically based on the current activity of primary and redunant port links.

63.3.2 Setting link-rate

The router’s Initialization divisor register determines the link-rate during initialization (all states up to
and including the connecting-state). The register is also used to calculate the link interface FSM time-
outs (6.4 us and 12.8 us, as defined in the SpaceWire standard). The register’s ID field should always
be set so that a 10 Mbit/s link-rate is achieved during initialization. In that case the timeout values will
also be calculated correctly.
To achieve a 10 Mbit/s link-rate, the ID field should be set according to the following formulas:
With single data rate (SDR) outputs:
ID = (<frequency in MHz of TXCLK> / 10) - 1

With double data rate (DDR) outputs, or when connected to Cobham SpaceWire transceiver:
ID = (2 x <frequency in MHz of TXCLK> / 10) - 1

The link-rate in run-state is controlled with the run-state divisor, which is set through the RD field of
each port’s Port control register. The link-rate in run-state is calculated according to the following for-
mulas:
With SDR outputs:
<link-rate in Mbits/s> = <frequency in MHz of TXCLK> / (RD+1)

With DDR outputs / Cobham SpaceWire transceiver:
<link-rate in Mbits/s> = 2 x <frequency in MHz of TXCLK> / (RD+1)

The value of the RD field only affects the link-rate in run-state, and does not affect the 6.4 us or 12.8
us timeouts values.
Note that when using DDR ouputs, or when connected to Cobham SpaceWire transceiver, there is a
limitation in the usable clock divisor values. All even values (except 0) will result in the same bitrate
as the one higher odd number.
GRIP, Sep 2018, Version 2018.3 867 www.cobham.com/gaisler

GRLIB IP Core

An example of clock divisor and resulting link-rate, with a TXCLK frequency of 50 MHz, is shown in
the table 1045.

63.4 FIFO ports

A port configured as a FIFO port contains one FIFO in each direction to/from the switch matrix. The
fifosize can be configured to 8, 16, 32 and 64 using a VHDL generic (note that the same generic is
used for the fifosizes in the SpaceWire links and the AHB interfaces).

63.4.1 Transmitter

The transmitter FIFO interface consists of the following signals: txfull, txafull, txwrite, txchar,
txcharcnt. Figure 173 illustrates the write operation. Note that txfull would only be asserted as illus-
trated in the figure when txcharcnt is 4 if the FIFO size is 4 (which is not the case typically).

Txwrite is the write signal and each time when asserted on the rising edge of the clock the value on
the txchar signal will be written into the transmitter FIFO if it is not full. If it is full the character will
be dropped. Txcharcnt indicates the number of characters currently in the FIFO. Txfull is asserted
when the FIFO is full and txafull is asserted when the FIFO is almost full. The almost full signal is

Table 1045.SpaceWire link-rate example with 50 MHz TXCLK

Clock divisor value

Link-rate in Mbit/s

SDR outputs
DDR outputs / Cobham
SpaceWire transceiver

0 50 100
1 25 50
2 16.67 25
3 12.5 25
4 10 16.67
5 8.33 16.67
6 7.14 12.5
7 6.25 12.5
8 5.56 10
9 5 10

Figure 173. Transmitter FIFO interface write cycle.

txcharcnt

txwrite

txchar

txfull

clk

D0

1

D1 D2

2 4

D3

3

GRIP, Sep 2018, Version 2018.3 868 www.cobham.com/gaisler

GRLIB IP Core

configurable through the almostsize VHDL generic and will be asserted when the FIFO contains a
number of characters more than or equal to fifosize-almostsize.
The transmitter FIFO can be reset through the port’s control register using the TF bit.

63.4.2 Receiver

The receiver FIFO interface consists of the following signals: rxread, rxchar, rxcharav and rxaempty.
Figure 174 illustrates the read operation. Note that rxcharav would only be deasserted as illustrated in
the figure if the FIFO contained 4 characters.

Each time rxread is asserted on the rising edge of the clock a new character will be available on the
rxchar output the next cycle if available. If the FIFO is empty the value is undefined. Rxcharav is
asserted when the FIFO contains at least one character. Rxaempty is asserted when the FIFO is almost
empty and is defined as when the FIFO contains a number of characters less than or equal to the
almostsize VHDL generic.
The receiver FIFO can be reset using the RF bit in the port’s control register.

63.4.3 Time-code transmit

The time-code transmit interface consists of the following signals: tickin, timein. Figure 175 illus-
trates the tickin operation.

63.4.4 Time-code receive

The time-code receive interface consists of the following signals: tickout, timeout. Figure 176 illus-
trates the tickout operation.

Figure 174. Receiver FIFO interface read cycle.

rxread

rxchar

rxcharav

clk

D0 D2 XD3D1

Figure 175. Time interface tickin operation.

tickin

clk

timein T0 T1 T2
GRIP, Sep 2018, Version 2018.3 869 www.cobham.com/gaisler

GRLIB IP Core
The clock that all the interface signals are synchronized to is the same as the core clock (the clock that
everything except the SpaceWire links’ transmitters and receivers are running on). It can run on any
frequency but to support the maximum throughput it has to be at least one eighth of the maximum link
bitrate.

63.4.5 Bridge mode

The FIFO ports normally operate in standard mode which has been described so far in this section.
But they can also be set in bridge mode through the bridge enable (BE) bit in the port’s control regis-
ter. The reset value of this signal is set through an input signal so this mode can be enabled per default
after reset.
In bridge mode two FIFO ports can be connected together with automatic packet and time-code trans-
fer without any glue logic. Table 1046 shows how the signals should be mapped. Rxaempty and txa-
full are unused in this mode.

63.5 AMBA ports

The AMBA ports consists of what is basically a GRSPW2 core (see the GRSPW2 section in the
GRLIB IP library manual) with the SpaceWire codec removed. The same drivers that are provided for
the GRSPW2 core can be used for each AMBA port on the router. Only an additional driver is needed
which handles the setup of all the registers on the configuration port. In this way a router can be con-
nected to a LEON3 system and also provide the functionality of one or more GRSPW2 links. It is also
easy to provide bridging to other buses supported in GRLIB such as PCI, 1553, CAN, Ethernet etc.

Table 1046.Signal mappings of FIFO port in bridge mode.

Port 0 Port 1
rxchar txchar
rxread txfull
txwrite rxcharav
txchar rxchar
txfull rxread
rxcharav txwrite
tickin tickout
timein timeout
tickout tickin
timeout timein

Figure 176. Time interface tickout operation.

tickout

clk

timeout T0 T1 T2
GRIP, Sep 2018, Version 2018.3 870 www.cobham.com/gaisler

GRLIB IP Core

63.5.1 Overview

The Router AMBA port is configured through a set of registers accessed through an APB interface.
Data is transferred through DMA channels using an AHB master interface. The number of DMA
channels is configurable from one to four. Only byte addressed 32-bit big-endian AHB buses are sup-
ported.

63.5.2 Operation

The main sub-blocks of the router AHB interfaces are the DMA engines, the RMAP target and the
AMBA interface. A block diagram of the internal structure can be found in figure 177.
The AMBA interface is divided into the AHB master interface and the APB interface. The DMA
engines have FIFO interfaces to the router switch matrix. These FIFOs are used to transfer N-Chars
between the AMBA bus and the other ports in the router.
The RMAP target is an optional part of the DMA port which can be enabled with a VHDL generic.
The RMAP target handles incoming packets which are determined to be RMAP commands instead of
the receiver DMA engine. The RMAP command is decoded and if it is valid, the operation is per-
formed on the AHB bus. If a reply was requested it is automatically transmitted back to the source by
the RMAP transmitter.
The core is controlled by writing to a set of user registers through the APB interface and a set of sig-
nals. The different sub-modules are discussed in further detail in later sections.

63.5.2.1 Protocol support

The AMBA port only accepts packets with a valid destination address in the first received byte. Pack-
ets with address mismatch will be silently discarded (except in promiscuous mode which is covered in
section 63.5.3.10).
The second byte is sometimes interpreted as a protocol ID a described hereafter. The RMAP protocol
(ID=0x1) is the only protocol handled separately in hardware while other packets are stored to a DMA
channel. If the RMAP target is present and enabled all RMAP commands will be processed, executed
and replied automatically in hardware. Otherwise RMAP commands are stored to a DMA channel in
the same way as other packets. RMAP replies are always stored to a DMA channel. More information
on the RMAP protocol support is found in section 63.5.5 (note that this RMAP target is different from
the one in the configuration port). When the RMAP target is not present or disabled, there is no need
to include a protocol ID in the packets and the data can start immediately after the address.

Figure 177. Block diagram of the Router DMA port

TRANSMITTER
FSM

SEND

RMAP

FSM

TRANSMITTER
DMA ENGINE

RECEIVER
DMA ENGINE

TRANSMITTER

RMAP
RECEIVER

N-CHAR
FIFO

RECEIVER
AHB FIFO

RECEIVER DATA
PARALLELIZATION

AHB
MASTER INTERFACE

REGISTERS APB
INTERFACE

FROM ROUTER
SWITCH MATRIX

TO ROUTER
SWITCH MATRIX
GRIP, Sep 2018, Version 2018.3 871 www.cobham.com/gaisler

GRLIB IP Core

All packets arriving with the extended protocol ID (0x00) are stored to a DMA channel. This means
that the hardware RMAP target will not work if the incoming RMAP packets use the extended proto-
col ID. Note also that packets with the reserved extended protocol identifier (ID = 0x000000) are not
ignored by the AMBA port. It is up to the client receiving the packets to ignore them.
When transmitting packets, the address and protocol-ID fields must be included in the buffers from
where data is fetched. They are not automatically added by the AMBA port DMA engine.
Figure 178 shows the packet types accepted by the port. The port also allows reception and transmis-
sion with extended protocol identifiers but without support for RMAP CRC calculations and the
RMAP target.

63.5.2.2 Time interface

The time interface is used for sending Time-codes over the SpaceWire network and consists of a time-
counter register, time-ctrl register, tick-in signal, tick-out signal, tick-in register field and a tick-out
register field. There are also two control register bits which enable the time receiver and transmitter
respectively.
Each Time-code sent from the port is a concatenation of the time-ctrl and the time-counter register.
There is a timetxen bit which is used to enable Time-code transmissions. It is not possible to send
time-codes if this bit is zero.
Received Time-codes are stored to the same time-ctrl and time-counter registers which are used for
transmission. The timerxen bit in the control register is used for enabling time-code reception. No
time-codes will be received if this bit is zero.
The two enable bits are used for ensuring that a node will not (accidentally) both transmit and receive
time-codes which violates the SpaceWire standard. It also ensures that a master sending time-codes on
a network will not have its time-counter overwritten if another (faulty) node starts sending time-
codes.
The time-counter register is set to 0 after reset and is incremented each time the tick-in signal is
asserted for one clock-period and the timetxen bit is set. This also causes the new value to be sent to
the router (which will propagate the time-code to the other ports if valid just as if it was transmitted on
a normal SpW link). Tick-in can be generated either by writing a one to the register field or by assert-
ing the tick-in signal. A Tick-in should not be generated too often since if the time-code after the pre-
vious Tick-in has not been sent the register will not be incremented and no new value will be sent. The
tick-in field is automatically cleared when the value has been sent and thus no new ticks should be
generated until this field is zero. If the tick-in signal is used there should be at least 4 system-clock
plus 25 transmit-clock cycles between each assertion.
A tick-out is generated each time a valid time-code is received and the timerxen bit is set. When the
tick-out is generated the tick-out signal will be asserted one clock-cycle and the tick-out register field
is asserted until it is cleared by writing a one to it.
The current time counter value can be read from the time register. It is updated each time a Time-code
is received and the timerxen bit is set. The same register is used for transmissions and can also be
written directly from the APB interface.

Figure 178. The SpaceWire packet types supported by the port.

Addr ProtID Dn-2..D3D2D1D0 Dn-1 EOP

Addr D0 Dm-2..D4D3D2D1 Dm-1 EOP
GRIP, Sep 2018, Version 2018.3 872 www.cobham.com/gaisler

GRLIB IP Core

The control bits of the Time-code are stored to the time-ctrl register when a Time-code is received
whose time-count is one more than the nodes current time-counter register. The time-ctrl register can
be read through the APB interface. The same register is used during time-code transmissions.
It is possible to have both the time-transmission and reception functions enabled at the same time.

63.5.3 Receiver DMA channels

The receiver DMA engine handles reception of data from the SpaceWire network to different DMA
channels.

63.5.3.1 Address comparison and channel selection

Packets are received to different channels based on the address and whether a channel is enabled or
not. When the receiver N-Char FIFO contains one or more characters, N-Chars are read by the
receiver DMA engine. The first character is interpreted as the logical address and is compared with
the addresses of each channel starting from 0. The packet will be stored to the first channel with an
matching address. The complete packet including address and protocol ID but excluding EOP/EEP is
stored to the memory address pointed to by the descriptors (explained later in this section) of the
channel.
Each SpaceWire address register has a corresponding mask register. Only bits at an index containing a
zero in the corresponding mask register are compared. This way a DMA channel can accept a range of
addresses. There is a default address register which is used for address checking in all implemented
DMA channels that do not have separate addressing enabled and for RMAP commands in the RMAP
target. With separate addressing enabled the DMA channels’ own address/mask register pair is used
instead.
If an RMAP command is received it is only handled by the target if the default address register
(including mask) matches the received address. Otherwise the packet will be stored to a DMA channel
if one or more of them has a matching address. If the address does not match neither the default
address nor one of the DMA channels’ separate register, the packet is still handled by the RMAP tar-
get if enabled since it has to return the invalid address error code. The packet is only discarded (up to
and including the next EOP/EEP) if an address match cannot be found and the RMAP target is dis-
abled.
Packets, other than RMAP commands, that do not match neither the default address register nor the
DMA channels’ address register will be discarded. Figure 179 shows a flowchart of packet reception.
At least 2 non EOP/EEP N-Chars needs to be received for a packet to be stored to the DMA channel
unless the promiscuous mode is enabled in which case 1 N-Char is enough. If it is an RMAP packet
with hardware RMAP enabled 3 N-Chars are needed since the command byte determines where the
packet is processed. Packets smaller than these sizes are discarded.
GRIP, Sep 2018, Version 2018.3 873 www.cobham.com/gaisler

GRLIB IP Core

Start Reception

Receive
2 bytes

rmap enabled

defaddr*!defmask =
rxaddr*!defmask

Yes

 Receive
1 byte

RMAP command
No

Yes

No

Set DMA channel
number to 0

Process RMAP
command

Separate addressing

No

Yes

dma(n).addr*

rxaddr*!dma(n).mask

Channel enabled

Increment
channel number

and
pid =1 and

defaddr*!defmask =
rxaddr*!defmask

!dma(n).mask=

Last DMA channel

No

Yes

Store packet to
DMA channel

No

No

Yes

RMAP enabled

Discard packet

Yes

Yes

No

Figure 179. Flow chart of packet reception (promiscuous mode disabled).

No
GRIP, Sep 2018, Version 2018.3 874 www.cobham.com/gaisler

GRLIB IP Core

63.5.3.2 Basic functionality of a channel

Reception is based on descriptors located in a consecutive area in memory that hold pointers to buf-
fers where packets should be stored. When a packet arrives at the port the channel which should
receive it is first determined as described in the previous section. A descriptor is then read from the
channels’ descriptor area and the packet is stored to the memory area pointed to by the descriptor.
Lastly, status is stored to the same descriptor and increments the descriptor pointer to the next one.
The following sections will describe DMA channel reception in more detail.

63.5.3.3 Setting up the port for reception

A few registers need to be initialized before reception to a channel can take place. The DMA channel
has a maximum length register which sets the maximum packet size in bytes that can be received to
this channel. Larger packets are truncated and the excessive part is spilled. If this happens an indica-
tion will be given in the status field of the descriptor. The minimum value for the receiver maximum
length field is 4 and the value can only be incremented in steps of four bytes up to the maximum value
33554428. If the maximum length is set to zero the receiver will not function correctly.
Either the default address register or the channel specific address register (the accompanying mask
register must also be set) needs to be set to hold the address used by the channel. A control bit in the
DMA channel control register determines whether the channel should use default address and mask
registers for address comparison or the channel’s own registers. Using the default register the same
address range is accepted as for other channels with default addressing and the RMAP target while the
separate address provides the channel its own range. If all channels use the default registers they will
accept the same address range and the enabled channel with the lowest number will receive the
packet.
Finally, the descriptor table and control register must be initialized. This will be described in the two
following sections.

63.5.3.4 Setting up the descriptor table address

The port reads descriptors from an area in memory pointed to by the receiver descriptor table address
register. The register consists of a base address and a descriptor selector. The base address points to
the beginning of the area and must start on a 1024 bytes aligned address. It is also limited to be 1024
bytes in size which means the maximum number of descriptors is 128 since the descriptor size is 8
bytes.
The descriptor selector points to individual descriptors and is increased by 1 when a descriptor has
been used. When the selector reaches the upper limit of the area it wraps to the beginning automati-
cally. It can also be set to wrap at a specific descriptor before the upper limit by setting the wrap bit in
the descriptor. The idea is that the selector should be initialized to 0 (start of the descriptor area) but it
can also be written with another 8 bytes aligned value to start somewhere in the middle of the area. It
will still wrap to the beginning of the area.
If one wants to use a new descriptor table the receiver enable bit has to be cleared first. When the
rxactive bit for the channel is cleared it is safe to update the descriptor table register. When this is fin-
ished and descriptors are enabled the receiver enable bit can be set again.

63.5.3.5 Enabling descriptors

As mentioned earlier one or more descriptors must be enabled before reception can take place. Each
descriptor is 8 byte in size and the layout can be found in the tables below. The descriptors should be
written to the memory area pointed to by the receiver descriptor table address register. When new
descriptors are added they must always be placed after the previous one written to the area. Otherwise
they will not be noticed.
A descriptor is enabled by setting the address pointer to point at a location where data can be stored
and then setting the enable bit. The WR bit can be set to cause the selector to be set to zero when
GRIP, Sep 2018, Version 2018.3 875 www.cobham.com/gaisler

GRLIB IP Core

reception has finished to this descriptor. IE should be set if an interrupt is wanted when the reception
has finished. The DMA control register interrupt enable bit must also be set for an interrupt to be gen-
erated. The descriptor packet address should be word aligned. All accesses on the bus are word
accesses so complete words will always be overwritten regardless of whether all 32-bit contain
received data. Also if the packet does not end on a word boundary the complete word containing the
last data byte will be overwritten. If the rxunaligned or rmap VHDL generic is set to 1 this restriction
is removed and any number of bytes can be received to any packet address without excessive bytes
being overwritten.

63.5.3.6 Setting up the DMA control register

The final step to receive packets is to set the control register in the following steps: The receiver must
be enabled by setting the rxen bit in the DMA control register (see section 63.8). This can be done
anytime and before this bit is set nothing will happen. The rxdescav bit in the DMA control register is
then set to indicate that there are new active descriptors. This must always be done after the descrip-
tors have been enabled or the port might not notice the new descriptors. More descriptors can be acti-
vated when reception has already started by enabling the descriptors and writing the rxdescav bit.
When these bits are set reception will start immediately when data is arriving.

63.5.3.7 The effect to the control bits during reception

When the receiver is disabled all packets going to the DMA-channel are discarded if the packet’s
address does not fall into the range of another DMA channel. If the receiver is enabled and the address
falls into the accepted address range, the next state is entered where the rxdescav bit is checked. This
bit indicates whether there are active descriptors or not and should be set by the external application
using the DMA channel each time descriptors are enabled as mentioned above. If the rxdescav bit is
‘0’ and the nospill bit is ‘0’ the packets will be discarded. If nospill is one the grspw waits until rxdes-

Table 1047.RXDMA receive descriptor word 0 (address offset 0x0)
31 30 29 28 27 26 25 24 0

TR DC HC EP IE WR EN PACKETLENGTH

31 Truncated (TR) - Packet was truncated due to maximum length violation.
30 Data CRC (DC) - 1 if a CRC error was detected for the data and 0 otherwise.
29 Header CRC (HC) - 1 if a CRC error was detected for the header and 0 otherwise.
28 EEP termination (EP) - This packet ended with an Error End of Packet character.
27 Interrupt enable (IE) - If set, an interrupt will be generated when a packet has been received if the

receive interrupt enable bit in the DMA channel control register is set.
26 Wrap (WR) - If set, the next descriptor used by the GRSPW will be the first one in the descriptor

table (at the base address). Otherwise the descriptor pointer will be increased with 0x8 to use the
descriptor at the next higher memory location. The descriptor table is limited to 1 kbytes in size and
the pointer will be automatically wrap back to the base address when it reaches the 1 kbytes bound-
ary.

25 Enable (EN) - Set to one to activate this descriptor. This means that the descriptor contains valid con-
trol values and the memory area pointed to by the packet address field can be used to store a packet.

24: 0 Packet length (PACKETLENGTH) - The number of bytes received to this buffer. Only valid after
EN has been set to 0 by the GRSPW.

Table 1048.RXDMA receive descriptor word 1 (address offset 0x4)
31 0

PACKETADDRESS

31: 0 Packet address (PACKETADDRESS) - The address pointing at the buffer which will be used to store
the received packet. If the rxunaligned and rmap VHDL generics are both set to zero only bit 31 to 2
are used.
GRIP, Sep 2018, Version 2018.3 876 www.cobham.com/gaisler

GRLIB IP Core

cav is set and the characters are kept in the N-Char fifo during this time. If the fifo becomes full fur-
ther N-char transmissions are inhibited by stopping the transmission of FCTs.
When rxdescav is set the next descriptor is read and if enabled the packet is received to the buffer. If
the read descriptor is not enabled, rxdescav is set to ‘0’ and the packet is spilled depending on the
value of nospill.
The receiver can be disabled at any time and will stop packets from being received to this channel. If
a packet is currently received when the receiver is disabled the reception will still be finished. The
rxdescav bit can also be cleared at any time. It will not affect any ongoing receptions but no more
descriptors will be read until it is set again. Rxdescav is also cleared by the port when it reads a dis-
abled descriptor.

63.5.3.8 Status bits

When the reception of a packet is finished the enable bit in the current descriptor is set to zero. When
enable is zero, the status bits are also valid and the number of received bytes is indicated in the length
field. The DMA control register contains a status bit which is set each time a packet has been
received. The port can also be made to generate an interrupt for this event.
RMAP CRC logic is included in the implementation if the rmapcrc or rmap VHDL generic set to 1.
The RMAP CRC calculation is always active for all received packets and all bytes except the EOP/
EEP are included. The packet is always assumed to be a RMAP packet and the length of the header is
determined by checking byte 3 which should be the command field. The calculated CRC value is then
checked when the header has been received (according to the calculated number of bytes) and if it is
non-zero the HC bit is set indicating a header CRC error.
The CRC value is not set to zero after the header has been received, instead the calculation continues
in the same way until the complete packet has been received. Then if the CRC value is non-zero the
DC bit is set indicating a data CRC error. This means that the port can indicate a data CRC error even
if the data field was correct when the header CRC was incorrect. However, the data should not be used
when the header is corrupt and therefore the DC bit is unimportant in this case. When the header is not
corrupted the CRC value will always be zero when the calculation continues with the data field and
the behaviour will be as if the CRC calculation was restarted
If the received packet is not of RMAP type the header CRC error indication bit cannot be used. It is
still possible to use the DC bit if the complete packet is covered by a CRC calculated using the RMAP
CRC definition. This is because the port does not restart the calculation after the header has been
received but instead calculates a complete CRC over the packet. Thus any packet format with one
CRC at the end of the packet calculated according to RMAP standard can be checked using the DC
bit.
If the packet is neither of RMAP type nor of the type above with RMAP CRC at the end, then both the
HC and DC bits should be ignored.

63.5.3.9 Error handling

If an AHB error occurs during reception the current packet is spilled up to and including the next
EEP/EOP and then the currently active channel is disabled and the receiver enters the idle state. A bit
in the channels control/status register is set to indicate this condition.

63.5.3.10Promiscuous mode

The port supports a promiscuous mode where all the data received is stored to the first DMA channel
enabled regardless of the node address and possible early EOPs/EEPs. This means that all non-eop/
eep N-Chars received will be stored to the DMA channel. The rxmaxlength register is still checked
and packets exceeding this size will be truncated.
RMAP commands will still be handled by it when promiscuous mode is enabled if the rmapen bit is
set. If it is cleared, RMAP commands will also be stored to a DMA channel.
GRIP, Sep 2018, Version 2018.3 877 www.cobham.com/gaisler

GRLIB IP Core

63.5.4 Transmitter DMA channels

The transmitter DMA engine handles transmission of data from the DMA channels to the SpaceWire
network. Each receive channel has a corresponding transmit channel which means there can be up to
4 transmit channels. It is however only necessary to use a separate transmit channel for each receive
channel if there are also separate entities controlling the transmissions. The use of a single channel
with multiple controlling entities would cause them to corrupt each other’s transmissions. A single
channel is more efficient and should be used when possible.
Multiple transmit channels with pending transmissions are arbitrated in a round-robin fashion.

63.5.4.1 Basic functionality of a channel

A transmit DMA channel reads data from the AHB bus and stores them in the transmitter FIFO for
transmission on the SpaceWire network. Transmission is based on the same type of descriptors as for
the receiver and the descriptor table has the same alignment and size restrictions. When there are new
descriptors enabled the port reads them and transfer the amount data indicated.

63.5.4.2 Setting up the core for transmission

Four steps need to be performed before transmissions can be done with the port. First the link inter-
face must be enabled and started by writing the appropriate value to the ctrl register. Then the address
to the descriptor table needs to be written to the transmitter descriptor table address register and one or
more descriptors must also be enabled in the table. Finally, the txen bit in the DMA control register is
written with a one which triggers the transmission. These steps will be covered in more detail in the
next sections.

63.5.4.3 Enabling descriptors

The descriptor table address register works in the same way as the receiver’s corresponding register
which was covered in section 63.5.3. The maximum size is 1024 bytes as for the receiver but since the
descriptor size is 16 bytes the number of descriptors is 64.
To transmit packets one or more descriptors have to be initialized in memory which is done in the fol-
lowing way: The number of bytes to be transmitted and a pointer to the data has to be set. There are
two different length and address fields in the transmit descriptors because there are separate pointers
for header and data. If a length field is zero the corresponding part of a packet is skipped and if both
are zero no packet is sent. The maximum header length is 255 bytes and the maximum data length is
16 Mbyte - 1. When the pointer and length fields have been set the enable bit should be set to enable
the descriptor. This must always be done last. The other control bits must also be set before enabling
the descriptor.
The transmit descriptors are 16 bytes in size so the maximum number in a single table is 64. The dif-
ferent fields of the descriptor together with the memory offsets are shown in the tables below.
The HC bit should be set if RMAP CRC should be calculated and inserted for the header field and
correspondingly the DC bit should be set for the data field. This field is only used by the GRSPW
when the CRC logic is available (rmap or rmapcrc VHDL generic set to 1). The header CRC will be
calculated from the data fetched from the header pointer and the data CRC is generated from data
fetched from the data pointer. The CRCs are appended after the corresponding fields. The NON-CRC
bytes field is set to the number of bytes in the beginning of the header field that should not be included
in the CRC calculation.
The CRCs are sent even if the corresponding length is zero, but when both lengths are zero no packet
is sent not even an EOP.
GRIP, Sep 2018, Version 2018.3 878 www.cobham.com/gaisler

GRLIB IP Core

63.5.4.4 Starting transmissions

When the descriptors have been initialized, the transmit enable bit in the DMA control register has to
be set to tell the port to start transmitting. New descriptors can be activated in the table on the fly
(while transmission is active). Each time a set of descriptors is added the transmit enable register bit
should be set. This has to be done because each time the core encounters a disabled descriptor this
register bit is set to 0.

Table 1049.TXDMA transmit descriptor word 0 (address offset 0x0)
31 18 17 16 15 14 13 12 11 8 7 0

RESERVED DC HC RE IE WR EN NONCRCLEN HEADERLEN

31: 18 RESERVED
17 Append data CRC (DC) - Append CRC calculated according to the RMAP specification after the

data sent from the data pointer. The CRC covers all the bytes from this pointer. A null CRC will
be sent if the length of the data field is zero.

16 Append header CRC (HC) - Append CRC calculated according to the RMAP specification after the
data sent from the header pointer. The CRC covers all bytes from this pointer except a number of
bytes in the beginning specified by the non-crc bytes field. The CRC will not be sent if the header
length field is zero.

15 RESERVED
14 Interrupt enable (IE) - If set, an interrupt will be generated when the packet has been transmitted and

the transmitter interrupt enable bit in the DMA control register is set.
13 Wrap (WR) - If set, the descriptor pointer will wrap and the next descriptor read will be the first one

in the table (at the base address). Otherwise the pointer is increased with 0x10 to use the descriptor at
the next higher memory location.

12 Enable (EN) - Enable transmitter descriptor. When all control fields (address, length, wrap and crc)
are set, this bit should be set. While the bit is set the descriptor should not be touched since this
might corrupt the transmission. The GRSPW clears this bit when the transmission has finished.

11: 8 Non-CRC bytes (NONCRCLEN)- Sets the number of bytes in the beginning of the header which
should not be included in the CRC calculation. This is necessary when using path addressing since
one or more bytes in the beginning of the packet might be discarded before the packet reaches its
destination.

7: 0 Header length (HEADERLEN) - Header Length in bytes. If set to zero, the header is skipped.

Table 1050.TXDMA transmit descriptor word 1 (address offset 0x4)
31 0

HEADERADDRESS

31: 0 Header address (HEADERADDRESS) - Address from where the packet header is fetched. Does not
need to be word aligned.

Table 1051.TXDMA transmit descriptor word 2 (address offset 0x8)
31 24 23 0

RESERVED DATALEN

31: 24 RESERVED
23: 0 Data length (DATALEN) - Length of data part of packet. If set to zero, no data will be sent. If both

data- and header-lengths are set to zero no packet will be sent.
GRIP, Sep 2018, Version 2018.3 879 www.cobham.com/gaisler

GRLIB IP Core
63.5.4.5 The transmission process

When the txen bit is set the port starts reading descriptors immediately. The number of bytes indicated
are read and transmitted. When a transmission has finished, status will be written to the first field of
the descriptor and a packet sent bit is set in the DMA control register. If an interrupt was requested it
will also be generated. Then a new descriptor is read and if enabled a new transmission starts, other-
wise the transmit enable bit is cleared and nothing will happen until it is enabled again.

63.5.4.6 The descriptor table address register

The internal pointer which is used to keep the current position in the descriptor table can be read and
written through the APB interface. This pointer is set to zero during reset and is incremented each
time a descriptor is used. It wraps automatically when the 1024 bytes limit for the descriptor table is
reached or it can be set to wrap earlier by setting a bit in the current descriptor.
The descriptor table register can be updated with a new table anytime when no transmission is active.
No transmission is active if the transmit enable bit is zero and the complete table has been sent or if
the table is aborted (explained below). If the table is aborted one has to wait until the transmit enable
bit is zero before updating the table pointer.

63.5.4.7 Error handling

63.5.4.7.1Abort Tx

The DMA control register contains a bit called Abort TX which if set causes the current transmission
to be aborted, the packet is truncated and an EEP is inserted. This is only useful if the packet needs to
be aborted because of congestion on the SpaceWire network. If the congestion is on the AHB bus this
will not help (This should not be a problem since AHB slaves should have a maximum of 16 wait-
states). The aborted packet will have its LE bit set in the descriptor. The transmit enable register bit is
also cleared and no new transmissions will be done until the transmitter is enabled again.

63.5.4.7.2AHB error

When an AHB error is encountered during transmission the currently active DMA channel is disabled
and the transmitter goes to the idle mode. A bit in the DMA channel’s control/status register is set to
indicate this error condition and, if enabled, an interrupt will also be generated. Further error handling
depends on what state the transmitter DMA engine was in when the AHB error occurred. If the
descriptor was being read the packet transmission had not been started yet and no more actions need
to be taken.
If the AHB error occurs during packet transmission the packet is truncated and an EEP is inserted.
Lastly, if it occurs when status is written to the descriptor the packet has been successfully transmitted
but the descriptor is not written and will continue to be enabled (this also means that no error bits are
set in the descriptor for AHB errors).

Table 1052.TXDMA transmit descriptor word 3(address offset 0xC)
31 0

DATAADDRESS

31: 0 Data address (DATAADDRESS) - Address from where data is read. Does not need to be word
aligned.
GRIP, Sep 2018, Version 2018.3 880 www.cobham.com/gaisler

GRLIB IP Core

The client using the channel has to correct the AHB error condition and enable the channel again. No
more AHB transfers are done again from the same unit (receiver or transmitter) which was active
during the AHB error until the error state is cleared and the unit is enabled again.

63.5.5 RMAP target

The Remote Memory Access Protocol (RMAP) is used to implement access to resources on the AHB
bus via the SpaceWire Link. Some common operations are reading and writing to memory, registers
and FIFOs. The port has an optional hardware RMAP target which is enabled with a VHDL generic.
This section describes the target implementation.

63.5.5.1 Fundamentals of the protocol

RMAP is a protocol which is designed to provide remote access via a SpaceWire network to memory
mapped resources on a SpaceWire node. It has been assigned protocol ID 0x01. It provides three oper-
ations write, read and read-modify-write. These operations are posted operations which means that a
source does not wait for an acknowledge or reply. It also implies that any number of operations can be
outstanding at any time and that no timeout mechanism is implemented in the protocol. Time-outs
must be implemented in the user application which sends the commands. Data payloads of up to 16
Mb - 1 is supported in the protocol. A destination can be requested to send replies and to verify data
before executing an operation. A complete description of the protocol is found in the RMAP standard.

63.5.5.2 Implementation

The port includes a target for RMAP commands which processes all incoming packets with protocol
ID = 0x01, type field (bit 7 and 6 of the 3rd byte in the packet) equal to 01b and an address falling in
the range set by the default address and mask register. When such a packet is detected it is not stored
to the DMA channel, instead it is passed to the RMAP receiver.
The target implements all three commands defined in the standard with some restrictions. Support is
only provided for 32-bit big-endian systems. This means that the first byte received is the msb in a
word. The target will not receive RMAP packets using the extended protocol ID which are always
dumped to the DMA channel.
The RMAP receiver processes commands. If they are correct and accepted the operation is performed
on the AHB bus and a reply is formatted. If an acknowledge is requested the RMAP transmitter auto-
matically send the reply. RMAP transmissions have priority over DMA channel transmissions.
There is a user accessible destination key register which is compared to destination key field in
incoming packets. If there is a mismatch and a reply has been requested the error code in the reply is
set to 3. Replies are sent if and only if the ack field is set to ‘1’.
GRIP, Sep 2018, Version 2018.3 881 www.cobham.com/gaisler

GRLIB IP Core

When a failure occurs during a bus access the error code is set to 1 (General Error). There is predeter-
mined order in which error-codes are set in the case of multiple errors in the core. It is shown in table
1070.

Read accesses are performed on the fly, that is they are not stored in a temporary buffer before trans-
mitting. This means that the error code 1 will never be seen in a read reply since the header has
already been sent when the data is read. If the AHB error occurs the packet will be truncated and
ended with an EEP.
Errors up to and including Invalid Data CRC (number 8) are checked before verified commands. The
other errors do not prevent verified operations from being performed.
The details of the support for the different commands are now presented. All defined commands
which are received but have an option set which is not supported in this specific implementation will
not be executed and a possible reply is sent with error code 10.

63.5.5.3 Write commands

The write commands are divided into two subcategories when examining their capabilities: verified
writes and non-verified writes. Verified writes have a length restriction of 4 bytes and the address
must be aligned to the size. That is 1 byte writes can be done to any address, 2 bytes must be halfword
aligned, 3 bytes are not allowed and 4 bytes writes must be word aligned. Since there will always be
only on AHB operation performed for each RMAP verified write command the incrementing address
bit can be set to any value.
Non-verified writes have no restrictions when the incrementing bit is set to 1. If it is set to 0 the num-
ber of bytes must be a multiple of 4 and the address word aligned. There is no guarantee how many
words will be written when early EOP/EEP is detected for non-verified writes.

63.5.5.4 Read commands

Read commands are performed on the fly when the reply is sent. Thus if an AHB error occurs the
packet will be truncated and ended with an EEP. There are no restrictions for incrementing reads but
non-incrementing reads have the same alignment restrictions as non-verified writes. Note that the
“Authorization failure” error code will be sent in the reply if a violation was detected even if the
length field was zero. Also note that no data is sent in the reply if an error was detected i.e. if the status
field is non-zero.

Table 1053.The order of error detection in case of multiple errors in the GRSPW. The error detected first has number 1.

Detection Order Error Code Error
1 12 Invalid destination logical address
2 2 Unused RMAP packet type or command code
3 3 Invalid destination key
4 9 Verify buffer overrun
5 11 RMW data length error
6 10 Authorization failure
7* 1 General Error (AHB errors during non-verified writes)
8 5/7 Early EOP / EEP (if early)
9 4 Invalid Data CRC
10 1 General Error (AHB errors during verified writes or RMW)
11 7 EEP
12 6 Too Much Data
*The AHB error is not guaranteed to be detected before Early EOP/EEP or Invalid Data CRC. For very long accesses
the AHB error detection might be delayed causing the other two errors to appear first.
GRIP, Sep 2018, Version 2018.3 882 www.cobham.com/gaisler

GRLIB IP Core

63.5.5.5 RMW commands

All read-modify-write sizes are supported except 6 which would have caused 3 B being read and writ-
ten on the bus. The RMW bus accesses have the same restrictions as the verified writes. As in the ver-
ified write case, the incrementing bit can be set to any value since only one AHB bus operation will be
performed for each RMW command. Cargo too large is detected after the bus accesses so this error
will not prevent the operation from being performed. No data is sent in a reply if an error is detected
i.e. the status field is non-zero.

63.5.5.6 Control

The RMAP target mostly runs in the background without any external intervention, but there are a
few control possibilities.
There is an enable bit in the control register of the core which can be used to completely disable the
RMAP target. When it is set to ‘0’ no RMAP packets will be handled in hardware, instead they are all
stored to the DMA channel.
There is a possibility that RMAP commands will not be performed in the order they arrive. This can
happen if a read arrives before one or more writes. Since the target stores replies in a buffer with more
than one entry several commands can be processed even if no replies are sent. Data for read replies is
read when the reply is sent and thus writes coming after the read might have been performed already
if there was congestion in the transmitter. To avoid this the RMAP buffer disable bit can be set to
force the target to only use one buffer which prevents this situation.
The last control option for the target is the possibility to set the destination key which is found in a
separate register.

Table 1054.AMBA port hardware RMAP handling of different packet type and command fields.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Command Action

Reserved
Command
/ Response

Write /
Read

Verify
data
before
write

Acknow-
ledge

Increment
Address

0 0 - - - - Response Stored to DMA-channel.
0 1 0 0 0 0 Not used Does nothing. No reply is sent.
0 1 0 0 0 1 Not used Does nothing. No reply is sent.
0 1 0 0 1 0 Read single

address
Executed normally. Address has
to be word aligned and data size
a multiple of four. Reply is sent.
If alignment restrictions are vio-
lated error code is set to 10.

0 1 0 0 1 1 Read incre-
menting
address.

Executed normally. No restric-
tions. Reply is sent.

0 1 0 1 0 0 Not used Does nothing. No reply is sent.
0 1 0 1 0 1 Not used Does nothing. No reply is sent.
0 1 0 1 1 0 Not used Does nothing. Reply is sent with

error code 2.
GRIP, Sep 2018, Version 2018.3 883 www.cobham.com/gaisler

GRLIB IP Core
0 1 0 1 1 1 Read-Mod-
ify-Write
increment-
ing address

Executed normally. If length is
not one of the allowed rmw val-
ues nothing is done and error
code is set to 11. If the length
was correct, alignment restric-
tions are checked next. 1 byte
can be rmw to any address. 2
bytes must be halfword aligned.
3 bytes are not allowed. 4 bytes
must be word aligned. If these
restrictions are violated nothing
is done and error code is set to
10. If an AHB error occurs error
code is set to 1. Reply is sent.

0 1 1 0 0 0 Write, sin-
gle-address,
do not verify
before writ-
ing, no
acknowledge

Executed normally. Address has
to be word aligned and data size
a multiple of four. If alignment is
violated nothing is done. No
reply is sent.

0 1 1 0 0 1 Write, incre-
menting
address, do
not verify
before writ-
ing, no
acknowledge

Executed normally. No restric-
tions. No reply is sent.

0 1 1 0 1 0 Write, sin-
gle-address,
do not verify
before writ-
ing, send
acknowledge

Executed normally. Address has
to be word aligned and data size
a multiple of four. If alignment is
violated nothing is done and
error code is set to 10. If an AHB
error occurs error code is set to 1.
Reply is sent.

0 1 1 0 1 1 Write, incre-
menting
address, do
not verify
before writ-
ing, send
acknowledge

Executed normally. No restric-
tions. If AHB error occurs error
code is set to 1. Reply is sent.

0 1 1 1 0 0 Write, single
address, ver-
ify before
writing, no
acknowledge

Executed normally. Length must
be 4 or less. Otherwise nothing is
done. Same alignment restric-
tions apply as for rmw. No reply
is sent.

Table 1054.AMBA port hardware RMAP handling of different packet type and command fields.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Command Action

Reserved
Command
/ Response

Write /
Read

Verify
data
before
write

Acknow-
ledge

Increment
Address
GRIP, Sep 2018, Version 2018.3 884 www.cobham.com/gaisler

GRLIB IP Core
63.5.6 AMBA interface

The AMBA interface consists of an APB interface, an AHB master interface and DMA FIFOs. The
APB interface provides access to the user registers which are described in section 63.8. The DMA
engines have 32-bit wide FIFOs to the AHB master interface which are used when reading and writ-
ing to the bus.
The transmitter DMA engine reads data from the bus in bursts which are half the FIFO size in length.
A burst is always started when the FIFO is half-empty or if it can hold the last data for the packet. The
burst containing the last data might have shorter length if the packet is not an even number of bursts in
size.
The receiver DMA works in the same way except that it checks if the FIFO is half-full and then per-
forms a burst write to the bus which is half the fifo size in length. The last burst might be shorter. If
the rmap or rxunaligned VHDL generics are set to 1 the interface also handles byte accesses. Byte
accesses are used for non word-aligned buffers and/or packet lengths that are not a multiple of four
bytes. There might be 1 to 3 single byte writes when writing the beginning and end of the received
packets.

63.5.6.1 APB slave interface

As mentioned above, the APB interface provides access to the user registers which are 32-bits in
width. The accesses to this interface are required to be aligned word accesses. The result is undefined
if this restriction is violated.

0 1 1 1 0 1 Write, incre-
menting
address, ver-
ify before
writing, no
acknowledge

Executed normally. Length must
be 4 or less. Otherwise nothing is
done. Same alignment restric-
tions apply as for rmw. If they
are violated nothing is done. No
reply is sent.

0 1 1 1 1 0 Write, single
address, ver-
ify before
writing, send
acknowledge

Executed normally. Length must
be 4 or less. Otherwise nothing is
done and error code is set to 9.
Same alignment restrictions
apply as for rmw. If they are vio-
lated nothing is done and error
code is set to 10. If an AHB error
occurs error code is set to 1.
Reply is sent.

0 1 1 1 1 1 Write, incre-
menting
address, ver-
ify before
writing, send
acknowledge

Executed normally. Length must
be 4 or less. Otherwise nothing is
done and error code is set to 9.
Same alignment restrictions
apply as for rmw. If they are vio-
lated nothing is done and error
code is set to 10. If an AHB error
occurs error code is set to 1.
Reply is sent.

1 0 - - - - Unused Stored to DMA-channel.
1 1 - - - - Unused Stored to DMA-channel.

Table 1054.AMBA port hardware RMAP handling of different packet type and command fields.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Command Action

Reserved
Command
/ Response

Write /
Read

Verify
data
before
write

Acknow-
ledge

Increment
Address
GRIP, Sep 2018, Version 2018.3 885 www.cobham.com/gaisler

GRLIB IP Core

63.5.6.2 AHB master interface

The port contains a single master interface which is used by both the transmitter and receiver DMA
engines. The arbitration algorithm between the channels is done so that if the current owner requests
the interface again it will always acquire it. This will not lead to starvation problems since the DMA
engines always deassert their requests between accesses.
The AHB accesses are always word accesses (HSIZE = 0x010) of type incremental burst with unspec-
ified length (HBURST = 0x001) if VHDL generics rmap and rxunaligned are disabled. The AHB
accesses can be of size byte, halfword and word (HSIZE = 0x000, 0x001, 0x010) otherwise. Byte and
halfword accesses are always NONSEQ. Note that read accesses are always word accesses (HSIZE =
0x010), which can result in destructive read.
The burst length will be half the AHB FIFO size except for the last transfer for a packet which might
be smaller. Shorter accesses are also done during descriptor reads and status writes.
The AHB master also supports non-incrementing accesses where the address will be constant for sev-
eral consecutive accesses. HTRANS will always be NONSEQ in this case while for incrementing
accesses it is set to SEQ after the first access. This feature is included to support non-incrementing
reads and writes for RMAP.
If the core does not need the bus after a burst has finished there will be one wasted cycle (HTRANS =
IDLE).
BUSY transfer types are never requested and the port provides full support for ERROR, RETRY and
SPLIT responses.

63.5.7 Synthesis and hardware

63.5.7.1 Clocking

The AMBA ports run on the same clock as the router switch matrix.

63.5.7.2 Fault-tolerance

The ports can optionally be implemented with fault-tolerance against SEU errors in the FIFO memo-
ries. The fault-tolerance is enabled through the ft VHDL generic. Possible options are byte parity pro-
tection (ft = 1) or TMR (ft = 2).

63.5.7.3 Technology mapping

The core has three generics for technology mapping: tech, techfifo and memtech. Tech selects the tech-
nology used for the clock buffers and also adds reset to some registers for technologies where they
would otherwise cause problems with gate-level simulations. Techfifo selects whether memtech
should be used to select the technology for the FIFO memories (the RMAP buffer is not affected by
the this generic) or if they should be inferred. Tech and memtech can be set to any value from 0 to
NTECH as defined in the GRLIB.TECH package.

63.5.7.4 RAM usage

The core maps all RAM memories on the syncram_2p component if the ft generic is 0 and to the syn-
cram_2pft component for other values. The syncrams are located in the technology mapping library
(TECHMAP). The organization of the different memories are described below. If techfifo and/or
memtech is set to 0 the synthesis tool will infer the memories. Either RAM blocks or flip-flops will be
used depending on the tool and technology. The number of flip-flops used is syncram depth x syncram
width for all the different memories. The receiver AHB FIFO with fifosize 32 will for example use
1024 flips-flops.
GRIP, Sep 2018, Version 2018.3 886 www.cobham.com/gaisler

GRLIB IP Core

63.5.7.4.1Receiver ahb FIFO

The receiver AHB fifo consists of one syncram_2p block with a width of 32-bits. The depth is deter-
mined by the configured FIFO depth. Table 1055 shows the syncram organization for the allowed
configurations.

63.5.7.4.2Transmitter ahb FIFO

The transmitter AHB fifo consists of one syncram_2p block with a width of 32-bits. The depth is
determined by the configured FIFO depth. Table 1056 shows the syncram organization for the
allowed configurations.

63.5.7.4.3Receiver N-Char FIFO

The receiver N-Char fifo consists of one syncram_2p block with a width of 9-bits. The depth is deter-
mined by the configured FIFO depth. Table 1057 shows the syncram organization for the allowed
configurations.

Table 1055.syncram_2p sizes for GRSPW receiver AHB FIFO.

Fifosize Syncram_2p organization
4 4x32
8 8x32
16 16x32
32 32x32

Table 1056.syncram_2p sizes for transmitter AHB FIFO.

Fifosize Syncram_2p organization
4 4x32
8 8x32
16 16x32
32 32x32

Table 1057.syncram_2p sizes for the receiver N-Char FIFO.

Fifosize Syncram_2p organization
16 16x9
32 32x9
64 64x9
GRIP, Sep 2018, Version 2018.3 887 www.cobham.com/gaisler

GRLIB IP Core

63.5.7.4.4RMAP buffer

The RMAP buffer consists of one syncram_2p block with a width of 8-bits. The depth is determined
by the number of configured RMAP buffers. Table 1058 shows the syncram organization for the
allowed configurations.

63.5.8 Registers

The port is programmed through registers mapped into APB address space. The addresses in the table
below are offsets from each port’s base address. The actual AMBA AHB address used to access the
port is determined as follows: The AMBA ports’ registers are accessed through an APB interface
which resides on the APB bus. The APB bus is connected to the AHB bus using an APB controller
whose AHB address determines the first base address for the AMBA ports.
See the grlib manual and APB controller manual on how to determine this base address. The starting
base address on the APB bus for each AMBA port APB interface is set by the paddr and pmask
VHDL generics. The starting paddr value is then incremented by one for each port. Finally a registers
address is determined by adding the APB controller’s AHB base address, the ports APB base address
and the registers offset.

Table 1058.syncram_2p sizes for RMAP buffer memory.

RMAP buffers Syncram_2p organization
2 64x8
4 128x8
8 256x8

Table 1059.AMBA port registers

APB address offset Register
0x0 Control
0x4 Status/Interrupt-source
0x8 Default address
0xC Reserved
0x10 Destination key
0x14 Time
0x20 DMA channel 1 control/status
0x24 DMA channel 1 rx maximum length
0x28 DMA channel 1 transmit descriptor table address.
0x2C DMA channel 1 receive descriptor table address.
0x30 DMA channel 1 address register
0x34 Unused
0x38 Unused
0x3C Unused
0x40 - 0x5C DMA channel 2 registers
0x60 - 0x7C DMA channel 3 registers
0x80 - 0x9C DMA channel 4 registers
GRIP, Sep 2018, Version 2018.3 888 www.cobham.com/gaisler

GRLIB IP Core

63.5.8.1 AMBA Port Control Register

63.5.8.2 AMBA Port Status Register

Table 1060.AMBA port control register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RA RX RC NCH RESERVED RD RE RESERVED TR TT R TQ R RS PM TI IE RESERVED

* * * * 0 0 * 0 0 0 0 0 0 0 0 0 0 0

r r r r r rw rw r rw rw r rw r rw rw rw rw r

31 RMAP available (RA) - Set to one if the RMAP target is available. r
30 RX unaligned access (RX) - Set to one if unaligned writes are available for the receiver. r
29 RMAP CRC available (RC) - Set to one if RMAP CRC is enabled in the core. r
28: 27 Number of DMA channels (NCH) - The number of available DMA channels minus one (Number of

channels = NCH+1).
r

26: 18 RESERVED r
17 RMAP buffer disable (RD) - If set only one RMAP buffer is used. This ensures that all RMAP com-

mands will be executed consecutively. Only available if the rmap VHDL generic is set to 1.
rw

16 RMAP Enable (RE) - Enable RMAP target. Reset value taken from the ri.rmapen signal with index cor-
responding to this port starting with 0 for the first AMBA port. Only available if rmap VHDL generic is
set to 1.

rw

15: 12 RESERVED r
11 Time Rx Enable (TR) - Enable time-code receptions. rw
10 Time Tx Enable (TT) - Enable time-code transmissions. rw
9 RESERVED r
8 Tick-out IRQ (TQ) - Generate interrupt when a valid time-code is received. rw
7 RESERVED t
6 Reset (RS) - Make complete reset of the SpaceWire node. Self clearing. rw
5 Promiscuous Mode (PM) - Enable Promiscuous mode. rw
4 Tick In (TI) - The host can generate a tick by writing a one to this field. This will increment the timer

counter and the new value is transmitted after the current character is transferred. A tick can also be gen-
erated by asserting the tick_in signal.

rw

3 Interrupt Enable (IE) - If set, an interrupt is generated when bit 8 is set and its corresponding event
occurs.

rw

2: 0 RESERVED r

Table 1061.AMBA port status register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED EE IA RESERVED TO

0 0 0 0 0

r wc wc r wc

31: 9 RESERVED r
8 Early EOP/EEP (EE) - Set to one when a packet is received with an EOP after the first byte for a non-

rmap packet and after the second byte for a RMAP packet.
wc

7 Invalid Address (IA) - Set to one when a packet is received with an invalid destination address field, i.e
it does not match the nodeaddr register.

wc

6: 1 RESERVED r
0 Tick Out (TO) - A new time count value was received and is stored in the time counter field. wc
GRIP, Sep 2018, Version 2018.3 889 www.cobham.com/gaisler

GRLIB IP Core

63.5.8.3 AMBA Port Default Address Register

63.5.8.4 AMBA Port Destination Key

63.5.8.5 AMBA Port Time Register

Table 1062.AMBA port default address register
31 16 15 8 7 0

RESERVED DEFMASK DEFADDR

0 0x00 0xFE

r rw rw

31: 8 RESERVED r
15: 8 Default mask (DEFMASK) - Default mask used for node identification on the SpaceWire network. This

field is used for masking the address before comparison. Both the received address and the DEFADDR
field are anded with the inverse of DEFMASK before the address check.

rw

7: 0 Default address (DEFADDR) - Default address used for node identification on the SpaceWire network.
Reset value: 254.

rw

Table 1063.AMBA port destination key
31 8 7 0

RESERVED DESTKEY

0 0x00

r rw

31: 8 RESERVED r
7: 0 Destination key (DESTKEY) - RMAP destination key. Only available if the rmap VHDL generic is

set to 1.
rw

Table 1064.AMBA port time register
31 8 7 6 5 0

RESERVED TCTRL TIMECNT

0 00 0x00

r rw rw

31: 8 RESERVED r
7: 6 Time control flags (TCTRL) - The current value of the time control flags. Sent with time-code resulting

from a tick-in. Received control flags are also stored in this register.
rw

5: 0 Time counter (TIMECNT) - The current value of the system time counter. It is incremented for each
tick-in and the incremented value is transmitted. The register can also be written directly but the written
value will not be transmitted. Received time-counter values are also stored in this register

rw
GRIP, Sep 2018, Version 2018.3 890 www.cobham.com/gaisler

GRLIB IP Core

63.5.8.6 AMBA DMA Control Register

63.5.8.7 AMBA Port RX Maximum Length Register

Table 1065.AMBA port dma control register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED SP SA EN NS RD RX AT RA TA PR PS AI RI TI RE TE

0 0 0 0 0 0 0 0 0 0 0 0 NR NR NR 0 0

r rw rw rw rw rw r rw wc wc wc wc rw rw rw rw rw

31: 16 RESERVED r
15 Strip pid (SP) - Remove the pid byte (second byte) of each packet. The address byte (first byte) will

also be removed when this bit is set independent of the SA bit.
rw

14 Strip addr (SA) - Remove the addr byte (first byte) of each packet. rw
13 Enable addr (EN) - Enable separate node address for this channel. rw
12 No spill (NS) - If cleared, packets will be discarded when a packet is arriving and there are no active

descriptors. If set, the GRSPW will wait for a descriptor to be activated.
rw

11 Rx descriptors available (RD) - Set to one, to indicate to the GRSPW that there are enabled descrip-
tors in the descriptor table. Cleared by the GRSPW when it encounters a disabled descriptor:

rw

10 RX active (RX) - Is set to ‘1’ if a reception to the DMA channel is currently active otherwise it is ‘0’. r
9 Abort TX (AT) - Set to one to abort the currently transmitting packet and disable transmissions. If no

transmission is active the only effect is to disable transmissions. Self clearing.
rw

8 RX AHB error (RA) - An error response was detected on the AHB bus while this receive DMA
channel was accessing the bus.

wc

7 TX AHB error (TA) - An error response was detected on the AHB bus while this transmit DMA
channel was accessing the bus.

wc

6 Packet received (PR) - This bit is set each time a packet has been received. never cleared by the SW-
node.

wc

5 Packet sent (PS) - This bit is set each time a packet has been sent. Never cleared by the SW-node. wc
4 AHB error interrupt (AI) - If set, an interrupt will be generated each time an AHB error occurs when

this DMA channel is accessing the bus.
rw

3 Receive interrupt (RI) - If set, an interrupt will be generated each time a packet has been received.
This happens both if the packet is terminated by an EEP or EOP.

rw

2 Transmit interrupt (TI) - If set, an interrupt will be generated each time a packet is transmitted. The
interrupt is generated regardless of whether the transmission was successful or not.

rw

1 Receiver enable (RE) - Set to one when packets are allowed to be received to this channel. rw
0 Transmitter enable (TE) - Write a one to this bit each time new descriptors are activated in the table.

Writing a one will cause the SW-node to read a new descriptor and try to transmit the packet it points
to. This bit is automatically cleared when the SW-node encounters a descriptor which is disabled.

rw

Table 1066.AMBA port RX maximum length register.
31 25 24 0

RESERVED RXMAXLEN

0 NR

r rw

31: 25 RESERVED r
24: 0 RX maximum length (RXMAXLEN) - Receiver packet maximum length in bytes. Only bits 24 - 2

are writable. Bits 1 - 0 are always 0.
rw
GRIP, Sep 2018, Version 2018.3 891 www.cobham.com/gaisler

GRLIB IP Core

63.5.8.8 AMBA Port Transmitter Descriptor Table Address Register

63.5.8.9 AMBA Port Receiver Descriptor Table Address Register

63.5.8.10AMBA Port DMA Channel Address Register

63.5.9 Vendor and device identifiers

The port has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x8A. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

63.6 Configuration port

The configuration port uses the RMAP protocol (ECSS-E-ST-50-52C). Verified writes, reads and
read-modify-writes all of length 4 bytes are supported (8B for RMW if the mask field is included in
the count). Replies sent from the configuration port are always replied to the port they arrived from

Table 1067.AMBA port transmitter descriptor table address register.
31 10 9 4 3 0

DESCBASEADDR DESCSEL RESERVED

NR 0 0

rw rw r

31: 10 Descriptor table base address (DESCBASEADDR) - Sets the base address of the descriptor table. rw
9: 4 Descriptor selector (DESCSEL) - Offset into the descriptor table. Shows which descriptor is cur-

rently used by the GRSPW. For each new descriptor read, the selector will increase with 16 and
eventually wrap to zero again.

rw

3: 0 RESERVED r

Table 1068.AMBA port receiver descriptor table address register.
31 10 9 3 2 0

DESCBASEADDR DESCSEL RESERVED

NR 0 0

rw rw r

31: 10 Descriptor table base address (DESCBASEADDR) - Sets the base address of the descriptor table.
Not reset.

rw

9: 3 Descriptor selector (DESCSEL) - Offset into the descriptor table. Shows which descriptor is cur-
rently used by the GRSPW. For each new descriptor read, the selector will increase with 8 and even-
tually wrap to zero again. Reset value: 0.

rw

2: 0 RESERVED r

Table 1069.AMBA port dma channel address register
31 16 15 8 7 0

RESERVED MASK ADDR

0 NR NR

r rw rw

31: 8 RESERVED r
15: 8 Mask (MASK) - Mask used for node identification on the SpaceWire network. This field is used for

masking the address before comparison. Both the received address and the ADDR field are anded
with the inverse of MASK before the address check.

rw

7: 0 Address (ADDR) - Address used for node identification on the SpaceWire network for the corre-
sponding dma channel when the EN bit in the DMA control register is set.

rw
GRIP, Sep 2018, Version 2018.3 892 www.cobham.com/gaisler

GRLIB IP Core

regardless of the source address. The address space of the configuration port is specified in section
63.8. Addresses outside of the range will result in an authorization error. Table 1071 gives a detailed
listing of the configuration port’s handling of RMAP packets.
Per default the configuration area can be accessed from all the ports. Configuration accesses can be
individually disabled per port using the CE bit in the port control register. Writes to the configuration
area can be globally disabled by writing a 0 to the WE bit in the configuration write enable register.
This disables write accesses from all ports to all registers except the configuration write enable regis-
ter itself.
There is also a signal, ri.cfglock, which can be used to disable configuration accesses from all ports
except port 1. This signal overrides the settings of the CE bits in the port control registers. The global
write enable register still affects port 1 in this case.
When an otherwise correct RMAP command destined to the configuration port is received but not
allowed due to one or more of the configuration access disable options being enabled a reply with sta-
tus set to authorization failure will be sent if requested. If a reply is not requested the packet will be
silently discarded. In both cases the command will not be performed and has no effect on the configu-
ration port registers.

63.6.1 AMBA AHB slave interface

An AMBA AHB slave interface can be optionally included which makes the whole configuration port
memory area accessible from the AHB bus. The address offsets are the same as when accessing
through RMAP but the base address is different. The 32-bit AHB base address is calculated by setting
bits 19 downto 0 to 0x00000 and bits 31 downto 20 to the VHDL generics cfghaddr and cfghmask
anded. So if for example cfghaddr is 0xC00 and cfghmask is 0xFFF the routers AHB memory area
will occupy 1 MB starting from 0xC0000000.
Only word accesses (32-bit) are allowed. The routing table is shared between the ports, RMAP target
and AHB slave so accesses from the AHB slave might be stalled because the of accesses from the
other sources. The priority order starting from the highest is router ports, RMAP target and AHB
slave. The router ports access order is controlled using a round-robin abitration mechanism.
None of the registers and signals for limiting configuration accesses have any effect on the AHB slave
interface.
There is predetermined order in which error-codes are set in the case of multiple errors in the core. It
is shown in table 1070.

Errors up to and including Invalid Data CRC (number 8) are checked before executing a command.
The other errors do not prevent verified operations from being performed.

Table 1070.The order of error detection in case of multiple errors in the configuration port RMAP target. The error detected
first has number 1.

Detection Order Error Code Error
1 12 Invalid destination logical address
2 2 Unused RMAP packet type or command code
3 3 Invalid destination key
4 9 Verify buffer overrun
5 11 RMW data length error
6 10 Authorization failure
8 5/7 Early EOP / EEP (if early)
9 4 Invalid Data CRC
11 7 EEP
12 6 Too much data
GRIP, Sep 2018, Version 2018.3 893 www.cobham.com/gaisler

GRLIB IP Core

The details of the support for the different commands are now presented. All defined commands
which are received but have an option set which is not supported in this specific implementation will
not be executed and a reply is sent (if the acknowledge bit was set) with error code 10.

63.6.2 Write commands

The write commands are divided into two subcategories when examining their capabilities: verified
writes and non-verified writes. The configuration port only supports verified writes with the length
restricted to 4 and 0 bytes and the address must be 4 B aligned (address(1:0)=00). Since only one loca-
tion can be accessed for each command the incrementing address bit can be set to either 0 or 1 and the
behavior will be the same. If any of the restrictions mentioned above are violated an reply (if
requested) will be sent with the status field set to 10.

63.6.3 Read commands

Read commands are also restricted to 4 or 0 bytes in length and the address has to be 4 B aligned. As
for writes each read command only accesses one location so the increment bit can be either 0 or 1.

63.6.4 RMW commands

RMW supports the size 4 or 0 bytes (8 B or 0 B if the mask field is included in the count). The RMW
accesses have the same restrictions as the verified writes. As in the verified write case, the increment-
ing bit can be set to any value since only one operation will be performed for each command. Too
much data is detected after the complete command was received and will not prevent the write from
being executed. No data is sent in a reply if an error is detected i.e. the status field is non-zero.
The RMW operation is performed by first reading the address location and then writing the same
location with the value obtained from the formula data = (writedata and mask) or (readdata and not
mask). This means the data bits corresponding to mask bits set to 0 will retain their old value and
other bits will be updated with a new value from the data provided in the rmw command.
GRIP, Sep 2018, Version 2018.3 894 www.cobham.com/gaisler

GRLIB IP Core

Table 1071.RMAP command support by the configuration port.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Packet type Action

Reserved
Command
/ Response

Write /
Read

Verify
data
before
write

Acknow-
ledge

Increment
Address

0 0 - - - - Response Packet is discarded, no opera-
tion is performed and no reply is
sent.

0 1 0 0 0 0 Not used Packet is discarded, no opera-
tion is performed and no reply is
sent.

0 1 0 0 0 1 Not used Packet is discarded, no opera-
tion is performed and no reply is
sent.

0 1 0 0 1 0 Read single
address

Supported. Address has to be
word aligned and belonging to
the defined address range, data
length has to be 4. Reply is sent.
If alignment restrictions or
address ranges are violated error
code is set to 10.

0 1 0 0 1 1 Read incre-
menting
address.

Supported. Address has to be
word aligned and belonging to
the defined address range, data
length has to be 4. Reply is sent.
If alignment restrictions or
address ranges are violated error
code is set to 10.

0 1 0 1 0 0 Not used Packet is discarded, no opera-
tion is performed and no reply is
sent.

0 1 0 1 0 1 Not used Packet is discarded, no opera-
tion is performed and no reply is
sent.

0 1 0 1 1 0 Not used No operation is performed.
Reply is sent with error code 2.

0 1 0 1 1 1 Read-Mod-
ify-Write
increment-
ing address

Supported. The data length has
to be 8 (4 B mask and 4 B data)
and the address word aligned and
within the supported range. If
these restrictions are violated the
command is not executed and the
error code is set to 10. Reply is
sent.

0 1 1 0 0 0 Write, sin-
gle-address,
do not verify
before writ-
ing, no
acknowledge

Not implemented. Packet is dis-
carded and no reply is sent.

0 1 1 0 0 1 Write, incre-
menting
address, do
not verify
before writ-
ing, no
acknowledge

Not implemented. Packet is dis-
carded and no reply is sent.
GRIP, Sep 2018, Version 2018.3 895 www.cobham.com/gaisler

GRLIB IP Core
0 1 1 0 1 0 Write, sin-
gle-address,
do not verify
before writ-
ing, send
acknowledge

Not implemented. Command is
not executed. Error code is set to
10 and a Reply is sent.

0 1 1 0 1 1 Write, incre-
menting
address, do
not verify
before writ-
ing, send
acknowledge

Not implemented. Command is
not executed. Error code is set to
10 and a Reply is sent.

0 1 1 1 0 0 Write, single
address, ver-
ify before
writing, no
acknowledge

Supported. Length must be 4,
address must be word aligned
and within the allowed range.
Otherwise the command is not
executed. No reply is sent.

0 1 1 1 0 1 Write, incre-
menting
address, ver-
ify before
writing, no
acknowledge

Supported. Length must be 4,
address must be word aligned
and within the allowed range.
Otherwise the command is not
executed. No reply is sent.

0 1 1 1 1 0 Write, single
address, ver-
ify before
writing, send
acknowledge

Supported. Length must be 4,
address must be word aligned
and within the allowed range.
Otherwise the command is not
executed. If one of these errors
are detected the error code is set
to 10. Reply is sent.

0 1 1 1 1 1 Write, incre-
menting
address, ver-
ify before
writing, send
acknowledge

Supported. Length must be 4,
address must be word aligned
and within the allowed range.
Otherwise the command is not
executed. If one of these errors
are detected the error code is set
to 10. Reply is sent.

1 0 - - - - Unused Packet is discarded, no opera-
tion is performed and no reply is
sent.

1 1 - - - - Unused Packet is discarded, no opera-
tion is performed and no reply is
sent.

Table 1071.RMAP command support by the configuration port.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Packet type Action

Reserved
Command
/ Response

Write /
Read

Verify
data
before
write

Acknow-
ledge

Increment
Address
GRIP, Sep 2018, Version 2018.3 896 www.cobham.com/gaisler

GRLIB IP Core

63.7 Configuration options

Table 1072 shows the configuration options of the core (VHDL generics).

Table 1072.Configuration options

Generic Function Allowed range Default
input_type Select receiver type. 0 = Self clocking (xor), 1 = Interface

for Cobham SpaceWire transceiver, 2 = Single data rate
sampling, 3 and 4 = Double data rate sampling, 5 = Self-
clocking with external recovery, 6 = Self-clocking with
external recovery and DDR register for data. This generic
must be set to the same value as the GRSPW2_PHY
generic with the same name.

0 - 6 0

output_type Select transmitter type. 0 = single data rate, 1 = double data
rate, 2 = interface for Cobham SpaceWire transceiver

0 - 2 0

rxtx_sameclk Set to one if the same clock net is connected to both the
receiver and transmitter (which means this feature is only
applicable when the receiver uses sampling). This will
remove some unnecessary synchronization registers.

0 - 1 0

fifosize Sets the number of entries in the 9-bit receiver fifo (N-
Char fifo).

16 - 2048 64

tech Technology for on-chip memories. - -
scantest Enable scan test support 0 - 1 0
techfifo Enable tech support for on-chip memories. 0 - 1 0
ft Enable fault-tolerance against SEU errors 0 - 2 0
spwports Sets the number of SpaceWire link ports. 0 - 31 2
ambaports Sets the number of AMBA ports. 0 - 16 0
fifoports Sets the number of FIFO ports. 0 - 31 0
arbitration Select the arbitration type. Currently unused. 0 - 1 0
rmap Include hardware RMAP target in the AMBA ports.

RMAP CRC logic will also be added in this case and the
rmapcrc generic will have no additional effect. Bit index 0
of the binary representation of the integer corresponds to
amba port 1, index 1 to amba port 2 etc.

0 - 16#FFFF# 0

rmapcrc Enable RMAP CRC logic for the AMBA ports. Bit index 0
of the binary representation of the integer corresponds to
amba port 1, index 1 to amba port 2 etc.

0 - 16#FFFF# 0

fifosize2 Sets the number of entries in the 32-bit AHB fifos for the
AMBA ports.

4 - 32 32

almostsize Sets the number of characters from the full or empty condi-
tions that is used as the limit for the almost full and almost
empty indications for the FIFO ports.

1 - 32 8

rxunaligned Receiver unaligned write support. If set, the receiver can
write any number of bytes to any start address without
writing any excessive bytes. Bit index 0 of the binary rep-
resentation of the integer corresponds to amba port 1,
index 1 to amba port 2 etc.

0 - 16#FFFF# 0

rmapbufs Sets the number of buffers to hold RMAP replies. 2 - 8 4
dmachan Sets the number of DMA channels 1 - 4 1
hindex AHB master index. 0 - NAHBMST-1 0
pindex APB interface index value for first AMBA port. Incre-

mented by one for each subsequent port.
0 - NAPBLSV-1 0
GRIP, Sep 2018, Version 2018.3 897 www.cobham.com/gaisler

GRLIB IP Core
paddr Determines the starting APB address for theAMBA ports
together with pmask. For the first port bits 19 downto 12 in
the address will be paddr anded with pmask. See the grlib
manual for more details. Subsequent ports will have a
starting address which is an increment of the previous
value. The increment is determined by pmask. 16#FFF# =
increment 1, 16#FFE# = increment 2, 16#FFC# = incre-
ment 4 etc.

0 - 16#FFF# 0

pmask Mask for the APB address for the AMBA ports. Anded
with paddr to determine the starting address and the range
of the area for each port.

0 - 16#FFF# 16#FFF#

pirq Interrupt number for first AMBA port. Will be incre-
mented by one for each subsequent port.

0 - NAHBIRQ-1 0

cfghindex AHB slave index. 0 to NAHBSLV-1 0
cfghaddr ADDR field of the AHB BAR0 defining the AHB slave

address space.
0 to 16#FFF# 0

cfghmask MASK field of the AHB BAR0 defining the AHB slave
address space.

0 to 16#FFF# 16#FFF#

ahbslven Enable AHB slave interface. 0 to 1 0
timerbits Enables timers when set to a nonzero value. The value

determines the number prescaler bits.
0 to 31 0

pnp Enable Plug and play on the configuration port. 0 to 1 0
autoscrub Enable automatic scrubbing of routing table and port setup

memories.
0 to 1 0

sim Enable simulation mode. It has no effect when synthesiz-
ing but for simulation it shortens the autoscrub period to
1024 clock cycles to make simulation times shorter.

0 to 1 0

dualport Enable dual port mode (primary and redundant) for Space-
Wire ports.

0 to 1 1

charcntbits Enables characters counters if nonzero and sets the number
of counter bits.

0-31 0

pktcntbits Enables packet counters if nonzero and sets the number of
counter bits.

0-31 0

prescalermin Sets the minimum value of the prescaler reload register.
This only affects writes to the register, not the reset value.

- 250

codecclkgate Enable the internal clockgate for the router clocks by set-
ting this generic to 1. Note that this generic is only applica-
ble to the wrapper grspwrouterm, as the clockgate is
instantiated in there. If using the router without wrapper
(grspwrouter), this generic is not available and the clock-
gate is disabled

0 - 1 0

internalrstgen If this generic is set to 1, the reset generators for every
clock domain are instantiated internally in the wrapper of
the SpW router (grspwrouterm). Otherwise, the user is
expected to implement the reset generation from the top
level entity. This generic is only available when using the
wrapper.

0 - 1 1

rstsrctmr Enables the Triple Module Redundancy for the asynchro-
nous reset nets of the core

0 - 1 0

Table 1072.Configuration options

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 898 www.cobham.com/gaisler

GRLIB IP Core

63.8 Registers

The registers listed here are accessed through the RMAP target and the addresses specified shall be set
in the address field of the RMAP command. They can also be accessed through AHB if the AHB
slave is available. The AHB addresses are determined by adding the addresses in table 1075 to the
AHB base address determined by the cfghaddr and cfghmask VHDL generics.
Only 32-bit single-accesses to the registers through AHB are supported.
GRIP, Sep 2018, Version 2018.3 899 www.cobham.com/gaisler

GRLIB IP Core

63.8.1 Reset value definitions

Table 1073.Reset value definitions

63.8.2 Register type definitions

Table 1074.Register type definitions

Value Description
0 Reset to value 0
1 Reset to value 1
0x0 Hexadecimal value which can be used for multibit fields
NA Not applicable. For example reserved fields or read only fields which are constant
NR Not reset
* Special reset condition. Described in textual description of the bit. Used for example when reset

value is taken from a signal

Value Description
r Read only
w Write only
rw Readable and writable
wc Readable and cleared when written with a 1
rc Readable and cleared when read

Table 1075.GRSPWROUTER registers

RMAP address Register
0x0 RESERVED
0x4-0x7C Port setup for ports 1-31
0x80-0x3FC Port setup for logical addresses 32-255
0x400-0x47C RESERVED
0x480-0x7FC Routing table entry for logical addresses 32-255
0x800-0x87C Port 0-31 control
0x880-0x8FC Port 0-31 status
0x900-0x97C Timer reload ports 0-31
0xA00 Router configuration/status
0xA04 Time-code
0xA08 Version/instance ID
0xA0C Initialization divisor
0xA10 Configuration write enable
0xA14 Timer prescaler reload
0xC04-0xC7C Port 1-31 outgoing character count
0xC84-CFC Port 1-31 incoming character count
0xD04-0xD7C Port 1-31 outgoing packet count
0xD84-0xDFC Port 1-31 incoming packet count
GRIP, Sep 2018, Version 2018.3 900 www.cobham.com/gaisler

GRLIB IP Core
Table 1076. Port setup register
31 1 0

PORT ENABLE BITS PD

NR NR

31: 1 Port enable bits (PORT ENABLE BITS) - Each individual bit enables, when set to 1, packets with the
path or logical address corresponding to this port setup register to be sent on the port with the same num-
ber as the bit index. Only bits up to and including the highest port number are valid.

rw

0 Packet distribution (PD) - When set to 1 packet distribution is used for the path or logical address corre-
sponding to this port setup register. When set to 0 group adaptive routing is used.

rw

NOTE: When this register has been written with a non-zero value it will be considered valid and used for determinig the
destination port. A memory error at location of the port setup information for the destination address will cause the packet to
be discarded which will make the associated physical address unusable until the error is fixed (done automatically if auto-
scrubbing is enabled). If this behavior is unacceptable GAR or PD should not be enabled for physical addresses. If a port
setup entry for a physical address is valid it can be invalidated by writing zeros (to the valid bits in the register) to the mem-
ory location.

Table 1077. Routing table entry
31 3 2 1 0

RESERVED EN PR HD

NA NR NR NR

31: 3 RESERVED
2 Enable (EN) - Enables routing table entry. If enabled the corresponding logical address can be used to

route packets, otherwise an invalid address error will be generated and the packet is discarded. Note that
the corresponding port setup register must not be set to 0 when a routing table entry is enabled.

rw

1 Priority (PR) - Sets the arbitration priority of this port. 0=low priority, 1=high priority. rw
0 Header deletion (HD) - Enable header deletion for this logical address. rw

Table 1078. Port control for configuration port (port 0)
31 10 9 8 7 6 5 4 3 2 1 0

RESERVED TR RESERVED

N/A * N/A

31: 10 RESERVED r
9 Timer enable (TR) - Enable timer for packet transfer timeouts for this port. Only available if the tim-

erbits VHDL generic is 1. Reset value set from the ri.timeren signal.
rw

8: 0 RESERVED r

Table 1079. Port control
31 24 23 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RD RESERVED ET NP PS BE DI TR PR TF RS TE RE CE AS LS LD

* N/A * 0 0 * 0 * 0 0 0 1 NA 1 1 0 0

31: 24 Run-state clock divisor (RD) - Clock divisor value used for this link when in the run-state. Only avail-
able for SpW ports, reads as 0 otherwise. See 63.3.2 for details on how to set this field. Reset value taken
from ri.idivisor signal.

rw

23: 15 RESERVED r
GRIP, Sep 2018, Version 2018.3 901 www.cobham.com/gaisler

GRLIB IP Core
14 Enable external time (ET) - When 0 an icnrement (+1)of the internal time-counter is used when sending
a time-code as a result from a tickin. When 1 the time-code value is taken from external pins at the clock
edge the tickin is asserted. Reset value taken from the ri.en_ext_time signal with the index correspond-
ing to the current FIFO port starting with 0 from the lowest index FIFO port. Only available for FIFO
ports.

rw

13 No portforce (NP)- When set to 1 the active port between the primary and redundant port is selected
automatically by detecting activity on the incoming signals. When 0 the active port is selected using the
PS bit. Only applicable to SpaceWire ports. Only available when dualport is enabled.

rw

12 Port select (PS) - Selects between the primary and redunant port when NP is 0. It has no effect when NP
is 1. Only applicable to SpaceWire ports. Only available when dualport is enabled.

rw

11 FIFO bridge enable (BE) - Set to 1 to enable bridge mode for the FIFO port which will enable it to be
connected to another GRSPWROUTER FIFO port with automatic transfers. Only available for FIFO
ports. Reset value set from the signal index of ri.enbridge corresponding to this FIFO port number.

rw

10 Disable port (DI) - Disable data transfers on this port. When asserted packets sent to this port will be
spilt and the invalid address bit is set in the source port. For group adaptive routing disabled ports will
not be included in the group of possible destinations. For packet distribution they will not be transmitted
to but the other destination ports will still be transmitted to. Port 1 cannot be disabled and this bit is read
only 0 in that case.

rw

9 Timer enable (TR) - Enable timer for packet transfer timeouts for this port. Only available if the tim-
erbits VHDL generic is 1. Reset value set from the ri.timeren signal.

rw

8 Priority (PR) - Sets the arbitration priority for the path address corresponding to this port. 0=low priority,
1=high priority.

rw

7 Transmitter FIFO reset (TF) - Resets the transmitter FIFO on this port. This means that the FIFO is emp-
tied (counters and pointers set to 0) and lastly an EEP is written to the FIFO to ensure that incomplete
packets are detected by the receiver. If a packet transmission was active (a source port was writing to the
destination port) when the FIFO reset was asserted the remainder of that packet up to and including
EOP/EEP will be spilt.

rw

6 Receiver spill (RS) - Spills the receiver FIFO meaning that the packet currently being received is spilt up
to and including the EOP/EEP. If no packet reception is currently active on this port nothing happens.
The port or ports in the case of packet distribution will have an EEP written to the transmit FIFO to indi-
cate that the packet was ended prematurely. Not available for AMBA ports.

rw

5 Time-code enable (TE) - Enables time-codes to be received and transmitted on this port. When enabled
received time-codes are processed and if valid a tick-out will be generated and the time-code is for-
warded to the other ports. When disabled received time-codes are ignored. Time-codes are only trans-
mitted on this port if this bit is set to 1 and tick-in is ignored otherwise.

rw

4 RESERVED r
3 Configuration port enable (CE) - Enable accesses to the configuration port. If disabled packets to the

configuration port will be spilt.
rw

2 Autostart (AS) - Enable the Link interface FSM Autostart feature. Only available for SpW ports, reads
as 0 otherwise.

rw

1 Link start (LS) - Start the link interface FSM. Only available for SpW ports, reads as 0 otherwise. rw
0 Link disabled (LD) - Disable the link interface FSM. Only available for SpW ports, reads as 0 otherwise. rw

Table 1080. Port status configuration port (port 0)
31 25 24 23 20 19 18 17 12 11 7 6 5 4 3 2 1 0

RESERVED CE ERRCODE RE TS RESERVED TP RESERVED

NA 0 NR NA 0 NA 00000 NA

31: 25 RESERVED r
24 Clear error code (CE) - Write with a 1 to clear th ERRCODE field. rw
23: 20 Error code (ERRCODE) - Shows the latest nonzero RMAP status code. If zero no error has occurred. r
19 RESERVED r
18 Timeout spill (TS) - Packet spilled due to timeout. Only available if timerbits is nonzero. wc
17: 12 RESERVED r

Table 1079. Port control
GRIP, Sep 2018, Version 2018.3 902 www.cobham.com/gaisler

GRLIB IP Core
11: 7 Transmitting port (TP) - The number of the port currently accessing the configuration port. r
6: 0 RESERVED r

Table 1081. Port status
31 30 29 20 19 18 17 16 15 14 12 11 7 6 5 4 3 2 1 0

PT RESERVED AP TS ME TF RE LS TP PB PR IA CE ER DE PE

NA NA NR 0 0 0 1 000 00000 NA NA 0 0 0 0 0

31: 30 Port type (PT) - The type of this port. “00” = SpaceWire port, “01” = AMBA port, “10”= FIFO port r
29: 20 RESERVED r
19 Active port(AP) - Show which of the primary and redundant port is active. 0 = primary port, 1 = redun-

dant port. Only applicable to SpaceWire ports. Only available when dualport is enabled..
r

18 Timeout spill (TS) - Packet spilled due to timeout. Only available if timerbits is nonzero. wc
17 Memory error (ME) - Uncorrectable parity error detected in FIFO memories on this link. wc
16 Transmit FIFO full (TF) - Set to 1 when the transmit FIFO on this port is full. r
15 Receive FIFO empty(RE) - Set to 1 when the receive FIFO on this port is full. Not available for AMBA

ports.
r

14: 12 Link state (LS) - Current link state. 000 = Error reset. 001 = Error wait, 010 = Ready, 011 = Started, 100
= Connecting, 101 = Run state. Only available for SpW ports, reads as 0 otherwise.

r

11: 7 Transmitting port (TP) - The number of the port currently transmitting on this port. Only valid if the PB
bit is set to 1.

r

6 Port transmit busy (PB) - Set to 1 when a packet is being transmitted on this port. r
5 Port receive busy (PR) - Set to 1 when a packet is being received on this port. r
4 Invalid address (IA) - A packet with an invalid address was received on this link. wc
3 Credit error (CE) - Set when a credit error has occurred on the link. Only available for SpW ports, reads

as 0 otherwise.
wc

2 Escape error (ER) - Set when an escape error has occurred on the link. Only available for SpW ports,
reads as 0 otherwise.

wc

1 Disconnect error (DE) - Set when a disconnect error has occurred on the link. Only available for SpW
ports, reads as 0 otherwise.

wc

0 Parity error (PE) - Set when a parity error has occurred on the link. Only available for SpW ports, reads
as 0 otherwise.

wc

Table 1082. Timer reload
31 10 9 0

RESERVED RELOAD

*

31: 10 RESERVED r
9: 0 Timer reload (RELOAD) - Port specific timer reload value. This timer runs on the prescaler generated

tick and determines the timeout period for the port it is associated with. The minium value of this register
is 1. Writing a 0 will result in 1 being written. Reset value set from the ri.reloadn signal.

rw

Table 1083. Router configuration/status
31 27 26 22 21 17 16 8 7 6 5 4 3 2 1 0

SPWPORTS AMBAPORTS FIFOPORTS RESERVED RE AD LS SA TF ME TA PP

NA NA NA NA 0 * * * 0 0 NA NA

Table 1080. Port status configuration port (port 0)
GRIP, Sep 2018, Version 2018.3 903 www.cobham.com/gaisler

GRLIB IP Core
31: 27 SpaceWire ports (SPWPORTS) - Set to the number of SpaceWire ports in the router. r
26: 22 AMBA ports (AMBAPORTS) - Set to the number of AMBA ports in the router. r
21: 17 FIFO ports (FIFOPORTS) - Set to the number of FIFO ports in the router. r
16: 8 RESERVED r
7 Reset (RE) - Resets the complete router when written with a 1. The router will not respond for 6-7 core

clock cycles. Thus when writing this register through RMAP the reply bit should NOT bet set since the
reply will not be sent.

rw

6 Auto disconnect (AD) - When set to 1 ports will be automatically stopped after a timeout period of inac-
tivity. Only available if timers are enabled. Reset value taken from the ri.autodconnect signal.

rw

5 Link start on request (LS) - When set to 1 ports will be started automatically when there is a request to
transmit a packet on the port. The link will only start if it is not disabled. Reset value taken from the
ri.linkstartreq signal.

rw

4 Self addressing enable (SA) - If set to 1 ports are allowed to send packets to themselves. If 0 packets
with the same source and destiination port are spilt and an invalid address error is asserted. Reset value
taken from the ri.selfaddren signal.

rw

3 Time-code control flag mode (TF) - When 0 the time-code control flags can have any value for normal
operation. When set to 1 the control flags must have the value “00” for normal time-code operation, oth-
erwise the time-codes are discarded.

rw

2 Memory error (ME) - Set to one each time an uncorrectable error has been detected in either the routing
table or port setup memory.

wc

1 Timers available(TA) - Set to one if the router has watchdog timer support. r
0 Plug and Play available (PP) - Set to one if the router has Plug and Play support. r

Table 1084. Time-code
31 9 8 7 6 5 0

RESERVED RE EN CF TIMECNT

NA 0 1 0 0

31: 10 RESERVED r
9 Reset time-code (RE) - Resets the control flags and time counters to 0 when written with a 1. Always

reads as 0.
rw

8 Enable time-codes (EN) - Enable time-codes to propagate and update the counter and control flags.
When disabled time-codes are ignored.

rw

7: 6 Time-control flags (CF) - The current value of the router control flags. r
5: 0 Time-counter (TIMECNT) - Current value of the router time counter. r

Table 1085. Version/Instance ID
31 24 23 16 15 8 7 0

MAJOR VERSION MINOR VERSION PATCH INSTANCE ID

NA NA NA *

31: 24 Major version (MAJOR VERSION) - Holds the major version number of the router. r
23: 16 Minor version (MINOR VERSION) - Holds the minor version number of the router. r
15: 8 Patch (PATCH) - Holds the patch number of the router. r
7: 0 Instance ID (INSTANCE ID) - Holds the instance ID number of the router. Reset value taken from the

ri.instanceid signal.
rw

Table 1083. Router configuration/status
GRIP, Sep 2018, Version 2018.3 904 www.cobham.com/gaisler

GRLIB IP Core
Table 1086. Initialization divisor
31 8 7 0

RESERVED ID

N/A *

31: 8 RESERVED r
7: 0 Initialization clock divisor (ID) - Clock divisor value used by all the SpaceWire links to generate the 10

Mbit/s rate during initialization. All the links use a common clock for this so only one divisor is needed.
Only available if there is at least one SpaceWire port in the router, reads as 0 otherwise. See 63.3.2 for
details on how to set this field. Reset value taken from ri.idivisor signal.

rw

Table 1087. Configuration write enable
31 1 0

RESERVED WE

NA 1

31: 1 RESERVED r
0 Configuration write enable (WE) - When set to 1 write accesses to the configuration area are allowed.

When set to 0 writes are not allowed except to this register. Write or RMW commands will be replied
with an authorization error if a reply was requested.

rw

Table 1088. Timer prescaler
31 16 16-

1
0

RESERVED PRESCALER

NA *

31: 16 RESERVED r
16
-1:

0 Timer prescaler (PRESCALER) - Global prescaler value used for generating a common tick for the port
timers. The prescaler runs on clk (table 539) and a tick is generated every prescaler+1 cycle. Only avail-
able if the timerbits (table 528) generic is nonzero and the minimum value is set with the prescalermin
generic. The minimum value of this register is 250. The timerbits generic also sets the number of bits of
the prescaler and this value should replace x in this register description. Reset value taken from the
ri.reload signal.

rw

Table 1089. Outgoing/incoming character count
31 16 16-

1
0

RE RESERVED CHARCNT

0 NA 0x0000

31 Reset counter (RE) - Write with a 1 to reset the character counter. rw
30: 16 RESERVED r
16
-1:

0 Character count (CHARCNT) - Number of SpaceWire data character received/transmitted on this port.
Note that EOP/EEP are not included.

rw
GRIP, Sep 2018, Version 2018.3 905 www.cobham.com/gaisler

GRLIB IP Core
63.9 Vendor and device identifiers

The core has AMBA vendor ID 0x01 and device ID 0x8B (applies to the AHB slave interface).
SpaceWire Plug and Play is not a standard yet so identifiers for this protocol have not been assigned.

63.10 Signal descriptions

Table 1091 shows the interface signals of the core (VHDL ports).

Table 1090. Outgoing/incoming packet count
31 16 16-

1
0

RE RESERVED PKTCNT

0 NA 0x0000

31 Reset counter (RE) - Write with a 1 to reset the packte counter. rw
30: 16 RESERVED r
16
-1:

0 Packet count (PKTCNT) - Nnumber of packets received/transmitted on this port. Only packets of non-
zero length are counted that is consecutive EOPs or EEPs are not counted.

rw
GRIP, Sep 2018, Version 2018.3 906 www.cobham.com/gaisler

GRLIB IP Core

Table 1091. Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Core clock -
RST_CODEC
[SPWPORTS-1:0]

N/A Input Resets to be used by the internal SpW codecs.
There is one per SpW port. This signal is not
used by the core if the internal reset generators
are enabled in the wrapper (generic internalrst-
gen to 1). In that case, it is recommended to set
every element of the array to ‘0’.

Low

CLK_CODEC
[SPWPORTS-1:0]

N/A Input Main clock to be used by the internal SpW
codecs. There is one per SpW port. This signal is
not used by the core if the internal reset genera-
tors are enabled in the wrapper (generic inter-
nalrstgen to 1). In that case, it is recommended to
set every element of the array to ‘0’.

-

RXASYNCRST
[SPWPORTS-1:0]

N/A Input Asynchronous resets for the SpW RX clocks to
be used by the internal SpW codecs. There is one
per SpW port. This signal is not used by the core
if the internal reset generators are enabled in the
wrapper (generic internalrstgen to 1). In that
case, it is recommended to set every element of
the array to ‘0’.

Low

RXSYNCRST
[SPWPORTS
*(1+dualport)-1:0]

N/A Input Synchronous resets for the SpW RX clocks to be
used by the internal SpW codecs. There are one
or two per SpW port, depending on the value of
the generic dualport. This signal is not used by
the core if the internal reset generators are
enabled in the wrapper (generic internalrstgen to
1). In that case, it is recommended to set every
element of the array to ‘0’.

Low

RXCLK
[SPWPORTS
*(1+dualport)-1:0]

N/A Input Receiver clock vector. One or two clocks for
each SpaceWire link, depending on the value of
the generic dualport.

-

TXSYNCRST
[SPWPORTS-1:0]

N/A Input Synchronous resets for the SpW TX clocks to be
used by the internal SpW codecs. There is one
per SpW port. This signal is not used by the core
if the internal reset generators are enabled in the
wrapper (generic internalrstgen to 1). In that
case, it is recommended to set every element of
the array to ‘0’.

Low

TXCLK
[SPWPORTS-1:0]

N/A Input SpaceWire link transmitter clock. If not using the
wrapper or the internal reset generator feature, a
clock per link is required. However, if the
generic internalrstgen is set to 1, only the first
element (LSB) of the array is required, and the
same clock will be used for every link. Clock
division is done locally.

-

TXCLKN
[SPWPORTS-1:0]

N/A Input Transmitter inverted default run-state clock.
Only used in DDR transmitter mode for technol-
ogies not supporting local generation of inverted
clock. As for TXCLK, only the first element of
the array is required if the internal reset genera-
tion is enabled.

-

TESTEN N/A Input Scan test enable. High
TESTRST N/A Input Scan test reset. Low
TESTIN N/A Input Scan test data input -
GRIP, Sep 2018, Version 2018.3 907 www.cobham.com/gaisler

GRLIB IP Core
DI[61:0] N/A Input SpaceWire link data input vector. It should be
connected to the number of GRSPW2_PHY enti-
ties corresponding to the number of SpaceWire
links in the router. 1:0 go to link 0, 3:2 to link 1
etc.

-

DVI[61:0] N/A Input SpaceWire link data valid input vector. It should
be connected to the number of GRSPW2_PHY
entities corresponding to the number of Space-
Wire links in the router. 1:0 go to link 0, 3:2 to
link 1 etc.

DCONNECT
[61:0]

N/A Input Disconnect vector. It should be connected to the
number of GRSPW2_PHY entities correspond-
ing to the number of SpaceWire links in the
router. 1:0 go to link 0, 3:2 to link 1 etc.

DCONNECT2
[61:0]

Copy of the signal DCONNECT as part of the
Triple Modular Redundancy protection.

DCONNECT3
[61:0]

Copy of the signal DCONNECT as part of the
Triple Modular Redundancy protection.

DO[61:0] N/A Output Data output vector. In Cobham PHY mode two
bits per link are used. 1:0 correspond to link 0,
3:2 to link 1 and so on. In the other two modes
only the lower of the two bits in each pair are
used.

SO[61:0] N/A Output Strobe output vector. In Cobham PHY mode two
bits per link are used. 1:0 correspond to link 0,
3:2 to link 1 and so on. In the other two modes
only the lower of the two bits in each pair are
used.

AHBMI * Input AHB master in signals.
AHBMO * Output Vector of AHB master out signals. One set of

signals for each AMBA port.
AHBSI * Input AHB slave in signals.
AHBSO * Output AHB slave out signals.

Table 1091. Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 908 www.cobham.com/gaisler

GRLIB IP Core
RI RMAPEN[30:0] Input RMAP enable signal for each AMBA port.
AMBA port 0 is connected to RMAPEN[0] and
port 1 to [1] etc.

-

IDIVISOR[7:0] Input Initialization divisor value for the SpaceWire
links.

-

TXWRITE[30:0] Input Transmitter FIFO write signals for the FIFO
interfaces.

-

TXCHAR[30:0][8:0] Input Transmitter character signals for the FIFO inter-
faces.

-

RXREAD[30:0] Input Receiver FIFO read signals for the FIFO inter-
faces.

-

TICKIN[30:0] Input Tick input signals for the FIFO and AHB inter-
faces

High

TIMEIN[30:0][7:0] Input Time input signals for the FIFO and AHB inter-
faces.

-

ENEXTTIME[30:0] Input Sets the reset value for the external time selec-
tion bit for FIFO interfaces. When 0 a tick-in on
the corresponding TICKIN signal causes the
internal time-counter to be incremented and the
new value to be transmitted. When 1 the value
from the TIMEIN signal will be used. In both
causes the control flags are taken from
TIMEIN[7:6].

High

RELOAD[31:0] Input Prescaler default reload value (set during reset). -
RELOADN[9:0] Input Individual timer default reload value (set during

reset).
-

TIMEREN Input Sets the reset value for the timer enable bit in the
port control registers..

-

TIMECODEEN Input Enable time-code functionality. If 0 no time-
codes will be propagated by the router. When 1
time-code functionality is enabled.

High

CFGLOCK Input Lock configuration port accesses from all ports
except port 1. When set to 0 the configuration
port can be accessed from all ports (if not indi-
vidually disabled through register). If set to 1 the
configuration area can only be accessed from
port 1 (the AHB slave interface is not affected
byt this). The configuration enable bit for port 1
does not have any effect in this case.

High

SELFADDREN Input Reset value for selfaddren register bit. This bit
enables ports to address themselves i.e a packet
received on a port will be transmitted on the
same port. If not enabled the packet will be dis-
carded with an invalid address error.

High

LINKSTARTREQ Input Reset value for the linkstartreq register bit. When
set ports will be automatically started (provided
they are not disabled) if a packet needs to be
transmitted on them.

AUTODCONNECT Input Reset value for the autodconnect register bit.
When set ports started with the linkstartreq fea-
ture will automatically disconnect after a timeout
period of no activity.

INSTANCEID Input Sets the reset value of the instance ID field of the
version register.

Table 1091. Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 909 www.cobham.com/gaisler

GRLIB IP Core
RO RXCHARAV[30:0] Output Receiver data available vector. One signal per
FIFO port.

-

RXAEMPTY[30:0] Output Receiver FIFO almost empty vector. One signal
per FIFO port.

-

TXFULL[30:0] Output Transmitter FIFO full vector. One signal per
FIFO port.

-

TXAFULL[30:0] Output Transmitter FIFO almost full vector. One signal
per FIFO port.

-

RXCHAR[30:0][8:0] Output Receiver FIFO character output vector. One
character vector per FIFO port.

-

TICKOUT[30:0] Output Tick out vector. One signal per FIFO or AMBA
port.

High

TIME-
OUT[30:0][7:0]

Output Time-code output vector. One time-code signal
per FIFO or AMBA port.

-

GERROR Output Global error. Asserted high when one or both of
LERROR and MERROR are asserted.

High

LERROR Output Asserted when one or more link errors have been
detected on the SpaceWire ports. Asserted until
the corresponding status bits have been c leared.

High

MERROR Output Asserted when one or more uncorrectable parity
errors have been detected in the on-chip memo-
ries. Asserted until the corresponding status bits
have been cleared.

High

LINKRUN[30:0] Output Each bit is asserted (set to 1) when the corre-
sponding link is in run-state. Bit 0 corresponds to
port 1, bit 1 to port 2 etc. This is only valid if the
port is configured as a SpaceWire link.

RESET Output Signal which indicates that the SpW Router is
globally reset. Its value is that of the bit 7 of the
Router Configuration/Status register (offset:
0xA00). It shall be used to generate the resets of
the core. This process is internally done by the
wrapper grspwrouterm if the generic internalrst-
gen is set to 1.

Low

RXRST[30:0] Output Internal reset generated by each SpW link trans-
mitter for synchronization purpose between
transmitter and both its receiver channels. It shall
be used to generate the asynchronous and syn-
chronous receiver resets of each port. This pro-
cess can be skipped by activating the internal
reset generation in the wrapper (internalrstgen
set to 1).

High

CLOCKGATE[30:0] Output Signal to indicate that the clocks for a specific
link can be clockgated. They are used internally
by the wrapper if the generic internalrstgen is set
to 1.

High

* see GRLIB IP Library User’s Manual

Table 1091. Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 910 www.cobham.com/gaisler

GRLIB IP Core

63.11 Signal definitions and reset values

The signals and their reset values are described in table 1092.

Table 1092.Signal definitions and reset values

Signal name Type Function Active Reset value
spw_clk Input Transmitter default run-state clock Rising edge -
spw_rxd Input, LVDS Data input, positive High -
spw_rxdn Input, LVDS Data input, negative Low -
spw_rxs Input, LVDS Strobe input, positive High -
spw_rxsn Input, LVDS Strobe input, negative Low -
spw_txd Output, LVDS Data output, positive High Logical 0
spw_txdn Output, LVDS Data output, negative Low Logical 1
spw_txs Output, LVDS Strobe output, positive High Logical 0
spw_txsn Output, LVDS Strobe output, negative Low Logical 1
GRIP, Sep 2018, Version 2018.3 911 www.cobham.com/gaisler

GRLIB IP Core

63.12 Timing

The timing waveforms are shown in figure 180 and 181. Timing parameters are defined in table 1093
and 1094.

Table 1093.Timing parameters

Name Parameter Reference edge Min Max Unit
tSPW0 transmit clock period - TBD - ns

tSPW1 clock to output delay rising spw_clk edge TBD TBD ns

tSPW2 input to clock hold - - - not applicable

tSPW3 input to clock setup - - - not applicable

tSPW4 output data bit period - - clk periods
- tSPW0 -

TBD
tSPW0
+TBD

ns

tSPW5 input data bit period - TBD - ns

tSPW6 data & strobe edge separation - TBD - ns

tSPW7 data & strobe output skew - - TBD ns

Figure 180. Timing waveforms

tSPW1spw_txd, spw_txdn

spw_clk

tSPW1

tSPW2spw_rxd, spw_rxdn tSPW3

spw_txs, spw_txsn

spw_rxs, spw_rxsn

tSPW0

spw_txd, spw_txdn

spw_txs, spw_txsn

tSPW4

tSPW4

tSPW4

spw_rxd, spw_rxdn

spw_rxs, spw_rxsn

tSPW5

tSPW5

tSPW5

spw_txd, spw_txdn

spw_txs, spw_txsn

tSPW7

tSPW6

tSPW6
GRIP, Sep 2018, Version 2018.3 912 www.cobham.com/gaisler

GRLIB IP Core
Table 1094.Timing parameters - FIFO interface

Name Parameter Reference edge Min Max Unit
tSPWFIFO0 input to clock setup rising clk edge TBD TBD ns

tSPWFIFO1 input from clock hold rising clk edge TBD TBD ns

tSPWFIFO2 clock to output delay rising clk edge TBD TBD ns

tSPWFIFO3 clock to rxchar, timeout output delay rising clk edge TBD TBD ns

tSPWFIFO4 clock to output delay rising clk edge TBD TBD ns

tSPWFIFO5 txchar, timein input to clock setup rising clk edge TBD - ns

tSPWFIFO6 txchar, timein input from clock hold rising clk edge TBD - ns

tSPWFIFO7 input to clock setup rising clk edge TBD - ns

tSPWFIFO8 input from clock hold rising clk edge TBD - ns

Figure 181. Timing waveforms - FIFO interface

clk

txchar[], timein[]
(input)

txfull[], txafull[]

tSPWFIFO7
txwrite[], tickin[]

tSPWFIFO8

tSPWFIFO4

clk

tSPWFIFO5 tSPWFIFO6

tSPWFIFO3

tSPWFIFO0

rxchar[], timeout[]
(output)

rxread[]

tSPWFIFO2
rxaempty[],
tickout[]

tSPWFIFO1

rxcharav[],
GRIP, Sep 2018, Version 2018.3 913 www.cobham.com/gaisler

GRLIB IP Core

63.13 Instantiation

This example of instantiation assumes that the router wrapper is used and the internal reset generators
are automatically included. If the user prefers to generate the resets externally, it is advised to use the
wrapper as a baseline to understand how some signals are taken into account for each clock domain.

-- Since the resets and clockgate are generated internally in the wrapper,

-- the only element from TXCLK and TXCLKN to be used is the bit '0' (spw_clk).

-- The others remain unconnected

txclk_array(0) <= spw_clkl;

txclkn_array(0) <= spw_clkln;

txclk_array(CFG_SPW_SPWPORTS-1 downto 1) <= (others => '0');

txclkn_array(CFG_SPW_SPWPORTS-1 downto 1) <= (others => '0');

router0 : grspwrouterm

 generic map (

 input_type => 0,

 output_type => 0,

 rxtx_sameclk => 0,

 fifosize => 64,

 tech => CFG_SPW_TECH,

 scantest => 0,

 techfifo => CFG_SPW_TECHFIFO,

 ft => 0,

 spwen => 1, -- Enable spacewire ports

 ambaen => 1, -- Enable AMBA interfaces

 fifoen => 0, -- Disable FIFO interfaces

 spwports => CFG_SPW_SPWPORTS,

 ambaports => 1, -- Number of AMBA ports

 fifoports => 0, -- Number of FIFO ports

 arbitration => 0,

 rmap => CFG_SPW_RMAP,

 rmapcrc => CFG_SPW_RMAPCRC,

 fifosize2 => 32,

 almostsize => 1, -- Only used for FIFO ports

 rxunaligned => CFG_SPW_RXUNALIGNED,

 rmapbufs => 4,

 dmachan => 1,

 hindex => 4, -- Starting index

 pindex => 10, -- Starting index

 paddr => 16#0d0#, -- Starting base address

 pmask => 16#ff0#, -- Each reg base on 4 KiB boundary

 pirq => 20, -- Starting IRQ

 cfghindex => 3,

 cfghaddr => 16#800#,

 cfghmask => 16#ff0#,

 ahbslven => 1,

 timerbits => 0,

 pnp => 0,

 autoscrub => 0,

 sim => 0, -- Simulation mode, not used

 dualport => CFG_SPW_DUALPORT,

 charcntbits => 0, -- Character counters disabled

 pktcntbits => 0, -- Packet counters disabled
GRIP, Sep 2018, Version 2018.3 914 www.cobham.com/gaisler

GRLIB IP Core

 prescalermin => 250, -- Minimum value for writes to reload reg

 spacewired => 1,

 interruptdist=> 2,

 apbctrl => 0,

 rmapmaxsize => 4,

 gpolbits => 0,

 gpopbits => 0,

 gpibits => 0,

 customport => 0,

 codecclkgate => 0,

 inputtest => 0,

 porttimerbits=> 10,

 irqtimerbits => 10,

 auxtimeen => 1,

 num_txdesc => 64,

 num_rxdesc => 128,

 auxasync => 0)

 port map(

 rst => rstn,

 clk => hclk,

 rst_codec => (others => '0'), -- Resets generated internally

 clk_codec => (others => '0'), -- Clockgate generated internally

 rxasyncrst => (others => '0'), -- Resets generated internally

 rxsyncrst => (others => '0'), -- Resets generated internally

 rxclk => rxclko,

 txsyncrst => (others => '0'), -- Resets generated internally

 txclk => txclk_array, -- Only the element 0 will be used (spw_clkl)

 txclkn => txclkn_array, -- Only the element 0 will be used (spw_clkln)

 testen => testen,

 testrst => testrst,

 scanen => scanen,

 testoen => testoen,

 di => di,

 dvi => dvi,

 dconnect => dconnect, -- From GRSPW2_PHY

 dconnect2 => dconnect2, -- From GRSPW2_PHY

 dconnect3 => dconnect3, -- From GRSPW2_PHY

 do => do,

 so => so,

 ahbmi => ahbmi,

 ahbmo => ahbmo,

 apbi => apbi,

 apbo => apbo,

 ahbsi => ahbsi,

 ahbso => ahbso,

 ri => ri,

 ro => ro,

 mtesti => mtesti,

 mtesto => mtesto,

 mtestclk => mtestclk

);
GRIP, Sep 2018, Version 2018.3 915 www.cobham.com/gaisler

GRLIB IP Core

64 SPWTDP - SpaceWire - Time Distribution Protocol

64.1 Overview

This interface implements the SpaceWire - Time Distribution Protocol (TDP). The protocol provides
capability to transfer time values and synchronise them between onboard users of SpaceWire network.
The time values are transferred as CCSDS Time Codes and synchronisation is performed through
SpaceWire Time-Codes. The core also provides datation services. The core operates in an AMBA
APB bus system. The AMBA APB bus is used for configuration, control and status handling. The
interface is coupled with a SpaceWire node with AMBA AHB master and RMAP target implementa-
tion.

64.2 Protocol

The initiator and target maintain their own time locally. The Time Distribution Protocol provides the
means for transferring time of initiator to targets and for providing a synchronization point in time.
The time is transferred by means of an RMAP write command carrying a CCSDS Time Code (time
message). The synchronization event is signaled by means of transferring a SpaceWire Time-Code.
The transfer of the SpaceWire Time-Code is synchronized with time maintained by the initiator. To
distinguish which SpaceWire Time-Code is to be used for synchronization, the value of SpaceWire
Time-Code is transferred from initiator to target by means of an RMAP write command prior to actual
transmission of SpaceWire Time-Code itself. When there is more than one target the CCSDS Time
Code need to be transferred to each individual target separately [SPWCUC].

64.3 Functionality

The block diagram below explains the complete system.

Figure 182. Block diagram

The foreseen usage of this core is to distribute and synchronise time between an initiator SPWTDP
core and one or more target SPWTDP (slave) cores using the SpaceWire interface for communication
between them.
The system can act as initiator (time master) and target being able to send and receive SpaceWire
Time-Codes. The initiator requires SpaceWire link interface implements an RMAP initiator. The Tar-
get requires SpaceWire link interface implements an RMAP target. The SPWTDP component is a part
of this system providing SpaceWire Time-Codes, CCSDS Time Codes, datation, time-stamping of

Processor

AMBA
AHB

 Time-Code/Interrupt

SpaceWire
Interface

AHB

APB

AMBA

APB

SPWTDP

Slave
GRIP, Sep 2018, Version 2018.3 916 www.cobham.com/gaisler

GRLIB IP Core

distributed interrupts, support for transmission of CCSDS Time Codes through RMAP and support
for latency measurement and correction. In this implementation the CCSDS Time Codes carried
between the SpaceWire network is based on CCSDS Unsegmented Code format (CUC) which is
explained below [CCSDS]. The table below shows an example Preamble Field (P-Field) which corre-
sponds to 40 bits of coarse time and 24 bits of fine time.

64.3.1 CCSDS Unsegmented Code: Preamble Field (P-Field)

Table 1095.CCSDS Unsegmented Code P-Field definition

64.3.2 CCSDS Unsegmented Code: Time Field (T-Field)

For the unsegmented binary time codes described herein, the T-Field consists of a selected number of
contiguous time elements, each element being one octet in length. An element represents the state of 8
consecutive bits of a binary counter, cascaded with adjacent counters, which rolls over at a modulo of
256.

The basic time unit is the second. The T-Field coarse time (seconds) can be maximum 56 bits and
minimum 8 bits. The T-Field fine time (sub seconds) can be maximum 80 bits and minimum of 0 bits.
The number of bits representing coarse and fine time implemented in this core can be obtained by
reading the DPF bits of Datation Preamble Field register.
The coarse time code elements are a count of the number of seconds elapsed from the initial time
value. This code is not UTC-based and leap second corrections do not apply according to CCSDS.

64.3.3 Time generation

The core consist of time generator which is the source for time in this system. The core may act as ini-
tiator or a target but both have their respective time generator. The Elapsed Time (ET) counter is
implemented complying with the CUC T-Field. The number of bits representing coarse and fine time
of a ET counter implemented in a design can be obtained by reading the DPF bits of Datation Pream-
ble Field register.

Bit Value Interpretation
0 “1” Extension flag, P-Field extended with 2nd octet
1-3 “010” Agency-defined epoch (Level 2) Time code identification
4 - 5 “11” (number of octets of coarse time) + 1 Detail bits for information on the code
6 - 7 “11” (number of octets of fine time)
8 “0” Extension flag, P-Field not extended with 3rd octet
9-10 “01” Number of additional octets of the

coarse time.
added to octet 1

11-13 “000” Number of additional octets of the fine
time.

added to octet 1

14-15 RESERVED

Table 1096.Example CCSDS Unsegmented Code T-Field with 32 bit coarse and 24 bit fine time

CCSDS Unsegmented Code
Preamble
Field

 Time Field
 Coarse time Fine time

- 231 224 223 216 215 28 27 20 2-1 2-8 2-9 2-15 2-16 2-24

0:15 0 31 32 55
GRIP, Sep 2018, Version 2018.3 917 www.cobham.com/gaisler

GRLIB IP Core

The ET counter can be incremented either using an internal frequency synthesizer or by using an
external enable signal. The External ET Increment Enable bit in Configuration 0 register must be
enabled if external inputs are to be used.
Increment ET using internal frequency synthesizer:
The counter is incremented on the system clock only when enabled by the frequency synthesizer. The
binary frequency required to determine the counter increment is derived from the system clock using
a frequency synthesizer (FS). The frequency synthesizer is incremented with a pre-calculated incre-
ment value, which matches the available system clock frequency. The frequency synthesizer generates
a tick every time it wraps around, which makes the ET time counter to step forward with the precalcu-
lated increment value. The output of frequency synthesizer is used for enabling the increment of ET
counter. The increment rate of the ET counter and frequency synthesizer counter should be set accord-
ing to the system clock frequency. The ET counter increment rate is set by providing values to ETINC
bits in Configuration 2 register and frequency synthesizer counter is set by providing values to FSINC
bits in Configuration 1 register. The following table specifies some example ETINC and FSINC val-
ues for some frequencies. The below values are also obtained for Coarse time width 32, Fine time
width 24 and Frequency synthesizer width of 30. To calculate for other frequencies and configuration
refer the spreadsheet provided along with this document.

Increment ET using external input:
The EP register in Configuration 0 specify whether to increment the ET counter based on rising or
falling edge of the external enable signal. Also the ETINC bits in Configuration 2 register specify
from which bit the ET counter must increment.

The following section describes the cores capabilities if it configured as initiator or target.

64.3.4 Initiator

An initiator is a SpaceWire node distributing CCSDS Time Codes and SpaceWire Time-Codes. It is
also an RMAP initiator, capable of transmitting RMAP commands and receiving RMAP replies.
There is only one active initiator in a SpaceWire network during a mission phase.
The initiator performs the following tasks
• Transmission of SpaceWire Time-Codes
The SpaceWire Time-Codes are provided by this component and transmission of those codes to tar-
gets should be performed by a SpaceWire interface.
• Transmission of CCSDS Time Codes through RMAP
• Datation, time-stamping and latency measurement

64.3.5 Target

A target is a SpaceWire node receiving CCSDS Time Codes and SpaceWire Time-Codes. A target is
also an RMAP target, capable of receiving RMAP commands and transmitting RMAP replies. There
can be one or more targets in a SpaceWire network.

Table 1097.Example values of ETINC and FSINC for corresponding frequencies

Frequency ETINC FSINC
50 MHz 0 360287970
250 MHz 0 72057594
33333333 2 135107990
GRIP, Sep 2018, Version 2018.3 918 www.cobham.com/gaisler

GRLIB IP Core

The target performs the following tasks
• Reception of SpaceWire Time-Codes
The SpaceWire Time-Codes sent from initiator are received by SpaceWire interface and provided to
this component in target.
• Reception of CCSDS Time Codes through RMAP
• Qualification of received time messages (CCSDS Time Codes) using SpaceWire Time-Codes
• Initialization and Synchronisation of received CCSDS Time Codes with Elapsed Time counter

available in this component
• Datation, time-stamping and latency correction
• Jitter and drift mitigation (the MA bit in Status 0 register specify the availability of this service)

64.3.6 Configuring initiator and target

The core is interfaced via an AMBA Advanced Peripheral Bus (APB) slave interface, providing a reg-
ister view that is compatible with the Time Distribution Protocol (TDP). The core must be configured
according to the requirement either as initiator or target.
• Initializing initiator
The initiator transmits the SpaceWire Time-Codes out of the core only when the Transmit Enable TE
bit in Configuration 0 register is enabled. The ET counter in initiator can be initialized (to provide any
initial value). Initialization is done by writing a time value into the Command Elapsed Time registers
available in the command field, the NC bit in the Control register of command field should be enabled
to initialize the time value stored in the Command Elapsed Time registers to be the local time (Trans-
mit Enable TE bit in Configuration 0 register must be enabled). The NC bit in the Control register will
disable itself when the time is initialized. The INSYNC bit in Status 0 register will enable when ini-
tialization is performed. The MAPPING bits in Configuration 0 register determines the interval
between SpaceWire Time-Code transmissions which is explained in detail in the section below.
The target time must be configured with time values from the initiator. The targets register space must
be configured and controlled through RMAP by an initiator to achieve time synchronisation. The tar-
get time synchronisation is explained in detail under the section initialization and synchronisation of
target through RMAP.

64.3.7 SpaceWire Time-Code

SpaceWire Time-Codes are continuously transmitted from an initiator node (time master) to all slave
nodes. The transmission of the SpaceWire Time-Code is synchronized with the ET counter in the ini-
tiator node. The six bits of the Time-Code time information correspond to six bits of the local ET
counter (MAPPING bits in Configuration 0 register determines its exact mapping and interval
between SpaceWire Time-Code transmissions). Value of 0b00000 for MAPPING bits in Configura-
tion 0 register will send SpaceWire Time-Code at every Second. When the value is 0b00001 Space-
Wire Time-Codes are sent at every 0.5 Seconds interval and so on (maximum value of MAPPING can
be 0b11111 but this value cannot be more than the number of bits implemented as fine time). The ET
bits with lower weights than the size bits mapped to Time Codes time information bits are all zero at
time of SpaceWire Time-Codes transmission. The Table below shows an example Local ET
counter and Mapping. If the Coarse time is 32 bits and Fine time is 24 bits and mapping value is 6
then 0 to 31 is coarse(32 bits), 32 to 55 is fine time and mapped SpaceWire Time-Code is 32 to 37.

Table 1098.Example Local ET counter with Mapping values
0 25 26 27 28 29 30 31 32 33 34 35 36 37 38 55

Mapping Values 0 1 2 3 4 5 6 7 24

If the Mapping value is 6 then the mapped SpaceWire
Time-Codes is 32 to 37 32 33 34 35 36 37
GRIP, Sep 2018, Version 2018.3 919 www.cobham.com/gaisler

GRLIB IP Core
64.3.8 Initialization and synchronisation of target through RMAP

An initiator must provide the time values and set the target in order to get the time synchronized. The
below text explains how an initiator can synchronise the target.
The SPWTC in Control register of initiator core component should be configured initially with a
SpaceWire Time-Code value at which the time message needed to be transferred. When the Space-
Wire Time-Code generated internally using the ET counter matches the SPWTC in Control register a
Time Message TM interrupt will be generated (TME bit Time Message Enable should be enabled in
the Interrupt Enable register). Based on this interrupt the local time (ET counter) in initiator should be
accessed from the Datation registers and used to calculate the time message needed to be transmitted.
• Time message generation
The Time message transmitted using RMAP should be an exact mapping of the Command field
(explained under Registers section). The Time message transmitted should write the Command field
available in target. Control register available in Command field specify weather the target should be
initialized or synchronized, at which SpaceWire Time-Codes it should happen (synchronization
event) and details of coarse and fine time available in the time message. The New code NC bit avail-
able in Control register should be enabled and if the target should be initialized then Init Sync IS bit in
Control register must be enabled otherwise target will be synchronized.
The Command Elapsed Time in time message are calculated from the local time (ET counter) avail-
able in the initiator. The local time can be obtained by reading the Datation Field of initiator compo-
nent. While reading the Datation registers always the total implemented coarse time and fine time
must be read in order (from 0 till the implemented Datation Elapsed Time registers). The DPF of
Datation Preamble Field register gives the coarse and fine time implemented which gives the total
local ET counter (coarse + fine width).
For example if the implementation has 32 bit coarse and 24 bit fine time then it is enough to access the
first two Datation Elapsed Time registers (0 and 1). The 32 bits of Datation Elapsed Time 0 and only
the most significant 24 bits (31 to 8) of Datation Elapsed Time 1 registers (32 + 24 =56 bits) rep-
resents the local time. These 56 bits only be used for Command Elapsed time (time message) calcula-
tion.
The SpaceWire Time-Codes at which the Time Message interrupt generated is embedded in the local
ET counter. The Command Elapsed time which is transmitted as time message should be an incre-
mented time value of this SpaceWire Time-Code and Command Elapsed time bits with lower weights
than the size bits mapped to SpaceWire Time-Code time information bits are all must be zero.
The incremented time value is to make the initialization or synchronisation of time message in target
will happen after the reception of qualifying SpaceWire Time-Codes. The qualifying SpaceWire
Time-Code is embedded in the Command Elapsed time (part of time message) sent from initiator.
This qualifying SpaceWire Time-Code value should also be written in the SPWTC in Control section
of the time message.
• Time qualification in target
In target, the Command field will contain the time message when it is written by the initiator through
RMAP. When the SPWTC of Control register in Command field matches with a received SpaceWire
Time-Code then initialization or synchronization will occur (according to NC bit and IS bit in the
Control register) to the local ET counter of the target SPWTDP component. The Time message quali-
fied TCQ bit in the status register will enable itself, this bit will disable itself when the conditions for

If the Mapping value is 0 then the mapped SpaceWire
Time-Codes is 26 to 31 26 27 28 29 30 31

If the Mapping value is 5 then the mapped SpaceWire
Time-Codes is 31 to 36 31 32 33 34 35 36

If the Mapping value is 7 then the mapped SpaceWire
Time-Codes is 33 to 38 33 34 35 36 37 38

Table 1098.Example Local ET counter with Mapping values
GRIP, Sep 2018, Version 2018.3 920 www.cobham.com/gaisler

GRLIB IP Core

time message qualification is achieved (SPWTC of Control register matches with a received Space-
Wire Time-Code) but no new time message is received (NC bit is zero). When the local ET counter is
initialized or synchronized the NC bit in the control register will disable itself. The INSYNC bit in
Status 0 register will enable when initialization is performed specifying the target is initialized. Initial-
ization completely writes time message values into the implemented local Elapsed time counter and
synchronisation verifies whether the time message Command Elapsed Time and local Elapsed Time
counter matches till the mapped SpaceWire Time-Code level (with a tolerance of previous value) and
only modifies the local Elapsed Time if their is a mismatch. If the target is not implemented with jitter
and mitigation unit then the synchronisation forces the target time (ET counter) with the time message
received.
For example, the initiator can create time message exactly at 0x00000001 coarse time and 0x040000
fine time (32 bit coarse time and 24 bit fine time, mapping value of 6 i.e. 64 SpaceWire Time-Codes
per second, time message is generated at 0b000001 SpaceWire Time-Code), the value in the time
message to be sent to the target can be coarse time 0x00000002 and 0x040000 fine time, (32 bit
coarse time and 24 bit fine time, mapping value of 6, time message is qualified at the next reception of
0b000001 SpaceWire Time-Code, i.e. after a second). Both SPWTC in Control registers available in
the initiator and target can be 0b000001 for this example. The time is synchronized after a second in
this example. Depending on the frequency of SpaceWire Time-Codes and data link rate several differ-
ent combination of ways to achieve time synchronisation is possible.

64.3.9 Latency measurement using Time-Stamps

The incoming and outgoing SpaceWire Distributed Interrupts are time stamped in initiator and target.
The initiator calculates latency based on these time stamp values. The time stamped values in target
are accessed from initiator through RMAP. The Latency Enable LE bit in Configuration 0 register
must be enabled between the two nodes in the SpaceWire network for which the latency is to be calcu-
lated. The core supports 32 distributed interrupts and acknowledgment (Interrupt and acknowledg-
ment numbers 0 to 31) or 64 distributed interrupts. The distributed interrupt transmission from
initiator (which is the origin for latency calculation) is controlled by a mask register STM available in
Configuration 3 register and SpaceWire time code register TSTC available in Time-Stamp SpaceWire
Time-Code and Preamble Field Tx register, these registers specifies how often and at which time code
distributed interrupt is transmitted and time stamping is performed.
The time stamping can be performed in two methods (only Interrupts or Interrupts and Acknowledg-
ment), the DI bit in Configuration 3 register of SPWTDP component in target should be configured to
specify which type of method is used. If only distributed interrupts (no acknowledgment) are used
then DI bit should be 0. The transmitted and received distributed interrupts INTX and INRX in the
Configuration 0 registers of both initiator and target must be configured with the interrupt number
which will be used for the latency measurement. For example if the INTX in initiator Configuration 0
is configured with 0b00100 then the target INRX should be configured with the same value. Similarly
if the INTX in target Configuration 0 is configured to be 0b00101 then the initiator INRX should be
configured with the same value. Initially initiator sends a distributed interrupt when the conditions are
matched (STM and TSTC registers match) and when the target received this distributed interrupt it
will send another interrupt which will be received by the initiator. At each end transmission and recep-
tion is time stamped (current local time is stored in Time Stamp registers) and interrupt transmitted is
INTX and received interrupt is checked whether it received INRX.
If both distributed interrupts and acknowledgment method is to be used then DI bit should be 1. The
transmitted and received distributed interrupts INTX and INRX in the Configuration 0 registers of
both initiator and target can have the same interrupt number (the acknowledgment number for a par-
ticular interrupt will be same as interrupt number). Similar to the previous method at each end trans-
mission and reception is time stamped which will be used for latency calculations.
The Latency calculation can be started in initiator based on DIR (distributed interrupt received) inter-
rupt available in Interrupt Status register (the interrupt should be enabled in the Interrupt Enable regis-
ter). The latency is calculated form the time stamp registers based on the equation explained below
GRIP, Sep 2018, Version 2018.3 921 www.cobham.com/gaisler

GRLIB IP Core

Latency = ((initiator time stamp Rx - initiator time stamp Tx) - (target time stamp Tx - target time
stamp Rx)) /2
By calculating the Latency value repeatedly (at least for about 128 times, more number of times pro-
vides increased accuracy) and taking an average of it will provide the final latency value. The initiator
should transfer the latency correction information to the Latency Field registers in the target by means
of RMAP transfer. When the latency values are written it will be adjusted to local time in the target
and the LC bit in Status 0 register is enabled (set to ‘1’), this status register can be disabled by writing
‘1’ into the corresponding field.

64.3.10 Mitigation of jitter and drift

The Jitter and drift mitigation is performed in target when Jitter Enable JE and Mitigation Enable ME
bit in Configuration 0 register is enabled. The process will only start when the target is initialized (the
target local ET counter should have initialized through a time message from initiator and INSYNC bit
in Status 0 register is enabled). The SPWTDP must have implemented with mitigation unit for jitter
and drift mitigation (the MA bit in Status 0 register specify the availability of this service).

64.3.11 External Datation

The external signals latch and save are used to provide external datation services. The Elapsed Time is
continuously latched when the latch input signal goes high, the corresponding External datation mask
register must be enabled for that particular signal. When save input goes high the latched value will
remain same (at when the previous latch condition met) and all the mask bit previously enabled will
be cleared. The EDS bit in Status Register 0 will go high when the latch and save condition matches
and cleared when the latched elapsed time is read. The purpose of this status register is to ensure that
all the implemented coarse and fine time are read. Reading the lowest implemented fine time makes
the status register to go low. An output pulse is also produced when conditions for external datation is
met. The pulse is driven for one system clock period on the occurrence of external save condition.
If a simpler version of latching the time is needed based on a signal going high at any instance then
the latch and save signals can be provided with the same input.
There are four External datation services implemented and each of them has its own mask EDMx, sta-
tus EDS and time EDxETx registers. All the four External datation services are based on the input
latch and save signal vectors. The external datation pulse vector consist of four outputs corresponding
to each of the external datation services.

64.3.12 Pulses

The core provides eight external outputs used for clock pulse distribution. The timing of each pulse
output is individually derived from the Elapsed Time counter. It is possible to program for each pulse
output individually the following parameters:
• periodicity pulse
• width of pulse
• polarity of pulse
• enable/disable pulse generation (reset status is disabled)
The pulse has two parts, the active and the inactive part. The active part always starts the pulse, fol-
lowed by the inactive part. The polarity or logical level of the active part is programmable. The inac-
tive part takes the logical inversion of the active pulse, and is the default output from the generator
when the pulse is not issued or the overall generation is disabled.
The periodicity of the pulse corresponds to one of the ET bits that can be selected in the range 27 to 2-
8 seconds, providing a range from 128 seconds to 3,91 ms, i.e. 0,0078 to 256 Hz frequency. See regis-
ter definition for details.
GRIP, Sep 2018, Version 2018.3 922 www.cobham.com/gaisler

GRLIB IP Core

The width of the active part of the pulse corresponds to one of the ET bits that can be selected in the
range 26 to 2-9 seconds, providing a range from 64 seconds to 1,95 ms. See register definition for
details.
It is possible to generate a pulse that has a duty cycle of 50%. It is also possible to generate a pulse for
which the active part is as short as 2-9 seconds, and its period is as high as 27 seconds. The effective
duty cycle can be as low as 2-9/27 for the longest period, up to 50% for the shortest period of 2-8 sec-
onds = 256 Hz. The duty cycle choice becomes more restricted as the frequency increases. Note that it
is only possible to reduce the duty cycle in one direction: 50%/50%, 25%/75%... 1%/99%. The active
part of the pulse can thus never be more than 50% of the cycle. It should be noted that the active pulse
width must be at most 50% of the pulse period.
The pulse outputs are guaranteed to be spike free. If a pulse output is disabled by means of writing to
the corresponding register (PDRx) (i.e. writing a zero to the Pulse Enable bit (PE)), the pulse output
will be immediately driven to the inversion of the Pulse Level bit (PL), which corresponds to the level
of the inactive part of the pulse. It is thus possible to modify immediately the pulse output by dis-
abling it using the PE bit and then changing the PL bit, since the output will always drive the inversion
of the PL bit while disabled.
An ongoing pulse output will be immediately disabled (the pulse output will be immediately driven to
the inversion of the Pulse Level bit) if any external modification of the ET counter is triggered (for
both master and slave) due to initialization/synchronisation or set using APB registers.

64.3.13 Set Elapsed Time using external input

The ET counter can be set using an external enable signal (configurable rising or falling edge, see reg-
ister SP in Configuration 0 register). To set the ET counter the SE bit in configuration register must be
enabled, the value to be loaded into the ET counter must be written into the Command Elapsed Time
registers. The ARM bit field in the Status 0 register will set itself to ‘1’ when the first Command
Elapsed Time register is written. After the occurrence of the external enable signal the value will be
loaded into the ET counter and the ARM bit field in the Status 0 register will set itself to ‘0’. An inter-
rupt can also be generated when the ET counter is loaded, the corresponding interrupt (Set ET Exter-
nal Interrupt Enable) must be enabled.

64.3.14 Multiple Port

It is possible to transmit or receive SpaceWire Time-Codes to multiple SpaceWire links. The Multiple
port enable bit in the Configuration 0 register must be enabled, using the Inport and Outport fields in
the Configuration 3 register the corresponding inputs and outputs can be enabled or disabled.
At every system clock (if the system is configured as target) all the enabled ports are monitored for a
SpaceWire Time-Code input. If received the SpaceWire Time-Code is compared with the previously
received Time-code. If the newly received Time-code is same as the previously received then no mod-
ification is performed other than updating the Received port RP register in Status 0. If an incremented
Time-code is received then the corresponding Time-code is used for further processing (time qualifi-
cation etc.). In all other case (Time-code - X or Time-code + X) the received Time code is stored (in
previously received Time-code internal register, used for processing the next time-code) and an inter-
rupt is generated if corresponding interrupt (Non consecutive SpaceWire Time-code Interrupt) bit is
enabled. For all the Time-Code received the corresponding port in which it is received is updated at
Received port RP register in Status 0.
The Inport and Outport fields also control the reception and transmission of Distributed interrupts.
While performing latency calculation only one port must be enabled, since distributed interrupts can-
not be filtered out based on increments like in SpaceWire Time-Codes.
Multiple port transmission can also be disabled and only one port can be used for transmission or
reception using SEL register in Configuration 0.
GRIP, Sep 2018, Version 2018.3 923 www.cobham.com/gaisler

GRLIB IP Core

64.3.15 Synchronisation of target using SpaceWire Time-Codes

It is possible to synchronise the target only using SpaceWire Time-Codes. A master sending Space-
Wire Time-Codes (using its Elapsed time counter) at regular interval can synchronise the Elapsed
time in the target. The frequency of Time-code transmission in the master and the frequency of (when
to expect a) Time-code in the target must match, this can be achieved by setting the Mapping fields in
the Configuration 0 register. The incoming SpaceWire Time-Codes and the Time-code position
mapped in the target Elapsed Time is compared, if they match the bits available after the compared
bits are made zero, if the local time map is less than one (External Time-code arrived early) then the
bits available after the compared bits are made zero and the other part (including the mapped part) is
incremented by one. If the above two cases occurred then the target time is in sync with the master
time and the Insync bit in Status 0 register is enabled. If the incoming Time-code is in out of order
(Non consecutive) then the synchronisation is stopped, the Insync bit in Status 0 register is disabled
(but the local time keeps running) and an interrupt is generated if corresponding interrupt (Non con-
secutive SpaceWire Time-code Interrupt) bit is enabled.

64.4 Data formats

All Elapsed Time (ET) information is compliant with the CCSDS Unsegmented Code defined in
[CCSDS] and repeated hereafter.

64.4.1 Numbering and naming conventions

Convention according to the CCSDS recommendations, applying to time structures:
• The most significant bit of an array is located to the left, carrying index number zero.
• An octet comprises eight bits.

Convention according to AMBA specification:
• The least significant bit of an array is located to the right, carrying index number zero.
• Big-endian support.

64.5 Reference documents

[CCSDS] Time Code Formats, CCSDS 301.0-B-4, www.CCSDS.org
[SPW] Space engineering: SpaceWire - Links, nodes, routers and networks, ECSS-E-ST-50-12C
[RMAP] Space engineering: SpaceWire - Remote memory access protocol, ECSS-E-ST-50-52C
[SPWCUC] High Accuracy Time Synchronization over SpaceWire Networks

Table 1099.CCSDS n-bit field definition

CCSDS n-bit field
most significant least significant
0 1 to n-2 n-1

Table 1100.AMBA n-bit field definition

AMBA n-bit field
most significant least significant
n-1 n-2 down to 1 0
GRIP, Sep 2018, Version 2018.3 924 www.cobham.com/gaisler

GRLIB IP Core

64.6 Registers

The core is programmed through registers mapped into AMBA APB address space.

Table 1101.Registers

APB address offset Register
0x000-0x00F Configuration Field
0x000 Configuration 0
0x004 Configuration 1
0x008 Configuration 2
0x00C Configuration 3
0x010 - 0x01F Status Field
0x010 Status 0
0x014 Status 1
0x018 RESERVED
0x01C RESERVED
0x020 - 0x03F Command Field
0x020 Control
0x024 Command Elapsed Time 0
0x028 Command Elapsed Time 1
0x02C Command Elapsed Time 2
0x030 Command Elapsed Time 3
0x034 Command Elapsed Time 4
0x038 RESERVED
0x03C RESERVED
0x040 - 0x05F Datation Field
0x040 Datation Preamble Field
0x044 Datation Elapsed Time 0
0x048 Datation Elapsed Time 1
0x04C Datation Elapsed Time 2
0x050 Datation Elapsed Time 3
0x054 Datation Elapsed Time 4
0x058 RESERVED
0x05C RESERVED
0x060 - 0x09F Time-Stamp Field
0x060 Time-Stamp Preamble Field Rx
0x064 Time-Stamp Elapsed Time 0 Rx
0x068 Time-Stamp Elapsed Time 1 Rx
0x06C Time-Stamp Elapsed Time 2 Rx
0x070 Time-Stamp Elapsed Time 3 Rx
0x074 Time-Stamp Elapsed Time 4 Rx
0x078 RESERVED
0x07C RESERVED
0x080 Time-Stamp SpaceWire Time-Code and Preamble Field Tx
0x084 Time-Stamp Elapsed Time 0 Tx
GRIP, Sep 2018, Version 2018.3 925 www.cobham.com/gaisler

GRLIB IP Core
APB address offset Register
0x088 Time-Stamp Elapsed Time 1 Tx
0x08C Time-Stamp Elapsed Time 2 Tx
0x090 Time-Stamp Elapsed Time 3 Tx
0X094 Time-Stamp Elapsed Time 4 Tx
0x098 RESERVED
0x09C RESERVED
0x0A0-0x0BF Latency Field
0x0A0 Latency Preamble Field
0x0A4 Latency Elapsed Time 0
0x0A8 Latency Elapsed Time 1
0x0AC Latency Elapsed Time 2
0x0B0 Latency Elapsed Time 3
0x0B4 Latency Elapsed Time 4
0x0B8 RESERVED
0x0BC RESERVED
0x0C0 Interrupt Enable
0x0C4 Interrupt Status
0x0C8 Delay Count
0x0CC Disable Sync
0x0D0-0x0FF RESERVED
0x100-0x18F External Datation Field
0x100 External Datation 0 Mask
0x104 External Datation 1 Mask
0x108 External Datation 2 Mask
0x10C External Datation 3 Mask
0x110-0x12F External Datation 0 Time
0x110 External Datation 0 Preamble Field
0x114 External Datation 0 Elapsed Time 0
0x118 External Datation 0 Elapsed Time 1
0x11C External Datation 0 Elapsed Time 2
0x120 External Datation 0 Elapsed Time 3
0x124 External Datation 0 Elapsed Time 4
0x128 RESERVED
0x12C RESERVED
0x130-0x14F External Datation 1 Time
0x150-0x16F External Datation 2 Time
0x170-0x18F External Datation 3 Time
0x190-0x19F RESERVED
0x1A0-1BC Pulse Definition Register 0 to 7
0x1C0-0x1FF RESERVED
GRIP, Sep 2018, Version 2018.3 926 www.cobham.com/gaisler

GRLIB IP Core

64.6.1

Table 1102.0x000 - CONF0 - Configuration 0

Configuration 0

31 25 24 23 21 20 19 18 17 16 15 14 13 12 8 7 6 5 4 3 2 1 0

RESERVED JE RES ST EP ET SP SE LE AE RES MAPPING TD MU SEL ME RE TE RS

0 0 0 0 1 0 1 0 0 0 0 * 0 0 0 0 0 0 0

r rw r rw rw rw rw rw rw rw r rw rw rw rw rw rw rw rw

31: 25 RESERVED
24: JE Jitter Correction Enable (only for target)

The jitter correction process in target will start when this bit is enabled. (Mitiga-
tion Enable bit should also be enabled). Reset value: ‘0’. (valid only when Miti-
gation unit available)

23: 20 RESERVED
21: ST Synchronisation using SpaceWire Time-Code Enable (only for target) Reset

value: ‘0’.
20: EP External ET Increment Polarity.

To select the rising or falling edge of the external enable signal to increment the
Elapsed time. Value ‘1’ Rising edge. Value ‘0’ Falling edge. Reset value: ‘1’.

19: ET External ET Increment Enable. Enable to increment the Elapsed Time based on
external signal. When disabled the internal frequency synthesizer is used to
increment the Elapsed Time counter. Reset value: ‘0’.

18: SP Set ET External Polarity.
To select the rising or falling edge of the external enable signal to load the
Elapsed Time with the contents of the command field register. Reset value: ‘1’.

17: SE Set ET External Enable.
Based on the external enable signal load the Elapsed Time with the contents of
the command field register. Reset value: ‘0’.

16: LE Latency Enable.
To calculate latency between an initiator and target this bit must be enabled in
both of them. Reset value: ‘0’.

15: AE AMBA Interrupt Enable
The interrupts (explained in interrupt registers) in this core will generate an
AMBA interrupt only when this bit is enabled. Reset value: ‘0’

14 13 RESERVED
12: 8 MAPPING Defines mapping of SpaceWire Time-Codes versus CCSDS Time-code.

Value 0b00000 will send SpaceWire Time-Codes every Second,
Value 0b00001 will send SpaceWire Time-Codes every 0.5 Second,
Value 0b00010 will send SpaceWire Time-Codes every 0.25 Second,
Value 0b00011 will send SpaceWire Time-Codes every 0.125 Second
Maximum value it can take is 0b11111 but this value cannot be more than the
number of bits implemented as fine time. Reset value: Implementation dependent

7: TD Enable TDP when set. Reset value: ‘0’.
6: MU Multiple Port Enable. Reset value ‘0’.
5: 4 SEL Select for SpaceWire Time-Codes and Distributed Interrupt transmission and

reception, one of 0 through 3. Can be used only when Multiple Port MU is dis-
abled. Reset value: 0b00

3: ME Mitigation Enable (only for target)
The drift correction process in target will start when this bit is enabled. Reset
value: ‘0’.(valid only when Mitigation unit available)

2: RE Receiver Enable (only for target) Reset value: ‘0’.
1 TE Transmit Enable (only for initiator) Reset value: ‘0’.
0 RS Reset core. Makes complete reset when enabled.

Reset value: ‘0’.
GRIP, Sep 2018, Version 2018.3 927 www.cobham.com/gaisler

GRLIB IP Core

64.6.2

Table 1103.0x004 - CONF1 - Configuration 1

Configuration 1

64.6.3

Table 1104.0x008 - CONF2 - Configuration 2

Configuration 2

31 30 29 0

R FSINC

0 0

r rw

31: 30 RESERVED
29: 0 FSINC

Increment value of the Frequency Synthesizer which is added to the counter every system clock
cycle. It defines the frequency of the synthesized reference time.
Refer the spreadsheet provided along with this document to obtain this value.
Reset value: Implementation dependent

All implemented registers are writable and readable.

31 8 7 0

CV ETINC

* *

rw rw

31: 8 CV Compensation Value
Value added to FSINC for variations of drift of the target clock.(only for target)
Refer the spreadsheet provided along with this document to obtain this value.
This value also depends on the MAPPING value in configuration 0 register.
Specify the needed MAPPING value in the spreadsheet while calculating this
value.
Reset value: Implementation Dependent
(valid only when Mitigation unit available)

7: 0 ETINC Value of the Elapsed Time counter is to be incremented each time when the Fre-
quency Synthesizer wraps around.
Refer the spreadsheet provided along with this document to obtain this value.
Reset value: Implementation dependent
GRIP, Sep 2018, Version 2018.3 928 www.cobham.com/gaisler

GRLIB IP Core

64.6.4

Table 1105.0x00C - CONF3 - Configuration 3

Configuration 3

31 28 27 24 23 22 21 16 15 14 13 12 11 10 9 5 4 0

OUTPORT INPORT RESER
VED

STM RESER
VED

DI6
4R

DI6
4T

DI6
4

DI INRX
INTX

0 0 0 0 0 0 0 0 0 0 0

rw rw r rw r rw rw rw rw rw rw

31: 28 OUTPORT Enable the corresponding output ports. The multiple port enable bit MU in Con-
figuration 0 register must be enabled.
Reset value: ‘0’

27: 24 INPORT Enable the corresponding input ports. The multiple port enable bit MU in Con-
figuration 0 register must be enabled.
Reset value: ‘0’

23: 22 RESERVED
21: 16 STM SpaceWire Time-Code Mask

Mask For TSTC register available at Time-Stamp SpaceWire Time-Code and
Preamble Field Tx register.
Value all bits zero will send Distributed interrupts at all SpaceWire Time-Codes
irrespective of any values in TSTC register.
Value all ones will send Distributed interrupts at complete match of SpaceWire
Time-Code with TSTC register.
(only for initiator)

15: 14 RESERVED
13: DI64R The MSb for received Distributed Interrupt when interrupt numbers 32 to 63 is

used. Possible only for DI = ‘0’ (only interrupt mode) and DI64 is enabled.
Reset value: ‘0’

12: DI64T The MSb for transmitted Distributed Interrupt when interrupt numbers 32 to 63
is used. Possible only for DI = ‘0’ (only interrupt mode) and DI64 is enabled.
Reset value: ‘0’

11: DI64 Enable Distributed Interrupts 64, when set all 64 Distributed interrupt numbers
can be used for latency calculation. Possible only for DI = ‘0’ (only interrupt
mode).
Reset value: ‘0’

10: DI Distributed Interrupt method, when set interrupt and acknowledge mode else
only interrupt mode. (only for target)
Reset value: ‘0’

9: 5 INRX Interrupt Received.(Distributed)
The distributed interrupt number received by initiator or target.
Reset value: 0b000000

4: 0 INTX Interrupt Transmitted.(Distributed)
The distributed interrupt number transmitted by initiator or target.
Reset value: 0b000000
GRIP, Sep 2018, Version 2018.3 929 www.cobham.com/gaisler

GRLIB IP Core

64.6.5

Table 1106.0x010 - STAT0 - Status Register 0

Status Register 0

64.6.6

Table 1107.0x014 - STAT1 - Status Register 1

Status Register 1

31 30 29 28 27 24 23 22 16 15 14 13 8 7 4 3 2 1 0

MA RP R EDS R FW RES
CW

RES AR
M LC TCQ INSYNC

0 0 0 0 0 0 0 0 0 0 0 0 0

r r r r r r r r r r wc r r

31: MA Mitigation unit available
1 Drift and Jitter mitigation unit available in target
0 Not available
(only for target)

30: 29 Received Port When multiple ports receive SpaceWire time-codes, this register specify on
which port the SpaceWire Time-Code is received recently.

28: RESERVED
27: 24 EDS External Datation Status

24: External Datation 0 Status bit
25: External Datation 1 Status bit
26: External Datation 2 Status bit
27: External Datation 3 Status bit
When conditions matched for external datation this bit will go high. This bit will
go low when all the implemented time values are read.

23 RESERVED
22: 16 FW Fine width of command CCSDS Time Code received. Calculated from Preamble

field of Command Register.
15: 14 RESERVED
13: 8 CW Coarse width of command CCSDS Time Code received, calculated from Pream-

ble field of Command Register.
7: 4 RESERVED
3: ARM This field is enabled when the command field register is written with the value to

be loaded into the Elapsed time. The Set ET External Enable SE bit in the Con-
figuration 1 must be enabled. When an external enable signal occurred and the
command field register contents are loaded into the Elapsed time then this bit
will get disabled.

2 LC Latency Corrected (only for target)
This register can be cleared by writing value ‘1’ to this field.

1 TCQ Time message is qualified by SpaceWire Time-Codes.
0 INSYNC In Sync at Time code level, enabled when time values are Initialized or Synchro-

nized

31 30 29 0

R IV

0 *

r r

31: 30 RESERVED
29: 0 IV Increment Variation. The variation in FSINC while achieving the time synchroni-

sation (only for target)
Reset value: Implementation dependent
(valid only when Mitigation unit available)
GRIP, Sep 2018, Version 2018.3 930 www.cobham.com/gaisler

GRLIB IP Core

64.6.7

Table 1108.0x20 - CTRL - Control

Control

64.6.8

Table 1109.0x024 - CET0 - Command Elapsed Time 0

Command Elapsed Time 0

64.6.9

Table 1110.0x028 - CET1 - Command Elapsed Time 1

Command Elapsed Time 1

31 30 29 24 23 16 15 0

NC IS R SPWTC CPF

0 0 0 0 0

rw rw r rw rw

31: NC New Command
30: IS Init or Sync

1 Initialization of received time message
0 Synchronisation of received time message
(only for target)

29: 24 RESERVED
23: 16 SPWTC SpaceWire Time-Code value used for initialization and synchronisation

In initiator the SpaceWire Time-Codes generated internally using the local ET
counter matches this register a Time Message TM interrupt will be generated
which is used to send Time message over the SpaceWire network.
In target this register should match the received SpaceWire Time-Code for time
qualification.

15: 0 CPF Command Preamble Field. The number of coarse and fine time available in
Command Elapsed Time registers should be mentioned in this field. Based on
this preamble field the target will initialize or synchronise the local ET
counter.(only for target)

31 0

CET0

0

rw

31: 0 CET0 Command Elapsed Time 0
Initialize or Synchronise local ET counter value (0 to 31).

31 0
CET1

0

rw

31: 0 CET1 Command Elapsed Time 1
Initialize or Synchronise local ET counter value (32 to 63)
GRIP, Sep 2018, Version 2018.3 931 www.cobham.com/gaisler

GRLIB IP Core

64.6.10

Table 1111.0x02C - CET2 - Command Elapsed Time 2

Command Elapsed Time 2

64.6.11

Table 1112.0x030 - CET3 - Command Elapsed Time 3

Command Elapsed Time 3

64.6.12

Table 1113.0x034 - CET4 - Command Elapsed Time 4

Command Elapsed Time 4

64.6.13

Table 1114.0x040 - DPF - Datation Preamble Field

Datation Preamble Field

31 0

CET2

0

rw

31: 0 CET2 Command Elapsed Time 2
Initialize or Synchronise local ET counter value (64 to 95).

31 0

CET3

0

rw

31: 0 CET3 Command Elapsed Time 3
Initialize or Synchronise local ET counter value (96 to 127).

31 24 23 0

CET4 RESERVED

0 0

rw r

31: 24 CET4 Command Elapsed Time 4
Initialize or Synchronise local ET counter value (128 to 135).

23: 0 RESERVED

31 16 15 0

RESERVED DPF

0 0x2F00

r r

31: 16 RESERVED
15: 0 DPF Datation Preamble Field

The number of coarse and fine time implemented can be obtained from this Pre-
amble Field.
GRIP, Sep 2018, Version 2018.3 932 www.cobham.com/gaisler

GRLIB IP Core

64.6.14

Table 1115.0x044 - DET0 - Datation Elapsed Time 0

Datation Elapsed Time 0

64.6.15

Table 1116.0x048 - DET1 - Datation Elapsed Time 1

Datation Elapsed Time 1

64.6.16

Table 1117.0x04C - DET2 - Datation Elapsed Time 2

Datation Elapsed Time 2

64.6.17

Table 1118.0x050 - DET3 - Datation Elapsed Time 3

Datation Elapsed Time 3

31 0

DET0

0

r

31: 0 DET0 Datation Elapsed Time 0
CCSDS Time Code value (0 to 31) of local ET counter value.

31 0

DET1

0

r

31: 0 DET1 Datation Elapsed Time 1
CCSDS Time Code value (32 to 63) of local ET counter value.

31 0

DET2

0

r

31: 0 DET2 Datation Elapsed Time 2
CCSDS Time Code value (64 to 95) of local ET counter value.

31 0

DET3

0

r

31: 0 DET3 Datation Elapsed Time 3
CCSDS Time Code value (96 to 127) of local ET counter value.
GRIP, Sep 2018, Version 2018.3 933 www.cobham.com/gaisler

GRLIB IP Core

64.6.18

Table 1119.0x054 - DET4 - Datation Elapsed Time 4

Datation Elapsed Time 4

64.6.19

Table 1120.0x060 - TRPFRx - Time-Stamp Preamble Field Rx

Time-Stamp Preamble Field Rx

64.6.20

Table 1121.0x064 - TR0 - Time Stamp Elapsed Time 0 Rx

Time Stamp Elapsed Time 0 Rx

64.6.21

Table 1122.0x068 - TR1 - Time Stamp Elapsed Time 1 Rx

Time Stamp Elapsed Time 1 Rx

64.6.22

Table 1123.0x06C - TR2 - Time Stamp Elapsed Time 2 Rx

Time Stamp Elapsed Time 2 Rx

31 24 23 0

DET4 RESERVED

0 0

r r

31: 24 DET4 Datation Elapsed Time 4
CCSDS Time Code value (128 to 135) of local ET counter value.

23: 0 RESERVED

31 16 15 0

RESERVED TRPF

0 0x2F00

r r

31: 16 RESERVED
15: 0 TRPF Time stamp Preamble Field

The number of coarse and fine time implemented can be obtained from this Pre-
amble Field.

31 0

TR0

0

r

31: 0 TR0 Time stamped local ET value (0 To 31) when distributed interrupt received.

31 0

TR1

0

r

31: 0 TR1 Time stamped local ET value (32 to 63) when distributed interrupt received.

31 0

TR2

0

r

31: 0 TR2 Time stamped local ET value (64 to 95) when distributed interrupt received.
GRIP, Sep 2018, Version 2018.3 934 www.cobham.com/gaisler

GRLIB IP Core

64.6.23

Table 1124.0x070 - TR3 - Time Stamp Elapsed Time 3 Rx

Time Stamp Elapsed Time 3 Rx

64.6.24

Table 1125.0x074 - TR4 - Time Stamp Elapsed Time 4 Rx

Time Stamp Elapsed Time 4 Rx

64.6.25

Table 1126.0x080 - TTPFTx - Time-Stamp SpaceWire Time-Code and Preamble Field Tx

Time-Stamp SpaceWire Time-Code and Preamble Field Tx

64.6.26

Table 1127.0x084 - TT0 - Time Stamp Elapsed Time 0 Tx

Time Stamp Elapsed Time 0 Tx

31 0

TR3

0

r

31: 0 TR3 Time stamped local ET value (96 to 127) when distributed interrupt received.

31 24 23 0

TR4 RESERVED

0 0

r r

31: 24 TR4 Time stamped local ET value (128 to 135) when distributed interrupt received.
23: 0 RESERVED

31 24 23 16 15 0

TSTC RESERVED TTPF

0 0 0x2800

rw r r

31: 24 TSTC Time stamp time code
Time stamp on this time-code value, used for time stamping when this register
matched with SpaceWire Time-Codes. The mask for this matching is available in
configuration register 3. (only for initiator)

23: 16 RESERVED
15: 0 TTPF Time stamp Preamble Field

The number of coarse and fine time implemented can be obtained from this Pre-
amble Field.

31 0

TT0

0

r

31: 0 TT0 Time stamped local ET value (0 to 31) when distributed interrupt transmitted.
GRIP, Sep 2018, Version 2018.3 935 www.cobham.com/gaisler

GRLIB IP Core

64.6.27

Table 1128.0x088 - TT1 - Time Stamp Elapsed Time 1 Tx

Time Stamp Elapsed Time 1 Tx

64.6.28

Table 1129.0x08C - TT2 - Time Stamp Elapsed Time 2 Tx

Time Stamp Elapsed Time 2 Tx

64.6.29

Table 1130.0x090 - TT3 - Time Stamp Elapsed Time 3 Tx

Time Stamp Elapsed Time 3 Tx

64.6.30

Table 1131.0x094 - TT4 - Time Stamp Elapsed Time 4 Tx

Time Stamp Elapsed Time 4 Tx

64.6.31

Table 1132.0x0A0 - LPF - Latency Preamble Field

Latency Preamble Field

31 0

TT1

0

r

31: 0 TT1 Time stamped local ET value (32 to 63) when distributed interrupt transmitted.

31 0

TT2

0

r

31: 0 TT2 Time stamped local ET value (64 to 95) when distributed interrupt transmitted.

31 0

TT3

0

r

31: 0 TT3 Time stamped local ET value (96 to 127) when distributed interrupt transmitted.

31 24 23 0

TTT0 RESERVED

0 0

r r

31: 24 TT4 Time stamped local ET value (128 to 135) when distributed interrupt transmitted.
23: 0 RESERVED

31 16 15 0

RESERVED LPF

0 0x2F00

r r

31: 16 RESERVED
15: 0 LPF Latency Preamble Field

The number of coarse and fine time implemented can be obtained from this Pre-
amble Field. (only for target)
GRIP, Sep 2018, Version 2018.3 936 www.cobham.com/gaisler

GRLIB IP Core

64.6.32

Table 1133.0x0A4 - LE0 - Latency Elapsed Time 0

Latency Elapsed Time 0

64.6.33

Table 1134.0x0A8 - LE1 - Latency Elapsed Time 1

Latency Elapsed Time 1

64.6.34

Table 1135.0x0AC - LE2 - Latency Elapsed Time 2

Latency Elapsed Time 2

64.6.35

Table 1136.0x0B0 - LE3 - Latency Elapsed Time 3

Latency Elapsed Time 3

64.6.36

Table 1137.0x0B4 - LE4 - Latency Elapsed Time 4

Latency Elapsed Time 4

31 0

LE0

0

rw

31: 0 LE0 Latency Value (0 to 31) written by initiator. (only for target)

31 0

LE1

0

rw

31: 0 LE1 Latency Value (32 to 63) written by initiator. (only for target)

31 0

LE2

0

rw

31: 0 LE2 Latency Value (64 to 95) written by initiator. (only for target)

31 0

LE3

0

rw

31: 0 LE3 Latency Value (96 to 127) written by initiator. (only for target)

31 24 23 0

LE4 RESERVED

0 0

rw r

31: 24 LE4 Latency Value (128 to 135) written by initiator. (only for target)
23: 0 RESERVED
GRIP, Sep 2018, Version 2018.3 937 www.cobham.com/gaisler

GRLIB IP Core

64.6.37

Table 1138.0x0C0 - IE - Interrupt Enable

Interrupt Enable

64.6.38 Interrupt Status

Table 1139.0x0C4 - IS - Interrupt Status

31 20 19 18 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED NCTCE PE(7-0) SETE EDIE3 EDIE2 EDIE1 EDIE0 DITE DIRE TTE TME TRE SE

0 0 0 0 0 0 0 0 0 0 0 0 0 0

r rw rw rw rw rw rw rw rw rw rw rw rw rw

31: 20 RESERVED
19: NCTCE Non consecutive SpaceWire Time-Code received Interrupt Enable
18: 11 PE(7-0) Pulse Interrupt Enable
10 SETE Set ET External Interrupt Enable
9 EDIE3 External Datation 3 Interrupt Enable
8 EDIE2 External Datation 2 Interrupt Enable
7 EDIE1 External Datation 1 Interrupt Enable
6 EDIE0 External Datation 0 Interrupt Enable
5 DITE Distributed Interrupt Transmitted Interrupt Enable
4 DIRE Distributed Interrupt Received Interrupt Enable
3 TTE SpaceWire Time-Code Transmitted Interrupt Enable (only for initiator)
2 TME Time Message transmit Interrupt Enable (only for initiator)
1 TRE SpaceWire Time-Code Received Interrupt Enable (only for target)
0 SE Sync Interrupt Enable (only for target)

31 20 19 18 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED NCTC P(7-0) SET EDI3 EDI2 EDI1 EDI0 DIT DIR TT TM TR S

0 0 0 0 0 0 0 0 0 0 0 0 0 0

r wc wc wc wc wc wc wc wc wc wc wc wc wc

31: 20 RESERVED
19: NCTC Generated when Non consecutive SpaceWire Time-Code is received
18: 11 P(7-0) Generated when an active Pulse is transmitted, at the start of active pulse an

interrupt is generated
10 SET Generated when Elapsed Time is loaded with contents of the Command Field

register based on external enable signal.
9 EDI3 Generated when conditions for External Datation 3 is matched
8 EDI2 Generated when conditions for External Datation 2 is matched
7 EDI1 Generated when conditions for External Datation 1is matched
6 EDI0 Generated when conditions for External Datation 0 is matched
5 DIT Generated when distributed interrupt is transmitted (Latency calculation should

be enabled)
4 DIR Generated when distributed interrupt is Received (Latency calculation should be

enabled)
3 TT Generated when SpaceWire Time-Codes is transmitted (only for initiator)
2 TM Generated when the conditions for transmitting time message occurred, based on

this time message should be transmitted from initiator (only for initiator)
1 TR Generated when SpaceWire Time-Code is received (only for target)
0 S Generated when the target is initialized or synchronized with initiator (only for

target)
The interrupts are cleared by writing value 1 on respective bits.
GRIP, Sep 2018, Version 2018.3 938 www.cobham.com/gaisler

GRLIB IP Core

64.6.39

Table 1140.0x0C8 - DC - Delay Count

Delay Count

64.6.40 Disable Sync

Table 1141.0x0CC - DS - Disable Sync

64.6.41

Table 1142.0x100 - EDM0 - External Datation 0 Mask

External Datation 0 Mask

64.6.42 External Datation 0 Preamble Field

31 15 14 0

RESERVED DC

0 0x7FFF

r r

31: 15 RESERVED
14: 0 DC Delay Count

Delay induced between SpaceWire Time-Codes and Distributed Interrupt trans-
mission in system clock units. The delay introduced is the value in this register
multiplied by the system clock.
(only for initiator)

31 30 24 23 0

EN RESERVED CD

0 0 0xFFFFFF

rw r rw

31: EN Enable
30: 24 RESERVED
23: 0 CD Configurable delay to capture missing SpaceWire Time-Code (only for target)

The INSYNC bit in the Status 0 register will disable itself when an expected
SpaceWire Time-Code is not arrived after the delay mentioned in this register.
The delay corresponds to the fine time of Elapsed Time counter and should not
overlap with the MAPPING register. Any Overlapping register must also be set
to Zero.

31 0

EDM0

0

rw

31: 0 EDM0 External datation can be enabled by writing ‘1’ into the bit for that corresponding
external input. When conditions are matched the Elapsed Time will be latched.
The latched values are available at External Datation 0 Time Register.
All the mask bits will go low after any one of the conditions with respect to the
enabled mask bits.are matched.

Table 1143.0x110 - EDPF0 - External Datation 0 Preamble Field
31 16 15 0

RESERVED EDPF0

0 0x2F00

r r
GRIP, Sep 2018, Version 2018.3 939 www.cobham.com/gaisler

GRLIB IP Core
31: 16 RESERVED
15: 0 EDPF0 External Datation Preamble Field

The number of coarse and fine time implemented can be obtained from this Pre-
amble Field.

Table 1143.0x110 - EDPF0 - External Datation 0 Preamble Field
GRIP, Sep 2018, Version 2018.3 940 www.cobham.com/gaisler

GRLIB IP Core

64.6.43

Table 1144.0x114 - ED0ET0 - External Datation 0 Elapsed Time 0

External Datation 0 Elapsed Time 0

64.6.44

Table 1145.0x118 - ED0ET1 - External Datation 0 Elapsed Time 1

External Datation 0 Elapsed Time 1

64.6.45

Table 1146.0x11C - ED0ET2 - External Datation 0 Elapsed Time 2

External Datation 0 Elapsed Time 2

64.6.46

Table 1147.0x120 - ED0ER3 - External Datation 0 Elapsed Time 3

External Datation 0 Elapsed Time 3

64.6.47 External Datation 0 Elapsed Time 4

31 0

ED0ET0

0

r

31: 0 ED0ET0 External Datation Elapsed Time 0
Latched CCSDS Time Code value (0 to 31) of local ET counter.

31 0

ED0ET1

0

r

31: 0 ED0ET1 External Datation Elapsed Time 1
Latched CCSDS Time Code value (32 to 63) of local ET counter.

31 0

ED0ET2

0

r

31: 0 ED0ET2 External Datation 0 Elapsed Time 2
Latched CCSDS Time Code value (64 to 95) of local ET counter.

31 0

ED0ET3

0

r

31: 0 ED0ET3 External Datation 0 Elapsed Time 3
Latched CCSDS Time Code value (96 to 127) of local ET counter.

Table 1148.0x124 - ED0ET4 - External Datation 0 Elapsed Time 4
31 24 23 0

ED0ET4 RESERVED

0 0

r r
GRIP, Sep 2018, Version 2018.3 941 www.cobham.com/gaisler

GRLIB IP Core
64.6.48 Pulse Definition Register 0 to 7

Table 1149.0x1A0-0x1BC - PDR0 to PDR7 - Pulse Definition Register 0 to 7

Note: The registers which are not mentioned either as only for initiator or target are used in both initi-
ator and target.
The Definition of External Datation 1 Mask, External Datation 2 Mask and External Datation 3 Mask
registers are exactly same as External Datation 0 Mask Register.
The Definition of External Datation 1 Time, External Datation 2 Time and External Datation 3 Time
registers are exactly same as External Datation 0 Time Registers (i.e. External Datation 0 Preamble
Field and External Datation 0 Elapsed Time 0,1,2,3,4).

64.7 Vendor and device identifiers

The module has vendor identifier 0x01 and device identifier 0x097. For description of vendor and
device identifiers see GRLIB IP Library User’s Manual.

31: 24 ED0ET4 External Datation 0 Elapsed Time 4
Latched CCSDS Time Code value (128 to 135) of local ET counter.

23: 0 RESERVED

31 24 23 20 19 16 15 11 10 9 2 1 0

RESERVED PP PW RESERVED PL RESERVED PE R

0 0 0 0 1 0 0 0

r rw rw r rw r rw r

31: 24 RESERVED
23: 20 PP Pulse Period

Value ‘0000’ = 27 seconds

Value ‘0001’ = 26 seconds
...

Value ‘1110’ = 2-7 seconds

Value ‘1111’ = 2-8 seconds

Period = 2(7-PP)

Frequency = 2-(7-PP)

19: 16 PW Pulse Width
Value ‘0000’ = 26 seconds

Value ‘0001’ = 25 seconds
...

Value ‘1110’ = 2-8 seconds

Value ‘1111’ = 2-9 seconds

Width = 2(6-PW)

15: 11 RESERVED
10: PL Pulse Level

Defines logical level of active part of pulse output. ‘0’ = Low, ‘1’ = High
9: 2 RESERVED
1: PE Pulse Enable

‘0’ = disabled, ‘1’ = enabled
0: RESERVED

Table 1148.0x124 - ED0ET4 - External Datation 0 Elapsed Time 4
GRIP, Sep 2018, Version 2018.3 942 www.cobham.com/gaisler

GRLIB IP Core

64.8 Implementation

64.8.1 Reset

The core does not change reset behavior depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

64.9 Configuration options

Table below shows the configuration options of the core (VHDL generics).

Table 1150.Configuration options

Generic Description Allowed range Default
mitigation Jitter and drift correction unit enable 0-1 0
tech Select technology 0-NTECH inferred
gCoarse Number of CUC coarse bits 8-56 32
gFine Number of CUC fine bits 0-80 24
gMaster Initiator implementation enable 0-1 1
gSlave Target implementation enable 0-1 1
gFrequency Width of Frequency Synthesizer 2-30 30
gFSIncrement Increment of FS counter 0-

0x3FFFFFFF
360287970

gETIncrement Increment of ET counter 0-255 0
gComp Compensation value for jitter and drift

variations
0-0xFFFFFF 461

gPField P-Field 0-0xAF7C 0x2F00
gMapping Initial mapping value 0-31 6
gExtDatation Implementation of External Datation 0-1 1
gNoExtDat Number of External Datation services 1-4 4
gPulses Pulse support 0-1 1
gNoPulses Number of Pulse generation services 1-8 8
gMulEN Multiple ports Enable 0-1 1
gNoPorts Number of ports 1-4 4
gSetET Set ET support 0-1 1
gExtETInc Increment Elapsed Time based on external

input
0-1 1

gSpWSync Support for Synchronisation using only
SpaceWire Time-Codes

0-1 1

delay Number of Delay Count bits need to be
implemented.

2-15 9

pindex APB slave index 0 - NAPBSLV-
1

0

paddr Addr field of the APB bar. 0 - 16#FFF# 0
pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#
pirq Interrupt line used by the core. 0 - NAHBIRQ-

1
1

GRIP, Sep 2018, Version 2018.3 943 www.cobham.com/gaisler

GRLIB IP Core

64.10 Signal descriptions

Table below shows the interface signals of the core (VHDL ports).

* see GRLIB IP Library User’s Manual
The inputs setet and ext_et_inc are re-synchronized internally. All the other inputs does not have
internal support to remove meta-stability resulting from clock domain crossings. If the inputs are
driven from clock domains other than the clock provided for this core then the clock synchronisation
conditions must be dealt externally for these inputs.

64.11 Signal definitions and reset values

The core has no external signals.

Table 1151.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
GRTDPI tickindone Input SpaceWire Time-Code input processed High

tickoutraw Input SpaceWire Time-Code/Distributed interrupt out-
put event

High

timeout Input SpaceWire Time-Code/Distributed interrupt out-
put

-

ext_dat_latch Input Vector to input external signals on which the
Elapsed Time is latched. Used for External data-
tion service.

-

ext_dat_save Input Vector to input external signals on which the
Elapsed Time is saved. Used for External data-
tion service.

-

setet Input Input to set ET from Register -
ext_et_inc Input Input to increment ET -

GRTDPO tickinraw Output SpaceWire Time-Code/Distributed interrupt
input request

High

timein Output SpaceWire Time-Code/Distributed interrupt
input

-

elapsedtime Output Elapsed time -
enable Output TDP enable, this signal reflects the content of the

TD bit in the Configuration 0 register.
High

ext_dat_pulse Output Produces an output pulse when conditions for
external datation is met. The pulse is driven for
one system clock period on the occurrence of
external save condition. This vector consist of
four outputs corresponding to each external data-
tion services.

-

pulses Output Pulse output -
DIAG_CTICK N/A Output This tick is generated when SpaceWire Time-

Code is transmitted in initiator.
This tick is generated when a diagnostic Space-
Wire Time-Code is generated from targets fully
corrected time.

High

DIAG_JTICK N/A Output The incoming SpaceWire Time-Code tick, to
visualize the jitter (only for target)

High
GRIP, Sep 2018, Version 2018.3 944 www.cobham.com/gaisler

GRLIB IP Core

64.12 Timing

The core has no external timing.

64.13 Library dependencies

Table 1152 shows the libraries used when instantiating the core (VHDL libraries).

64.14 Instantiation

This example shows how the core can be instantiated.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.devices.all;
use grlib.stdlib.all;

library tmtc;
use tmtc.grspacewiretdp.all;
use tmtc.spacewiretdp.all;

entity grspwtdp_ex is

end entity grspwtdp_ex;

architecture rtl of grspwtdp_ex is

signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector := (others => apb_none);

signal spwi : grspw_in_type;
signal spwo : grspw_out_type;

signal tdpi : grtdp_In_Type;
signal tdpo : grtdp_Out_Type;
signal tdp_enable : Std_ULogic;
signal tdp_elapsedtime : Std_Logic_Vector(0 to 135);
signal ext_dat_latch : Std_Logic_Vector(31 downto 0);
signal ext_dat_save : Std_Logic_Vector(31 downto 0);
signal tdp_elapsedtime : Std_Logic_Vector(0 to 135);
signal ext_dat_pulse : Std_Logic_Vector(3 downto 0);
signal pulses : Std_Logic_Vector(7 downto 0);
signal setet : Std_ULogic;
signal ext_et_inc : Std_ULogic;

signal diag_ctick : Std_ULogic;
signal diag_jtick : Std_ULogic;

begin

spw_time_0: grspwtdp
 generic map(
 mitigation => 1,
 tech => 0,

Table 1152.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
TMTC GRSPACE-

WIRETDP
Signals, component Component declarations, signals.

TMTC SPACEWIRETDP Signals, component Component declarations, signals.
GRIP, Sep 2018, Version 2018.3 945 www.cobham.com/gaisler

GRLIB IP Core

 gCoarse => 32,
 gFine => 24,
 gMaster => 1,
 gSlave => 1,
 gFrequency => 30,
 gETIncrement => 0,
 gFSIncrement => 360287970, -- Default for 50 Mhz
 gComp => 461,
 gPField => 16#2F00#,
 gMapping => 6,
 delay => 9,
 pindex => 4,
 paddr => 4,
 pmask => 16#ffe#,
 pirq => 1)
 port map(
 rstn => rstn,
 clk => clkm,
 apbi => apbi,
 apbo => apbo(4),
 grtdpi => tdpi,
 grtdpo => tdpo,
 diag_ctick => diag_ctick,
 diag_jtick => diag_jtick);

spwi.timein <= tdpo.timein;
spwi.tickinraw <= tdpo.tickinraw(0);
tdp_elapsedtime <= tdpo.elapsedtime;
tdp_enable <= tdpo.enable;
ext_dat_pulse <= tdpo.ext_dat_pulse;
pulses <= tdpo.pulses;

tdpi.tickindone(0) <= spwo.tickindone;
tdpi.tickoutraw(0) <= spwo.tickoutraw;
tdpi.timeout(0) <= spwo.timeout;
tdpi.ext_dat_latch <= ext_dat_latch;
tdpi.ext_dat_save <= ext_dat_save;
tdpi.setet <= setet;
tdpi.ext_et_inc <= ext_et_inc;
end;
GRIP, Sep 2018, Version 2018.3 946 www.cobham.com/gaisler

GRLIB IP Core

65 GRSPFI_CODEC - SpaceFibre encoder/decoder

65.1 Overview

SpaceFibre is a high-speed serial link mainly designed for payload data processing applications on
board spacecraft. Like many other modern network architectures, SpaceFibre utilises a Serialiser/
Deserialiser (SerDes) circuit at its physical layer, allowing data rates of 2 Gbit/s and more. The Ser-
Des can either be part of the chip design or a standalone device can be used.
Interfacing a SpaceFibre port from the user application is simple as it closely follows the procedure
known from SpaceWire. A SpaceFibre port has one or more pairs of transmit and receive buffers,
referred to as virtual channels, and each virtual channel acts like a single SpaceWire interface, i.e. sev-
eral SpaceWire network streams can be multiplexed into one SpaceFibre network stream. The multi-
plexer is called medium access controller and is choosing the active virtual channel according to a
number of Quality-of-Service (QoS) rules.
Data is always transferred in frames with a size of 256 bytes or less. While such a data frame is passed
to the physical link, it is also stored in an error recovery buffer. It remains in this buffer until the far
end node acknowledges the correct reception of the frame, which is detected by checking a CRC
checksum at the end of the frame. However, if the far end node sends a negative-acknowledgement
(NACK) word instead, the frame is re-transmitted from the error-recovery buffer.
Aside from data frames, SpaceFibre also supports broadcast frames, which are multi-purpose high-
priority messages. These messages are comparable to SpaceWire time-codes but in addition to a sim-
ple sequence number they also transmit a data payload of 8 bytes. Broadcast frames are stored in the
replay buffer just like the data frames, i.e. they are automatically retransmitted after a link error.
On the receive side, incoming data from the physical link is processed continuously, i.e. one 32-bit
word is processed every clock cycle. To avoid buffer overruns in the virtual channel receive buffers,
the communication between a virtual channel transmit buffer in the local node and the virtual channel
receive buffer in the far end node is flow-controlled by means of Flow Control Token (FCT) words.
Just like the data and broadcast frames, the FCT words are stored in the error-recovery buffer and are
therefore retransmitted in case of errors.
A simplified block diagram of the SpaceFibre IP core can be seen in Figure 183. The SpaceFibre IP
port comprises a data link layer and lane layer. Internally, the data link layer is further divided into the
so-called broadcast layer, virtual channel layer and retry layer, which are responsible for the transmis-
sion and reception of broadcast frames, for the transmission and reception of data frames and for the
error recovery mechanism, respectively.
Signals related to the broadcast interface have the prefix 'bc', signals related to the virtual channel
interface the prefix 'vc', and signals related to the SerDes the prefix 'se'. Furthermore, the prefix 'cf'
describes a configuration parameter signal whereas the prefix 'sr' describes a status register signal.
GRIP, Sep 2018, Version 2018.3 947 www.cobham.com/gaisler

GRLIB IP Core
Figure 183. Block diagram
GRIP, Sep 2018, Version 2018.3 948 www.cobham.com/gaisler

GRLIB IP Core

65.2 Operation

65.2.1 Configuration

All soft configuration parameters are synchronous to clock clk and should be stored in registers exter-
nal to the SpaceFibre IP core.
Global configuration
The SpaceFibre link can be reset by asserting cf_link_rst. As a consequence, outbound packets are
spilled up to and including the next EOP and inbound packets are terminated by an EEP.
Lane Layer
The lane initialization state machine is controlled with the signals cf_lane_start and cf_auto_start.
When cf_lane_start is asserted, the lane layer will actively try to build up a connection with the far
end by sending out INIT1 words. When cf_auto_start is asserted, the lane layer will passively listen to
incoming words from the far end and start the handshake procedure once INIT1 words are received.
cf_lane_start has higher precedence than cf_lane_auto_start. To shut down the lane, both cf_lane_au-
to_start and cf_lane_start must be de-asserted. When shut down, the transmitter and receiver parts of
the SerDes are disabled as well.
The lane can be reset at any time by asserting cf_lane_rst. In contrast to link resets, a lane reset is only
reinitialising the lane. Therefore, ongoing transmissions are probably delayed but never canceled.
The SpaceFibre IP core has an internal loop-back feature that can be enabled/ disabled with
cf_la_loopback. The SpaceFibre IP core must be reset after asserting/de-asserting this flag.
Retry Layer
The retry layer comprises a data scrambler, which can be enabled/disabled with cf_data_scr_en. The
data scrambler becomes directly active after asserting this flag. This will lead to continuous data
retries if the de-scrambler of the remote node is not activated. Therefore, a lane reset must be trig-
gered after asserting/de-asserting this flag. By doing so, the remote node is informed during the subse-
quent handshake if the data is scrambled or not and will then switch on or off the de-scrambler
accordingly.
Broadcast Layer
The transmission of broadcasts is limited in bandwidth depending on an expected bandwidth value
defined by the 16-bit wide port cf_bc_expected_bw. Typical values are between 1% and 95%. If the
user application tries to send more broadcasts than allowed, the bandwidth limitation becomes auto-
matically active. cf_bc_expected_bw is expressed in 0.16 fixed point format and is calculated as fol-
lows:

For example, the expected bandwidth value of 10% is expressed as: 1/(10*4) = 0.025. In 0.16 fixed
point notation: 0x0666. For convenience, these values are pre-calculated for 1% to 95% and stored in
a constant array in the package file spfi_pkg.vhd. The transmission of broadcasts can also be com-
pletely switched off by setting the expected bandwidth value to 0x0000.
Virtual Channel Layer
The transmission of data frames is bandwidth-limited for each virtual channel. The expected band-
width values for all virtual channels are concatenated in port vector cf_vc_expected_bw. Each
expected bandwidth value is 16-bit wide. For instance, the value for virtual channel 0 is stored at bit
positions 15:0 and the value for virtual channel 1 is stored at bit positions 31:16. The expected band-
width values are expressed in 8.8 fixed point format and are calculated as follows:

ExpectedBandwidth 1
Percentage 4
--------------------------------------=
GRIP, Sep 2018, Version 2018.3 949 www.cobham.com/gaisler

GRLIB IP Core
For example, the expected bandwidth value of 15% is expressed as: abs(1-(100/15)) = 5.6667. In 8.8
fixed point notation: 0x05ab. For convenience, these values are pre-calculated for 1% to 95% and
stored in a constant array in the package file spfi_pkg.vhd. A virtual channel can also be completely
switched off by setting its expected bandwidth value to 0x0000.
The timeslot vectors for all virtual channels are concatenated in port vector cf_vc_tslot_vecs. Since
SpaceFibre offers 64 timeslots per virtual channel, the timeslot vector for virtual channel 0 is stored at
bit positions 63:0, the timeslot vector for virtual channel 1 at bit positions 127:0 and so on. Each bit
enables or disables the transmission of data frames in the timeslot with the number of the bit position.
For instance, to allow virtual channel 0 to send data in timeslot 0, timeslot 3 and timeslot 7, one can
set its timeslot vector to: 0b10001001 = 0x89.
The priority values for all virtual channels are concatenated in port vector cf_vc_priorities. Each pri-
ority value is 4-bit wide, i.e. the priority levels 0 to 15 are supported. For instance, the value for virtual
channel 0 is stored at bit positions 3:0 and the value for virtual channel 1 is stored at bit positions 7:4.
Priority level 15 has the lowest precedence and priority level 0 has the highest precedence.

65.2.2 Status signaling

Lane Layer
The status flag sr_far_end_lrst is pulsed high if a link reset was triggered due to a system reset in the
far end node. sr_far_end_los is pulsed if a new handshake is started due to a loss of signal at the Ser-
Des receiver. sr_rxerr_count is an 8-bit wide counter for received RXERR words. The counter is
automatically decreased by one every time 16,384 more words have been received. sr_rxerr_count_of
is pulsed when the RXERR word counter overflows. sr_rx_polarity is set when the lane layer detects
inverted receive polarity during handshake. If internal 8B10B decoding is activated, the polarity of
the incoming bitstream is automatically inverted.
sr_far_end_standby is pulsed when STANDBY words are received. This is always the case when the
link initialization state machine in the far end node is deactivated. sr_timeout is set when a connection
timeout occurs during lane initialization. sr_lane_state is a 4-bit wide unsigned value encoding the
current lane initialization state as follows:

Table 1153.Lane initialization state encoding

1 Clear Line
2 Disabled
3 Wait
4 Started
5 Invert Rx Polarity
6 Connecting
7 Connected
8 Active
9 Loss Of Signal
10 Prepare Standby

ExpectedBandwidth 1 100
Percentage
------------------------------–=
GRIP, Sep 2018, Version 2018.3 950 www.cobham.com/gaisler

GRLIB IP Core

Retry Layer
sr_crc16_err is pulsed when a CRC error has occurred during the reception of a data frame.
sr_crc8_err is pulsed when a CRC error has occurred during the reception of a control word or broad-
cast frame. sr_seq_err is pulsed when a sequence number error occurred during the reception of data
frames, broadcast frames, idle frames, FCT or FULL words. sr_frame_err is pulsed when an invalid
data, broadcast, or idle frame is received.
sr_rbuf_empty is set when the error recovery buffer is empty, i.e. all data frames, broadcast frames
and FCT words have been sent and acknowledged. sr_retry_cnt is an 4-bit wide counter that incre-
ments for every RETRY event initiated. It is automatically reset when an ACK word is received from
the far end. The SpaceFibre link is automatically reset when the counter reaches 16.
Virtual Channel Layer
sr_fct_cnt_ov is a bit vector where each bit position corresponds to a virtual channel number. The bit
is pulsed when the corresponding FCT credit counter has overflowed. This indicates that the width of
the FCT counter, defined by g_remote_fct_cnt_max, is too small. sr_input_buf_ov is a bit vector
where each bit position corresponds to a virtual channel number. The bit is set when a virtual channel
input buffer is receiving data when it is full. This indicates a fatal protocol error. sr_dest_has_credit is
a bit vector where each bit position corresponds to a virtual channel number. The bit is set when there
is space in the virtual channel input buffer of the far end node. sr_bw_over_use is a bit vector where
each bit position corresponds to a virtual channel number. The bit is set when the virtual channel uses
more bandwidth than expected, i.e. when the bandwidth overuse mechanism is active. In contrast,
sr_bw_under_use indicates that a virtual channel uses less bandwidth than expected. Note that this
flag is also set when a virtual channel is deactivated due to an expected bandwidth value of 0, even if
the user application tries to transmit data over this virtual channel.

65.2.3 Virtual channel interface

Transmit side
On port vc_tx_data, data is fed into the virtual channel transmit buffers. The input vectors are 32-bit
wide and concatenated, i.e. the data word for virtual channel 0 is stored at bit positions 31:0, the data
word for virtual channel 1 is stored at bit positions 63:32 and so on. The lowest byte is transmitted
first. On port vc_tx_kflags, a 4-bit vector for each virtual channel defines which bytes of the data
transmit word are k-codes. The vectors are concatenated as well, i.e. the k-flags vector for virtual
channel 0 is stored at bit positions 3:0, the k-flags vector for virtual channel 1 is stored at bit positions
7:4 and so on. The lowest bit in the k-flags vector corresponds to the lowest byte of the data word. The
following k-codes are allowed:

An example of how to use the k-codes correctly is shown in figure 184. The first four lines are normal
data words, which are part of the payload of a SpaceWire packet. The k-flags vector must be set to
0b0000. In line 5, the SpaceWire packet is terminated by an EOP. Due to the byte-order, the k-code for
the EOP is transmitted as least significant byte. The EOP is followed by three FILL characters for
achieving word alignment. The k-flags vector must be set to 0b1111 because all bytes of the word are
k-codes. In line 6, a new SpaceWire packet begins, starting with physical address 0x08. The address is
transmitted as most significant byte since three FILL characters must be transmitted first. Here, the k-
flags vector must be set to 0b0111 because only the FILL characters are k-codes.

Table 1154.SpaceFibre k-codes

SpaceFibre Character K-Code Corresponding data byte
EOP – End of packet K29.7 0xFD
EEP – Error end of packet K30.7 0xFE
FILL – Fill character K27.7 0xFB
GRIP, Sep 2018, Version 2018.3 951 www.cobham.com/gaisler

GRLIB IP Core

Usage of any other k-codes than the aforementioned ones for EOP, EEP an FILL characters must be
avoided. SpaceFibre uses k-codes for control words on lower protocol layers. Injecting the wrong
combination of k-codes through the virtual channel interface can compromise the correct functionality
of the SpaceFibre protocol.

To write into a virtual channel transmit buffer, the write enable flag for the virtual channel in bit vec-
tor vc_tx_wen must be asserted. The bit position corresponds to the virtual channel number. If the
transmit buffer is full, the full flag for the virtual channel in bit vector vc_tx_full is asserted. Again,
the bit position of the flag corresponds to the virtual channel number. If the transmit buffer is full, any
further write attempts are ignored. An example timing diagram for virtual channel 0 is shown in figure
185.

The medium access controller allows the assignment of virtual channels to specific timeslots. vc_tx_-
timeslot is a 6-bit wide unsigned value defining the current timeslot number between 0 and 63.
Receive side
On port vc_rx_data, data is read out from the virtual channel input buffers. The output vectors are 32-
bit wide and concatenated, i.e. the data word for virtual channel 0 is stored at bit positions 31:0, the

Figure 184. Example of k-code usage

Figure 185. Example timing diagram - virtual channel 0 transmit side
GRIP, Sep 2018, Version 2018.3 952 www.cobham.com/gaisler

GRLIB IP Core

data word for virtual channel 1 is stored at bit positions 63:32 and so on. The lowest byte is the one
received first. On port vc_rx_kflags, a 4-bit vector for each virtual channel defines which bytes of the
received data word are k-codes. The vectors are concatenated as well, i.e. the k-flags vector for virtual
channel 0 is stored at bit positions 3:0, the k-flags vector for virtual channel 1 is stored at bit positions
7:4 and so on. The lowest bit in the k-flags vector corresponds to the lowest byte of the data word. The
same k-codes as described in table 1154 can occur, i.e. EOP, EEP and FILL characters.
To read from a virtual channel receive buffer, the read enable flag for the virtual channel in bit vector
vc_rx_ren must be asserted. The bit position corresponds to the virtual channel number. Data on
vc_rx_data is only valid if the corresponding valid flag in bit vector vc_rx_valid is asserted. Again,
the bit position corresponds to the virtual channel number. This FIFO scheme makes it particularly
easy to interface other FIFO-like interfaces in the user logic. For instance, one could loopback the
received data to the transmit side by simply connecting vc_tx_data to vc_rx_data, vc_tx_kflags to
vc_rx_kflags, vc_tx_wen to vc_rx_valid and vc_rx_ren to not(vc_tx_full). An example timing diagram
is shown in figure 186.

65.2.4 Broadcast interface

Transmit side
A broadcast delivers 8 bytes of payload, which are fed into the SpaceFibre IP core on port bc_tx_data.
The lowest byte is transmitted first. Each broadcast has a channel and sequence number, which can be
fed in at port bc_tx_channel and bc_tx_seq respectively. The write enable flag bc_tx_wen must be
asserted to write the broadcast. Once the flag is set, an internal state machine prepares and executes
the transmission of the broadcast frame. During this process the broadcast data, channel and sequence
number must be kept stable. The SpaceFibre IP core signals the end of the transmission by pulsing the
active-high flag bc_tx_ack for one clock cycle. An example timing diagram is shown in figure 187.

Receive side
On the receive side, broadcast payload data is available on port bc_rx_data, the broadcast channel
number on port bc_rx_channel and the broadcast sequence number on port bc_rx_seq. If the broad-
cast was sent during a retry, i.e. if the broadcast is unusually delayed, the flag bc_rx_late is high. Data

Figure 186. Example timing diagram - virtual channel 0 receive side

Figure 187. Example timing diagram - broadcast channel transmit side
GRIP, Sep 2018, Version 2018.3 953 www.cobham.com/gaisler

GRLIB IP Core

on the aforementioned ports is only valid when the active-high flag bc_rx_valid is pulsed for one
clock-cycle. From a user's perspective, this flag can be used as a write enable signal for some sort of
memory to store the broadcast data for further processing.

65.2.5 Serdes interface

Transmit
The internal data path width of the SpaceFibre IP core is 32 bits. The SpaceFibre IP core allows sev-
eral different configurations:
• Large SerDes interface (g_16_20_bit_mode is false), internal 8B10B encoding is activated

(g_use_8b10b is true): In this configuration, 8B10B encoded 40-bit wide transmit data is out-
putted at se_tx_data(39:0). se_tx_kflags(3:0) is unused and can be left open.

• Large SerDes interface (g_16_20_bit_mode is false), internal 8B10B encoding is deactivated
(g_use_8b10b is false): In this configuration, unencoded 32-bit wide transmit data is outputted at
se_tx_data(31:0). se_tx_kflags(3:0) is active and must be connected to the external 8B10B
encoder, e.g. within the SerDes device.

• Small SerDes interface (g_16_20_bit_mode is true), internal 8B10B encoding is activated
(g_use_8b10b is true): In this configuration, 8B10B encoded 20-bit wide transmit data is out-
putted at se_tx_data(19:0). se_tx_kflags(3:0) is unused and can be left open.

• Small SerDes interface (g_16_20_bit_mode is true), internal 8B10B encoding is deactivated
(g_use_8b10b is false): In this configuration, unencoded 16-bit wide transmit data is outputted at
se_tx_data(15:0). se_tx_kflags(1:0) is active and must be connected to the external 8B10B
encoder, e.g. within the SerDes device.

If the lane layer of the SpaceFibre IP core is deactivated, the flag se_tx_en is low. It can be used to
switch off the transmit side of the SerDes to save power during idle times.
For debug purposes, the transmit data and k-flags before any possible data path width conversion and
8B10B encoding can be monitored at se_tx_data_dbg and se_tx_kflags_dbg.

Receive
Similarly to the transmit side, the SerDes interface is used differently depending on the configuration:
• Large SerDes interface (g_16_20_bit_mode is false), internal 8B10B decoding is activated

(g_use_8b10b is true): In this configuration, 8B10B encoded 40-bit wide receive data is fed in on
port se_rx_data(39:0). se_rx_kflags(3:0) is unused and can be tied to ground.

• Large SerDes interface (g_16_20_bit_mode is false), internal 8B10B encoding is deactivated
(g_use_8b10b is false): In this configuration, unencoded 32-bit wide receive data is fed in on port
se_rx_data(31:0). se_rx_kflags(3:0) is active and must be connected to the external 8B10B
decoder, e.g. within the SerDes device.

Figure 188. Example timing diagram - broadcast channel receive side
GRIP, Sep 2018, Version 2018.3 954 www.cobham.com/gaisler

GRLIB IP Core

• Small SerDes interface (g_16_20_bit_mode is true), internal 8B10B encoding is activated

(g_use_8b10b is true): In this configuration, 8B10B encoded 20-bit wide receive data is fed in on
port se_rx_data(19:0). se_rx_data(39:20) should be tied to ground. se_rx_kflags(3:0) is unused
and can be tied to ground as well.

• Small SerDes interface (g_16_20_bit_mode is true), internal 8B10B encoding is deactivated
(g_use_8b10b is false): In this configuration, unencoded 16-bit wide receive data is fed in on port
se_rx_data(15:0). se_rx_kflags(1:0) is active and must be connected to the external 8B10B
encoder, e.g. within the SerDes device. se_rx_data(39:16) and se_rx_kflags(3:2) are unused and
can be tied to ground.

If internal 8B10B decoding is not activated and the SerDes provides byte related error flags, for
instance for disparity errors, these can be connected to the se_rx_serror port, with the lowest bit corre-
sponding to the lowest byte of the receive data. If this is not the case, this port should be tied to
ground. If the received data from the SerDes device is not synchronous to the SpaceFibre clock clk,
the recovered SerDes receive clock must be connected to port se_rx_clk. If the data is already syn-
chronous, for instance because the SerDes comprises its own elastic buffer, the SpaceFibre clock clk
must be connected to se_rx_clk. If the lane layer of the SpaceFibre IP core is deactivated, the flag
se_rx_en is low. It can be used to switch off the receive side of the SerDes to save power during idle
times. If the SerDes provides a “No Signal” flag, it should be connected to port se_no_signal, other-
wise this port must be tied to ground. If internal 8B10 decoding is not activated and the SerDes pro-
vides the capability to invert incoming bits, port se_inv_pol can be connected to the corresponding
control port of the SerDes. If not, this port can be left unconnected.
For debug purposes, the receive data and k-flags after any possible data path width conversion and
8B10B decoding can be monitored at se_rx_data_dbg and se_rx_kflags_dbg.

65.3 Registers

There are no user accessible registers in the core. It is suggested to connect the configuration input
signals (CF_*) and the status output signals (ST_*) to registers outside the core.

65.4 Vendor and device identifier

The vendor and device identifiers are only applicable for cores with AHB interfaces.

65.5 Implementation

65.5.1 Reset

The core changes reset behavior depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual). By default, the core makes use of synchronous reset and resets all its internal
registers.
The core will use asynchronous reset for all registers if the GRLIB config package setting grlib_asyn-
c_reset_enable is set.
GRIP, Sep 2018, Version 2018.3 955 www.cobham.com/gaisler

GRLIB IP Core

65.6 Configuration options

Table 1155 shows the configuration options of the core (VHDL generics).

65.7 Signal Descriptions

Table 1156 shows the interface signals of the core (VHDL ports).

Table 1155.Configuration options

Generic name Function Allowed range Default
g_tech This generic can be used for technology-specific internal

components such as memories.
0 - NTECH inferred

g_use_8b10b If set, internal 8B10B encoding and decoding is acti-
vated.

0 - 1 1

g_use_sep_txclk If set, the SerDes transmission clock is decoupled from
the SpaceFibre port clock. An additional transmit buffer
is instantiated for this reason.

0 - 1 0

g_16_20_bit_mode If set, the SerDes interface is 16+2 bit (without 8B10B)
or 20 bit (with 8B10B) wide instead of 36/40 bit. If set,
g_use_sep_txclk must also be set.

0 - 1 0

g_ticks_2us Clock ticks corresponding to 2 μs. 1 - 16#2000# 125
g_tx_skip_freq Frequency of SKIP word transmission in clock cycles. 1 - 16#2000# 5000
g_prbs_init1 If set, the INIT1 sequence during lane initialisation is

embedded into a stream of pseudo-random numbers.
0 - 1 1

g_depth_rbuf_data Log(Depth) of the data retry buffer. 1 - 32 8
g_depth_rbuf_fct Log(Depth) of the FCT retry buffer. 1 - 32 4
g_depth_rbuf_bc Log(Depth) of the broadcast retry buffer. 1 - 32 8
g_no_vc Number of virtual channels. 1 - 32 4
g_depth_vc_rx-
_buf

Log(Depth) of virtual channel input buffer. 1 - 32 8

g_depth_vc_tx_buf Log(Depth) of virtual channel output buffer. 1 - 32 8
g_re-
mote_fct_cnt_max

Width of the remote FCT counter. 0 - 32 8

g_width_bw_credit Width of the bandwidth credit counter. 0 - 16#FFFFFFFF# 20
g_min_bw_credit Minimum bandwidth credit threshold limit. 0 - 16#FFFFFFFF# 52428
g_idle_time_limit Bandwidth idle time limit in clock cycles. 0 - 16#FFFF# 62500

Table 1156.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
TX_RST N/A Input Reset of tx_clk clock domain Low
TX_CLK N/A Input Optional transmit clock -
RX_RST N/A Input Reset of se_rx_clk clock domain Low
SE_RX_CLK N/A Input SerDes receive clock -
CF_RESET N/A Output Active-high configuration register reset High
VC_TX_DATA N/A Input Virtual Channel Transmit Data -
VC_TX_KFLAGS N/A Input Virtual Channel Transmit K-Flags -
VC_TX_WEN N/A Input Virtual Channel Write Enable ?
VC_TX_FULL N/A Output Virtual Channel Full Flags ?
GRIP, Sep 2018, Version 2018.3 956 www.cobham.com/gaisler

GRLIB IP Core
VC_TX_TIMESLOT N/A Input Current timeslot -
VC_RX_DATA N/A Output Virtual Channel Receive Data -
VC_RX_KFLAGS N/A Output Virtual Channel Receive K-Flags -
VC_RX_VALID N/A Output Virtual Channel Valid Flags ?
VC_RX_REN N/A Input Virtual Channel Read Enable Flags ?
BC_TX_DATA N/A Input Broadcast Transmit Data -
BC_TX_CHANNEL N/A Input Broadcast Transmit Channel -
BC_TX_SEQ N/A Input Broadcast Transmit Sequence Number -
BC_TX_WEN N/A Input Broadcast Write Enable Flag ?
BC_TX_ACK N/A Output Broadcast Acknowledgement Flag ?
BC_RX_DATA N/A Output Broadcast Receive Data -
BC_RX_CHANNEL N/A Output Broadcast Receive Channel -
BC_RX_SEQ N/A Output Broadcast Receive Sequence Number -
BC_RX_VALID N/A Output Broadcast Valid Flag ?
BC_RX_LATE N/A Output Broadcast Late Flag ?
SE_TX_DATA N/A Output Transmit Data -
SE_TX_KFLAGS N/A Output Transmit K-Flags -
SE_TX_EN N/A Output SerDes Transmitter Enable Flag ?
SE_TX_DATA_DBG N/A Output Unencoded 32-bit transmit data -
SE_TX_KFLAGS_DBG N/A Output 4-bit K-Flags -
SE_RX_DATA N/A Input Receive Data -
SE_RK_KFLAGS N/A Input Receive K-Flags -
SE_RX_SERROR N/A Input Receive Error Flags ?
SE_RX_EN N/A Output SerDes Receiver Enable Flag ?
SE_NO_SIGNAL N/A Input SerDes No Signal Flag ?
SE_INV_POL N/A Output SerDes Invert Polarity Flag ?
SE_RX_DATA_DBG N/A Output Unencoded 32-bit receive data -
SE_RX_KFLAGS_DBG N/A Output 4-bit K-Flags -
CF_LINK_RST N/A Input Active-high link reset High
CF_LANE_START N/A Input Lane Start flag of the lane initialisation state

machine
High

CF_AUTO_START N/A Input Autostart flag of the lane initialisation state
machine

High

CF_LANE_RST N/A Input Active-high lane reset High
CF_LA_LOOPBACK N/A Input Activates/deactivates internal loopback
CF_DATA_SCR_EN N/A Input Activates/deactivates data scrambler on trans-

mission side
CF_BC_EXPECTED_BW N/A Input Expected broadcast bandwidth value -
CF_VC_PRIORITIES N/A Input Priority values for the virtual channels -
CF_VC_EXPECTED_BW N/A Input Expected virtual channel bandwidth value -
CF_VC_TSLOT_VECS N/A Input Timeslot vectors for the virtual channels -
SR_FAR_END_LRST N/A Output Pulsed high when the far end triggered a link

reset
High

SR_LANE_STATE N/A Output Indicates the current state of the lane initialisa-
tion state machine

-

SR_RXERR_COUNT N/A Output Counts the number of RXERR words -

Table 1156.Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 957 www.cobham.com/gaisler

GRLIB IP Core
65.8 Library dependencies

Table 1157 shows the libraries used when instantiating the core (VHDL libraries).

65.9 Instantiation

This example shows how the core can be instantiated.

grspfi_codec0: grspfi_codec
 generic map (
 g_tech => inferred,
 g_use_8b10b => 1,
 g_use_sep_txclk => 0,
 g_16_20_bit_mode => 0,
 g_ticks_2us => 125,
 g_tx_skip_freq => 5000,
 g_prbs_init1 => 1,
 g_depth_rbuf_data => 8,
 g_depth_rbuf_fct => 4,
 g_depth_rbuf_bc => 8,
 g_no_vc => 4,

SR_RXERR_COUNT_OF N/A Output Pulsed high when the RXERR counter overflows High
SR_FAR_END_-
STANDBY

N/A Output Pulsed high when STANDBY words are
received

High

SR_TIMEOUT N/A Output Pulsed high when a connection timeout during
lane initialisation has occurred

High

SR_FAR_END_LOS N/A Output Pulsed high when LOS words are received High
SR_RX_POLARITY N/A Output Set when the SerDes receiver polarity is inverted High
SR_CRC16_ERR N/A Output Pulsed high when a CRC-16 error has occurred High
SR_FRAME_ERR N/A Output Pulsed high when a frame error has occurred High
SR_CRC8_ERR N/A Output Pulsed high when a CRC-8 error has occurred High
SR_SEQ_ERR N/A Output Pulsed high when a sequence error has occurred High
SR_RBUF_EMPTY N/A Output Set when the error recovery buffer is empty High
SR_RETRY_CNT N/A Output The number of error recovery attempts made by

the SpaceFibre port
-

SR_BW_OVER_USE N/A Output Set when a virtual channel is using much more
bandwidth than expected

High

SR_BW_UNDER_USE N/A Output Set when a virtual channel is using much less
bandwidth than expected

High

SR_DEST_HAS_CREDIT N/A Output Set when there is space in the input buffer of the
destination node

High

SR_INPUT_BUF_OV N/A Output Set when an input buffer is receiving data when
it is full

High

SR_FCT_CNT_OV N/A Output Pulsed high when the FCT credit counter of a
virtual channel has overflowed

High

* see GRLIB IP Library User’s Manual

Table 1157.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
SPFI SPFICOMP Signals, component Component declaration

Table 1156.Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 958 www.cobham.com/gaisler

GRLIB IP Core

 g_depth_vc_rx_buf => 8,
 g_depth_vc_tx_buf => 8,
 g_remote_fct_cnt_max => 8,
 g_width_bw_credit => 20,
 g_min_bw_credit => 52428,
 g_idle_time_limit => 62500)
 port map (
 clk => clk,
 tx_clk => tx_clk,
 rst => rst,
 rx_rst => rx_rst,
 tx_rst => tx_rst,
 vc_tx_full => vc_tx_full,
 vc_rx_data => vc_rx_data,
 vc_rx_kflags => vc_rx_kflags,
 vc_rx_valid => vc_rx_valid,
 vc_rx_ren => vc_rx_ren,
 vc_tx_data => vc_tx_data,
 vc_tx_kflags => vc_tx_kflags,
 vc_tx_wen => vc_tx_wen,
 vc_tx_timeslot => vc_tx_timeslot,
 bc_rx_data => bc_rx_data,
 bc_rx_channel => bc_rx_channel,
 bc_rx_seq => bc_rx_seq,
 bc_rx_valid => bc_rx_valid,
 bc_rx_late => bc_rx_late,
 bc_tx_ack => bc_tx_ack,
 bc_tx_data => bc_tx_data,
 bc_tx_channel => bc_tx_channel,
 bc_tx_seq => bc_tx_seq,
 bc_tx_wen => bc_tx_wen,
 se_tx_data => se_tx_data,
 se_tx_kflags => se_tx_kflags,
 se_tx_en => se_tx_en,
 se_rx_en => se_rx_en,
 se_inv_pol => se_inv_pol,
 se_rx_clk => se_rx_clk,
 se_rx_data => se_rx_data,
 se_rx_kflags => se_rx_kflags,
 se_rx_serror => se_rx_serror,
 se_no_signal => se_no_signal,
 se_tx_data_dbg => se_tx_data_dbg,
 se_tx_kflags_dbg => se_tx_kflags_dbg,
 se_rx_data_dbg => se_rx_data_dbg,
 se_rx_kflags_dbg => se_rx_kflags_dbg,
 cf_reset => cf_reset,
 cf_vc_priorities => cf_vc_priorities,
 cf_vc_expected_bw => cf_vc_expected_bw,
 cf_vc_tslot_vecs => cf_vc_tslot_vecs,
 cf_bc_expected_bw => cf_bc_expected_bw,
 cf_data_scr_en => cf_data_scr_en,
 cf_link_rst => cf_link_rst,
 cf_lane_start => cf_lane_start,
 cf_auto_start => cf_auto_start,
 cf_lane_rst => cf_lane_rst,
 cf_loopback => cf_loopback,
 sr_bw_over_use => sr_bw_over_use,
 sr_bw_under_use => sr_bw_under_use,
 sr_dest_has_credit => sr_dest_has_credit,
 sr_input_buf_ov => sr_input_buf_ov,
 sr_fct_cnt_ov => sr_fct_cnt_ov,
 sr_crc16_err => sr_crc16_err,
 sr_frame_err => sr_frame_err,
 sr_crc8_err => sr_crc8_err,
 sr_seq_err => sr_seq_err,
 sr_rbuf_empty => sr_rbuf_empty,
 sr_retry_cnt => sr_retry_cnt,
 sr_far_end_lrst => sr_far_end_lrst,
 sr_lane_state => sr_lane_state,
 sr_rxerr_count => sr_rxerr_count,
 sr_rxerr_count_of => sr_rxerr_count_of,
GRIP, Sep 2018, Version 2018.3 959 www.cobham.com/gaisler

GRLIB IP Core

 sr_far_end_standby => sr_far_end_standby,
 sr_timeout => sr_timeout,
 sr_far_end_los => sr_far_end_los,
 sr_rx_polarity => sr_rx_polarity);
GRIP, Sep 2018, Version 2018.3 960 www.cobham.com/gaisler

GRLIB IP Core

66 GRSRIO - Serial RapidIO endpoint with AHB or AXI4 bus master interface

66.1 Overview

The GRSRIO core implements the RapidIO Interconnect Specification Part 1 (I/O Logical Specifica-
tion) and Part 2 (Message Passing Logical Specification) for data messages, doorbell messages, out-
bound maintenance messages and I/O operations, as defined in Rev. 2.1. This is done by means of a
flexible and configurable DMA engine with a configurable bus master interface.
Additionally the core implements the MECS Time Synchronization Protocol according to Rev. 4.0.
The targeted SRIO endpoint is the SRIOIP-GEN2IP core by Integrated Device Technology. The
choice of the SRIOIP-GEN2 end point has several implications on the SRIO:
• CAR and CSR registers defined in I/O and Message Passing Logical Specification are assumed

to be already implemented in the end point
• Inbound maintenance request are assumed to be already handled by the end point
Two wrappers are available for the core, one with an AHB AMBA 2.0 Bus Master (grsrio_gen2ahb)
to be readily compatible with Cobham Gaisler's GRLIB and one with an AXI4 (grsrio_gen2axi) to
also support latest System-on-Chip (SoC) architectures.
The DMA engine serves several queues of descriptors placed in memory with two possible modes,
selectable at compile time:
• Legacy mode: When g_hyb_que is set to “false”, descriptors for data messages and I/O opera-

tions are 8 words long and the ones for doorbell messages 4. In this configuration, each kind of
operation (IO memory access, data message and doorbell message) have separated transmission
queues, from 1 up to 32 each. In this configuration, descriptors for data messages and I/O opera-
tions are 8 words long, while ones for doorbell messages 4. In this configuration, the core has an
interface and a behavior compatible with the GRSRIO Logical Layer IP core Version 1.

• Hybrid-queues mode: When g_hyb_que is set to “true”, there are just g_no_hyb_tx transmission
queues, each capable of transmitting all kinds of logical operations. This allows a larger CPU off-
load and a lower number of queues required for each software entity. In this configuration, all TX
descriptors are 8 words long. RX descriptors for data messages and I/O operations are 8 words
long and the ones for doorbell messages 4.

A timestamp functionality is provided for each descriptor. When g_mecs is set to “true” the time value
is taken by the internal MECS Timestamp Generator, while when g_mecs is set to false or the MECS
functionality is disabled, the time value is taken from an external source.
The core provides a capability register to allow the software to know what functionalities the core
instantiation supports and the number of queues instantiated.

66.2 Operation

66.2.1 Receiving Data messages

Inbound data messages are stored in one or more message reception queues. The desired number of
reception queues can be set by VHDL generic g_no_msg_rx at compile time.
The inbound data messages are stored to a specific queue depending on their destination ID and mail-
box number. The accepted destination ID of a queue can be defined in register RXMSG_DST_ID and
the accepted mailbox number in the field RXMSG_CTRL.MBOX. Furthermore, ranges of destination
IDs and mailbox numbers can be accepted by also setting the masking register RXMSG_DST_MSK
and in the field RXMSG_CTRL.MBOXMSK. For instance, the user could set up five queues, the first
four queues accepting messages addressed to mailbox 0 to 3 and the fifth queue accepting messages
addressed to all the other ones (4-63). If several message reception queues are configured to accept
GRIP, Sep 2018, Version 2018.3 961 www.cobham.com/gaisler

GRLIB IP Core

the same destination ID / mailbox number pair, the message queue with the lowest index number, that
is currently not busy, will receive the message.
If a message is received, which is addressed to a mailbox number /destination ID combination that is
not accepted by any message reception queue, the processing core automatically generates and trans-
mits ERROR responses to the source node.
A single queue can receive only a multi-segment data message per time, but more queues can be set
with the same destination ID or destination ID/Mailbox combination, effectively allowing up to 16
transfer between a couple of destination/source IDs.
Each reception queue is a circular buffer that is located in memory. Before activating the queue, the
memory start address of the circular buffer must be set in register RXMSG_MADDR(_LSW) and
RXMSG_MADDR_MSW (if CFG_AW is set to 64) and its depth in register RXMSG_CONF.CBD.
Each queue can be configured to store between 2 and 65,536 message descriptors. Each descriptor has
a size of 32 bytes and it is up to the software to reserve the necessary memory space for the whole cir-
cular buffer.
Each reception queue can be configured to trigger a set of interrupts: (i) full interrupts that indicate
that no more inbound data message can be accepted because the reception queue is full (RXMS-
G_STAT.IF), (ii) error interrupts that indicate bus errors and timeout errors in case of multi-packet
messages (RXMSG_STAT.IE), and (iii) reception interrupts that indicate that a full message was suc-
cessfully received (RXMSG_STAT.IR).
The GRSRIO logical layer does not distinguish between single (up to 256 bytes) and multi-packet
messages (up to 4K) and only one DMA descriptor is used for both types of messages. However, the
user must set the maximum allowed message size for the queue in register RXMSG_CONF.MAX_-
SIZE.
All following conditions must be true for a message to be accepted by the queue:
• The queue is enabled.
• The queue is not full.
• The destination ID is accepted.
• The mailbox number is accepted.
• The message does not exceed the maximum allowed size.
If no queue is available that can accept the message, the GRSRIO logical layer replies to the destina-
tion node with an ERROR response. If there are queues that could accept the packet but they are all
full or busy with ongoing multi-segment data messages, the GRSRIO logical layer replies to the desti-
nation node with a RETRY response.
The timeout can be configured globally in register TO_CONF and expresses the maximum allowed
time span between a DONE response for one message segment and the reception of the next segment.
If the timeout elapses, the descriptor will be closed with the Serial RapidIO Error (SE) flag set and an
error interrupt is generated if enabled.
The circular buffer management between hardware and software is done via two descriptor pointers.
The tail pointer in RXMSG_TLPTR is managed by hardware whereas the head pointer in RXMS-
G_HDPTR is managed by software.
The software can add one or more descriptors to the circular buffer and then activate them by increas-
ing the head pointer value in RXMSG_HDPTR. Every time the GRSRIO logical layer receives a new
message successfully, it will increment the tail pointer to the next descriptor. The software can always
check how many free descriptors are left in the buffer by subtracting the tail pointer value from the
head pointer value.
In the following, the relevant descriptor words of the message reception queues are described:
GRIP, Sep 2018, Version 2018.3 962 www.cobham.com/gaisler

GRLIB IP Core
Table 1158.GRSRIO message reception descriptor word 0 (address offset 0x0)
31 0

ADDR_MSW

31: 0 Most Significant Word of the Memory Start Addres (ADDR_MSW): MSW of the address of the
start of the memory block reserved for the reception of data messages. This field is reserved when
CFG_AW is set to “true”.

Table 1159.GRSRIO message reception descriptor word 1 (address offset 0x4)
31 0

ADDR(_LSW)

31: 0 Memory Start Address (ADDR(_LSW)): when CFG_AW is set to 32, this is the address of the start
of the memory block reserved for the reception of this message. When CFG_AW is set to 64, this is
the LSW of that address.

Table 1160.GRSRIO message reception descriptor word 2 (address offset 0x8)
31 0

SOURCE_ID

31: 0 Source Identifier (SOURCE_ID). RapidIO source device identifier. If the GRSIO is configured for
8-bit identifiers, only the lower 8 bits are valid.

Table 1161.GRSRIO message reception descriptor word 3 (address offset 0xC)
31 0

DEST_ID

31: 0 Destination Identifier (DEST_ID). Rapid IO destination device identifier. If the GRSIO is config-
ured for 8-bit identifiers, only the lower 8 bits are valid.

Table 1162.GRSRIO message reception descriptor word 4 (address offset 0x10)
31 30 29 28 27 26 25 20 19 18 17 16 15 4 3 2 1 0

VC CR PRIOR LET MBOX TT RES MSIZE R SE DO RI

31 Virtual Channel (VC). Set if also the VC bit of the message packet was set.
30 Critical Request Flow (CR). Set when the message arrived in a packet in a critical or preferred flow

with respect to other flows of the same priority.
29: 28 Priority (PRIOR). Priority of the packet in which this message arrived.
27: 26 Letter (LET). Although concurrent reception of different letters is not supported, messages can still

arrive in different letters. This field contains the letter number (0-3) of the message.
25: 20 Mailbox (MBOX). This field contains the number of the mailbox to which this message was

addressed. Messages for mailbox numbers greater than 3 have a maximum size of 256 bytes whereas
messages for mailbox numbers 0 to 3 can have a size of up to 4K.

19: 18 Transport Type Field (TT). Set to 0b00 if device ID is 8-bit wide and set to 0b01 if device ID is 16-
bit wide.

17: 16 RESERVED
GRIP, Sep 2018, Version 2018.3 963 www.cobham.com/gaisler

GRLIB IP Core
66.2.2 Transmitting Data Messages

Outbound data messages are stored in message or hybrid (depending on g_hyb_que) transmission
queues. The desired number of transmission queues can be set by VHDL generic g_no_msg_tx or
g_no_hyb_tx at compile time. In the latter case the queues are shared with the other transaction types.
If several transmission queues have messages ready to be sent, the one with the highest priority gets to
transmit first. If more than one active queues have the highest priority, the arbitration between them is
done with a round robin algorithm. However, the following conditions must be true:
• The queue is enabled.
• The message has a priority level that can currently be accepted by the SRIO end point.
Each transmission queue is a circular buffer that is located in memory. Before activating the queue,
the memory start address of the circular buffer must be set in register TXMSG_MADDR(_LSW) and
TXMSG_ADDR_MSW (or TX_MADDR(_LSW) and TX_MADDR_MSW) and its depth in register
TXMSG_CTRL.CBD or TX_CTRL.CBD. Each queue can be configured to store between 2 and
65,536 message descriptors. Each descriptor has a size of 32 bytes and it is up to the software to
reserve the necessary memory space for the whole circular buffer.

15: 4 Message Size (MSIZE). Size of the received message in bytes: Size = (MSIZE+1) bytes.
3 RESERVED
2 Serial RapidIO Error (SE). Set when a multi-packet message was not received correctly. The

GRSRIO implements a response-to-request timeout mechanism according to RapidIO specification
part 8. If this timeout elapses during the reception of a message, the descriptor is closed and this error
flag is set.

1 Done Flag (DO). Set when the message was correctly received, that is, when the processing core
generated and transmitted a DONE response to the destination node.

0 Enable Reception Interrupt (RI). If set, the GRSRIO triggers an interrupt when the message was cor-
rectly received, that is, when also the done flag DO is set. The interrupt is triggered after the DMA
engine has finished all memory accesses related to this descriptor.

Table 1163.GRSRIO message reception descriptor word 5 (address offset 0x14)
31 0

TIMESTAMP_MSW

31: 0 LSW of the Timestamp (TIMESTAMP_LSW). MSW of the local timer when the message was com-
pletely received or when message reception was aborted due to timeout.

Table 1164.GRSRIO message reception descriptor word 6 (address offset 0x18)
31 0

TIMESTAMP_LSW

31: 0 LSW of the Timestamp (TIMESTAMP_LSW). LSW of the local timer when the message was com-
pletely received or when message reception was aborted due to timeout.

Table 1165.GRSRIO message reception descriptor word 7 (address offset 0x1C)
31 0

RESERVED

31: 0 RESERVED

Table 1162.GRSRIO message reception descriptor word 4 (address offset 0x10)
GRIP, Sep 2018, Version 2018.3 964 www.cobham.com/gaisler

GRLIB IP Core

Each transmission queue can be configured to trigger a set of interrupts: (i) error interrupts that indi-
cate bus errors, retry errors, and timeout errors (TXMSG_CTRL.IE or TX_CTRL.IE), and (ii) trans-
mission interrupts that indicate that a full message was successfully transmitted (TXMSG_STAT.IT or
TX_STAT.IT). The generation of transmission interrupts can be further configured by setting the
transmission interrupt mode bit (TXMSG_CTRL.IM or TX_CTRL.IM). If set, a transmission inter-
rupt is always triggered after the transmission queue became empty. If not set, the generation of trans-
mission interrupts depends on the Enable Transmission Interrupt (TI) field of each message
descriptor.
Messages or segments of messages are automatically retried until either the packet is accepted by the
destination node or until the threshold level defined in the descriptor field RCOUNT is reached. For
multi-packet messages, RCOUNT is the number of possible retries for all message segments together.
If RCOUNT in the descriptor is set to zero the transmission will be retried until the transmission is
successful.
Each transmission queue has a fixed source ID (TXMSG_SRC_ID or TX_SRC_ID), priority (TXMS-
G_CTRL.PRIO), critical request flow setting (TXMSG_CTRL.CR or TX_CTRL.CR), virtual chan-
nel setting (TXMSG_CTRL.VC) and transport type (TXMSG_CTRL.TT or TX_CTRL.TT). For each
message individually, the destination ID (DEST_ID), mailbox number (MBOX, XMBOX) and letter
number (LET) can be set up in the corresponding descriptor.
Each transmission queue implements a request-to-response timeout mechanism that counts the time
between the transmission of a message (or message segment) and a response from the destination
node. This timeout can be configured globally in the TO_CONF register. If the timeout elapses, the
descriptor will be closed with the Timeout Error (TE) flag set and an error interrupt is generated if
enabled.
A transmission queue serves one descriptor at a time. Two packets are sent from the same queue when
the descriptor defines more than one packet, and then replies for them are awaited before moving to
the next couple. This is done in order to enhance the throughput of transfers up to 4 KB. Receiving a
RETRY request when two packets are outstanding will cause both packets to be sent again and when
an ERROR response is received the descriptor is written back with the number of segment causing the
error.
The circular buffer management between hardware and software is done via two descriptor pointers.
The tail pointer in TXMSG_TLPTR or TX_TLPTR is managed by hardware whereas the head pointer
in TXMSG_HDPTR or TX_HDPTR is managed by software.
Sending a data message does not increase the internal srcTID counter, as data messages are not identi-
fied using this field.
The software can add one or more descriptors to the circular buffer and then activate them by increas-
ing the head pointer value in TXMSG_HDPTR or TX_HDPTR. Every time the GRSRIO logical layer
transmits a new message successfully, it will increment the tail pointer to the next descriptor. The soft-
ware can always check how many descriptors awaiting transmission are left in the buffer by subtract-
ing the tail pointer value from the head pointer value.
In the following, the relevant descriptor words of the message transmission queues are described:

Table 1166.GRSRIO message transmission descriptor word 0 (address offset 0x0)
31 0

ADDR_MSW

31: 0 Most Significant Word of the Memory Start Address: MSW of the address of the start of the memory
block storing the payloads of the data messages to be transmitted. This field is reserved when
CFG_AW = 32.
GRIP, Sep 2018, Version 2018.3 965 www.cobham.com/gaisler

GRLIB IP Core
Table 1167.GRSRIO message transmission descriptor word 1 (address offset 0x4)
31 0

ADDR(_LSW)

31: 0 (Less Significant Word of the) Memory Start Address: When CFG_AW = 32, this is the address
pointing to the start of the memory block storing the payload of the message to be transmitted, other-
wise it is the LSW of such address.

Table 1168.GRSRIO message transmission descriptor word 2 (address offset 0x8)
31 0

DEST_ID

31: 0 Destination Identifier (DEST_ID). Rapid IO destination device identifier. If the GRSRIO is config-
ured for 8-bit identifiers, only the lower 8 bits are valid.

Table 1169.GRSRIO message transmission descriptor word 3 (address offset 0xC)
31 24 23 22 21 20 19 16 15 1 0

RESERVED LET MBOX XMBOX RESERVED TI

31: 24 RESERVED
23: 22 Letter (LET). This field contains the letter number (0-3) of the message.
21: 20 Mailbox (MBOX). This field contains the number of the mailbox to which this message is addressed.

Messages for mailbox numbers greater than 3 (using XMBOX as extension) are only allowed to have
a maximum size of 256 bytes whereas messages for mailbox numbers 0 to 3 can have a size of up to
4K.

19: 16 Extended Mailbox (XMBOX). This field specifies the upper four bits of the mailbox to which this
message is addressed. If the message size is larger than 256 bytes, this field must be zero.

15: 1 RESERVED
0 Enable Transmission Interrupt (TI). If set, the GRSRIO triggers an interrupt when the message was

correctly transmitted, that is, when also the done flag DO is set (only if TXMSG_CONF.IM or TX_-
CONF.IM is set to 0). The interrupt is triggered after the DMA engine has finished all memory
accesses related to this descriptor.

Table 1170.GRSRIO message transmission descriptor word 4 (address offset 0x10)
31 30 22 21 6 5 4 3 2 1 0

R MSIZE RCOUNT RES RE TE SE DO

31 RESERVED
30: 22 Message Size (MSIZE). Size of the message in multiples of 8 bytes: Size = (MSIZE+1)*8 bytes.

After transmission, this field is updated by GRSRIO with the remaining data that could not be trans-
mitted, that is, in case of a correctly transmitted message this field should always read 0.

21: 16 Retry Count (RCOUNT). Outbound messages are automatically retried until the destination node
either accepts the message or until the user-defined retry threshold level in this field is reached. For
multi-packet messages, this retry threshold level applies to all segments on the whole. After trans-
mission, this field is updated by GRSRIO with the remaining number of retries, that is, if no retry
was required the original field content does not change. When set to zero the transmission will be
retried forever.

15: 4 RESERVED
GRIP, Sep 2018, Version 2018.3 966 www.cobham.com/gaisler

GRLIB IP Core
66.2.3 Receiving Doorbell Messages

Inbound doorbell messages are stored in one or more doorbell reception buffers. The desired number
of reception buffers can be set by VHDL generic g_no_dbell_rx at compile time. Doorbell messages
are small enough to be stored directly in the circular buffer and therefore do not need DMA descrip-
tors. Furthermore, descriptors are 4 words long instead of 8 to decrease latency of operations.
The inbound doorbell messages are stored to a specific buffer depending on their destination ID. The
accepted destination ID of a buffer can be defined in register RXDBL_DST_ID. Furthermore, ranges
of destination IDs can be accepted by also setting the masking field RXDBL_DST_MSK. If several
doorbell reception buffers are configured to accept the same destination ID, the doorbell buffer with
the lowest index number, that is currently not busy, will receive the doorbell message.
Each reception buffer is a circular buffer that is located in memory. Before activating the buffer, the
memory start address of the circular buffer must be set in register RXDBL_MADDR_LSW (and
RXDBL_MADDR_MSW if CFG_AW = 64) and its depth in register RXDBL_CTRL.CBD. Each

3 Retry Error (RE). Set when this message was retried too many times and the retry
threshold level was reached.

2 Timeout Error (TE). Set when the request-to-response timeout has expired, that is, when the destina-
tion node did not acknowledge the reception of the message (or part of the message in case of a
multi-packet message) in time.

1 Serial RapidIO Error (SE). Set when an ERROR or unknown response was received from the desti-
nation node.

0 Done Flag (DO). Set when the message was correctly transmitted, that is, when the processing core
received a DONE response from the destination node for each packet of the message.

Table 1171.GRSRIO message transmission descriptor word 5 (address offset 0x14)
31 0

TIMESTAMP_MSW

31: 0 MSW of the Message Time-Stamp (TIMESTAMP_MSW): This is the MSW of the local timer when
message transmission was completed (with or without an error), that is when the response or the last
response for multi-segment messages is received.

Table 1172.GRSRIO message transmission descriptor word 6 (address offset 0x18)
31 0

TIMESTAMP_LSW

31: 0 LSW of the Message Time-Stamp (TIMESTAMP_LSW): This is the LSW of the local timer when
message transmission was completed (with or without an error), that is when the response or the last
response for multi-segment messages is received.

Table 1173.GRSRIO message transmission descriptor word 7 (address offset 0x1C)
31 2 1 0

RESERVED DSC_TYP

31: 2 RESERVED
1: 0 DSC_TYP: when g_hyb_que is set to true, this field must be set to 0b01 to mark the operation

defined by the descriptor as a Data Message operation. This field is reserved and will be ignored
when g_hyb_que is set to false.

Table 1170.GRSRIO message transmission descriptor word 4 (address offset 0x10)
GRIP, Sep 2018, Version 2018.3 967 www.cobham.com/gaisler

GRLIB IP Core

queue can be configured to store between 2 and 65,536 doorbell messages. Each doorbell message
buffer entry has a size of 16 bytes and it is up to the software to reserve the necessary memory space
for the whole circular buffer.
Each reception buffer can be configured to trigger a set of interrupts: (i) full interrupts that indicate
that no more inbound doorbell messages can be accepted because the reception buffer is full (RXD-
BL_CTRL.IF), (ii) error interrupts that indicate bus errors (RXDBL_CTRL.IE), and (iii) reception
interrupts that indicate that a doorbell message was successfully received (RXDBL_CTRL.IR).
All following conditions must be true for a doorbell message to be accepted by the queue:
• The queue is enabled.
• The queue is not full.
• The destination ID is accepted.
If no buffer is available that can accept the message, the GRSRIO logical layer replies to the destina-
tion node with an ERROR response. If a buffer is available but full, the GRSRIO logical layer replies
to the destination node with a RETRY response.
The circular buffer management between hardware and software is done via two descriptor pointers.
The tail pointer in RXDBL_TLPTR is managed by hardware whereas the head pointer in RXDBL_H-
DPTR is managed by software.
The software can add one or more buffer entries to the circular buffer and then activate them by
increasing the head pointer value in RXDBL_HDPTR. Every time the GRSRIO logical layer receives
a new doorbell message successfully, it will increment the tail pointer to the next buffer entry. The
software can always check how many free buffer entries are left in the buffer by subtracting the tail
pointer value from the head pointer value.
The GRSRIO logical layer also allows the forwarding of received doorbell messages to an external
port. To enable this feature, the EXTDBL_CONF.DO signal must be set. In addition, the logical layer
can be configured to only forward specific doorbell messages. This feature can be enabled by setting
the EXTDBL_CONF.DC bit and by setting up a compare value in EXTDBL_FLTR.DBCOMP and a
mask value in EXTDBL_FLTR.DBMASK.
In the following, the relevant buffer entry words of the doorbell reception buffers are described:

Table 1174.GRSRIO doorbell message reception buffer word 0 (address offset 0x0)
31 0

SOURCE_ID

31: 0 Source Identifier (SOURCE_ID). RapidIO source device identifier. If the GRSIO is configured for
8-bit identifiers, only the lower 8 bits are valid.

Table 1175.GRSRIO doorbell message reception buffer word 1 (address offset 0x4)
31 0

DEST_ID

31: 0 Destination Identifier (DEST_ID). Rapid IO destination device identifier. If the GRSIO is config-
ured for 8-bit identifiers, only the lower 8 bits are valid.

Table 1176.GRSRIO doorbell message reception buffer word 2 (address offset 0x8)
31 16 15 11 10 9 8 7 6 5 4 3 1 0

INFO RESERVED TT VC CR PRIOR DO RES RI
GRIP, Sep 2018, Version 2018.3 968 www.cobham.com/gaisler

GRLIB IP Core
66.2.4 Transmitting doorbell messages

Outbound doorbell messages are stored in doorbell or hybrid transmission queues (depending on
g_hyb_que). The desired number of transmission buffers can be set by VHDL generic g_no_dbell_tx
or g_no_hyb_tx at compile time. The descriptor in this case directly contains the SRIO payload, as it
is just 2 B long. Furthermore, when g_hyb_que is set to false, descriptors are 4 words long instead of
8 to decrease latency of operations. When g_hyb_que is set to true TX descriptors of doorbells mes-
sages are 8 words long like the ones for the other transaction types.
If several transmission queues have messages ready to be sent, the one with the highest priority gets to
transmit first. If more than one active queues have the highest priority, the arbitration between them is
done with a round robin algorithm. However, the following conditions must be true:
• The queue is enabled.
• The doorbell message has a priority level that can currently be accepted by the SRIO end point.
Each transmission queue is a circular buffer that is located in memory. Before activating the buffer,
the memory start address of the circular buffer must be set in register TXDBL_MADDR_LSW (and
TXDBL_MADDR(_MSW)) or TX_MADDR_LSW (and TX_MADDR(_MSW)) and its depth in the
register field TXDBL_CTRL.CBD or TX_CTRL.CBD. Each queue can be configured to store
between 2 and 65,536 doorbell messages. Each buffer entry has a size of 16 bytes when g_hyb_que is
set to “false” and 32 bytes when g_hyb_que is set to “true”. It is up to the software to reserve the nec-
essary memory space for the whole circular buffer.
Each transmission buffer can be configured to trigger a set of interrupts: (i) error interrupts that indi-
cate bus errors, retry errors, and timeout errors (TXDBL_CTRL.IE or TX_CTRL.IE), and (ii) trans-
mission interrupts that indicate that a doorbell message was successfully transmitted
(TXDBL_CTRL.IT or TX_CTRL.IT). The generation of transmission interrupts can be further con-

31: 16 Doorbell Information (INFO). This field contains the payload of the received doorbell message.
15: 11 RESERVED
10: 9 Transport Type Field (TT). Set to 0b00 if device ID is 8-bit wide and set to 0b01 if device ID is 16-

bit wide.
8 Virtual Channel (VC). Set if also the VC bit of the doorbell message packet was set.
7 Critical Request Flow (CR). Set when the doorbell message arrived in a packet in a critical or pre-

ferred flow with respect to other flows of the same priority.
6: 5 Priority (PRIOR). Priority of the packet in which this doorbell message arrived.
4 Done Flag (DO). Set when the doorbell message was correctly received, that is, when the processing

core generated and transmitted a DONE response to the destination node.
3: 1 RESERVED
0 Enable Reception Interrupt (RI). If set, the GRSRIO triggers an interrupt when the doorbell message

was correctly received, that is, when also the done flag DO is set. The interrupt is triggered after the
DMA engine has finished all memory accesses to this buffer entry.

Table 1177.GRSRIO doorbell message reception buffer word 3 (address offset 0xC)
31 0

TIMESTAMP

31: 0 Message Time-Stamp (TIMESTAMP). LSW of the local timer when the message was completely
received or when message reception was aborted due to timeout.Timestamp of 64 bits are not sup-
ported for reception of doorbells.

Table 1176.GRSRIO doorbell message reception buffer word 2 (address offset 0x8)
GRIP, Sep 2018, Version 2018.3 969 www.cobham.com/gaisler

GRLIB IP Core

figured by setting the transmission interrupt mode bit (TXDBL_CTRL.IM or TX_CTRL.IM). If set, a
transmission interrupt is always but only triggered after the transmission buffer became empty. If not
set, the generation of transmission interrupts depends on the Enable Transmission Interrupt (TI) set-
ting of the doorbell buffer entry.
Doorbell messages are automatically retried until either the packet is accepted by the destination node
or until the threshold level defined in the buffer entry field RCOUNT is reached. If RCOUNT is set to
zero they are retried forever.
Each transmission buffer has a fixed source ID (TXDBL_SRC_ID), priority (TXDBL_CTLR.PRIO),
critical request flow setting (TXDBL_CTRL.CR), virtual channel setting (TXDBL_CTRL.VC) and
transport type (TXDBL_CTRL.TT). For each doorbell message individually, the destination ID
(DEST_ID) can be set up in the corresponding buffer entry.
Each transmission buffer implements a request-to-response timeout mechanism that counts the time
between the transmission of a doorbell message and a response from the destination node. This time-
out can be configured globally in register TO_CONF. If the timeout elapses, the buffer entry will be
closed with the Timeout Error (TE) flag set and an error interrupt is generated if enabled. A transmis-
sion queue is blocked while it is awaiting a response from the destination node. However, other trans-
mission queues can be serviced in the meanwhile.
Every time a new packet is sent the srcTID field of the packet is increased, also when a transaction is
retried.
The circular buffer management between hardware and software is done via two descriptor pointers.
The tail pointer in TXDBELLMSG3.TLPTR is managed by hardware whereas the head pointer in
TXDBELLMSG3.HDPTR is managed by software.
The software can add one or more buffer entries to the circular buffer and then activate them by
increasing the head pointer value in TXDBELLMSG3.HDPTR. Every time the GRSRIO logical layer
transmits a new doorbell message successfully, it will increment the tail pointer to the next buffer
entry. The software can always check how many buffer entries awaiting transmission are left in the
buffer by subtracting the tail pointer value from the head pointer value.
The GRSRIO logical layer also allows the generation of doorbell messages through an external port.
To enable this feature, the CORECONF1.DI bit must be set. Pending external doorbell transmission
requests have always priority over internal transmission requests.
In the following, the relevant descriptor words of the message transmission queues are described:

Table 1178.GRSRIO doorbell message transmission buffer word 0 (address offset 0x0)
31 0

DEST_ID

31: 0 Destination Identifier (DEST_ID). Rapid IO destination device identifier. If the GRSIO is config-
ured for 8-bit identifiers, only the lower 8 bits are valid.

Table 1179.GRSRIO doorbell message transmission buffer word 1 (address offset 0x4)
31 16 15 1 0

INFO RESERVED TI

31: 16 Doorbell Information (INFO). This field contains the payload of the doorbell message.
15: 1 RESERVED
0 Enable Transmission Interrupt (TI). If set, the GRSRIO triggers an interrupt when the doorbell mes-

sage was correctly transmitted, that is, when also the done flag DO is set. The interrupt is triggered
after the DMA engine has finished all memory accesses to this buffer entry.
GRIP, Sep 2018, Version 2018.3 970 www.cobham.com/gaisler

GRLIB IP Core
The fields below exist only when g_hyb_que is set to “true” (hybrid-queues mode).

Table 1180.GRSRIO doorbell message transmission buffer word 2 (address offset 0x8)
31 22 21 6 5 4 3 2 1 0

RESERVED RCOUNT RES RE TE SE DO

31: 22 RESERVED
21: 16 Retry Count (RCOUNT). Outbound doorbell messages are automatically retried until the destination

node either accepts the message or until the user-defined retry threshold level in this field is reached.
After transmission, this field is updated by GRSRIO with the remaining number of retries, that is, if
no retry was required the original field content does not change.When this field is set to zero the
transmission will be retried forever.

15: 4 RESERVED
3 Retry Error (RE). Set if the doorbell message was retried as many times as defined by RCOUNT but

the transmission was still not successful.
2 Timeout Error (TE). Set when the request-to-response timeout has elapsed, that is, when the destina-

tion node did not acknowledge the reception of the doorbell message in time.
1 Serial RapidIO Error (SE). Set when an ERROR response was received from the destination node.
0 Done Flag (DO). Set when the doorbell message was correctly transmitted, that is, when the process-

ing core received a DONE response from the destination node.

Table 1181.GRSRIO doorbell message transmission buffer word 3 (address offset 0xC)
31 0

TIMESTAMP(_MSW_/_LSW)

31: 0 Message Time-Stamp (TIMESTAMP). When g_hyb_que is set to “false” 64 bit timestamps are not
supported and this is the LSW of the local timer when message transmission was completed, that is
when the response is received (with or without an error). When g_hyb_que is set to “false” it is the
MSW instead.

Table 1182.GRSRIO doorbell message transmission buffer word 4 (address offset 0x10)
31 0

TIMESTAMP(_LSW)

31: 0 Least significant Word of the Time-Stamp: LSW of the local timer when message transmission was
completed, that is when the response is received (with or without an error), captured just before the
“Transmission interrupt” is triggered.

Table 1183.GRSRIO doorbell message transmission buffer word 5 (address offset 0x14)
31 0

RESERVED

31: 0 Reserved

Table 1184.GRSRIO doorbell message transmission buffer word 6 (address offset 0x18)
31 0

RESERVED

31: 0 Reserved
GRIP, Sep 2018, Version 2018.3 971 www.cobham.com/gaisler

GRLIB IP Core
66.2.5 Inbound I/O operations

Inbound memory I/O operations can gain direct access to the local memory. The GRSRIO logical
layer supports all memory I/O operations except of MAINTENANCE Read, Write and Port-Write
Requests since these operations are already handled by the SRIO End-Point. The core provides both
memory protection on physical addresses and address translation by means of two independent sets of
partitions and windows.
When CFG_AW = 32 (local addresses of 32 bits), the physical address is decided according to SRIO
Address(33:0), effectively allowing to handle a virtual memory space bigger than the physical one.
The values of Address(33:30) are used to decide which TRNSWIN_CONF.WIN_ADDR to use in the
final result of the translation. The physical address is then calculated by the following formula:

Physical Address = TRNSLWIN.WIN_ADDR (window i) &
SRIO Address((27- RXIO_CONF.ADDR_SHIFT):0)

Where i is the non negative integer found in Address(33:30), “&” is the concatenation operator and i
is the index of the hit translation window.
When CFG_AW = 64 (local addresses of 64 bits), the physical address is decided according to the
SRIO Address(65:0), effectively allowing the handling of a virtual memory space bigger than the
physical one. The values of Address(65:62) are used to decide which TRNSWIN_-
CONF.WIN_ADDR in the final result of the translation. The physical address is then defined by the
following formula:

Physical Address = TRNSLWIN.WIN_ADDR (window i) &
SRIO Address((59-RXIO_CONF.ADDR_SHIFT):0)

Where i is the non negative integer found in Address(65:62) and “&” is the concatenation operator.
The translation windows are all disabled by default and only the ones enabled by setting the respec-
tive TRNSWIN.EN to “1” are kept into account for translation. If no enabled translation windows are
hit, the physical address is obtained directly assigning the value of SRIO Address(31:0) to the physi-
cal address in case of CFG_AW = 32 and SRIO Address(63:0) to the physical address in case of in
case of CFG_AW = 64.
Remote memory access is by default deactivated. The software can activate up to four (if g_8_in_win
is set to “false”) or eight (if g_8_in_win is set to “true”) memory partitions using the switches MEM-
PRT.PWE for writing and MEMPRT.PRE for reading each partition. Operations trying to read from a
partition where read is not enable or writing in a partition where writing is not enabled are ignored and
the GRSRIO logical layer replies an ERROR response to the destination node in such a case.
The start address of each partition is defined in the respective MEMPRT.PART_ADDR. These fields
contain the upper 12 bits of such address. The size of each partition can be adjusted by setting a corre-
sponding mask value in the respective MEMPRT.PART_MASK.
A physical address of an inbound memory I/O operation falls into the memory protection partition i if
it satisfies the following condition:

(Physical Address (CFG_AW-1:CFG_AW-11) xor MEMPRT.PART_ADDR (partition i))
and MEMPRT.PART_MASK (partition i)= 0x000

In this case, a mask value of 0xFFF defines the smallest possible partition with a size of 1MB and a
mask value of 0x000 creates a partition that spans the whole 32-bit wide memory space. In this case, a

Table 1185.GRSRIO doorbell message transmission buffer word 7 (address offset 0x1C)
31 2 1 0

RESERVED DES_TYP

31: 2 Reserved
1: 0 Descriptor Type (DES_TYP): indicates which kind of descriptor this is when in hybrid queues mode.

Must be set to 0b00 or to 0b11 to indicate that this is a doorbell descriptor.
GRIP, Sep 2018, Version 2018.3 972 www.cobham.com/gaisler

GRLIB IP Core

mask value of 0xFFF defines the smallest possible partition with a size of 4GB and a mask value of
0x000 creates a partition that spans the whole 64-bit wide memory space. In the next release (GEN3)
it is planned to have a mask value of 0xFFF to define the smallest possible partition with a size of
1MB and a mask value of 0x000 to define partitions of 4GB.
The software can set up two types of interrupts: Memory access interrupts (RXIO_CTRL.IM) are trig-
gered after each successful memory access, error interrupts (RXIO_CTRL.IE) are triggered in case of
bus errors or forbidden memory access error, that is, when the destination node tries to access a mem-
ory space, which is either not covered by a partition or which does not allow write or read access.
For debug purposes, the last accessed local memory address is logged in the read-only field RXIO_L-
ACCESS_MSW (if CFG_AW is set to 64) and RXIO_LACCES(_LSW).

66.2.6 Transmitting Memory I/O operations

Outbound memory I/O operations are stored in one or more memory I/O or hybrid transmission
queues. The desired number of transmission queues can be set by VHDL generic g_no_io_tx or
g_no_hyb_tx at compile time.
If several transmission queues have messages ready to be sent, the one with the highest priority gets to
transmit first. If more than one active queues have the highest priority, the arbitration between them is
done with a round robin algorithm. However, the following conditions must be true:
• The queue is enabled.
• The memory I/O operation message has a priority level that can currently be accepted by the

SRIO end point.
Each transmission queue is a circular buffer that is located in memory. Before activating the buffer,
the memory start address of the circular buffer must be set in register TXIO_MADDR_MSW and
TXIO_MADDR(_LSW) or TX_MADDR_MSW and TX_MADDR(_LSW) and its depth in the field
register TXIO_CTRL.CBD or TX_CTRL.CBD. The queue can be configured to store between 2 and
65,536 memory I/O operation descriptors. Each descriptor has a size of 32 bytes and it is up to the
software to reserve the necessary memory space for the whole circular buffer.
Each I/O descriptor for NREAD, NWRITE, NWRITE_R and SWRITE can define a number of opera-
tions with contiguous payload from 1 to 4096. This is done in order to be able to send contiguous data
up to 1MB with a single descriptor (avoid dead time due to the opening and the closing of descriptor
at the end of each operation). In this case the RapidIO address will be increased according to the for-
mula below each time the packet will be sent, although the one contained in the descriptor will not be
updated:

 RapidIO address = (EXT & SRIO_EXT_ADDR & SRIO_ADDR & b000)+ PB*Ip

Where “&” is the concatenation operator, PB is the length in bytes of the payload in each operation of
the descriptor (defined by the field SIZE of the descriptor), Ip is the number of packets already sent
from this descriptor, and EXT, SRIO_EXT_ADDR, SRIO_ADDR are the respective fields in the TX
descriptor.
Each queue can be configured to trigger a set of interrupts: (i) error interrupts that indicate bus errors,
SRIO errors and timeout errors (TXIO_CTRL.IE or TX_CTRL.IE), and (ii) transmission interrupts
that indicate that a memory I/O operation was successfully transmitted (TXIO_CTRL.IT or TX_C-
TRL.IT). The generation of transmission interrupts can be further configured by setting the transmis-
sion interrupt mode bit (TXIO_CTRL.IM or TX_CTRL.IM). If set, a transmission interrupt is only
triggered after the transmission queue became empty. If not set, the generation of transmission inter-
rupts depends on the Enable Transmission Interrupt (TI) setting of the descriptor.
Each transmission queue has a fixed source ID (TXIO_SRC_ID or TX_SRC_ID), priority (TXIO_C-
TRL.PRIO or TX_CTRL.PRIO), critical request flow setting (TXIO_CTRL.CR or TX_CTRL.CR),
virtual channel setting (TXIO_CTRL.VC) and transport type (TXIO_CTRL.TT or TX_CTRL.TT).
GRIP, Sep 2018, Version 2018.3 973 www.cobham.com/gaisler

GRLIB IP Core

For each memory I/O operation individually, the destination ID (DEST_ID) can be set up in the corre-
sponding descriptor.
Each transmission queue implements a request-to-response timeout mechanism that counts the time
between the transmission of a memory I/O operation and a response from the destination node (in
case of operations that require a response such as NWRITE_R or atomic transactions). This timeout
can be configured globally in register TO_CONF. If the timeout elapses, the descriptor will be closed
with the Timeout Error (TE) flag set and an error interrupt is generated if enabled.
A transmission queue serves one descriptor at a time. Anyway, more outstanding packets per queue
(two, planned to be extended to 64 in future releases) is blocked while it is awaiting a response from
the destination node. However, other transmission queues can be serviced in the meanwhile.
The circular buffer management between hardware and software is done via two descriptor pointers.
The tail pointer in TXIO_TLPTR or TX_TLPTR is managed by hardware whereas the head pointer in
TXIO_HDPTR or TX_HDPTR is managed by software.
The software can add one or more descriptors to the circular buffer and then activate them by increas-
ing the head pointer value in TXIO_HDPTR or TX_HDPTR. Every time the GRSRIO logical layer
transmits a new memory I/O operation successfully, it will increment the tail pointer to the next
descriptor. The software can always check how many operations awaiting transmission are left in the
buffer by subtracting the tail pointer value from the head pointer value.
Every time a new packet is sent the srcTID field of the packet is increased, except when NWRITE and
SWRITE transactions are sent (they have no srcTID field).
The type of the operation is defined in field TYPE, and the read- or write size in field SIZE. The size
field is the concatenation of wdptr and rdsize/wrsize (see also RapidIO Interconnect Specification
Part 1), the possible values are listed in Table 1186.
• For NREAD operations, the data read from the destination node will be stored at the memory

address defined in ADDR.
• For NWRITE, NWRITE_R and SWRITE operations, the data which should be written to the

remote node must be stored at the address defined in ADDR.
• For ATOMIC Set, Clear, Increment and Decrement operations, the data returned from the desti-

nation node will be stored at the memory address defined in ADDR. It is always fixed to 8 bytes.
However, only wdptr and rdsize combinations are allowed that modify 1, 2, or 4 bytes.

• For ATOMIC Test-and-Swap and Swap operations, both the data transmitted to the destination
node (the “swap” data) and the data returned from the destination node is stored at the address
defined in ADDR. It is always fixed to 8 bytes. But again, only wdptr and wrsize combinations
are allowed that modify 1, 2, or 4 bytes.

• For ATOMIC Compare-and-Swap operations, both the data transmitted to the destination node
(the “compare” data and the “swap” data) and the data returned from the destination node is
stored at the address defined in ADDR. The outgoing data is fixed to 16 bytes, where the first 8
bytes store the “compare” data and the second 8 bytes the “swap” data. The data returned from
the destination node has always 8 bytes. Like for the other ATOMIC transactions, only wdptr and
wrsize combinations that modify 1, 2, or 4 bytes are allowed.

• For MAINTENANCE Read operations, the data read from the destination node will be stored at
the memory address defined in ADDR. It can be 4 or 8 bytes long, therefore the SIZE field must
be set to b0100, b1100 or b01011.
GRIP, Sep 2018, Version 2018.3 974 www.cobham.com/gaisler

GRLIB IP Core

• For MAINTENANCE Write and Port-Write Request operations, the data which should be writ-

ten to the remote node must be stored at the address defined in ADDR. It can be 4 or 8 bytes
long, therefore the SIZE field must be set to b0100, b1100 or b01011.

In the following, the relevant descriptor words of the memory I/O operations transmission queues are
described:

Table 1186.Allowed combinations of wdptr and rdsize/wrsize for SIZE field

wdptr rdsize/wrsize No. of Bytes Bytes Lanes Notes
0 0000 1 10000000

0 0001 1 01000000

0 0010 1 00100000

0 0011 1 00010000

1 0000 1 00001000

1 0001 1 00000100

1 0010 1 00000010

1 0011 1 00000001

0 0100 2 11000000

0 0101 3 11100000

0 0110 2 00110000

0 0111 5 11111000

1 0100 2 00001100

1 0101 3 00000111

1 0110 2 00000011

1 0111 5 00011111

0 1000 4 11110000

1 1000 4 00001111

0 1001 6 11111100

1 1001 6 00111111

0 1010 7 11111110

1 1010 7 01111111

0 1011 8 11111111

1 1011 16

0 1100 32

1 1100 64

0 1101 96 only read
1 1101 128

0 1110 160 only read
1 1110 192 only read
0 1111 224 only read
1 1111 256

Table 1187.GRSRIO I/O operation transmission descriptor word 0 (address offset 0x0)
31 0

ADDR_MSW

31: 0 This field is effective only when the CFG_AW is set to 64.
GRIP, Sep 2018, Version 2018.3 975 www.cobham.com/gaisler

GRLIB IP Core
Table 1188.GRSRIO I/O operation transmission descriptor word 1 (address offset 0x4)
31 0

ADDR(_LSW)

31: 0 LSW Local Memory Start Address (LSW_ADDR). Lowest 32 bits of the address pointing to the
start of the memory block storing the payload of the I/O write operation (NWRITE, NWRITE_R,
SWRITE, MAINTENANCE Write and Port-Write Request) to be transmitted. For NREAD opera-
tions, this address is the start address where the received data will be stored. When CFG_AW = 32
this is the full 32-bit local memory address.

Table 1189.GRSRIO I/O operation transmission descriptor word 2 (address offset 0x8)
31 0

SRIO_EXT_ADDR

31: 0 Serial RapidIO Extended Address (SRIO_EXT_ADDR). The extended 32 bits of a 66-bit physical
address (bits 32:63 in big-endian notation).

Table 1190.GRSRIO I/O operation transmission descriptor word 3 (address offset 0xC)
31 30 29 28 0

R EXT SRIO_ADDR/HOP_CONF

31 RESERVED
30: 29 Serial RapidIO XAMSBS Field (EXT). Most significant bits of a 66-bit physical address (bits 64:65

in big-endian notation).
28: 0 Serial RapidIO Address / Hop Count & Configuration Offset (SRIO_ADDR/HOP_CONF). Lower

part of the RapidIO memory address. The least significant three bits of the address are not specified
as they are always set to logic 0. Therefore, this field contains bits 0:28 (in big-endian notation) of
the RapidIO address. In case of maintenance operations, this field contains the hop count (28:21)
concatenated with the configuration offset value (20:0).

Table 1191.GRSRIO I/O operation transmission descriptor word 4 (address offset 0x10)
31 0

DEST_ID

31: 0 Destination Identifier (DEST_ID). Rapid IO destination device identifier. If the GRSIO is config-
ured for 8-bit identifiers, only the lower 8 bits are valid.

Table 1192.GRSRIO I/O operation transmission descriptor word 5 (address offset 0x14)
31 26 25 21 20 17 16 15 ¨4 3 2 1 0

RESERVED SIZE TYPE TI NIOOP R TE SE DO

31: 26 RESERVED
25: 21 I/O Operation Size (SIZE). Read or write size of I/O operation. Concatenation of wdptr and rdsize/

wrsize.
GRIP, Sep 2018, Version 2018.3 976 www.cobham.com/gaisler

GRLIB IP Core
66.3 MECS Time Synchronization Protocol

The core, combined with the SRIOGEN2-IP end point, implements the “MECS Time Synchroniza-
tion Protocol” according to RapidIO specifications Rev 4.0 if g_mecs is set to “true”. SMECS are not
implemented. “Enhanced” MECS events with cmd = i are signaled from and triggered in the end point
as changes in the signal level of respectively MECS_CAPTURED_IN[i] and MECS_TRIG-
GER_OUT[i].

20: 17 I/O Operation Type (TYPE). Type of the I/O operation: 0: NREAD, 1: NWRITE, 2: NWRITE_R, 3:
SWRITE, 4: ATOMIC Set, 5: ATOMIC Clear, 6: ATOMIC Increment, 7: ATOMIC Decrement, 8:
ATOMIC Test-and-Swap, 9: ATOMIC Swap, 10: ATOMIC Compare-and-Swap, 11: MAINTE-
NANCE Read, 12: MAINTENANCE Write, 13: MAINTENANCE Port-Write Request, all others:
reserved.

16 Enable Transmission Interrupt (TI). If set, the GRSRIO triggers an interrupt when the I/O operation
was correctly transmitted, that is, when also the done flag DO is set. The interrupt is triggered after
the DMA engine has finished all memory accesses related to this descriptor.

15: 4 Number of I/O operations (NIOOP): indicates how many I/O operations are defined by the descriptor
(the number of I/O transactions with contiguous payload will be NIOOP+1). This functionality can
be used (NIOOP greater than 0) only with NREAD, NWRITE,NWRITE_R and SWRITE descrip-
tors. The maximum number of I/O operations definable by a single descriptor is 4096, which allows
transfers up to 1 MB with a single descriptor (when SIZE is set to 0b11111).

3 Reserved
2 Timeout Error (TE). Set when the request-to-response timeout has elapsed, that is, when the destina-

tion node did not acknowledge the reception of the message (only for operations such as
NWRITE_R that generate DONE responses).

1 Serial RapidIO Error (SE). Set when an ERROR response was received from the destination node.
0 Done Flag (DO). Set when the I/O operation was correctly transmitted, that is, when the processing

core received a DONE response from the destination node (only for operations such as NWRITE_R
that generate DONE responses).

Table 1193.GRSRIO I/O operation transmission descriptor word 6 (address offset 0x18)
31 0

TIMESTAMP

31: 0 I/O Operation Time-Stamp (TIMESTAMP). LSW of the local timer when transmission of all the
transactions defined by the descriptor is completed, that is when the last response is received. For
requests without responses, the timestamp is set when the last request is generated. 64 bit timestamp
are not supported Please confirm:

Table 1194.GRSRIO I/O operation transmission descriptor word 7 (address offset 0x1C)
31 2 1 0

RESERVED DES_TYP

31: 2 RESERVED
1: 0 Descriptor Type (DES_TYP): indicates which kind of descriptor this is when in hybrid queues mode.

Must be set to 0b10 to indicate that this is a I/O descriptor.

Table 1192.GRSRIO I/O operation transmission descriptor word 5 (address offset 0x14)
GRIP, Sep 2018, Version 2018.3 977 www.cobham.com/gaisler

GRLIB IP Core

66.4 Bus Master interface

66.4.1 Overview

Atomicity of operations as a target is supported by the AHB Master. Atomicity of operations as a tar-
get is currently not supported by the AXI4 Master. For this reason, when the grsrio_gen2axi wrapper
is used inbound atomic operations are discarded and flagged as unsupported transaction.
The generic_bm_x is designed to use a standard bus master interface in which the translation of bus
master commands to AHB or AXI bus protocol is handled by the component. This way if an IP core is
designed to handle memory accesses with the standard bus master interface, which is defined in this
document, it can be made compatible to AHB or AXI buses without additional effort. In addition,
memory access control is simplified since standard bus interface (AHB,AXI) features like boundary
crossing, alignment requirements is handled by the generic_bm_x IP core and no special action
needed on the standard bus mater interface. Furthermore, additional bus protocols apart from AHB or
AXI might be added in the future. The generic_bm_x core has a variety of configuration options to
simplify the memory access logic required for bus master interface and optimize the bus accesses on
AHB or AXI bus.
Fig. 189 illustrates the overall block diagram of generic_bm_x. Front-End handles all the handshak-
ing on the bus_master interface. Middle-End handles all the burst related operations and generate
standard commands to the back-end interface. Back-end interface generates bus specific burst com-
mands depending on the selected bus protocol type. For each specific bus protocol (AHB,AXI) the
back-end component is changed.

66.4.2 Configuration Options

MAX_SIZE: this generic determines the total maximum possible size of the burst on the bus master
interface in terms of bytes. It has to be power of two. This generic also determines the width of the
bmrd_size and bmwr_size input ports. This generic is fixed to 256 for GRSRIO core.
BM_DW: Data-width of the bus master interface in terms of bits and has to be a multiple of 32. This
generic is fixed to 128 for GRSRIO core.
BE_DW: Data-width of the back-end bus in terms of bits. It can be equal or narrower compared to
BM_DW and has to be a multiple of 32.
ADDR_WIDTH: Address width of the front-end and back-end bus.
MAX_BURST_LENGTH: Determines the maximum length of a burst transaction in terms of num-
ber of beats that is generated on the back-end bus. This generic can be useful if the maximum burst
length needs to be limited to have fair arbitration in the system. It should be noted that the total maxi-
mum size of the burst in terms of bytes that is generated on the back-end bus depends on the be_dw

Figure 189. Overall block diagram of generic_bm_x

Front-End Middle-End Back-end

bus_master
interface

AHB/AXI
interface

generic_bm_x
GRIP, Sep 2018, Version 2018.3 978 www.cobham.com/gaisler

GRLIB IP Core

and can be calculated with the formula “number_of_beats*(be_dw/8)”. Limiting the maximum burst
length can reduce the throughput hence it is recommended not be limited unless there is a need, for
example due to arbitration fairness on the back-end bus side. In order to calculate the maximum possi-
ble burst length the following formula can be used “max_size/(be_dw/8)” and max_burst_length
generic can not exceed this value. Also if max_size is bigger than the allowed burst_chop_mask value
for the specific bus protocol then max_size can be replaced with maximum burst_chop_mask value
since the total allowed burst size in terms of bytes can not exceed maximum burst_chop_mask value.
BURST_CHOP_MASK: Determines when a burst should end a new burst should start on the back-
end bus in terms of byte alignment. Maximum and default value of this generic depends on the back-
end protocol. Maximum value is 1024 bytes for AHB and 4096 bytes for AXI which is determined by
the protocol specifications. Reducing the byte alignment might be useful when combined with max-
_burst_length in cases where the memory that is accessed by the back-end bus has an internal buffer
which gives better throughput on specific alignments. For example if max_burst_length is limited to 8
beats on a 32-bit bus and a slave memory gives the best throughput when bursts are aligned to 32-byte
boundary than burst_chop_mask can be set to 32. This way, if a burst on the bus_master front and
starts with an address which is not aligned to 32-bytes, the first burst will be limited to finish on 32-
byte alignment so that the remaining bursts will be always aligned to 32-bytes. It should be noted that,
value of this generic is not recommended to be reduced from the default value unless a specific opti-
mization is needed as explained in this chapter , otherwise the throughput will be reduced unnecessar-
ily.
BE_RD_PIPE: When it is set to zero a pipeline stage exists between the read data path of the back-
end bus to the read data-path of the bus_master interface. When set to one, this pipeline stage is
removed. Setting this value to zero reduces read latency by one for aligned accesses but if the timing
requirements do not met it can be set to a non-zero value.
UNALIGN_LOAD_OPT: When set to one, unaligned load optimization is enabled. When the optimi-
zation is enabled and a burst access do not finish exactly at the end of the data word of the back-end
bus, then instead of generating a separate narrow access for the last word, the entire word is read and
the corresponding part is used. This reduces the latency for unaligned burst accesses. But since this
optimization reads more data than requested it should not be activated if the data is going to be read
from a FIFO-like structure otherwise it can cause data loss.
EXCL_ENABLED: This generic only exists in AHB back-end bus and not compatible with the AXI
back-end bus. When set to true it generates locked accesses on the AHB bus. This generic is fixed to
true with the AHB back-end. GRSRIO core supports atomic transactions only when using AHB back-
end.

66.4.3 Access Alignment

The generic_bm_x IP core does not have any alignment restriction on the bus_master interface. All
accesses on the bus_master interface will be translated to access types that are allowed by the back-
end bus. If the start address of an access is unaligned relative to the back-end bus, the first accesses on
the back-end bus will be narrow accesses until the address reaches to an aligned value. After that a
burst access will be generated as much as the size allows. If the ending is not aligned the last accesses
will also be narrow accesses. For highest throughput the accesses should be aligned relative to the
back-end bus width.
The generic_bm_x IP core will handle the boundary crossing for the back-end bus hence there is no
restriction on the start address or the size of the burst on the bus_master interface. But since the burst
has to restart on boundary crossing, in order to achieve high throughput with long bursts, the start
address should be aligned such a way that boundary crossings are eliminated or minimized.

66.4.4 Endianness

The endianness on the back-end side is always big-endian. On the bus-master interface the most sig-
nificant byte of the access is always placed to the uppermost bits (relative to the vhdl std_logic_vec-
GRIP, Sep 2018, Version 2018.3 979 www.cobham.com/gaisler

GRLIB IP Core

tor). It should be noted that, the bus_master interface is not byte-invariant. Regardless of the access
size or start address, the data word that is outputted do not have any gaps and the most significant byte
of the access is placed to the uppermost bits and the remaining data follows to the low order bits.
In order to achieve big-endianness on the AXI back-end bus the bytes are swapped since the AXI pro-
tocol is byte-invariant. Following examples shows different access patterns with different back-end
bus protocols and data-widths. For all accesses the bit position is relative to the std_logic_vector used
in VHDL.
Fig. 190 illustrates a 16Byte access on both AHB and AXI backends, when both BM_DW and
BE_DW generics are set to 128. Fig. 191 illustrates a 16 Byte access on both AHB and AXI backends,
when BM_DW is set to 128 and BE_DW is set to 64. Fig. 192 illustrates a 2 Byte access on both AHB
and AXI backends, when BM_DW is set to 128 and BE_DW is set to 64.

Figure 190. 16 Byte Access on AHB and AXI back-ends (BM_DW=128-bit, BE_DW=128-bit)

(127) (0)
bus_master

(Bit position)

interface B14B15 B12B13 B10B11 B8B9 B6B7 B4B5 B2B3 B0B1

Address : 0x0

AHB
(back-end)
Address : 0x0

(127) (0)

B14B15 B12B13 B10B11 B8B9 B6B7 B4B5 B2B3 B0B1

AXI
(back-end)
Address : 0x0

(127) (0)

B1B0 B3B2 B5B4 B7B6 B9B8 B11B10 B13B12 B15B14
GRIP, Sep 2018, Version 2018.3 980 www.cobham.com/gaisler

GRLIB IP Core
Figure 191. 16 Byte Access on AHB and AXI back-ends (BM_DW=128-bit, BE_DW=64-bit)

(127) (0)
bus_master

(Bit position)

interface B14B15 B12B13 B10B11 B8B9 B6B7 B4B5 B2B3 B0B1

Address : 0x0

AHB
(back-end)
Address : 0x0

(63) (0)

B14B15 B12B13 B10B11 B8B9

B6B7 B4B5 B2B3 B0B1

(63) (0)

Address : 0x8

AXI
(back-end)
Address : 0x0

(63) (0)

B9B8 B11B10 B13B12 B15B14

B1B0 B3B2 B5B4 B7B6

(63) (0)

Address : 0x8

Figure 192. 2 Byte Access on AHB and AXI back-ends (BM_DW=128-bit, BE_DW=128-bit)

(127) (0)
bus_master

(Bit position)

interface B0B1

Address : 0x4

AHB
(back-end)
Address : 0x4

(127) (0)

B0B1

AXI
(back-end)
Address : 0x4

(127) (0)

B1B0

Size: 2 Bytes

Size : 2 Bytes

Size : 2 Bytes
GRIP, Sep 2018, Version 2018.3 981 www.cobham.com/gaisler

GRLIB IP Core

66.4.5 Software Considerations

The bus master interface of the GRSRIO core does not have any alignment restriction. But alignment
can be important to achieve low latency and high throughput. In order to improve latency of doorbell
messages (where the payload is contained in the descriptor), the descriptor should be aligned to 16
Byte boundary. When transmitting packets with 256 Byte payload, the best throughput can be
achieved if data-packet is aligned to 256 Byte boundary since it will avoid boundary crossing on both
AHB and AXI.

66.5 Registers

The core is programmed through registers mapped into APB address space. The registers are listed in
table and described in detail in the subsequent tables. Addresses not listed in table are reserved. A
read access to a reserved register, or reserved field with a register, will always return zero, and a write
access has no effect. The register layout used is exemplified in table 1196, and the values used in the
reset value row and field type row are explained in tables 1197 and 1198.
To easily support allocation of hardware resources to software entities, the address space for each
hardware resource (queues, translation windows, memory protection partitions) are placed on 4KB
boundaries.
Internally, the GRSRIO core decodes the address as listed in table 1195:

The memory map has a size of 1MB and must also be aligned to 1MB boundaries.

Table 1195. Decoding of ABP address

Bits Description
19:17 Type of register block.
16:12 Index of queues/windows/partitions
11:2 Number of register.

Table 1196.<APB address offset> - <Register acronym> - <Register name>
31 24 23 16 15 8 7 0

EF3 EF2 EF1 EF0

<Reset value for EF3> <Reset value for EF2> <Reset value for EF1> <Reset value for EF0>

<Bit-field type for EF3> <Bit-field type for EF2> <Bit-field type for EF1> <Bit-field type for EF0>

31: 24 Example bit-field 3 (EF3) - <Bit-field description>
23: 16 Example bit-field 2 (EF2) - <Bit-field description>
15: 8 Example bit-field 1 (EF1) - <Bit-field description>
7: 0 Example bit-field 0 (EF0) - <Bit-field description>

Table 1197. Reset value definitions

Value Description
0 Reset value 0. Used for single-bit fields.
1 Reset value 1. Used for single-bit fields.
0xNN Hexadecimal representation of reset value. Used for multi-bit fields.
n/r Field not reseted
* Special reset condition, described in textual description of the bit-field. Used for example when reset

value is taken from an input signal.
GRIP, Sep 2018, Version 2018.3 982 www.cobham.com/gaisler

GRLIB IP Core
Table 1198. Bit-field type definitions

Value Description
r Read-only. Writes have no effect.
rw Readable and writable.
rw* Readable and writable. Special condition for write, described in textual description of the bit-field.
wc Write-clear. Readable, and cleared when written with a 1. Writing 0 has no effect.

Table 1199.GRSRIO registers when g_hyb_que is set to false.

APB address offset Register
0x00000 CORE_CAP
0x00004 CORE_RST
0x00008 TO_CONF
0x0000C CORE_STAT
0x00010 INT_TXMSG_STAT
0x00014 INT_RXMSG_STAT
0x00018 INT_TXDBL_STAT
0x0001C INT_RXDBL_STAT
0x00020 INT_TXIO_STAT
0x00024 INT_RXIO_STAT
0x00028 EXTDBL_CTRL
0x0002C EXTDBL_FLTR
0x00030 EXTDBL_SRC_ID
0x00034 EXTDBL_DEST_ID
0x00038 ADDRTRNSL_SHIFT
0x10000+ i*0x1000 TRNSLWIN_CONF (window i)
0x20000+ i*0x1000 MEMPRT_CONF (partition i)
0x40000 + i*0x1000 TXMSG_CTRL (queue i)
0x40004 + i*0x1000 TXMSG_STAT (queue i)
0x40008 + i*0x1000 TXMSG_SRC_ID (queue i)
0x40010 + i*0x1000 TXMSG_TLPTR (queue i)
0x40014 + i*0x1000 TXMSG_HDPTR (queue i)
0x40018 + i*0x1000 TXMSG_MADDR_MSW1 (queue i)
0x4001C + i*0x1000 TXMSG_MADDR(_LSW) (queue i)
0x60000 + i*0x1000 RXMSG_CTRL (queue i)
0x60004 + i*0x1000 RXMSG_STAT (queue i)
0x60008 + i*0x1000 RXMSG_DST_ID (queue i)
0x6000C + i*0x1000 RXMSG_DST_MSK (queue i)
0x60010 + i*0x1000 RXMSG_TLPTR (queue i)
0x60014 + i*0x1000 RXMSG_HDPTR (queue i)
0x60018 + i*0x1000 RXMSG_MADDR_MSW1 (queue i)
GRIP, Sep 2018, Version 2018.3 983 www.cobham.com/gaisler

GRLIB IP Core
Where i is (depending on the register):
• the index of the queue for each type, configurable with generics g_no_io_tx, g_no_dbell_rx,

g_no_dbell_tx, g_no_msg_rx and g_no_msg_tx at compile time (from 0 up to 31)
• the index of the translation window (from 0 to 15)
• the index of the memory protection partition (from 0 up to 3 or 7, depending if g_8_in_win is set

to false or true)
1 This field is reserved when CFG_AW = 32

0x6001C + i*0x1000 RXMSG_MADDR(_LSW) (queue i)
0x80000 + i*0x1000 TXDBL_CTRL (queue i)
0x80004 + i*0x1000 TXDBL_STAT (queue i)
0x80008 + i*0x1000 TXDBL_SRC_ID (queue i)
0x80010 + i*0x1000 TXDBL_TLPTR (queue i)
0x80014 + i*0x1000 TXDBL_HLPTR (queue i)
0x80018 + i*0x1000 TXDBL_MADDR_MSW1 (queue i)
0x8001C + i*0x1000 TXDBL_MADDR(_LSW) (queue i)
0xA0000+ i*0x1000 RXDBL_CTRL (queue i)
0xA0004 + i*0x1000 RXDBL_STAT (queue i)
0xA0008 + i*0x1000 RXDBL_ID (queue i)
0xA000C+ i*0x1000 RXDBL_MSK (queue i)
0xA0010+ i*0x1000 RXDBL_TLPTR (queue i)
0xA0014+ i*0x1000 RXDBL_HLPTR (queue i)
0xA0018+ i*0x1000 RXDBL_MADDR_MSW1 (queue i)
0xA001C+ i*0x1000 RXDBL_MADDR(_LSW) (queue i)
0xC0000+ i*0x1000 TXIO_CTRL (queue i)
0xC0004+ i*0x1000 TXIO_STAT (queue i)
0xC0008+ i*0x1000 TXIO_SRC_ID (queue i)
0xC0010+ i*0x1000 TXIO_TLPTR (queue i)
0xC0014+ i*0x1000 TXIO_HDPTR (queue i)
0xC0018+ i*0x1000 TXIO_MADDR_MSW1 (queue i)
0xC001C+ i*0x1000 TXIO_MADDR(_LSW) (queue i)
0xE0000 RXIO_CTRL
0xE0004 RXIO_STAT
0xE0008 RXIO_LACCESS_MSW1

0xE000C RXIO_LACCESS(_LSW)
0xE0010 RXIO_LADDR_MEM_ERR_MSW1

0xE0014 RXIO_LADDR_MEM_ERR(_LSW)
0xE0018 RXIO_CNTRS

Table 1199.GRSRIO registers when g_hyb_que is set to false.

APB address offset Register
GRIP, Sep 2018, Version 2018.3 984 www.cobham.com/gaisler

GRLIB IP Core
Table 1200.GRSRIO registers when g_hyb_que is set to true.

APB address offset Register
0x00000 CORE_CAP
0x00004 CORE_RST
0x00008 TO_CONF
0x0000C CORE_STAT
0x00010 TX_INT_STAT
0x00014 RXMSG_INT_STAT
0x0001C RXDBL_INT_STAT
0x00024 RXIO_INT_STAT
0x00028 EXTDBL_CTRL
0x0002C EXTDBL_FLTR
0x00030 EXTDBL_SRC_ID
0x00034 EXTDBL_DST_ID
0x00038 ADDRTRNSL_SHIFT
0x10000+ i*0x1000 TRNSLWIN_CONF (window i)
0x20000+ i*0x1000 MEMPRT_CONF (partition i)
GRIP, Sep 2018, Version 2018.3 985 www.cobham.com/gaisler

GRLIB IP Core
0x40000 + i*0x1000 TX_CTRL (queue i)
0x40004 + i*0x1000 TX_STAT (queue i)
0x40008 + i*0x1000 TX_SRC_ID (queue i)
0x40010 + i*0x1000 TX_TLPTR (queue i)
0x40014 + i*0x1000 TX_HDPTR (queue i)
0x40018 + i*0x1000 TX_MADDR_MSW1 (queue i)
0x4001C + i*0x1000 TX_MADDR(_LSW) (queue i)
0x60000 + i*0x1000 RXMSG_CTRL (queue i)
0x60004 + i*0x1000 RXMSG_STAT (queue i)
0x60008 + i*0x1000 RXMSG_DST_ID (queue i)
0x6000C + i*0x1000 RXMSG_DST_MSK (queue i)
0x60010 + i*0x1000 RXMSG_TLPTR (queue i)
0x60014 + i*0x1000 RXMSG_HDPTR (queue i)
0x60018 + i*0x1000 RXMSG_MADDR_MSW1 (queue i)
0x6001C + i*0x1000 RXMSG_MADDR(_LSW) (queue i)
0xA0000+ i*0x1000 RXDBL_CTRL (queue i)
0xA0004 + i*0x1000 RXDBL_STAT (queue i)
0xA0008 + i*0x1000 RXDBL_ID (queue i)
0xA000C+ i*0x1000 RXDBL_MSK (queue i)
0xA0010+ i*0x1000 RXDBL_TLPTR (queue i)
0xA0014+ i*0x1000 RXDBL_HLPTR (queue i)
0xA0018+ i*0x1000 RXDBL_MADDR_MSW1 (queue i)
0xA001C+ i*0x1000 RXDBL_MADDR(_LSW) (queue i)
0xE0000 RXIO_CTRL
0xE0004 RXIO_STATUS
0xE0008 RXIO_LACCESS_MSW1

0xE000C RXIO_LACCESS_LSW
0xE0010 RXIO_LADDR_MEM_ERR_MSW1

0xE0014 RXIO_LADDR_MEM_ERR(_LSW)
0xE0018 RXIO_CNTRS

Table 1200.GRSRIO registers when g_hyb_que is set to true.

APB address offset Register
GRIP, Sep 2018, Version 2018.3 986 www.cobham.com/gaisler

GRLIB IP Core
66.5.1 General registers

 The following registers are available only when g_mecs is set to true, otherwise they are reserved.

Table 1201.Additional GRSRIO registers available when g_mecs is set to true.

APB address offset Register
0xF0000 RESERVED
0xF0004 Timestamp CAR
0xF0008 Timestamp Generator Status CSR
0xF000C MECS Tick Interval CSR
0xF0010 RESERVED
0xF0014 MECS Next Timestamp MSW
0xF0018 MECS Next Timestamp LSW
0xF001C RESERVED
0xF0020 MECS Implementation Specific Settings
from 0xF0024 to 0xF0030 RESERVED
0xF0034 Timestamp Generator MSW CSR
0xF0038 Timestamp Generator LSW CSR

Table 1202.CORE_CAP - Core Capability Register
31 27 26 22 21 17 16 12 11 7 6 4 3 2 1 0

NO_TX_HYB_MSG NO_RX_MSG NO_TX_DBL NO_RX_DBL NO_TX_IO RESERVED AXI NP HM MS

* * * * * 0 * * * *

r r r r r r r r r r

31: 27 Number of hybrid transmission queues or transmission queues for Data Messages (NO_TX_HY-
B_MSG): Number of transmission queues in hybrid mode (when g_hyb_que is set to “true”) or for
Data Messages (when g_hyb_que is set to false) available in the core.

26: 22 Number of reception queues for Data Messages (NO_RX_MSG): Number of reception queues for
data messages available in the core.

21: 17 Number of transmission queues for Doorbell Messages (NO_TX_DBL): Number of transmission
queues for doorbell available in the core, reads zero when in hybrid-queues mode.

16: 12 Number of reception queues for Doorbell Messages (NO_RX_DBL): Number of reception queues
for doorbell messages available in the core.

11: 7 Number of transmission queues for IO operations (NO_TX_IO): Number of transmission queues for
IO operations available in the core, reads zero when in hybrid-queues mode.

6: 4 RESERVED
3 AXI4 bus master: this bit is set to one in case an AXI4 bus master is used, otherwise if an AHB bus

master is used this is set to 0.
2 Number of Partitions (NP): reads 1 if the core supports 8 memory protection partition (g_8_in_win =

“true”), reads 0 if it supports just 4 of them.
1 Hybrid-queues Mode (HM): reads 1 if the core is instantiated in hybrid mode (g_hyb_que = “true”)
0 MECS Supported (MS): reads 1 if the core supports the MECS Time Synchronization Protocol

(g_mecs = “true”)

Table 1203.CORE_RST - Core Reset Register
31 30 0

RS RESERVED

0 0

rw r
GRIP, Sep 2018, Version 2018.3 987 www.cobham.com/gaisler

GRLIB IP Core
31 GRSRIO Soft Reset (RS). Writing 1 resets the GRSRIO logical layer core. Always reads 0.
30: 0 RESERVED

Table 1204.TO_CONF - Timeout Configuration Register
31 0

TIMEOUT

0xFFFFFFFF

rw

31: 0 Response-to-Request and Request-to-Response Timeout Value (TIMEOUT). The timeout value is
expressed in clock cycles.

Table 1205.CORE_STAT - Core General Status Register
31 16 15 3 2 1 0

NUR RESERVED FE UT UR

0 0 0 0 0

r r wc wc wc

31: 16 Number of unexpected responses (NUR): number of received unexpected responses since last time
UR was cleaned.

15: 3 RESERVED
2 Clock Domain Crossing FIFO Error (FE). This bit is set when the asynchronous FIFO overflows,

which transfers credit information from the SRIO end point to the GRSRIO core. This is a fatal error
that should only occur when the clock frequency of the GRSRIO is lower than the clock frequency
of the SRIO end point user interface. Writing 1 clears this bit.

1 Unsupported Transaction (UT). This bit is set when the GRSRIO core receives an unsupported trans-
action. Writing 1 clears this bit.

0 Unexpected Response (UR). This bit is set when the GRSRIO core receives an unexpected response.
Writing 1 clears this bit.

Table 1206.INT_TX/MSG_STAT - Data Message Transmission Queues or Hybrid Queue Interrupt Level 1 Register
31 0

TXMSGINT/TXINT

0

r

31: 0 Interrupts in Message Transmission or Hybrid Queues (TXMSGINT/TXINT). A bit is set if an inter-
rupt occurred in the message transmission queue (if g_hyb_que is set to false) or in the mixed queues
(if g_hyb_que is set to true) with the index corresponding to the number of the bit. This field is read-
only, the interrupts must be individually cleared in the respective TXMSG_STAT or TX_STAT.

Table 1207.INT_RXMSG_STAT - Data Message Reception Queues Interrupt Level 1 Register
31 0

RXMSGINT

0

r

31: 0 Interrupts in Message Reception Queues (RXMSGINT). A bit is set if an interrupt occurred in the
message reception queue with the index corresponding to the number of the bit. This field is read-
only, the interrupts must be individually cleared for each queue in the respective RXMSG_STAT.

Table 1208.INT_TXDBL_STAT - Doorbell Message Transmission Queues Interrupt Level 1 Register

This register is available only when “g_hyb_que” is set to false.

31 0

TXDBELLINT

Table 1203.CORE_RST - Core Reset Register
GRIP, Sep 2018, Version 2018.3 988 www.cobham.com/gaisler

GRLIB IP Core
0

r

31: 0 Interrupts in Doorbell Transmission Buffers (TXDBELLINT). A bit is set if an interrupt occurred in
the doorbell transmission buffer with the index corresponding to the number of the bit. This field is
read-only, the interrupts must be individually cleared in the respective TXDBELLMSG1.

Table 1209.INT_RXDBL_STAT- Doorbell Messages Reception Queues Interrupt Level 1 Register
31 0

RXDBLINT

0

r

31: 0 Interrupts in Doorbell Reception Buffers (RXDBLINT). A bit is set if an interrupt occurred in the
doorbell reception buffer with the index corresponding to the number of the bit. This field is read-
only, the interrupts must be individually cleared in the respective RXDBL_STAT.

Table 1210.INT_TXIO_STAT - IO Operations Transmission Queues Interrupt Level 1 Register - (0x00020)

This register is available only when g_hyb_que is set to “false”

31 0

TXIOINT

0

r

31: 1 RESERVED
0 Interrupt in I/O operation transmission queue (TXIOINT). A bit is set if an interrupt occurred in the

IO transmission queue with the index corresponding to the number of the bit. This field is read-only,
the interrupts must be individually cleared in the respective RXDBL_STAT.

Table 1211.INT_RXIO_STAT - IO Operations Reception Queues Interrupt Level 1 Register
31 1 0

RESERVED RI

0 0

r r

31: 1 RESERVED
0 Interrupt in I/O operation reception unit (RI). This field is read-only, the interrupts must be cleared in

the respective RXIO_STAT.

Table 1212.EXTDBL_CONF - External Doorbell Configuration Register
31 16 15 14 13 12 11 10 9 8 7 5 4 3 2 1 0

RCOUNT RES TT VC CR PRIO RESERVED IB IFB DC DO DI

0 0 0 0 0 0 0 0 0 0 0 0

rw r rw rw rw rw r rw rw rw rw rw

31: 16 External Outbound Doorbell Message Retry Count (RCOUNT). External outbound doorbell mes-
sages are automatically retried until the destination node either accepts the message or until the user-
defined retry threshold level in this field is reached.

15: 14 RESERVED

Table 1208.INT_TXDBL_STAT - Doorbell Message Transmission Queues Interrupt Level 1 Register

This register is available only when “g_hyb_que” is set to false.
GRIP, Sep 2018, Version 2018.3 989 www.cobham.com/gaisler

GRLIB IP Core
13: 12 External Outbound Doorbell Message Transport Type (TT). If set to 0b00, the destination ID and
source IDs of external outbound doorbell messages are 8-bit wide. If set to 0b01, the fields are 16-bit
wide.

11 External Outbound Doorbell Message Virtual Channel Bit (VC). If set, the virtual channel bit of the
external outbound doorbell message packet is also set.

10 External Outbound Doorbell Message Critical Request Flow Bit (CR). If set, the CRF bit of the
external outbound doorbell message is also set.

9: 8 External Outbound Doorbell Message Priority (PRIO). Priority of the external outbound doorbell
message. To avoid deadlock, the highest priority level is not allowed for request packets. If 0b11 is
written to this field, it is automatically overwritten by 0b10.

7: 5 RESERVED
4 Ignore Doorbell Buffer (IB). If this bit is set and DO is set and the doorbell info matches DBCOMP

(in case DC is also set), the GRSRIO core outputs the doorbell to the external port without storing it
to any possibly set up doorbell reception buffer and therefore always returns a DONE response to the
destination node. If the bit is not set, the doorbell message is also outputted to the external port, how-
ever, the GRSRIO core still tries to store it in a doorbell reception buffer. Then, the response type
depends on the doorbell reception buffer. If a buffer is available and the doorbell message was suc-
cessfully stored, the GRSRIO core returns a DONE response, otherwise a RETRY response.

3 Ignore Full Doorbell Buffer (IFB). In case DO is set and IB is not set but no free doorbell reception
buffer is available (see above), the GRSRIO core always returns a DONE response.

2 Enable Doorbell Info Comparison (DC). If set and if DO is set, inbound doorbell messages are only
forwarded to the external port if the doorbell info field matches the value in the DBCOMP field.

1 Enable Doorbell Output Signals (DO). If set, inbound doorbell messages are forwarded to the exter-
nal port.

0 Enable Doorbell Input Signals (DI). If set, outbound doorbell messages can be generated through the
external port.

Table 1213.EXTDBL_FLTR - Processing Core Configuration Register 2
31 16 15 0

DBMASK DBCOMP

0 0

rw rw

31: 16 Doorbell Message Mask Value (DBMASK). If DC and DO are set, inbound doorbell messages are
compared with the compare value DBCOMP. If a bit is set in this mask field, the corresponding bit
of DBCOMP is compared.

15: 0 Doorbell Message Compare Value (DBCOMP). If DC and DO are set, the doorbell message is only
forwarded to the external port if the doorbell info field matches the value in this field.

Table 1214.EXTDBL_SRC_ID - Processing Core Configuration Register 4
31 0

SRC_ID

0

rw

31: 0 External Outbound Doorbell Message Destination ID (DEST_ID). Destination ID of all outbound
doorbell messages generated through the external port.

Table 1215.EXTDBL_DST_ID - Processing Core Configuration Register 4
31 0

DST_ID

0

rw

31: 0 External Outbound Doorbell Message Destination ID (DEST_ID). Destination ID of all outbound
doorbell messages generated through the external port.

Table 1212.EXTDBL_CONF - External Doorbell Configuration Register
GRIP, Sep 2018, Version 2018.3 990 www.cobham.com/gaisler

GRLIB IP Core

Table 1216.ADDRTRNSL_SHIFT - Address Shift for Address Translation Register
31 4 3 0

RESERVED ADDR_SHIFT

0 0

r rw

31: 4 RESERVED
3: 0 ADDR_SHIFT: Address Shift for Address Translation: number of position the translated bits are

right-shifted (when SHIFT = 0 the translated bits are placed in Physical Address (MSB: MSB-3))

Table 1217.TRNSLWIN_CONF- Translation Window Configuration Register

31 20 19 16 15 1 0

RESERVED WIN_ADDR RESERVED TEN

0 0 0 0

r rw* r rw*

31: 20 RESERVED
19: 16 Values of the translated 4 bits of the physical base address for this window. Writing to this field has

only an effect when memory I/O operations are not enabled, that is, when EN is 0.
19: 16 RESERVED
0 Enable This Translation Window (TEN). Writing to this field has only an effect when memory I/O

operations are not enabled, that is, when EN is 0.

Table 1218.MEMPRT_CONF - Configuration Register for Partition i
31 30 29 28 27 16 15 12 11 0

PRE PWE RES PART_ADDR RESERVED PART_MASK

0 0 0 0 0 0

rw rw r rw* r rw*

31 Enable Read for the partition (PRE): Enable Read from the partition
30 Enable Write for the partition (PWE): Enable Write in the partition
27: 16 Memory Partition Address (PART_ADDR). These 12 bits are compared to the most significant 12

bits of the corresponding physical address of the memory I/O operation address. Writing to this field
has only an effect when the reception of memory I/O operations is not enabled, that is,
when RXIO_CONF.EN is 0.

15: 12 RESERVED
11: 0 Memory Partition Mask (PART_MASK). The mask can be used to adjust the size of the memory

partition. An incoming I/O operation’s address falls into this memory partition if the following con-
dition is true: (SRIO Address (MSB:MSB-11) XOR PART1_ADDR) AND PART1_MASK = 0x000.
Writing to this field has only an effect when memory I/O operations are not enabled, that is, when
EN is 0.
GRIP, Sep 2018, Version 2018.3 991 www.cobham.com/gaisler

GRLIB IP Core

66.5.2 Transmission Queues Registers

Table 1219.TXMSG_CTRL/TXDBL_CTRL/TXIO_CTRL/TX_CTRL - Transmission queue configuration register
31 22 21 20 19 18 17 16 15 10 9 6 5 4 3 2 1 0

RESERVED PRIO CR VC TT RESERVED CBD IM IE IT ST TP EN

0 0 0 0 0 0 0 0 0 0 0 0 0

r rw rw rw rw r rw* rw rw rw rw rw* rw*

31: 22 RESERVED
21: 20 Priority (PRIO). Priority of the outbound message or IO operation packets. To avoid deadlock, the

highest priority level is not allowed for request packets (if 0b11 is written to this field, it is automat-
ically overwritten by 0b10)

19 Critical Request Flow Bit (CR). If set, the CRF bit of the outbound message or IO operation packet
is also set.

18 Virtual Channel Bit (VC). If set, the virtual channel bit of the outbound message packet is also set.
17: 16 Transport Type (TT). If set to 0b00, the destination ID and source IDs of this transmission queue are

8-bit wide. If set to 0b01, the fields are 16-bit wide.
15: 10 RESERVED
9: 6 Circular Buffer Depth (CBD). Depth of the circular queue of this message transmission queue. A

queue can be configured to store between 2 and 65,536 messages: Depth = 2^(CBD+1). Writing to
this field has only an effect when the transmission queue is not enabled, that is, when EN is 0. Note
that even if the size of the queue is 2^(CBD+1), setting the head point directly to this value will not
enable the queue as only the least significant CBD+1 bits of the tail pointer will be compared to the
CBD+1 least significant bit of the head pointer.

5 Transmission Interrupt Mode (IM). If set, a transmission interrupt is only generated after the trans-
mission queue became empty, that is, when the tail pointer equals the head pointer. If not set, the
generation of transmission interrupts depends on the setting of the corresponding TI bits in the trans-
mission descriptor words.

4 Enable Error Interrupts (IE). If set, interrupts are generated for any kind of transmission or bus error
related to this transmission queue.

3 Enable Transmission Interrupts (IT). If set, interrupts are generated for successful message or IO
operation packets transmission. The way how the interrupts are generated depends on the Transmis-
sion Interrupt Mode (IM).

2 Stop on Transmission Error (ST). If set, the transmission queue is automatically disabled after a
transmission error has occurred. The tail pointer is not incremented and is therefore pointing to the
descriptor that was processed during the occurrence of the error, allowing the software to quickly
initiate some error recovery procedure. The type of transmission error can be read from the descrip-
tor and includes: Serial RapidIO Error, Retry Error, and Timeout Error. If not set, the DMA engine
increments the tail pointer and processes the next descriptor (if available) in case of errors.

1 Enable two-outstanding-packets mode: if this bit is set to 1, when a single descriptor defines more
than one packet, two packet will be transmitted without waiting for the reply to the first one. Writing
to this field has only an effect when the transmission queue is not enabled, that is, when EN is 0.

0 Enable Transmission Queue (EN). If set, the DMA engine executes the operations defined in the
descriptors queue until the circular buffer is empty, that is, until the tail pointer reaches the head
pointer. Then, once the software increments the head pointer again, the transmission is automatically
resumed. Writing 1 while the queue is disabled, enables the queue. Writing 0 while the queue is
enabled disables the transmission queue. If a transmission is ongoing, the queue is disabled after
processing the current descriptor. When disabled and after all memory accesses in conjunction with
this descriptor have been completed, this bit clears to 0.

Table 1220.TXMSG_STAT/TXDBL_STAT/TXIO_STAT/TX_STAT - Transmission Queue Status Register
31 8 7 6 5 4 3 2 1 0

RESERVED SR SS SW TI EI BE TE TA

0 0 0 0 0 0 0 0 0

r r r r wc wc wc wc r
GRIP, Sep 2018, Version 2018.3 992 www.cobham.com/gaisler

GRLIB IP Core
7 Two packet sent and one response received (SR): reads 1 when two packet have been sent from a
descriptor defining the transmission of more packets and one response has been already received (in
two-outstanding-packets mode) (two-outstanding-packets mode)

6 Two packets sent and no responses received (SS): reads 1 when two packet have been sent from a
descriptor defining the transmission of more packets and no responses have been received (in two-
outstanding-packets mode)

5 One packet sent and one waiting to be sent (SW): reads 1 when one packet has been sent from a
descriptor defining the transmission of more packets and the second one is still waiting to be trans-
mitted (in two-outstanding-packets mode)

4 Transmission Interrupt (TI). Indicates a transmission interrupt. Writing 1 clears this bit and the cor-
responding bit in the Interrupt Level 1 register.

3 Error Interrupt (EI). Indicates an error interrupt. Writing 1 clears this bit and the corresponding bit in
the Interrupt Level 1 register.

2 Bus Error (BE). Set when a bus memory access error occurs while a descriptor in this queue is pro-
cessed. The transmission queue is automatically disabled and the tail pointer is not incremented.
Writing 1 clears the bit, writing 0 has no effect.

1 Transmission Error (TE). Set when a transmission error occurs while a descriptor in this queue is
processed. The type of transmission error can be read from the descriptor and includes: Serial Rapid-
IO Error, Retry Error, and Timeout Error. Writing 1 clears the bit, writing 0 has no effect.

0 Transmission Active (TA). Indicates that a transmission is ongoing. This bit remains high as long as
the GRSRIO core has not closed the current descriptor.

Table 1221.TXMSG_SRC_ID/TXDBL_SRC_ID/TXIO_SRC_ID/TX_SRC_ID - Transmission Queue Source ID Register
31 0

SOURCE_ID

0

rw

31: 0 Source Identifier (SOURCE_ID). Source ID of this transmission queue.

Table 1222.TXMSG_TLPTR/TX_TLPTR/TXDBL_TLPTR/TXIO_TLPTR - Transmission Queue Tail Pointer Register
31 16 15 0

RESERVED TLPTR

0 0

r rw*

31: 16 RESERVED
15: 0 Message Transmission Queue Tail Pointer (TLPTR). The tail pointer is updated by the DMA engine

and is therefore read-only during operation. It is incremented by one for each message that was suc-
cessfully committed to the Serial RapidIO port. Writing to this field has only an effect when the
transmission queue is not enabled, that is, when EN is 0. The software can flush a disabled queue by
programming both the tail and head pointer to point to the same descriptor.

Table 1223.TXMSG_HDPTR/TXDBL_HDPTR/TXIO_HDPTR/TX_HDPTR - Transmission Queue Head Pointer
31 16 15 0

TLPTR_R HDPTR

0 0

r rw

31: 16 Transmission Queue Tail Pointer (READ ONLY) (TLPTR_R): read only value of the tail pointer to
allow the SW to know both head and tail pointer with just one access and take faster decisions.

15: 0 Transmission Queue Head Pointer (HDPTR). The head pointer is updated by software after setting
up the messages or IO operations payload in memory and the corresponding descriptors in the circu-
lar buffer.

Table 1220.TXMSG_STAT/TXDBL_STAT/TXIO_STAT/TX_STAT - Transmission Queue Status Register
GRIP, Sep 2018, Version 2018.3 993 www.cobham.com/gaisler

GRLIB IP Core
Table 1224.TXMSG_MADDR_MSW)/TXDBL_MADDR_MSW/TXIO_MADDR_MSW/TX_MADDR_MSW -
Transmission Queue Most Significant Word Start Address Register

This register is available only when CFG_AW is set to 64.

31 0

MADDRESS_MSW

0

rw*

31: 0 Most Significant Word of the Start Memory Address (MADDRESS_MSW). Address of the start of
the queue containing the transmission descriptors. Writing to this field has only an effect when the
transmission queue is not enabled, that is, when EN is 0. This register is reserved when CFG_AW =
32.

Table 1225.TXMSG_MADDR(_LSW)/TXDBL_MADDR(_LSW)/TXIO_MADDR(_LSW)/TX_MADDR(_LSW) -
Transmission Queue Most Significant Word Start Address Register

31 0

MADDRESS(_LSW)

0

rw*

31: 0 Least Significant Word of the Start Memory Address (MADDRESS(_LSW)). Address of the start of
the queue containing the transmission descriptors. When CFG_AW = 64, this field indicates the
LSW of such address. Writing to this field has only an effect when the transmission buffer is not
enabled, that is, when EN is 0.
GRIP, Sep 2018, Version 2018.3 994 www.cobham.com/gaisler

GRLIB IP Core

66.5.3 Message Reception Queues Register

Table 1226.RXMSG_CTRL - Message Reception Control Register, Queue i
31 23 22 21 16 15 10 9 6 5 4 3 2 1 0

MAX_SIZE R MBOXMSK MBOX CBD IF IE IR ST R EN

0 0 0 0 0 0 0 0 0 0 0

rw* r rw* rw* rw* rw rw rw rw r rw*

31: 23 Maximum allowed message size (MAX_SIZE). Only messages with a size up to MAX_SIZE are
accepted in this queue. Maximum size of the message in multiples of 8 bytes: Maximum Size =
(MAX_SIZE+1)*8 bytes. Writing to this field has only an effect when the reception queue is not
enabled, that is, when EN is 0.

22 RESERVED
21: 16 Mailbox Mask (MBOXMSK). Using this mask field, ranges of mailbox numbers can be accepted. If

a bit is set, the corresponding bit of the mailbox field MBOX is compared. The example in the data-
sheet is wrong: the formula to accept a packet is: (RECEIVED ID XOR QUEUE ID) AND MASK =
b000000. This means that to accept mailboxes from 0 to 3, ID must be set to b000000 and MASK
must be b111100.

15: 10 Mailbox Number (MBOX). Only messages addressed to the here defined mailbox number are
accepted. Writing to this field has only an effect when the reception queue is not enabled, that is,
when EN is 0.

9: 6 Circular Buffer Depth (CBD). Depth of the circular buffer of this message reception queue. A queue
can be configured to store between 2 and 65,536 messages: Depth = 2^(CBD+1). Writing to this
field has only an effect when the reception queue is not enabled, that is, when EN is 0.

5 Enable Full Interrupts (IF). If set, an interrupt is generated each time the reception queue becomes
full, that is, when also the FQ bit is set.

4 Enable Error Interrupts (IE). If set, interrupts are generated in case of reception errors or bus errors.
3 Enable Reception Interrupts (IR). If set, interrupts are generated for successful message receptions.

Reception interrupts must be enabled for each descriptor individually by setting the corresponding
RI bits in the message reception descriptors.

2 Stop on Reception Error (ST). If set, the reception queue is automatically disabled after a reception
error has occurred. The tail pointer is not incremented and is therefore pointing to the descriptor that
was processed during the occurrence of the error, allowing the software to quickly initiate some error
recovery procedure. If not set, the DMA engine increments the tail pointer and processes the next
descriptor (if available) in case of errors.

1 RESERVED
0 Enable Reception Queue (EN). If set, the DMA engine executes the reception of messages until the

circular buffer is full, that is, until the address of the tail pointer equals the address of the head
pointer - 1 (modulo buffer depth). Then, once the software increments the head pointer again, the
reception is automatically resumed. Writing 1 while the queue is disabled, enables the queue. Writ-
ing 0 while the queue is enabled disables the reception queue. If a reception is ongoing, the queue is
disabled after processing the current descriptor. When disabled and after all memory accesses in con-
junction with this descriptor have been completed, this bit clears to 0.

Table 1227.RXMSG_STAT - Message Reception Status Register, Queue i
31 8 7 6 5 4 3 2 1 0

RESERVED RI EI FI WL FQ BE RE RA

0 0 0 0 0 0 0 0 0

r wc wc wc wc wc wc wc wc

31: 8 RESERVED
7 Reception Interrupt (RI). Indicates a reception interrupt. Writing 1 clears this bit and the correspond-

ing bit in the Interrupt Level 1 register.
6 Error Interrupt (EI). Indicates an error interrupt. Writing 1 clears this bit and the corresponding bit in

the Interrupt Level 1 register.
GRIP, Sep 2018, Version 2018.3 995 www.cobham.com/gaisler

GRLIB IP Core
5 Full Interrupt (FI). Indicates a full interrupt. Writing 1 clears this bit and the corresponding bit in the
Interrupt Level 1 register.

4 Wrong Letter (WL). Set when a message with wrong letter number is received during the reception
of a multi-packet message. Writing 1 clears the bit, writing 0 has no effect.

3 Full Queue (FQ). Set when the reception queue becomes full, that is, when the address of the tail
pointer equals the address of the head pointer - 1 (modulo buffer depth). Writing 1 clears the bit,
writing 0 has no effect.

2 Bus Error (BE). Set when a bus memory access error occurs while a descriptor in this queue is pro-
cessed. The reception queue is automatically disabled and the tail pointer is not incremented. Writing
1 clears the bit, writing 0 has no effect.

1 Reception Error (RE). Set when a reception error occurs while a descriptor in this queue is pro-
cessed. The type of reception error can be read from the descriptor and includes: Serial RapidIO
Error and Truncation Error. Writing 1 clears the bit, writing 0 has no effect.

0 Reception Active (RA). Indicates that a reception is ongoing. This bit remains high as long as the
GRSRIO core has not closed the current descriptor.

Table 1228.RXMSG_DEST_ID - Message Reception Acceptance ID Register, Queue i
31 0

DEST_ID_ACC

0

rw*

31: 0 Accepted Destination ID (DEST_ID_ACC). Only messages addressed to the here defined destina-
tion ID are accepted. Writing to this field has only an effect when the reception queue is not enabled,
that is, when EN is 0.

Table 1229.RXMSG_DEST_ID - Message Reception Mask ID Register, Queue i
31 0

DEST_ID_MASK

0

rw*

31: 0 Accepted Destination ID Mask (DEST_ID_MASK). Using this mask field, ranges of destination IDs
can be accepted. If a bit is set, the corresponding bit of the accepted destination ID field
DEST_ID_ACC is compared. Writing to this field has only an effect when the reception queue is not
enabled, that is, when EN is 0.

Table 1230.RXMSG_TLPTR - Message Reception Queue Tail Pointer Register, Queue i
31 16 15 0

RESERVED TLPTR

0 0

r rw*

31: 16 RESERVED
15: 0 Message Reception Queue Tail Pointer (TLPTR). The tail pointer is updated by the DMA engine and

is therefore read-only during operation. It is incremented by one for each message that was success-
fully stored to memory. Writing to this field has only an effect when the reception queue is not
enabled, that is, when EN is 0. The software can flush a disabled queue by programming both the tail
and head pointer to point to the same descriptor.

Table 1227.RXMSG_STAT - Message Reception Status Register, Queue i
GRIP, Sep 2018, Version 2018.3 996 www.cobham.com/gaisler

GRLIB IP Core
Table 1231.RXMSG_HDPTR - Message Reception Queue Head Pointer Register, Queue i
31 16 15 0

TLPTR_R HDPTR

0 0

r rw

31: 16 Message Reception Queue Tail Pointer (READ ONLY) (TLPTR_R): read only value of the tail
pointer to allow the SW to know both head and tail pointer with just one access and take faster deci-
sions.

15: 0 Message Reception Queue Head Pointer (HDPTR). The head pointer is updated by software after
reserving the memory space for incoming messages and after setting up the descriptors in the circu-
lar buffer. The head pointer must be increased by one for each message that shall be received.

Table 1232.RXMSG_MADD_MSW - Message Reception Most Significant Word of the Start Address, Queue i

This register is only available when CFG_AW = 64.

31 0

MADDRESS_MSW

0

rw*

31: 0 Most Significant Word of the Reception Queue Start Memory Address (MADDRESS_MSW).
Address pointing to the start of the memory block storing the descriptors of this queue. Writing to
this field has only an effect when the reception queue is not enabled, that is, when EN is 0.

Table 1233.RXMSG_MADDR(_LSW) - Message Reception Least Significant Word of the Start Address, Queue i
31 0

MADDRESS(_LSW)

0

rw*

31: 0 Least Significant Word of the Reception Queue Start Memory Address (MADDRESS(_LSW)).
Address pointing to the start of the memory block storing the descriptors of this queue. When
CFG_AW is set to 64, it is the LSW of such address. Writing to this field has only an effect when the
reception queue is not enabled, that is, when EN is 0.
GRIP, Sep 2018, Version 2018.3 997 www.cobham.com/gaisler

GRLIB IP Core

66.5.4 Doorbell Message Reception Buffer Register

Table 1234.RXDBELL_CTRL - Doorbell Message Reception Configuration Register, Queue i
31 30 29 28 27 26 25 24 23 10 9 6 5 4 3 2 1 0

RESERVED CBD IF IE IR RES EN

0 0 0 0 0 0 0

r rw* rw rw rw r rw*

31: 10 RESERVED
9: 6 Circular Buffer Depth (CBD). Depth of this doorbell message reception buffer. A buffer can be con-

figured to store between 2 and 65,536 doorbell messages: Depth = 2^(CBD+1). Writing to this field
has only an effect when the reception buffer is not enabled, that is, when EN is 0.

15: 10 RESERVED
5 Enable Full Interrupts (IF). If set, an interrupt is generated each time the reception buffer becomes

full, that is, when also the FB bit is set.
4 Enable Error Interrupts (IE). If set, interrupts are generated in case of bus errors.
3 Enable Reception Interrupts (IR). If set, interrupts are generated for successful doorbell message

receptions. Reception interrupts must be enabled for each doorbell message individually by setting
the corresponding RI bits in the reception buffer words.

2: 1 RESERVED
0 Enable Reception Buffer (EN). If set, the DMA engine executes the reception of doorbell messages

until the circular buffer is full, that is, until the address of the tail pointer equals the address of the
head pointer - 1 (modulo buffer depth). Then, once the software increments the head pointer again,
the reception is automatically resumed. Writing 1 while the buffer is disabled, enables the buffer.
Writing 0 while the buffer is enabled disables the reception buffer. If a reception is ongoing, the buf-
fer is disabled after processing the current doorbell message. When disabled and after all memory
accesses to this buffer entry have been completed, this bit clears to 0.

Table 1235.RXDBELLMSG_STAT - Doorbell Message Reception Status Register, Queue i
31 6 5 4 3 2 1 0

RESERVED RI EI FI FB BE RA

0 0 0 0 0 0 0

r wc wc wc wc wc r

5 Reception Interrupt (RI). Indicates a reception interrupt. Writing 1 clears this bit and the correspond-
ing bit in the Interrupt Level 1 register.

4 Error Interrupt (EI). Indicates an error interrupt. Writing 1 clears this bit and the corresponding bit in
the Interrupt Level 1 register.

3 Full Interrupt (FI). Indicates a full interrupt. Writing 1 clears this bit and the corresponding bit in the
Interrupt Level 1 register.

2 Full Buffer (FB). Set when the reception buffer becomes full, that is, when the address of the tail
pointer equals the address of the head pointer - 1 (modulo buffer depth). Writing 1 clears the bit,
writing 0 has no effect.

1 Bus Error (BE). Set when a bus memory access error occurs while a doorbell message in this buffer
is processed. The reception buffer is automatically disabled and the tail pointer is not incremented.
Writing 1 clears the bit, writing 0 has no effect.

0 Reception Active (RA). Indicates that a reception is ongoing. This bit remains high as long as the
GRSRIO core has not closed the current buffer entry.
GRIP, Sep 2018, Version 2018.3 998 www.cobham.com/gaisler

GRLIB IP Core

Table 1236.RXDBL_MSK - Doorbell Reception Message Destination ID - Queue i
31 0

DEST_ID_ACC

0

rw*

31: 0 Accepted Destination ID (DEST_ID_ACC). Only doorbell messages addressed to the here defined
destination ID are accepted. Writing to this field has only an effect when the reception buffer is not
enabled, that is, when EN is 0.

Table 1237.RXDBL_DST_MSK - Doorbell Reception Message ID Mask - Queue i
31 0

DEST_ID_MASK

0

rw*

31: 0 Accepted Destination ID Mask (DEST_ID_MASK). Using this mask field, ranges of destination IDs
can be accepted. If a bit is set, the corresponding bit of the accepted destination ID field
DEST_ID_ACC is compared. Writing to this field has only an effect when the reception buffer is not
enabled, that is, when EN is 0.

Table 1238.RXDBELL_TLPTR - Doorbell Message Reception, Queue i, Register 4
31 16 15 0

RESERVED TLPTR

0 0

r rw*

31: 16 RESERVED
15: 0 Doorbell Message Reception Buffer Tail Pointer (TLPTR). The tail pointer is updated by the DMA

engine and is therefore read-only during operation. It is incremented by one for each doorbell mes-
sage that was successfully stored to memory. Writing to this field has only an effect when the recep-
tion buffer is not enabled, that is, when EN is 0. The software can flush a disabled buffer by
programming both the tail and head pointer to point to the same buffer entry.

Table 1239.RXDBELL_HDPTR - Doorbell Message Reception, Queue i, Register 5
31 16 15 0

TLPTR_R HDPTR

0 0

r rw

31: 16 Doorbell Message Reception Queue Tail Pointer (READ ONLY) (TLPTR_R): read only value of the
tail pointer to allow the SW to know both head and tail pointer with just one access and take faster
decisions.

15: 0 Doorbell Message Reception Queue Head Pointer (HDPTR). The head pointer is updated by soft-
ware after setting up the buffer entries in the circular buffer. The head pointer must be increased by
one for each doorbell message that shall be received.
GRIP, Sep 2018, Version 2018.3 999 www.cobham.com/gaisler

GRLIB IP Core
66.5.5 I/O Operation Reception Unit Registers

Table 1240.RXDBL_MADDR_MSW - Doorbell Message Reception, Queue i

This register is only available when CFG_AW = 64.

31 0

MADDRESS_MSW

0

rw*

31: 0 Most Significant Word of the Reception Buffer Start Memory Address (MADDRESS_MSW).
Address pointing to the start of the memory block reserved for the reception of doorbell messages.
Writing to this field has only an effect when the reception buffer is not enabled, that is, when EN is 0.

Table 1241.RXDBL_MADDR(_LSW) - Doorbell Message Reception, Queue i
31 0

MADDRESS(_LSW)

0

rw*

31: 0 (Least Significant Word of the) Start Memory Address of the Doorbell Queues (MAD-
DRESS_LSW). Address pointing to the start of the memory block reserved for the reception of door-
bell messages. Writing to this field has only an effect when the reception buffer is not enabled, that
is, when EN is 0.

Table 1242.RXIO_CONF - I/O Operation Reception Configuration Register
31 3 2 1 0

RESERVED IE IM EN

0 0 0 0

r rw rw rw*

31: 3 RESERVED
2 Enable Error Interrupts (IE). If set, interrupts are generated in case of bus errors or forbidden mem-

ory access errors.
1 Enable Memory Access Interrupts (IM). If set, interrupts are generated for successful memory I/O

operations.
0 Enable Memory I/O (EN). If set, incoming memory I/O operations are executed by the DMA engine,

otherwise packets are automatically rejected and an ERROR response is returned to the destination
node (for those memory I/O operations that require a response). Writing 1 while memory I/O opera-
tions are disabled, enables them. Writing 0 while memory I/O operations are enabled disables them.
If a memory access is ongoing, this access is allowed to finish. Then, once the access has been com-
pleted, this bit clears to 0.

Table 1243.RXIO_STAT - I/O Operation Reception Status Register
31 5 4 3 2 1 0

RESERVED RI EI BE ME RA

0 0 0 0 0 0

r wc wc wc wc r

31: 5 RESERVED
GRIP, Sep 2018, Version 2018.3 1000 www.cobham.com/gaisler

GRLIB IP Core
4 Reception Interrupt (RI). Indicates a reception interrupt. Writing 1 clears this bit and the correspond-
ing bit in the Interrupt Level 1 register.

3 Error Interrupt (EI). Indicates an error interrupt. Writing 1 clears this bit and the corresponding bit in
the Interrupt Level 1 register.

2 Bus Error (BE). Set when a bus memory access error occurs while an inbound I/O operation is pro-
cessed. The I/O reception unit is automatically disabled. Writing 1 clears the bit, writing 0 has no
effect.

1 Forbidden Memory Access Error (ME). Set when an inbound I/O operation tries to access a forbid-
den memory address. Writing 1 clears the bit, writing 0 has no effect.

0 Reception Active (RA). Indicates that a reception is ongoing. This bit remains high as long as the
GRSRIO core has not finished the memory access.

Table 1244.RXIO_LACCESS_MSW - Most Significant Word of the Last Access Register

This register is only available when CFG_AW is set to 64.

31 0

LACCESS_MSW

0

r

31: 0 Most Significant Word of the Last Accessed Address Causing a Memory Error(LACCESS_MSW).
The last accessed memory address can be read from this field.

Table 1245.RXIO_LACCESS(_LSW) - (Least Most Significant Word of the Last Access Register

31 0

LACCESS(_LSW)

0

r

31: 0 Last Accessed Address (LACCESS(_LSW)). The last accessed memory address can be read from
this field. When CFG_AW = 64 this is the LSW of such address.

Table 1246.RXIO_LACCESS(_LSW) - (Least Most Significant Word of the Last Access Register

This register is only available when CFG_AW is set to 64.

31 0

LAST_MEM_ERR_ADDR_MSW

0

r

31: 0 Last Accessed Address Causing a Memory Error (LACCESS(_LSW)). The last MSW of the last
accessed memory address causing a memory error can be read from this field.

Table 1247.RXIO_LACCESS(_LSW) - (Least Most Significant Word of the Last Access Register

31 0

LAST_MEM_ERR_ADDR(_LSW)

0

Table 1243.RXIO_STAT - I/O Operation Reception Status Register
GRIP, Sep 2018, Version 2018.3 1001 www.cobham.com/gaisler

GRLIB IP Core
66.5.6 MECS registers

The MECS registers are implemented according to RapidIO specification, Rev. 4.0 and only if
g_mecs is set to “true”. Timestamp Generation Extension Block Header is not implemented, as MECS
registers are not implemented together with the other CAR and CSR registers in the SRIOGEN2IP.

r

31: 0 Last Accessed Address (LACCESS(_LSW)). The last accessed memory address causing a memory
error can be read from this field. When CFG_AW = 64 this is the LSW of such address.

Table 1248.RXIO_CNTRS - Reception Unit Events Counters Register

31 16 15 0

NME NRI

0 0

r r

31: 16 Number of Memory Error (NME): Number of memory errors occured since last time
RXIO_STAT.ME was cleaned.

15: 0 Number of Reception Interrupts Error (NRI): Number of reception interrupts occured since last time
RXIO_STAT.RI was cleaned.

Table 1249.Timestamp CAR (T_CAR)- offset 0xF004
31 6 5 4 3 2 1 0

RESERVED SS MMS MSS CFS TMS TSS

0 0 1 1 0 0 0

r r r r r r r

31: 1 RESERVED
5 SMECS Supported: not supported (0)
4 MECS Master Supported: supported (1)
3 MECS Slave Supported: supported (1)
2 Common Clock Frequency supported (CFS): not supported (0)
1 Timestamp Master Supported (TMS): not supported (0)
0 Timestamp Slave Supported (TSS): not supported (0)

Table 1250.Timestamp Generator Status CSR (TGS_CSR) - offset 0xF008
31 4 3 2 1 0

RESERVED WST ST R CL

0 0 0 0 0

r wc r r r

31: 4 RESERVED

Table 1247.RXIO_LACCESS(_LSW) - (Least Most Significant Word of the Last Access Register
GRIP, Sep 2018, Version 2018.3 1002 www.cobham.com/gaisler

GRLIB IP Core
3 Timestamp Generator Was Stopped: Indicates if the Timestamp Generator counter has not
advanced because it has been set to an earlier time.
0b0 - Timestamp Generator has advanced continuously
since this bit was last cleared
0b1 - Timestamp Generator has temporarily stopped
advancing at least once since this bit was last cleared.
This bit is cleared by writing “1” to it.

2 Timestamp Generator Stopped: Indicates if the Timestamp Generator counter is not advancing
because it is being set to an earlier time.
0b0 - Timestamp Generator is advancing
0b1 - Timestamp Generator is temporarily not advancing

1 RESERVED
0 Timestamp Generator Clock Locked (CL): Indicates whether the Timestamp Generator counter is

operating from a good clock source.
0b0 - Timestamp Generator is not operating with a good clock source.
0b1 - Timestamp Generator is operating with a good clock source.

Table 1251.MECS Tick Interval CSR (MTI_CSR) - (0xF00C)
31 8 7 6 5 4 3 2 1 0

TICK_INT RES. LS LT LSTHR SS SR

0 0 0 0 00 0 0

rw r wc wc rw r rw

31: 8 Tick Interval (TICK_INT):
For a MECS Master, a MECS shall be sent when time has advanced by this many nanoseconds.
For an MECS Slave, time has advanced by this many nanoseconds whenever an MECS is received.
MECS transmission, and MECS timestamp synchronization for received MECS, is disabled when
this register is 0.

7: 6 RESERVED
5 Lost TSG Sync Error Status: This field indicates that the device has detected at least “Lost TSG Sync

Error Threshold” consecutive ticks have been lost.
0 - A Lost TSG Sync Error has not been detected
1 - A Lost TSG Sync Error has been detected
This bit must be written with 1 to be cleared.

4 Lost Tick Error Status 0 This field indicates if the device has detected at least one lost tick.
0 - A Lost Tick Error has not been detected
1 - A Lost Tick Error has been detected
This bit must be written with 1 to be cleared.

3: 2 Lost TSG Sync Error Threshold: controls the number of MECS/SMECS “ticks” that must be lost
before declaring the timestamp generator to be out of sync.
0b00 - Lost Tick Error Threshold is disabled
0b01 - If one tick is lost, declare the timestamp generator out of sync
0b10 - If two ticks are lost, declare the timestamp generator out of sync
0b11 - If three ticks are lost, declare the timestamp generator out of sync

Table 1250.Timestamp Generator Status CSR (TGS_CSR) - offset 0xF008
GRIP, Sep 2018, Version 2018.3 1003 www.cobham.com/gaisler

GRLIB IP Core
1 SMECS Selection (SS): The device uses MECS and doesn’t support SMECS (0)
0 MECS Time synchronization Role: Controls whether a device operates as a MECS Master or MECS

Slave.
0 - The device is operating as a MECS Slave
1 - The device is operating as a MECS Master

Table 1252.MECS Next Timestamp MSW CSR (NMSW_CSR) - offset 0xF0014
31 0

NMSW

0

rw

31: 0 Most significant 32 bits for the timestamp value used to update the Timestamp Generator MSW CSR
when a Multicast Event Control Symbol is received by an MECS Slave.
Most significant 32 bits of the timestamp value compared with the Timestamp Generator value to
determine when a Multicast Event Control Symbol must be transmitted by an MECS Master

Table 1253.MECS Next Timestamp LSW CSR (NLSW_CSR) - (0xF0018)
31 0

NLSW

0

rw

31: 0 Least significant 32 bits for the timestamp value used to update the Timestamp Generator LSW CSR
when a Multicast Event Control Symbol is received by an MECS Slave.
Least significant 32 bits of the timestamp value compared with the Timestamp Generator value to
determine when a Multicast Event Control Symbol shall be transmitted by an MECS Master

Table 1254.MECS Implementation Specific Settings Register (MECS_S) - (0xF0020)
31 30 28 27 16 15 11 10 8 7 0

EN RES. NS_LM RESERVED CMD NS_CC

0 0 0xFFF 0 0 0

rw r rw r rw rw

31 MECS Time Synchronization Protocol enabled when this field is set to 1.
30: 28 RESERVED
26: 16 Nanoseconds required to assume the MECS tick lost (NS_LM): when the MECS is set as a slave, the

core assumes that the MECS tick is lost when this amount of nanoseconds is elapsed after the local
timer reaches TICK_INT. When a tick is lost the Next Timestamp is incremented of
MTI_CSR.TICK_INT.

15: 11 RESERVED
8: 10 CMD of the Enhanced MECS (CMD): when the node is a MECS master, this field indicates the

CMD of the Enhanced MECS to be transmitted. When the node is a MECS slave, this field indicates
the CMD of the last MECS received, all values are considered valid ticks.

0: 7 Increment of local timer in nanoseconds every clock cycles: the Timestamp Generator will be incre-
mented of NS_CC every clock cycles. This field must be set accordingly to the frequency of the sys-
tems (some examples below)

Table 1255.MECS Timestamp Generator MSW CSR (MSW_CSR)- offset 0xF0034
31 0

MSW

0

rw

Table 1251.MECS Tick Interval CSR (MTI_CSR) - (0xF00C)
GRIP, Sep 2018, Version 2018.3 1004 www.cobham.com/gaisler

GRLIB IP Core
66.6 External doorbell interface

66.6.1 Outbound doorbell messages

The following timing diagram illustrates how outbound doorbell messages can be generated through
the external interface (if this feature is enabled):

The doorbell info value must be provided on DBELL_IN_VAL and kept stable together with
DBELL_IN_WEN asserted to 1 until the interface acknowledges the transmission by asserting
DBELL_IN_ACK. In case of errors, DBELL_IN_SRIO_ERR, DBELL_IN_RETRY_ERR or
DBELL_IN_TIMEOUT_ERR is asserted together with DBELL_IN_ACK (in the example above a
SRIO error occurred during transmission, that is, an ERROR response has been received from the
destination node).

66.6.2 Inbound doorbell messages

The following timing diagram illustrates how inbound doorbell messages are made available to the
external interface (if this feature is enabled):

31: 0 MSW Bits: Most significant 32 bits for the timestamp generator.

Table 1256.MECS Timestamp Generator LSW CSR (LSW_CSR)- offset 0xF0038
31 0

LSW

0

rw

31: 0 LSW Bits: Least significant 32 bits for the timestamp generator.

Table 1255.MECS Timestamp Generator MSW CSR (MSW_CSR)- offset 0xF0034

Figure 193. Skew and jitter timing waveforms

dbell_in_val[15:0]

dbell_in_wen

dbell_in_busy

doorbell info

clk

dbell_in_ack

dbell_in_srio_err

dbell_in_retry_err

dbell_in_timeout_err

dbell_out_val[15:0]

dbell_out_pulse

 info

clk

Figure 194. Skew and jitter timing waveforms
GRIP, Sep 2018, Version 2018.3 1005 www.cobham.com/gaisler

GRLIB IP Core
The doorbell info value is available at DBELL_OUT_VAL for one clock cycle when DBELL_OUT_-
PULSE is asserted to 1. DBELL_OUT_PULSE can be used as a write enable signal to a register or
memory that stores the doorbell info value for further processing.

66.7 Configuration options

Table 1257 shows the configuration options of the core (VHDL generics).

Table 1257.Configuration options

Generic Function Allowed values Default
g_tech Selects technology for RAM blocks. 0 - NTECH DEFMEMTECH
g_use_async_rst Use asynchronous instead of synchronous resets. FALSE, TRUE FALSE
g_data_width See section 66.4 for details. 32 - 128 32
g_max_burst_length See section 66.4 for details. 2 - 256 256
g_burst_chop_mask See section 66.4 for details. 8 - 4096 (AXI)

8 - 1024 (AHB)
4096 (AXI)
1024 (AHB)

g_be_rd_pipe See section 66.4 for details. 0-1 1
g_unalign_load_opt See section 66.4 for details. 0-1 0

g_bm_info_print1 When it is set to a value apart from 0, prints out
bus master configuration information during sim-
ulation.

- 1

g_axi_bm_id_width1 Determines the ID width for read address/data,
write address, and write response channels.

- 5

g_axi_bm_addr_width1 Determines the address width for both front-end
and back-end of the bus master.

32 - 64 32

g_no_dbell_rx Number of doorbell reception queues. 1 - 32 4

g_no_dbell_tx4 Number of doorbell transmission queues4 1 - 32 4

g_no_msg_rx Number of data message reception queues 1 - 32 4

g_no_hyb_tx3 Number of hybrid queues3 1-32 4

g_no_io_tx4 Number of IO memory access transmission
queues4

1-32 4

g_no_msg_tx4 Number of data message transmission queues4 1 - 32 4

g_init_nodes Number of data nodes initially available in SRIO
end point.

0 - 255 72

g_init_crq Number of CRQ entries initially available in
SRIO end point.

0 - 255 64

g_wm_p0 Watermark for priority 0. 0 - 255 72
GRIP, Sep 2018, Version 2018.3 1006 www.cobham.com/gaisler

GRLIB IP Core
1 Only available in grsrio_gen2axi.vhd
2 Only available in grsrio_gen2ahb.vhd
3 Effective only when g_hyb_que is set to “true”
4 Effective only when g_hyb_que is set to “false”

The core is configurate as 32 or 64-bit address according to the value of CFG_AW in grsrio_conf.vhd.

66.8 Signal Descriptions

Table 1258 shows the interface signals of the core (VHDL ports).

g_wm_p1 Watermark for priority 1. 0 - 255 63
g_wm_p2 Watermark for priority 2. 0 - 255 54
g_wm_p3 Watermark for priority 3. 0 - 255 45
g_wm_p4 Watermark for priority 4. 0 - 255 36
g_wm_p5 Watermark for priority 5. 0 - 255 27
g_wm_p6 Watermark for priority 6. 0 - 255 18
g_wm_p7 Watermark for priority 7. 0 - 255 9
g_8_in_win Choose between 4 (false) and 8 inbound windows

(true)
FALSE,TRUE FALSE

g_mecs Enable support for enhanced MECS (true) FALSE,TRUE FALSE
g_hyb_que If set to “true” each TX queues can handle every

kind of operations.
FALSE,TRUE FALSE

Table 1258.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input AHB reset Low
CLK N/A Input AHB clock -
SRIO_RSTN N/A Input SRIO physical layer reset Low
SRIO_CLK N/A Input SRIO physical layer clock -

APBO_PRDATA[31:0]2 N/A Output APB slave: Read Data Bus -

APBO_PIRQ2 N/A Output APB slave: Interrupt Output High

APBI_PENABLE2 N/A Input APB slave: Strobe High

APBI_PWRITE2 N/A Input APB slave: Transfer Direction High

APBI_PADDR[31:0]2 N/A Input APB slave: Address Bus -

APBI_PWDATA[31:0]2 N/A Input APB slave: Write Data Bus -

APBI_PSEL2 N/A Input APB slave: Select High

AHBMO_HBUSREQ2 N/A Output AHB master: Bus Request High

AHBMO_HLOCK2 N/A Output AHB master: Locked Transfers High

AHBMO_HTRANS[1:0]2 N/A Output AHB master: Transfer Type -

AHBMO_HADDR[31:0]2 N/A Output AHB master: Address Bus -

AHBMO_HWRITE2 N/A Output AHB master: Transfer Direction High

AHBMO_HSIZE[2:0]2 N/A Output AHB master: Transfer Size -

AHBMO_HBURST[2:0]2 N/A Output AHB master: Burst Type -

AHBMO_HPROT[3:0]2 N/A Output AHB master: Protection Control -

Table 1257.Configuration options

Generic Function Allowed values Default
GRIP, Sep 2018, Version 2018.3 1007 www.cobham.com/gaisler

GRLIB IP Core
AHBMO_HWDATA
[g_ahb_width-1:0]2

N/A Output AHB master: Write Data Bus -

AHBMI_HGRANT2 N/A Input AHB master: Bus Grant High

AHBMI_HREADY2 N/A Input AHB master: Transfer Done High

AHBMI_HRESP[1:0]2 N/A Input AHB master: Transfer Response -

AHBMI_HRDATA

[g_ahb_width-1:0]2

N/A Input AHB master: Read Data Bus -

AXI_AW_ID
[axi_bm_id_width-1:0]1

N/A Output AXI4 master write address channel: Write
Address ID

-

AXI_AW_ADDR
[axi_bm_addr_width-1:0]1

N/A Output AXI4 master write address channel: Write
Address.

-

AXI_AW_LEN [7:0]1 N/A Output AXI4 Master write address channel: Burst
Length

-

 AXI_AW_SIZE [2:0]1 N/A Output AXI4 master write address channel: Burst Size -

 AXI_AW_BURST [1:0]1 N/A Output AXI4 master write address channel: Burst Type -

 AXI_AW_LOCK [1:0]1 N/A Output AXI4 master write address channel: Lock Type -

 AXI_AW_CACHE [3:0]1 N/A Output AXI4 master write address channel: Memory
type

-

 AXI_AW_PROT [2:0]1 N/A Output AXI4 master write address channel: Protection
type

-

 AXI_AW_VALID1 N/A Output AXI4 master write address channel: Write
address valid

High

 AXI_AW_QOS [3:0]1 N/A Output AXI4 master write address channel: Quality of
Service

-

 AXI_AW_READY1 N/A Input AXI4 master write address channel: Write
address ready.

High

 AXI_W_DATA
[be_dw-1:0]1

N/A Output AXI4 write data channel signals: Write data. -

 AXI_W_STRB
[log2(be_dw)-1:0]1

N/A Output AXI4 write data channel signals: Write strobes High

 AXI_W_LAST1 N/A Output AXI4 write data channel signalsWrite last. High

 AXI_W_VALID1 N/A Output AXI4 write data channel signalsWrite valid. High

 AXI_B_READY1 N/A Output AXI4 write response channel signals: Response
ready

High

 AXI_B_ID
[axi_bm_id_width-1 : 0]1

N/A Input AXI4 write response channel signals: Response
ID tag

-

 AXI_B_RESP [1 downto 0]1 N/A Input AXI4 write response channel signals: Write
response

-

 AXI_B_VALID1 N/A Input AXI4 write response channel signals: Write
response valid

High

 AXI_AR_ID
[axi_bm_id_width-1:0]1

N/A Output AXI4 read address channel signals: Read address
ID

-

 axi_ar_addr
[axi_bm_addr_width-1:0]1

N/A Output AXI4 read address channel signals: Read address -

Table 1258.Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 1008 www.cobham.com/gaisler

GRLIB IP Core
 AXI_AR_LEN [7:0]1 N/A Output AXI4 read address channel signals: Burst length. -

 AXI_AR_SIZE [2:0]1 N/A Output AXI4 read address channel signals: Burst size -

 AXI_AR_BURST [1:0]1 N/A Output AXI4 read address channel signals: Burst type. -

 AXI_AR_LOCK [1:0]1 N/A Output AXI4 read address channel signals: Lock type. -

 AXI_AR_CACHE [3:0]1 N/A Output AXI4 read address channel signals: Memory
type

-

 AXI_AR_PROT [2:0]1 N/A Output AXI4 read address channel signals: Protection
type.

-

 AXI_AR_VALID1 N/A Output AXI4 read address channel signals: Read address
valid

High

 AXI_AR_QOS[3:0]1 N/A Output AXI4 read address channel signals: Quality of
Service

-

 AXI_AR_READY1 N/A Input AXI4 read address channel signals: Read address
ready.

High

 AXI_R_READY1 N/A Output AXI4 read address channel signals: Read ready. High

 AXI_R_ID
[axi_bm_id_width-1:0]1

N/A Input AXI4 read address channel signals: Read ID tag. -

 AXI_R_DATA [be_dw-1:0]1 N/A Input AXI4 read address channel signals -

 AXI_R_RESP [1:0]1 N/A Input AXI4 read address channel signals -

 AXI_R_LAST1 N/A Input AXI4 read address channel signals High

 AXI_R_VALID1 N/A Input AXI4 read address channel signals High

TIMESTAMP[63:0] N/A Input External time-stamp value, used to timestamp
descriptors if g_mecs is set to false or MECS are
not enabled.

-

DBELL_OUT_VAL[15:0] N/A Output Doorbell info value of inbound message, valid
when DBELL_OUT_PULSE is pulsed.

-

DBELL_OUT_PULSE N/A Output Pulse signaling that outputted doorbell info value
is valid.

High

DBELL_IN_VAL[15:0] N/A Input Doorbell info value of outbound message. Must
be kept stable until DBELL_IN_ACK goes high.

-

DBELL_IN_WEN N/A Input Doorbell info write enable signal. Must be
asserted together with DBELL_IN_VAL and
kept asserted until DBELL_IN_ACK goes high.

High

DBELL_IN_BUSY N/A Output Asserted while external outbound doorbell mes-
sage is processed.

High

DBELL_IN_ACK N/A Output Pulse acknowledging transmission of external
outbound doorbell message.

High

DBELL_IN_SRIO_ERR N/A Output Indicates a SRIO error during doorbell transmis-
sion. Valid together with DBELL_IN_ACK.

High

DBELL_IN_RETRY_ERR N/A Output Indicates a retry error during doorbell transmis-
sion. Valid together with DBELL_IN_ACK.

High

DBELL_IN_TIMEOUT_ERR N/A Output Indicates a timeout error during doorbell trans-
mission. Valid together with DBELL_IN_ACK.

High

MECS_CAPTURED_IN[7:0] N/A Input The SRIO end point signals to this IP core the
reception of an extended MECS with cmd = i
when the i-th signal changes

Edge

MECS_TRIGGER_OUT[7:0] N/A Output Extended MECS with cmd = i are triggered in
the endpoint when the ith signal changes

Edge

Table 1258.Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 1009 www.cobham.com/gaisler

GRLIB IP Core
66.9 Clocks

The GRSRIO core operates in the CLK clock domain. Clock domain crossing between the CLK clock
domain and the SRIO_CLK clock domain is accomplished by various CDC techniques.
The SRIO end point provides the signal SRIO_TX_CCOUNT[4:0] to the GRSRIO core, which is
synchronous to and valid on every clock cycle of SRIO_CLK. Lost samples corrupt the flow control
and must therefore be avoided. As a consequence, the AHB clock must be greater than or equal the
SRIO clock. Lost samples are reported in CORECONF1.FE.

66.10 Resets

To ensure proper initialisation of synchronous logic related to the clock domain crossing between the
SRIO_CLK and CLK clock domain, both the SRIO_RSTN and RSTN reset must be asserted for at
least three clock cycles in the slower clock domain.

SRIO_TX_DATA[127:0] N/A Output Outbound UDI packet data bus -
SRIO_TX_VALID N/A Output When asserted, SRIO_TX_DATA is valid. High
SRIO_TX_EOP N/A Output When asserted, data SRIO_TX_DATA is the end

of the packet.
High

SRIO_TX_HWORD[2:0] N/A Output Indicates which half-words of SRIO_TX_DATA
are valid.

-

SRIO_TX_HALT_ACK N/A Output Two-way handshake to SRIO_TX_HALT. High
SRIO_TX_CCOUNT[4:0] N/A Input The value signals the number of data nodes that

have been freed by the physical layer.
-

SRIO_TX_HALT N/A Input When asserted, the GRSRIO IP core stops
Egress traffic after finishing the current in-flight
packet.

High

SRIO_RX_FULL N/A Output Used by the GRSRIO IP core to pause the trans-
fer of packets.

High

SRIO_RX_RELEASE[5:0] N/A Output Indicates the number of ingress FIFO entries that
have been freed by the GRSRIO IP core.

-

SRIO_RX_DATA[127:0] N/A Input Inbound UDI packet data bus. -
SRIO_RX_VALID N/A Input When asserted, SRIO_RX_DATA is valid. High
SRIO_RX_EOP N/A Input When asserted, SRIO_RX_DATA is the end of

the packet
High

SRIO_RX_HWORD[2:0] N/A Input Indicates which half-words of SRIO_RX_DATA
are valid.

-

SRIO_RX_STOMP N/A Input Asserted together with SRIO_RX_EOP to flag a
packet with CRC error (not supported by
GRSRIO IP core)

High

1 Only available in grsrio_gen2axi.vhd
2 Only available in grsrio_gen2ahb.vhd

Table 1258.Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 1010 www.cobham.com/gaisler

GRLIB IP Core

66.11 Library dependencies

Table 1259 shows libraries used when instantiating the core (VHDL libraries).

66.12 Component declaration

For the AXI4 wrapper:
component grsrio_gen2axi
 generic (
 g_tech : integer;
 g_use_async_rst : boolean;
 g_data_width : integer range 32 to 128;
 g_max_burst_length : integer range 2 to 64;
 g_burst_chop_mask : integer range 8 to 4096;
 g_be_rd_pipe : integer range 0 to 1;
 g_unalign_load_opt : integer range 0 to 1;
 axi_bm_id_width : integer;
 axi_bm_addr_width : integer;
 g_bm_info_print : integer;
 g_no_dbell_tx : integer range 1 to 32;
 g_no_dbell_rx : integer range 1 to 32;
 g_no_msg_tx : integer range 1 to 32;
 g_no_msg_rx : integer range 1 to 32;
 g_no_io_tx : integer range 1 to 32;
 g_no_hyb_tx : integer range 1 to 32;
 g_init_nodes : integer range 0 to 255;
 g_init_crq : integer range 0 to 255;
 g_wm_p0 : integer range 0 to 255;
 g_wm_p1 : integer range 0 to 255;
 g_wm_p2 : integer range 0 to 255;
 g_wm_p3 : integer range 0 to 255;
 g_wm_p4 : integer range 0 to 255;
 g_wm_p5 : integer range 0 to 255;
 g_wm_p6 : integer range 0 to 255;
 g_wm_p7 : integer range 0 to 255;
 g_8_in_win : boolean;
 g_mecs : boolean;
 g_hyb_que : boolean;
 pindex : integer range 0 to NAPBSLV-1;
 pirq : integer range 0 to NAHBIRQ-1;
 paddr : integer range 0 to 16#FFF#;
 pmask : integer range 0 to 16#FFF#);
 port (
 clk : in std_logic;
 clk_lock : in std_logic;
 rstn : in std_logic;
 srio_clk : in std_logic;
 srio_rstn : in std_logic;
 soft_reset : out std_logic;
 timestamp : in std_logic_vector(63 downto 0);
 dbell_out_val : out std_logic_vector(15 downto 0);
 dbell_out_pulse : out std_logic;
 dbell_in_val : in std_logic_vector(15 downto 0);
 dbell_in_wen : in std_logic;
 dbell_in_busy : out std_logic;
 dbell_in_ack : out std_logic;
 dbell_in_srio_err : out std_logic;

Table 1259.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Types AMBA signal type definitions
GRIP, Sep 2018, Version 2018.3 1011 www.cobham.com/gaisler

GRLIB IP Core

 dbell_in_retry_err : out std_logic;
 dbell_in_timeout_err : out std_logic;
 apbo_prdata : out std_logic_vector(31 downto 0);
 apbo_pirq : out std_logic;
 apbo_pindex : out integer range 0 to NAPBSLV -1;
 apbo_pconfig : out apb_config_type;
 apbi_penable : in std_logic;
 apbi_pwrite : in std_logic;
 apbi_paddr : in std_logic_vector(31 downto 0);
 apbi_pwdata : in std_logic_vector(31 downto 0);
 apbi_psel : in std_logic;
 axi_aw_id : out std_logic_vector(axi_bm_id_width-1 downto 0);
 axi_aw_addr : out std_logic_vector(axi_bm_addr_width-1 downto 0);
 axi_aw_len : out std_logic_vector(7 downto 0);
 axi_aw_size : out std_logic_vector(2 downto 0);
 axi_aw_burst : out std_logic_vector(1 downto 0);
 axi_aw_lock : out std_logic;
 axi_aw_cache : out std_logic_vector(3 downto 0);
 axi_aw_prot : out std_logic_vector(2 downto 0);
 axi_aw_valid : out std_logic;
 axi_aw_qos : out std_logic_vector(3 downto 0);
 axi_aw_ready : in std_logic;
 axi_w_data : out std_logic_vector(g_data_width-1 downto 0);
 axi_w_strb : out std_logic_vector((g_data_width/8)-1 downto 0);
 axi_w_last : out std_logic;
 axi_w_valid : out std_logic;
 axi_w_ready : in std_logic;
 axi_b_ready : out std_logic;
 axi_b_id : in std_logic_vector(axi_bm_id_width-1 downto 0);
 axi_b_resp : in std_logic_vector(1 downto 0);
 axi_b_valid : in std_logic;
 axi_ar_id : out std_logic_vector(axi_bm_id_width-1 downto 0);
 axi_ar_addr : out std_logic_vector(axi_bm_addr_width-1 downto 0);
 axi_ar_len : out std_logic_vector(7 downto 0);
 axi_ar_size : out std_logic_vector(2 downto 0);
 axi_ar_burst : out std_logic_vector(1 downto 0);
 axi_ar_lock : out std_logic;
 axi_ar_cache : out std_logic_vector(3 downto 0);
 axi_ar_prot : out std_logic_vector(2 downto 0);
 axi_ar_valid : out std_logic;
 axi_ar_qos : out std_logic_vector(3 downto 0);
 axi_ar_ready : in std_logic;
 axi_r_ready : out std_logic;
 axi_r_id : in std_logic_vector(axi_bm_id_width-1 downto 0);
 axi_r_data : in std_logic_vector(g_data_width-1 downto 0);
 axi_r_resp : in std_logic_vector(1 downto 0);
 axi_r_last : in std_logic;
 axi_r_valid : in std_logic;
 srio_tx_data : out std_logic_vector(127 downto 0);
 srio_tx_eop : out std_logic;
 srio_tx_hword : out std_logic_vector(2 downto 0);
 srio_tx_valid : out std_logic;
 srio_tx_halt_ack : out std_logic;
 srio_tx_halt : in std_logic;
 srio_tx_ccount : in std_logic_vector(4 downto 0);
 srio_rx_full : out std_logic;
 srio_rx_release : out std_logic_vector(5 downto 0);
 srio_rx_data : in std_logic_vector(127 downto 0);
 srio_rx_valid : in std_logic;
 srio_rx_eop : in std_logic;
 srio_rx_hword : in std_logic_vector(2 downto 0);
 srio_rx_stomp : in std_logic;
 send_mecs : out std_logic_vector(7 downto 0);
 received_mecs : in std_logic_vector(7 downto 0));
GRIP, Sep 2018, Version 2018.3 1012 www.cobham.com/gaisler

GRLIB IP Core

end component;

For the AHB wrapper:
component grsrio_gen2ahb
 generic (
 g_tech : integer;
 g_use_async_rst : boolean;
 g_data_width : integer range 32 to 128;
 g_addr_width : integer range 32 to 64;
 g_max_burst_length : integer range 2 to 64;
 g_burst_chop_mask : integer range 8 to 1024;
 g_be_rd_pipe : integer range 0 to 1;
 g_unalign_load_opt : integer range 0 to 1;
 g_no_dbell_tx : integer range 1 to 32;
 g_no_dbell_rx : integer range 1 to 32;
 g_no_msg_tx : integer range 1 to 32;
 g_no_msg_rx : integer range 1 to 32;
 g_no_io_tx : integer range 1 to 32;
 g_no_hyb_tx : integer range 1 to 32;
 g_init_nodes : integer range 0 to 255;
 g_init_crq : integer range 0 to 255;
 g_wm_p0 : integer range 0 to 255;
 g_wm_p1 : integer range 0 to 255;
 g_wm_p2 : integer range 0 to 255;
 g_wm_p3 : integer range 0 to 255;
 g_wm_p4 : integer range 0 to 255;
 g_wm_p5 : integer range 0 to 255;
 g_wm_p6 : integer range 0 to 255;
 g_wm_p7 : integer range 0 to 255;
 g_8_in_win : boolean;
 g_mecs : boolean;
 g_hyb_que : boolean;
 pindex : integer range 0 to NAPBSLV-1;
 pirq : integer range 0 to NAHBIRQ-1;
 paddr : integer range 0 to 16#FFF#;
 pmask : integer range 0 to 16#FFF#);
 port (
 clk : in std_logic;
 clk_lock : in std_logic;
 rstn : in std_logic;
 srio_clk : in std_logic;
 srio_rstn : in std_logic;
 soft_reset : out std_logic;
 timestamp : in std_logic_vector(63 downto 0);
 dbell_out_val : out std_logic_vector(15 downto 0);
 dbell_out_pulse : out std_logic;
 dbell_in_val : in std_logic_vector(15 downto 0);
 dbell_in_wen : in std_logic;
 dbell_in_busy : out std_logic;
 dbell_in_ack : out std_logic;
 dbell_in_srio_err : out std_logic;
 dbell_in_retry_err : out std_logic;
 dbell_in_timeout_err : out std_logic;
 apbo_prdata : out std_logic_vector(31 downto 0);
 apbo_pirq : out std_logic;
 apbo_pindex : out integer range 0 to NAPBSLV -1;
 apbo_pconfig : out apb_config_type;
 apbi_penable : in std_logic;
 apbi_pwrite : in std_logic;
 apbi_paddr : in std_logic_vector(31 downto 0);
 apbi_pwdata : in std_logic_vector(31 downto 0);
 apbi_psel : in std_logic;
 ahbmo_hbusreq : out std_logic;
GRIP, Sep 2018, Version 2018.3 1013 www.cobham.com/gaisler

GRLIB IP Core

 ahbmo_hlock : out std_logic;
 ahbmo_htrans : out std_logic_vector(1 downto 0);
 ahbmo_haddr : out std_logic_vector(g_addr_width-1 downto 0);
 ahbmo_hwrite : out std_logic;
 ahbmo_hsize : out std_logic_vector(2 downto 0);
 ahbmo_hburst : out std_logic_vector(2 downto 0);
 ahbmo_hprot : out std_logic_vector(3 downto 0);
 ahbmo_hwdata : out std_logic_vector(g_data_width-1 downto 0);
 ahbmi_hgrant : in std_logic;
 ahbmi_hready : in std_logic;
 ahbmi_hresp : in std_logic_vector(1 downto 0);
 ahbmi_hrdata : in std_logic_vector(g_data_width-1 downto 0);
 srio_tx_data : out std_logic_vector(127 downto 0);
 srio_tx_eop : out std_logic;
 srio_tx_hword : out std_logic_vector(2 downto 0);
 srio_tx_valid : out std_logic;
 srio_tx_halt_ack : out std_logic;
 srio_tx_halt : in std_logic;
 srio_tx_ccount : in std_logic_vector(4 downto 0);
 srio_rx_full : out std_logic;
 srio_rx_release : out std_logic_vector(5 downto 0);
 srio_rx_data : in std_logic_vector(127 downto 0);
 srio_rx_valid : in std_logic;
 srio_rx_eop : in std_logic;
 srio_rx_hword : in std_logic_vector(2 downto 0);
 srio_rx_stomp : in std_logic;
 send_mecs : out std_logic_vector(7 downto 0);
 received_mecs : in std_logic_vector(7 downto 0));
end component;

66.13 Instantiation

This example shows how the core can be instantiated.
library grlib;
use grlib.amba.all;

..

grsrio_gen2axi_1 : grsrio_gen2axi
 generic map (
 g_tech => CFG_MEMTECH,
 g_use_async_rst => false,
 g_data_width => 128,
 g_max_burst_length => 16,
 g_be_rd_pipe => 0,
 g_unalign_load_opt => 1,
 axi_bm_id_width => 4,
 axi_bm_addr_width => 32,
 g_bm_info_print => 0,
 g_no_dbell_tx => 6,
 g_no_dbell_rx => 6,
 g_no_msg_tx => 6,
 g_no_msg_rx => 6,
 g_no_io_tx => 6,
 g_no_hyb_tx => 6,
 g_init_nodes => 72,
 g_init_crq => 64,
 g_wm_p0 => 72,
 g_wm_p1 => 63,
 g_wm_p2 => 54,
 g_wm_p3 => 45,
 g_wm_p4 => 36,
 g_wm_p5 => 27,
GRIP, Sep 2018, Version 2018.3 1014 www.cobham.com/gaisler

GRLIB IP Core

 g_wm_p6 => 18,
 g_wm_p7 => 9,
 g_8_in_win => true,
 g_mecs => true,
 g_hyb_que => true,
 pindex => 6,
 pirq => 6,
 paddr => 16#000#,
 pmask => 16#000#)
 port map (
 clk => clkm,
 clk_lock => lock,
 rstn => grsrio_rst,
 srio_clk => udi_clk,
 srio_rstn => udi_rst,
 soft_reset => soft_reset,
 timestamp => timestamp,
 dbell_out_val => dbell_out_val,
 dbell_out_pulse => dbell_out_pulse,
 dbell_in_val => dbell_in_val,
 dbell_in_wen => dbell_in_wen,
 dbell_in_busy => dbell_in_busy,
 dbell_in_ack => dbell_in_ack,
 dbell_in_srio_err => dbell_in_srio_err,
 dbell_in_retry_err => dbell_in_retry_err,
 dbell_in_timeout_err => dbell_in_timeout_err,
 apbo_prdata => apbo(6).prdata,
 apbo_pirq => apbo(6).pirq(6),
 apbo_pindex => apbo(6).pindex,
 apbo_pconfig => apbo(6).pconfig,
 apbi_penable => apbi.penable,
 apbi_pwrite => apbi.pwrite,
 apbi_paddr => apbi.paddr,
 apbi_pwdata => apbi.pwdata,
 apbi_psel => apbi.psel(6),
 axi_aw_id => grsrio_axi_awid,
 axi_aw_addr => grsrio_axi_awaddr,
 axi_aw_len => grsrio_axi_awlen,
 axi_aw_size => grsrio_axi_awsize,
 axi_aw_burst => grsrio_axi_awburst,
 axi_aw_lock => grsrio_axi_awlock,
 axi_aw_cache => grsrio_axi_awcache,
 axi_aw_prot => grsrio_axi_awprot,
 axi_aw_valid => grsrio_axi_awvalid,
 axi_aw_qos => grsrio_axi_awqos,
 axi_aw_ready => grsrio_axi_awready,
 axi_w_data => grsrio_axi_wdata,
 axi_w_strb => grsrio_axi_wstrb,
 axi_w_last => grsrio_axi_wlast,
 axi_w_valid => grsrio_axi_wvalid,
 axi_w_ready => grsrio_axi_wready,
 axi_b_ready => grsrio_axi_bready,
 axi_b_id => grsrio_axi_bid,
 axi_b_resp => grsrio_axi_bresp,
 axi_b_valid => grsrio_axi_bvalid,
 axi_ar_id => grsrio_axi_arid,
 axi_ar_addr => grsrio_axi_araddr,
 axi_ar_len => grsrio_axi_arlen,
 axi_ar_size => grsrio_axi_arsize,
 axi_ar_burst => grsrio_axi_arburst,
 axi_ar_lock => grsrio_axi_arlock,
 axi_ar_cache => grsrio_axi_arcache,
 axi_ar_prot => grsrio_axi_arprot,
 axi_ar_valid => grsrio_axi_arvalid,
GRIP, Sep 2018, Version 2018.3 1015 www.cobham.com/gaisler

GRLIB IP Core

 axi_ar_qos => grsrio_axi_arqos,
 axi_ar_ready => grsrio_axi_arready,
 axi_r_ready => grsrio_axi_rready,
 axi_r_id => grsrio_axi_rid,
 axi_r_data => grsrio_axi_rdata,
 axi_r_resp => grsrio_axi_rresp,
 axi_r_last => grsrio_axi_rlast,
 axi_r_valid => grsrio_axi_rvalid,
 srio_tx_data => srio_tx_data,
 srio_tx_eop => srio_tx_eop,
 srio_tx_hword => srio_tx_hword,
 srio_tx_valid => srio_tx_valid,
 srio_tx_halt_ack => srio_tx_halt_ack,
 srio_tx_halt => srio_tx_halt,
 srio_tx_ccount => srio_tx_ccount,
 srio_rx_full => srio_rx_full,
 srio_rx_release => srio_rx_release,
 srio_rx_data => srio_rx_data,
 srio_rx_valid => srio_rx_valid,
 srio_rx_eop => srio_rx_eop,
 srio_rx_hword => srio_rx_hword,
 srio_rx_stomp => srio_rx_stomp,
 send_mecs => send_mecs,

received_mecs => received_mecs);
GRIP, Sep 2018, Version 2018.3 1016 www.cobham.com/gaisler

GRLIB IP Core

67 GRSYSMON - AMBA Wrapper for Xilinx System Monitor

67.1 Overview

The core provides an AMBA AHB interface to the Xilinx System Monitor present in Virtex-5 FPGAs.
All Xilinx System Monitor registers are mapped into AMBA address space. The core also includes
functionality for generating interrupts triggered by System Monitor outputs, and allows triggering of
conversion start via a separate register interface.

67.2 Operation

67.2.1 Operational model

The core has two I/O areas that can be accessed via the AMBA bus; the core configuration area and
the System Monitor register area.

67.2.2 Configuration area

The configuration area, accessed via AHB I/O bank 0, contains two registers that provide status infor-
mation and allow the user to generate interrupts from the Xilinx System Monitor’s outputs. Write
accesses to the configuration area have no AHB wait state and read accesses have one wait state. To
ensure correct operation, only word (32-bit) sized accesses should be made to the configuration area.

67.2.3 System Monitor register area

The System Monitor register area is located in AHB I/O bank 1 and provides a direct-mapping to the
System Monitor’s Dynamic Reconfiguration Port. The System Monitor’s first register is located at
address offset 0x00000000 in this area.
Since the System Monitor documentation defines its addresses using half-word addressing, and
AMBA uses byte-addressing, the addresses in the System Monitor documentation should be multi-
plied to get the correct offset in AMBA memory space. If the Configuration register bit WAL is ‘0’
the address in System Monitor documentation should be multiplied by two to get the address mapped
by the AMBA wrapper. A System Monitor register with address n is at AMBA offset 2*n. If the Con-
figuration register bit WAL is ‘1’, all registers start at a word boundary and the address in the System
Monitor documentation should be multiplied by four to get the address mapped in AMBA address
space. In this case, a System Monitor register with address n is at AMBA offset 4*n.
The wrapper always makes a single register access as the result of an access to the System Monitor
register area. The size of the AMBA access is not checked and to ensure correct operation the mapped
area should only be accessed using half-word (16-bit) accesses.

Figure 195. Block diagram

A
M
B
A

A
H
B

AHB control

Register interface

CONVST

ALM[2:0]

CONVSTCLK
VAUXN[15:0]

OT
EOC
EOS

XILINX
SYSMON
MACRO

VAUXP[15:0]
VN
VP

CHANNEL[2:0]
GRIP, Sep 2018, Version 2018.3 1017 www.cobham.com/gaisler

GRLIB IP Core

If the core has been implemented with AMBA split support, it will issue a SPLIT response to all
accesses made to the mapped System Monitor registers. If the core is implemented without AMBA
SPLIT support, wait states will be inserted until the System Monitor signals completion of a register
access.
For a description of the System Monitor’s capabilities and configuration, please refer to the Xilinx
Virtex-5 FPGA System Monitor User Guide.

67.3 Registers

The core is programmed through registers mapped into AHB address space. Only 32-bit single-
accesses to the registers are supported.

Table 1260.GRSYSMON registers

AHB address offset Register
0x00 Configuration register
0x04 Status register
GRIP, Sep 2018, Version 2018.3 1018 www.cobham.com/gaisler

GRLIB IP Core

67.3.1

Table 1261.0x00 - CONF - Configuration register

Configuration Register

67.3.2 Status Register

31 31 13 12 11 9 8 7 6 5 4 3 2 1 0

WAL RESERVED OT_IEN ALM_IEN RESERVED CON-
VST

EOS_
IEN

EOC_
IEN

BUSY_
IEN

JB_IEN JL_IEN JM_IEN

* 0 0 0 0 0 0 0 0 0 0 0

r r rw rw r rw* rw rw rw rw rw rw

31 Word aligned registers (WAL) - If this bit is set to ‘1’ each System Monitor memory mapped register
start at a word boundary.

30 :13 RESERVED
12 Over temperature Interrupt Enable (OT_IEN) - If this bit is set to ‘1’ the core will generate an inter-

rupt when the corresponding bit in the Status register is set to ‘1’. This bit is automatically cleared
after the interrupt has been generated.

11:9 Alarm Interrupt Enable (ALM_IEN) - If a bit in this field is set to ‘1’ the core will generate an inter-
rupt when the corresponding bit in the Status register is set to ‘1’. This bit is automatically cleared
after the interrupt has been generated.

8:7 RESERVED
6 Conversion Start (CONVST) - If the core has been configured, at implementation, to use the an

internal source for the Xilinx System Monitor CONVST signal, this bit can be written to ‘1’ to gen-
erate a pulse on the System Monitor’s CONVST input. This bit is automatically cleared after one
clock cycle.

5 End of Sequence Interrupt Enable (EOS_IEN) - If this bit is set to ‘1’ the core will generate an inter-
rupt when the corresponding bit in the Status register is set to ‘1’. This bit is automatically cleared
after the interrupt has been generated.

4 End of Conversion Interrupt Enable (EOC_IEN) - If this bit is set to ‘1’ the core will generate an
interrupt when the corresponding bit in the Status register is set to ‘1’. This bit is automatically
cleared after the interrupt has been generated.

3 Busy Interrupt Enable (BUSY_IEN) - If this bit is set to ‘1’ the core will generate an interrupt when
the corresponding bit in the Status register is set to ‘1’. This bit is automatically cleared after the
interrupt has been generated.

2 JTAG Busy Interrupt Enable (JB_IEN) - If this bit is set to ‘1’ the core will generate an interrupt
when the corresponding bit in the Status register is set to ‘1’. This bit is automatically cleared after
the interrupt has been generated.

1 JTAG Locked Interrupt Enable (JL_IEN) - If this bit is set to ‘1’ the core will generate an interrupt
when the corresponding bit in the Status register is set to ‘1’. This bit is automatically cleared after
the interrupt has been generated.

0 JTAG Modified Interrupt Enable (JM_IEN) - .If this bit is set to ‘1’ the core will generate an inter-
rupt when the corresponding bit in the Status register is set to ‘1’. This bit is automatically cleared
after the interrupt has been generated.

Reset value: 0x00000000

Table 1262.0x04 - STAT - Status register
31 30 13 12 11 9 8 6 5 4 3 2 1 0

WAL RESERVED OT ALM RESERVED EOS EOC BUSY JB JL JM

0 0 - - 0 - - - - - -

r r r r r r r r r r r

31 Word aligned registers (WAL) - If this bit is set to ‘1’ each System Monitor memory mapped register
start at a word boundary.

30 :13 RESERVED
12 Over Temperature (OT) - Connected to the System Monitor’s Temperature Alarm output.
11:9 Alarm (ALM) - Connected to the System Monitor’s alarm outputs.
8:6 RESERVED
GRIP, Sep 2018, Version 2018.3 1019 www.cobham.com/gaisler

GRLIB IP Core
67.4 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x066. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

67.5 Implementation

67.5.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

67.5.2 Technology mapping

The core instantiates a SYSMON primitive.

67.5.3 RAM usage

The core does not use any RAM components.

67.6 Configuration options

Table 1263 shows the configuration options of the core (VHDL generics).

5 End of Sequence (EOS) - Connected to the System Monitor’s End of Sequence output.
4 End of Conversion (EOC) - Connected to the System Monitors End of Conversion output.
3 Busy (BUSY) - Connected to the System Monitor’s Busy output.
2 JTAG Busy (JB) - Connected to the System Monitor’s JTAG Busy output.
1 JTAG Locked (JL) - Connected to the System Monitor’s JTAG Locked output.
0 JTAG Modified (JM) - Connected to the System Monitor’s JTAG Modified output.

Reset value: See Xilinx System Monitor documentation

Table 1263.Configuration options

Generic name Function Allowed range Default
tech Target technology 0 - NTECH 0
hindex AHB slave index 0 - (NAHBSLV-1) 0
hirq Interrupt line 0 - (NAHBIRQ-1) 0
caddr ADDR field of the AHB BAR0 defining configuration

register address space.
0 - 16#FFF# 16#000#

cmask MASK field of the AHB BAR0 defining configuration
register address space.

0 - 16#FFF# 16#FFF#

saddr ADDR field of the AHB BAR1 defining System Monitor
register address space.

0 - 16#FFF# 16#001#

smask MASK field of the AHB BAR1 defining System Moni-
tor register space.

0 - 16#FFF# 16#FFF#

split If this generic is set to 1 the core will issue AMBA
SPLIT responses when it is busy performing an opera-
tion with the System Monitor. Otherwise the core will
insert wait states until the operation completes.

0 - 1 0

Table 1262.0x04 - STAT - Status register
GRIP, Sep 2018, Version 2018.3 1020 www.cobham.com/gaisler

GRLIB IP Core
extconvst Connect CONVST input to System Monitor. If this
generic is set to ‘0’ the System Monitor’s CONVST is
controlled via the configuration register, otherwise the
System Monitor CONVST input is taken from the core
input signal.

0 - 1 0

wrdalign Word align System Monitor registers. If this generic is
set to 1 all System Monitor registers will begin on a word
boundary. The first register will be mapped at offset
0x00, the second at 0x04. To translate a register access
specified in the Xilinx System Monitor register docu-
mentation the register address should be multiplied by
four to get the correct offset in AMBA address space. If
this generic is set to 0, the register address should be
multiplied by two to get the offset in AMBA address
space.

0 - 1 0

INIT_40 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0
INIT_41 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0
INIT_42 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 16#0800#
INIT_43 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0
INIT_44 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0
INIT_45 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0
INIT_46 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0
INIT_47 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0
INIT_48 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0
INIT_49 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0
INIT_4A Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0
INIT_4B Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0
INIT_4C Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0
INIT_4D Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0
INIT_4E Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0
INIT_4F Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0
INIT_50 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0
INIT_51 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0
INIT_52 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0
INIT_53 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0
INIT_54 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0
INIT_55 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0
INIT_56 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0
INIT_57 Xilinx System Monitor register initialization value. 0 - 16#FFFF# 0
SIM_MONITOR_-
FILE

Simulation analog entry file. See Xilinx System Monitor
documentation for a description of use and format.

- “sysmon.txt”

Table 1263.Configuration options

Generic name Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 1021 www.cobham.com/gaisler

GRLIB IP Core

67.7 Signal descriptions

Table 1264 shows the interface signals of the core (VHDL ports).

Table 1264.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
SYSMONI CONVST Input Convert start input, connected to Xilinx System

Monitor if the extconvst VHDL generic is set to
‘1’.

High

CONVSTCLK Input Convert start input, connected to Xilinx System
Monitor.

High

VAUXN[15:0] Input Auxiliary analog input, connected to Xilinx Sys-
tem Monitor.

-

VAUXP[15:0] Input Auxiliary analog input, connected to Xilinx Sys-
tem Monitor.

-

VN Input Dedicated analog-input, connected to Xilinx
System Monitor.

-

VP Input Dedicated analog-input, connected to Xilinx
System Monitor.

-

SYSMONO ALM[2:0] Output Alarm outputs, connected to Xilinx System
Monitor.

High

OT Output Over-Temperature alarm output, connected to
Xilinx System Monitor.

High

EOC Output End of Conversion, connected to Xilinx System
Monitor.

High

EOS Output End of Sequence, connected to Xilinx System
Monitor.

High

CHANNEL[4:0] Output Channel selection, connected to Xilinx System
Monitor.

-

* see GRLIB IP Library User’s Manual
GRIP, Sep 2018, Version 2018.3 1022 www.cobham.com/gaisler

GRLIB IP Core

67.8 Signal definitions and reset values

The signals and their reset values are described in table 1265.

67.9 Library dependencies

Table 1266 shows the libraries used when instantiating the core (VHDL libraries).

67.10 Instantiation

This example shows how the core can be instantiated.
library ieee;
use ieee.std_logic_1164.all;

library grlib, techmap;
use grlib.amba.all;
use techmap.gencomp.all;

library gaisler;
use gaisler.misc.all;

entity grsysmon_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic
);
end;

Table 1265.Signal definitions and reset values

Signal name Type Function Active Reset value
convst Input Convert start input, connected to Xilinx System

Monitor if the extconvst VHDL generic is set to ‘1’.
Logical 1 -

convstclk Input Convert start input, connected to Xilinx System
Monitor.

- -

vauxn[15:0] Input Auxiliary analog input, connected to Xilinx System
Monitor.

- -

vauxp[15:0] Input Auxiliary analog input, connected to Xilinx System
Monitor.

- -

vn Input Dedicated analog-input, connected to Xilinx System
Monitor.

- -

vp Input Dedicated analog-input, connected to Xilinx System
Monitor.

- -

alm[2:0] Output Alarm outputs, connected to Xilinx System Monitor. Logical 1 -
ot Output Over-Temperature alarm output, connected to Xilinx

System Monitor.
Logical 1 -

eoc Output End of Conversion, connected to Xilinx System
Monitor.

Logical 1 -

eos Output End of Sequence, connected to Xilinx System Moni-
tor.

Logical 1 -

channel[4:0] Output Channel selection, connected to Xilinx System Mon-
itor.

- -

Table 1266.Library dependencies

Library Package Imported unit(s) Description
GAISLER MISC Component, signals Component and signal definitions
GRLIB AMBA Signals AMBA signal definitions
GRIP, Sep 2018, Version 2018.3 1023 www.cobham.com/gaisler

GRLIB IP Core
architecture rtl of grsysmon_ex is
 -- AMBA signals
 signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
 ...
 -- GRSYSMON signals
 signal sysmoni : grsysmon_in_type;
 signal sysmono : grsysmon_out_type;

begin

 -- AMBA Components are instantiated here
 ...

 -- GRSYSMON core is instantiated below
 sysm0 : grsysmon generic map (tech => virtex5, hindex => 4,
 hirq => 4, caddr => 16#002#, cmask => 16#fff#,
 saddr => 16#003#, smask => 16#fff#, split => 1, extconvst => 0)
 port map (rstn, clk, ahbsi, ahbso(4), sysmoni, sysmono);
 sysmoni <= grsysmon_in_gnd; -- Inputs are all driven to ‘0’

end;
GRIP, Sep 2018, Version 2018.3 1024 www.cobham.com/gaisler

GRLIB IP Core

68 GRUSBDC - USB Device controller

68.1 Overview

The Universal Serial Bus Device Controller provides a USB 2.0 function interface accessible from an
AMBA-AHB bus interface. The core must be connected to the USB through an external PHY (shown
in figure 235) compliant to either UTMI, UTMI+ or ULPI. Both full-speed and high-speed mode are
supported.
Endpoints are controlled through a set of registers accessed through an AHB slave interface. Each of
the up to 16 IN and 16 OUT endpoints can be individually configured to any of the four USB transfer
types.
USB data cargo is moved to the core’s internal buffers using a master or a slave data interface. The
data slave interface allows access directly to the internal buffers using AHB transactions and therefore
does not need external memory. This makes it suitable for slow and simple functions. The data master
interface requires an additional AHB master interface through which data is transferred autonomously
using descriptor based DMA. This is suitable for functions requiring large bandwidth.
These two interfaces are mutually exclusive and cannot be present in the same implementation of the
core.

68.2 Operation

68.2.1 System overview

Figure 197 shows the internal structure of the core. This section briefly describes the function of the
different blocks.
The Speed Negotiation Engine (SNE) detects connection by monitoring the VBUS signal on the USB
connector. When a steady 5 V voltage is detected the SNE waits for a reset and then starts the High-
speed negotiation. When the Speed negotiation and reset procedure is finished the selected speed
mode (full-speed or high-speed) is notified to the Serial Interface Engine (SIE) which now can start
operation. The SNE also detects and handles suspend and resume operations.
The SIE is enabled when the SNE notifies that the reset procedure has finished. It then waits for pack-
ets to arrive and processes them according to the USB 2.0 specification. The data cargo is stored to an
internal buffer belonging to the recipient endpoint.
The AHB Interface Engine AIE is responsible for transferring USB data cargo from the endpoint’s
internal buffers to the AHB bus using descriptor based DMA through an AHB master interface when
configured in master mode or by direct accesses to the AHB slave interface when configured in slave
mode.
For received data it is then up to the external (to the device controller) function to continue processing
of the USB data cargo after it has been transferred on the AHB bus. The function is the application
specific core which determines the functionality of the complete USB device. It sets up endpoints in
the device controller and notifies their existence through the appropriate USB descriptors. When the
function wants to transmit a packet it either uses the slave interface to write to the endpoint buffers or
establishes a DMA transfer.

GRUSBDC

Figure 196. GRUSBDC connected to an external PHY device.

UTMI

AHB USBASIC / FPGA

UTMI+
ULPI
GRIP, Sep 2018, Version 2018.3 1025 www.cobham.com/gaisler

GRLIB IP Core

68.2.2 PHY interface

The core supports three different interfaces to the external PHY which is used to connect to the USB
bus. The supported interfaces are UTMI, UTMI+ and ULPI. UTMI+ is an extension of the UTMI
specification with optional additional support for host controllers and on-the-go devices while UTMI
only supports devices. There are different so called levels in the UTMI+ specification, each with an
added degree of support for hosts and on-the-go. The lowest level and common denominator for all
the levels is identical to UTMI and uses the exact same signals. The core only supports devices and
thus the support for UTMI+ refers to level 0. The data path to the UTMI/UTMI+ cores can be 8-bits
or 16-bits wide and also uni- or bi-directional. All combinations are supported by the core.
The UTMI+ Low Pin Interface (ULPI) specifies a generic reduced pin interface and how it can be
used to wrap a UTMI+ interface. The core has UTMI/UTMI+ as the main interface (they are identi-
cal) and when ULPI is used an extra conversion layer is added. When ULPI is enabled, the UTMI
layer is always in 8-bit mode since this is what is required by the ULPI specification.

68.2.3 Speed Negotiation Engine (SNE)

The SNE detects attach, handles reset, high-speed handshake and suspend/resume operation. It also
contains support for the various test-modes, which all USB device have to support.
The attached state is entered when a valid VBUS signal is detected. After this the core waits for a
USB reset and then starts the high-speed handshake which determines whether full-speed or high-
speed mode should be entered. No bus traffic will be accepted by the core until a valid reset has been
detected.
The core supports soft connect/disconnect which means that the pull-up on the D+ line can be con-
trolled from a user accessible register. The pull-up is disabled after reset and thus the function imple-
mentation has full control over when the device will be visible to the host.
The SNE also continuously monitors for the suspend condition (3 ms of idle on the USB bus) when
the suspend state will be entered. The suspend state is left either through an USB reset or resume sig-
naling. The resume signaling can come from either a downstream facing port (hub or host controller)
or the device itself (Remote wakeup). The device controller core can generate remote wakeup signal-
ing which is activated through an user accessible register. If this feature is used the function should
indicate this in the descriptor returned to a device GetStatus request.

GRUSBDC

AHB Master
Interface

AIE

SIE

SNE

Figure 197. Block diagram of the internal structure of the core.

UTMI(+)

AHB

ENDPOINT
BUFFERS

AHB Slave
Interface ULPI

WRAPPER
(OPTIONAL)

UTMI

ULPI

Clock domain boundary
GRIP, Sep 2018, Version 2018.3 1026 www.cobham.com/gaisler

GRLIB IP Core

Transactions are only handled by the SIE if the SNE is in full-speed or high-speed mode. When in
suspend, notattached, attached or during the reset process all transactions will be dropped.
The current status of the SNE such as VBUS valid, suspend active, USB reset received and current
speed mode can be accessed through a status register. Each of these status bits have a corresponding
interrupt enable bit which can be used to generate interrupts when a change occurs in the status bits.
If full-speed only mode is desired the core can be set to not perform the high-speed handshake
through a register.
The different test-modes required by the USB standard are also enabled through user accessible regis-
ters. When enabled they can only be left by power-cycling the complete core or resetting the device
controller (by using the rst signal to the core, not an USB reset).
The test modes are Test_SE0_NAK, Test_J, Test_K and Test_Packet.
In Test_SE0_NAK mode the high-speed receiver is enabled and only valid IN transactions (CRC cor-
rect, device and endpoint addresses match, PID is not corrupt) are responded to with a NAK.
Test_J continuously drives a high-speed J state.
Test_K continuously drives a high-speed K state.
Test_Packet repetitively sends a test packet. Please refer to the USB 2.0 standard for the packet con-
tents. Minimum interpacket delay when device is sending two or more consecutive packets seems not
to be specified in the standard. The core uses 192 bit times as its minimum delay which is the maxi-
mum value of the various minimum delays in the standard for any packet sequence and should there-
fore be compliant.
The core also supports a functional test-mode where all timeouts in the speed-negotiation engine have
been shortened to eight clock cycles. This intended to be used in simulations and for ASIC testers
where time and test-vector length respectively are important.

68.2.4 Serial Interface Engine (SIE)

The SIE handles transmission and reception of USB packets. The core will not respond to any transac-
tions until a reset has been received and either full-speed or high-speed mode has been successfully
entered.
The SIE always begins with waiting for a token packet. Depending on the type of token, data is either
transferred from the core to the host or in the opposite direction. Special tokens are handled without
any data transfers. The special tokens are PING and SOF which cause only a handshake to be sent or
the frame number to be stored respectively. IN tokens initiate transfers to the host while SETUP and
OUT tokens initiate transfers to the device. Packets received in the token stage with other PIDs than
those mentioned in this paragraph are discarded.
A data packet is transmitted in the next stage if the token determined that data should be transferred to
the host. When the data transmission is finished the core waits for a handshake before returning to the
token stage.
If data was determined to be transferred to the device the core waits for and receives a data packet and
then sends a handshake in return before entering the token stage again.
More detailed descriptions of the SIE and how it interacts with the core function are found in section
68.5.

68.2.5 Endpoint buffers

Each endpoint has two buffers to which packets are stored. The core automatically alternates between
them when a packet has been received/transmitted so that data from one of the buffers can be trans-
ferred on the AHB bus while a new packet is being received/transmitted on the USB to/from the sec-
ond buffer.
GRIP, Sep 2018, Version 2018.3 1027 www.cobham.com/gaisler

GRLIB IP Core

The state of the buffers affects the handshake sent to the host at the end of a transaction. In high-speed
mode BULK OUT endpoints and CONTROL OUT endpoints which are not in the SETUP stage sup-
port the PING protocol. This means that at the end of an OUT transaction to one of these endpoints
the device should return ACK if it could accept the current data and has space for another packet. For
the USB device controller this is done if the second buffer for the endpoint is empty when the transac-
tion is ready.
If the second buffer is non-empty a NYET is sent instead. If the current data could not be accepted
(both buffers non-empty when the packet arrives) a NAK is returned.
For other endpoint types in high-speed mode and all endpoint types in full-speed mode an ACK is
always returned if the data is accepted and a NAK if it could not be accepted.
An endpoint buffer can be configured to be larger than the maximum payload for that endpoint. For
IN endpoints the writing of data larger than the maximum payload size to a buffer will result in a num-
ber of maximum sized packets being transferred ending with a packet smaller than or equal to the
maximum size.
In the OUT direction larger buffers are only used for high-bandwidth endpoints where more than one
transaction per microframe can occur for that endpoint. In that case the data from all packets during
one microframe is stored in the order it arrives to a single buffer and is then handed over to the AHB
interface. All non-high-bandwidth endpoints always store one packet data cargo to a buffer.
The endpoint buffers do not use separate physical RAM blocks in hardware instead they reside con-
secutively in the same memory space to avoid wasting memory.

68.2.6 AMBA Interface Engine (AIE)

The AIE can either be configured in slave mode or master mode. This is selected in synthesis process
with a VHDL generic. Both cannot be present at the same time. The two interfaces will be described
separately in this section.
Master interface
In master mode an AHB master interface is included in the core and handles all data transfers to and
from the cores internal buffers using DMA operations. The DMA operation is described in detail in
section 68.3. There is a separate DMA engine in the IN direction and the OUT direction respectively.
They are multiplexed on the single master interface available for the core on the AHB bus. This
scheme is used to limit the load on the AHB bus.
If both engines request the bus at the same time the owner will always be switched. That is, if the
OUT direction DMA engine currently was allowed to make an access and when finished it still
requests the bus for a new transaction and at the same time the IN direction engine also requests the
bus, the IN direction will be granted access. If the situation is the same after the next access ownership
will be switched back to the OUT engine etc.
The IN engine only reads data (note that this only applies to DATA, descriptor status is written) from
the bus and always performs word transfers. Any byte alignment and length can still be used since this
will only cause the core to skip the appropriate amount of leading and trailing bytes from the first and
last words read.
The OUT engine writes data to the bus and performs both word and byte transfers. If the start transfer
for an access is not word-aligned byte writes will be performed until a word boundary is reached.
From then and onwards word writes are performed in burst mode until less than 4 bytes are left. If
remaining number of bytes is not zero byte writes are performed for the last accesses. The byte
accesses are always done as single accesses.
The bursts are of type incremental burst of unspecified length (refer to AMBA specification for more
details). The core can only operate in big-endian mode that is the byte at the lowest address in a word
is the most significant byte. This corresponds to bits 31 downto 24 in the GRLIB implementation. The
GRIP, Sep 2018, Version 2018.3 1028 www.cobham.com/gaisler

GRLIB IP Core

first byte received on the USB will be stored to the msb location. In a single byte the lowest bit index
corresponds to the first bit transmitted on the USB.
Slave interface
The slave interface is used for accessing registers and also for data transfers when the core is config-
ured in slave mode. Byte, half-word and word accesses are supported. At least one waitstate is always
inserted due to the pipelined nature of the interface but the upper limit is not fixed due to registers
being accessed across clock domains. The maximum number of waitstates will thus depend on the dif-
ference in clock frequency between the USB and AHB clock domains. An upper bound can be calcu-
lated when the clock frequencies have been determined.

68.2.7 Synchronization

There are two clock domains in the core: the AHB clock domain and the USB clock domain. The
AHB clock domain runs on the same clock as the AHB bus while the USB domain runs on the UTMI
or ULPI clock. The boundary is between then AIE, SIE and Endpoint buffers. All signals between the
two domains are synchronized and should be declared as false paths during synthesis.

68.2.8 Reset generation

The main reset (AMBA reset) resets AHB domain registers, whereas the USB reset resets registers in
USB clock domain. There is no internal reset generation or synchronization between both AMBA and
USB resets, they are independent inputs. If necessary, the reset generation shall be done in a higher
instance, externally to this IP.
Endpoint specific registers related to the state of the USB protocol in the SIE are reset when an USB
reset is received.

68.2.9 Synthesis

All number of endpoints with up to maximum size payloads cannot be supported due to limitations in
the RAM block generator size in GRLIB. The maximum size also varies with technology. Note that
large buffers can also have a large timing impact at least on FPGA since the a large RAM buffer will
consist of several separate physical block RAMs located at different places causing large routing
delays.
As mentioned in section 68.2.7, signals between the clock domains are synchronized and should be
declared as false paths.
The complete AHB domain runs at the same frequency as the AHB bus and will be completely con-
strained by the bus frequency requirement.
The USB domain runs on different frequencies depending on the data path width. In 8-bit mode the
frequency is 60 MHz and in 16-bit mode it is 30 MHz. Input and output constraints also need to be
applied to the signals to and from the PHY. Please refer to the PHY documentation and/or UTMI/
ULPI specification for the exact values of the I/O constraints.

68.2.10 Functional test-mode

A functional test-mode can be enabled in the core using the functesten VHDL generic. The functional
test-mode is intended to reduce the number of required test-vectors during functional testing of an
ASIC chip. During normal operation it would be required to go through the whole speed detection
sequence before being able to start USB transactions. Since the speed detection takes a relatively long
time this would make the test-vector amount very large often making it incompatible with existing test
equipment.
In functional test-mode the core shortens the speed detection thus making it possible to test the func-
tionality without a long initial delay. The test-mode can be disabled using the FT control register bit.
GRIP, Sep 2018, Version 2018.3 1029 www.cobham.com/gaisler

GRLIB IP Core

68.2.11 Scan test support

The VHDL generic scantest enables scan test support. If the core has been implemented with scan test
support it will:
• disable the internal RAM blocks when the testen and scanen signals are asserted.
• use the testoen signal as output enable signal.
• use the testrst signal as the reset signal for those registers that are asynchronously reseted.
The testen, scanen, testrst, and testoen signals are routed via the AHB slave interface.

68.3 DMA operation

DMA operation is used when the core is configured in AHB master mode. Each IN and each OUT
endpoint has a dedicated DMA channel which transfers data to and from the endpoint’s internal buf-
fers using descriptor based autonomous DMA. Each direction (IN and OUT) has its own DMA engine
which requests the AHB master interface in contention with the other direction. Also each endpoint in
a direction contends for the usage of the DMA engine with the other endpoints in the same direction.
The arbitration is done in a round-robin fashion for all endpoints which are enabled and have data to
send or receive.
The operation is nearly identical in both directions and the common properties will be explained here
while the differences are outlined in the two following sub-sections.
The DMA operation is based on a linked list of descriptors located in memory. Each endpoint has its
own linked list. The first word in a descriptor is the control word which contains an enable bit that
determines whether the descriptor is active or not and other control bits. The following word is a
pointer to a memory buffer where data should be written to or read from for this descriptor. The last
word is a pointer to the location of the next descriptor. A bit in the control word determines if the next
descriptor pointer is valid or not. If not valid the descriptor fetching stops after the current descriptor
is processed and the DMA channel is disabled.
The DMA operation is started by first setting up a list with descriptors in memory and then writing a
pointer to the first descriptor to the endpoint’s descriptor pointer register in the core and setting the
descriptor available bit. The pointer register is updated as the list is traversed and can be read through
the AHB slave interface. When the list is ended with a descriptor that has its next descriptor available
bit disabled the list must not be touched until the core has finished processing the list and the channel
is disabled. Otherwise a deadlock situation might occur and behavior is undefined.
Another way to use the linked list is to always set the next descriptor available bit and instead make
sure that the last descriptor is disabled. This way new descriptors can be added and enabled on the fly
to the end of the list as long as the descriptor available bit is always set after the new descriptors have
GRIP, Sep 2018, Version 2018.3 1030 www.cobham.com/gaisler

GRLIB IP Core

been written to memory. This ensures that no dead lock will occur and that no descriptors are missed.
Figure 198 shows the structure of the descriptor linked list.

68.3.1 OUT endpoints

The DMA operation for OUT endpoints conforms to the general description in the previous subsec-
tion. There are small differences in individual bits and the meaning of the length field. The contents of
the different descriptor words can be found in the tables below.
When a descriptor has been enabled it will be fetched by the core when the descriptor available bit is
set and as soon as a buffer for the corresponding endpoint contains data received from the USB it will
be written to memory starting from the address specified in the buffer pointer word of the descriptor.
The contents of a single internal memory buffer is always written to a single descriptor buffer. This
always corresponds to a single USB packet except for high-bandwidth isochronous and interrupt end-
points. The number of bytes written is stored in the length field when writing is finished which is indi-
cated by the enable bit being cleared. Then the SETUP status bit will also be valid. When the enable
bit is cleared the memory location can be used again.
Interrupts are generated if requested as soon as the writing to memory is finished. The endpoint can
also be configured to generate an interrupt immediately when a packet has been received to the inter-
nal buffers. This can not be enabled per packet since the core cannot associate a received packet with
a specific descriptor in advance. This interrupt is enabled from the endpoint’s control register.
When the data has been fetched from the internal buffer it is cleared and can be used by the SIE again
for receiving a new packet.

Table 1267.OUT descriptor word 0 (address offset 0x0) ctrl word
31 18 17 16 15 14 13 12 0

RESERVED SE RE IE NX EN LENGTH

31: 18 RESERVED
17 Setup packet (SE) - The data was received from a SETUP packet instead of an OUT.
16 RESERVED

Figure 198. Example of the structure of a DMA descriptor linked list in
memory.

DESCRIPTOR ADDRESS REGISTER

1 st descriptor

CONTROL WORD

BUFFER POINTER

NEXT DESCRIPTOR

DATA BUFFER 1

2 nd descriptor

CONTROL WORD

BUFFER POINTER

NEXT DESCRIPTOR

DATA BUFFER 2
GRIP, Sep 2018, Version 2018.3 1031 www.cobham.com/gaisler

GRLIB IP Core
68.3.2 IN endpoints

The DMA operation for IN endpoints conforms to the general DMA description. There are small dif-
ferences in individual bits and the meaning of the length field. The contents of the different descriptor
words can be found in the tables below.
When a descriptor has been enabled and the descriptor available bit is set the core will start processing
the descriptor and fetch the number of bytes indicated in the length field to an internal buffer belong-
ing to the endpoint as soon as one is available. An interrupt will be generated if requested when data
has been written to the internal buffer and status has been written back to the descriptor. The packet
might not have been transmitted on the USB yet.
A separate interrupt is available which is generated when the packet has actually been transmitted. It
needs to be enabled from the endpoint’s control register and also in the descriptor (using the PI bit) for
each packet that should generate the interrupt.
A descriptor with length zero will result in a packet with length zero being transmitted while a length
larger than the maximum payload for the endpoint will result in two or more packets with all but the
last being of maximum payload in length. The last transaction can be less than or equal to the maxi-
mum payload. If the length field is larger than the internal buffer size the data will not written to the
internal buffer and status will be immediately written to the descriptor with an error bit set.
When the more bit is set the data from the current descriptor is written to the internal buffer and it then
continues to the next descriptor without enabling the buffer for transmission. The next descriptor’s
data is also read to the same buffer and this continues until a descriptor is encountered which does not
have more set.
If the total byte count becomes larger than the internal buffer size the packet is not sent (the data from
the internal buffer is dropped) and the ML bit is set for the last descriptor. Then the descriptor fetching
starts over again.

15 Interrupt Enable (IE) - Enable Interrupts. An interrupt will be generated when the packet from this
descriptor has been read to the internal buffers and handed over to the SIE. This does not mean that
packet has also been transmitted.

14 Next descriptor available (NX) - The next descriptor field is valid and points to the next descriptor.
13 Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor

fields.
12: 0 LENGTH - The number of bytes received. Valid when the EN bit has been cleared by the core.

Table 1268.OUT descriptor word 1 (address offset 0x4) Buffer pointer
31 0

ADDRESS

31: 2 Address (ADDRESS) - Pointer to the buffer area from where the packet data will be loaded.
1: 0 RESERVED

Table 1269.OUT descriptor word 2 (address offset 0x8) Next descriptor pointer
31 2 1 0

NDP RES

31: 2 Next descriptor pointer (NDP) - Pointer to the next descriptor.
1: 0 RESERVED

Table 1267.OUT descriptor word 0 (address offset 0x0) ctrl word
GRIP, Sep 2018, Version 2018.3 1032 www.cobham.com/gaisler

GRLIB IP Core

If the next bit is not set when the more bit is, the core will wait for a descriptor to be enabled without
letting other endpoints access the AHB bus in between.

68.4 Slave data transfer interface operation

The AHB slave interface is used for data transfers instead of the DMA interface when the core is con-
figured in AHB slave mode. This mode is selected by setting the aiface VHDL generic to 0. In this
mode the core’s internal buffers containing data to/from USB packets are accessed directly using
AHB read and write transfers. This is usually much slower than DMA but much simpler and does not
require any external memory, thus suitable for slow devices which need to be small and simple.
As for the DMA mode each endpoint is operated separately using four registers at the same addresses.
Two of them, the control and status registers, are the same while the DMA control and the descriptor
address registers have been replaced with the slave control and slave write/read data registers. The
slave interface does not use descriptors so these four registers provides the complete control of the
endpoint.
The details for data transfers in the two different endpoint directions will be explained in separate sec-
tions.

68.4.1 OUT slave endpoint

As stated earlier, in slave mode the core’s buffers are accessed directly from the AHB bus through the
slave interface. For OUT endpoints it has to be checked that data is available in the selected buffer and
then reserve it. This is done using the slave control register by writing a one to the CB bit. The CB bit
is always automatically cleared when the write access is finished and then the BS, DA and BUFCNT

Table 1270.IN descriptor word 0 (address offset 0x0) ctrl word
31 19 18 17 16 15 14 13 12 0

RESERVED MO PI ML IE NX EN LENGTH

31: 19 RESERVED
18 More (MO) - The data from the next descriptor should be read to the same buffer.
17 Packet sent interrupt (PI) - Generate an interrupt when packet has been transmitted on the USB.
16 Maximum length violation (ML) - Attempted to transmit a data cargo amount larger than the buffer.
15 Interrupt Enable (IE) - Enable Interrupts. An interrupt will be generated when the packet from this

descriptor has been read to the internal buffers and handed over to the SIE. This does not mean that
packet has also been transmitted.

14 Next descriptor available (NX) - The next descriptor field is valid and points to the next descriptor.
13 Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor

fields.
12: 0 LENGTH - The number of bytes to be transmitted.

Table 1271.IN descriptor word 1 (address offset 0x4) Buffer pointer
31 0

ADDRESS

31: 2 Address (ADDRESS) - Pointer to the buffer area from where the packet data will be loaded.
1: 0 RESERVED

Table 1272.IN descriptor word 2 (address offset 0x8) Next descriptor pointer
31 2 1 0

NDP RES

31: 2 Next descriptor pointer (NDP) - Pointer to the next descriptor.
1: 0 RESERVED
GRIP, Sep 2018, Version 2018.3 1033 www.cobham.com/gaisler

GRLIB IP Core

read-only bits/fields contain valid information. The BS bit is set to 0 if buffer 0 is currently selected
and to 1 if buffer 1 is selected. DA is set to 1 if data is available in the buffer and in that case
BUFCNT contains the number of bytes.
If data is available (DA is 1) it can be read from the slave data read register. One byte at a time is read
using byte accesses, two bytes using half-word accesses and four bytes using word accesses. No other
widths are supported. In each case data is available from bit 31 and downwards regardless of the value
of the two least significant address bits. This is summarized in table 1273. The BUFCNT field is con-
tinuously updated when reading the buffer so that it can be monitored how many bytes are left.

When all the data has been read, a new buffer can be acquired by writing a one to CB. In this case
when a buffer is currently reserved and the DA bit is set it will be released when CB is written. If a
new buffer was available it will be reserved and DA is set to 1 again. If no new buffer is available DA
will be 0 and the process has to be repeated. The current buffer (if one is selected) will be released
regardless of whether a new one is available or not. Also, if all data has not been read yet when a buf-
fer change request is issued the rest of the data will be lost.
The core does not have to be polled to determine whether a packet is available. A packet received
interrupt is available which can be enabled from the control register and when set an interrupt will be
generated each time a packet is stored to the internal buffers. The status of the buffers can also be read
through the endpoint’s status register without actually reserving the buffer.
One buffer consists of the data payload from one single packet except for high-bandwidth interrupt
and isochronous endpoints for which up to three packet data payloads can reside in a single buffer.
A buffer does not have to be read consecutively. Buffers for several endpoints can be acquired simul-
taneously and read interleaved with each other.

68.4.2 IN slave endpoint

The slave operation of IN endpoints is mostly identical to that for OUT. For IN endpoints it has to be
checked that a buffer is free and then reserve it before writing data to it. This is done using the slave
control register by writing a one to the EB bit. The EB bit is always automatically cleared when the
write access is finished and then the BS, BA and BUFCNT fields are updated. The BS bit is set to 0 if
buffer 0 is currently selected and to 1 if buffer 1 is selected. BA is set to 1 if a buffer is available to
write data to. BUFCNT contains the number of bytes currently written to the selected buffer. It is
cleared to zero when a new buffer is acquired.
If a buffer is available (BA is 1) data can be written through the slave data write register. One byte at a
time is written using byte accesses, two bytes using half-word accesses and four bytes using word
accesses. No other widths are supported. In each case data should be placed from bit 31 and down-
wards regardless of the value of the two least significant address bits. This is summarized in table
1274.

Table 1273.AHB slave interface data transfer sizes

Size (byte) AHB transfer size (HSIZE) Data alignment (HRDATA)
1 byte (000) 31:24
2 half-word (001) 31:16
4 word (010) 31:0

Table 1274.AHB slave interface data transfer sizes

Size (byte) AHB transfer size (HSIZE) Data alignment (HWDATA)
1 byte (000) 31:24
2 half-word (001) 31:16
4 word (010) 31:0
GRIP, Sep 2018, Version 2018.3 1034 www.cobham.com/gaisler

GRLIB IP Core

When all the data has been written, the buffer is enabled for transmission by writing a one to EB. If a
new buffer was available it will be reserved and BA is set to 1 again. If no new buffer is available BA
will be 0 and the process has to be repeated. The current buffer (if one is reserved) will be enabled for
transmission regardless of whether a new one is available or not.
The core does not have to be polled to determine whether a buffer is available. A packet transmitted
interrupt is available which can be enabled from the endpoint control register. Then when enabling a
packet for transmission the PI bit in the slave control register can be set which will be cause an inter-
rupt to be generated when this packet has been transmitted and cleared from the internal buffers. The
status of the buffers can also be read through the endpoint’s status register without actually reserving
the buffer.
Maximum payload size packets will be generated from the buffer until the last packet which will con-
tain the remaining bytes.
A buffer does not have to be written consecutively. Buffers for several endpoints can be acquired
simultaneously and written interleaved with each other. This will however cause additional waitstates
to be inserted.

68.5 Endpoints

An endpoint needs to have both its AHB and USB function configured before usage. The AHB con-
figuration comprises the DMA operation described in the previous section. The USB configuration
comprises enabling the endpoint for USB transactions, setting up transfer type (control, bulk, isochro-
nous, interrupt), payload size, high-bandwidth among others. The configuration options are accessed
through a register available from the AHB slave interface. See section 68.8 for the complete set of
options.
When setting the configuration options the endpoint valid bit should be set. This will enable transfers
to this endpoint as soon as a USB reset has been received. If the endpoint is reconfigured the valid bit
must first be set to zero before enabling it again. Otherwise the endpoint will not be correctly initial-
ized. When the endpoint is enabled the toggle scheme will be reset and data buffers cleared and buffer
selectors set to buffer zero. The maximum payload, number of additional transactions and transfer
type fields may only be changed when endpoint valid is zero or when setting endpoint valid to one
again after being disabled. Other bits in the endpoint control register can be changed at any time.
No configuration options should be changed when the endpoint is enabled except the halt, control halt
and disable bits.
An endpoint can also be halted by setting the halt bit of the endpoint. This will cause all transactions
to receive a STALL handshake. When clearing the halt condition the toggle scheme will also be reset
as required by the USB standard.
When the endpoint is setup, data transfers from and to the endpoint can take place. There is no differ-
ence in how data is transferred on the AHB bus depending on the selected transfer type. This only
affects the transfers on the USB. For control endpoints some extra handling is required by the core
user during error conditions which will be explained in the control endpoint section.
Packets that are received to an endpoint (independent of endpoint type) with a larger payload than the
configured maximum value for the endpoint will receive a STALL handshake and cause the endpoint
to enter halt mode.
When a USB reset is detected the CS, ED and EH bits of the endpoint control register will be cleared
for all endpoints. The EV bit will also be cleared except for control endpoint 0.
The CB bit in the endpoint control register is for clearing the internal buffers of an endpoint. When set
the data will be discarded from the buffers, the data available bits for the corresponding buffers will
be cleared and the CB bit is cleared when it is done. This will however not work if a transaction is cur-
rently active to the same endpoint so this feature must be used with caution.
GRIP, Sep 2018, Version 2018.3 1035 www.cobham.com/gaisler

GRLIB IP Core

68.5.1 Control endpoints

Endpoint 0 must always be a control endpoint according to the USB standard and be accessible as
soon as a USB reset is received. The core does not accept any transactions until a USB reset has been
received so this endpoint can be enabled directly after power up. More control endpoints can be
enabled as needed with the same constraints as the default control endpoint except that they should
not be accessible until after configuration. If the function controlling the core is slow during startup it
might not be able complete configuration of endpoint 0 before a USB reset is received. This problem
is avoided in the core because its pull-up on D+ is disabled after reset which gives the function full
control of when the device will be visible on the bus.
A control endpoint is a message pipe and therefore transfers data both in the IN and OUT direction.
Thus control endpoints must use the endpoint in both directions with the same number in the device
controller. This requires both to be configured in the same mode (same transfer type, payload ...). Oth-
erwise device behavior is undefined.
A control transfer is always started with a SETUP transaction which will be received to the OUT end-
point. If the control transfer is a write the subsequent data phase will be in the OUT direction and this
data will also be received to the OUT endpoint. The function should read both the setup data and the
other data cargo and respond correspondingly. If the request was valid the function should enable a
zero length packet for the endpoint in the IN direction which will lead to a valid status stage. If an
error is detected it should instead halt the endpoint. There are two alternatives for this: A non-clearing
halt which will last even after the next SETUP transaction or a clearing halt which will be removed
when the next SETUP is received. The latter is the recommended behavior in the USB standard since
the other will require the complete core to be reset to continue operation if the permanent halt appears
on the default control endpoint.
The core can detect errors in single transactions which cause the endpoint to enter halt mode automat-
ically. In this case the clearing halt feature will be used for control endpoints.
If a SETUP transaction indicates a control read the data phase will be in the IN direction. In that case
the core user should enable data for the endpoint in the IN direction if the request was accepted other-
wise the halt feature should be set. The transfer is finished when the host sends a zero length packet to
the OUT endpoint.
Note that when entering halt for a control endpoint both the IN and OUT endpoints halt bits should be
set.
Each time a control endpoint receives a setup token the buffers in the IN direction are emptied. This is
done to prevent inconsistencies if the data and status stage were missing or corrupted and thus the data
never fetched. The old data would still be in the buffer and the next setup transaction would receive
erroneous data. The USB standard states that this can happen during error conditions and a new
SETUP is transmitted before the previous transfer finished. The core user can also clear the buffer
through the IN endpoint control register and is encouraged to do this when it detects a new SETUP
before finishing the previous transfer. This must be done since the user might have enabled buffers
after the core cleared them when receiving the new SETUP.
Whether data received to a descriptor for an OUT endpoint was from a SETUP transaction or an OUT
transaction is indicated in a descriptor status bit.

68.5.2 Bulk endpoints

Bulk endpoints are stream pipes and therefore only use a single endpoint in either the IN or OUT
direction. The endpoint with the same number in the other direction can be used independently. Data
is accessed normally through the AHB interface and no special consideration need to be taken apart
from the general endpoint guidelines.
GRIP, Sep 2018, Version 2018.3 1036 www.cobham.com/gaisler

GRLIB IP Core

68.5.3 Interrupt endpoints

Interrupt data is handled in the same manner as for bulk endpoints on the AHB interface. The differ-
ences only appear on the USB. These endpoints are also of stream type.
Interrupt endpoints support a high-bandwidth state which means that more than one transaction per
microframe is performed. This necessitates buffers larger than the maximum payload size. The end-
point should be configured with a buffer larger or equal to the maximum payload times the number of
transactions. All transactions will be received to/transmitted from the same buffer. The endpoint is
configured as a high-bandwidth endpoint by setting the number of additional transactions to non-zero
in the endpoint control register.

68.5.4 Isochronous endpoints

Isochronous endpoints are of stream type are identical to other endpoints regarding the handling on
the AHB bus.
A big difference between isochronous endpoints and the other types is that they do not use hand-
shakes. If no data is available when an IN token arrives to an Isochronous endpoint a data packet with
length 0 is transmitted. This will indicate to the host that no error occurred but data was not ready. If
no packet is sent the host will not know whether the packet was corrupted or not.
When not in high-bandwidth mode only one transaction in the OUT direction will be stored to a single
buffer. In high-bandwidth mode all transactions during a microframe are stored to the same buffer.
In the IN direction data is always transferred from the same buffer until it is out of data. For high-
bandwidth endpoints the buffer should be configured to be the maximum payload times the number of
transactions in size.
Isochronous high-bandwidth endpoints use PID sequencing. When an error is detected in the PID
sequence in the OUT direction no data is handed over to AHB domain for the complete microframe.

68.6 Device implementation example in master mode

This section will shortly describe how the USB device controller can be used in master mode.
A function controlling the device controller and implementing the actual application specific device
will be needed. It can be either hardware, software or a combination. The only requirement is that it
can control the device controller through the AHB bus.
The first thing needed for successful operation is a correctly configured PHY. This is automatically
done by the device controller.
After this the device controller waits for attachment to the USB bus indicated by the VBUS becoming
valid. This can be notified to the function either by polling or an interrupt. The time of attachment can
be controlled by the function through the pull-up enable/disable bit in the core control register. When
disabled the USB host will not notice the device even when it is plugged in.
After attachment a USB reset needs to be received before transactions are allowed to be accepted.
This can also notified by polling or an interrupt.
Only control endpoint 0 should be accessible after reset. The function is responsible for enabling and
configuring at the right time. It can wait until a USB reset has been received but it is easier to enable it
immediately after power-up. This can be done since the device controller will not accept any transac-
tions until USB reset has been received. When enabling the endpoint descriptors should also be
enabled for both the IN and OUT direction and also the descriptor available bits should be set.
Then the endpoint is ready to accept packets and the function should wait for SETUP packets arriving.
It can be notified of packets arriving either through polling or interrupts. The core should process the
requests and return descriptors as requested. When a Set address request is received the function
should write the new address to the device controller’s global control register. It will take effect after
GRIP, Sep 2018, Version 2018.3 1037 www.cobham.com/gaisler

GRLIB IP Core

the next successful IN transaction for the control endpoint. This should correspond to the status stage
of the Set address transfer.
When a Set configuration request is received the function should enable the appropriate interface and
endpoints according to the selected configuration. This is done by writing to the various endpoint con-
trol registers. The function is responsible for advertising the configurations and interfaces through the
descriptors requested by SETUP transactions.
When the endpoints for the selected configuration are enabled the function should also setup the
DMA operation. Then it is ready to transmit and receive data through the application specific end-
points. Interrupts can be used to notify that new packets have transferred and then polling will deter-
mine which endpoint had a status change.

68.7 Device implementation example in slave mode

This section will shortly describe how the USB device controller can be used in slave mode.
A function controlling the device controller and implementing the actual application specific device
will be needed. It can be either hardware, software or a combination. The only requirement is that it
can control the device controller through the AHB bus.
The first thing needed for successful operation is a correctly configured PHY. This is automatically
done by the device controller.
After this the device controller waits for attachment to the USB bus indicated by the VBUS becoming
valid. This can be notified to the function either by polling or an interrupt. The time of attachment can
be controlled by the function through the pull-up enable/disable bit in the core control register. When
disabled the USB host will not notice the device even when it is plugged in.
After attachment an USB reset needs to be received before transactions are allowed to be accepted.
This can also notified by polling or an interrupt.
Only control endpoint 0 should be accessible after reset. The function is responsible for enabling and
configuring at the right time. It can wait until a USB reset has been received but it is easier to enable it
immediately after power-up. This can be done since the device controller will not accept any transac-
tions until USB reset has been received. When enabling the endpoint packet interrupts should be
enabled or the function should start polling the buffer status so that it will notice when packets arrive.
Then the endpoint is ready to accept packets and the function should wait for SETUP packets arriving.
When a packet arrives the core should process the requests and return USB descriptors as requested.
When a Set address request is received the function should write the new address to the device con-
troller’s global control register. It will take effect immediately. It should not be written until the status
stage has been finished for the Set address request. It can be determined that the request has finished if
a packet transmitted interrupt is enabled for the handshake packet of the request and an interrupt is
received.
When a Set configuration request is received the function should enable the appropriate interface and
endpoints according to the selected configuration. This is done by writing to the various endpoint con-
trol registers. The function is responsible for advertising the configurations and interfaces through the
descriptors requested by SETUP transactions.
When the endpoints for the selected configuration are enabled the function should also enable inter-
rupts or start polling these endpoints. Then it is ready to transmit and receive data through the applica-
tion specific endpoints. Interrupts can be used to notify that new packets have been transferred and
then status reads will determine which endpoint had a status change.
GRIP, Sep 2018, Version 2018.3 1038 www.cobham.com/gaisler

GRLIB IP Core

68.8 Registers

The core is programmed through registers mapped into AHB address space. Only 32-bit single-
accesses to the registers are supported.

Table 1275.GRUSBDC registers

AHB address offset Register
0x00 OUT Endpoint 0 control register
0x04 OUT Endpoint 0 slave ctrl / DMA ctrl register
0x08 OUT Endpoint 0 slave data / DMA descriptor address register
0x0C OUT Endpoint 0 status register
0x10-0x1C OUT Endpoint 1
...
0xF0-0xFC OUT Endpoint 15
0x100-0x1FC IN Endpoints 0-15
0x200 Global Ctrl register
0x204 Global Status register
GRIP, Sep 2018, Version 2018.3 1039 www.cobham.com/gaisler

GRLIB IP Core

68.8.1 OUT Endpoint Control Register

Table 1276.0x00,... - EOCTRL - OUT endpoint control register

68.8.2

Table 1277.0x04,... - EOSLUCTRL - OUT slave control register.

OUT Slave Control Register

31 21 20 19 18 17 7 6 5 4 3 2 1 0

BUFSZ PI CB CS MAXPL NT TT EH ED EV

* 0 0 0 NR NR NR 0 0 0

r rw rw rw rw rw rw rw rw rw

31: 21 Buffer size (BUFSZ) - Size/8 in bytes of one hardware buffer slot for this endpoint. Two slots are
available for each endpoint.

20 Packet received interrupt (PI) - Generate an interrupt for each packet that is received on the USB for
this endpoint (packet has been stored in the internal buffers). Reset value: ‘0’.

19 Clear buffers (CB) - Clears any buffers for the endpoint that contain data if the buffer is not currently
active.

18 Control Stall (CS) - Return stall for data and status stages in a control transfer. Automatically cleared
when the next setup token is received. Only used when the endpoint is configured as a control end-
point.

17: 7 Maximum payload (MAXPL) - Sets the maximum USB payload (maximum size of a single packet
sent to/from the endpoint) size for the endpoint. All bits of the field are not always used. The maxi-
mum value for the maximum payload is determined with a generic for each endpoint. Not Reset.

6: 5 Number of transactions (NT) - Sets the number of additional transactions per microframe for high-
speed endpoints and per frame for full-speed endpoints. Only valid for isochronous endpoints. Not
Reset.

4: 3 Transfer type (TT) - Sets the transfer type for the endpoint. “00”=CTRL, “01” =ISOCH,
“10”=BULK, “11”=INTERRUPT. Only OUT endpoints should be set to the CTRL type and then the
IN endpoint with the same number will be automatically used. It is important not to use OUT end-
points that do not have a corresponding IN endpoint as a CTRL endpoint. Not Reset.

2 Endpoint halted (EH) - Halt the endpoint. If set, all transfers to this endpoint will receive a STALL
handshake. Reset value: ‘0’.

1 Endpoint disabled (ED) - Disables the endpoint. If set, all transfers to this endpoint will receive a
NAK handshake. Reset value: ‘0’.

0 Endpoint valid (EV) - Enables the endpoint. If not enabled, all transfers to this endpoint will be
ignored and no handshake is sent. Reset value; ‘0’.

31 17 16 15 3 2 1 0

RESERVED SE BUFCNT DA BS CB

0 0 0 0 0 0

r r r r r rw

31: 17 RESERVED
16 Setup packet (SE) - The data was received from a SETUP packet instead of an OUT.
15: 3 Buffer counter (BUFCNT) - The number bytes available(OUT)
2 Data available (DA) - Set to one if a valid packet was acquired when requested using the CB. If no

valid packet was available it is set to zero. Reset value: ‘0’.
1 Buffer select (BS) - Current buffer selected. Read only.
0 Change or acquire buffer (CB) - If no buffer is currently active try to acquire a new one. If one is

already acquired, free it and try to acquire a new one.
GRIP, Sep 2018, Version 2018.3 1040 www.cobham.com/gaisler

GRLIB IP Core

68.8.3

Table 1278.0x08,... - EOSLUDATA - OUT slave buffer read register.

 OUT Slave Buffer Read Register

68.8.4

Table 1279.0x04,... - EODMACTRL - OUT DMA control register.

OUT DMA Control Register

68.8.5

Table 1280.0x08,... - EODMADESL - OUT descriptor address register.

 OUT Descriptor Address Register

31 0

DATA

NR

r

31: 0 Data (DATA) - In AHB slave mode, data is fetched directly from the internal buffer by reading from
this register. Data always starts from bit 31. For word accesses bits 31-0 are valid, for half-word bits
31-16 and for byte accesses bits 31-24.

31 11 10 9 4 3 2 1 0

RESERVED AE RESERVED AD AI IE DA

0 0 0 0 0 0 0

r wc r rw rw rw rw

31: 11 RESERVED
10 AHB error (AE) - An AHB error has occurred for this endpoint.
9: 4 RESERVED
3 Abort DMA (AD) - Disable descriptor processing (set DA to 0) and abort the current DMA transfer

if one is active. Reset value: ‘0’.
2 AHB error interrupt (AI) - Generate interrupt when an AHB error occurs for this endpoint.
1 Interrupt enable (IE) - Enable DMA interrupts. Each time data has been received or transmitted to/

from a descriptor with its interrupt enable bit set an interrupt will be generated when this bit is set.
0 Descriptors available (DA) - Set to indicate to the GRUSBDC that one or more descriptors have

been enabled.

31 2 1 0

DESCADDR RES

NR 00

rw r

31: 2 Descriptor table address (DESCADDR) - Address to the next descriptor.Not Reset.
1: 0 RESERVED
GRIP, Sep 2018, Version 2018.3 1041 www.cobham.com/gaisler

GRLIB IP Core

68.8.6

Table 1281.0x0C,... - EOSTAT - OUT endpoint status register

OUT Endpoint Status Register

68.8.7

Table 1282.0x000 - EICTRL - IN endpoint control register

IN Endpoint Control Register

31 30 29 28 16 15 3 2 1 0

RES PR B1CNT B0CNT B1 B0 BS

0 0 0 0 0 0 0

r wc r r r r r

31: 30 RESERVED.
29 Packet received (PR) - Set each time a packet has been received (OUT) and stored in the internal

buffers. Cleared when written with a ‘1’.
28: 16 Buffer 1 byte count (B1CNT) - Number of bytes in buffer one.
15: 3 Buffer 0 byte count (B0CNT) - Number of bytes in buffer zero.
2 Buffer 1 data valid (B1) - Set when buffer one contains valid data.
1 Buffer 0 data valid (B0) - Set when buffer zero contains valid data.
0 Buffer select (BS) - The currently selected buffer.

31 21 20 19 18 17 7 6 5 4 3 2 1 0

BUFSZ PI CB CS MAXPL NT TT EH ED EV

* 0 0 0 NR NR NR 0 0 0

r rw rw rw rw rw rw rw rw rw

31: 21 Buffer size (BUFSZ) - Size/8 in bytes of one hardware buffer slot for this endpoint. Two slots are
available for each endpoint.

20 Packet transmitted interrupt (PI) - Generate an interrupt each time a packet has been transmitted on
the USB and the internal buffer is cleared. Reset value: ‘0’.

19 Clear buffers (CB) - Clears any buffers for the endpoint that contain data if the buffer is not currently
active.

18 Control Stall (CS) - Return stall for data and status stages in a control transfer. Automatically cleared
when the next setup token is received. Only used when the endpoint is configured as a control end-
point.

17: 7 Maximum payload (MAXPL) - Sets the maximum USB payload (maximum size of a single packet
sent to/from the endpoint) size for the endpoint. All bits of the field are not always used. The maxi-
mum value for the maximum payload is determined with a generic for each endpoint. Not Reset.

6: 5 Number of transactions (NT) - Sets the number of additional transactions per microframe for high-
speed endpoints and per frame for full-speed endpoints. Only valid for isochronous endpoints. Not
Reset.

4: 3 Transfer type (TT) - Sets the transfer type for the endpoint. “00”=CTRL, “01” =ISOCH,
“10”=BULK, “11”=INTERRUPT. Only OUT endpoints should be set to the CTRL type and then the
IN endpoint with the same number will be automatically used. It is important not to use OUT end-
points that do not have a corresponding IN endpoint as a CTRL endpoint. Not Reset.

2 Endpoint halted (EH) - Halt the endpoint. If set, all transfers to this endpoint will receive a STALL
handshake. Reset value: ‘0’.

1 Endpoint disabled (ED) - Disables the endpoint. If set, all transfers to this endpoint will receive a
NAK handshake. Reset value: ‘0’.

0 Endpoint valid (EV) - Enables the endpoint. If not enabled, all transfers to this endpoint will be
ignored and no handshake is sent. Reset value; ‘0’.
GRIP, Sep 2018, Version 2018.3 1042 www.cobham.com/gaisler

GRLIB IP Core

68.8.8

Table 1283.0x104 - EISLVCTRL - IN slave control register.

IN Slave Control Register

68.8.9

Table 1284.0x108 - EISLVDATA - IN slave buffer read/write register.

IN Slave Buffer read/write Register

68.8.10

Table 1285.0x104 - EIDMACTRL - IN DMA control register.

IN DMA Control Register

31 17 16 4 3 2 1 0

RESERVED BUFCNT PI BA BS EB

0 0 0 0 0 0

r r rw r r rw

31: 17 RESERVED
16: 4 Buffer counter (BUFCNT) - The number of bytes written in the current buffer.
3 Packet interrupt enable (PI) - Generate interrupt when the activated packet has been transmitted.

Should be set together with EB when enabling a packet for transmission. Reset value: ‘0’.
2 Buffer active (BA) - A free buffer was acquired and is available for use.
1 Buffer select (BS) - Current buffer selected. Read only.
0 Enable (EB) - Enable current buffer for transmission if one has been acquired and try to acquire a

new buffer. If no data has been written to the buffer a zero length packet will be transmitted.

31 0

DATA

NR

r

31: 0 Data (DATA) - Data written to this register is placed into the current buffer for transmission. Byte,
Halfword and word sizes are allowed but only a word aligned address should be used. This means
that data is always placed on 31-0 for word, 31-16 for half-word and 31-24 for byte.

31 11 10 9 4 3 2 1 0

RESERVED AE RESERVED AD AI IE DA

0 0 0 0 0 0 0

r wc r rw rw rw rw

31: 11 RESERVED
10 AHB error (AE) - An AHB has occurred for this endpoint.
9: 4 RESERVED
3 Abort DMA (AD) - Disable descriptor processing (set DA to 0) and abort the current DMA transfer

if one is active. Reset value: ‘0’.
2 AHB error interrupt (AI) - Generate interrupt when an AHB error occurs for this endpoint.
1 Interrupt enable (IE) - Enable DMA interrupts. Each time data has been received or transmitted to/

from a descriptor with its interrupt enable bit set an interrupt will be generated when this bit is set.
0 Descriptors available (DA) - Set to indicate to the GRUSBDC that one or more descriptors have

been enabled.
GRIP, Sep 2018, Version 2018.3 1043 www.cobham.com/gaisler

GRLIB IP Core

68.8.11

Table 1286.0x108 - EIDMADESC - IN descriptor address register.

IN Descriptor Address Register

68.8.12

Table 1287.0x10C - EISTAT - IN endpoint status register

IN Endpoint Status Register

68.8.13 CTRL Register

31 2 1 0

DESCADDR RES

31: 2 Descriptor table address (DESCADDR) - Address to the next descriptor.Not Reset.
1: 0 RESERVED

31 30 29 28 16 15 3 2 1 0

RES PT B1CNT B0CNT B1 B0 BS

0 0 0 0 0 0 0

r wc r r r r r

31: 30 RESERVED.
29 Packet transmitted (PT) - Packet has been transmitted and cleared from the internal buffers. Cleared

when written with a ‘1’.
28: 16 Buffer 1 byte count (B1CNT) - Number of bytes in buffer one.
15: 3 Buffer 0 byte count (B0CNT) - Number of bytes in buffer zero.
2 Buffer 1 data valid (B1) - Set when buffer one contains valid data.
1 Buffer 0 data valid (B0) - Set when buffer zero contains valid data.
0 Buffer select (BS) - The currently selected buffer.

Table 1288.0x200 - GCTRL - ctrl register
31 30 29 28 27 26 16 15 14 13 12 11 9 8 7 1 0

SI UI VI SP FI RESERVED FT EP DH RW TS TM UA SU

0 0 0 0 0 0 0 0 0 0 0 0 0 0

rw rw rw rw rw r rw rw rw rw* rw rw* rw* w

31: Suspend interrupt (SI) - Generate interrupt when suspend status changes. Reset value: ‘0’.
30 USB reset (UI) - Generate interrupt when USB reset is detected. Reset value: ‘0’.
29 VBUS valid interrupt (VI) - Generate interrupt when VBUS status changes. Reset value: ‘0’.
28 Speed mode interrupt (SP) - Generate interrupt when Speed mode changes. Reset value: ‘0’.
27 Frame number received interrupt (FI) - Generate interrupt when a new Start of frame (SOF) token is

received. Reset value: ‘0’.
26: 16 RESERVED
15 Functional test mode (FT) - Enables functional test-mode which shortens all timer such as reset and

chirp timers to 8 clock cycles.
14 Enable pull-up (EP) - Enable pull-up on the D+ line signaling a connect to the host. Reset value: ‘0’.
13 Disable High-speed (DH) - Disable high-speed handshake to make the core full-speed only.
12 Remote wakeup (RW) - Start remote wakeup signaling. It is self clearing and will be cleared when it

has finished transmitting remote wakeup if it was currently in suspend mode. If not in suspend mode
when set it will self clear immediately. Writes to this bit when it is already asserted are ignored.
Reset value: ‘0’.

11: 9 Testmode selector (TS) - Select which testmode to enter. “001”= Test_J, “010”= Test_K, “011”=
Test_SE0_NAK, “100”= Test_Packet.

8 Enable test mode (TM) - Set to one to enable test mode. Note that the testmode cannot be left with-
out resetting or power-cycling the core and cannot be entered if hsdis is set to ‘1’. Reset value: ‘0’.
GRIP, Sep 2018, Version 2018.3 1044 www.cobham.com/gaisler

GRLIB IP Core
68.8.14

Table 1289.0x204 - GSTAT - status register

Status Register

68.9 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x021. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

68.10 Implementation

68.10.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core does not support grlib_async_reset_enable. A subset of the registers in the USB clock
domain make use of asynchronous reset.
The IP core has two different reset inputs: the AMBA reset and the USB reset. They work inde-
pendently on their respective clock domains. If reset generation/synchronization is desired, it shall be
done in a higher instance, out of the IP.
See also documentation of prst VHDL generic.

68.11 Configuration options

Table 1290 shows the configuration options of the core (VHDL generics). Buffer sizes are given in
bytes and determines the sizes of one hardware buffer for the endpoint. Two buffers are available for
each endpoint. The buffer size must be equal to or larger than the desired maximum payload size. In

7: 1 USB address (UA) - The address assigned to the device on the USB bus.
0 Set USB address (SU) - Write with a one to set the usb address stored in the USB address field.

31 28 27 24 23 22 18 17 16 15 14 13 11 10 0

NEPI NEPO DM RESERVED SU UR VB SP AF FN

* * * 0 0 0 0 0 0 0

r r r r r wc r r r r

31: 28 Number of implemented IN endpoints (NEPI) - The number of configurable IN endpoints available
in the core (including endpoint 0) minus one.

27: 24 Number of implemented OUT endpoints (NEPO) - The number of configurable OUT endpoints
available in the core (including endpoint 0) minus one.

23 Data mode (DM) - 0 = core uses slave mode for data transfers, 1 = core uses master mode (DMA) for
data transfers.

22: 18 RESERVED
17 Suspended (SU) - Set to ‘0’ when the device is suspended and ‘1’ when not suspended.
16 USB reset (UR) - Set each time an USB reset has been detected. Cleared when written with a ‘1’.
15 Vbus valid (VB) - Set to one when a valid voltage has been detected on the USB vbus line.
14 Speed (SP) - The current speed mode of the USB bus. ‘0’ = high-speed, ‘1’ = full-speed.
13: 11 Additional frames (AF) - Number of additional frames received with the current frame number.
10: 0 Frame number (FN) - The value of the last SOF token received.

Table 1288.0x200 - GCTRL - ctrl register
GRIP, Sep 2018, Version 2018.3 1045 www.cobham.com/gaisler

GRLIB IP Core

the case of high-bandwidth endpoints the buffer size must be equal to or larger than the maximum
payload times the number of transactions per (micro) frame.

Table 1290.Configuration options

Generic Function Allowed range Default
hsindex AHB slave index. 0 - NAHBSLV-1 0
hirq AHB interrupt number 0 - NAHBIRQ-1 0
haddr AHB slave address - 0
hmask AHB slave address mask - 16#FFF#
hmindex AHB master index 0 - NAHBMST-1
aiface 0 selects the AHB slave interface for data transfer while

1 selects the AHB master interface.
0 - 1 0

memtech Memory technology used for blockrams (endpoint buf-
fers).

0 - NTECH 0

uiface 0 selects the UTMI interface while 1 selects ULPI. 0 - 1 0
dwidth Selects the data path width for UTMI. 8 - 16 8
blen Maximum number of beats in burst accesses on the AHB

bus.
4 - 128 16

ninep Number of IN endpoints 1 - 16 1
noutep Number of OUT endpoints 1 - 16 1
i0 Buffer size for IN endpoint 0. 8, 16, 24, ... , 3072 1024
i1 Buffer size for IN endpoint 1. 8, 16, 24, ... , 3072 1024
i2 Buffer size for IN endpoint 2. 8, 16, 24, ... , 3072 1024
i3 Buffer size for IN endpoint 3. 8, 16, 24, ... , 3072 1024
i4 Buffer size for IN endpoint 4. 8, 16, 24, ... , 3072 1024
i5 Buffer size for IN endpoint 5. 8, 16, 24, ... , 3072 1024
i6 Buffer size for IN endpoint 6. 8, 16, 24, ... , 3072 1024
i7 Buffer size for IN endpoint 7. 8, 16, 24, ... , 3072 1024
i8 Buffer size for IN endpoint 8. 8, 16, 24, ... , 3072 1024
i9 Buffer size for IN endpoint 9. 8, 16, 24, ... , 3072 1024
i10 Buffer size for IN endpoint 10. 8, 16, 24, ... , 3072 1024
i11 Buffer size for IN endpoint 11. 8, 16, 24, ... , 3072 1024
i12 Buffer size for IN endpoint 12. 8, 16, 24, ... , 3072 1024
i13 Buffer size for IN endpoint 13. 8, 16, 24, ... , 3072 1024
i14 Buffer size for IN endpoint 14. 8, 16, 24, ... , 3072 1024
i15 Buffer size for IN endpoint 15. 8, 16, 24, ... , 3072 1024
o0 Buffer size for OUT endpoint 0. 8, 16, 24, ... , 3072 1024
o1 Buffer size for OUT endpoint 1. 8, 16, 24, ... , 3072 1024
o2 Buffer size for OUT endpoint 2. 8, 16, 24, ... , 3072 1024
o3 Buffer size for OUT endpoint 3. 8, 16, 24, ... , 3072 1024
o4 Buffer size for OUT endpoint 4. 8, 16, 24, ... , 3072 1024
o5 Buffer size for OUT endpoint 5. 8, 16, 24, ... , 3072 1024
o6 Buffer size for OUT endpoint 6. 8, 16, 24, ... , 3072 1024
o7 Buffer size for OUT endpoint 7. 8, 16, 24, ... , 3072 1024
o8 Buffer size for OUT endpoint 8. 8, 16, 24, ... , 3072 1024
o9 Buffer size for OUT endpoint 9. 8, 16, 24, ... , 3072 1024
o10 Buffer size for OUT endpoint 10. 8, 16, 24, ... , 3072 1024
o11 Buffer size for OUT endpoint 11. 8, 16, 24, ... , 3072 1024
GRIP, Sep 2018, Version 2018.3 1046 www.cobham.com/gaisler

GRLIB IP Core
68.12 Signal descriptions

Table 1291 shows the interface signals of the core (VHDL ports).

o12 Buffer size for OUT endpoint 12. 8, 16, 24, ... , 3072 1024
o13 Buffer size for OUT endpoint 13. 8, 16, 24, ... , 3072 1024
o14 Buffer size for OUT endpoint 14. 8, 16, 24, ... , 3072 1024
o15 Buffer size for OUT endpoint 15. 8, 16, 24, ... , 3072 1024
oepol Select polarity of output enable signal. 1 selects active

high and 0 selects active low.
0 - 1 0

keepclk This generic determines wheter or not the USB trans-
ceiver will be suspended and have its clock turned off
during USB suspend. Set this generic to 1 if the clock
should not be turned off. This might be needed for some
technologies that can’t handle that the USB clock is
turned off for long periods of time.

0 - 1 0

sepirq* Set this generic to 1 if three seperate interrupt lines
should be used, one for status related interrupts, one for
IN endpoint related interrupts, and one for OUT end-
point related interrupts. The irq number for the three dif-
ferent interrupts are set with the hirq (status), irqi (IN),
and irqo (OUT) generics. If sepirq = 0 then only inter-
rupts with irq number hirq will be generated.

0 - 1 0

irqi* Sets the irq number for IN endpoint related interrupts.
Only used if sepirq generic is set to 1.

0 - NAHBIRQ-1 1

irqo* Sets the irq number for OUT endpoint related interrupts.
Only used if sepirq generic is set to 1.

0 - NAHBIRQ-1 2

functesten Enable functional test mode. This is used to skip the
USB high-speed detection sequence to reduce the num-
ber of test vectors during functional testing.

0 - 1 0

scantest Set this generic to 1 if scan test support should be imple-
mented.

0 - 1 0

* The values of these generics are stored in the first User-Defined word of the core’s AHB plug-n-play area as follows: bit
0 = sepirq, bits 7:4 = irqi, bits 11:8 = irqo. Please see the AHBCTRL section of GRLIB IP Core User’s Manual.

Table 1291.Signal descriptions

Signal name Field Type Function Active
UCLK N/A Input USB UTMI/ULPI Clock -
URST Input USB Reset Low
HCLK Input AMBA Clock -
HRST Input AMBA Reset Low
AHBMI * Input AHB master input signals -
AHBMO * Output AHB master output signals -
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
USBI datain[15:0] Input UTMI/UTMI+/ULPI. Bits 15:8 are only used in

16-bit UTMI/UTMI+ mode.
-

rxactive Input UTMI/UTMI+ High
rxvalid Input UTMI/UTMI+ High
rxvalidh Input UTMI/UTMI+ 16-bit High

Table 1290.Configuration options

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 1047 www.cobham.com/gaisler

GRLIB IP Core
rxerror Input UTMI/UTMI+ High
txready Input UTMI/UTMI+ High
linestate[1:0] Input UTMI/UTMI+ -
nxt Input ULPI High
dir Input ULPI High
vbusvalid Input UTMI+ High
urstdrive Input This input determines if the cores should drive

the transceiver data lines low during USB trans-
ceiver reset, even if the dir input is High. This is
needed for some transceivers, such as the NXP
ISP1504. When this input is low the direction of
the transceiver data lines are exclusively con-
trolled by the dir signal from the transceiver.
When this input is high the core will drive the
data lines low during transceiver reset. Only
applicable for ULPI transceivers.

High

USBO dataout[15:0] Output UTMI/UTMI+/ULPI. Bits 15:8 are only used in
16-bit UTMI/UTMI+ mode.

-

txvalid Output UTMI+ High
txvalidh Output UTMI+ 16-bit High
opmode[1:0] Output UTMI+ -
xcvrselect[1:0] Output UTMI/UTMI+. Bit 1 is constant low. -
termselect Output UTMI/UTMI+ -
suspendm Output UTMI/UTMI+ Low
reset Output Transceiver reset signal. Asserted asynchro-

nously and deasserted synchrnously to the USB
clock.

**

stp Output ULPI High
oen Output Data bus direction control for ULPI and bi-direc-

tional UTMI/UTMI+ interfaces.

databus16_8 Output UTMI+. Constant high for 16-bit interface, con-
stant low for 8-bit interface.

-

dppulldown Output UTMI+. Constant low. High
dmpulldown Output UTMI+. Constant low. High
idpullup Output UTMI+. Constant low. High
drvvbus Output UTMI+. Constant low. High
dischrgvbus Output UTMI+. Constant low. High
chrgvbus Output UTMI+. Constant low. High
txbitstuffenable Output UTMI+. Constant low. High
txbitstuffenableh Output UTMI+. Constant low. High
fslsserialmode Output UTMI+. Constant low. High
tx_enable_n Output UTMI+. Constant high. Low
tx_dat Output UTMI+. Constant low. High
tx_se0 Output UTMI+. Constant low. High

* See GRLIB IP Library User’s Manual.
** Depends on transceiver interface. Active high for UTMI/UTMI+ and active low for ULPI.
*** Implementation dependent.

Table 1291.Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 1048 www.cobham.com/gaisler

GRLIB IP Core

68.13 Library dependencies

Table 1292 shows libraries used when instantiating the core (VHDL libraries).

68.14 Instantiation

This example shows how the core can be instantiated.
usbdc0: GRUSBDC
 generic map(
 hsindex => 4,
 hirq => 0,
 haddr => 16#001#,
 hmask => 16#FFF#,
 hmindex => 14,
 aiface => 1,
 memtech => memtech,
 uiface => 0,
 dwidth => 8,
 nepi => 16,
 nepo => 16)
 port map(
 uclk => uclk,

urst => urstn,
 usbi => usbi,
 usbo => usbo,
 hclk => clkm,
 hrst => rstn,
 ahbmi => ahbmi,
 ahbmo => ahbmo(14),
 ahbsi => ahbsi,
 ahbso => ahbso(4)
);

usb_d_pads: for i in 0 to 15 generate
 usb_d_pad: iopad generic map(tech => padtech, slew => 1)
 port map (usb_d(i), usbo.dataout(i), usbo.oen, usbi.datain(i));
end generate;

usb_h_pad:iopad generic map(tech => padtech, slew => 1)
 port map (usb_validh, usbo.txvalidh, usbo.oen, usbi.rxvalidh);

usb_i0_pad : inpad generic map (tech => padtech) port map (usb_txready,usbi.txready);
usb_i1_pad : inpad generic map (tech => padtech) port map (usb_rxvalid,usbi.rxvalid);
usb_i2_pad : inpad generic map (tech => padtech) port map (usb_rxerror,usbi.rxerror);
usb_i3_pad : inpad generic map (tech => padtech) port map (usb_rxactive,usbi.rxactive);
usb_i4_pad : inpad generic map (tech => padtech) port map
(usb_linestate(0),usbi.linestate(0));
usb_i5_pad : inpad generic map (tech => padtech) port map
(usb_linestate(1),usbi.linestate(1));
usb_i6_pad : inpad generic map (tech => padtech) port map (usb_vbus, usbi.vbusvalid);

usb_o0_pad : outpad generic map (tech => padtech, slew => 1) port map (usb_reset,usbo.reset);
usb_o1_pad : outpad generic map (tech => padtech, slew => 1) port map
(usb_suspend,usbo.suspendm);
usb_o2_pad : outpad generic map (tech => padtech, slew => 1) port map
(usb_termsel,usbo.termselect);
usb_o3_pad : outpad generic map (tech => padtech, slew => 1) port map
(usb_xcvrsel,usbo.xcvrselect(0));
usb_o4_pad : outpad generic map (tech => padtech, slew => 1) port map
(usb_opmode(0),usbo.opmode(0));

Table 1292.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER GRUSB Signals, component GRUSBDC component declarations, USB sig-

nals
GRIP, Sep 2018, Version 2018.3 1049 www.cobham.com/gaisler

GRLIB IP Core

usb_o5_pad : outpad generic map (tech => padtech, slew => 1) port map
(usb_opmode(1),usbo.opmode(1));
usb_o6_pad : outpad generic map (tech => padtech, slew => 1) port map
(usb_txvalid,usbo.txvalid);

usb_clk_pad : clkpad generic map (tech => padtech, arch => 2) port map (usb_clkout, uclk);

usbi.urstdrive <= ‘0’;
GRIP, Sep 2018, Version 2018.3 1050 www.cobham.com/gaisler

GRLIB IP Core

69 GRUSB_DCL - USB Debug Communication Link

69.1 Overview

The Universal Serial Bus Debug Communication Link (GRUSB_DCL) provides an interface between
a USB 2.0 bus and an AMBA-AHB bus. The core must be connected to the USB through an UTMI,
UTMI+, or ULPI compliant PHY. Both full-speed and high-speed mode are supported. The GRUS-
B_DCL rely on the GRUSBDC core for handling the USB communication and communication with
the PHY. The GRUSB_DCL implements the minimum required set of USB requests to be Version 2.0
compliant and a simple protocol for performing read and write accesses on the AHB bus. Figure 199
show how the GRUSB_DCL can be connected to a PHY. For more information on the GRUSBDC
and the connection to the USB PHY please refer to the GRLIB IP Core User’s Manual.

69.2 Operation

69.2.1 System overview

The internal structure of the GRUSB_DCL can be seen in figure 200. The GRUSB_DCL is con-
structed with two internal AHB busses for communication with the GRUSBDC and one external
AHB master interface for reading and writing the external AHB bus. Since the GRUSBDC is con-
nected with point-to-point links there is no need for a conventional AHB arbiter on the internal bus.
The GRUSBDC is configured with two bidirectional endpoints with endpoint zero (EP0) being the
default USB control endpoint and endpoint one (EP1) the communication endpoint for the DCL pro-
tocol. The GRUSBDC is configured to use DMA and its descriptors as well as the DMA buffers are
stored in a local memory with separate read and write ports (SYNCRAM_2P). The two ports makes
it possible for the GRUSBDC and the internal workings of the GRUSB_DCL to access the memory in
parallel. Arbitration for the read and write port is implemented as two separate procedures. The main
functionality of the GRUSB_DCL is implemented in the main FSM procedure. The FSM can be seen
in figure 201.

GRUSB_DCL

Figure 199. USBDCL connected to an external UTM.

UTMI

AHB USBFPGA

UTMI+
ULPI

Figure 200. Block diagram of the internal structure of the GRUSBDCL. Blocks with rounded corners are implemented as
VHDL procdures while squares represent VHDL entities.
GRIP, Sep 2018, Version 2018.3 1051 www.cobham.com/gaisler

GRLIB IP Core

Upon reset the FSM begins with setting up the DMA descriptors in the local memory and then config-
ures the GRUSBDC such that it becomes active. The FSM then waits for incoming requests on either
EP0 or EP1. For EP0 each request is validated and then appropriate action is taken according to the
USB Version 2.0 standard. For undefined requests the GRUSB_DCL returns an error by stalling EP0.
For EP1 the DCL request is fetched and either data is written to the AHB buss from the local memory
or data is read from the AHB and stored in the local memory. In the case of the AHB is being read the
data is then sent on EP1 IN. To keep track of the state of the DMA descriptors the FSM has help from
the descriptor-state procedure. The descriptor-state procedure uses the IRQ from the GRUSBDC to
identify incoming packets on either EP0 or EP1. By storing the last accessed address by the
GRUSBDC to the local memory the descriptor-state procedure can tell which EP that has been
updated. The FSM in turn signals the procedure telling it when a DMA descriptor/buffer has been
read/write. A small FSM (ahb_mst_fsm) is also used when the main FSM wants to update the state of
the GRUSBDC through the AHB slave interface. Finally, the reset-or-vbus-irq procedure listens on
irqs from the USBDC that informs the core that a USB reset or that a change on the VBUS has
occured. In that case the core stops what ever it was doing and moves into the USB default state (no
addresse set and not configured).

Figure 201. The main FSM of the GRUSBDCL. The FSM can be divided into three major parts i) the initialization (reset to
idle), ii) handling of USB requests (seen to the left of idle), and iii) handling of DCL requests (seen to the right of idle).
GRIP, Sep 2018, Version 2018.3 1052 www.cobham.com/gaisler

GRLIB IP Core

69.2.2 Protocol

The protocol used for the AHB commands is very simple and consists of two 32-bit control words.
The first word consists of the 32-bit AHB address and the second consists of a read/write bit at bit 31
and the number of words to be written at bits 16 downto 2. All other bits in the second word are
reserved for future use and must be set to 0. The read/write bit must be set to 1 for writes.
Figure 202 shows the layout of a write command. The command should be sent as the data cargo of an
OUT transaction to endpoint 1. The data for a command must be included in the same packet. The
maximum payload is 512 B when running in high-speed mode and 64 B in full-speed mode. Since the
control information takes 8 B the maximum number of bytes per command is 504 B and 56 B respec-
tively. Subword writes are not supported so the number of bytes must be a multiple of four between 0
and 504.
The words should be sent with the one to be written at the start address first. Individual bytes should
be transmitted msb first, i.e. the one at bits 31-24.
There is no reply sent for writes since the USB handshake mechanism for bulk writes guarantees that
the packet has been correctly received by the target.

Figure 203 shows the layout of read commands and replies. In this case the command only consists of
two words containing the same control information as the two first words for write commands. How-
ever, for reads the r/w bit must be set to 0.
When the read is performed data is read to the buffer belonging to IN endpoint 1. The reply packet is
sent when the next IN token arrives after all data has been stored to the buffer. The reply packets only
contains the read data (no control information is needed) with the word read from the start address
transmitted first. Individual bytes are sent with most significant byte first, i.e. the byte at bit 31
downto 24.

Figure 202. Layout of USBDCL write commands.

addressWord 1

Word 2 r/w length

31 0

31 16 2

Word 3 - data
31 0

128

Figure 203. Layout of USBDCL read commands and replies.

Read Command

Word 1

Word 2 r/w length

31 0

31 16 2

Word 0- data
31 0

126

Read Reply

address
GRIP, Sep 2018, Version 2018.3 1053 www.cobham.com/gaisler

GRLIB IP Core

69.2.3 AHB operations

All AHB operations are performed as incremental bursts of unspecified length. Only word size
accesses are done.

69.3 Registers

The core does not contain any user accessible registers.

69.4 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x022. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.
The USB vendor identifier is 0x1781 and product identifier is 0x0AA0.

69.5 Implementation

69.5.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core does not support grlib_async_reset_enable. A subset of the registers in the USB clock
domain make use of asynchronous reset.
The IP core has two different reset inputs: the AMBA reset and the USB reset. They work inde-
pendently on their respective clock domains. If reset generation/synchronization is desired, it shall be
done in a higher instance, out of the IP.
See also documentation of syncprst VHDL generic.

69.5.2 Scan test support

The VHDL generic scantest enables scan test support for both the GRUSB_DCL and GRUSBDC.
When the scanen and testen signals in the AHB master input record are high the GRUSB_DCL will
disable the internal RAM blocks.
See GRUSBDC section of GRLIB IP Core User’s Manual for details on the scan support for
GRUSBDC.
GRIP, Sep 2018, Version 2018.3 1054 www.cobham.com/gaisler

GRLIB IP Core

69.6 Configuration options

Table 1293 shows the configuration options of the core (VHDL generics).

69.7 Signal descriptions

Table 1294 shows the interface signals of the core (VHDL ports).

Table 1293.Configuration options

Generic Function Allowed range Default
hindex AHB master index. 0 - NAHBMST-1 0
memtech Memory technology used for blockrams (endpoint buf-

fers).
0 - NTECH 0

uiface Please see GRUSBDC section in the GRLIB IP Core User’s Manual.
dwidth Please see GRUSBDC section in the GRLIB IP Core User’s Manual.
oepol Please see GRUSBDC section in the GRLIB IP Core User’s Manual.
keepclk Please see GRUSBDC section in the GRLIB IP Core User’s Manual.
functesten Please see GRUSBDC section in the GRLIB IP Core User’s Manual. If this generic is non-zero, the

core will sample the value of its functesten input signal during reset. This value will then be used
when assigning the Functional Testmode field in the GRUSBDC control register. The functesten
input can be useful during netlist simulation as functional test mode reduces simulation time. If this
generic is set to zero, the value of the functesten input will be disregarded and the Functional Test-
mode field will always be written with ‘0’.

burstlength Sets the maximum burst length in 32-bit words. The core
will not burst over a burstlength word boundary.

8 1 - 512

scantest Set this generic to 1 if scan test support should be imple-
mented.

0 - 1 0

Table 1294.Signal descriptions

Signal name Field Type Function Active
UCLK N/A Input USB UTMI/ULPI Clock -
URST N/A Input USB Reset Low
USBI * Input USB Input signals -

functesten Input Functional test enable. If the core has been
implemented with support for functional test
mode (VHDL generic functesten), this signal
will be sampled during core reset. Its value will
then be used to set the functional testmode
enable bit in the GRUSBDC core’s control regis-
ter.

High

USBO * Output USB Output signals -
HCLK Input AMBA Clock -
HRST Input AMBA Reset Low
AHBMI ** Input AHB master input signals -
AHBMO ** Output AHB master output signals -
* see GRUSBDC section og GRLIB IP Core User’s Manual
** see GRLIB IP Library User’s Manual
GRIP, Sep 2018, Version 2018.3 1055 www.cobham.com/gaisler

GRLIB IP Core

69.8 Library dependencies

Table 1295 shows libraries used when instantiating the core (VHDL libraries).

69.9 Instantiation

This example shows how the core can be instantiated.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.grusb.all;

entity usbdcl_ex is
 port (
 clk : in std_ulogic; --AHB Clock
 rstn : in std_ulogic;

 -- usb signals
 usb_clkout : in std_ulogic;

usb_rst : in std_ulogic;
 usb_d : inout std_logic_vector(7 downto 0);
 usb_nxt : in std_ulogic;
 usb_stp : out std_ulogic;
 usb_dir : in std_ulogic;
 usb_resetn : out std_ulogic
end;

architecture rtl of usbdcl_ex is
 constant padtech : integer := inferred;
 constant memtech : integer := inferred;

 -- AMBA signals
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);
 -- USB signals
 signal usbi : grusb_in_type;
 signal usbo : grusb_out_type;
signal uclk : std_ulogic;
signal urstn : std_ulogic;

begin

 -- AMBA Components are instantiated here
 ...

 -- GRUSB_DCL
 usb_d_pad: iopadv
 generic map(tech => padtech, width => 8)
 port map (usb_d, usbo.dataout, usbo.oen, usbi.datain);
 usb_nxt_pad : inpad generic map (tech => padtech)
 port map (usb_nxt, usbi.nxt);
 usb_dir_pad : inpad generic map (tech => padtech)
 port map (usb_dir, usbi.dir);
 usb_resetn_pad : outpad generic map (tech => padtech)
 port map (usb_resetn, usbo.reset);
 usb_stp_pad : outpad generic map (tech => padtech)

Table 1295.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER GRUSB Signals, components GRUSB_DCL and GRUSBDC component dec-

larations, USB signals
GRIP, Sep 2018, Version 2018.3 1056 www.cobham.com/gaisler

GRLIB IP Core

 port map (usb_stp, usbo.stp);

 usb_clkout_pad : clkpad
 generic map (tech => padtech)
 port map (usb_clkout, uclk);

usb_input_rst_pad : inpad
 generic map (tech => padtech)
 port map (usb_rst, urstn);

 usbi.urstdrive <= ‘0’;

 usbdcl0: grusb_dcl
 generic map (
 hindex => 0,
 memtech => memtech,
 uiface => 1,
 dwidth => 8,
 oepol => 0)
 port map (
 uclk => uclk,

urst => urstn,
 usbi => usbi,
 usbo => usbo,
 hclk => clk,
 hrst => rstn,
 ahbi => ahbmi,
 ahbo => ahbmo(0));
end;
GRIP, Sep 2018, Version 2018.3 1057 www.cobham.com/gaisler

GRLIB IP Core

70 GRUSBHC - USB 2.0 Host Controller

70.1 Overview

The Cobham Gaisler USB 2.0 Host Controller provides a link between the AMBA AHB bus and the
Universal Serial Bus. The host controller supports High-, Full-, and Low-Speed USB traffic. USB 2.0
High-Speed functionality is supplied by an enhanced host controller implementing the Enhanced Host
Controller Interface revision 1.0. Full- and Low-Speed traffic is handled by up to 15 (USB 1.1) com-
panion controllers implementing the Universal Host Controller Interface, revision 1.1. Each controller
has its own AMBA AHB master interface. Configuration and control of the enhanced host controller
is done via the AMBA APB bus. Companion controller registers are accessed via an AMBA AHB
slave interface. Figure 204 shows a USB 2.0 host system and the organization of the controller types.
Figure 205 shows an example with both host controller types present.
The controller supports both UTMI+ and ULPI transceivers and can handle up to 15 ports.

Figure 204. Block diagram of USB 2.0 host system

Figure 205. Block diagram of both host controller types

Serial Interface Engine

AMBA AHB

Protocol Engine

Memory Buffer ControllerAHB
Master

Trans-

Serial Interface Engine

Protocol Engine

Memory Buffer Controller

AHB
Slave

AHB
Master

APB
Slave

 Buffer
Packet
 Buffer

Packet
 Buffer

Enhanced host controllerUniversal host controller(s)
Port Router

UTMI+ or ULPI transceivers

A
M
B
A

A
P
B

GRIP, Sep 2018, Version 2018.3 1058 www.cobham.com/gaisler

GRLIB IP Core

70.2 Operation

70.2.1 System overview

Depending on the core’s configuration it may contain both controller types, one enhanced host con-
troller, or up to 15 standalone universal host controllers. If both controller types are present, each uni-
versal host controller acts as a companion controller to the enhanced host controller.
The enhanced host controller complies with the Enhanced Host Controller Interface with the excep-
tion of the optional Light Host Controller Reset, which is not implemented.
The universal host controller complies with the Universal Host Controller Interface, with exceptions.
The HCHalted field in the USB Command register is implemented as Read Only instead of Read/
Write Clear. The Port Status/Control registers have been extended with Over Current and Over Cur-
rent Change fields. Changes to both registers have been done in accordance with contemporary imple-
mentations of the interface. Both changes match the description of corresponding bits in the EHCI
specification.

70.2.2 Protocol support

The enhanced host controller has full support for High-Speed traffic as defined in the USB Specifica-
tion, revision 2.0. In addition Asynchronous Park Mode is supported, and the controller has a NAK
counter.
The universal host controller supports Full- and Low-Speed traffic.

70.2.3 Descriptor and data buffering

The enhanced host controller prefetches one frame of isochronous descriptors. All payload data for a
transaction is fetched before the transaction is executed. The enhanced host controller has a 2048 byte
buffer for descriptors and a 2048 byte buffer for payload data, which can hold data for two transac-
tions.
The universal host controller does not prefetch descriptors. Depending on controller configuration a
transaction on the bus may be initiated before all payload data has been fetched from memory. Each
universal host controller has a 1024 byte buffer for payload data. A transfer descriptor in UHCI may
describe a transaction that has a payload of 1280 bytes. The USB specification limits the maximum
allowed data payload to 1023 bytes and the controller will not transfer a larger payload than 1023
bytes. If a descriptor has a, legal, larger payload than 1023 bytes, the controller will only attempt to
transfer the first 1023 bytes before the transaction is marked as completed.
In the event that the host controller has just one port, the universal host controller and the enhanced
host controller will share the data payload buffer. Thus only two 2048 byte buffers are required.

70.2.4 Endianness

The core always accesses the least significant byte of a data payload at offset zero. Depending on the
core’s configuration, registers may be big endian, little endian, or byte swapped little endian.

70.2.5 RAM test facilities

The VHDL generic ramtest adds the possibility to test the RAM by mapping the core’s internal buf-
fers into the register space. If the core is implemented with RAM test facilities the universal host con-
troller maps the packet buffer at offset 0x400 - 0x7FF. An enhanced host controller will map the
packet buffer at offset 0x1000 - 0x17FF and the transaction buffer at 0x1800 - 0x1FFF. Note that the
VHDL generics uhchmask and ehcpmask must be modified to allow access to the increased number of
registers. The three least significant bits of the universal host controller’s mask must be set to zero.
The enhanced host controller’s mask must have its five least significant bits set to zero.
GRIP, Sep 2018, Version 2018.3 1059 www.cobham.com/gaisler

GRLIB IP Core

When the ramtest generic is set to one an extra register called RAM test control register is added to
both the universal and the enhanced controller. This register is described in section 70.8.1 and 70.8.2.
To perform the RAM tests the user should first make sure that both the universal host controller and
enhanced host controller are in their respective idle state. Note that if the core has only one port then
the enhanced controller and the universal controller share the packet buffer. The shared buffer can be
tested through both of the controllers but the controller performing the test must be the current owner
of the port. For information on how to enter idle state and change ownership of the port please see sec-
tion 70.8. When the controllers are in their idle states the enable bit in the RAM test control register
should be set to one.
Once RAM test is enabled the whole RAM can be tested by first filling the buffers by writing to the
corresponding register addresses and then setting the start bit in the RAM test control register. When
the start bit is set the controller will, in order to access to the RAM from all its ports, read and write
the whole packet buffer from the USB domain. If the core uses dual port RAM (see section 70.10.2
for more information on RAM usage) the same thing is done with the transaction buffer (if it is the
enhanced controller that is performing the test). When the core uses double port RAM both the read
and write port of the transaction buffer is located in the AHB domain, and therefore both the read and
write port is tested during read and write accesses to register space. When the transfers are finished
the core will clear the start bit and the data can then be read back through register space and be com-
pared with the values that were written. When the core is implemented with dual port RAM individual
addresses in the packet buffer and transaction buffer can be written and read without using the start
bit. When using double port RAM only the transaction buffer can be read without using the start bit.
However when individual addresses are accessed the buffers are only read/written from the AHB
domain.

70.3 Port routing

Port routing is implemented according to the EHCI specification but functions regardless of whether
the core is configured with or without an enhanced host controller. The VHDL generic prr enables or
disables Port Routing Rules. With Port Routing Rules enabled, each port can be individually routed to
a specific universal host controller via the VHDL generics portroute1 and portroute2. If Port Routing
Rules is disabled the n_pcc lowest ports are routed to the first companion controller, the next n_pcc
ports to the second companion controller, and so forth. The HCSP-PORTROUTE array is communi-
cated via the portroute VHDL generics, which are calculated with the following algorithm:

portroute1 = 226*CC8 + 222*CC7 + 218*CC6 + 214*CC5 + 210*CC4 + 26*CC3 + 22*CC2 + CC1 / 4
portroute1 = 226*CC15 + 222*CC14 + 218*CC13 + 214*CC12 + 210*CC11 + 26*CC10 + 22*CC9 + CC1 mod 4
where CCP is the companion controller that port P is routed to. Companion controllers are enumerated
starting at 1.

When the enhanced host controller has not been configured by software, or when it is nonexistent,
each port is routed to its companion controller. This allows a universal host controller to function even
if the host system does not have support for the enhanced host controller. Please see the EHCI specifi-
cation for a complete description of port routing.

70.4 DMA operations

Both host controller types have configurable DMA burst lengths. The burst length in words is defined
by the VHDL generic bwrd. The value of bwrd limits how many words a controller may access in
memory during a burst and not the number of memory operations performed after bus access has been
granted. When writing a data payload back to memory that requires half-word or byte addressing the
number of memory operations may exceed bwrd by one before the bus is released. If a host controller
GRIP, Sep 2018, Version 2018.3 1060 www.cobham.com/gaisler

GRLIB IP Core

is given a byte-aligned data buffer its burst length may exceed the bwrd limit with one word when
fetching payload data from memory.
The universal host controller uses a burst length of four words when fetching descriptors. This
descriptor burst length is not affected by the bwrd VHDL generic. The universal host controller may
be configured to start transactions on the USB before all data has been fetched from memory. The
VHDL generic uhcblo specifies the number of words that must have been fetched from memory
before a USB transaction is started. Since the USB traffic handled by the universal host controller can
be expected to have significantly lower bandwidth than the system memory bus, this generic should
be set to a low value.

70.5 Endianness

The core works internally with little endian. If the core is connected to a big endian bus, endian con-
version must be enabled. When the VHDL generic endian_conv is set, all AMBA data lines are byte
swapped. With endian_conv correctly set the core will start accessing data payloads from byte offset
zero in the buffer, this is the first byte that is moved on the USB. The VHDL generic endian_conv
must be set correctly for byte and halfword accesses to work. Therefore it is not possible to change the
byte order of the buffer by configuring the controller for a little endian bus when it is connected to a
big endian bus or vice versa.
The VHDL generics be_regs and be_desc are used to place the controller into big endian mode when
endian conversion is enabled. These configuration options have no effect when the core is connected
to a little endian bus, as determined by the value of VHDL generic endian_conv. The VHDL generic
be_regs arranges the core’s registers in accordance with big endian addressing. In the enhanced host
controller this will only affect the placement of the register fields CAPLENGTH and HCIVERSION,
the HCSP-PORTROUTE array, and - if implemented - the PCI registers Serial Bus Release Number
Register and Frame Length Adjustment Register. In the universal host controller be_regs will affect
the placement of all registers. When be_regs is set, the bus to the register interface is never byte
swapped. Tables 1296 - 1298 below illustrate the difference between big endian, little endian, and lit-
tle endian layout with byte swapped (32 bit) WORDs on two 16 bit registers. Register R1 is located at
address 0x00 and register R2 is located at address 0x02.

Table 1296.R1 and R2 with big endian addressing

31 16 15 0

R1(15:0) R2(15:0)

Table 1297.R1 and R2 with little endian addressing

31 16 15 0

R2(15:0) R1(15:0)

Table 1298.R1 and R2 with little endian layout and byte swapped DWORD

31 24 23 16 15 8 7 0

R1(7:0) R1(15:8) R2(7:0) R2(15:8)
GRIP, Sep 2018, Version 2018.3 1061 www.cobham.com/gaisler

GRLIB IP Core

The VHDL generic be_desc removes the byte swapping of descriptors on big endian systems. Tables
1299 and 1300 below list the effects of endian_conv and be_regs on a big endian and a little endian
system respectively.

70.6 Transceiver support

The controller supports UTMI+ 8-bit, UTMI+ 16-bit, and ULPI transceivers. All connected transceiv-
ers must be of the same type. Note that the transceiver type is fixed and the core can therefore not
change between 8-bit and 16-bit UTMI+ interface during operation. Transceiver signals not belonging
to the selected transceiver type are not connected and do not need to be driven. When using ULPI
transceivers the default, and recommended, configuration is to use an external source for USB bus
power (VBUS) as well as external VBUS fault detection. However the core can be configured to sup-
port configurations where the ULPI transceiver handles VBUS generation and fault detection inter-
nally, and configurations where VBUS generation is external to transceiver but fault detection is
handled internally. Also the active level of the VBUS fault indicator can be configured. The configu-
ration is handled by the vbusconf generic. If UTMI+ transceivers are used it does not matter to the
core how VBUS generation and fault detection is handled as long as the VBUS enable signal and
VBUS fault indicator are connected to the core’s drvvbus and vbusvalid signals respectively. The
UTMI+ specification defines these two signals to be active high, however in order to support different
types of USB power switches and fault detectors the core can be configured to have active low drv-
vbus and vbusvalid signals. This configuration is also handled by the vbusconf generic. The UTMI+
interface is described in USB 2.0 Transceiver Macrocell Interface (UTMI) Specification and UTMI+
Specification Revision 1.0. The ULPI interface is described in UTMI+ Low Pin Interface (ULPI)
Specification Revision 1.1.

70.7 PCI configuration registers and legacy support

The VHDL generic pcidev is used to configure the core to be used as a PCI device. If the core is con-
figured to be used as a PCI device then the PCI registers Serial Bus Release Number Register and
Frame Length Adjustment Register are implemented in the enhanced controller. The Serial Bus
Release Number Register is also implemented for the universal controller. See Enhanced Host Con-
troller Interface Specification (EHCI) for Universal Serial Bus revision 1.0 and Universal Host Con-
troller Interface (UHCI) Design Guide revision 1.1 for details.

Table 1299.Effect of endian_conv, be_regs, and be_desc on a big endian system

endian_conv be_regs be_desc System configuration
0 - - Illegal. DMA will not function.
1 0 0 Host controller registers will be arranged according to little endian addressing and

each DWORD will be byte swapped. In-memory transfer descriptors will also be
byte swapped. This is the correct configuration for operating systems, such as
Linux, that swap the bytes on big endian systems.

1 0 1 Host controller registers are arranged according to little endian addressing and will
be byte swapped. Transfer descriptors will not be byte swapped.

1 1 0 Host controller registers will be arranged according to big endian addressing and
will not be byte swapped. In memory transfer descriptors will be byte swapped.

1 1 1 Host controller registers will be arranged according to big endian addressing. In
memory transfer descriptors will not be byte swapped.

Table 1300.Effect of endian_conv, be_regs and be_desc on a little endian system

endian_conv be_regs be_desc System configuration
0 - - Host controller registers will be placed as specified in the register interface specifi-

cations.
1 - - Illegal. DMA will not function.
GRIP, Sep 2018, Version 2018.3 1062 www.cobham.com/gaisler

GRLIB IP Core

Legacy support is not implemented.

70.8 Registers

70.8.1 Enhanced host controller

The core is programmed through registers mapped into APB address space. The contents of each reg-
ister is described in the Enhanced Host Controller Interface Specification (EHCI) for Universal Serial
Bus revision 1.0. A register called RAM test control is added when the VHDL generic ramtest is set to
one. The RAM test control register is not part of the EHCI interface and is described below. Also reg-
isters mapped to the packet buffer and transaction buffer are added if RAM test facilities are imple-
mented.

Table 1301.Enhanced Host Controller capability registers

APB address offset Register
0x00 Capability Register Length
0x01 Reserved
0x02 Interface Version Number
0x04 Structural Parameters
0x08 Capability Parameters
0x0C Companion Port Route Description

Table 1302.Enhanced Host Controller operational registers

APB address offset Register
0x14 USB Command*
0x18 USB Status
0x1C USB Interrupt Enable
0x20 USB Frame Index
0x24 4G Segment Selector (Reserved)
0x28 Frame List Base Address
0x2C Next Asynchronous List Address
0x54 Configured Flag Register
0x58 - 0x90 Port Status/Control Registers**
*Light Host Controller reset is not implemented.
**One 32-bit register for each port

Table 1303.Enhanced Host Controller RAM test registers

APB address offset Register
0x100 - 0xFFF RAM test control*
0x1000 - 0x17FF Packet buffer**
0x1800 - 0x1FFF Transaction buffer**
*Register is only present if ramtest generic is set to one. Accessible through any of the offsets specified.
**Registers are only present if ramtest generic is set to one.

Table 1304.0x100 - RAMTEST - RAM test control
31 2 1 0

RESERVED ST EN

0 0 0

r w w
GRIP, Sep 2018, Version 2018.3 1063 www.cobham.com/gaisler

GRLIB IP Core
70.8.2 Universal host controller

The core is programmed through registers mapped into AHB I/O address space. The contents of each
register is described in the Universal Host Controller Interface (UHCI) Design Guide revision 1.1. A
register called RAM test control is added when the VHDL generic ramtest is set to one. The RAM test
control register is not part of the UHCI interface and is described below. Also registers mapped to the
packet buffer are added when RAM test facilities are implemented.

31: 2 R (Reserved): Always reads zero.
1 ST (Start): Starts the automatic RAM test. Can only be written to ‘1’. Cleared by the core when test

is finished.
0 EN (Enable): Enable RAM test. Need to be set to ‘1’ in order to access the buffers.

Table 1305.Enhanced Host Controller PCI registers

APB address offset Register
0x2060 PCI registers Serial Bus Release Number Register and Frame Length

Adjustment Register*
*Only implemented if configured to be used as a PCI device.

Table 1306.Universal Host Controller I/O registers

AHB address offset Register
0x00 USB Command
0x02 USB Status*
0x04 USB Interrupt Enable
0x06 Frame Number
0x08 Frame List Base Address
0x0C Start Of Frame Modify
0x10 - 0x2C Port Status/Control**
*The HCHalted bit is implemented as Read Only and has the default value 1.
**Over Current and Over Current Change fields have been added. Each port has a 16-bit register.

Table 1307.Changes to USB Status register
15 6 5 4 0

UHCI compliant HCH UHCI compliant

1

r

15: 6 UHCI compliant
5 Host Controller Halted (HCH) - Same behaviour as specified in the UHCI specification but the field

has been changed from Read/Write Clear to Read Only and is cleared when Run/Stop is set. The
default value of this bit has been changed to 1.

4:0 UHCI compliant

Table 1308.Changes to Port Status/Control registers
15 12 11 10 9 0

UHCI compliant OCC OC UHCI compliant

0 0

wc r

15: 12 UHCI compliant

Table 1304.0x100 - RAMTEST - RAM test control
GRIP, Sep 2018, Version 2018.3 1064 www.cobham.com/gaisler

GRLIB IP Core
70.9 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler), the enhanced host controller has device identi-
fier 0x026, the universal host controller has device identifier 0x027. For description of vendor and
device identifiers see GRLIB IP Library User’s Manual.

70.10 Implementation

70.10.1 Clocking and reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set. The core does not support grlib_async_reset_enable.
The core has two clock domains; a system clock domain and a USB clock domain. The USB clock
domain always operates in either 60 MHz or 30 MHz, depending on the transceiver interface. All sig-
nals that cross a clock domain boundary are synchronized to prevent meta-stability.
The IP core has two different reset inputs, according to the two existing clock domains: the AMBA
reset and the USB reset. They work independently on their respective clock domains. If reset genera-
tion/synchronization is desired, it shall be done in a higher instance, out of the IP, as this is not per-
formed internally.
The reset input can be asserted and deasserted asynchronously or synchronously. All registers that in
the system clock domain that require a reset value are synchronously reseted. It is assumed that the

11 Over Current Change (OCC) - Set to 1 when Over Current (OC) toggles. Read/Write Clear.
10 Over Current Active (OC) - Set to 1 when there is an over current condition. Read Only.
9:0 UHCI compliant

Table 1309. Universal Host Controller RAM test registers

AHB address offset Register
0x100 - 0x3FF RAM test control*
0x400 - 0x7FF Packet buffer**
*Register is only present if ramtest generic is set to one. Accessible through any of the offsets specified.
**Registers are only present if ramtest generic is set to one.

Table 1310.0x100 - RAMTEST - RAM test control
31 2 1 0

RESERVED ST EN

* 0 0

r w rw

31: 2 R (Reserved): Always reads zero.
1 ST (Start): Starts the automatic RAM test. Can only be written to ‘1’. Cleared by the core when test

is finished.
0 EN (Enable): Enable RAM test. Need to be set to ‘1’ in order to access the buffers.

Table 1311. Universal Host Controller PCI registers

AHB address offset Register
0x60 PCI register Serial Bus Release Number Register*

*Only implemented if configured to be used as a PCI device.

Table 1308.Changes to Port Status/Control registers
GRIP, Sep 2018, Version 2018.3 1065 www.cobham.com/gaisler

GRLIB IP Core

reset input is held asserted until the system clock input is stable. In order to insure that no unwanted
USB activity take place, a few registers in the USB clock domain are asynchronously reseted. Once
the USB clock starts to toggle, all other registers in the USB domain that require a reset value will be
reset as well.
Some ULPI transceivers require the data bus to be kept low by the core during transceiver reset, this
behaviour is controlled by the urstdrive input signal.

70.10.2 RAM usage

The core maps all usage of RAM on either the syncram_dp component (dual port) or the syncram_2p
component (double port), both from the technology mapping library (TECHMAP). Which component
that is used can be configured with generics. The default, and recommended, configuration will use
syncram_dp. A universal host controller requires one 256x32 syncram_dp, or two 256x32 syn-
cram_2p for its packet buffer. The extra amount of syncram_2p needed comes from the fact that the
packet buffer is both read and written from the AHB clock domain and the USB clock domain. It can
not be guaranteed that a synchronization scheme would be fast enough and therefore one buffer for
data beeing sent and one buffer for data beeing received are needed. An enhanced host controller
requires one 512x32 syncram_dp (or two 512x32 syncram_2p, for the same reason discussed above)
for its packet buffer and two 512x16 syncram_dp/syncram_2p for its transaction buffer. The transac-
tion buffer is not doubled when using syncram_2p, instead synchronization and arbritration logic is
added. When the core is instantiated with only one port, the enhanced host controller and universal
host controller will share the packet buffer and the core only requires one 512x32 syncram_dp (or two
512x32 syncram_2p) for the packet buffer. Table 1312 below shows RAM usage for all legal configu-
rations.

70.10.3 ASIC implementation details

When synthesizing the core for ASIC it might be required to use DC Ultra to reach the desired perfor-
mance of the AMBA interface.

70.10.4 Scan test support

The VHDL generic scantest enables scan test support. If the core has been implemented with scan test
support it will:
• disable the internal RAM blocks when the testen and scanen signals are asserted.
• use the testoen signal as output enable signal.
• clock all registers with the clk input (i.e. not use the USB clock).
• use the testrst signal as the reset signal for those registers that are asynchronously reseted.

Table 1312.RAM usage for USB Host Controller core

Enhanced Host
Controller present

Number of
Universal Host
Controllers

Number of
ports

RAM
component

RAM
256x32

RAM
512x32

RAM
512x16

No x* Don’t care syncram_dp x* 0 0
No x* Don’t care syncram_2p x** 0 0
Yes 1 1 syncram_dp 0 1 2
Yes 1 1 syncram_2p 0 2 2
Yes x* > 1 syncram_dp x* 1 2
Yes x* > 1 syncram_2p x** 2 2
* The number of required 256x32 syncram_dp equals the number of instantiated universal host controllers.
** The number of required 256x32 syncram_2p equals the double amount of instantiated universal host controllers.
GRIP, Sep 2018, Version 2018.3 1066 www.cobham.com/gaisler

GRLIB IP Core

The testen, scanen, testrst, and testoen signals are routed via the AHB master interface.

70.11 Configuration options

Table 1313 shows the configuration options of the core (VHDL generics).

Table 1313.Configuration options

Generic name Function Allowed range Default
ehchindex Enhanced host controller AHB master index 0 - NAHBMST-1 0
ehcpindex Enhanced host controller APB slave index 0 - NAPBSLV-1 0
ehcpaddr Enhanced host controller ADDR field of the APB BAR. 0 - 16#FFF# 0
ehcpmask Enhanced host controller MASK field of the APB BAR.

Note that if the ramtest generic is set to 1 then the
allowed range for this generic changes to 0 - 16#FE0#. If
the pcidev generic is set to 1 then the allowed range for
ehcpmask is 0 - 16#FC0#

0 - 16#FFF# 16#FFF#

ehcpirq Enhanced host controller interrupt line 0 - NAHBIRQ-1 0
uhchindex Universal host controller AHB master index. If the core

contains more than one universal host controller the con-
trollers will be assigned indexes from uhchindex to
uhchindex+n_cc-1.

0 - NAHBMST-1 0

uhchsindex Universal host controller AHB slave index. If the core
contains more than one universal host controller the con-
trollers will be assigned indexes from uhc_hsindex to
uhchsindex+n_cc-1.

0 - NAHBSLV-n_cc 0

uhchaddr Universal host controller ADDR field of the AHB BAR.
If the core contains more than one universal host control-
ler the controllers will be assigned the address space
uhchaddr to uhchaddr + n_cc.

0 - 16#FFF# 0

uhchmask Universal host controller MASK field of the AHB BAR.
Note that if the ramtest generic is set to 1 then the
allowed range for this generic changes to 0 - 16#FF8#

0 - 16#FFF# 16#FFF#

uhchirq Universal host controller interrupt line. If the core con-
tains more than one universal host controller the control-
ler will be assigned interrupt lines uhc_hirq to
uhchirq+n_cc-1.

0 - NAHBIRQ-1 0

tech Technology for clock buffers 0 - NTECH inferred
memtech Memory Technology used for buffers. 0 - NTECH inferred
nports Number of USB ports 1 - 15 1
ehcgen Enable enhanced host controller 0 - 1 1
uhcgen Enable universal host controller(s) 0 - 1 1
n_cc Number of universal host controllers. This value must be

consistent with nports and n_pcc, or portroute1 and por-
troute2, depending on the value of the generic prr. This
value must be at least 1, regardless the value of generic
uhcgen.

1 - 15 1

n_pcc Number of ports per universal host controller. This value
must be consistent with n_cc and nports:
nports <= (n_cc * n_pcc) < (nports + n_pcc)
when Port Routing Rules is disabled. The only allowed
deviation is if (nports mod n_cc) < n_pcc in which case
the last universal host controller will get (nports mod
n_cc) ports. This generic is not used then Port Routing
Rules (prr) is enabled.

1 - 15 1
GRIP, Sep 2018, Version 2018.3 1067 www.cobham.com/gaisler

GRLIB IP Core
prr Port Routing Rules. Determines if the core’s ports are
routed to companion controller(s) with n_cc and n_pcc
or with the help of portroute1 and portroute2.

0 - 1 0

portroute1 Defines part of the HCSP-PORTROUTE array - 0
portroute2 Defines part of the HCSP-PORTROUTE array - 0
endian_conv Enable endian conversion. When set, all AMBA data

lines are byte swapped. This generic must be set to 1 if
the core is attached to a big endian bus, it must be set to 0
if the core is attached to a little endian bus.

0 - 1 1

be_regs Arrange host controller registers according to big endian
addressing. When set no endian conversion is made on
the AMBA data lines connected to the host controller
registers, regardless of endian_conv. Valid when endi-
an_conv is enabled.

0 - 1 0

be_desc Disable byte swapping of in-memory descriptors. Valid
when endian_conv is enabled.

0 - 1 0

uhcblo Universal Host Controller Buffer Limit Out. A universal
host controller will start OUT bus transactions when
uhcblo words of payload data has been fetched from
memory. Note that if the core uses the UTMI+ 16 bit
interface this generic must have a value larger than 2.

1 - 255 2

bwrd Burst length in words. A universal host controller has a
fixed, not affected by bwrd, burst length of four words
when fetching transfer descriptors. See comments under
section 70.2 DMA operations.

0 - 256 16

utm_type Transceiver type:
0: UTMI+ 16 bit data bus
1: UTMI+ 8 bit data bus
2: ULPI

0 - 2 2

Table 1313.Configuration options

Generic name Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 1068 www.cobham.com/gaisler

GRLIB IP Core
vbusconf* Selects configuration for USB power source and fault
detection (external and internal below is from the USB
transceivers point of view):
ULPI transceivers:
0: ULPI transceiver generates VBUS internally and no
external fault indicator present
1: External power source but no external fault indicator.
Transceiver implement the optional ULPI pin DrvVbu-
sExternal but not ExternalVbusIndicator.
2: External power source and external active high fault
indicator. Transceiver implement both the optional ULPI
signals DrvvbusExternal and ExternalVbusIndicator.
3: External power source and external active low fault
indicator. Transceiver implement both the optional sig-
nals DrvvbusExternal and ExternalVbusIndicator.
4: External power source, but transceiver does not imple-
ment the optional ULPI signal DrvVbusExternal. Active
low drvvbus output from Host Controller will be used.
Don’t care if ExternalVbusIndicator is implemented, not
used.
5: External power source, but transceiver does not imple-
ment the optional ULPI signal DrvVbusExternal. Active
high drvvbus output from Host Controller will be used.
Don’t care if ExternalVbusIndicator is implemented, not
used.
UTMI+ transceivers:
0: vbusvalid and drvvbus are both active low
1: vbusvalid is active low, drvvbus is active high
2: vbusvalid is active high, drvvbus is active low
3: vbusvalid and drvvbus are both active high

0 - 3 3

ramtest When set each controller maps its internal buffers into
the controller’s register space.**

0 - 1 0

oepol The polarity of the output enable signal for the data
input/output buffers, 0 means active low and 1 means
active high.

0 - 1 0

scantest Scan test support will be included if this generic is set to
1.

0 - 1 0

memsel Selects if dual port or double port memories should be
used for the host controllers’ internal buffers. Dual port
memories are used if this generic is set to 0 (or MEM-
SEL_DUALPORT). Double port memories are used if
this generic is set to 1 (or MEMSEL_DOUBLEPORT).
It is strongly recommended to use dual port memories in
the host controllers. Double port memories should only
be used on technologies that lack support for dual port
memories or where the area overhead for dual port mem-
ories preventively large.***

0 - 1 0

pcidev This generic should be set to one if the core is to be used
as a PCI device. If set to 1 the core will hold its interrupt
signal(s) high until cleared by software. Also a few PCI
registers will be added. See section 70.7 and 70.8 for
details on the registers.
Note that if this generic is set to 1 then the allowed range
for ehcpmask changes to 0 - 16#FC0#.

0 - 1 0

Table 1313.Configuration options

Generic name Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 1069 www.cobham.com/gaisler

GRLIB IP Core
70.12 Signal descriptions

Table 1314 shows the interface signals of the core (VHDL ports).

*see section 70.6 Transceiver support for more information
**see section 70.2.5 RAM test facilities for more information
***see section 70.10.2 RAM usage for more information

Table 1314.Signal descriptions

Signal name Field Type Function Active
CLK N/A Input AMBA clock -
UCLK N/A Input USB clock -
RST N/A Input AMBA reset Low
URST N/A Input USB reset Low
APBI * Input APB slave input signals -
EHC_APBO * Output APB slave output signals -
AHBMI * Input AHB master input signals -
AHBSI * Input AHB slave input signals -
EHC_AHBMO * Output AHB master output signals. -
UHC_AHBMO[] * Output AHB master output vector.
UHC_AHBSO[] * Output AHB slave output vector. -
O[] xcvrselect[1:0] Output UTMI+ -

termselect Output UTMI+ -
suspendm Output UTMI+ Low
opmode[1:0] Output UTMI+ -
txvalid Output UTMI+ High
dataout[15:0] Output UTMI+/ULPI. Bits 15:8 are only used in 16-bit

UTMI+ mode.
-

txvalidh Output UTMI+ 16-bit High
stp Output ULPI High
reset Output Transceiver reset signal. Asserted asynchro-

nously and deasserted synchrnously to the USB
clock.

**

oen Output Data bus direction control for ULPI and bi-direc-
tional UTMI+ interfaces.

databus16_8 Output UTMI+ Constant high for 16-bit interface, con-
stant low for 8-bit interface.

-

dppulldown Output UTMI+ Constant high. High
dmpulldown Output UTMI+ Constant high. High
idpullup Output UTMI+ Constant low. High
drvvbus Output UTMI+/ULPI ***
dischrgvbus Output UTMI+ Constant low. High
chrgvbus Output UTMI+ Constant low. High
txbitstuffenable Output UTMI+ Constant low. High
txbitstuffenableh Output UTMI+ Constant low. High
fslsserialmode Output UTMI+ Constant low. High

Table 1313.Configuration options

Generic name Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 1070 www.cobham.com/gaisler

GRLIB IP Core
70.13 Signal definitions and reset values

The signals and their reset values are described in table 1315.

tx_enable_n Output UTMI+ Constant high. High
tx_dat Output UTMI+ Constant low. High
tx_se0 Output UTMI+ Constant low. High

I[] linestate[1:0] Input UTMI+ -
txready Input UTMI+ High
rxvalid Input UTMI+ High
rxactive Input UTMI+ High
rxerror Input UTMI+ High
vbusvalid Input UTMI+ ***
datain[15:0] Input UTMI+/ULPI. Bits 15:8 are only used in 16-bit

UTMI+ interface.
-

rxvalidh Input UTMI+ 16-bit High
hostdisconnect Input UTMI+ High
nxt Input ULPI High
dir Input ULPI -
urstdrive Input This input determines if the cores should drive

the transceiver data lines low during USB trans-
ceiver reset, even if the dir input is High. This is
needed for some transceivers, such as the NXP
ISP1504. When this input is low the direction of
the transceiver data lines are exclusively con-
trolled by the dir signal from the transceiver.
When this input is high the core will drive the
data lines low during transceiver reset. Only
applicable for ULPI transceivers.

High

* See GRLIB IP Library User’s Manual.
** Depends on transceiver interface. Active high for UTMI+ and active low for ULPI.
*** Implementation dependent.

Table 1315.Signal definitions and reset values

Signal name Type Function Active Reset value
xcvrselect[1:0] Output UTMI+ - -
termselect Output UTMI+ - -
suspendm Output UTMI+ Logical 0 Logical 1
opmode[1:0] Output UTMI+ - -
txvalid Output UTMI+ Logical 1 Logical 0
dataout[15:0] Output UTMI+/ULPI. Bits 15:8 are only used in 16-bit

UTMI+ mode.
- -

txvalidh Output UTMI+ 16-bit Logical 1 Logical 0
stp Output ULPI Logical 1 Logical 0
reset Output Transceiver reset signal. Set asynchronously and

cleared synchrnously to the USB clock.
* *

oen Output Data bus direction control for ULPI and bi-direc-
tional UTMI+ interfaces.

Table 1314.Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 1071 www.cobham.com/gaisler

GRLIB IP Core
70.14 Library dependencies

Table 1316 shows the libraries used when instantiating the core (VHDL libraries).

70.15 Instantiation

This example shows how the core can be instantiated.

library ieee, grlib, gaisler;
use ieee.std_logic_1164.all;
use grlib.amba.all;
use gaisler.grusb.all;

-- USB Host controller with 2 ports. One enhanced

databus16_8 Output UTMI+ Constant high for 16-bit interface, constant
low for 8-bit interface.

- **

dppulldown Output UTMI+ Constant high. Logical 1 Logical 1
dmpulldown Output UTMI+ Constant high. Logical 1 Logical 1
idpullup Output UTMI+ Constant low. Logical 1 Logical 0
drvvbus Output UTMI+ ** **
dischrgvbus Output UTMI+ Constant low. Logical 1 Logical 0
chrgvbus Output UTMI+ Constant low. Logical 1 Logical 0
txbitstuffenable Output UTMI+ Constant low. Logical 1 Logical 0
txbitstuffenableh Output UTMI+ Constant low. Logical 1 Logical 0
fslsserialmode Output UTMI+ Constant low. Logical 1 Logical 0
tx_enable_n Output UTMI+ Constant low. Logical 1 Logical 0
tx_dat Output UTMI+ Constant low. Logical 1 Logical 0
tx_se0 Output UTMI+ Constant low. Logical 1 Logical 0
linestate[1:0] Input UTMI+ - -
txready Input UTMI+ Logical 1 -
rxvalid Input UTMI+ Logical 1 -
rxactive Input UTMI+ Logical 1 -
rxerror Input UTMI+ Logical 1 -
vbusvalid Input UTMI+ *** -
datin[15:0] Input UTMI+/ULPI. Bits 15:8 are only used in 16-bit

UTMI+ mode.
- -

rxvalidh Input UTMI+ 16 bit interface Logical 1 -
hostdisconnect Input UTMI+ Logical 1 -
nxt Input ULPI Logical 1 -
dir Input ULPI - -
* Depends on transceiver interface. UTMI+ is active high, ULPI is active low.
** Implementation dependent

Table 1316.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER GRUSB Signals, component Component declaration, USB signals

Table 1315.Signal definitions and reset values

Signal name Type Function Active Reset value
GRIP, Sep 2018, Version 2018.3 1072 www.cobham.com/gaisler

GRLIB IP Core

-- host controller and two universal host controllers. Note that not all generics are set
-- in this example, many are kept at their defaulr values.

entity usbhc_ex is
 generic (
 tech => tech;
 memtech => memtech;
 padtech => padtech);
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- USBHC signals
 usbh_clkin : in std_ulogic;
 usbh_rstin : in std_ulogic;
 usbh_d : inout std_logic_vector(15 downto 0);
 usbh_reset : out std_logic_vector(1 downto 0);
 usbh_nxt : in std_logic_vector(1 downto 0);
 usbh_stp : out std_logic_vector(1 downto 0);
 usbh_dir : in std_logic_vector(1 downto 0)
);
end;

architecture rtl of usbhc_ex is

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);
 signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);

 -- USBHC signals
 signal usbhci : grusb_in_vector(1 downto 0);
 signal usbhco : grusb_out_vector(1 downto 0);
 signal uhclk : std_ulogic;
 signal uhrstn : std_ulogic;

begin

 -- AMBA Components are instantiated here
 ...

 -- Instantiate pads, one iteration for each port
 multi_pads: for i in 0 to 1 generate
 usbh_d_pad: iopadv
 generic map(tech => padtech, width => 8)
 port map (usbh_d((i*8+7) downto (i*8)),
 usbhco(i).dataout(7 downto 0), usbhco(i).oen,
 usbhci(i).datain(7 downto 0));
 usbh_nxt_pad : inpad generic map (tech => padtech)
 port map (usbh_nxt(i),usbhci(i).nxt);
 usbh_dir_pad : inpad generic map (tech => padtech)
 port map (usbh_dir(i),usbhci(i).dir);
 usbh_reset_pad : outpad generic map (tech => padtech)
 port map (usbh_reset(i),usbhco(i).reset);
 usbh_stp_pad : outpad generic map (tech => padtech)
 port map (usbh_stp(i),usbhco(i).stp);

 -- No need to drive ULPI data bus during USB reset
 usbhci(i).urstdrive <= ‘0’;
 end generate multi_pads;

 usbh_clkin_pad : clkpad:
 generic map (tech => padtech)
 port map(usbh_clkin, uhclk);

usbh_rstin_pad : inpad:
 generic map (tech => padtech)
 port map(usbh_rstin, uhrstn);
GRIP, Sep 2018, Version 2018.3 1073 www.cobham.com/gaisler

GRLIB IP Core

 usbhostcontroller0: grusbhc
 generic map (
 ehchindex => 5,
 ehcpindex => 14,
 ehcpaddr => 14,
 ehcpirq => 9,
 ehcpmask => 16#fff#,
 uhchindex => 6,
 uhchsindex => 3,
 uhchaddr => 16#A00#,
 uhchmask => 16#fff#,
 uhchirq => 10,
 tech => tech,
 memtech => memtech,
 nports => 2,
 ehcgen => 1,
 uhcgen => 1,
 n_cc => 2,
 n_pcc => 1,
 endian_conv => 1,
 utm_type => 2,
 vbusconf => 3)
 port map (
 clk => clk,
 uclk => uhclk,
 rst => rstn,

urst => uhrstn,
 apbi => apbi,
 ehc_apbo => apbo(14),
 ahbmi => ahbmi,
 ahbsi => ahbsi,
 ehc_ahbmo => ahbmo(5),
 uhc_ahbmo => ahbmo(7 downto 6),
 uhc_ahbso => ahbso(4 downto 3),
 o => usbhco,
 i => usbhci);
end;
GRIP, Sep 2018, Version 2018.3 1074 www.cobham.com/gaisler

GRLIB IP Core

71 GRVERSION - Version and Revision information register

71.1 Overview

The GRVERSION provides a register containing a 16 bit version field and a 16 bit revision field. The
values for the two fields are taken from two corresponding VHDL generics. The register is available
via the AMBA APB bus.

71.2 Registers

The core is programmed through registers mapped into APB address space.

71.2.1 Configuration Register

Table 1318.0x00 - CONFIG - Configuration Register

31-16: VERSION Version number
15- 0: REVISIONRevision number

71.3 Vendor and device identifiers

The module has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x03A. For descrip-
tion of vendor and device identifiers see GRLIB IP Library User’s Manual.

71.4 Implementation

71.4.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

71.5 Configuration options

Table 1319 shows the configuration options of the core (VHDL generics).

Table 1317.GRVERSION registers

APB address offset Register
0x00 Configuration Register

31 16 15 0
VERSION REVISION
* *
r r

Table 1319.Configuration options

Generic name Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0
paddr Addr field of the APB bar. 0 - 16#FFF# 0
pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#
versionnr Version number 0 - 2^16-1 0
revisionnr Revision number 0 - 2^16-1 0
GRIP, Sep 2018, Version 2018.3 1075 www.cobham.com/gaisler

GRLIB IP Core

71.6 Signal descriptions

Table 1320 shows the interface signals of the core (VHDL ports).

71.7 Library dependencies

Table 1321 shows the libraries used when instantiating the core (VHDL libraries).

Table 1320.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
* see GRLIB IP Library User’s Manual

Table 1321.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER MISC Component Component declaration
GRIP, Sep 2018, Version 2018.3 1076 www.cobham.com/gaisler

GRLIB IP Core
72 I2C2AHB - I2C to AHB bridge

72.1 Overview

The I2C slave to AHB bridge is an I2C slave that provides a link between the I2C bus and AMBA
AHB. The core is compatible with the Philips I2C standard and external pull-up resistors must be sup-
plied for both bus lines.
On the I2C bus the slave acts as an I2C memory device where accesses to the slave are translated to
AMBA accesses. The core can translate I2C accesses to AMBA byte, halfword or word accesses. The
core makes use of I2C clock stretching but can also be configured to use a special mode without clock
stretching in order to support systems where master or physical layer limitations prevent stretching of
the I2C clock period.
GRLIB also contains another I2C slave core, without an AHB interface, where the transfer of each
individual byte is controlled by software via an APB interface, see the I2CSLV core documentation
for more information.

72.2 Operation

72.2.1 Transmission protocol

The I2C-bus is a simple 2-wire serial multi-master bus with collision detection and arbitration. The
bus consists of a serial data line (SDA) and a serial clock line (SCL). The I2C standard defines three
transmission speeds; Standard (100 kb/s), Fast (400 kb/s) and High speed (3.4 Mb/s).
A transfer on the I2C-bus begins with a START condition. A START condition is defined as a high to
low transition of the SDA line while SCL is high. Transfers end with a STOP condition, defined as a
low to high transition of the SDA line while SCL is high. These conditions are always generated by a
master. The bus is considered to be busy after the START condition and is free after a certain amount
of time following a STOP condition. The bus free time required between a STOP and a START condi-
tion is defined in the I2C-bus specification and is dependent on the bus bit rate.
Figure 207 shows a data transfer taking place over the I2C-bus. The master first generates a START
condition and then transmits the 7-bit slave address. The bit following the slave address is the R/W bit
which determines the direction of the data transfer. In this case the R/W bit is zero indicating a write
operation. After the master has transmitted the address and the R/W bit it releases the SDA line. The
receiver pulls the SDA line low to acknowledge the transfer. If the receiver does not acknowledge the

Figure 206. Block diagram, optional APB interface not shown

A
M
B
A

A
H
B

Shift register
I2C2AHB SCL

SDAControl
FSM

START

STOP

SCL (filtered)

SDA (filtered)

Sy
nc

hr
on

iz
at

io
n

Fi
lte

r

GRIP, Sep 2018, Version 2018.3 1077 www.cobham.com/gaisler

GRLIB IP Core

transfer, the master may generate a STOP condition to abort the transfer or start a new transfer by gen-
erating a repeated START condition.
After the address has been acknowledged the master transmits the data byte. If the R/W bit had been
set to ‘1’ the master would have acted as a receiver during this phase of the transfer. After the data
byte has been transferred the receiver acknowledges the byte and the master generates a STOP condi-
tion to complete the transfer.

If the data bit rate is too high for a slave device or if the slave needs time to process data, it may
stretch the clock period by keeping SCL low after the master has driven SCL low. Clock stretching is
a configurable parameter of the core (see sections 72.2.4 and 72.2.6).

72.2.2 Slave addressing

The core’s I2C addresses are set with VHDL generics at implementation time. If the core has been
implemented with the optional APB interface, then the I2C addresses can be changed via registers
available via APB.
The core responds to two addresses on the I2C bus. Accesses to the I2C memory address are translated
to AMBA AHB accesses and accesses to the I2C configuration address access the core’s configuration
register.

72.2.3 System clock requirements and sampling

The core samples the incoming I2C SCL clock and does not introduce any additional clock domains
into the system. Both the SCL and SDA lines first pass through two stage synchronizers and are then
filtered with a low pass filter consisting of four registers.
START and STOP conditions are detected if the SDA line, while SCL is high, is at one value for two
system clock cycles, toggles and keeps the new level for two system clock cycles.
The synchronizers and filters constrain the minimum system frequency. The core requires the SCL
signal to be stable for at least four system clock cycles before the core accepts the SCL value as the
new clock value. The core’s reaction to transitions will be additionally delayed since both lines are
taken through two-stage synchronizers before they are filtered. Therefore it takes the core over eight
system clock cycles to discover a transition on SCL.

Figure 207. Complete I2C data transfer

START MSB LSB R/W ACK

SCL

SDA continued...

Slave address

 1 2 3 4 5 6 7 8 9

 MSB LSB ACK STOP

SCL

SDA

Data

 1 2 3 4 5 6 7 8 9
GRIP, Sep 2018, Version 2018.3 1078 www.cobham.com/gaisler

GRLIB IP Core

72.2.4 Configuration register access

The I2C configuration register is accessed via a separate I2C address (I2C configuration address). The
configuration register has the layout shown in table 1322.

Reads from the I2C configuration address will return the current value of the configuration register.
Writes to the I2C configuration address will affect the writable bits in the configuration register.

72.2.5 AHB accesses

All AMBA accesses are done in big endian format. The first byte sent to or from the slave is the most
significant byte.
To write a word on the AHB bus the following I2C bus sequence should be performed:

1. Generate START condition
2. Send I2C memory address with the R/W bit set to ‘0’.
3. Send four byte AMBA address, the most significant byte is transferred first
4. Send four bytes to write to the specified address
5. If more than four consecutive bytes should be written, continue to send additional bytes, other-
wise go to 6.
6. Generate STOP condition

To perform a read access on the AHB bus, the following I2C bus sequence should be performed:
1. Generate START condition
2. Send I2C memory address with the R/W bit set to ‘0’.
3. Send four byte AMBA address, the most significant byte is transferred first
4. Generate (repeated) START condition
5. Send I2C memory address with the R/W bit set to ‘1’.
6. Read the required number of bytes and NACK the last byte
7. Generate stop condition

During consecutive read or write operations, the core will automatically increment the address. The
access size (byte, halfword or word) used on AHB is set via the HSIZE field in the I2C2AHB config-
uration register.
The core always respects the access size specified via the HSIZE field. If a write operation writes
fewer bytes than what is required to do an access of the specified HSIZE then the write data will be
dropped, no access will be made on AHB. If a read operation reads fewer bytes than what is specified
by HSIZE then the remaining read data will be dropped at a START or STOP condition. This means,

Table 1322.I2C2AHB configuration register
7 6 5 4 3 2 1 0

Reserved PROT MEXC DMAACT NACK HSIZE

7:6 Reserved, always zero (read only)

5 Memory protection triggered (PROT) - ‘1’ if last AHB access was outside the allowed
memory area. Updated after each AMBA access (read only)

4 Memory exception (MEXC) - ‘1’ if core receives AMBA ERROR response. Updated
after each AMBA access (read only)

3 DMA active (DMAACT) - ‘1’ if core is currently performing a DMA operation.

2 NACK (NACK) - Use NACK instead of clock stretching. See documentation in sec-
tion 72.2.6.

1:0 AMBA access size (HSIZE) - Controls the access size that the core will use for
AMBA accesses. 0: byte, 1: halfword, 2: word. HSIZE = “11” is illegal.

Reset value: 0x02
GRIP, Sep 2018, Version 2018.3 1079 www.cobham.com/gaisler

GRLIB IP Core

for instance, that if HSIZE is “10” (word) the core will perform two word accesses if a master reads
one byte, generates a repeated start condition, and reads one more byte. Between these two accesses
the address will have been automatically increased, so the fist access will be to address n and the sec-
ond to address n+4.
The automatic address increment means that it is possible to write data and then immediately read the
data located at the next memory position. As an example, the following sequence will write a word to
address 0 and then read a word from address 4:

1. Generate START condition
2. Send I2C memory address with the R/W bit set to ‘0’.
3. Send four byte AMBA address, all zero.
4. Send four bytes to write to the specified address
5. Generate (repeated) START condition
6. Send I2C memory address with the R/W bit set to ‘1’.
7. Read the required number of bytes and lack the last byte
8. Generate stop condition

The core will not mask any address bits. Therefore it is important that the I2C master respects AMBA
rules when performing halfword and word accesses. A halfword access must be aligned on a two byte
address boundary (least significant bit of address must be zero) and a word access must be aligned on
a four byte boundary (two least significant address bits must be zero).
The core can be configured to generate interrupt requests when an AHB access is performed if the
core is implemented with the APB register interface, see the APB register documentation for details.

72.2.6 Clock stretching or NACK mode

The core has two main modes of operation for AMBA accesses. In one mode the core will use clock
stretching while performing an AHB operation and in the other mode the core will not acknowledge
bytes (abort the I2C access) when the core is busy. Clock stretching is the preferred mode of opera-
tion. The NACK mode can be used in scenarios where the I2C master or physical layer does not sup-
port clock stretching. The mode to use is selected via the NACK field in the I2C configuration
register.
When clock stretching is enabled (NACK field is ‘0’) the core will stretch the clock when the slave is
accessed (via the I2C memory address) and the slave is busy processing a transfer. Clock stretching is
also used when a data byte has been transmitted, or received, to keep SCL low until a DMA operation
has completed. In the transmit (AMBA read) case SCL is kept low before the rising edge of the first
byte. In the receive case (AMBA write) the ACK cycle for the previous byte is stretched.
When clock stretching is disabled (NACK field is ‘1’) the core will never stretch the SCL line. If the
core is busy performing DMA when it is addressed, the address will not be acknowledged. If the core
performs consecutive writes and the first write operation has not finished the core will now acknowl-
edge the written byte. If the core performs a read operation and the read DMA operation has not fin-
ished when the core is supposed to deliver data then the core will go to its idle state and not respond to
more accesses until a START condition is generated on the bus. This last part means that the NACK
mode is practically unusable in systems where the AMBA access can take longer than one I2C clock
period. This can be compensated by using a very slow I2C clock.

72.2.7 Memory protection

The core is configured at implementation time to only allow accesses to a specified AHB address
range (which can be the full 4 GiB AMBA address range). If the core has been implemented with the
optional APB register interface then the address range is soft configurable and the reset value is spec-
ified with VHDL generics.
GRIP, Sep 2018, Version 2018.3 1080 www.cobham.com/gaisler

GRLIB IP Core

The VHDL generics ahbaddrh and ahbaddrl define the base address for the allowed area. The VHDL
generics ahbmaskh and ahbmaskl define the size of the area. The generics are used to assign the mem-
ory protection area’s address and mask in the following way:
Protection address, bits 31:16 (protaddr[31:16]): ahbaddrh
Protection address, bits 15:0 (protaddr[15:0]): ahbaddrl
Protection mask, bits 31:16 (protmask[31:16]): ahbmaskh
Protection mask, bits 15:0 (protmask[15:0]): ahbmaskl
Before the core performs an AMBA access it will perform the check:

(((incoming address) xor (protaddr)) and protmask) /= 0x00000000

If the above expression is true (one or several bits in the incoming address differ from the protection
address, and the corresponding mask bits are set to ‘1’) then the access is inhibited. As an example,
assume that protaddr is 0xA0000000 and protmask is 0xF0000000. Since protmask only has ones in
the most significant nibble, the check above can only be triggered for these bits. The address range of
allowed accessed will thus be 0xA0000000 - 0xAFFFFFFF.
The memory protection check is performed at the time when the core is to perform the AHB access. It
is possible to start a write operation and transmit an illegal address to the core without any errors. If
additional bytes are transmitted (so that a HSIZE access can be made) the core will NACK the byte
that triggers the AHB access.
For a read operation the core will NACK the I2C memory address of the first AHB access of the read
in case the access would be to restricted memory. If consecutive bytes are read from the core and one
of the later accesses lead to restricted memory being accessed, then the core will abort all operations
and enter its idle state. In this case junk data will be returned and there is no way for the core to alert
the master that memory protection has been triggered.
The core will set the configuration register bit PROT if an access is attempted outside the allowed
address range. This bit is updated on each AHB access and will be cleared by an access inside the
allowed range. Note that the (optional) APB status register has a PROT field with a slightly different
behavior.

72.3 Registers

The core can optionally be implemented with an APB interface that provides registers mapped into
APB address space.

Table 1323.I2C slave registers

APB address offset Register
0x00 Control register
0x04 Status register
0x08 Protection address register
0x0C Protection mask register
0x10 I2C slave memory address register
0x14 I2C slave configuration address register
GRIP, Sep 2018, Version 2018.3 1081 www.cobham.com/gaisler

GRLIB IP Core

72.3.1

Table 1324.0x0 - CTRL - Control register

Control Register

72.3.2

Table 1325.0x04 - STAT - Status register

Status Register

72.3.3

Table 1326.0x08 - PADDR - Protection address register

Protection Address Register

72.3.4

Table 1327.0x0C - PMASK - Protection mask register

Protection Mask Register

31 2 1 0

RESERVED IRQEN EN

0 0 *

r rw rw

31 : 2 RESERVED
1 Interrupt enable (IRQEN) - When this bit is set to ‘1’ the core will generate an interrupt each time

the DMA field in the status register transitions from ‘0’ to ‘1’.
0 Core enable (EN) - When this bit is set to ‘1’ the core is enabled and will respond to I2C accesses.

Otherwise the core will not react to I2C traffic.
Reset value: Implementation dependent

31 3 2 1 0

RESERVED PROT WR DMA

31 : 3 RESERVED
2 Protection triggered (PROT) - Set to ‘1’ if an access has triggered the memory protection. This bit

will remain set until cleared by writing ‘1’ to this position. Note that the other fields in this register
will be updated on each AHB access while the PROT bit will remain at ‘1’ once set.

1 Write access (WR) - Last AHB access performed was a write access. This bit is read only.
0 Direct Memory Access (DMA) - This bit gets set to ‘1’ each time the core attempts to perform an

AHB access. By setting the IRQEN field in the control register this condition can generate an inter-
rupt. This bit can be cleared by software by writing ‘1’ to this position.

31 0

PROTADDR

*

rw

31 : 0 Protection address (PROTADDR) - Defines the base address for the memory area where the core is
allowed to make accesses.

31 0

PROTMASK

*

rw

31 : 0 Protection mask (PROTMASK) - Selects which bits in the Protection address register that are used
to define the protected memory area.
GRIP, Sep 2018, Version 2018.3 1082 www.cobham.com/gaisler

GRLIB IP Core

72.3.5

Table 1328. 0x10 - SLVADDR - I2C slave memory address register

I2C Slave Memory Address Register

72.3.6

Table 1329.0x14 - SLVCFG - I2C slave configuration address register

I2C Slave Configuration Address Register

72.4 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x00B. For a description
of vendor and device identifiers see the GRLIB IP Library User’s Manual.

72.5 Implementation

72.5.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

72.6 Configuration options

Table 1330 shows the configuration options of the core (VHDL generics). Two different top level
entites for the core is available. One with the optional APB interface (i2c2ahb_apb) and one without
the APB interface (i2c2ahb). The entity without the APB interface has fewer generics as indicated in
the table below.

31 7 6 0

RESERVED I2CSLVADDR

0 *

r rw

31 : 7 RESERVED
6 : 0 I2C slave memory address (I2CSLVADDR) - Address that slave responds to for AHB memory

accesses

31 7 6 0

RESERVED I2CCFGADDR

0 *

r rw

31 : 7 RESERVED
6 : 0 I2C slave configuration address (I2CCFGADDR) - Address that slave responds to for configuration

register accesses.

Table 1330.Configuration options

Generic name Function Allowed range Default
hindex AHB master index 0 - NAHBMST 0
ahbaddrh Defines bits 31:16 of the address used for the memory

protection area
0 - 16#FFFF# 0

ahbaddrl Defines bits 15:0 of the address used for the memory
protection area

0 - 16#FFFF# 0

ahbmaskh Defines bits 31:16 of the mask used for the memory pro-
tection area

0 - 16#FFFF# 0

ahbmaskl Defines bits 15:0 of the mask used for the memory pro-
tection area

0 - 16#FFFF# 0
GRIP, Sep 2018, Version 2018.3 1083 www.cobham.com/gaisler

GRLIB IP Core
72.7 Signal descriptions

Table 1331 shows the interface signals of the core (VHDL ports).

resen Reset value for core enable bit (only available on the
i2c2ahb_apb entity).

0 - 1 0

pindex APB slave index (only available on the i2c2ahb_apb
entity).

0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR (only available on the
i2c2ahb_apb entity).

0 - 16#FFF# 0

pmask MASK field of the APB BAR (only available on the
i2c2ahb_apb entity).

0 - 16#FFF# 16#FFF#

pirq Interrupt line driven by APB interface (only available on
the i2c2ahb_apb entity).

0 - NAHBIRQ-1 0

i2caddr The slave’s (initial) I2C address. i2caddr specified the
core’s I2C memory address and (i2caddr+1) will be the
cores I2C configuration address.

0 - 126 0

oepol Output enable polarity 0 - 1 0
filter Low-pass filter length. This generic should specify, in

number of system clock cycles plus one, the time of the
shortest pulse on the I2C bus to be registered as a valid
value. For instance, to disregard any pulse that is 50 ns or
shorter in a system with a system frequency of 54 MHz
this generic should be set to:
((pulse time) / (clock period)) + 1 =
(50 ns) / ((1/(54 MHz)) + 1 = 3.7
The value from this calculation should always be
rounded up. In other words an appropriate filter length
for a 54 MHz system is 4.

2 - 512 2

Table 1331.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
AHBI * Input AHB master input signals -
AHBO * Output AHB master output signals -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
I2CI SCL Input I2C clock line input -

SDA Input I2C data line input -

I2CO SCL Output I2C clock line output -

SCLOEN Output I2C clock line output enable Low**

SDA Output I2C data line output -

SDAOEN Output I2C data line output enable Low**

ENABLE Output High when core is enabled, low otherwise. High
* see GRLIB IP Library User’s Manual
** depends on value of OEPOL VHDL generic.

Table 1330.Configuration options

Generic name Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 1084 www.cobham.com/gaisler

GRLIB IP Core

72.8 Signal definitions and reset values

The signals and their reset values are described in table 1332.

72.9 Library dependencies

Table 1333 shows the libraries used when instantiating the core (VHDL libraries).

72.10 Instantiation

This example shows how the core can be instantiated.
library ieee;
use ieee.std_logic_1164.all;

library grlib, techmap;
use grlib.amba.all;
use techmap.gencomp.all;

library gaisler;
use gaisler.misc.all;

entity i2c2ahb_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- I2C signals
 iic_scl : inout std_ulogic;
 iic_sda : inout std_ulogic
);
end;

architecture rtl of i2c2ahb_ex is

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector;
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector;

 -- I2C signals
 signal i2ci : i2c_in_type;
 signal i2co : i2c_out_type;
begin

 -- AMBA Components are instantiated here
 ...

 -- NOTE: There are also wrappers for the top-level entities that do not make use of VHDL
 -- records. These wrappers are called i2c2ahb_apb_gen and i2c2ahb_gen.

Table 1332.Signal definitions and reset values

Signal name Type Function Active Reset value
scl InputOutput I2C clock line - Hi-Z

sda InputOutput I2C data line - Hi-Z

Table 1333.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER I2C Component, signals Component declaration, I2C signal definitions
GRIP, Sep 2018, Version 2018.3 1085 www.cobham.com/gaisler

GRLIB IP Core

 -- I2C-slave, with APB interface
 i2c2ahb0 : i2c2ahb_apb
 generic map (
 hindex => 1,
 ahbaddrh => ahbaddrh,
 ahbaddrl => ahbaddrl,
 ahbmaskh => ahbmaskh,
 ahbmaskl => ahbmaskl,
 resen => 1,
 pindex => 1,
 paddr => 1,
 pmask => 16#fff#,
 i2caddr => i2caddr,
 oepol => 0,
 filter => I2C_FILTER)
 port map (rstn, clk, ahbmi, ahbmo(1), apbi, apbo(1),
 i2ci, i2co);
 scl_pad : iopad generic map (tech => padtech)
 port map (iic_scl, i2co.scl, i2co.scloen, i2ci.scl);
 sda_pad : iopad generic map (tech => padtech)
 port map (iic_sda, i2co.sda, i2co.sdaoen, i2ci.sda);
end;
GRIP, Sep 2018, Version 2018.3 1086 www.cobham.com/gaisler

GRLIB IP Core
73 I2CMST - I2C-master

73.1 Overview

The I2C-master core is a modified version of the OpenCores I2C-Master with an AMBA APB inter-
face. The core is compatible with Philips I2C standard and supports 7- and 10-bit addressing. Stan-
dard-mode (100 kb/s) and Fast-mode (400 kb/s) operation are supported directly. External pull-up
resistors must be supplied for both bus lines.

73.2 Operation

73.2.1 Transmission protocol

The I2C-bus is a simple 2-wire serial multi-master bus with collision detection and arbitration. The
bus consists of a serial data line (SDA) and a serial clock line (SCL). The I2C standard defines three
transmission speeds; Standard (100 kb/s), Fast (400 kb/s) and High speed (3.4 Mb/s).
A transfer on the I2C-bus begins with a START condition. A START condition is defined as a high to
low transition of the SDA line while SCL is high. Transfers end with a STOP condition, defined as a
low to high transition of the SDA line while SCL is high. These conditions are always generated by a
master. The bus is considered to be busy after the START condition and is free after a certain amount
of time following a STOP condition. The bus free time required between a STOP and a START condi-
tion is defined in the I2C-bus specification and is dependent on the bus bit rate.
Figure 209 shows a data transfer taking place over the I2C-bus. The master first generates a START
condition and then transmits the 7-bit slave address. The bit following the slave address is the R/W bit
which determines the direction of the data transfer. In this case the R/W bit is zero indicating a write
operation. After the master has transmitted the address and the R/W bit it releases the SDA line. The
receiver pulls the SDA line low to acknowledge the transfer. If the receiver does not acknowledge the
transfer, the master may generate a STOP condition to abort the transfer or start a new transfer by gen-
erating a repeated START condition.
After the first byte has been acknowledged the master transmits the data byte. If the R/W bit had been
set to ‘1’ the master would have acted as a receiver during this phase of the transfer. After the data
byte has been transferred the receiver acknowledges the byte and the master generates a STOP condi-
tion to complete the transfer. Section 73.2.3 contains three more example transfers from the perspec-
tive of a software driver.

Figure 208. Block diagram

A
M
B
A

A
P
B

AMBA APB
 SLAVE

Prescale
Register

Command
Register

Status
Register

Transmit
Register

Receive
Register

Clock
generator

Bit
Command
Controller

Byte
Command
Controller

DataIO
Shift
Register

SCL

SDA
GRIP, Sep 2018, Version 2018.3 1087 www.cobham.com/gaisler

GRLIB IP Core
If the data bitrate is too high for a slave device, it may stretch the clock period by keeping SCL low
after the master has driven SCL low.

73.2.2 Clock generation

The core uses the prescale register to determine the frequency of the SCL clock line and of the 5*SCL
clock that the core uses internally. To calculate the prescale value use the formula:

The SCLfrequency is 100 kHz for Standard-mode operation (100 kb/s) and 400 kHz for Fast mode
operation. To use the core in Standard-mode in a system with a 60 MHz clock driving the AMBA bus
the required prescale value is:

Note that the prescale register should only be changed when the core is disabled. The minimum rec-
ommended prescale value is 3 due to synchronization issues. This limits the minimum system fre-
quency to 2 MHz for operation in Standard-mode (to be able to generate a 100 kHz SCL clock).
However, a system frequency of 2 MHz will not allow the implementation fulfill the 100 ns minimum
requirement for data setup time (required for Fast-mode operation). For compatibility with the I2C
Specification, in terms of minimum required data setup time, the minimum allowed system frequency
is 20 MHz due to synchronization issues. If the core is run at lower system frequencies, care should be
taken so that data from devices is stable on the bus one system clock period before the rising edge of
SCL.

73.2.3 Software operational model

The core is initialized by writing an appropriate value to the clock prescale register and then setting
the enable (EN) bit in the control register. Interrupts are enabled via the interrupt enable (IEN) bit in
the control register.
To write a byte to a slave the I2C-master must generate a START condition and send the slave address
with the R/W bit set to ‘0’. After the slave has acknowledged the address, the master transmits the

Figure 209. Complete I2C data transfer

START MSB LSB R/W ACK

SCL

SDA continued...

Slave address

 1 2 3 4 5 6 7 8 9

 MSB LSB ACK STOP

SCL

SDA

Data

 1 2 3 4 5 6 7 8 9

Prescale AMBAclockfrequency
5 SCLfrequency

-- 1–=

Prescale 60Mhz
5 100kHz
-------------------------- 1– 119 0x77= = =
GRIP, Sep 2018, Version 2018.3 1088 www.cobham.com/gaisler

GRLIB IP Core

data, waits for an acknowledge and generates a STOP condition. The sequence below instructs the
core to perform a write:

1. Left-shift the I2C-device address one position and write the result to the transmit register. The
least significant bit of the transmit register (R/W) is set to ‘0’.
2. Generate START condition and send contents of transmit register by setting the STA and WR
bits in the command register.
3. Wait for interrupt, or for TIP bit in the status register to go low.
4. Read RxACK bit in status register. If RxACK is low the slave has acknowledged the transfer,
proceed to step 5. If RxACK is set the device did not acknowledge the transfer, go to step 1.
5. Write the slave-data to the transmit register.
6. Send the data to the slave and generate a stop condition by setting STO and WR in the com-
mand register.
7. Wait for interrupt, or for TIP bit in the status register to go low.
8. Verify that the slave has acknowledged the data by reading the RxACK bit in the status regis-
ter. RxACK should not be set.

To read a byte from an I2C-connected memory much of the sequence above is repeated. The data writ-
ten in this case is the memory location on the I2C slave. After the address has been written the master
generates a repeated START condition and reads the data from the slave. The sequence that software
should perform to read from a memory device:

1. Left-shift the I2C-device address one position and write the result to the transmit register. The
least significant bit of the transmit register (R/W) is set to ‘0’.
2. Generate START condition and send contents of transmit register by setting the STA and WR
bits in the command register.
3. Wait for interrupt or for TIP bit in the status register to go low.
4. Read RxACK bit in status register. If RxACK is low the slave has acknowledged the transfer,
proceed to step 5. If RxACK is set the device did not acknowledge the transfer, go to step 1.
5. Write the memory location to be read from the slave to the transmit register.
6. Set the WR bit in the command register. Note that a STOP condition is not generated here.
7. Wait for interrupt, or for TIP bit in the status register to go low.
8. Read RxACK bit in the status register. RxACK should be low.
9. Address the I2C-slave again by writing its left-shifted address into the transmit register. Set the
least significant bit of the transmit register (R/W) to ‘1’ to read from the slave.
10. Set the STA and WR bits in the command register to generate a repeated START condition.
11. Wait for interrupt, or for TIP bit in the status register to go low.
12. Read RxACK bit in the status register. The slave should acknowledge the transfer.
13. Prepare to receive the data read from the I2C-connected memory. Set bits RD, ACK and STO
on the command register. Setting the ACK bit NAKs the received data and signifies the end of
the transfer.
14. Wait for interrupt, or for TIP in the status register to go low.
15. The received data can now be read from the receive register.

To perform sequential reads the master can iterate over steps 13 - 15 by not setting the ACK and STO
bits in step 13. To end the sequential reads the ACK and STO bits are set. Consult the documentation
of the I2C-slave to see if sequential reads are supported.
GRIP, Sep 2018, Version 2018.3 1089 www.cobham.com/gaisler

GRLIB IP Core

The final sequence illustrates how to write one byte to an I2C-slave which requires addressing. First
the slave is addressed and the memory location on the slave is transmitted. After the slave has
acknowledged the memory location the data to be written is transmitted without a generating a new
START condition:

1. Left-shift the I2C-device address one position and write the result to the transmit register. The
least significant bit of the transmit register (R/W) is set to ‘0’.
2. Generate START condition and send contents of transmit register by setting the STA and WR
bits in the command register.
3. Wait for interrupt or for TIP bit in the status register to go low.
4. Read RxACK bit in status register. If RxACK is low the slave has acknowledged the transfer,
proceed to step 5. If RxACK is set the device did not acknowledge the transfer, go to step 1.
5. Write the memory location to be written from the slave to the transmit register.
6. Set the WR bit in the command register.
7. Wait for interrupt, or for TIP bit in the status register to go low.
8. Read RxACK bit in the status register. RxACK should be low.
9. Write the data byte to the transmit register.
10. Set WR and STO in the command register to send the data byte and then generate a STOP
condition.
11. Wait for interrupt, or for TIP bit in the status register to go low.
12. Check RxACK bit in the status register. If the write succeeded the slave should acknowledge
the data byte transfer.

The example sequences presented here can be generally applied to I2C-slaves. However, some
devices may deviate from the protocol above, please consult the documentation of the I2C-slave in
question. Note that a software driver should also monitor the arbitration lost (AL) bit in the status reg-
ister.

73.2.4 Signal filters

The core is configured at implementation to use one of two possible filter strategies: a static filter or a
dynamic filter, the selection between the two options is made with the dynfilt VHDL generic.
With a static filter (dynfilt = 0) the core will implement low-pass filters using simple shift registers.
The number of shift registers is determined by the VHDL generic filter. When all bits in a shift regis-
ter are equal, the core will consider the state of the input signal (SCL or SDA) to have changed. An
appropriate value for the filter generic is calculated via:

To disregard any pulse that is 50 ns or shorter in a system with a system frequency of 54 MHz the fil-
ter generic should be set to: (50 ns) / ((1/(54 MHz)) + 1 = 3.7. The value from this calculation should
always be rounded up. In other words an appropriate filter length for a 54 MHz system is 4.
With a dynamic filter (dynfilt = 1) the VHDL generic filter determines the number of bits imple-
mented in a counter that controls the sample window. The reload value for the counter can then be
specified by software by writing to the core’s dynamic filter register available via the APB interface.
The number of bits required for the dynamic counter is calculated using (where system clock period is
the shortest system clock period that the design will use):

filter pulsetime
systemclockperiod
-- 1+=

filter 2 pulsetime
systemclockperiod
-- 1+
 
 
 

log=
GRIP, Sep 2018, Version 2018.3 1090 www.cobham.com/gaisler

GRLIB IP Core

When using dynamic filtering, the core will ignore all pulses shorter than the system clock period
multiplied with the value of the FILT field in the core’s Dynamic Filter register and may also ignore
pulses that are shorter than 2 * FILT * (system clock period) - 1.

73.3 Registers

The core is programmed through registers mapped into APB address space.

Table 1334.I2C-master registers

APB address offset Register
0x00 Clock prescale register
0x04 Control register
0x08 Transmit register*
0x08 Receive register**
0x0C Command register*
0x0C Status register**
0x10 Dynamic filter register***
* Write only
** Read only
*** Only available on some implementations
GRIP, Sep 2018, Version 2018.3 1091 www.cobham.com/gaisler

GRLIB IP Core

73.3.1 I2

Table 1335.0x00 - PRESCALE - I2C-master Clock prescale register

C-Master Clock Prescale Register

73.3.2

Table 1336.0x04 - CTRL - I2C-master control register

I2C-Master Control Register

73.3.3

Table 1337.0x08 - TX - I2C-master transmit register

I2C-Master Transmit Register

73.3.4 I2C-Master Receive Register

Table 1338.0x08 - RX - I2C-master receive register

31 16 15 0

RESERVED Clock prescale

0 0xFFFF

r rw

31 : 16 RESERVED
15:0 Clock prescale - Value is used to prescale the SCL clock line. Do not change the value of this register

unless the EN field of the control register is set to ‘0’. The minimum recommended value of this reg-
ister is 0x0003. Lower values may cause the master to violate I2C timing requirements due to syn-
chronization issues.

31 8 7 6 5 0

RESERVED EN IEN RESERVED

0 0 0 0

r rw rw r

31 : 8 RESERVED
7 Enable (EN) - Enable I2C core. The core is enabled when this bit is set to ‘1’.
6 Interrupt enable (IEN) - When this bit is set to ‘1’ the core will generate interrupts upon transfer

completion.
5:0 RESERVED

31 8 7 1 0

RESERVED TDATA RW

0 0 0

- w w

31 : 8 RESERVED
7:1 Transmit data (TDATA) - Most significant bits of next byte to transmit via I2C
0 Read/Write (RW) - In a data transfer this is the data’s least significant bit. In a slave address transfer

this is the RW bit. ‘1’ reads from the slave and ‘0’ writes to the slave.

31 8 7 0

RESERVED RDATA

0

r

31 : 8 RESERVED
7:0 Receive data (RDATA) - Last byte received over I2C-bus.
GRIP, Sep 2018, Version 2018.3 1092 www.cobham.com/gaisler

GRLIB IP Core

73.3.5 I2C-Master Command Register

Table 1339.0x0C -CMD - I2C-master command register

73.3.6 I2C-Master Status Register

Table 1340.0x0C - STAT - I2C-master status register

31 8 7 6 5 4 3 2 1 0

RESERVED STA STO RD WR ACK RESERVED IACK

0 0 0 0 0 0 0 0

r w* w* w* w* w* r -

31 : 8 RESERVED
7 Start (STA) - Generate START condition on I2C-bus. This bit is also used to generate repeated

START conditions.
6 Stop (STO) - Generate STOP condition
5 Read (RD) - Read from slave
4 Write (WR) - Write to slave
3 Acknowledge (ACK) - Used when acting as a receiver. ‘0’ sends an ACK, ‘1’ sends a NACK.
2:1 RESERVED
0 Interrupt acknowledge (IACK) - Clears interrupt flag (IF) in status register.

31 8 7 6 5 4 3 2 1 0

RESERVED RxACK BUSY AL RESERVED TIP IF

0 0 0 0 0

r r r r r r wc

31 : 8 RESERVED
7 Receive acknowledge (RxACK) - Received acknowledge from slave. ‘1’ when no acknowledge is

received, ‘0’ when slave has acked the transfer.
6 I2C-bus busy (BUSY) - This bit is set to ‘1’ when a start signal is detected and reset to ‘0’ when a

stop signal is detected.
5 Arbitration lost (AL) - Set to ‘1’ when the core has lost arbitration. This happens when a stop signal

is detected but not requested or when the master drives SDA high but SDA is low.
4:2 RESERVED
1 Transfer in progress (TIP) - ‘1’ when transferring data and ‘0’ when the transfer is complete. This bit

is also set when the core will generate a STOP condition.
0 Interrupt flag (IF) - This bit is set when a byte transfer has been completed and when arbitration is

lost. If IEN in the control register is set an interrupt will be generated. New interrupts will ge gener-
ated even if this bit has not been cleared.
GRIP, Sep 2018, Version 2018.3 1093 www.cobham.com/gaisler

GRLIB IP Core

73.3.7

Table 1341.0x10 - FILT - I2C-master dynamic filter register

I2C-Master Dynamic Filter Register

73.4 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x028. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

73.5 Implementation

73.5.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

31 x x-1 0

RESERVED FILT

0 all 1

r rw*

31 : x RESERVED
x-1 : 0 Dynamic filter reload value (FILT) - This field sets the reload value for the dynamic filter counter.

The core will ignore all pulses on the bus shorter than FILT * (system clock period) and may also
ignore pulses shorter than 2 * FILT * (system clock period) - 1. The reset value of this register is all
‘1’.
This register is not available in all implementations, and only for core revisions higher than two (the
core’s version number can be read from the plug’n’play area). When implemented, the number of
bits in the FILT field is implementation dependent. Software can probe the precense of this register
by writing 0x1 to the register location and reading back the value. If the read value is non-zero then
the core has been implemented with a dynamic filter.
GRIP, Sep 2018, Version 2018.3 1094 www.cobham.com/gaisler

GRLIB IP Core

73.6 Configuration options

Table 1342 shows the configuration options of the core (VHDL generics).

73.7 Signal descriptions

Table 1343 shows the interface signals of the core (VHDL ports).

Table 1342.Configuration options

Generic name Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0
paddr ADDR field of the APB BAR. 0 - 16#FFF# 0
pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#
pirq Interrupt line used by I2C-master 0 - NAHBIRQ-1 0

oepol Output enable polarity 0 - 1 0
filter Low-pass filter length. This generic should specify, in

number of system clock cycles plus one, the time of the
shortest pulse on the I2C bus to be registered as a valid
value. For instance, to disregard any pulse that is 50 ns or
shorter in a system with a system frequency of 54 MHz
this generic should be set to:
((pulse time) / (clock period)) + 1 =
(50 ns) / ((1/(54 MHz)) + 1 = 3.7
The value from this calculation should always be
rounded up. In other words an appropriate filter length
for a 54 MHz system is 4.
Note that the value of this generic changes meaning if
the dynfilt generic described below is non-zero. See
description below.

2 - 512 2

dynfilt Dynamic low-pass filter length. If this generic is non-
zero the core will be implemented with a configurable
filter. If dynfilt is non-zero the filter generic, described
above, specifies how many bits that will be implemented
for the dynamic filter counter.

0 - 1 0

Table 1343.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
I2CI SCL Input I2C clock line input -

SDA Input I2C data line input -

I2CO SCL Output I2C clock line output -

SCLOEN Output I2C clock line output enable Low

SDA Output I2C data line output -

SDAOEN Output I2C data line output enable Low

* see GRLIB IP Library User’s Manual
GRIP, Sep 2018, Version 2018.3 1095 www.cobham.com/gaisler

GRLIB IP Core

73.8 Signal definitions and reset values

The signals and their reset values are described in table 1344.

73.9 Timing

The timing waveforms and timing parameters are shown in figure 210 and are defined in table 1345.

The core’s I2C bus functional timing depends on the core’s scaler value. When the scaler is set for the
core to operate in Fast- or Standard-Mode, the timing characteristics specified in the I2C-bus Specifi-
cation apply.

73.10 Library dependencies

Table 1346 shows the libraries used when instantiating the core (VHDL libraries).

Table 1344.Signal definitions and reset values

Signal name Type Function Active Reset value
scl InputOutput I2C clock line Tri-state

sda InputOutput I2C data line - Tri-state

Table 1345.Timing parameters

Name Parameter Reference edge Min Max Unit
tI2CMST0 clock to output delay rising clk edge TBD TBD ns

tI2CMST1 clock to non-tri-state delay rising clk edge TBD TBD ns

tI2CMST2 clock to tri-state delay rising clk edge TBD TBD ns

tI2CMST3 input to clock holdx rising clk edge x x ns

tI2CMST4 input to clock setupx rising clk edge x x ns

x The SCL and SDA inputs are re-synchronized internally and do not need to meet any setup or hold requirements relative
to the core’s AMBA APB clock.

Table 1346.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER I2C Component, signals Component declaration, I2C signal definitions

Figure 210. Timing waveforms

tI2CMST0scl/sca

clk

tI2CMST0

tI2CMST1
scl/sca

tI2CMST2

tI2CMST3scl/sca tI2CMST4

(output)

(output)

(input)
GRIP, Sep 2018, Version 2018.3 1096 www.cobham.com/gaisler

GRLIB IP Core

73.11 Instantiation

This example shows how the core can be instantiated.
library ieee;
use ieee.std_logic_1164.all;

library grlib, techmap;
use grlib.amba.all;
use techmap.gencomp.all;

library gaisler;
use gaisler.misc.all;

entity i2c_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- I2C signals
 iic_scl : inout std_ulogic;
 iic_sda : inout std_ulogic
);
end;

architecture rtl of i2c_ex is

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);

 -- I2C signals
 signal i2ci : i2c_in_type;
 signal i2co : i2c_out_type;
begin

 -- AMBA Components are instantiated here
 ...

 -- I2C-master
 i2c0 : i2cmst
 generic map (pindex => 12, paddr => 12, pmask => 16#FFF#,
 pirq => 8, filter => (BUS_FREQ_in_kHz*5+50000)/100000+1)
 port map (rstn, clkm, apbi, apbo(12), i2ci, i2co);

 -- Using bi-directional pads:
 i2c_scl_pad : iopad generic map (tech => padtech)
 port map (iic_scl, i2co.scl, i2co.scloen, i2ci.scl);
 i2c_sda_pad : iopad generic map (tech => padtech)
 port map (iic_sda, i2co.sda, i2co.sdaoen, i2ci.sda);
 -- Note: Some designs may want to use a uni-directional pad for the clock. In this case the
 -- the clock should have a on-chip feedback like: i2ci.scl <= i2co.scloen (for OEPOL = 0)
 -- This feedback connection should have the same delay as i2co.sdaoen to i2ci.sda
end;
GRIP, Sep 2018, Version 2018.3 1097 www.cobham.com/gaisler

GRLIB IP Core
74 I2CSLV - I2C slave

74.1 Overview

The I2C slave core is a simple I2C slave that provides a link between the I2C bus and the AMBA APB.
The core is compatible with Philips I2C standard and supports 7- and 10-bit addressing with an
optionally software programmable address. Standard-mode (100 kb/s) and Fast-mode (400 kb/s) oper-
ation are supported directly. External pull-up resistors must be supplied for both bus lines.
GRLIB also contains another I2C slave core that has DMA capabilities, see the I2C2AHB core docu-
mentation for details.

74.2 Operation

74.2.1 Transmission protocol

The I2C-bus is a simple 2-wire serial multi-master bus with collision detection and arbitration. The
bus consists of a serial data line (SDA) and a serial clock line (SCL). The I2C standard defines three
transmission speeds; Standard (100 kb/s), Fast (400 kb/s) and High speed (3.4 Mb/s).
A transfer on the I2C-bus begins with a START condition. A START condition is defined as a high to
low transition of the SDA line while SCL is high. Transfers end with a STOP condition, defined as a
low to high transition of the SDA line while SCL is high. These conditions are always generated by a
master. The bus is considered to be busy after the START condition and is free after a certain amount
of time following a STOP condition. The bus free time required between a STOP and a START condi-
tion is defined in the I2C-bus specification and is dependent on the bus bit rate.
Figure 212 shows a data transfer taking place over the I2C-bus. The master first generates a START
condition and then transmits the 7-bit slave address. I2C also supports 10-bit addresses, which are dis-
cussed briefly below. The bit following the slave address is the R/W bit which determines the direc-
tion of the data transfer. In this case the R/W bit is zero indicating a write operation. After the master
has transmitted the address and the R/W bit it releases the SDA line. The receiver pulls the SDA line
low to acknowledge the transfer. If the receiver does not acknowledge the transfer, the master may
generate a STOP condition to abort the transfer or start a new transfer by generating a repeated
START condition.
After the address has been acknowledged the master transmits the data byte. If the R/W bit had been
set to ‘1’ the master would have acted as a receiver during this phase of the transfer. After the data

Figure 211. Block diagram

A
M
B
A

A
P
B

Slave addr.

Shift register
I2CSLV SCL

SDA

Control reg.

Status reg.

Mask reg.

Transmit

Receive

Control
FSM

START

STOP

SCL (filtered)

SDA (filtered)

Sy
nc

hr
on

iz
at

io
n

Fi
lte

r

GRIP, Sep 2018, Version 2018.3 1098 www.cobham.com/gaisler

GRLIB IP Core

byte has been transferred the receiver acknowledges the byte and the master generates a STOP condi-
tion to complete the transfer.

An I2C slave may also support 10-bit addressing. In this case the master first transmits a pattern of
five reserved bits followed by the two first bits of the 10-bit address and the R/W bit set to ‘0’. The
next byte contains the remaining bits of the 10-bit address. If the transfer is a write operation the mas-
ter then transmits data to the slave. To perform a read operation the master generates a repeated
START condition and repeats the first part of the 10-bit address phase with the R/W bit set to ‘1’.
If the data bitrate is too high for a slave device or if the slave needs time to process data, it may stretch
the clock period by keeping SCL low after the master has driven SCL low.

74.2.2 Slave addressing

The core’s addressing support is implementation dependent. The core may have a programmable
address and may support 10-bit addresses. If the core has support for 10-bit addressing, the TBA bit of
the Slave address register will be set to ‘1’ after reset. If the core’s address is programmable this bit is
writable and is used by the core to determine if it should listen to a 7- or 10-bit address.
Software can determine the addressing characteristics of the core by writing and reading the Slave
address register. The core supports 10-bit addresses if the TBA bit is, or can be set, to ‘1’. The core
has a software programmable address if the SLVADDR field in the same register can be changed.

74.2.3 System clock requirements and sampling

The core samples the incoming I2C SCL clock and does not introduce any additional clock domains
into the system. Both the SCL and SDA lines first pass through two stage synchronizers and are then
filtered with a low pass filter consisting of four registers.
START and STOP conditions are detected if the SDA line, while SCL is high, is at one value for two
system clock cycles, toggles and keeps the new level for two system clock cycles.
The synchronizers and filters constrain the minimum system frequency. The core requires the SCL
signal to be stable for at least four system clock cycles before the core accepts the SCL value as the
new clock value. The core’s reaction to transitions will be additionally delayed since both lines are
taken through two-stage synchronizers before they are filtered. Therefore it takes the core over eight
system clock cycles to discover a transition on SCL. To use the slave in Standard-mode operation at
100 kHz the recommended minimum system frequency is 2 MHz. For Fast-mode operation at 400
kHz the recommended minimum system frequency is 6 MHz.

Figure 212. Complete I2C data transfer

START MSB LSB R/W ACK

SCL

SDA continued...

Slave address

 1 2 3 4 5 6 7 8 9

 MSB LSB ACK STOP

SCL

SDA

Data

 1 2 3 4 5 6 7 8 9
GRIP, Sep 2018, Version 2018.3 1099 www.cobham.com/gaisler

GRLIB IP Core

74.2.4 Operational model

The core has four main modes of operation and is configured to use one of these modes via the Con-
trol register bits Receive Mode (RMOD) and Transmit Mode (TMOD). The mode setting controls the
core’s behavior after a byte has been received or transmitted.
The core will always NAK a received byte if the receive register is full when the whole byte is
received. If the receive register is free the value of RMOD determines if the core should continue to
listen to the bus for the master’s next action or if the core should drive SCL low to force the master
into a wait state. If the value of the RMOD field is ‘0’ the core will listen for the master’s next action.
If the value of the RMOD field is ‘1’ the core will drive SCL low until the Receive register has been
read and the Status register bit Byte Received (REC) has been cleared. Note that the core has not
accepted a byte if it does not acknowledge the byte.
When the core receives a read request it evaluates the Transmit Valid (TV) bit in the Control register.
If the Transmit Valid bit is set the core will acknowledge the address and proceed to transmit the data
held in the Transmit register. After a byte has been transmitted the core assigns the value of the Con-
trol register bit Transmit Always Valid (TAV) to the Transmit Valid (TV) bit. This mechanism allows
the same byte to be sent on all read requests without software intervention. The value of the Transmit
Mode (TMOD) bit determines how the core acts after a byte has been transmitted and the master has
acknowledged the byte, if the master NAKs the transmitted byte the transfer has ended and the core
goes into an idle state. If TMOD is set to ‘0’ when the master acknowledges a byte the core will con-
tinue to listen to the bus and wait for the master’s next action. If the master continues with a sequential
read operation the core will respond to all subsequent requests with the byte located in the Transmit
Register. If TMOD is ‘1’ the core will drive SCL low after a master has acknowledged the transmitted
byte. SCL will be driven low until the Transmit Valid bit in the control register is set to ‘1’. Note that
if the Transmit Always Valid (TAV) bit is set to ‘1’ the Transmit Valid bit will immediately be set and
the core will have show the same behavior for both Transmit modes.
When operating in Receive or Transmit Mode ‘1’, the bus will be blocked by the core until software
has acknowledged the transmitted or received byte. This may have a negative impact on bus perfor-
mance and it also affects single byte transfers since the master is prevented to generate STOP or
repeated START conditions when SCL is driven low by the core.
The core reports three types of events via the Status register. When the core NAKs a received byte, or
its address in a read transfer, the NAK bit in the Status register will be set. When a byte is successfully
received the core asserts the Byte Received (REC) bit. After transmission of a byte, the Byte Trans-
mitted (TRA) bit is asserted. These three bits can be used as interrupt sources by setting the corre-
sponding bits in the Mask register.

74.3 Registers

The core is programmed through registers mapped into APB address space.

Table 1347.I2C slave registers

APB address offset Register
0x00 Slave address register
0x04 Control register
0x08 Status register
0x0C Mask register
0x10 Receive register
0x14 Transmit register
GRIP, Sep 2018, Version 2018.3 1100 www.cobham.com/gaisler

GRLIB IP Core

74.3.1

Table 1348.0x00 - SLVADDR - Slave address register

Slave Address Register

74.3.2

Table 1349.0x04 - CTRL - Control register

Control Register

31 30 ALEN ALEN-1 0

TBA RESERVED SLVADDR

* 0 *

rw r rw*

31 Ten-bit Address (TBA) - When this bit is set the core will interpret the value in the SLVADDR field
as a 10-bit address. If the core has 10-bit address support this bit will have the reset value ‘1’.

30 : ALEN RESERVED
(ALEN-1):0 Slave address (SLVADDR) - Contains the slave I2C address. The width of the slave address field,

ALEN, is 7 bits (6:0) if the core only has support for 7-bit addresses. If the core has support for 10-
bit addressing the width of SLVADDR is 10 bits. Depending on the hardware configuration this reg-
ister may be read only. The core checks the length of the programmed address and will function with
7-bit addresses even if it has support for 10-bit addresses.

I2C addresses can be allocated by NXP, please see the link in the core’s overview section.

31 5 4 3 2 1 0

RESERVED RMOD TMOD TV TAV EN

0 NR NR NR NR NR

r rw rw rw rw rw

31 : 5 RESERVED
4 Receive Mode (RMOD) - Selects how the core handles writes:

‘0’: The slave accepts one byte and NAKs all other transfers until software has acknowledged the
received byte by reading the Receive register.
‘1’: The slave accepts one byte and keeps SCL low until software has acknowledged the received
byte by reading the Receive register.

3 Transmit Mode (TMOD) - Selects how the core handles reads:
‘0’: The slave transmits the same byte to all if the master requests more than one byte in the transfer.
The slave then NAKs all read requests as long as the Transmit Valid (TV) bit is unset.
‘1’: The slave transmits one byte and then keeps SCL low until software has acknowledged that the
byte has been transmitted by setting the Transmit Valid (TV) bit.

2 Transmit Valid (TV) - Software sets this bit to indicate that the data in the transmit register is valid.
The core automatically resets this bit when the byte has been transmitted. When this bit is ‘0’ the
core will either NAK or insert wait states on incoming read requests, depending on the Transmit
Mode (TMOD).

1 Transmit Always Valid (TAV) - When this bit is set, the core will not clear the Transmit Valid (TV)
bit when a byte has been transmitted.

0 Enable core (EN) - Enables core. When this bit is set to ‘1’ the core will react to requests to the
address set in the Slave address register. If this bit is ‘0’ the core will keep both SCL and SDA inputs
in Hi-Z state.
GRIP, Sep 2018, Version 2018.3 1101 www.cobham.com/gaisler

GRLIB IP Core

74.3.3

Table 1350.0x08 - STAT - Status register

Status Register

74.3.4

Table 1351.0x0C - MASK - Mask register

Mask Register

74.3.5

Table 1352.0x10 - RX - Receive register

Receive Register

31 3 2 1 0

RESERVED REC TRA NAK

0 0 0 0

r * wc wc

31 : 3 RESERVED
2 Byte Received (REC) - This bit is set to ‘1’ when the core accepts a byte and is automatically cleared

when the Receive register has been read.
1 Byte Transmitted (TRA) - This bit is set to ‘1’ when the core has transmitted a byte and is cleared by

writing ‘1’ to this position. Writes of ‘0’ have no effect.
0 NAK Response (NAK) - This bit is set to ‘1’ when the core has responded with NAK to a read or

write request. This bit does not get set to ‘1’ when the core responds with a NAK to an address that
does not match the cores address. This bit is cleared by writing ‘1’ to this position, writes of ‘0’ have
no effect.

31 3 2 1 0

RESERVED RECE TRAE NAKE

0 0 0 0

r rw rw rw

31 : 3 RESERVED
2 Byte Received Enable (RECE) - When this bit is set the core will generate an interrupt when bit 2 in

the Status register gets set.
1 Byte Transmitted Enable (TRAE) - When this bit is set the core will generate an interrupt when bit 1

in the Status register gets set.
0 NAK Response Enable (NAKE) - When this bit is set the core will generate an interrupt when bit 0

in the Status register gets set.

31 8 7 0

RESERVED RECBYTE

0 NR

r r

31 : 8 RESERVED
7:0 Received Byte (RECBYTE) - Last byte received from master. This field only contains valid data if

the Byte received (REC) bit in the status register has been set.
GRIP, Sep 2018, Version 2018.3 1102 www.cobham.com/gaisler

GRLIB IP Core

74.3.6

Table 1353.0x14 - TX - Transmit register

Transmit Register

74.4 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x03E. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

74.5 Implementation

74.5.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

74.6 Configuration options

Table 1354 shows the configuration options of the core (VHDL generics).

31 8 8 7 0

RESERVED TRABYTE

0 NR

r rw

31 : 8 RESERVED
7:0 Transmit Byte (TRABYTE) - Byte to transmit on the next master read request.

Reset value: Undefined

Table 1354.Configuration options

Generic name Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0
paddr ADDR field of the APB BAR. 0 - 16#FFF# 0
pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#
pirq Interrupt line used by I2C slave 0 - NAHBIRQ-1 0

hardaddr If this generic is set to 1 the core uses the value of
generic i2caddr as the hard coded address. If hardaddr is
set to 0 the core’s address can be changed via the Slave
address register.

0 - 1 0

tenbit If this generic is set to 1 the core will support 10-bit
addresses. Note that the core can still be configured to
use a 7-bit address.

0 - 1 0

i2caddr The slave’s (initial) I2C address. 0 - 1023 0

oepol Output enable polarity 0 - 1 0
filter Low-pass filter length. This generic should specify, in

number of system clock cycles plus one, the time of the
shortest pulse on the I2C bus to be registered as a valid
value. For instance, to disregard any pulse that is 50 ns or
shorter in a system with a system frequency of 54 MHz
this generic should be set to:
((pulse time) / (clock period)) + 1 =
(50 ns) / ((1/(54 MHz)) + 1 = 3.7
The value from this calculation should always be
rounded up. In other words an appropriate filter length
for a 54 MHz system is 4.

2 - 512 2
GRIP, Sep 2018, Version 2018.3 1103 www.cobham.com/gaisler

GRLIB IP Core

74.7 Signal descriptions

Table 1355 shows the interface signals of the core (VHDL ports).

74.8 Signal definitions and reset values

The signals and their reset values are described in table 1356.

74.9 Library dependencies

Table 1357 shows the libraries used when instantiating the core (VHDL libraries).

74.10 Instantiation

This example shows how the core can be instantiated.
library ieee;
use ieee.std_logic_1164.all;

library grlib, techmap;
use grlib.amba.all;
use techmap.gencomp.all;

library gaisler;
use gaisler.misc.all;

Table 1355.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
I2CI SCL Input I2C clock line input -

SDA Input I2C data line input -

I2CO SCL Output I2C clock line output -

SCLOEN Output I2C clock line output enable Low**

SDA Output I2C data line output -

SDAOEN Output I2C data line output enable Low**

ENABLE Output High when core is enabled, low otherwise High
* see GRLIB IP Library User’s Manual
** Depends on OEPOL VHDL generic

Table 1356.Signal definitions and reset values

Signal name Type Function Active Reset value
scl InputOutput I2C clock line - Hi-Z

sda InputOutput I2C data line - Hi-Z

Table 1357.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER I2C Component, signals Component declaration, I2C signal definitions
GRIP, Sep 2018, Version 2018.3 1104 www.cobham.com/gaisler

GRLIB IP Core

entity i2cslv_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- I2C signals
 iic_scl : inout std_ulogic;
 iic_sda : inout std_ulogic
);
end;

architecture rtl of i2cslv_ex is

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);

 -- I2C signals
 signal i2ci : i2c_in_type;
 signal i2co : i2c_out_type;
begin

 -- AMBA Components are instantiated here
 ...

 -- I2C-slave
 i2cslv0 : i2cslv
 generic map (pindex => 1, paddr => 1, pmask => 16#FFF#, pirq => 1,
 hardaddr => 0, tenbit => 1, i2caddr => 16#50#)
 port map (rstn, clk, apbi, apbo(1), i2ci, i2co);
 i2cslv0_scl_pad : iopad generic map (tech => padtech)
 port map (iic_scl, i2co.scl, i2co.scloen, i2ci.scl);
 i2cslv0_sda_pad : iopad generic map (tech => padtech)
 port map (iic_sda, i2co.sda, i2co.sdaoen, i2ci.sda);
end;
GRIP, Sep 2018, Version 2018.3 1105 www.cobham.com/gaisler

GRLIB IP Core

75 IRQMP - Multiprocessor Interrupt Controller

75.1 Overview

The AMBA system in GRLIB provides an interrupt scheme where interrupt lines are routed together
with the remaining AHB/APB bus signals, forming an interrupt bus. Interrupts from AHB and APB
units are routed through the bus, combined together, and propagated back to all units. The multipro-
cessor interrupt controller core is attached to the AMBA bus as an APB slave, and monitors the com-
bined interrupt signals.
The interrupts generated on the interrupt bus are all forwarded to the interrupt controller. The interrupt
controller prioritizes, masks and propagates the interrupt with the highest priority to the processor. In
multiprocessor systems, the interrupts are propagated to all processors.

75.2 Operation

75.2.1 Interrupt prioritization

The interrupt controller monitors interrupt 1 - 15 of the interrupt bus (APBI.PIRQ[15:1]). When any
of these lines are asserted high, the corresponding bit in the interrupt pending register is set. The pend-
ing bits will stay set even if the PIRQ line is de-asserted, until cleared by software or by an interrupt
acknowledge from the processor. The default behaviour for peripherals is to use pulsed interrupts (an
interrupt line is asserted for one clock cycle to signal an interrupt).
Each interrupt can be assigned to one of two levels (0 or 1) as programmed in the interrupt level regis-
ter. Level 1 has higher priority than level 0. The interrupts are prioritised within each level, with inter-
rupt 15 having the highest priority and interrupt 1 the lowest. The highest interrupt from level 1 will
be forwarded to the processor. If no unmasked pending interrupt exists on level 1, then the highest
unmasked interrupt from level 0 will be forwarded. PIRQ[31:16] are not used by the IRQMP core.
Interrupts are prioritised at system level, while masking and forwarding of interrupts in done for each
processor separately. Each processor in an multiprocessor system has separate interrupt mask and
force registers. When an interrupt is signalled on the interrupt bus, the interrupt controller will priori-
tize interrupts, perform interrupt masking for each processor according to the mask in the correspond-
ing mask register and forward the interrupts to the processors.

MP IRQ Processor 0 Processor 1

BUS
CONTROL

SLAVE 1 SLAVE 2

Processor n
CTRL

Interrupt level

Interrupt acknowledge

Figure 213. LEON multiprocessor system with Multiprocessor Interrupt controller

AMBA BUS
GRIP, Sep 2018, Version 2018.3 1106 www.cobham.com/gaisler

GRLIB IP Core
When a processor acknowledges the interrupt, the corresponding pending bit will automatically be
cleared. Note that in a multiprocessor system, the bit in the pending register will be cleared as soon as
one of the processors acknowledges the interrupt and interrupt broadcast functionality should be used
for interrupts that need to be propagated to all processors. Interrupt can also be forced by setting a bit
in the interrupt force register. In this case, the processor acknowledgement will clear the force bit
rather than the pending bit. After reset, the interrupt mask register is set to all zeros while the remain-
ing control registers are undefined. Note that interrupt 15 cannot be maskable by the LEON processor
and should be used with care - most operating systems do not safely handle this interrupt.

75.2.2 Extended interrupts

The AHB/APB interrupt consist of 32 signals ([31:0]), while the IRQMP only uses lines 1 - 15 in the
nominal mode. To use the additional 16 interrupt lines (16-31), extended interrupt handling can be
enabled by setting the VHDL generic eirq to a value between 1 - 15. The interrupt lines 16 - 31 will
then also be handled by the interrupt controller, and the interrupt pending and mask registers will be
extended to 32 bits. Since the processor only has 15 interrupt levels (1 - 15), the extended interrupts
will generate one of the regular interrupts, indicated by the value of the eirq generic. When the inter-
rupt is taken and acknowledged by the processor, the regular interrupt (eirq) and the extended inter-
rupt pending bits are automatically cleared. The extended interrupt acknowledge register will identify
which extended interrupt that was most recently acknowledged. This register can be used by software
to invoke the appropriate interrupt handler for the extended interrupts.

75.2.3 Processor status monitoring

The processor status can be monitored through the Multiprocessor Status Register. The STATUS field
in this register indicates if a processor is in power-down (‘1’) or running (‘0’). A processor can be
made running by writing a ‘1’ to its status field. After reset, all processors except processor 0 are
halted (can be changed using the functionality associated with the extrun VHDL generic). When the
system is properly initialized, processor 0 can start the remaining processors by writing to their STA-
TUS bits. See also the extended boot support in section 75.2.4.

Figure 214. Interrupt controller block diagram

IRQ
Pending

15 4 IRQO[0].IRL[3:0]

Priority
select

IRQ
mask[0]

IRQ
Force[0]

Priority
encoder

4 IRQO[n].IRL[3:0]

Priority
encoder

APBI.PIRQ[15:1]

IRQ
mask[n]

IRQ
Force[n]
GRIP, Sep 2018, Version 2018.3 1107 www.cobham.com/gaisler

GRLIB IP Core

75.2.4 Extended boot support

When the bootreg generic is set, registers are added to allow starting a halted CPU from an arbitrary 8
byte aligned entry point. The CPU can be started with the same register write as when the entry point
is written, or the CPU can be started later using the regular multiprocessor status register bit.
An error register is also added to allow monitoring CPUs for error mode, and to allow forcing a spe-
cific CPU into error mode. This can be used to monitor and re-boot CPUs without resetting the sys-
tem.
A read-only bit in the multiprocessor status register can be read to see if the bootreg functionality has
been configured in.

75.2.5 Interrupt broadcasting

The Broadcast Register is activated when the generic ncpu is > 1. An incoming irq that has its bit set
in the Broadcast Register is propagated to the force register of all CPUs instead of to the Pending
Register. This can be used to implement a timer that fires to all CPUs with that same irq.

75.2.6 Interrupt (re)map functionality

The interrupt controller can optionally be implemented (as an alternative to the two-interrupt levels
scheme) with functionality to allow dynamic remapping between bus interrupt lines and interrupt con-
troller interrupt lines. If the design includes this functionality then switch-logic will be placed on the
incoming interrupt vector from the AMBA bus before the IRQ pending register. The Interrupt map
registers will be available starting at offset 0x300 from the interrupt controller's base address.
The interrupt map registers contain one field for each bus interrupt line in the system. The value
within this field determines to which interrupt controller line the bus interrupt line is connected. In
case several bus interrupt lines are mapped to the same controller interrupt line (several fields in the
Interrupt map registers have the same value) then the bus interrupt lines will be OR:ed together.
Note that if bus interrupt line X is remapped to controller interrupt line Y then bit Y of the pending
register will be set when a peripheral asserts interrupt X. Remapping interrupt lines via the Interrupt
map registers has the same effect as changing the interrupt assignments in the RTL code.
GRIP, Sep 2018, Version 2018.3 1108 www.cobham.com/gaisler

GRLIB IP Core

75.3 Registers

The core is controlled through registers mapped into APB address space. The number of implemented
registers depends on the number of processor in the multiprocessor system.
In order to make the boot registers available in the lower 256-byte space that is in the commonly used
mapping, the registers are mapped into space that becomes unused when the number of processors is
8 or lower. If the number of CPUs is higher than 8, then the registers are only available in the higher
space and a larger APB address mapping must be used to make them available.

Table 1358.Interrupt Controller registers

APB address offset Register
0x00 Interrupt level register
0x04 Interrupt pending register
0x08 Interrupt force register (NCPU = 0)
0x0C Interrupt clear register
0x10 Multiprocessor status register
0x14 Broadcast register
0x18 Error mode register
0x40 Processor interrupt mask register
0x44 Processor 1 interrupt mask register
0x40 + 4 * n Processor n interrupt mask register
0x60 + 4 * n Alias for processor n boot address register (only if BOOTREG=1

and NCPU < 9)
0x80 Processor interrupt force register
0x84 Processor 1 interrupt force register
0x80 + 4 * n Processor n interrupt force register
0xC0 Processor extended interrupt acknowledge register
0xC4 Processor 1 extended interrupt acknowledge register
0xC0 + 4 * n Processor n extended interrupt acknowledge register
0x200 + 0x4 * n Processor n boot address register (if BOOTREG = 1)
0x300 + 0x4 * n Interrupt map register n
GRIP, Sep 2018, Version 2018.3 1109 www.cobham.com/gaisler

GRLIB IP Core

75.3.1

Table 1359.0x000 - ILEVEL - Interrupt Level Register

Interrupt Level Register

75.3.2

Table 1360.0x004 - IPEND - Interrupt Pending Register

Interrupt Pending Register

75.3.3

Table 1361.0x008 - IFORCE - Interrupt Force Register (NCPU = 0)

Interrupt Force Register (NCPU = 0)

75.3.4

Table 1362.0x00C - ICLEAR - Interrupt Clear Register

Interrupt Clear Register

31 16 15 1 0

RESERVED IL[15:1] R

0 NR 0

r rw r

31:16 Reserved
15:1 Interrupt Level n (IL[n]) - Interrupt level for interrupt n
0 Reserved

31 16 15 1 0

EIP[31:16] IP[15:1] R

0 0 0

rw rw r

31:16 Extended Interrupt Pending n (EIP[n])
15:1 Interrupt Pending n (IP[n]) - Interrupt pending for interrupt n
0 Reserved

31 16 15 1 0

RESERVED IF[15:1] R

0 0 0

r rw r

31:16 Reserved
15:1 Interrupt Force n (IF[n]) - Force interrupt nr n.
0 Reserved

31 16 15 1 0

EIC[31:16] IC[15:1] R

0 0 0

w w r

31:16 Extended Interrupt Clear n (EIC[n])
15:1 Interrupt Clear n (IC[n]) - Writing ‘1’ to IC[n] will clear interrupt n
0 Reserved
GRIP, Sep 2018, Version 2018.3 1110 www.cobham.com/gaisler

GRLIB IP Core

75.3.5

Table 1363.0x010 - MPSTAT - Multiprocessor Status Register

Multiprocessor Status Register

75.3.6

Table 1364.0x014 - BRDCST - Broadcast Register (NCPU > 0)

Broadcast Register (NCPU > 0)

75.3.7

Table 1365.0x018 - ERRSTAT - Error Mode Status Register

Error Mode Status Register

75.3.8

Table 1366.0x040 - PIMASK - Processor Interrupt Mask Register

Processor Interrupt Mask Register

31 28 27 26 25 20 19 16 15 0

NCPU BA ER RESERVED EIRQ STATUS[15:0]

* * * 0 * *

r r r r r rw

31:28 Number of CPUs (NCPU) - Number of CPUs in the system - 1
27 Broadcast Available (BA) - Set to ‘1’ if NCPU > 0.
26 Extended boot registers available (ER). Set to ‘1’ if bootreg generic is 1.
25:20 Reserved
19:16 Extended IRQ (EIRQ) - Interrupt number (1 - 15) used for extended interrupts. Fixed to 0 if

extended interrupts are disabled.
15:0 Power-down status of CPU[n] (STATUS[n]) - ‘1’ = power-down, ‘0’ = running. Write STATUS[n]

with ‘1’ to start processor n.

31 16 15 1 0

RESERVED BM15:1] R

0 0 0

r rw r

31:16 Reserved
15:1 Broadcast Mask n (BM[n]) - If BM[n] = ‘1’ then interrupt n is broadcasted (written to the Force Reg-

ister of all CPUs), otherwise standard semantic applies (Pending register)
0 Reserved

31 28 27 26 20 19 16 15 0

RESERVED ERRMODE[15:0]

0 *

r rw

31:16 Reserved
15:0 Read: Error mode status of CPU[n] (STATUS[n]) - ‘1’ = error mode, ‘0’ = other (debug/run/power-

down).
Write: Force CPU[n] into error mode
Register is read-only if bootreg generic is 0..

31 16 15 1 0

EIM[31:16] IM15:1] R

0 0 0

rw rw r

31:16 Extended Interrupt Mask n (EIC[n]) - Interrupt mask for extended interrupts
15:1 Interrupt Mask n (IM[n]) - If IM[n] = ‘0’ then interrupt n is masked, otherwise it is enabled.
0 Reserved
GRIP, Sep 2018, Version 2018.3 1111 www.cobham.com/gaisler

GRLIB IP Core

75.3.9

Table 1367.0x080 - PIFORCE - Processor Interrupt Force Register (NCPU > 0)

Processor Interrupt Force Register (NCPU > 0)

75.3.10

Table 1368.0x0C0 - PEXTACK - Extended Interrupt Acknowledge Register

Extended Interrupt Acknowledge Register

75.3.11

Table 1369.0x200 + 0x4* n - BADDRn - Processor n Boot Address register

Processor N Boot Address Register

75.3.12

Table 1370.0x300+4.n - IRQMAPn - Interrupt map register n

Interrupt map (IRQMAP) - If the core has been implemented to support interrupt mapping then the
Interrupt map register at offset 0x300 + 4*n specifies the mapping for interrupt lines 4*n to 4*n+3.
The bus interrupt line 4*n+x will be mapped to the interrupt controller interrupt line specified by the
value of IRQMAP[n*4+x].

Interrupt Map Register N

31 17 16 15 1 0

IFC[15:1] R IF15:1] R

0 0 0 0

wc r rw* r

31:17 Interrupt Force Clear n (IFC[n]) - Interrupt force clear for interrupt n
16 Reserved
15:1 Interrupt Force n (IF[n]) - Force interrupt nr n
0 Reserved

31 5 4 0

RESERVED EID[4:0]

0 0

r r

31:5 Reserved
4:0 Extended interrupt ID (EID) - ID (16-31) of the most recent acknowledged extended interrupt.

If this field is 0, and support for extended interrupts exist, the last assertion of interrupt eirq was not
the result of an extended interrupt being asserted. If interrupt eirq is forced, or asserted, this field will
be cleared unless one, or more, of the interrupts 31 - 16 are enabled and set in the pending register.

31 28 27 26 20 19 16 15 3 2 1 0

BOOTADDR[31:3] RES AS

- - -

w - w

31:3 Entry point for booting up processor N, 8-byte aligned
2:1 Reserved (write 0)
0 Start processor immediately after setting address

31 24 23 16 15 8 7 0

IRQMAP[n*4] IRQMAP[n*4+1] IRQMAP[n*4+2] IRQMAP[n*4+3]

n.4 n.4+1 n.4+2 n.4+3

rw rw rw rw

b+7 : b
GRIP, Sep 2018, Version 2018.3 1112 www.cobham.com/gaisler

GRLIB IP Core

75.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x00D. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

75.5 Implementation

75.5.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core does not support grlib_async_reset_enable. All registers that react on the reset signal will
have a synchronous reset.

75.6 Configuration options

Table 1371 shows the configuration options of the core (VHDL generics).

Table 1371.Configuration options

Generic Function Allowed range Defau1lt
pindex Selects which APB select signal (PSEL) that will be used

to access the interrupt controller
0 to NAPBMAX-1 0

paddr The 12-bit MSB APB address 0 to 4095 0
pmask The APB address mask 0 to 4095 4095
ncpu Number of processors in multiprocessor system 1 to 16 1
eirq Enable extended interrupts 0 - 15 0
irqmap Enable interrupt (re-)map registers. If irqmap is set to 0

then interrupt map functionality is disabled. If irqmap is
nonzero then (irqmap + eirq) = 1 includes map registers
for bus interrupt lines 0 - 15. If (irqmap + eirq) > 1 then
interrupt map registers are available for bus interrupt
lines 0 - 31.

0 - 2 0

bootreg Enable boot address register and error mode register. 0 - 1 1
extrun Use external run vector. If this generic is set to 1 the start

of processors after reset will be controlled via the input
signal cpurun. If this generic is set to 0, CPU 0 will be
started after reset and the other CPUs will be put in
power-down mode. This requires that the SMP VHDL
generic on the LEON entity is nonzero.

0 - 1 0
GRIP, Sep 2018, Version 2018.3 1113 www.cobham.com/gaisler

GRLIB IP Core

75.7 Signal descriptions

Table 1372 shows the interface signals of the core (VHDL ports).

75.8 Library dependencies

Table 1373 shows libraries that should be used when instantiating the core.

75.9 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.leon3.all;

Table 1372.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
IRQI[n] INTACK Input Processor n Interrupt acknowledge High

IRL[3:0] Processor n interrupt level High
PWD Processor n in power down mode High
FPEN Unused -
ERR Processor n in error mode High

IRQO[n] IRL[3:0] Output Processor n Input interrupt level High
RESUME Reset power-down and error mode of processor n High
RSTRUN Start processor n after reset (SMP systems only) High
RSTVEC[31:12] Always zero -
INDEX[3:0] CPU index -
PWDSETADDR In power-down/error mode, shift PC to nPC and

set PWDNEWADDR to PC.
High

PWDNEWADDR
[31:2]

New PC value used with PWDSETADDR -

FORCEERR Force CPU into error mode High
CPURUN[] N/A Input If position n in this vector is set to ‘1’, processor

n will be started after reset. Otherwise processor
n will go into power-down. This signal is only
used if VHDL generic extrun is /= 0.

High

* see GRLIB IP Library User’s Manual

Table 1373.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER LEON3 Signals, component Signals and component declaration
GRIP, Sep 2018, Version 2018.3 1114 www.cobham.com/gaisler

GRLIB IP Core

entity irqmp_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 ... -- other signals
);
end;

architecture rtl of irqmp_ex is
 constant NCPU : integer := 4;

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);
 signal ahbsi : ahb_slv_in_type;

 -- GP Timer Unit input signals
 signal irqi : irq_in_vector(0 to NCPU-1);
 signal irqo : irq_out_vector(0 to NCPU-1);

 -- LEON3 signals
 signal leon3i : l3_in_vector(0 to NCPU-1);
 signal leon3o : l3_out_vector(0 to NCPU-1);

begin

 -- 4 LEON3 processors are instantiated here
 cpu : for i in 0 to NCPU-1 generate
 u0 : leon3s generic map (hindex => i)
 port map (clk, rstn, ahbmi, ahbmo(i), ahbsi,
irqi(i), irqo(i), dbgi(i), dbgo(i));
 end generate;

 -- MP IRQ controller
 irqctrl0 : irqmp
 generic map (pindex => 2, paddr => 2, ncpu => NCPU)
 port map (rstn, clk, apbi, apbo(2), irqi, irqo);
end
GRIP, Sep 2018, Version 2018.3 1115 www.cobham.com/gaisler

GRLIB IP Core

76 IRQ(A)MP - Multiprocessor Interrupt Controller with extended ASMP support

76.1 Overview

The AMBA system in GRLIB provides an interrupt scheme where interrupt lines are routed together
with the remaining AHB/APB bus signals, forming an interrupt bus. Interrupts from AHB and APB
units are routed through the bus, combined together, and propagated back to all units. The multipro-
cessor interrupt controller core is attached to the AMBA bus as an APB slave, and monitors the com-
bined interrupt signals.
The interrupts generated on the interrupt bus are all forwarded to the interrupt controller. The interrupt
controller prioritizes, masks and propagates the interrupt with the highest priority. The interrupt con-
troller is configured at instantiation to implement one or several internal interrupt controllers. Each
processor in a system can then be dynamically routed to one of the internal controllers. This allows
safe Asymmetric Multiprocessing (ASMP) operation. For Symmetric Multiprocessor (SMP) opera-
tion, several processors can be routed to the same internal interrupt controller.
The IRQ(A)MP core is an extended version of the traditional multiprocessor interrupt controller. If a
design does not need to have extended support for Asymmetric Multiprocessing, nor support for inter-
rupt timestamping, it is recommended to use the IRQMP core instead.

76.2 Operation

76.2.1 Support for Asymmetric Multiprocessing

Extended support for Asymmetric Multiprocessing (ASMP) is activated when the VHDL generic
nctrl is > 1. Asymmetric Multiprocessing support means that parts of the interrupt controller are
duplicated in order to provide safe ASMP operation. If the VHDL generic nctrl = 1 the core will have
the same behavior as the normal IRQMP Multiprocessor interrupt controller core. If nctrl > 1, the
core’s register set will be duplicated on 4 KiB address boundaries. The core’s register interface will
also enable the use of three new registers, one Asymmetric Multiprocessing Control Register and two
Interrupt Controller Select Registers.
Software can detect if the controller has been implemented with support for ASMP by reading the
Asymmetric Multiprocessing Control register. If the field NCTRL is 0, the core was not implemented

(A)MP IRQ Processor 0 Processor 1

BUS
CONTROL

SLAVE 1 SLAVE 2

Processor n
CTRL

Interrupt level

Interrupt acknowledge

Figure 215. LEON multiprocessor system with Multiprocessor Interrupt controller

AMBA BUS
GRIP, Sep 2018, Version 2018.3 1116 www.cobham.com/gaisler

GRLIB IP Core

with ASMP extensions. If the value of NCTRL is non-zero, the core has NCTRL+1 sets of registers
with additional underlying functionality. From a software view this is equivalent to having NCTRL+1
interrupt controllers available and software can configure to which interrupt controller a processor
should connect.
After system reset, all processors are connected to the first interrupt controller accessible at the core’s
base address. Software can then use the Interrupt Controller Select Registers to assign processors to
other (internal) interrupt controllers. After assignments have been made, it is recommended to freeze
the contents of the select registers by writing ‘1’ to the lock bit in the Asymmetric Multiprocessing
Control Register. The lock bit can be cleared by software by writing ‘0’ to the bit.
When a software driver for the interrupt controller is loaded, the driver should check the Asymmetric
Multiprocessing Control Register and Interrupt Controller Select Registers to determine to which con-
troller the current processor is connected. After software has determined that it has been assigned to
controller n, software should only access the controller with registers at offset 0x1000 * n. Note that
the controllers are enumerated with the first controller being n = 0.
The processor specific registers (mask, force, interrupt acknowledge) can be read from all interrupt
controllers. However the processor specific mask and interrupt acknowledge registers can only be
written from the interrupt controller to which the processor is assigned. This also applies to individual
bits in the Multiprocessor Status Register. Interrupt Force bits in a processor’s Interrupt Force Regis-
ter can only be cleared through the controller to which the processor is assigned. If the ICF field in the
Asymmetric Multiprocessing Control Register is set to ‘1’, all bits in all Interrupt Force Registers can
be set, but not cleared, from all controllers. If the ICF field is ‘0’ the bits in a processor’s Interrupt
Force register can only be set from the controller to which the processor is assigned.

76.2.2 Interrupt prioritization

The interrupt controller monitors interrupt 1 - 15 of the interrupt bus (APBI.PIRQ[15:1]). When any
of these lines are asserted high, the corresponding bit in the interrupt pending register is set. The pend-
ing bits will stay set even if the PIRQ line is de-asserted, until cleared by software or by an interrupt
acknowledge from the processor. The default behaviour for peripherals is to use pulsed interrupts (an
interrupt line is asserted for one clock cycle to signal an interrupt).
Each interrupt can be assigned to one of two levels (0 or 1) as programmed in the interrupt level regis-
ter. Level 1 has higher priority than level 0. The interrupts are prioritised within each level, with inter-
rupt 15 having the highest priority and interrupt 1 the lowest. The highest interrupt from level 1 will
be forwarded to the processor. If no unmasked pending interrupt exists on level 1, then the highest
unmasked interrupt from level 0 will be forwarded. PIRQ[31:16] are not used by the IRQMP core.
Interrupts are prioritised at system level, while masking and forwarding of interrupts in done for each
processor separately. Each processor in an multiprocessor system has separate interrupt mask and
force registers. When an interrupt is signalled on the interrupt bus, the interrupt controller will priori-
tize interrupts, perform interrupt masking for each processor according to the mask in the correspond-
ing mask register and forward the interrupts to the processors.
GRIP, Sep 2018, Version 2018.3 1117 www.cobham.com/gaisler

GRLIB IP Core
When a processor acknowledges the interrupt, the corresponding pending bit will automatically be
cleared. Note that in a multiprocessor system, the bit in the pending register will be cleared as soon as
one of the processors acknowledges the interrupt and interrupt broadcast functionality should be used
for interrupts that need to be propagated to all processors. Interrupt can also be forced by setting a bit
in the interrupt force register. In this case, the processor acknowledgement will clear the force bit
rather than the pending bit. After reset, the interrupt mask register is set to all zeros while the remain-
ing control registers are undefined. Note that interrupt 15 cannot be maskable by the LEON processor
and should be used with care - most operating systems do not safely handle this interrupt.

76.2.3 Extended interrupts

The AHB/APB interrupt consist of 32 signals ([31:0]), while the IRQMP only uses lines 1 - 15 in the
nominal mode. To use the additional 16 interrupt lines (16-31), extended interrupt handling can be
enabled by setting the VHDL generic eirq to a value between 1 - 15. The interrupt lines 16 - 31 will
then also be handled by the interrupt controller, and the interrupt pending and mask registers will be
extended to 32 bits. Since the processor only has 15 interrupt levels (1 - 15), the extended interrupts
will generate one of the regular interrupts, indicated by the value of the eirq generic. When the inter-
rupt is taken and acknowledged by the processor, the regular interrupt (eirq) and the extended inter-
rupt pending bits are automatically cleared. The extended interrupt acknowledge register will identify
which extended interrupt that was most recently acknowledged. This register can be used by software
to invoke the appropriate interrupt handler for the extended interrupts. When VHDL generic irqmap
has a value of 3, support for 64 AHB/APB interrupts lines are enabled. Interrupt 32 - 63 are not han-
dled by the interrupt controller and therefor needs to be remapped to one of the interrupt 1 - 31.

76.2.4 Processor status monitoring

The processor status can be monitored through the Multiprocessor Status Register. The STATUS field
in this register indicates if a processor is in power-down (‘1’) or running (‘0’). A processor can be
made running by writing a ‘1’ to its status field. After reset, all processors except processor 0 are in
power-down (can be changed using the functionality associated with the extrun VHDL generic).

Figure 216. Interrupt controller block diagram

IRQ
Pending

15 4 IRQO[0].IRL[3:0]

Priority
select

IRQ
mask[0]

IRQ
Force[0]

Priority
encoder

4 IRQO[n].IRL[3:0]

Priority
encoder

APBI.PIRQ[15:1]

IRQ
mask[n]

IRQ
Force[n]
GRIP, Sep 2018, Version 2018.3 1118 www.cobham.com/gaisler

GRLIB IP Core

When the system is properly initialized, processor 0 can start the remaining processors by writing to
their STATUS bits.
The core can be implemented with support for specifying the processor reset start address dynami-
cally. Please see section 76.2.10 for further information.

76.2.5 Interrupt broadcasting

The Broadcast Register is activated when the generic ncpu is > 1. An incoming irq that has its bit set
in the Broadcast Register is propagated to the force register of all CPUs instead of to the Pending
Register. This can be used to implement a timer that fires to all CPUs with that same irq.

76.2.6 Interrupt timestamping description

Support for interrupt timestamping is implemented when the VHDL generic tstamp is > 0.
Interrupt timestamping is controlled via the Interrupt Timestamp Control register(s). Each Interrupt
Timestamp Control register contains a field (TSTAMP) that contains the number of timestamp regis-
ters sets that the core implements. A timestamp register sets consist of one Interrupt Timestamp
Counter register, one Interrupt Timestamp Control register, one Interrupt Assertion Timestamp regis-
ter and one Interrupt Acknowledge Timestamp register.
Software enables timestamping for a specific interrupt via a Interrupt Timestamp Control Register.
When the selected interrupt line is asserted, software will save the current value of the interrupt time-
stamp counter into the Interrupt Assertion Timestamp register and set the S1 field in the Interrupt
Timestamp Control Register. When the processor acknowledges the interrupt, the S2 field of the Inter-
rupt Timestamp Control register will be set and the current value of the timestamp counter will be
saved in the Interrupt Acknowledge Timestamp Register. The difference between the Interrupt Asser-
tion timestamp and the Interrupt Acknowledge timestamp is the number of system clock cycles that
was required for the processor to react to the interrupt and divert execution to the trap handler.
The core can be configured to stamp only the first occurrence of an interrupt or to continuously stamp
interrupts. The behavior is controlled via the Keep Stamp (KS) field in the Interrupt Timestamp Con-
trol Register. If KS is set, only the first assertion and acknowledge of an interrupt is stamped. Soft-
ware must then clear the S1 and S2 fields for a new timestamp to be taken. If Keep Stamp is disabled
(KS field not set), the controller will update the Interrupt Assertion Timestamp Register every time
the selected interrupt line is asserted. In this case the controller will also automatically clear the S2
field and also update the Interrupt Acknowledge Timestamp register with the current value when the
interrupt is acknowledged.
For controllers with extended ASMP support, each internal controller has a dedicated set of Interrupt
timestamp registers. This means that the Interrupt Acknowledge Timestamp Register(s) on a specific
controller will only be updated if and when the processor connected to the controller acknowledges
the selected interrupt. The Interrupt Timestamp Counter is shared by all controllers and will be incre-
mented when an Interrupt Timestamp Control register has the ITSEL field set to a non-zero value.

76.2.7 Interrupt timestamping usage guidelines

Note that KS = ‘0’ and a high interrupt rate may cause the Interrupt Assertion Timestamp register to
be updated (and the S2 field reset) before the processor has acknowledged the first occurrence of the
interrupt. When the processor then acknowledges the first occurrence, the Interrupt Acknowledge
Timestamp register will be updated and the difference between the two Timestamp registers will not
show how long it took the processor to react to the first interrupt request. If the interrupt frequency is
expected to be high it is recommended to keep the first stamp (KS field set to ‘1’) in order to get reli-
able measurements. KS = ‘0’ should not be used in systems that include cores that use level interrupts,
the timestamp logic will register each cycle that the interrupt line is asserted as an interrupt.
In order to measure the full interrupt handling latency in a system, software should also read the cur-
rent value of the Interrupt Timestamp Counter when entering the interrupt handler. In the typical case,
GRIP, Sep 2018, Version 2018.3 1119 www.cobham.com/gaisler

GRLIB IP Core

a software driver’s interrupt handler reads a status register and then determines the action to take.
Adding a read of the timestamp counter before this status register read can give an accurate view of
the latency during interrupt handling.
The core listens to the system interrupt vector when reacting to interrupt line assertions. This means
that the Interrupt Assertion Timestamp Register(s) will not be updated if software writes directly to
the pending or force registers. To measure the time required to serve a forced interrupt, read the value
of the Interrupt Timestamp counter before forcing the interrupt and then read the Interrupt Acknowl-
edge Timestamp and Interrupt Timestamp counter when the processor has reacted to the interrupt.

76.2.8 Watchdog

Support for watchdog inputs is implemented when the VHDL generic wdogen > 0, the number of
watchdog input is determined by the VHDL generic nwdog.
The core can be implemented with support for asserting a bit in the controller’s Interrupt Pending
Register when an external watchdog signal is asserted. This functionality can be used to implement a
sort of soft watchdog for one or several processor cores. The controller’s Watchdog Control Register
contains a field that shows the number of external watchdog inputs supported and fields for configur-
ing which watchdog inputs that should be able to assert a bit in the Interrupt Pending Register. The
pending register will be assigned in each cycle that a selected watchdog input is high. Therefore it is
recommended that the watchdog inputs are connected to sources which send a one clock cycle long
pulse when a watchdog expires. Otherwise software should make sure that the watchdog signal is
deasserted before re-enabling interrupts during interrupt handling.
For controllers with extended ASMP support, each internal controller has a dedicated Watchdog Con-
trol register. Assertion of a watchdog input will only affect the pending register on the internal inter-
rupt controllers that have enabled the watchdog input in their Watchdog Control Register.

76.2.9 Interrupt (re)map functionality

The interrupt controller can optionally be implemented (as an alternative to the two-interrupt levels
scheme) with functionality to allow dynamic remapping between bus interrupt lines and interrupt con-
troller interrupt lines. If the design includes this functionality then switch-logic will be placed on the
incoming interrupt vector from the AMBA bus before the IRQ pending register. The Interrupt map
registers will be available starting at offset 0x300 from the interrupt controller's base address.
The interrupt map registers contain one field for each bus interrupt line in the system. The value
within this field determines to which interrupt controller line the bus interrupt line is connected. In
case several bus interrupt lines are mapped to the same controller interrupt line (several fields in the
Interrupt map registers have the same value) then the bus interrupt lines will be OR:ed together.
Note that if bus interrupt line X is remapped to controller interrupt line Y then bit Y of the pending
register will be set when a peripheral asserts interrupt X. Remapping interrupt lines via the Interrupt
map registers has the same effect as changing the interrupt assignments in the RTL code.

76.2.10 Dynamic processor reset start address

When the bootreg generic is set, registers are added to allow starting a halted CPU from an arbitrary 8
byte aligned entry point. The CPU can be started with the same register write as when the entry point
is written, or the CPU can be started later using the regular multiprocessor status register bit.
An error register is also added to allow monitoring CPUs for error mode, and to allow forcing a spe-
cific CPU into error mode. This can be used to monitor and re-boot CPUs without resetting the sys-
tem.
A read-only bit in the multiprocessor status register can be read to see if the bootreg functionality has
been configured in.
GRIP, Sep 2018, Version 2018.3 1120 www.cobham.com/gaisler

GRLIB IP Core

76.3 Registers

The core is controlled through registers mapped into APB address space. The number of implemented
registers depends on the number of processors in the multiprocessor system. The number of accessible
register sets depend on the value of the NCTRL field in the Asymmetric Multiprocessing Control
Register. The register set for controller n is accessed at offset 0x1000*n.
In order to make the boot registers available in the lower 256-byte space that is in legacy mappings,
the registers are mapped into space that becomes unused when the number of processors is 8 or lower.
If the number of CPUs is higher than 8, then the registers are only available in the higher space and a
larger APB address mapping must be used to make them available.

Table 1374.Interrupt Controller registers

APB address offset Register
0x000 Interrupt level register
0x004 Interrupt pending register
0x008 Interrupt force register (NCPU = 0)
0x00C Interrupt clear register
0x010 Multiprocessor status register
0x014 Broadcast register
0x018 Error mode register
0x01C Watchdog control register
0x020 Asymmetric multiprocessing control register
0x024 Interrupt controller select register for processor 0 - 7
0x028 Interrupt controller select register for processor 8 - 15
0x02C - 0x03C Reserved
0x040 Processor interrupt mask register
0x044 Processor 1 interrupt mask register
0x040 + 0x4 * n Processor n interrupt mask register
0x060 + 0x4 * n Alias for processor n boot address register if NCPU < 9
0x080 Processor interrupt force register
0x084 Processor 1 interrupt force register
0x080 + 0x4 * n Processor n interrupt force register
0x0C0 Processor extended interrupt acknowledge register
0x0C4 Processor 1 extended interrupt acknowledge register
0x0C0 + 0x4 * n Processor n extended interrupt acknowledge register
0x100 Interrupt timestamp counter register
0x104 Interrupt timestamp 0 control register
0x108 Interrupt assertion timestamp 0 register
0x10C Interrupt acknowledge timestamp 0 register
0x100 + 0x10 * n Interrupt timestamp counter register (mirrored in each set)
0x104 + 0x10 * n Interrupt timestamp n control register
0x108 + 0x10 * n Interrupt assertion timestamp n register
0x10C + 0x10 * n Interrupt acknowledge timestamp n register
0x200 + 0x4* n Processor n boot address register
0x300 + 0x4 * n Interrupt map register n
GRIP, Sep 2018, Version 2018.3 1121 www.cobham.com/gaisler

GRLIB IP Core

76.3.1

Table 1375.0x000 - ILEVEL - Interrupt Level Register

Interrupt Level Register

76.3.2

Table 1376.0x004 - IPEND - Interrupt Pending Register

Interrupt Pending Register

76.3.3

Table 1377.0x008 - IFORCE0 - Interrupt Force Register (NCPU = 0)

Interrupt Force Register (NCPU = 0)

76.3.4

Table 1378.0x00C - ICLEAR - Interrupt Clear Register

Interrupt Clear Register

31 16 15 1 0

RESERVED IL[15:1] R

0 NR 0

r rw r

31:16 Reserved
15:1 Interrupt Level n (IL[n]) - Interrupt level for interrupt n
0 Reserved

31 16 15 1 0

EIP[31:16] IP[15:1] R

0 0 0

rw rw r

31:16 Extended Interrupt Pending n (EIP[n])
15:1 Interrupt Pending n (IP[n]) - Interrupt pending for interrupt n
0 Reserved

31 16 15 1 0

RESERVED IF[15:1] R

0 0 0

r rw r

31:16 Reserved
15:1 Interrupt Force n (IF[n]) - Force interrupt nr n.
0 Reserved

31 16 15 1 0

EIC[31:16] IC[15:1] R

0 0 0

w w r

31:16 Extended Interrupt Clear n (EIC[n])
15:1 Interrupt Clear n (IC[n]) - Writing ‘1’ to IC[n] will clear interrupt n
0 Reserved
GRIP, Sep 2018, Version 2018.3 1122 www.cobham.com/gaisler

GRLIB IP Core

76.3.5

Table 1379.0x010 - MPSTAT - Multiprocessor Status Register

Multiprocessor Status Register

76.3.6

Table 1380.0x014 - BRDCST - Broadcast Register (NCPU > 0)

Broadcast Register (NCPU > 0)

76.3.7

Table 1381.0x018 - ERRSTAT - Error Mode Status Register

Error Mode Status Register

31 28 27 26 25 20 19 16 15 0

NCPU BA ER RESERVED EIRQ STATUS[15:0]

* * 0 * *

r r r r rw

31:28 Number of CPUs (NCPU) - Number of CPUs in the system - 1
27 Broadcast Available (BA) - Set to ‘1’ if NCPU > 0.
26 Extended boot registers available (ER). Set to ‘1’ if bootreg generic is 1.
25:20 Reserved
19:16 Extended IRQ (EIRQ) - Interrupt number (1 - 15) used for extended interrupts. Fixed to 0 if

extended interrupts are disabled.
15:0 Power-down status of CPU[n] (STATUS[n]) - ‘1’ = power-down, ‘0’ = running. Write STATUS[n]

with ‘1’ to start processor n.

31 16 15 1 0

RESERVED BM15:1] R

0 0 0

r rw r

31:16 Reserved
15:1 Broadcast Mask n (BM[n]) - If BM[n] = ‘1’ then interrupt n is broadcasted (written to the Force Reg-

ister of all CPUs), otherwise standard semantic applies (Pending register)
0 Reserved

31 28 27 26 20 19 16 15 0

RESERVED ERRMODE[15:0]

0 *

r rw

31:16 Reserved
15:0 Read: Error mode status of CPU[n] (STATUS[n]) - ‘1’ = error mode, ‘0’ = other (debug/run/power-

down).
Write: Force CPU[n] into error mode
Register is read-only if bootreg generic is 0..
GRIP, Sep 2018, Version 2018.3 1123 www.cobham.com/gaisler

GRLIB IP Core

76.3.8

Table 1382.0x01C - WDOGCTRL - Watchdog Control Register (NCPU > 0)

Watchdog Control Register (NCPU > 0)

76.3.9

Table 1383.0x020 - ASMPCTRL - Asymmetric Multiprocessing Control Register

Asymmetric Multiprocessing Control Register

76.3.10

Table 1384.0x024 - ICLSELR0 - Interrupt Controller Select Register for Processors 0 -7 (NCTRL > 0)

Interrupt Controller Select Register for Processors 0 - 7 (NCTRL > 0)

76.3.11

Table 1385.0x028 - ICSELR1 - Interrupt Controller Select Register for Processors 8 - 15 (NCTRL > 0)

Interrupt Controller Select Register for Processors 8 - 15 (NCTRL > 0)

31 27 26 20 19 16 15 0

NWDOG Reserved WDOGIRQ WDOGMSK

* 0 NR 0

r r rw rw

31:27 Number of watchdog inputs (NWDOG) - Number of watchdog inputs that the core supports.
26:20 Reserved
19:16 Watchdog interrupt (WDOGIRQ) - Selects the bit in the pending register to set when any line watch-

dog line selected by the WDOGMSK field is asserted.
15:0 Watchdog Mask n (WDOGMSK[n]) - If WDOGMSK[n] = ‘1’ then the assertion of watchdog input

n will lead to the bit selected by the WDOGIRQ field being set in the controller’s Interrupt Pending
Register.

31 28 27 2 1 0

NCTRL RESERVED ICF L

* 0 0 0

r r rw rw

31:28 Number of internal controllers (NCTRL) - NCTRL + 1 is the number of internal interrupt controllers
available.

27:2 Reserved
1 Inter-controller Force (ICF) - If this bit is set to ‘1’ all Interrupt Force Registers can be set from any

internal controller. If this bit is ‘0’, a processor’s Interrupt Force Register can only be set from the
controller to which the processor is connected. Bits in an Interrupt Force Register can only be
cleared by the controller or by writing the Interrupt Force Clear field on the controller to which the
processor is connected.

0 Lock (L) - If this bit is written to ‘1’, the contents of the Interrupt Controller Select registers is fro-
zen. This bit can only be set if NCTRL > 0.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

ICSEL0 ICSEL1 ICSEL2 ICSEL3 ICSEL4 ICSEL5 ICSEL6 ICSEL7

0 0 0 0 0 0 0 0

rw rw rw rw rw rw rw rw

31:0 Interrupt controller select for processor n (ICSEL[n]) - The nibble ICSEL[n] selects the (internal)
interrupt controller to connect to processor n.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

ICSEL8 ICSEL9 ICSEL10 ICSEL11 ICSEL12 ICSEL13 ICSEL14 ICSEL15

0 0 0 0 0 0 0 0

rw rw rw rw rw rw rw rw

31:0 Interrupt controller select for processor n (ICSEL[n]) - The nibble ICSEL[n] selects the (internal)
interrupt controller to connect to processor n.
GRIP, Sep 2018, Version 2018.3 1124 www.cobham.com/gaisler

GRLIB IP Core

76.3.12

Table 1386.0x040,... - PIMASK - Processor Interrupt Mask Register

Processor Interrupt Mask Register

76.3.13

Table 1387.0x080 - PCFORCE - Processor Interrupt Force Register (NCPU > 0)

Processor Interrupt Force Register (NCPU > 0)

31 16 15 1 0

EIM[31:16] IM15:1] R

0 0 0

rw rw r

31:16 Extended Interrupt Mask n (EIC[n]) - Interrupt mask for extended interrupts
15:1 Interrupt Mask n (IM[n]) - If IM[n] = ‘0’ then interrupt n is masked, otherwise it is enabled.
0 Reserved

31 17 16 15 1 0

IFC[15:1] R IF15:1] R

0 0 0 0

wc r rw* r

31:17 Interrupt Force Clear n (IFC[n]) - Interrupt force clear for interrupt n
16 Reserved
15:1 Interrupt Force n (IF[n]) - Force interrupt nr n
0 Reserved
GRIP, Sep 2018, Version 2018.3 1125 www.cobham.com/gaisler

GRLIB IP Core

76.3.14

Table 1388.0x0C0,... PEXTACK - Extended Interrupt Acknowledge Register

Extended Interrupt Acknowledge Register

76.3.15

Table 1389.0x100,110 - TCNT - Interrupt Timestamp Counter register

Timestamp Counter (TCNT) - Current value of timestamp counter. The counter increments when-
ever a TSISEL field in a Timestamp Control Register is non-zero. The counter will wrap to zero
upon overflow and is read only.

Interrupt Timestamp Counter Register

76.3.16

Table 1390.0x1n4 - ITSTMPCn - Timestamp n Control Register

Timestamp N Control Register

31 5 4 0

RESERVED EID[4:0]

0 0

r r

31:5 Reserved
4:0 Extended interrupt ID (EID) - ID (16-31) of the most recent acknowledged extended interrupt

If this field is 0, and support for extended interrupts exist, the last assertion of interrupt eirq was not
the result of an extended interrupt being asserted. If interrupt eirq is forced, or asserted, this field will
be cleared unless one, or more, of the interrupts 31 - 16 are enabled and set in the pending register.

31 0

TCNT

0

r

31:0

31 27 26 25 24 6 5 4 0

TSTAMP S1 S2 RESERVED KS TSISEL

* 0 0 0 0 0

r wc wc r rw rw

31:27 Number of timestamp register sets (TSTAMP) - The number of available timestamp register sets.
26 Assertion Stamped (S1) - Set to ‘1’ when the assertion of the selected line has received a timestamp.

This bit is cleared by writing ‘1’ to its position. Writes of ‘0’ have no effect.
25 Acknowledge Stamped (S2) - Set to ‘1’ when the processor acknowledge of the selected interrupt

has received a timestamp. This bit can be cleared by writing ‘1’ to this position, writes of ‘0’ have no
effect. This bit can also be cleared automatically by the core, see description of the KS field below.

24:6 RESERVED
5 Keep Stamp (KS) - If this bit is set to ‘1’ the core will keep the first stamp value for the first interrupt

until the S1 and S2 fields are cleared by software. If this bit is set to ‘0’ the core will time stamp the
most recent interrupt. This also has the effect that the core will automatically clear the S2 field when-
ever the selected interrupt line is asserted and thereby also stamp the next acknowledge of the inter-
rupt.

4:0 Timestamp Interrupt Select (TSISEL) - This field selects the interrupt line (0 - 31) to timestamp.
GRIP, Sep 2018, Version 2018.3 1126 www.cobham.com/gaisler

GRLIB IP Core

76.3.17

Table 1391.0x1n8 - ITSTMPASn - Interrupt Assertion Timestamp register N

Timestamp of Assertion (TASSERTION) - The current Timestamp Counter value is saved in this
register when timestamping is enabled and the interrupt line selected by TSISEL is asserted.

Interrupt Assertion Timestamp Register

76.3.18

Table 1392.0x1nC - ITSTMPASn - Interrupt Acknowledge Timestamp register N

Timestamp of Acknowledge (TACKNOWLEDGE) - The current Timestamp Counter value is saved
in this register when timestamping is enabled, the Acknowledge Stamped (S2) field is ‘0’, and the
interrupt selected by TSISEL is acknowledged by a processor connected to the interrupt controller.

Interrupt Acknowledge Timestamp Register

76.3.19

Table 1393.0x200 + 0x4* n - BADDRn - Processor n Boot Address register

Processor N Boot Address Register

76.3.20

Table 1394.0x300 + IRQMAPn - Interrupt map register n

Interrupt map (IRQMAP) - If the core has been implemented to support interrupt mapping then the
Interrupt map register at offset 0x300 + 4*n specifies the mapping for interrupt lines 4*n to 4*n+3.
The bus interrupt line 4*n+x will be mapped to the interrupt controller interrupt line specified by the
value of IRQMAP[n*4+x].

Interrupt Map Register N

76.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x00D (same as IRQMP
core). For description of vendor and device identifiers see GRLIB IP Library User’s Manual.

31 0

TASSERTION

0

r

31:0

31 0

TACKNOWLEDGE

0

r

31:0

31 28 27 26 20 19 16 15 3 2 1 0

BOOTADDR[31:3] RES AS

- - -

w - w

31:3 Entry point for booting up processor N, 8-byte aligned
2:1 Reserved (write 0)
0 Start processor immediately after setting address

31 24 23 16 15 8 7 0

IRQMAP[n*4] IRQMAP[n*4+1] IRQMAP[n*4+2] IRQMAP[n*4+3]

n.n n.4+1 n.4+2 n.4+3

rw rw rw rw

b+7 : b
GRIP, Sep 2018, Version 2018.3 1127 www.cobham.com/gaisler

GRLIB IP Core

76.5 Implementation

76.5.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

76.6 Configuration options

Table 1395 shows the configuration options of the core (VHDL generics).

Table 1395.Configuration options

Generic Function Allowed range Default
pindex Selects which APB select signal (PSEL) that will be used

to access the interrupt controller
0 to NAPBSLV-1 0

paddr The 12-bit MSB APB address 0 - 16#FFF# 0
pmask The APB address mask. The mask determines the size of

the memory area occupied by the core. The minimum
required memory area based on the nctrl VHDL generic
gives (nctrl : pmask) = 1 : 16#FFF#, 2: 16#FE0#, 3-4 :
16#FC0#, 5-8 : 16#F80#, 9-16 : 16#F00#.
Note that even with nctrl = 1 the core may require a
larger area than 256 bytes if the core has been imple-
mented with support for timestamping and/or dynamic
reset addresses.

0 - 16#FFF# 16#FFF#

ncpu Number of processors in multiprocessor system 1 to 16 1
eirq Enable extended interrupts 0 - 15 0
nctrl Asymmetric multiprocessing system extension. This

generic defines the number of internal interrupt control-
lers that will be implemented in the core.

1 - 16 1

tstamp Interrupt timestamping. If this generic is non-zero the
core will include a timestamp counter and tstamp set(s)
of interrupt timestamp register(s).

0 - 16 0

wdogen Enable watchdog inputs. If this generic is set to 1 the
core will include logic to assert a selected interrupt when
a watchdog input is asserted.

0 - 1 0

nwdog Number of watchdog inputs 1 - 16 1
dynrstaddr Deprecated feature, must be set to 0 0 - 0 0
rstaddr Deprecated feature, must be set to 0 0 - (220-1) 0

extrun Use external run vector. If this generic is set to 1 the start
of processors after reset will be controlled via the input
signal cpurun. If this generic is set to 0, CPU 0 will be
started after reset and the other CPUs will be put in
power-down mode. This requires that the SMP VHDL
generic on the LEON entity is nonzero.

0 - 1 0

irqmap Enable interrupt (re-)map registers. If irqmap is set to 0
then interrupt map functionality is disabled. If irqmap is
nonzero then (irqmap + eirq) = 1 includes map registers
for bus interrupt lines 0 - 15. If (irqmap + eirq) > 1 then
interrupt map registers are available for bus interrupt
lines 0 - 31. When irqmap = 3 then support for 64 inter-
rupt sources is enabled and interrupt map registers are
available for bus interrupt lines 0 - 63.

0 - 3 0
GRIP, Sep 2018, Version 2018.3 1128 www.cobham.com/gaisler

GRLIB IP Core
76.7 Signal descriptions

Table 1396 shows the interface signals of the core (VHDL ports).

exttimer Use external timer input timer. The external timer
replaces the internal time stamp counter. The counter is
no longer started based on the value of the IRQ sel field.
Users must ensure that the timer input is toggling when-
they want to do timestamps

0 - 1 0

bootreg Enable boot address register and error mode register. 0 - 1 1

Table 1396.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
IRQI[n] INTACK Input Processor n Interrupt acknowledge High

IRL[3:0] Processor n interrupt level High
PWD Processor n in power down mode High
FPEN Unused -
ERR Processor n in error mode High

IRQO[n] IRL[3:0] Output Processor n Input interrupt level High
RESUME Reset power-down and error mode of processor n High
RSTRUN Start processor n after reset (SMP systems only) High
RSTVEC[31:12] Always zero -
INDEX[3:0] CPU index High
PWDSETADDR In power-down/error mode, shift PC to nPC and

set PWDNEWADDR to PC.
High

PWDNEWADDR
[31:2]

New PC value used with PWDSETADDR -

FORCEERR Force CPU into error mode High
WDOG[] N/A Input Watchdog input signals High
CPURUN[] N/A Input If position n in this vector is set to ‘1’, processor

n will be started after reset. Otherwise processor
n will go into power-down. This signal is only
used if VHDL generic extrun is /= 0.

High

TIMER[] N/A Input Timer value, used then VHDL generic exttimer /
=0

-

RSTMAP N/A Input Reset value for IRQ mapping register (only used
when 64 interrupt sources is supported).
Bit[4:0] = mapping for IRQ0
Bit[9:5] = mapping for IRQ1
...

-

* see GRLIB IP Library User’s Manual

Table 1395.Configuration options

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 1129 www.cobham.com/gaisler

GRLIB IP Core

76.8 Library dependencies

Table 1397 shows libraries that should be used when instantiating the core.

76.9 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.leon3.all;

entity irqamp_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 ... -- other signals
);
end;

architecture rtl of irqamp_ex is
 constant NCPU : integer := 4;

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);
 signal ahbsi : ahb_slv_in_type;

 -- GP Timer Unit input signals
 signal irqi : irq_in_vector(0 to NCPU-1);
 signal irqo : irq_out_vector(0 to NCPU-1);

 -- LEON3 signals
 signal leon3i : l3_in_vector(0 to NCPU-1);
 signal leon3o : l3_out_vector(0 to NCPU-1);

begin

 -- 4 LEON3 processors are instantiated here
 cpu : for i in 0 to NCPU-1 generate
 u0 : leon3s generic map (hindex => i)
 port map (clk, rstn, ahbmi, ahbmo(i), ahbsi,
irqi(i), irqo(i), dbgi(i), dbgo(i));
 end generate;

 -- MP IRQ controller
 irqctrl0 : irqamp
 generic map (pindex => 2, paddr => 2, ncpu => NCPU, nctrl => NCPU)
 port map (rstn, clk, apbi, apbo(2), irqi, irqo);
end

Table 1397.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER LEON3 Signals, component Signals and component declaration
GRIP, Sep 2018, Version 2018.3 1130 www.cobham.com/gaisler

GRLIB IP Core

77 L2C - Level 2 Cache controller

77.1 Overview

The L2C implements a Level-2 cache for processors with AHB interfaces. The L2C works as an AHB
to AHB/AXI bridge, caching data that is read or written via the bridge. The cache is a unified cache
and in a system with LEON processors, data may exist in the Level-1 and Level-2 cache, or only in
the Level-1 or Level-2 cache. A front-side AHB interface is connected to the processor bus, while a
backend AHB/AXI interface is connected to the memory bus. Both front-side and backend buses can
be individually configured to 32, 64 or 128 bits data width. The front-side bus and the backend bus
must be clocked with the same clock. Figure 217 shows a system block diagram for the cache control-
ler.

77.2 Configuration

The Level-2 cache can be configured as direct-mapped or multi-way with associativity 2, 3 or 4. The
replacement policy for a multi-way configuration can be configured as: LRU (least-recently-used),
pseudo-random or master-index (where the way to replace is determined by the master index). The
way size is configurable between 1 - 512 KiB with a line size of 32/64 bytes.

77.2.1 Replacement policy

The core can implements three different replacement policies: LRU (least-recently-used), (pseudo-)
random and master-index. The LRU replacement policy is configured as default. With master-index
replacement policy, master 0 would replace way 1, master 1 would replace way 2, and so on. For mas-
ter indexes corresponding to a way number larger than the number of implemented ways, there are
two options to determine which way to replace. One option is to map all these master indexes to a spe-
cific way. This is done by specifying this way in the index-replace field in the control register and
selecting this option in the replacement policy field, also located in the control register. It is not
allowed to select a locked way in the index-replace field. The second option is to replace way = ((mas-
ter index) modulus (number of ways)). This option can be selected in the replacement policy field, but
is only allowed with multi-way associativity 2 or 4.

Figure 217. Block diagram

CPU

Memory

L2C

CPU

Controller

Backend AHB/AXI BUS

Front-side AHB BUS

32, 64, or 128-bit

32, 64 or 128-bit
GRIP, Sep 2018, Version 2018.3 1131 www.cobham.com/gaisler

GRLIB IP Core

77.2.2 Write policy

The cache can be configured to operate as write-through or copy-back cache. Before changing the
write policy to write-through, the cache has to be disabled and flushed (to write back dirty cache lines
to memory). This can be done by setting the Cache disable bit when issuing a flush all command. The
write policy is controlled via the cache control register. More fine-grained control can also be
obtained by enabling the MTRR registers (see text below).

77.2.3 Memory type range registers

The memory type range registers (MTRR) are used to control the cache operation with respect to the
address. Each MTRR can define an area in memory to be uncached, write-through or write-protected.
The MTRR consist of a 14-bit address field, a 14-bit mask and two 2-bit control fields. The address
field is compared to the 14 most significant bits of the cache address, masked by the mask field. If the
unmasked bits are equal to the address, an MTRR hit is declared. The cache operation is then per-
formed according to the control fields (see register descriptions). If no hit is declared or if the MTRR
is disabled, cache operation takes place according to the cache control register. The number of
MTRRs is configurable through the mtrr VHDL generic. When changing the value of any MTRR reg-
ister, cache must be disabled and flushed (This can be done by setting the Cache disable bit when
issue a flush all command).
Note that the write-protection provided via the MTRR registers is enforced even if the cache is dis-
abled.

77.2.4 Cachability

The core uses a VHDL generic CACHED to determine which address range is cachable. Each bit in
this 16-bit value defines the cachability of a 256 Mbyte address block on the AMBA AHB bus. A
value of 16#00F3# will thus define cachable areas in 0 - 0x20000000 and 0x40000000 - 0x80000000.
When the VHDL generic CACHED is 0, the cachable areas is defined by the plug&play information
on the backend bus. When implemented with a AXI backend bus the cachability needs to be defined
with the VHDL generic CACHED. The core can also be configured to use the HPROT signal to over-
ride the cachable area defined by VHDL generic CACHED. A access can only be redefined as non-
cachable by the HPROT signal. See table 1398 for information on how HPROT can change the access
cachability within a cachable address area. The AMBA AHB signal HPROT[3] defines the access
cacheable when active high and the AMBA AHB signal HPROT[2] defines the access bufferable
when active high.

* When the HPROT-Read-Hit-Bypass bit is set in the cache control register this will generate a Mem-
ory access.

Table 1398.Access cachability using HPROT.

HPROT: non-cachable, non-bufferable non-cachable, bufferable cacheable
Read hit Cache access* Cache access Cache access
Read miss Memory access Memory access Cache allocation and Memory access
Write hit Cache and Memory access Cache access Cache access
Write miss Memory access Memory access Cache allocation
GRIP, Sep 2018, Version 2018.3 1132 www.cobham.com/gaisler

GRLIB IP Core

77.2.5 Cache tag entry

Table 1399 show the different fields of the cache tag entry for a cache with set size equal to 1 kbyte.
The number of bits implemented is depending on the cache configuration.

77.2.6 AHB address mapping

The AHB slave interface occupies three AHB address ranges. The first AHB memory bar is used for
memory/cache data access. The address and size of this bar is configured via VHDL generics. The
second AHB memory bar is used for access to configuration registers and the diagnostic interface.
This bar has a configurable address via VHDL generic but always occupies 4 MiB in the AHB
address space. The last AHB memory bar is used to map the ioarea of the backend AHB bus (to access
the plug&play information on that bus, not supported when AXI backend is selected). The address
and size of the this bar is configured via VHDL generics.

77.2.7 Memory protection and Error handling

The ft VHDL generic enables the implementation of the Error Detection And Correction (EDAC)
protection for the data and tag memory. One error can be corrected and two error can be detected with
the use of a (39, 32, 7) BCH code. When implemented, the EDAC functionality can dynamically be
enabled or disabled. Before being enabled the cache should be flushed. The dirty and valid bits fore
each cache line is implemented with TMR. When EDAC error or backend AHB/AXI error or write-
protection hit in a MTRR register is detected the error status register is updated to store the error type.
The address which cause the error is also saved in the error address register. The error types is priori-
tised in the way that a uncorrected EDAC error will overwrite any other previously stored error in the
error status register. In all other cases, the error status register has to be cleared before a new error can
be stored. Each error type (correctable-, uncorrectable EDAC error, write-protection hit, backend
AHB/AXI error) has a pending register bit. When set and this error is unmasked, a interrupt is gener-
ated. When uncorrectable error is detected in the read data the core will respond with a AHB error.
AHB error response can also be enabled for a access that match a stored error in the error status regis-
ter. Error detection is done per cache line. The core also provide a correctable error counter accessible
via the error status register.

Table 1399. L2C Cache tag entry
31 10 9 8 7 6 5 4 0

TAG Valid Dirty RES LRU

31 : 10 Address Tag (TAG) - Contains the address of the data held in the cache line.
9 : 8 Valid bits. When set, the corresponding sub-block of the cache line contains valid data. Valid bit 0

corresponds to the lower 16 bytes sub-block (with offset 1) in the cache line and valid bit 1 corre-
sponds to the upper 16 bytes sub-block (with offset 0) in the cache line.

7 : 6 Dirty bits When set, this sub-block contains modified data.
5 RESERVED
4 : 0 LRU bits
GRIP, Sep 2018, Version 2018.3 1133 www.cobham.com/gaisler

GRLIB IP Core
77.2.8 Scrubber

When EDAC protection is implemented a cache scrubber is enabled. The scrubber is controlled via
two register in the cache configuration interface. To scrub one specific cache line the index and way
of the line is set in the scrub control register. To issue the scrub operation, the pending bit is set to 1.
The scrubber can also be configured to continuously loop through and scrub each cache line by setting
the enabled bit to 1. In this mode, the delay between the scrub operation on each cache line is deter-
mine by the scrub delay register (in clock cycles).

77.2.9 Locked way

One or more ways can be configured to be locked (not replaced). The number of way that should be
locked is configured by the locked-way field in the control register. The way to be locked is starting
with the uppermost way (for a 4-way associative cache way 4 is the first locked way, way 3 the sec-
ond, and so on). After a way is locked, this way has to be flushed with the “way flush” function to
update the tag match the desired locked address. During this “way flush” operation, the data can also
be fetched from memory.

77.2.10 Data priming

Data can be loaded from one or two address ranges. Before triggering the priming operation, the start
and stop address need to be configured. To specify if one or both address ranges should be loaded the
respective enable bit (PSTART0/1.EN) need to be set. To trigger the operation, the pending bit
(PSTART0.P) needs to be set to '1'. If only one address range should be loaded, the first set of priming
register (PSTART0, PSTOP0) should be used. The cache lines are loaded from the start address to the
stop address. When two address ranges should be loaded, one cache line from each area is loaded
before moving to the next line in the address range. If the cache already contains the cache line speci-

Table 1400.Cache action on detected EDAC error

Access/Error type Cache-line not dirty Cache-line dirty
Read, Correctable
Tag error

Tag is corrected before read is handled, Error sta-
tus is updated with a corretable error.

Tag is corrected before read is handled, Error
status is updated with a corretable error.

Read, Uncorrectable
Tag error

Cache-line invalidated before read is handled,
Error status is updated with a corretable error.

Cache-line invalidated before read is handled,
Error status is updated with a uncorrectable
error. Cache data is lost.

Write, Correctable
Tag error

Tag is corrected before write is handed, Error sta-
tus is updated with a corretable error.

Tag is corrected before write is handled, Error
status is updated with a corretable error.

Write, Uncorrect-
able Tag error

Cache-line invalidated before write is handled,
Error status is updated with a correctable error.

Cache-line invalidated before write is handled,
Error status is updated with a uncorrectable
error. Cache data is lost.

Read, Correctable
Data error

Cache-data is correted and updated, Error status
is updated with a correctable error. AHB access
is not affected.

Cache-data is correted and updated, Error sta-
tus is updated with a correctable error. AHB
access is not affected.

Read, Uncorrectable
Data error

Cache-line is invalidated, Error status is updated
with a correctable error. AHB access is termi-
nated with retry.

Cache-line is invalidated, Error status is
updated with a uncorrectable error. AHB
access is terminated with error.

Write (<32-bit), Cor-
rectable Data error

Cache-data is correted and updated, Error status
is updated with a correctable error. AHB access
is not affected.

Cache-data is correted and updated, Error sta-
tus is updated with a correctable error. AHB
access is not affected.

Write (<32-bit),
Uncorrectable Data
error

Cache-line is re-fetched from memory, Error sta-
tus is updated with a correctable error. AHB
access is not affected.

Cache-line is invalidated, Error status is
updated with a uncorrectable error. AHB
access write data and cache data is lost.
GRIP, Sep 2018, Version 2018.3 1134 www.cobham.com/gaisler

GRLIB IP Core

fied to be loaded, the priming operation moves to the next line in the priming address range without
fetching any data from memory but the LRU replacement information is updated.

77.3 Operation

77.3.1 Read

A cachable read access to the core results in a tag lookup to determine if the requested data is located
in the cache memory. For a hit (requested data is in the cache) the data is read from the cache and no
read access is issued to the memory. If the requested data is not in the cache (cache miss), the cache
controller issue a read access to the memory controller to fetch the cache line including the requested
data. The replacement policy determine which cache line in a multi-way configuration that should be
replaced and its tag is updated. If the replaced cache line is modified (dirty) this data is stored in a
write buffer and after the requested data is fetched from memory the replaced cache line is written to
memory.
For a non-cachable read access to the cache, the cache controller can issue a single read access or a
burst read access to fetch the data from memory. The access type is determine by how the cache is
configured regarding hprot support and bypass line fetch in the access control register. The data is
stored in a read buffer and the state of the cache is not modified in any way.
The cache will insert wait-states until the read access is determined to be a cache hit or miss. For a
cache hit the data is then delivered. For a miss the cache can insert wait-states during the memory
fetch or issue a AMBA SPLIT (depending on how the cache is configured). AMBA SPLIT response
is only implemented in version 3 of the core.

77.3.2 Write

A cachable write access to the core results in a tag lookup to determine if the cache line is located in
the cache. For a hit the cache line is updated. No access is issued to the memory for a copy-back con-
figuration. When the core is configured as a write-through cache, each write access is also issued
towards the memory. For a miss, the replacement policy determines which cache line in a multi-way
configuration that should be replaced and updates its tag. If the replaced cache line is dirty, this is
stored in a write buffer to be written back to the memory. The new cache line is updated with the data
from the write access and for a non 128-bit access the rest of the cache line is fetched from memory.
Last (when copy-back policy is used and the replaced cache line was marked dirty) the replaced cache
line is written to memory. When the core is configured as a write-through cache, no cache lines are
marked as dirty and no cache line needs to be written back to memory. Instead the write access is
issued towards the memory as well. A new cache line is allocated on a miss for a cacheable write
access independent of write policy (copy-back or write-through).
For a non-cachable write access to the core, the data is stored in a write buffer and the cache controller
issue single write accesses to write the data to memory. The state of the cache is unmodified during
this access.
The cache can accept a non sub-word write hit access every clock cycle. When the cache is unable to
accept a new write access the cache inserts wait-states or issue a AMBA SPLIT response depending
on how the cache is configured. AMBA SPLIT response is only implemented in version 3 of the core.

77.3.3 Cache flushing

The cache can be flushed by accessing a cache flush register. There is three flushing modes: invalidate
(reset valid bits), write back (write back dirty cache lines to memory, but no invalidation of the cache
content) and flush (write back dirty cache lines to memory and invalidate the cache line). The flush
command can be applied to the entire cache, one way or to only one cache line. The cache line to be
flushed can be addresses in two ways: direct address (specify way and line address) and memory
address (specify which memory address that should be flushed in the cache. The controller will make
a cache lookup for the specified address and on a hit, flush that cache line). When the entire cache is
GRIP, Sep 2018, Version 2018.3 1135 www.cobham.com/gaisler

GRLIB IP Core

flushed the Memory Address field should be set to zero. Invalidate a cache line takes 5 clock cycles. If
the cache line needs to be written back to memory one additional clock cycle is needed plus the mem-
ory write latency. When the whole cache is flushed the invalidation of the first cache line takes 5 clock
cycles, after this one line can be invalidate each clock cycle. When a cache line needs to be written
back to memory this memory access will be stored in a access buffer. If the buffer is full the invalida-
tion of the next cache line is stall until a slot in the buffer has opened up. If the cache also should be
disabled after the flush is complete, it is recommended to set the cache disable bit together with the
flush command instead of writing ‘0’ to the cache enable bit in the cache control register.
Note that after a processor (or any other AHB master) has initiated a flush the processor is not blocked
by the flush unless it writes or requests data from the Level-2 cache. The cache blocks all accesses
(responds with AMBA SPLIT or wait-states depending on cache configuration) until the flush is com-
plete. AMBA SPLIT response is only implemented in version 3 of the core.

77.3.4 Disabling Cache

To be able to safely disable the cache when it is being accessed, the cache need to be disabled and
flushed at the same time. This is accomplished by setting the cache disable bit when issue the flush
command.

77.3.5 Diagnostic cache access

The diagnostic interface can be used for RAM block testing and direct access to the cache tag, cache
data content and EDAC check bits. The read-check-bits field in the error control register selects if
data content or the EDAC check bits should be read out. On writes, the EDAC check bits can be
selected from the data-check-bit or tag-check-bit register. These register can also be XOR:ed with the
correct check bits on a write. See the error control register for how this is done.

77.3.6 Error injection

Except using the diagnostic interface, the EDAC check bits can also be manipulated on a regular
cache access. By setting the xor-check-bit field in the error control register the data EDAC check bits
will be XOR:ed with the data-check-bit register on the next write or the tag EDAC check bits will be
XOR:ed with the tag-check-bit register on the next tag replacement. The tag check bit manipulation is
only done if the tag-check-bit register is not zero. The xor-check-bit is reset on the next tag replace-
ment or data write. Error can also be injected by writing a address (or way, index, offset) together with
the inject bit to the “Error injection” register. This will XOR the check-bits for the specified address
(or cache-line) with the tag-/data-check-bit register depending on the Error injection configuration
register. If the specified address in not cached, the cache content will be unchanged.

77.3.7 AHB slave interface

The slave interface is the core’s connection to the CPU and the level 1 cache. The core can accept 8-
bit(byte), 16-bit(half word), 32-bit(word), 64-bit, and 128-bit single accesses and also 32-bit, 64-bit,
and 128-bit burst accesses. For an access during a flush operation, the core will respond with a AHB
SPLIT response or with wait-states. For a uncorrectable error or a backend AHB error on a read
access, the core will respond with a AMBA ERROR response. AMBA SPLIT response is only imple-
mented in version 3 of the core.

77.3.8 AHB master interface

The master interface is the core’s connection to the memory controller. During cache line fetch, the
controller can issue either a 32-bit, 64-bit or 128-bit burst access. For a non cachable access and in
write-through mode the core can also issue a 8-bit(byte), 16-bit(half word), 32-bit(word), 64-bit, or
128-bit single write access. The bbuswidth VHDL generic controls the maximum bus access size on
the master interface in the “wide-bus” address range. If set to 128 (default), the largest access will be
128-bit. If set to 64, the largest access will be 64-bit. If set to 32, the largest access will be 32-bit. The
GRIP, Sep 2018, Version 2018.3 1136 www.cobham.com/gaisler

GRLIB IP Core

“wide-bus address range is defined by the wbmask VHDL generic. Each bit in this 16-bit value rep-
resents a 256 Mbyte address block on the AMBA AHB bus. The cache will only generate wide
accesses (> 32-bit) to address ranges which wbmask bit is ‘1’. For address ranges which wbmask bit is
‘0’, wide accesses will be translated to 32-bit bursts.
The HBURST value during burst accesses will correspond to SINGLE, INCR, INCR4, INCR8 or
INCR16, depending on burst type and AHB data bus width.

77.3.9 AXI master interface

AXI master interface supports data width of 32, 64, or 128-bit, configured with the GRLIB configura-
tion option AXIDW. The interface supports both AXI3/AXI4 bus interfaces (no AXI4 specific opera-
tion is performed by the master interface). The value of the AXI AxCACHE can be configured via a
configuration register (L2CACCC). When the cache need to fetch a cache line from memory and write a
cache line to memory, both the read and write operation are started at the same time.

77.3.10 Cache status

The cache controller has a status register which provide information on the cache configuration
(multi-way configuration and set size). The core also provides an access counter and a hit counter via
AHB mapped registers. These register can be used to calculate hit rate. The counters increments for
each data access to core (i.e. a burst access is only counted as one access). When writing 0 to the
access counter, the internal access/hit counters is cleared and its value is loaded to the registers acces-
sible via the AHB interface. In wrapping mode both counters will be cleared when the access counter
is wrapping at 0xFFFFFFFF. In shifting mode both counters will be shifted down 16 bits when the
access counter reach 0xFFFFFFFF. In this mode the accessible counter registers is updated automati-
cally when the access counter’s 16 LSB reach the value of 0xFFFF.
The core can also implement a front-side bus usage counter. This counter records every clock cycle
the bus is not in idle state. The registers accessible via the AHB interface is updated in the same way
as for the hit counter registers. Writing 0 to the bus cycle counter register resets the bus usage count-
ers. This counter also has a wrapping and shifting mode similar to the hit counter.
In addition to the counter registers, the core also provide output signals for: cache hit, cache miss, and
cache access. These signals can be connected to external statistic counters.

77.3.11 Endianness

The core is designed for big-endian systems.
GRIP, Sep 2018, Version 2018.3 1137 www.cobham.com/gaisler

GRLIB IP Core

77.4 Registers

The core is configured via registers mapped into the AHB memory address space. Only 32-bit single-
accesses to the registers are supported.

Table 1401.L2C: AHB registers

AHB address offset Register
0x00 Control register
0x04 Status register
0x08 Flush (Memory address)
0x0C Flush (set, index)
0x10 Access counter
0x14 Hit counter
0x18 Bus cycle counter
0x1C Bus usage counter
0x20 Error status/control
0x24 Error address
0x28 TAG-check-bit
0x2C Data-check-bit
0x30 Scrub Control/Status
0x34 Scrub Delay
GRIP, Sep 2018, Version 2018.3 1138 www.cobham.com/gaisler

GRLIB IP Core
0x38 Error injection
0x3C Access control (Only available in version 3 of the core)
0x40 Priming start (first area)
0x44 Priming stop (first area)
0x48 Priming start (second area)
0x4C Priming stop (second area)
0x50 Error handling / injection configuration
0x80 - 0xFC MTRR registers
0x80000 - 0xFFFFC Diagnostic interface (Tag)

0x80000: Tag 1, way-1
0x80004: Tag 1, way-2
0x80008: Tag 1, way-3
0x8000C: Tag 1, way-4
0x80010: Tag check-bits way-0,1,2,3 (Read only)
 bit[31] = RESERVED
 bit[30:24] = check-bits for way-1.
 bit[23] = RESERVED
 bit[22:16] = check-bits for way-2.
 bit[15] = RESERVED
 bit[14:8] = check-bits for way-3.
 bit[7] = RESERVED
 bit[6:0] = check-bits for way-4.
0x80020: Tag 2, way-1
0x80024: ...

 0x200000 - 0x3FFFFC Diagnostic interface (Data)
0x200000 - 0x27FFFC: Data or check-bits way-1
0x280000 - 0x2FFFFF: Data or check-bits way-2
0x300000 - 0x27FFFC: Data or check-bits way-3
0x380000 - 0x3FFFFF: Data or check-bits way-4
When check-bits are read out:
Only 32-word at offset 0x0, 0x10, 0x20,... are valid check-bits.
bit[31] = RESERVED
bit[30:24] = check-bits for data word at offset 0x0.
bit[23] = RESERVED
bit[22:16] = check-bits for data word at offset 0x4.
bit[15] = RESERVED
bit[14:8] = check-bits for data word at offset 0x8.
bit[7] = RESERVED
bit[6:0] = check-bits for data word at offset 0xc.

Table 1401.L2C: AHB registers

AHB address offset Register
GRIP, Sep 2018, Version 2018.3 1139 www.cobham.com/gaisler

GRLIB IP Core

77.4.1 Control Register

Table 1402.0x00 - L2CC - L2C Control register

77.4.2 Status Register

31 29 28 27 19 18 16 15 12 11 8 7 6 5 4 3 2 1 0

EN ED
AC

REPL RESERVED BBS INDEX-WAY LOCK RES HP
RH
B

HP
B

UC HC WP HP

0 0 0 0 - 0 0 0 0 0 0 0 0 0

rw rw rw r rw rw rw r rw rw rw rw rw rw

31 Cache enable (EN) - When set, the cache controller is enabled. When disabled, the cache is
bypassed.

30 EDAC enable (EDAC)
29: 28 Replacement policy (REPL) -

00: LRU
01: (pseudo-) random
10: Master-index using index-replace field
11: Master-index using the modulus function

27: 19 RESERVED
18: 16 Backend bus size configuration (BBS) -

“100”: Configure backend bus size to 128-bit.
“011”: Configure backend bus size to 64-bit.
“010”: Configure backend bus size to 32-bit.
“000”: No configuration update is done.
Other values: not supported.

15: 12 Master-index replacement (INDEX-WAY) - Way to replace when Master-index replacement policy
and master index is larger than number of ways in the cache.

11: 8 Locked ways (LOCK) - Number of locked ways.
7: 6 RESERVED
5 HPROT read hit bypass (HPRHB) - When set, a non-cacheable and non-bufferable read access will

bypass the cache on a cache hit and return data from memory. Only used with HPROT support.
4 HPROT bufferable (HPB) - When HPROT is used to determine cachability and this bit is set, all

accesses is marked bufferable.
3 Bus usage status mode (UC) - 0 = wrapping mode, 1 = shifting mode.
2 Hit rate status mode (HC) - 0 = wrapping mode, 1 = shifting mode.
1 Write policy (WP) - When set, the cache controller uses the write-through write policy. When not

set, the write policy is copy-back.
0 HPROT enable (HP) - When set, use HPROT to determine cachability.

Table 1403.0x04 - L2CS - L2C Status register
31 25 24 23 22 21 16 15 13 12 2 1 0

RESERVED DP LS AT MP MTRR BBUS-W WAY-SIZE WAY

0 * * * * * 1 * *

r r r r r r r r r

31: 26 RESERVED
25 Data priming (DP) - 1 = supported.
24 Cache line size (LS) - 1 = 64 bytes, 0 = 32 bytes.
23 Access time (AT) - Access timing is simulated as if memory protection is implemented
22 Memory protection (MP) - implemented
21: 16 Memory Type Range Registers (MTRR) - Number of MTRR registers implemented
15: 13 Backend bus width (BBUS-W) 1 = 128-bit, 2 = 64-bit, 4 = 32-bit
GRIP, Sep 2018, Version 2018.3 1140 www.cobham.com/gaisler

GRLIB IP Core
12: 2 Cache way size (WAY-SIZE) - Size in kBytes
1: 0 Multi-Way configuration (WAY)

“00“: Direct mapped
“01“: 2-way
“10“: 3-way
“11“: 4-way

Table 1403.0x04 - L2CS - L2C Status register
GRIP, Sep 2018, Version 2018.3 1141 www.cobham.com/gaisler

GRLIB IP Core

77.4.3 Flush (Memory Address) Register

Table 1404.0x08 - L2CFMA - L2C Flush (Memory address) register

77.4.4 Flush (Set, Index) Register

Table 1405.0x0C - L2CFSI - L2C Flush (Set, Index) register

31 5 4 3 2 0

Memory Address (ADDR) R DI FMODE

NR 0 0 0

rw r w rw

31: 5 Memory Address (ADDR) - (For flush all cache lines, this field should be set to zero)
4 RESERVED
3 Cache disable (DI) - Setting this bit to ‘1’ is equal to setting the Cache enable bit to ‘0’ in the Cache

Control register
2: 0 Flush mode (FMODE) -

“001“: Invalidate one line, “010”: Write-back one line, “011“: Invalidate & Write-back one line.
“101“: Invalidate all lines, “110”: Write-back all lines, “111“: Invalidate & Write-back all lines.
Only dirty cache lines are written back to memory.

31 16 10 9 8 7 6 5 4 3 2 1 0

INDEX / TAG FL VB DB R WAY DI WF FMODE

NR 0 0 0 0 0 0 0 0

rw rw rw rw r rw w rw rw

31: 16 Cache line index (INDEX) - used when a specific cache line is flushed
31: 10 (TAG) - used when “way flush” is issued. If a specific cache line is flushed, bit[15:10] should be set

to zero. When a way flush is issued, this field will be used as the TAG for the selected cache way.
9 Fetch Line (FL) - If set to ‘1’ data is fetched form memory when a “way flush” is issued. If a specific

cache line is flushed, this bit should be set to zero
8 Valid bit (VB) - used when “way flush” is issued. If a specific cache line is flushed, this bit should be

set to zero.
7 Dirty bit (DB) - used when “way flush” is issued. If a specific cache line is flushed, this bit should be

set to zero
6 RESERVED
5: 4 Cache way (WAY) -
3 Cache disable (DI) - Setting this bit to ‘1’ is equal to setting the Cache enable bit to ‘0’ in the Cache

Control register.
2 Way-flush (WF) - When set one way is flushed, If a specific cache line should be flushed, this bit

should be set to zero
1: 0 Flush mode (FMODE) -

line flush:
“01“: Invalidate one line
“10”: Write-back one line (if line is dirty)
“11“: Invalidate & Write-back one line (if line is dirty).
way flush:
“01“: Update Valid/Dirty bits according to register bit[8:7] and TAG according to register
bits[31:10]
“10”: Write-back dirty lines to memory
“11“: Update Valid/Dirty bits according to register bits [8:7] and TAG according to register
bits[31:10], and Write-back dirty lines to memory.
GRIP, Sep 2018, Version 2018.3 1142 www.cobham.com/gaisler

GRLIB IP Core

77.4.5

Table 1406.0x10 - L2CACC - Access counter register

Access Counter Register

77.4.6

Table 1407.0x14 - L2CHIT - Hit counter register

Hit Counter Register

77.4.7

Table 1408.0x18 - L2CFSCCNT - Front-side bus cycle counter register

Front-side Bus Cycle Counter Register

77.4.8

Table 1409.0x1C - L2CFSUCNT - Front-side bus usage counter register (address offset 0x1C)

Front-side Bus Usage Counter Register

77.4.9 Error Status/Control

31 0

Access counter

0

wc

31 : 0 Access counter. Write 0 to clear internal access/hit counter and update access/hit counter register.

31 0

Hit counter

0

wc

31 : 0 Hit counter.

31 0

Bus cycle counter

0

wc

31 : 0 Bus cycle counter. Write 0 to clear internal bus cycle/usage counter and update bus cycle/usage
counter register.

31 0

Bus usage counter

0

wc

31 : 0 Bus usage counter.

Table 1410.0x20 - L2CERR - L2CError status/control register
31 28 27 26 24 23 22 21 20 19 18 16 15 12 11 8 7 6 5 4 3 2 1 0

AHB
master
index

S
C
R
U
B

TYPE T
A
G
/
D
A
T
A

C
O
R
/
U
C
O
R

M
U
L
T
I

V
A
L
I
D

D
I
S
E
R
E
S
P

Correctable
error

counter

IRQ
pending

IRQ
mask

Select
CB

Select
TCB

X
C
B

R
C
B

C
O
M
P

R
S
T

NR NR NR NR NR NR NR 0 NR NR 0 0 0 0 0 0 0

r r r r r r r rw r r rw rw rw rw rw rw w

31: 28 AHB master that generated the access
27 Scrub error (SCRUB) - Indicates that the error was trigged by the scrubber.
GRIP, Sep 2018, Version 2018.3 1143 www.cobham.com/gaisler

GRLIB IP Core
26: 24 Access/Error Type: (TYPE) -
000: cache read, 001: cache write, 010: memory fetch, 011: memory write,
100: Write-protection hit, 101: backend read AHB error, 110: backend write AHB error

23 Tag or data Error - 0 tag error, 1: data error
22 Correctable or uncorrectable error - 0: correctable error, 1: uncorrectable error
21 Multiple error (MULTI) - set when multiple errors has been detected.
20 Error status valid (VALID) - register contains valid error status.
19 Disable error responses for uncorrectable EDAC error (DISERESP).
18: 16 Correctable error counter
15: 12 Interrupt pending

bit3: Backend AHB error
bit2: Write-protection hit
bit1: Uncorrectable EDAC error
bit0: Correctable EDAC error

11: 8 Interrupt mask (if set this interrupt is unmasked)
bit3: Backend AHB error
bit2: Write-protection hit
bit1: Uncorrectable EDAC error
bit0: Correctable EDAC error

7: 6 Selects (CB) - data-check-bits for diagnostic data write:
00: use generated check-bits
01: use check-bits in the data-check-bit register
10: XOR check-bits with the data-check-bit register
11: use generated check-bits

5: 4 Selects (TCB) - tag-check-bits for diagnostic tag write:
00: use generated check-bits
01: use check-bits in the tag-check-bit register
10: XOR check-bits with the tag-check-bit register
11: use generated check-bits

3 Xor check-bits (XOR) - If set, the check-bits for the next data write or tag replace will be XOR:ed
withe the check-bit register. Default value is 0.

2 Read check-bits (RCB) - If set, a diagnostic read to the cache data area will return the check-bits
related to that data.When this bit is set, check bits for the data at offset 0x0 - 0xc can be read at offset
0x0, the check bits for data at offset 0x10 - 0x1c can be read at offset 0x10, ...

1 Compare error status (COMP) - If set, a read access matching a uncorrectable error stored in the
error status register will generate a AHB error response. Default value is 0.

0 Resets (RST) - clear the status register to be able to store a new error. After power up the status reg-
ister needs to be cleared before any valid data can be read out.

Table 1410.0x20 - L2CERR - L2CError status/control register
GRIP, Sep 2018, Version 2018.3 1144 www.cobham.com/gaisler

GRLIB IP Core

77.4.10

Table 1411.0x24 - L2CERRA - L2C Error address register

Error Address Register

77.4.11

Table 1412.0x28 - L2CTCB - L2C TAG-Check-Bits register

Tag-check-bit Register

77.4.12

Table 1413.0x2C - L2CCB - L2C Data-Check-Bits register

Data-check-bit Register

77.4.13 Scrub Control/Status Register

Table 1414.0x30 - L2CSCRUB - L2C Scrub control/status register

31 0

Error address (EADDR)

NR

r

31 : 0 Error address (EADDR)

31 7 6 0

RESERVED TCB

0 0

r rw

31 : 7 RESERVED
6 : 0 TAG Check-bits (TCB) - Check-bits which can be selected by the “Select check-bit“ field in the

error status/control register for TAG updates

31 28 27 0

RESERVED DCB

0 0

r rw

31 : 28 RESERVED
27 : 0 Data Check-bits (DCB) - Check-bits which can be selected by the “Select check-bit“ field in the

error status/control register for TAG updates

31 16 15 6 5 4 3 2 1 0

INDEX RESERVED WAY RES PE
N

EN

0 0 0 0 0 0

rw r rw r rw rw

31: 16 Scrub Index (INDEX) - Index for the next line scrub operation
15: 6 RESERVED
5: 4 Scrub Way (WAY) - Way for the next line scrub operation
3: 2 RESERVED
1 Scrub Pending (PEN) - Indicates when a line scrub operation is pending. When the scrubber is dis-

abled, writing ‘1’ to this bit scrubs one line.
0 Scrub Enable (EN) - Enables / disables the automatic scrub functionality.
GRIP, Sep 2018, Version 2018.3 1145 www.cobham.com/gaisler

GRLIB IP Core

77.4.14 Scrub Delay Register

Table 1415.0x34 - L2CSDEL - L2C Scrub delay register

77.4.15 Error Injection Register

Table 1416.0x38 - L2CEINJ0 - L2C Error injection register (Mode 0)

Table 1417.0x38 - L2CEINJ1 - L2C Error injection register (Mode 1)

31 16 15 0

RESERVED DEL

0 0

r rw

31: 16 RESERVED
15: 0 Scrub Delay (DEL) - Delay the scrubber waits before issue the next line scrub operation

31 2 1 0

ADDR R INJ

0 0 0

rw r rw

31: 2 Error Inject address (ADDR)
1: RESERVED
0 Inject error (INJ) - Set to ‘1’ to inject a error at “address”.

31 28 27 5 4 2 1 0

WAY INDEX OFFSET R INJ

0 0 0 0 0

rw rw rw r rw

31: 28 Error Inject cache-line way (WAY)
27: 5 Error Injection cache-line Index (INDEX)
4: 2 Error Injection cache-line offset (OFFSET)
1: RESERVED
0 Inject error (INJ) - Set to ‘1’ to inject a error at “address”.
GRIP, Sep 2018, Version 2018.3 1146 www.cobham.com/gaisler

GRLIB IP Core

77.4.16

Table 1418.0x3C - L2CACCC - L2C Access control register

Access control register

77.4.17 Priming start register 0

31 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

AxCACHE R
E
S

D
S
C

SH R
E
S

PS SP
LIT
Q

NH
M

BE
RR

OA
PM

FLI
NE

DB
PF

128
WF

R DB
PW
S

SP
LIT

R

0xFFEE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rw r rw rw r rw rw rw rw rw rw rw rw r rw rw r

31: 16 AXI CACHE configuration (AxCACHE) - (only available when AXI backend bus is implemented)
Bit[31:28]: ARCACHE (used when the cache fetches a cache line from memory)
Bit[27:24]: AWCACHE (used when the cache writes back a cache line to memory)
Bit[23:20]: ARCACHE (used for accesses that bypass the cache and reads from memory)
Bit[19:16]: AWCACHE (used for accesses that bypass the cache and writes to memory)

15 RESERVED
14 Disable cancellation and reissue of scrubber operation (DSC) - When set to ’0’, a write access to the

same index as an ongoing scrubber operation will cancel and reissue the scrubber operation. When
set to ’1’ the scubber operation will complete without detection of the write access. This field is only
available in silicon revision 1.

13 Scrubber hold (SH) - When set to ’1’ the cache will delay any new access until the current scrubber
operation is complete. This field is only available in silicon revision 1.

12 RESERVED
11 Priming statistic (PS) - When set, priming operation is included in the access/hit/miss statistics.
10 SPLIT queue write order (SPLITQ) When set, all write accesses (except locked) will be placed in the

split queue when the split queue is not empty
9 No hit for cache misses (NHM) - When set, the unsplited read access for a read miss will not trig the

access/hit counters.
8 Bit error status (BERR) - When set, the error status signals will represent the actual error detected

rather then if the error could be corrected by refetching data from memory.
7 One access/master (OAPM) - When set, only one ongoing access per master is allowed to enter the

cache. A second access would receive a SPLIT response
6 (FLINE) - When set, a cache line fetched from memory can be replaced before it has been read out

by the requesting master.
5 Disable bypass prefetching (DBPF) - When set, bypass accesses will be performed as single accesses

towards memory.
4 128-bit write line fetch (128WF) - When set, a 128-bit write miss will fetch the rest of the cache

from memory.
3 RESERVED
2 Disable wait-states for discarded bypass data (DBPWS) - When set, split response is given to a

bypass read access which data has been discarded and needs to refetch data from memory.
1 Enabled SPLIT response (SPLIT) - When set the cache will issue a AMBA SPLIT response on

cache miss
0 RESERVED

Table 1419.0x40 - PSTART0 - L2C priming start register
31 5 4 1 0

ADDR RES P EN

0 0 0 0

rw r rw rw

31: 2 Priming start address (ADDR)
4: 2 RESERVED
GRIP, Sep 2018, Version 2018.3 1147 www.cobham.com/gaisler

GRLIB IP Core
1 Priming access pending (P) - To start the priming operation this bit and the priming enable bit need
to be set to '1'.

0 Priming enable (EN) - This indicates that the first area (defined by PSTART0.ADDR to
PSTOP0.ADDR) should be primed.

Table 1419.0x40 - PSTART0 - L2C priming start register
GRIP, Sep 2018, Version 2018.3 1148 www.cobham.com/gaisler

GRLIB IP Core

77.4.18 Priming stop register

Table 1420.0x40 - PSTOP0 - L2C priming stop register

 0

77.4.19 Priming start register

Table 1421.0x48 - PSTART1 - L2C priming start (second area) register

 1

77.4.20 Priming stop register

Table 1422.0x4C - PSTOP1 - L2C priming stop (second area) register

 1

77.4.21 Error Handling / Injection configuration

31 5 4 0

ADDR RES

0 0

rw r

31: 5 Priming stop address (ADDR)
4: 0 RESERVED

31 5 4 1 0

ADDR RES P EN

0 0 0 0

rw r r rw

31: 2 Priming start address (ADDR)
4: 2 RESERVED
1 Priming access pending (P) - This bit is read only and indicates that a priming operation on the sec-

ond priming area is executing.
0 Priming enable (EN) - This indicates that the first area (defined by PSTART1.ADDR to

PSTOP1.ADDR) should be primed.

31 5 4 0

ADDR RES

0 0

rw r

31: 5 Priming stop address (ADDR)
4: 0 RESERVED

Table 1423.0x4C - L2CEINJCFG - L2C injection configuration register
31 11 10 9 8 7 4 3 0

RESERVED E
D
I

T
E
R

I
M
D

RES M PI DT CB

0 0 0 0 0 0 0 0 0

r rw rw rw r rw rw rw rw

31: 11 RESERVED
10 (EDI) - Enable invalidation off cache line with un-correctable data error.

When set to 1 and a un-correctable data error is detected, the cache line will be invalidated (remov-
ing the error form the cache).

9 (TER) - Disable error response on un-correctable TAG error detection.
When set to 0 the access detecting a un-correctable TAG error would generate a AMBA error
response. When set to 1 this access would not generate an error response.
GRIP, Sep 2018, Version 2018.3 1149 www.cobham.com/gaisler

GRLIB IP Core
77.4.22 Memory Type Range Register

Table 1424.0x80-FC - L2CMTRR - L2C Memory type range register

77.5 Core versions

The L2 cache controller exists in several different versions. The latest version is v3 and this is the
default version used in GRLIB. For existing users of version 2 that want to continue with this version,
the GRLIB design Makefile can be modified to add:
DIRSKIP=l2cache/v3
DIRADD=l2cache/v2

Performing the modification above will mean that the scripts will be generated to use version 2 of the
Level-2 cache.

77.6 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x04B. For description of
vendor and device identifier see GRLIB IP Library User’s Manual

77.7 Implementation

77.7.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.

8 (IMD) - Disable index match only after un-correctable TAG error.
When set to 1 the TAG and INDEX are matched against the error address register after a detected un-
correctable TAG error. When set to 0 only the INDEX are matched against the error address register.

7: 4 RESERVED
3 Error Injection Mode (M)

0: (Mode0) Error injection register layout is defined as a address.
1: (Mode1) Error injection register layout is defined as way, index, offset.

2 Prevent Error Injection on error (PI)
0: Ignore already existing error in cache-line
1: Prevent error injection when error exists in cache-line

1 Data/TAG Error injection (DT)
0: Inject error in data
1: Inject error in TAG

0 Check-Bit Error Injection (CB)
0: Inject error in check-bits
1: Inject error in data or TAG

31 18 17 16 15 2 1 0

ADDR ACC MASK WP AC

0 0 0 0 0

rw rw rw rw rw

31: 18 Address field (ADDR) - to be compared to the cache address [31:18]
17: 16 Access field (ACC) - 00: uncached, 01: write-through
15: 2 Address mask (MASK) - Only bits set to 1 will be used during address comparison
1 Write-protection (WP) - 0: disabled, 1: enabled
0 Access control field (AC) -. 0: disabled, 1: enabled

Table 1423.0x4C - L2CEINJCFG - L2C injection configuration register
GRIP, Sep 2018, Version 2018.3 1150 www.cobham.com/gaisler

GRLIB IP Core

The core will use asynchronous reset for all registers if the GRLIB config package setting grlib_asyn-
c_reset_enable is set.

77.7.2 RAM usage

The L2C uses single-port RAM to implement both cache tags and data memory. The tags are imple-
mented using the SYNCRAM core, with the width and depth depending on the cache size configura-
tion. The data memory is implemented using the SYNCRAM_128BW or SYNCRAM_156BW core,
which is a 128-bit or 156-bit wide RAM wrapper with byte enables. The SYNCRAM_156BW is used
when memory protection (EDAC) is implemented. For multi-way caches, each way’s tag is imple-
mented with a separate SYNCRAM block. The data memory can be implemented with separate SYN-
CRAM_128BW/156BW cores, or merged into the same SYNCRAM_128BW/156BW if the ARCH
generic is set to 1. This will reduce the number of SYNCRAM_128BW/156BW core in multi-ways
cache to one. The valid/dirty bits are stored in a SYNCRAM_2PFT core.

77.8 Configuration options

Table 1425 shows the configuration options of the core (VHDL generics).

Table 1425.Configuration options

Generic name Function Allowed range Default
AHB slave interface
hmstndx AHB master index. 0 - NAHBMST-1 0
hslvndx AHB slave index. 0 - NAHBSLV-1 0
haddr ADDR field of the AHB BAR (for data access). 0 - 16#FFF# 16#F00#
hmask MASK field of the AHB BAR. 0 - 16#FFF# 16#F00#
ioaddr ADDR field of the AHB BAR (for register and diagnos-

tic access).
0 - 16#FFF# 16#F00#

AHB master interface
hmstndx AHB master index. 0 - NAHBMST-1 0
bbuswidth Maximum bus width on master AHB interface 32, 64, 128 128
bioaddr ADDR field of the AHB BAR (for backend ioarea).

Appears in the bridge’s slave interface user-defined reg-
ister 1.

0 - 16#FFF# 0

biomask MASK field of the AHB BAR. 0 - 16#FFF# 0
wbmask Wide-bus mask. Each bit in this value represent a

256Mbyte address range. To enabled wide accesses
(>32-bit) to an address range, set the corresponding bit to
‘1’.

0 - 16#FFFF# 16#FFFF#

AXI master interface
axiid AXI ID 0 - 15 0
Cache configuration
memtech The memory technology used for the internal FIFOs. 0 - NTECH 0
cached Fixed cachability mask. 0 - 16#FFFF# 16#0000#
hirq Interrupt line used by the core. 0 - NAHBIRQ-1 0
cen Reset value for cache enable. 1 = cache enabled. 0 - 1 0
hproten Reset value for enabling hprot functionality (Only avail-

able in version 2 of the core)
0 - 1 0

wp Reset value for write-policy: 0 = copy-back, 1 = write-
through (Only available in version 2 of the core)

0 - 1 0

repl Reset value for replacement policy: 0 = LRU, 1 =
pseudo-random (Only available in version 2 of the core)

0 - 1 0
GRIP, Sep 2018, Version 2018.3 1151 www.cobham.com/gaisler

GRLIB IP Core
77.9 Signal descriptions

Table 1426 shows the interface signals of the core (VHDL ports).

ways Number of cache ways 1 - 4 1
waysize Size of each cache way in kBytes 1 - 512 1
linesize Cache line size in bytes 32, 64 32
sbus The number of the AHB bus to which the slave interface

is connected. The value appears in bits [1:0] of the user-
defined register 0 in the slave interface configuration
record and master configuration record.

0-3 0

mbus The number of the AHB bus to which the master inter-
face is connected. The value appears in bits [3:2] of the
user-defined register 0 in the slave interface configura-
tion record and master configuration record.

0-3 1

stat Enables the statistics counters. 0 all counters is disabled.
1 enables the access/hit counter. 2 enables the bus usage
counter in addition to the access/hit counter.

0-2 0

arch Selects between separate (0) or shared (1) RAM in multi-
way configurations (see text below)

0 - 1 0

mtrr Number of MTRR registers 0 - 32 0
edacen Default value for the EDACEN field in the cache control

register
0 - 1 0

rmw Enables Read-Modify-Write for sub-word writes. 0 - 1 0
ft Enables the memory protection (EDAC) implementation

1: Enable generic EDAC protection
2. Enable technology specific EDAC protection. Tech-
nology specific protection is further documented in the
GRLIB-FT User’s Manual (grlib-ft.pdf).

0 - 2 0

fttiming Simulate access timing as if memory protection was
enabled. (Only for prototype testing)

0 - 1 0

Table 1426.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
AHBMI * Input AHB master input signals -
AHBMO * Output AHB master output signals -
AXIMI * Input AXI master input signals -
AXIMO * Output AXI master output signals -
AHBSOV * Input Vector of all AHB slave outputs on the backend

AHB bus.
STO bit[2]: Access

bit[1]: Miss
bit[0]: Hit

Output Statistic output.

*) see GRLIB IP Library User’s Manual.

Table 1425.Configuration options

Generic name Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 1152 www.cobham.com/gaisler

GRLIB IP Core

77.10 Library dependencies

Table 1427 shows the libraries used when instantiating the core (VHDL libraries).

77.11 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.stdlib.all;
use grlib.tech.all;
library gaisler;
use gaisler.l2cache.all;

entity l2c_ex is
 port (
 clk : in std_ulogic;
 rst : in std_ulogic
);
end;
.
.
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi : ahb_mst_in_type;
signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);
signal ahbsi2 : ahb_slv_in_type;
signal ahbso2 : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi2 : ahb_mst_in_type;
signal ahbmo2 : ahb_mst_out_vector := (others => ahbm_none);
signal aximi : ahb_somi_type;
signal aximo : ahb_mosi_type;

architecture rtl of l2c_ex is

begin

(AHB backend instantiation)
...

 l2c0 : l2c
 generic map(hslvidx => 5, hmstidx => 1, cen => 0, haddr => 16#400#, hmask => 16#C00#,
 ioaddr => 16#FF4#, cached => 16#00F3#, repl => 0, ways => 1,
 linesize => 32, waysize => 512, memtech => 0, bbuswidth => 64)
 port map(rst => rst, clk => clk, ahbsi => ahbsi, ahbso => ahbso(5),
 ahbmi => ahbmi2, ahbmo => ahbmo2(1), ahbsov => ahbso2);

...

(AXI backend instantiation)
...

 l2c0 : l2c_axi_be
 generic map(hslvidx => 5, axiid=> 0, cen => 0, haddr => 16#400#, hmask => 16#C00#,
 ioaddr => 16#FF4#, cached => 16#00F3#, repl => 0, ways => 1,
 linesize => 32, waysize => 512, memtech => 0)

Table 1427.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER L2CACHE Component Component declaration
GRIP, Sep 2018, Version 2018.3 1153 www.cobham.com/gaisler

GRLIB IP Core

 port map(rst => rst, clk => clk, ahbsi => ahbsi, ahbso => ahbso(5),
 aximi => aximi, aximo => aximo);

...

end;
GRIP, Sep 2018, Version 2018.3 1154 www.cobham.com/gaisler

GRLIB IP Core

78 L3STAT - LEON3 Statistics Unit

78.1 Overview

The LEON3 Statistics Unit (L3STAT) is used to count events in the LEON3 processor and on the
AHB bus, in order to create performance statistics for various software applications.
L3STAT consists of a configurable number of 32-bit counters, which increment on a certain event.
The counters roll over to zero when reaching their maximum value, but can also be automatically
cleared on reading to facilitate statistics building over longer periods. Each counter has a control reg-
ister where the event type is selected. In multi-processor systems, the control registers also indicates
which particular processor core is monitored. The table 1428 below shows the event types that can be
monitored.
NOTE: L3STAT does currently not support double-clocked processor configurations. The processors
and statistics unit must be run on the same frequency as the AMBA buses for L3STAT to function cor-
rectly.

Table 1428.Event types and IDs

ID Event description
Processor events:
0x00 Instruction cache miss
0x01 Instruction MMU TLB miss
0x02 Instruction cache hold
0x03 Instruction MMU hold
0x08 Data cache (read) miss
0x09 Data MMU TLB miss
0x0A Data cache hold
0x0B Data MMU hold
0x10 Data write buffer hold
0x11 Total instruction count
0x12 Integer instructions
0x13 Floating-point unit instruction count
0x14 Branch prediction miss
0x15 Execution time, excluding debug mode
0x17 AHB utilization (per AHB master) (implementation depedent)
0x18 AHB utilization (total, master/CPU selection is ignored) (implementation dependent)
0x22 Integer branches
0x28 CALL instructions
0x30 Regular type 2 instructions
0x38 LOAD and STORE instructions
0x39 LOAD instructions
0x3A STORE instructions
AHB events (only available if core is connected to a LEON3 Debug Support Unit):
0x40 AHB IDLE cycles.
0x41 AHB BUSY cycles.
0x42 AHB NON-SEQUENTIAL transfers. Filtered on CPU/AHBM if SU(1) = ‘1’
0x43 AHB SEQUENTIAL transfers. Filtered on CPU/AHBM if SU(1) = ‘1’
0x44 AHB read accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x45 AHB write accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
GRIP, Sep 2018, Version 2018.3 1155 www.cobham.com/gaisler

GRLIB IP Core
Note that IDs 0x39 (LOAD instructions) and 0x3A (STORE instructions) will both count all LDST
and SWAP instructions. The sum of events counted for 0x39 and 0x3A may therefore be larger than
the number of events counted with ID 0x38 (LOAD and STORE instructions).
Event 0x00 - 0x3A can be counted of the core has been connected to one or several LEON3 processor
cores. Counting of events 0x40 - 0x5F requires that the core is connected to a LEON3 Debug Support
Unit (DSU). The core’s Counter control registers have a field that shows if the core has been imple-

0x46 AHB byte accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x47 AHB half-word accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x48 AHB word accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x49 AHB double word accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x4A AHB quad word accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x4B AHB eight word accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x4C AHB waitstates. Filtered on CPU/AHBM if SU(1) = ‘1’
0x4D AHB RETRY responses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x4E AHB SPLIT responses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x4F AHB SPLIT delay. Filtered on CPU/AHBM if SU(1) = ‘1’
0x50 AHB bus locked. Filtered on CPU/AHBM if SU(1) = ‘1’
0x51-0x5F Reserved
Implementation specific events:
0x60 - 0x6F External event 0 - 15. Filtered on CPU/AHBM if SU(1) = ‘1’.
AHB events (only available if core is connected to a standalone AHB trace buffer):
0x70 AHB IDLE cycles.
0x71 AHB BUSY cycles. Filtered on CPU/AHBM if SU(1) = ‘1’
0x72 AHB NON-SEQUENTIAL transfers. Filtered on CPU/AHBM if SU(1) = ‘1’
0x73 AHB SEQUENTIAL transfers. Filtered on CPU/AHBM if SU(1) = ‘1’
0x74 AHB read accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x75 AHB write accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x76 AHB byte accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x77 AHB half-word accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x78 AHB word accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x79 AHB double word accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x7A AHB quad word accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x7B AHB eight word accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x7C AHB waitstates. Filtered on CPU/AHBM if SU(1) = ‘1’
0x7D AHB RETRY responses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x7E AHB SPLIT responses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x7F AHB SPLIT delay. Filtered on CPU/AHBM if SU(1) = ‘1’
Events generated from REQ/GNT signals (only available if core has been implemented with VHDL generic
reqsel /=0)
0x80 - 0x8F Active when master selected by CPU/AHBM field has request asserted while grant is

asserted for the master correspoding to the least significant nibble of the event ID. 0x80 is
master 0 grant, 0x81 is master 1 grant, .., and so on.

0x90 - 0x9F Active when master selected by CPU/AHBM field has request asserted while grant is deas-
serted for the master correspoding to the least significant nibble of the event ID. 0x90 is mas-
ter 0 grant, 0x91 is master 1 grant, .., and so on.

Table 1428.Event types and IDs

ID Event description
GRIP, Sep 2018, Version 2018.3 1156 www.cobham.com/gaisler

GRLIB IP Core

mented with this connection. The documentation for the Debug Support Unit contains more informa-
tion on events 0x40 - 0x5F. Please note that the statistical outputs from the DSU may be subject to
AHB trace buffer filters. The same applies to events 0x70 - 0x7F that can come from an AHBTRACE
core.
The core can also be implemented with support for counting up to 15 external events. These events
can come from any source, but should be clocked by a clock which is synchronous with the AMBA
clock used for the L3STAT core.

78.2 Multiple APB interfaces

The core can be implemented with two AMBA APB interfaces. The first APB interface always has
precedence when both interfaces handle write operations to the same address.

78.3 Registers

The L3STAT core is programmed through registers mapped into APB address space.

Note: Revision 0 of this IP core had control registers starting at 0x80, max/latch registers starting at
0x100 and the timestamp register at 0x180. This IP core documentation is valid for revision 1 of the
IP core.

Table 1429. L3STAT counter control register

APB address offset Register
0x00 Counter 0 value register
0x04 Counter 1 value register
4 * n Counter n value register
0x100 Counter 0 control register
0x104 Counter 1 control register
0x100 + (4 * n) Counter n control register
0x200 Counter 0 max/latch register
0x204 Counter 1 max/latch register
0x200 + (4 * n) Counter n max/latch register
0x300 Timestamp register
GRIP, Sep 2018, Version 2018.3 1157 www.cobham.com/gaisler

GRLIB IP Core

78.3.1

Table 1430.0x000+n.4 - CVALn - Counter value register

Counter Value Register

78.3.2

Table 1431.0x100+n.4 - CCTRLn - Counter control register

Counter Control Register

31 0

CVAL

NR

rw

31: 0 Counter value (CVAL) - This register holds the current value of the counter. If the core has been
implemented with support for keeping the maximum count (MC field of Counter control register is
‘1’) and the Counter control register field CD is ‘1’, then the value displayed by this register will be
the maximum counter value reached with the settings in the counter’s control register. Writing to this
register will write both to the counter and, if implemented, the hold register for the maximum
counter value.

31 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 0

NCNT MC IA DS EE AE EL CD SU CL EN EVENT ID CPU/AHBM

* * * * * * NR NR NR NR 0 NR NR

r r r r r r rw rw rw rw rw rw rw

31: 23 Number of counters (NCNT) - Number of implemented counters - 1
Note revision 0 of this core used bits 31:28 to indicate the number of CPUs. This manual applies to
revision 1 of the core.

22 Maximum count (MC) - If this field is ‘1’ then this counter has support for keeping the maximum
count value

21 Internal AHB count (IA) - If this field is ‘1’ the core supports events 0x17 and 0x18
20 DSU support (DS) - If this field is ‘1’ the core supports events 0x40-0x5F
19 External events (EE) - If this field is ‘1’ the core supports external events (events 0x60 - 0x6F)
18 AHBTRACE Events (AE) - If this field is ‘1’ the core supports events 0x70 - 0x7F.
17 Event Level (EL) - The value of this field determines the level where the counter keeps running

when the CD field below has been set to ‘1’. If this field is ‘0’ the counter will count the time
between event assertions. If this field is ‘1’ the counter will count the cycles where the event is
asserted. This field can only be set if the MC field of this register is ‘1’.

16 Count maximum duration (CD) - If this bit is set to ‘1’ the core will save the maximum time the
selected event has been at the level specified by the EL field. This also means that the counter will be
reset when the event is activated or deactivated depending on the value of the EL field.
When this bit is set to ‘1’, the value shown in the counter value register will be the maximum current
value which may be different from the current value of the counter.
This field can only be set if the MC field of this register is ‘1’.

15: 14 Supervisor/User mode filter (SU) - “01” - Only count supervisor mode events, “10” - Only count
user mode events, others values - Count events regardless of user or supervisor mode. This setting
only applies to events 0x0 - 0x3A.
When SU = “1x” only events generated by the CPU/AHB master specified in the CPU/AHBM field
will be counted. This applies to events 0x40 - 0x7F.

: 13 Clear counter on read (CL) - If this bit is set the counter will be cleared when the counter’s value is
read. The register holding the maximum value will also be cleared, if implemented.
If an event occurs in the same cycle as the counter is cleared by a read then the event will not be
counted. The counter latch register can be used to guarantee that no events are lost

12 Enable counter (EN) - Enable counter
11: 4 Event ID to be counted
3: 0 CPU or AHB master to monitor.(CPU/AHBM) - The value of this field does not matter when select-

ing one of the events coming from the Debug Support Unit or one of the external events.
GRIP, Sep 2018, Version 2018.3 1158 www.cobham.com/gaisler

GRLIB IP Core

78.3.3

Table 1432.0x200+4n - CSVALn - Counter max/latch register

Counter max/latch Register

78.3.4

Table 1433.0x300 - TSTAMP - Timestamp register

Timestamp Register

78.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x098. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

78.5 Implementation

78.5.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

31 0

CSVAL

NR

rw*

31: 0 Counter max/latch value (CSVAL) - This register holds the current value of the counter max/latch
register. It is only available for a specific counter If the core has been implemented with support for
keeping the maximum count (MC field of Counter control register is ‘1’).
If the counter control register field CD is ‘1’, then the value displayed by this register will be the
maximum counter value reached with the settings in the counter’s control register.
If the counter control register field CDis ‘0’, then the value displayed by this register is the latched
(saved) counter value. The counter value is saved whenever a write access is made to the core in
address range 0x100 - 0x1FC (all counters are saved simultaneously). If the counter control register
CL field is set, then the current counter value will be cleared when the counter value is saved into
this register.

31 0

TSTAMP

NR

rw*

31: 0 Timestamp (TSTAMP) - Timestamp taken at latch of counters
GRIP, Sep 2018, Version 2018.3 1159 www.cobham.com/gaisler

GRLIB IP Core

78.6 Configuration options

Table 1434 shows the configuration options of the core (VHDL generics).

Table 1434.Configuration options

Generic Function Allowed range Default
pindex Selects which APB select signal (PSEL) will be used to

access the statistical unit
0 to NAPBMAX-1 0

paddr The 12-bit MSB APB address 0 to 16#FFF# 0
pmask The APB address mask. Needs to be set to 16#FFE# if

max/latch registers are enabled (VHDL generic clatch).
0 to 16#FFF# 16#FFF#

ncnt Defines the number of counters 1 to 32 4
ncpu Defines the number of CPUs monitored 1 - 16 1
nmax If this generic is > 0, the core will include functionality

for tracking the longest consecutive time that an event is
active or inactive. The functionality will be available for
the nmax first counters.

0 - 32 0

lahben If this generic is 1, the core makes use of the AHBSI
input for events 0x17 and 0x18, otherwise the AHBSI
input is unused and events 0x17 and 0x18 will never
increment a counter.

0 - 1 0

dsuen If this generic is 1, the core makes use of the DSUO
input for events 0x40 - 0x5F, otherwise the DSUO input
is unused and events 0x40 - 0x5F will never increment a
counter.

0 - 1 0

nextev Defines the number of external events monitored 0 - 16 0
apb2en Enables the second APB port on the core. 0 - 1 0
pindex2 Selects which APB select signal (PSEL) will be used to

access the second interface of the statistical unit
0 to NAPBMAX-1 0

paddr2 The 12-bit MSB APB address for second interface 0 to 16#FFF# 0
pmask2 The APB address mask for second interface 0 to 16#FFF# 16#FFF#
astaten If this generic is 1, the core makes use of the ASTAT

input for events 0x70 - 0x7F, otherwise the ASTAT input
is unused and events 0x70 - 0x7F will never increment a
counter.

0 - 1 0

selreq Support STATI.REQ/SEL events. If selreq is nonzero
then the value+1 defines the number of monitored sel/req
signals.

0 - 15 0

clatch Include support for counter max/latch registers and time-
stamp.

0 - 1 0

forcer0 For core to revision 0. If this generic is set to 1 then the
maximum number of supported counters is 32 and the
register address offsets and layout of the control register
changes to comply to revision 0 of the IP core.

0 - 1 0
GRIP, Sep 2018, Version 2018.3 1160 www.cobham.com/gaisler

GRLIB IP Core

78.7 Signal descriptions

Table 1435 shows the interface signals of the core (VHDL ports).

78.8 Library dependencies

Table 1436 shows libraries used when instantiating the core (VHDL libraries).

78.9 Component declaration

The core has the following component declaration.

library gaisler;
use gaisler.leon3.all;

entity l3stat is
 generic (
 pindex : integer := 0;
 paddr : integer := 0;
 pmask : integer := 16#fff#;
 ncnt : integer := 4;
 ncpu : integer := 1
);
 port (
 rstn : in std_ulogic;
 clk : in std_ulogic;
 apbi : in apb_slv_in_type;

Table 1435.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
AHBSI * Input AHB slave input signals -
DBGO Input LEON3 debug output signals -
DSUO ASTAT Input DSU3 output signals -
STATI EVENT[15:0] Input Input for 16 user defined events High

ESOURCE
[15:0][3:0]

Input CPU/AHBM for each EVENT -

REQ[15:0] Input Input for 16 user defined request signals High
SEL[15:0] Input Input for 16 user defined select/grant signals -
TIMER[31:0] Input Time stamp value used when VHDL generic

clatch /= 0
-

APB2I * Input Secondary APB slave input signals -
APB2O * Output Secondary APB slave output signals -
ASTAT * Input AHBTRACE output signals -
* see GRLIB IP Library User’s Manual

Table 1436.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER LEON3 Signals, component Signal definitions and component declaration
GRIP, Sep 2018, Version 2018.3 1161 www.cobham.com/gaisler

GRLIB IP Core

 apbo : out apb_slv_out_type;
 ahbsi : in ahb_slv_in_type;
 dbgo : in l3_debug_out_vector(0 to NCPU-1));
end;

This example shows how the core can be instantiated.

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.leon3.all;

begin

l3sgen : if CFG_L3S_ENABLE = 1 generate
 l3stat0 : l3stat
 generic map (pindex => 11, paddr => 11, ncnt => CFG_L3S_CNT, ncpu => CFG_NCPU)
 port map (rstn, clkm, apbi, apbo(11), ahbsi, dbgo);
end generate;
GRIP, Sep 2018, Version 2018.3 1162 www.cobham.com/gaisler

GRLIB IP Core

79 L4STAT - LEON4 Statistics Unit

79.1 Overview

The LEON4 Statistics Unit (L4STAT) is used count events in the LEON4 processor and on the AHB
bus, in order to create performance statistics for various software applications.
L4STAT consists of a configurable number of 32-bit counters, which increment on a certain event.
The counters roll over to zero when reaching their maximum value, but can also be automatically
cleared on reading to facilitate statistics building over longer periods. Each counter has a control reg-
ister where the event type is selected. In multi-processor systems, the control registers also indicates
which particular processor core is monitored. The table 1437 below shows the event types that can be
monitored.
NOTE: L4STAT does currently not support double-clocked processor configurations. The processors
and statistics unit must be run on the same frequency as the AMBA buses for L4STAT to function cor-
rectly.

Table 1437.Event types and IDs

ID Event description
Processor events:
0x00 Instruction cache miss
0x01 Instruction MMU TLB miss
0x02 Instruction cache hold
0x03 Instruction MMU hold
0x08 Data cache (read) miss
0x09 Data MMU TLB miss
0x0A Data cache hold
0x0B Data MMU hold
0x10 Data write buffer hold
0x11 Total instruction count
0x12 Integer instructions
0x13 Floating-point unit instruction count
0x14 Branch prediction miss
0x15 Execution time, excluding debug mode
0x17 AHB utilization (per AHB master) (implementation depedent)
0x18 AHB utilization (total, master/CPU selection is ignored) (implementation dependent)
0x22 Integer branches
0x28 CALL instructions
0x30 Regular type 2 instructions
0x38 LOAD and STORE instructions
0x39 LOAD instructions
0x3A STORE instructions
AHB events (only available if core is connected to a LEON4 Debug Support Unit):
0x40 AHB IDLE cycles. Filtered on CPU/AHBM if SU(1) = ‘1’
0x41 AHB BUSY cycles. Filtered on CPU/AHBM if SU(1) = ‘1’
0x42 AHB NON-SEQUENTIAL transfers. Filtered on CPU/AHBM if SU(1) = ‘1’
0x43 AHB SEQUENTIAL transfers. Filtered on CPU/AHBM if SU(1) = ‘1’
0x44 AHB read accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x45 AHB write accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
GRIP, Sep 2018, Version 2018.3 1163 www.cobham.com/gaisler

GRLIB IP Core
Note that IDs 0x39 (LOAD instructions) and 0x3A (STORE instructions) will both count all LDST
and SWAP instructions. The sum of events counted for 0x39 and 0x3A may therefore be larger than
the number of events counted with ID 0x38 (LOAD and STORE instructions).
Event 0x00 - 0x3A can be counted of the core has been connected to one or several LEON4 processor
cores. Counting of events 0x40 - 0x5F requires that the core is connected to a LEON4 Debug Support
Unit (DSU). The core’s Counter control registers have a field that shows if the core has been imple-

0x46 AHB byte accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x47 AHB half-word accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x48 AHB word accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x49 AHB double word accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x4A AHB quad word accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x4B AHB eight word accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x4C AHB waitstates. Filtered on CPU/AHBM if SU(1) = ‘1’
0x4D AHB RETRY responses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x4E AHB SPLIT responses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x4F AHB SPLIT delay. Filtered on CPU/AHBM if SU(1) = ‘1’
0x50 AHB bus locked. Filtered on CPU/AHBM if SU(1) = ‘1’
0x51-0x5F Reserved
Implementation specific events:
0x60 - 0x6F External event 0 - 15. Filtered on CPU/AHBM if SU(1) = ‘1’.
AHB events (only available if core is connected to a standalone AHB trace buffer):
0x70 AHB IDLE cycles. Filtered on CPU/AHBM if SU(1) = ‘1’
0x71 AHB BUSY cycles. Filtered on CPU/AHBM if SU(1) = ‘1’
0x72 AHB NON-SEQUENTIAL transfers. Filtered on CPU/AHBM if SU(1) = ‘1’
0x73 AHB SEQUENTIAL transfers. Filtered on CPU/AHBM if SU(1) = ‘1’
0x74 AHB read accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x75 AHB write accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x76 AHB byte accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x77 AHB half-word accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x78 AHB word accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x79 AHB double word accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x7A AHB quad word accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x7B AHB eight word accesses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x7C AHB waitstates. Filtered on CPU/AHBM if SU(1) = ‘1’
0x7D AHB RETRY responses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x7E AHB SPLIT responses. Filtered on CPU/AHBM if SU(1) = ‘1’
0x7F AHB SPLIT delay. Filtered on CPU/AHBM if SU(1) = ‘1’
Events generated from REQ/GNT signals (only available if core has been implemented with VHDL generic
reqsel /=0)
0x80 - 0x8F Active when master selected by CPU/AHBM field has request asserted while grant is

asserted for the master correspoding to the least significant nibble of the event ID. 0x80 is
master 0 grant, 0x81 is master 1 grant, .., and so on.

0x90 - 0x9F Active when master selected by CPU/AHBM field has request asserted while grant is deas-
serted for the master correspoding to the least significant nibble of the event ID. 0x90 is mas-
ter 0 grant, 0x91 is master 1 grant, .., and so on.

Table 1437.Event types and IDs

ID Event description
GRIP, Sep 2018, Version 2018.3 1164 www.cobham.com/gaisler

GRLIB IP Core

mented with this connection. The documentation for the Debug Support Unit contains more informa-
tion on events 0x40 - 0x5F. Please note that the statistical outputs from the DSU may be subject to
AHB trace buffer filters. The same applies to events 0x70 - 0x7F that can come from an AHBTRACE
core.
The core can also be implemented with support for counting up to 15 external events. These events
can come from any source, but should be clocked by a clock which is synchronous with the AMBA
clock used for the L4STAT core.

79.2 Multiple APB interfaces

The core can be implemented with two AMBA APB interfaces. The first APB interface always has
precedence when both interfaces handle write operations to the same address.

79.3 Registers

The L4STAT core is programmed through registers mapped into APB address space.

Note: Revision 0 of this IP core had control registers starting at 0x80, max/latch registers starting at
0x100 and the timestamp register at 0x180. This IP core documentation is valid for revision 1 of the
IP core.

Table 1438. L4STAT counter control register

APB address offset Register
0x00 Counter 0 value register
0x04 Counter 1 value register
4 * n Counter n value register
0x100 Counter 0 control register
0x104 Counter 1 control register
0x100 + (4 * n) Counter n control register
0x200 Counter 0 max/latch register
0x204 Counter 1 max/latch register
0x200 + (4 * n) Counter n max/latch register
0x300 Timestamp register
GRIP, Sep 2018, Version 2018.3 1165 www.cobham.com/gaisler

GRLIB IP Core

79.3.1

Table 1439.0x000+n.4 - CVALn - Counter value register

Counter Value Register

79.3.2

Table 1440.0x100+n.4 - CCTRLn - Counter control register

Counter Control Register

31 0

CVAL

NR

rw

31: 0 Counter value (CVAL) - This register holds the current value of the counter. If the core has been
implemented with support for keeping the maximum count (MC field of Counter control register is
‘1’) and the Counter control register field CD is ‘1’, then the value displayed by this register will be
the maximum counter value reached with the settings in the counter’s control register. Writing to this
register will write both to the counter and, if implemented, the hold register for the maximum
counter value.

31 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 0

NCNT MC IA DS EE AE EL CD SU CL EN EVENT ID CPU/AHBM

* * * * * * NR NR NR NR 0 NR NR

r r r r r r rw rw rw rw rw rw rw

31: 23 Number of counters (NCNT) - Number of implemented counters - 1
Note revision 0 of this core used bits 31:28 to indicate the number of CPUs. This manual applies to
revision 1 of the core.

22 Maximum count (MC) - If this field is ‘1’ then this counter has support for keeping the maximum
count value

21 Internal AHB count (IA) - If this field is ‘1’ the core supports events 0x17 and 0x18
20 DSU support (DS) - If this field is ‘1’ the core supports events 0x40-0x5F
19 External events (EE) - If this field is ‘1’ the core supports external events (events 0x60 - 0x6F)
18 AHBTRACE Events (AE) - If this field is ‘1’ the core supports events 0x70 - 0x7F.
17 Event Level (EL) - The value of this field determines the level where the counter keeps running

when the CD field below has been set to ‘1’. If this field is ‘0’ the counter will count the time
between event assertions. If this field is ‘1’ the counter will count the cycles where the event is
asserted. This field can only be set if the MC field of this register is ‘1’.

16 Count maximum duration (CD) - If this bit is set to ‘1’ the core will save the maximum time the
selected event has been at the level specified by the EL field. This also means that the counter will be
reset when the event is activated or deactivated depending on the value of the EL field.
When this bit is set to ‘1’, the value shown in the counter value register will be the maximum current
value which may be different from the current value of the counter.
This field can only be set if the MC field of this register is ‘1’.

15: 14 Supervisor/User mode filter (SU) - “01” - Only count supervisor mode events, “10” - Only count
user mode events, others values - Count events regardless of user or supervisor mode. This setting
only applies to events 0x0 - 0x3A.
When SU = “1x” only events generated by the CPU/AHB master specified in the CPU/AHBM field
will be counted. This applies to events 0x40 - 0x7F

: 13 Clear counter on read (CL) - If this bit is set the counter will be cleared when the counter’s value is
read. The register holding the maximum value will also be cleared, if implemented.
If an event occurs in the same cycle as the counter is cleared by a read then the event will not be
counted. The counter latch register can be used to guarantee that no events are lost.

12 Enable counter (EN) - Enable counter
11: 4 Event ID to be counted
3: 0 CPU or AHB master to monitor.(CPU/AHBM) - The value of this field does not matter when select-

ing one of the events coming from the Debug Support Unit or one of the external events.
GRIP, Sep 2018, Version 2018.3 1166 www.cobham.com/gaisler

GRLIB IP Core

79.3.3

Table 1441.0x200+4n - CSVALn - Counter max/latch register

Counter Max/Latch Register

79.3.4

Table 1442.0x300 - TSTAMP - Timestamp register

Timestamp Register

79.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x047. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

79.5 Implementation

79.5.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

31 0

CSVAL

NR

rw*

31: 0 Counter max/latch value (CSVAL) - This register holds the current value of the counter max/latch
register. It is only available for a specific counter If the core has been implemented with support for
keeping the maximum count (MC field of Counter control register is ‘1’).
If the counter control register field CD is ‘1’, then the value displayed by this register will be the
maximum counter value reached with the settings in the counter’s control register.
If the counter control register field CDis ‘0’, then the value displayed by this register is the latched
(saved) counter value. The counter value is saved whenever a write access is made to the core in
address range 0x100 - 0x1FC (all counters are saved simultaneously). If the counter control register
CL field is set, then the current counter value will be cleared when the counter value is saved into
this register.

31 0

TSTAMP

NR

rw*

31: 0 Timestamp (TSTAMP) - Timestamp taken at latch of counters
GRIP, Sep 2018, Version 2018.3 1167 www.cobham.com/gaisler

GRLIB IP Core

79.6 Configuration options

Table 1443 shows the configuration options of the core (VHDL generics).

Table 1443.Configuration options

Generic Function Allowed range Default
pindex Selects which APB select signal (PSEL) will be used to

access the statistical unit
0 to NAPBMAX-1 0

paddr The 12-bit MSB APB address 0 to 16#FFF# 0
pmask The APB address mask. Needs to be set to 16#FFE# if

max/latch registers are enabled (VHDL generic clatch).
0 to 16#FFF# 16#FFF#

ncnt Defines the number of counters 1 to 32 4
ncpu Defines the number of CPUs monitored 1 - 16 1
nmax If this generic is > 0, the core will include functionality

for tracking the longest consecutive time that an event is
active or inactive. The functionality will be available for
the nmax first counters.

0 - 32 0

lahben If this generic is 1, the core makes use of the AHBSI
input for events 0x17 and 0x18, otherwise the AHBSI
input is unused and events 0x17 and 0x18 will never
increment a counter.

0 - 1 0

dsuen If this generic is 1, the core makes use of the DSUO
input for events 0x40 - 0x5F, otherwise the DSUO input
is unused and events 0x40 - 0x5F will never increment a
counter.

0 - 1 0

nextev Defines the number of external events monitored 0 - 16 0
apb2en Enables the second APB port on the core. 0 - 1 0
pindex2 Selects which APB select signal (PSEL) will be used to

access the second interface of the statistical unit
0 to NAPBMAX-1 0

paddr2 The 12-bit MSB APB address for second interface 0 to 16#FFF# 0
pmask2 The APB address mask for second interface 0 to 16#FFF# 16#FFF#
astaten If this generic is 1, the core makes use of the ASTAT

input for events 0x70 - 0x7F, otherwise the ASTAT input
is unused and events 0x70 - 0x7F will never increment a
counter.

0 - 1 0

selreq Support STATI.REQ/SEL events. If selreq is nonzero
then the value+1 defines the number of monitored sel/req
signals.

0 - 15 0

clatch Include support for counter max/latch registers and time-
stamp.

0 - 1 0

forcer0 For core to revision 0. If this generic is set to 1 then the
maximum number of supported counters is 32 and the
register address offsets and layout of the control register
changes to comply to revision 0 of the IP core.

0 - 1 0
GRIP, Sep 2018, Version 2018.3 1168 www.cobham.com/gaisler

GRLIB IP Core

79.7 Signal descriptions

Table 1444 shows the interface signals of the core (VHDL ports).

79.8 Library dependencies

Table 1445 shows libraries used when instantiating the core (VHDL libraries).

79.9 Component declaration

The core has the following component declaration.

library gaisler;
use gaisler.leon3.all;
use gausler.leon4.all;

entity l4stat is
 generic (
 pindex : integer := 0;
 paddr : integer := 0;
 pmask : integer := 16#fff#;
 ncnt : integer := 4;
 ncpu : integer := 1
);
 port (
 rstn : in std_ulogic;
 clk : in std_ulogic;

Table 1444.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
AHBSI * Input AHB slave input signals -
DBGO Input LEON4 debug output signals -
DSUO ASTAT Input DSU4 output signals -
STATI EVENT[15:0] Input Input for 16 user defined events High

ESOURCE[3:0] Input CPU/AHBM for each EVENT -
REQ[15:0] Input Input for 16 user defined request signals High
SEL[15:0] Input Input for 16 user defined select/grant signals -
TIMER[31:0] Input Time stamp value used when VHDL generic

clatch /= 0
-

APB2I * Input Secondary APB slave input signals -
APB2O * Output Secondary APB slave output signals -
ASTAT * Input AHBTRACE output signals -
* see GRLIB IP Library User’s Manual

Table 1445.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER LEON3 Signals Signal definitions
GAISLER LEON4 Signals, component Component declaration
GRIP, Sep 2018, Version 2018.3 1169 www.cobham.com/gaisler

GRLIB IP Core

 apbi : in apb_slv_in_type;
 apbo : out apb_slv_out_type;
 ahbsi : in ahb_slv_in_type;
 dbgo : in l4_debug_out_vector(0 to NCPU-1));
end;

This example shows how the core can be instantiated.

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.leon4.all;

begin

l4sgen : if CFG_L4S_ENABLE = 1 generate
 l4stat0 : l4stat
 generic map (pindex => 11, paddr => 11, ncnt => CFG_L4S_CNT, ncpu => CFG_NCPU)
 port map (rstn, clkm, apbi, apbo(11), ahbsi, dbgo);
end generate;
GRIP, Sep 2018, Version 2018.3 1170 www.cobham.com/gaisler

GRLIB IP Core

80 LEON_DSU_STAT_BASE - LEON3/4 SUBSYSTEM

80.1 Overview

LEON_DSU_STAT_BASE is a subsystem component that can be used to instantiate LEON3 or
LEON4 processors together with their respective debug support unit (DSU) and a statistics unit (per-
formance counters).
LEON_DSU_STAT_BASE allows to select between LEON3 and LEON4, with FT options optionally
enabled for both variants. The subsystem also supports sharing one FPU between several processors.
The subsystem makes use of the following interfaces:
• Clock and reset input
• One AHB master output per processor, shared AHB master input and AHB slave inputs for all

processors
• One interrupt controller interface per processor
• One AMBA APB port for, optional, performance counters
• Performance counter inputs
• DSU AHB slave interface and trace buffer inputs
• DSU enable, break, active and timer stop signals
The subsystem does not provide any additional functionality to the LEON, DSU and statistics IP
cores. The subsystem is provided as a convenient way to include the three separate IP cores and to
decrease the amount of top-level code required in designs that can be configured to select between
LEON3 and LEON4.
The subsystem is primarily targeted to FPGA designs and for designs without a clock gate unit. The
design does not propagate scan test settings and memory BIST signals.

80.2 Operation

80.2.1 Operational model

For a subsystem with LEON3, please refer to the documentation for:
• LEON3, section 81
• DSU3, section 24
• L3STAT, section 78
For a subsystem with LEON4, please refer to the documentation for:
• LEON4, section 82
• DSU4, section 25
• L4STAT, section 79

80.2.2 Bus widths

LEON_DSU_STAT_BASE allows to select between LEON3 and LEON4. If LEON4 is selected then
the GRLIB AMBA bus width needs to be set to 64 or 128 bits. This is accomplished by changing the
GRLIB configuration (GRLIB_CONFIG) package. The configuration package is described in GRLIB
IP Library User’s Manual (grlib.pdf). See also section 80.7 for references to example usage of
LEON_DSU_STAT_BASE where the designs select the bus width depending on the selection
between LEON3 and LEON4.
GRIP, Sep 2018, Version 2018.3 1171 www.cobham.com/gaisler

GRLIB IP Core

80.3 Implementation

Please refer to the IP core documentation listed in section 80.2.1.

80.4 Configuration options

Table 1446 shows the configuration options of the core (VHDL generics).

Table 1446.Configuration options

Generic name Function Allowed range Default
leon Selects between LEON3 (3) and LEON4 (4) 0, 3, 4 0
ncpu Number of processors. Propagated to generic with the

same name on LEON and DSU instances.
1 - 16 1

fabtech Propagated to generic with the same name on LEON
instance(s) and (optional) shared GRFPU.

0 - NTECH 0

memtech Propagated to generic with the same name on LEON
instance(s). Propagated to tech generic on DSU. See also
memtechmod generic below

0 - NTECH 0

memtechmod memtech + memtechmod are assigned to the memtech
VHDL generic on the LEON3 and LEON4 instances.
memtech mod can be used to modify memtech to set the
high bits forcing inferred memory for registers files and
MMU memories. See documentation for memtech in
LEON3 and LEON4 documentation.

- 0

nwindows Propagated to generic with same name on LEON
instance(s).

2 - 32 8

dsu Propagated to generic with same name on LEON
instance(s). Selects if DSU core is instantiated in subsys-
tem.

0 - 1 0

fpu Propagated to generic with same name on LEON
instance(s). Corresponding generic on LEON is assigned
with the value: fpu + 32*grfpush

0 - 63 0

v8 Propagated to generic with same name on LEON
instance(s).

0 - 63 0

cp Unused. cp generic on LEON instances is hardcoded to
0.

0 - 1 0

mac Propagated to generic with same name on LEON
instance(s).

0 - 1 0

pclow Propagated to generic with same name on LEON
instance(s).

0 - 2 2

notag Propagated to generic with same name on LEON
instance(s).

0 - 1 0

nwp Propagated to generic with same name on LEON
instance(s).

0 - 4 0

icen Propagated to generic with same name on LEON
instance(s).

0 - 1 0

irepl Propagated to generic with same name on LEON
instance(s).

0 - 2 2

isets Propagated to generic with same name on LEON
instance(s).

1 - 4 4

ilinesize Propagated to generic with same name on LEON
instance(s).

4 - 8 4

isetsize Propagated to generic with same name on LEON
instance(s).

1 - 256 1
GRIP, Sep 2018, Version 2018.3 1172 www.cobham.com/gaisler

GRLIB IP Core
isetlock Propagated to generic with same name on LEON
instance(s).

0 - 1 0

dcen Propagated to generic with same name on LEON
instance(s).

0 - 1 0

drepl Propagated to generic with same name on LEON
instance(s).

0 - 2 2

dsets Propagated to generic with same name on LEON
instance(s).

1 - 4 1

dlinesize Propagated to generic with same name on LEON
instance(s).

4 - 8 4

dsetsize Propagated to generic with same name on LEON
instance(s).

1 - 256 1

dsetlock Propagated to generic with same name on LEON
instance(s).

0 - 1 0

dsnoop Propagated to generic with same name on LEON
instance(s).

0 - 6 0

ilram Propagated to generic with same name on LEON
instance(s).

0 - 1 0

ilramsize Propagated to generic with same name on LEON
instance(s).

1 - 512 1

ilramstart Propagated to generic with same name on LEON
instance(s).

0 - 255 16#8e#

dlram Propagated to generic with same name on LEON
instance(s).

0 - 1 0

dlramsize Propagated to generic with same name on LEON
instance(s).

1 - 512 1

dlramstart Propagated to generic with same name on LEON
instance(s).

0 - 255 16#8f#

mmuen Propagated to generic with same name on LEON
instance(s).

0 - 2 0

itlbnum Propagated to generic with same name on LEON
instance(s).

2 - 64 8

dtlbnum Propagated to generic with same name on LEON
instance(s).

2 - 64 8

tlb_type Propagated to generic with same name on LEON
instance(s).

0 - 3 1

tlb_rep Propagated to generic with same name on LEON
instance(s).

0 - 1 0

lddel Propagated to generic with same name on LEON
instance(s).

1 - 2 2

disas Propagated to generic with same name on LEON
instance(s).

0 - 2 0

tbuf Propagated to generic with same name on LEON
instance(s).

0 - 128 0

pwd Propagated to generic with same name on LEON
instance(s).

0 - 2 2

svt Propagated to generic with same name on LEON
instance(s).

0 - 1 1

rstaddr Propagated to generic with same name on LEON
instance(s).

- 0

Table 1446.Configuration options

Generic name Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 1173 www.cobham.com/gaisler

GRLIB IP Core
smp Propagated to generic with same name on LEON
instance(s).

0 - 31 0

cached Propagated to generic with same name on LEON
instance(s).

- 0

clk2x Double clocking is currently unsupported with
LEON_DSU_STAT_BASE. Leave at 0.

- 0

wbmask Propagated to generic with same name on LEON4
instance(s). Not used for LEON3.

- 0

busw Propagated to generic with same name on LEON4
instance(s). Not used for LEON3.

- 64

netlist Propagated to generic with same name on LEON
instance(s).

- 0

ft Configured fault-tolerance.
For LEON3 this value combines the settings for iuft, fpft
and cmft in the following way: iuft + (cmft) * 8 +
fpft*2048.
For LEON4 the ft value is directly assigned to the
generic by the same name.

- 0

npasi Propagated to generic with same name on LEON
instance(s).

0 - 1 0

pwrpsr Propagated to generic with same name on LEON
instance(s).

0 - 1 0

rex Propagated to generic with same name on LEON
instance(s).

0 - 1 0

altwin Propagated to generic with same name on LEON3
instance(s). Not used for LEON4.

0 - 1 0

ahbpipe Unused - 0
mmupgsz Propagated to generic with same name on LEON

instance(s).
0 - 4 0

grfpush Enabled shared FPU between instantiated LEONs. 0 - 1 0
dsu_hindex Propagated to hindex generic on DSU instance. - 2
dsu_haddr Propagated to haddr generic on DSU instance. - 16#900#
dsu_hmask Propagated to hmask generic on DSU instance. - 16#F00#
atbsz Propagated to kbytes generic on DSU instance. - 4
stat Enables LEON statistics unit corresponding to leon

selection of processor.
0 - 1 0

stat_pindex Propagated to pindex generic on L*STAT instance. - 0
stat_paddr Propagated to paddr generic on L*STAT instance. - 0
stat_pmask Propagated to pmask generic on L*STAT instance. - 16#FFC#
stat_ncnt Propagated to ncnt generic on L*STAT instance. - 1
stat_nmax Propagated to nmax generic on L*STAT instance. - 0

Table 1446.Configuration options

Generic name Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 1174 www.cobham.com/gaisler

GRLIB IP Core

80.5 Signal descriptions

Table 1447 shows the interface signals of the core (VHDL ports).

80.6 Library dependencies

Table 1448 shows the libraries used when instantiating the core (VHDL libraries).

80.7 Instantiation

Examples on how to use the subsystem can be seen in several GRLIB template designs, including:
• designs/leon3-gr-cpci-xc4v

Table 1447.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
AHBCLK N/A Input System clock -
CPUCLK N/A Input System clock -
HCLKEN N/A Input Double-clocking signal. Tie HIGH HIGH
LEON_AHBMI * Input LEON AHB master input signals -
LEON_AHBMO[] * Output LEON AHB master output signals, one per pro-

cessor
-

LEON_AHBSI * Input LEON AHB slave input signals (for snooping) -
LEON_AHBSO * Input LEON AHB slave output signals (for plug&play

decoding)
-

IRQI - Input Interrupt controller interface see LEON docu-
mentation

-
IRQO - Output -
STAT_APBI * Input L*STAT APB slave input signals -
STAT_APBO * Output L*STAT APB slave output signals -
STAT_AHBSI * Input L*STAT AHB slave input signals -
STATI - Input L*STAT input signal. See L3STAT/L4STAT doc-

umentation.
-

DSU_AHBSI * Input DSU AHB slave input signals -
DSU_AHBSO * Output DSU AHB slave output signals -
DSU_TAHBMI * Input DSU AHB master input signals, used for AHB

tracing
-

DSU_TAHBSI * Input DSU AHB slave input signals, used for AHB
tracing

-

SYSI DSU_ENABLE Input Connected to DSU DSUI.ENABLE input HIGH
DSU_BREAK Input Connected to DSU DSUI.BREAK input HIGH

SYSO DSU_ACTIVE Output Connected to DSU DSUO.ACTIVE output HIGH
DSU_TSTOP Output Connected to DSU DSIO.TSTOP output HIGH

* see GRLIB IP Library User’s Manual

Table 1448.Library dependencies

Library Package Imported unit(s) Description
GAISLER SUBSYS Component, signals Component and signal definitions
GAISLER LEON3 Signals Interrupt controller signals
GRLIB AMBA Signals AMBA signal definitions
GRIP, Sep 2018, Version 2018.3 1175 www.cobham.com/gaisler

GRLIB IP Core

• designs/leon3-gr-cpci-xc7k
• designs/leon3-gr-pci-xc5v
• designs/leon3-xilinx-kc705
• designs/leon3-xilinx-ml50x
• designs/leon3-xilinx-ml510
• designs/leon3-xilinx-vc707
Note that the Makefile in these designs also contains special conditions that depend on the selection
between LEON3 and LEON4.
GRIP, Sep 2018, Version 2018.3 1176 www.cobham.com/gaisler

GRLIB IP Core

81 LEON3/FT - High-performance SPARC V8 32-bit Processor

81.1 Overview

LEON3 is a 32-bit processor core conforming to the IEEE-1754 (SPARC V8) architecture. It is
designed for embedded applications, combining high performance with low complexity and low
power consumption.
The LEON3 core has the following main features: 7-stage pipeline with Harvard architecture, sepa-
rate instruction and data caches, memory management unit, hardware multiplier and divider, on-chip
debug support and multi-processor extensions.
The LEON3 processor can be enhanced with fault-tolerance against SEU errors (referred to as
LEON3FT). The fault-tolerance is focused on the protection of on-chip RAM blocks, which are used
to implement IU/FPU register files and the cache memory. Configuring the processor to implement
fault-tolerance enables additional internal registers, register fields and changes the processor’s
plug&play device ID. This documentation describes both the LEON3 and LEON3FT versions of the
processor.

Note: This manual describes the full functionality of the LEON3 core. Through the use of VHDL
generics, parts of the described functionality can be suppressed or modified to generate a smaller or
faster implementation. A comparison with earlier revisions can be found in section 81.13.
Please also refer to the LEON/GRLIB Configuration and Development Guide for recommendations on
system design and LEON3 configuration.

81.1.1 Integer unit

The LEON3 integer unit implements the full SPARC V8 manual, including hardware multiply and
divide instructions. The number of register windows is configurable within the limit of the SPARC
manual (2 - 32), with a default setting of 8. The pipeline consists of 7 stages with a separate instruc-
tion and data cache interface (Harvard architecture).

81.1.2 Cache sub-system

LEON3 has a highly configurable cache system, consisting of a separate instruction and data cache.
Both caches can be configured with 1 - 4 ways, 1 - 256 KiB/way, 16 or 32 bytes per line. The instruc-

Integer pipeline

I-Cache D-Cache

3-Port Register File

AMBA AHB Master (32-bit)

AHB I/F

7-Stage

Interrupt controller

Co-Processor

HW MUL/DIV

IEEE-754 FPU Trace Buffer

Debug port

Interrupt port

Debug support unit

Local DRAMLocal IRAM

Figure 218. LEON3 processor core block diagram

SRMMU DTLBITLB
GRIP, Sep 2018, Version 2018.3 1177 www.cobham.com/gaisler

GRLIB IP Core

tion cache maintains one valid bit per 32-bit word and uses streaming during line-refill to minimize
refill latency. The data cache has one valid bit per cache line, uses write-through policy and imple-
ments a double-word write-buffer. Bus-snooping on the AHB bus can be used to maintain cache
coherency for the data cache. Local scratch pad ram can be added to either of the instruction and data
caches to allow 0-waitstates access instruction or data memory without any AHB bus access.

81.1.3 Floating-point unit and co-processor

The LEON3 integer unit provides interfaces for a floating-point unit (FPU), and a custom co-proces-
sor. Two FPU controllers are available, one for the high-performance GRFPU and one for the
GRFPU-Lite core. The floating-point processors and co-processor execute in parallel with the integer
unit, and does not block the operation unless a data or resource dependency exists. Note that the FPUs
are provided separately.

81.1.4 Memory management unit

A SPARC V8 Reference Memory Management Unit (SRMMU) can optionally be enabled. The
SRMMU implements the full SPARC V8 MMU specification, and provides mapping between multi-
ple 32-bit virtual address spaces and physical memory. A three-level hardware table-walk is imple-
mented, and the MMU can be configured to up to 64 fully associative TLB entries per implemented
TLB.

81.1.5 On-chip debug support

The LEON3 pipeline includes functionality to allow non-intrusive debugging on target hardware. To
aid software debugging, up to four watchpoint registers can be enabled. Each register can cause a
breakpoint trap on an arbitrary instruction or data address range. When the (optional) debug support
unit is attached, the watchpoints can be used to enter debug mode. Through a debug support interface,
full access to all processor registers and caches is provided. The debug interfaces also allows single
stepping, instruction tracing and hardware breakpoint/watchpoint control. An internal trace buffer can
monitor and store executed instructions, which can later be read out via the debug interface.

81.1.6 Interrupt interface

LEON3 supports the SPARC V8 interrupt model with a total of 15 asynchronous interrupts. The inter-
rupt interface provides functionality to both generate and acknowledge interrupts.

81.1.7 AMBA interface

The cache system implements an AMBA AHB master to load and store data to/from the caches. The
interface is compliant with the AMBA-2.0 standard. During line refill, incremental bursts are gener-
ated to optimise the data transfer. The processor also has a snoop AHB slave input port which is used
to monitor the accesses made by other masters, if snooping has been enabled.

81.1.8 Power-down mode

The LEON3 processor core implements a power-down mode, which halts the pipeline and caches
until the next interrupt. The processor supports optional clock gating during the power down period
by providing a clock-enable signal that can be tied to an external clock gate cell, and by providing a
separate clock input for the small part of the CPU that needs to run during power-down to check for
wake-up conditions and maintain cache coherency.

81.1.9 Multi-processor support

LEON3 is designed to be used in multi-processor systems. Each processor has a unique index to allow
processor enumeration. The write-through caches and snooping mechanism guarantees cache coher-
ency in shared-memory systems.
GRIP, Sep 2018, Version 2018.3 1178 www.cobham.com/gaisler

GRLIB IP Core

81.2 LEON3 integer unit

81.2.1 Overview

The LEON3 integer unit implements the integer part of the SPARC V8 instruction set. The implemen-
tation is focused on high performance and low complexity. The LEON3 integer unit has the following
main features:
• 7-stage instruction pipeline
• Separate instruction and data cache interface
• Support for 2 - 32 register windows
• Hardware multiplier with optional 16x16 bit MAC and 40-bit accumulator
• Radix-2 divider (non-restoring)
• Static branch prediction
• Single-vector trapping for reduced code size

Figure 219 shows a block diagram of the integer unit.

Figure 219. LEON3 integer unit datapath diagram

alu/shift mul/div
y

register file

D-cache
address/dataout
datain

32
32

e_op2e_op1

imm

Ywres

result m_y

Decode

Execute

Memory

Write-back

rs2rs1

rd

tbr, wim, psr

30 jmpl address

e pc

30

+1

d_pc

jmpa

f_pc

Add

call/branch address

tbr‘0’

e_pc

m_pc

w_pc

d_inst

e_inst

m_inst

w_inst

Fetch

I-cache
addressdata

Register Access

x_yxres

Exception

x_pcx_inst

r_pcr_inst

y, tbr, wim, psr

r_imm
GRIP, Sep 2018, Version 2018.3 1179 www.cobham.com/gaisler

GRLIB IP Core

81.2.2 Instruction pipeline

The LEON3 integer unit uses a single instruction issue pipeline with 7 stages:
1. FE (Instruction Fetch): If the instruction cache is enabled, the instruction is fetched from the instruction cache.

Otherwise, the fetch is forwarded to the AHB bus. The instruction is valid at the end of this stage and is latched
inside the IU.

2. DE (Decode): The instruction is decoded and the CALL and Branch target addresses are generated.
3. RA (Register access): Operands are read from the register file or from internal data bypasses.
4. EX (Execute): ALU, logical, and shift operations are performed. For memory operations (e.g., LD) and for JMPL/

RETT, the address is generated.
5. ME (Memory): Data cache is read or written at this time.
6. XC (Exception) Traps and interrupts are resolved. For cache reads, the data is aligned as appropriate.
7. WR (Write): The result of any ALU, logical, shift, or cache operations are written back to the register file.

Table 1449 lists the cycles per instruction (assuming cache hit and no icc or load interlock):

1 Assuming instruction in JMPL delay slot takes one cycle. Additional cycles spent in the delay slot will reduce the effective
time of the JMPL to 2 or 1.
2 Multiplication cycle count is 1 clock (1 clock issue rate, 2 clock data latency), for the 32x32 multiplier and 4 clocks (issue
rate, 4/5 clocks data latency for standard/pipelined version) for the 16x16 version.

A number of conditions can extend an instruction’s duration in the pipeline:
Branch interlock: When a conditional branch or trap is performed 1-2 cycles after an instruction
which modifies the condition codes, 1-2 cycles of delay is added to allow the condition to be com-
puted. If static branch prediction is enabled, this extra delay is incurred only if the branch is not taken.
Load delay: When using data resulting on a load shortly after the load, the instruction will be delayed
to satisfy the pipeline’s load delay. The processor pipeline can be configured for one or two cycles
load delay. One cycle load delay will improve performance at a fixed speed but may degrade maxi-
mum clock frequency due to added forwarding paths in the pipeline.
Mul latency: For pipelined multiplier implementations there is 1 cycle extra data latency, accessing
the result immediately after a MUL or MAC will then add one cycle pipeline delay.
Hold cycles: During cache miss processing or when blocking on the store buffer, the pipeline will be
held still until the data is ready, effectively extending the execution time of the instruction causing the
miss by the corresponding number of cycles. Note that since the whole pipeline is held still, hold
cycles will not mask load delay or interlock delays. For instance on a load cache miss followed by a
data-dependent instruction, both hold cycles and load delay will be incurred.
FPU/Coprocessor: The floating-point unit or coprocessor may need to hold the pipeline or extend a
specific instruction. When this is done is specific to the FP/CP unit.

Table 1449.Instruction timing

Instruction Cycles (MMU disabled) Cycles (MMU fast-write) Cycles (MMU slow-write)
JMPL 31 31 31

JMPL,RETT pair 4 4 4
Double load 2 2 2
Single store 2 2 4
Double store 3 3 5
SMUL/UMUL 1/42 1/42 1/4 2

SDIV/UDIV 35 35 35
Taken Trap 5 5 5
Atomic load/store 3 3 5
All other instructions 1 1 1
GRIP, Sep 2018, Version 2018.3 1180 www.cobham.com/gaisler

GRLIB IP Core

81.2.3 SPARC Implementor’s ID

Cobham Gaisler is assigned number 15 (0xF) as SPARC implementor’s identification. This value is
hard-coded into bits 31:28 in the %psr register. The version number for LEON3 is 3, which is hard-
coded in to bits 27:24 of the %psr.

81.2.4 Divide instructions

Full support for SPARC V8 divide instructions is provided (SDIV, UDIV, SDIVCC & UDIVCC). The
divide instructions perform a 64-by-32 bit divide and produce a 32-bit result. Rounding and overflow
detection is performed as defined in the SPARC V8 manual.
The divide instruction is required for full SPARC V8 compliance but can be configured out to save
area using the v8 VHDL generic.

81.2.5 Multiply instructions

The LEON processor supports the SPARC integer multiply instructions UMUL, SMUL UMULCC
and SMULCC. These instructions perform a 32x32-bit integer multiply, producing a 64-bit result.
SMUL and SMULCC performs signed multiply while UMUL and UMULCC performs unsigned
multiply. UMULCC and SMULCC also set the condition codes to reflect the result. The multiply
instructions are performed using a 32x32 pipelined hardware multiplier, or a 16x16 hardware multi-
plier which is iterated four times. To improve the maximum frequency on slow technologies, the
16x16 multiplier can optionally be provided with a pipeline stage.
The multiply instruction is required for full SPARC V8 compliance, but can be configured out to save
area using the v8 VHDL generic.

81.2.6 Multiply and accumulate instructions

To accelerate DSP algorithms, two multiply&accumulate instructions are implemented: UMAC and
SMAC. The UMAC performs an unsigned 16-bit multiply, producing a 32-bit result, and adds the
result to a 40-bit accumulator made up by the 8 lsb bits from the %y register and the %asr18 register.
The least significant 32 bits are also written to the destination register. SMAC works similarly but per-
forms signed multiply and accumulate. The MAC instructions execute in one clock but have two
clocks latency, meaning that one pipeline stall cycle will be inserted if the following instruction uses
the destination register of the MAC as a source operand.
The UMAC and SMAC instructions occupy the unused opcodes op=10,op3=1111110 for UMAC and
op=10,op3=1111111 for SMAC.
Assembler syntax:

umac rs1, reg_imm, rd
smac rs1, reg_imm, rd

Operation:
prod[31:0] = rs1[15:0] * reg_imm[15:0]
result[39:0] = (Y[7:0] & %asr18[31:0]) + prod[31:0]
(Y[7:0] & %asr18[31:0]) = result[39:0]
rd = result[31:0]

%asr18 can be read and written using the RDASR and WRASR instructions.
The MAC instructions are an optional extension to SPARC V8, and enabled using the mac VHDL
generic. The multiply and accumulate support also requires MUL/DIV support enabled by the v8
VHDL generic and can only be used together with a 16x16 multiplier.
GRIP, Sep 2018, Version 2018.3 1181 www.cobham.com/gaisler

GRLIB IP Core

81.2.7 Compare and Swap instruction (CASA)

LEON3 implements the SPARC V9 Compare and Swap Alternative (CASA) instruction. The CASA
instruction operates as described in the SPARC V9 manual. The instruction is privileged but setting
ASI = 0xA (user data) will allow it to be used in user mode.
Software can determine if the processor supports CASA by checking the NOTAG field of the %asr17
register described in section 81.11.2.

81.2.8 Branch prediction

Static branch prediction can be optionally be enabled, and reduces the penalty for branches preceded
by an instruction that modifies the integer condition codes (see section 81.2.2). The predictor uses a
branch-always strategy, and starts fetching instruction from the branch address. On a prediction hit, 1
or 2 clock cycles are saved, and there is no extra penalty incurred for misprediction as long as the
branch target can be fetched from cache. Branch prediction improves the performance with 10 - 20%
on most control-type applications.

81.2.9 Register file data protection

Register file data protection is available for the fault-tolerant version of the LEON3 and is enabled via
a VHDL generic. Register file data protection is described in section 81.9.2.

81.2.10 Hardware breakpoints

The integer unit can be configured to include up to four hardware breakpoints. Each breakpoint con-
sists of a pair of ancillary state registers (see section 81.11.3). Any binary aligned address range can
be watched for instruction or data access, and on a breakpoint hit, trap 0x0B is generated.

81.2.11 Instruction trace buffer

The (optional) instruction trace buffer consists of a circular buffer that stores executed instructions.
This is enabled and accessed only through the processor’s debug port via the Debug Support Unit.
When enabled, the following information is stored in real time, without affecting performance:
• Instruction address and opcode
• Instruction result
• Load/store data and address
• Trap information
• 30-bit time tag
The operation and control of the trace buffer is further described in section 24.4. Note that in multi-
processor systems, each processor has its own trace buffer allowing simultaneous tracing of all
instruction streams.
The size of the trace buffer is configurable from 1 to 64 KiB through the tbuf VHDL generic. If the
value of tbuf is in the 65-128 range, a two-port instruction trace buffer of size tbuf-64 KiB will be
used, allowing contextual reading of instructions while tracing is ongoing.

81.2.12 Processor configuration register

The ancillary state register 17 (%asr17) provides information on how various configuration options
were set during synthesis. This can be used to enhance the performance of software, or to support enu-
meration in multi-processor systems. See section 81.11.2 for layout.
GRIP, Sep 2018, Version 2018.3 1182 www.cobham.com/gaisler

GRLIB IP Core

81.2.13 Exceptions

LEON3 adheres to the general SPARC trap model. The table below shows the implemented traps and
their individual priority. When PSR (processor status register) bit ET=0, an exception trap causes the
processor to halt execution and enter error mode, and the external error signal will then be asserted.

The prioritization follows the SPARC V8 manual in the regular non-FT case. In the FT case there is a
minor difference for r_register_access_error, which has lower priority than window_over/underflow
because the window condition is detected before the register file is accessed on the LEON3FT.
The fp/cp_exception traps may be either deferred or precise depending on implementation, for the
GRFPU and GRFPU-Lite implementations they are deferred.

Table 1450.Trap allocation and priority

Trap TT Pri Description Class
reset 0x00 1 Power-on reset Interrupting
data_store_error 0x2b 2 write buffer error during data store Interrupting
instruction_access_exception 0x01 3 Error or MMU page fault during instruction fetch Precise
privileged_instruction 0x03 4 Execution of privileged instruction in user mode Precise
illegal_instruction 0x02 5 UNIMP or other un-implemented instruction Precise
fp_disabled 0x04 6 FP instruction while FPU disabled Precise
cp_disabled 0x24 6 CP instruction while Co-processor disabled Precise
watchpoint_detected 0x0B 7 Hardware breakpoint match Precise
window_overflow 0x05 8 SAVE into invalid window Precise
window_underflow 0x06 8 RESTORE into invalid window Precise
r_register_access_error 0x20 9 register file EDAC error (LEON3FT only) Interrupting
mem_address_not_aligned 0x07 10 Memory access to un-aligned address Precise
fp_exception 0x08 11 FPU exception Deferred
cp_exception 0x28 11 Co-processor exception Deferred
data_access_exception 0x09 13 Access error during data load, MMU page fault Precise
tag_overflow 0x0A 14 Tagged arithmetic overflow Precise
division_by_zero 0x2A 15 Divide by zero Precise
trap_instruction 0x80 - 0xFF 16 Software trap instruction (TA) Precise
interrupt_level_15 0x1F 17 Asynchronous interrupt 15 Interrupting
interrupt_level_14 0x1E 18 Asynchronous interrupt 14 Interrupting
interrupt_level_13 0x1D 19 Asynchronous interrupt 13 Interrupting
interrupt_level_12 0x1C 20 Asynchronous interrupt 12 Interrupting
interrupt_level_11 0x1B 21 Asynchronous interrupt 11 Interrupting
interrupt_level_10 0x1A 22 Asynchronous interrupt 10 Interrupting
interrupt_level_9 0x19 23 Asynchronous interrupt 9 Interrupting
interrupt_level_8 0x18 24 Asynchronous interrupt 8 Interrupting
interrupt_level_7 0x17 25 Asynchronous interrupt 7 Interrupting
interrupt_level_6 0x16 26 Asynchronous interrupt 6 Interrupting
interrupt_level_5 0x15 27 Asynchronous interrupt 5 Interrupting
interrupt_level_4 0x14 28 Asynchronous interrupt 4 Interrupting
interrupt_level_3 0x13 29 Asynchronous interrupt 3 Interrupting
interrupt_level_2 0x12 30 Asynchronous interrupt 2 Interrupting
interrupt_level_1 0x11 31 Asynchronous interrupt 1 Interrupting
GRIP, Sep 2018, Version 2018.3 1183 www.cobham.com/gaisler

GRLIB IP Core

The data_store_error is delivered as a deferred exception but is non-resumable and therefore classed
as interrupting. Likewise, r_register_access_error is delivered as a precise trap but since it is non-
resumable it is classed as an interrupting trap.

81.2.14 Single vector trapping (SVT)

Single-vector trapping (SVT) is an SPARC V8e option to reduce code size for embedded applications.
When enabled, any taken trap will always jump to the reset trap handler (%tbr.tba + 0). The trap type
will be indicated in %tbr.tt, and must be decoded by the shared trap handler. SVT is enabled by setting
bit 13 in %asr17. The model must also be configured with the VHDL generic svt = 1

81.2.15 Address space identifiers (ASI)

In addition to the address, a SPARC processor also generates an 8-bit address space identifier (ASI),
providing up to 256 separate, 32-bit address spaces. During normal operation, the LEON3 processor
accesses instructions and data using ASI 0x8 - 0xB as defined in the SPARC manual. Using the LDA/
STA instructions, alternative address spaces can be accessed. The different available ASIs are
described in section 81.10.

81.2.16 Partial WRPSR

Partial write %PSR (WRPSR) is a SPARC V8e option that allows WRPSR instructions to only affect
the %PSR.ET field. If the processor has been implemented with support for partial WRPSR and the
WRPSR instruction’s rd field is non-zero, then the WRPSR write will only update ET.
The model must be configured with the VHDL generic pwrpsr = 1 for partial WRPSR to be sup-
ported. Implementations that do not support partial WRPSR will write the full %PSR register regard-
less of the value of the WRPSR instruction’s rd field.

81.2.17 Alternative window pointer

Alternative window pointer (AWP) is a SPARC V8e option intended to reduce interrupt latency by
allowing code that manipulates the current window pointer, mainly window over and underflow han-
dlers and context switching code, to run with traps enabled.
Two bits are added to the PSR register, AW (alternative window) and PAW (previous alternative win-
dow). Also an AWP (alternative window pointer) field is added in an ASR register.
When the AW bit is set, the current register window used for reading/writing non-global registers is
taken from the AWP register field instead of the normal CWP register field, and SAVE and
RESTORE operations modify the AWP field instead of the CWP. SAVE and RESTORE can do not
trigger the window over/underflow traps while AW is set.
When both AW and PAW are zero, the AWP field is kept equal to the CWP field.
When a trap occurs, the value of AW is copied into the PAW field, and AW is cleared. When returning
from a trap using the RETT instruction, the PAW field is copied back into AW. The RETT will not
trigger the window underflow trap if PAW is set regardless of if CWP or AWP point to an invalid win-
dow.

81.2.18 Register file partitioning

Register file partitioning is an optional extension (enabled through the altwin generic) to allow a sub-
range of the register windows to be used as if it was the whole register file. The selected subset is con-
nected in a ring so that the outs of the lowest register window is aliased to the ins of the highest
register window in the range. Other register windows outside this range are not accessible and will be
kept at their old values while the partitioning is enabled.
The partitioning is activated by setting the STWIN and CWPMAX fields of the %asr20 register. This
selects the subset of windows between STWIN and STWIN+CWPMAX so that they map to CWP
GRIP, Sep 2018, Version 2018.3 1184 www.cobham.com/gaisler

GRLIB IP Core

values 0 to CWPMAX. STWIN and CWPMAX must be set so they map to a valid range, CWP-
MAX+STWIN must not exceed the highest possible CWP value supported in the normal case. Also,
for correct operation, CWP must be set to a value between 0 and CWPMAX before accessing any
non-global register.
Writing CWPMAX to (otherwise illegal value) 0 in %asr20 will result in writing only AWP and keep-
ing the values of STWIN and CWPMAX.
A special write-only bit in the %asr20 register can be used to write CWP in the PSR at the same time
as writing the STWIN,CWPMAX,AWP fields, this is intended to allow switching between two regis-
ter file partitions without disabling interrupts.
The WIM register is not managed by the partitioning logic, therefore the lowest bits of the WIM will
map to the partitioned windows. The highest bits of the WIM will be masked to 0 on read to simulate
a smaller register file, however these bits are still writable.

81.2.19 Power-down

The processor can be configured to include a power-down feature to minimize power consumption
during idle periods. The power-down mode is entered by performing a WRASR instruction to
%asr19:
wr %g0, %asr19

During power-down, the pipeline is halted until the next interrupt occurs. Signals inside the processor
pipeline and caches are then static, reducing power consumption from dynamic switching.
Note: %asr19 must always be written with the data value zero to ensure compatiblity with future
extensions.
Note: This instruction must be performed in supervisor mode with interrupts enabled.
When resuming from power-down, the pipeline will be re-filled from the point of power-down and the
first instruction following the WRASR instruction will be executed prior to taking the interrupt trap.
Up to six instructions after the WRASR instruction will be fetched (possibly with cache miss if they
are not in cache) prior to fetching the trap handler.

81.2.20 Processor reset operation

The processor is reset by asserting the RESET input for at least 4 clock cycles. The following table
indicates the reset values of a subset of the registers which are affected by the reset..

By default, the execution will start from address 0. This can be overridden by setting the rstaddr
VHDL generic in the model to a non-zero value. The reset address is always aligned on a 4 KiB
boundary. If rstaddr is set to 16#FFFFF#, then the reset address is taken from the signal IRQI.RST-
VEC. This allows the reset address to be changed dynamically.

81.2.21 Multi-processor systems

In multiprocessor systems, the ID of the processor on which the code is executing can be read out by
reading the index field of the LEON3 configuration register. Only processor 0 starts executing after
reset, the others are in power-down mode and are activated by a signal from the interrupt controller.

Table 1451.Processor reset values

Register Reset value
Trap Base Register Trap Base Address field reset (value given by rstaddr VHDL generic)
PC (program counter) 0x0 (rstaddr VHDL generic)
nPC (next program counter) 0x4 (rstaddr VHDL genericc + 4)
PSR (processor status register) ET=0, S=1
GRIP, Sep 2018, Version 2018.3 1185 www.cobham.com/gaisler

GRLIB IP Core

81.2.22 LEON-REX extension

The processor can be built with support for the LEON-REX addition to the SPARC instruction set,
allowing a more compact code representation than the regular SPARC machine code. The details of
the extension are given in a separate document. The extension is implemented when the rex VHDL
generic is set.
Detection of whether support is present can be done by checking the REXV field in the asr17 register
(see section 81.11.2). The REX support can be set to enabled, illegal or transparent mode via the
REXEN/REXILL bits in the asr17 register, after reset the default setting is illegal so any LEON-REX
code will cause an illegal instruction trap.
The extension is implemented as a decompressor internally inside the pipeline and does not affect the
behavior of the caches, MMU or AHB bus interfaces.
When the rex generic is set, the instruction trace buffer entries are changed so the two most significant
bits of the time tag are instead used to represent REX mode enabled status, and bit 1 of the program
counter. The instructions opcodes logged into the trace buffer are the regular SPARC opcodes that are
generated internally in the pipeline, not the LEON-REX opcodes that are in memory and cache.

81.3 Cache system

81.3.1 Overview

The LEON3 processor pipeline implements a Harvard architecture with separate instruction and data
buses, connected to two separate cache controllers. As long as the execution does not cause a cache
miss, the cache controllers can serve one 32-bit instruction fetch and one 32-bit data load/store per
cycle, keeping the pipeline running at full speed. Each cache controller can be configured with differ-
ent sizes and replacement policy, and it is also possible to attach local RAM to each cache controller.
On cache miss, the cache controller will assert a hold signal freezing the IU pipeline, and after deliv-
ering the data the hold signal is again lifted so execution continues. For accessing the bus, the cache
controllers share the same AHB connection to the on-chip bus. Certain parts of the MMU (table walk
logic, and depending on configuration also TLB buffer) are also shared between the two caches.
Another important component included in the data cache is the write buffer, allowing stores to pro-
ceed in parallel to executing instructions.
Cachability (memory areas that are cachable) for both caches is controlled either through the AHB
plug&play address information or using a VHDL generic, see section 81.7.2.

81.3.2 Cache operation

Each cache controller has two main memory blocks, the tag memory and the data memory. At each
address in the tag memory, a number of cache entries, ways, are stored for a certain set of possible
memory addresses. The data memory stores the data for the corresponding ways.
For each way, the tag memory contains the following information:
• Valid bits saying if the entry contains valid data or is free. The I-cache has one valid bit per word

(instruction) while the D-cache has a single valid bit for the whole cache line.
• The tag, all bits of the cached memory address that are not implied by the set
• If MMU is enabled, the context ID of the cache entry
• If MMU is enabled with mmuen generic set to 2, SO bit (supervisor only access)
• If locking support is enabled, a lock bit for that entry
• If LRR is used, a bit specifying the replacement order
• If FT is enabled, check bits for detecting errors
GRIP, Sep 2018, Version 2018.3 1186 www.cobham.com/gaisler

GRLIB IP Core

When a read from cache is performed, the tags and data for all cache ways of the corresponding set
are read out in parallel, the tags and valid bits are compared to the desired address and the matching
way is selected. In the hit case, this is all done in the same cycle to support the full execution rate of
the processor.
In the miss case, the cache will at first deliver incorrect data. However on the following cycle, a hold
signal will be asserted to prevent the processor from proceeding with that data. After the miss has
been processed, the correct data is injected into the pipeline using a memory data strobe (mds) signal,
and afterwards the hold signal can be released. If the missed address is cacheable, then the data read in
from the cache miss will be stored into the cache, possibly replacing one of the existing ways.
The miss case is handled slightly differently for the I and D caches. Depending on the instruction
burst fetch configuration bit, the instruction cache will either read the single missed instruction, or
stream in data from the missed address until to the end of that cache line. The valid bits in the cache
will reflect which words in the line were actually read in. The D-cache will always fetch a whole
cache line on miss and therefore only has one valid bit.
In the instruction streaming case, the processor pipeline is stepped one step for every received instruc-
tion. If the processor needs extra pipeline cycles to stretch a multi-cycle instruction, or due to an inter-
lock condition (see section 81.2), or if the processor jumps/branches away, then the instruction cache
will hold the pipe, fetch the remainder of the cache line, and the pipeline will then proceed normally.

81.3.3 Cache configuration options

Each cache controller can be configured to implement a single-way (direct-mapped) cache or a multi-
way cache with set associativity of 2 - 4. The way size is configurable to 1 - 256 KiB, divided into
cache lines with 16 or 32 bytes of data.
In multi-way configurations, one of three replacement policies can be selected:
• Least-recently-used (LRU) - This maintains the order of usage for each set in the cache and

replaces the one that has was used last. The LRU information needs to be updated on every cache
hit and is therefore not stored with the tags but in separate flip flops.

• Least-recently-replaced (LRR) - This stores the index of the oldest replaced way along with the
tags and uses this to select which way to replace. This policy can only be implemented when the
number of ways is set to 2.

• Pseudo-random - This method samples a free-running counter to select which way to replace.
System jitter (AMBA bus delay variations) will help to randomize the selected value.

Locking support can also be added to each cache if desired. This option adds a lock bit to each tag that
allows you to lock a number of ways in each set, preventing those cache entries from being replaced.
Note that when using locking together with LRU and more than two ways, this will add extra lookup
tables to determine which way to replace and this might become a critical path in the core.

81.3.4 Address mapping

The addresses seen by the CPU are divided into tag, index and offset bits. The index is used to select
the set in the cache, therefore only a limited number of cache lines with the same index part can be
stored at one time in the cache. The tag is stored in the cache and compared upon read.
GRIP, Sep 2018, Version 2018.3 1187 www.cobham.com/gaisler

GRLIB IP Core
81.3.5 Data cache policy

The data cache employs a write-through policy, meaning that every store made on the CPU will prop-
agate, via the write buffer, to the bus and there are no “dirty” lines in the cache that has not yet been
written out apart from what is in the buffer. The store will also update the cache if the address is pres-
ent, however a new line will not be allocated in that case
.

1 This behavior varies slightly between LEON3 versions, see section 81.13.3

81.3.6 Write buffer

The data cache contains a write buffer able to hold a single 8,16,32, or 64-bit write. For half-word or
byte stores, the stored data replicated into proper byte alignment for writing to a word-addressed
device. The write is processed in the background so the processor pipeline can keep executing while
the write is being processed. However, any following instruction that requires bus access will block
until the write buffer has been emptied. Loads served from cache will however not block, due to the
cache policy used there can not be a mismatch between cache data and store buffer (the effect of this
behavior on SMP systems is discussed in section 81.8).
Since the processor executes in parallel with the write buffer, a write error will not cause an exception
to the store instruction. Depending on memory and cache activity, the write cycle may not occur until

Table 1452.LEON3 Data caching behavior

Operation In cache Cacheable Bus action Cache action Load data
Data load No No Read No change Bus

No Yes Read Line allocated/replaced Bus
Yes - None No change Cache

Data load with
forced cache
miss (ASI 1)

No No Read No change Bus
No Yes Read Line allocated/replaced1 Bus

Yes - Read Data updated1 Bus

Data load with
MMU bypass
(ASI 0x1C)

- - Read (phys addr) No change Bus

Data store No No Write (via buffer) No change (N/A)
No Yes Write (via buffer) No change (N/A)
Yes - Write (via buffer) Data updated (N/A)

Data store with
MMU bypass
(ASI 0x1C)

- - Write (via buffer,
phys addr)

No change (N/A)

Figure 220. Cache address mapping examples

04591031
Tag

034111231
OffsetTag

1 KiB way, 32 bytes/line

4 KiB way, 16bytes/line

OffsetIndex

Index
GRIP, Sep 2018, Version 2018.3 1188 www.cobham.com/gaisler

GRLIB IP Core

several clock cycles after the store instructions has completed. If a write error occurs, the currently
executing instruction will take trap 0x2b. This trap can be disabled using the DWT configuration (see
section 81.11.2).
Note: a 0x2b trap handler should flush the data cache, since a write hit would update the cache while
the memory would keep the old value due the write error.

81.3.7 Operating with MMU

When MMU is enabled, the virtual addresses seen by the running code no longer correspond directly
to the physical addresses on the AHB bus. The cache uses tags based on the virtual addresses, as this
avoids having to do any additional work to translate the address in the most timing-critical hit case.
However, any time a bus access needs to be made, a translation request has to be sent to the MMU to
convert the virtual address to a physical address. For the write buffer, this work is included in the
background processing of the store. The translation request to the MMU may result in memory
accesses from the MMU to perform table walk, depending on the state of the MMU.
The MMU context ID is included in the cache tags in order to allow switching between multiple
MMU contexts mapping the same virtual address to different physical addresses. Note that the cache
does not detect aliases to the same physical address so in that case the same physical address may be
cached in multiple ways (also see snooping below).

81.3.8 Snooping

The data cache can be configured to support AHB bus snooping. The AHB bus the processor is con-
nected to, is monitored for writes from other masters to an address that is in the cache. If a write is
done to a cached address, that cache line is marked invalid and the processor will be forced to fetch
the (new) data from memory the next time it is read.
For using snooping together with the MMU, an extra tag memory storing physical tags must be added
to allow comparing with the physical address on the AHB bus (called separate snoop tags or physical
tags).
The processor can snoop on itself and invalidate any other cache lines aliased to the same physical
address in case there are multiple virtual mappings to the same physical address that is being written.
However, note that this does not happen until the write occurs on the bus so the other virtual aliases
will return the old data in the meantime. Note also that the behavior is not available in older LEON3
version.
Snooping requires the way size of the cache to be equal or smaller than the MMU page size, otherwise
the index into the physical and virtual tag RAM:s may not match, resulting in aliasing problems.

81.3.9 Enabling and disabling cache

Both I and D caches are disabled after reset. They are enabled by writing to the cache control register
(see 81.11.6). Before enabling the caches after a reset they must be flushed to ensure that all tags are
marked invalid.

81.3.10 Cache freeze

Each cache can be in one of three modes: disabled, enabled and frozen. If disabled, no cache operation
is performed and load and store requests are passed directly to the memory controller. If enabled, the
cache operates as described above. In the frozen state, the cache is accessed and kept in sync with the
main memory as if it was enabled, but no new lines are allocated on read misses.
If the DF or IF bit is set, the corresponding cache will be frozen when an asynchronous interrupt is
taken. This can be beneficial in real-time system to allow a more accurate calculation of worst-case
execution time for a code segment. The execution of the interrupt handler will not evict any cache
lines and when control is returned to the interrupted task, the cache state is identical to what it was
GRIP, Sep 2018, Version 2018.3 1189 www.cobham.com/gaisler

GRLIB IP Core

before the interrupt. If a cache has been frozen by an interrupt, it can only be enabled again by
enabling it in the CCR. This is typically done at the end of the interrupt handler before control is
returned to the interrupted task.

81.3.11 Flushing

Both instruction and data cache are flushed either by executing the FLUSH instruction, setting the FI/
FD bits in the cache control register, or by writing to certain ASI address spaces.
Cache flushing takes one clock cycle per cache set, during which the IU will not be halted, but during
which the caches are disabled. When the flush operation is completed, the cache will resume the state
(disabled, enabled or frozen) indicated in the cache control register. Diagnostic access to the cache is
not possible during a flush operation and will cause a data exception (trap=0x09) if attempted.
Note that while the SPARC V8 specifies only that the instructions pointed to by the FLUSH argument
will be flushed, the LEON3 will additionally flush the entire I and D cache (which is permitted by the
manual as the additional flushing only affects performance and not operation). While the LEON3 cur-
rently ignores the address argument, it is recommended for future compatibility to only use the basic
flush %g0 form if you want the full flush behavior.

81.3.12 Locking

In a multi-way configuration the instruction and data cache controllers can be configured with
optional lock bit in the cache tag. Setting the lock bit prevents the cache line to be replaced by the
replacement algorithm. A cache line is locked by performing a diagnostic write to the instruction tag
(ASI 0xC, see 81.10.5) on the cache offset of the line to be locked, setting the Address Tag field to the
address tag of the line to be locked, enabling the lock bit and clearing the valid bits. The locked cache
line will be updated on a read-miss and will remain in the cache until the line is unlocked.
For correct operation, the ways must always be locked in ascending order, for example if two ways
are locked it must always be way 0 and 1. Note also that you must always keep one way unlocked in
each set for the cache to function correctly in case of miss to that set.
For run-time detection of this feature, setting the lock bit in a cache tag and reading the same tag will
show if the cache line locking was enabled during the LEON3 configuration: the lock bit will be set if
the cache line locking was enabled otherwise it will be 0.

81.3.13 Diagnostic access

The cache tag and data contents can be directly accessed for diagnostics and for locking purposes via
various ASI:s, see section 81.10.5.

81.3.14 Local scratch pad RAM

Local instruction and data ram can optionally be attached to the cache controllers. The ram can be
between 1 - 256 KiB, and mapped on any 16 MiB block in the address space. Accesses performed to
the local RAMs are not cached, and will not appear on the AHB bus or in the write buffer. The default
address for the instruction ram is 0x8e000000, and for the data ram 0x8f000000, but these can be
reconfigured using VHDL generics.
The local instruction RAM is intended for executing instructions and will serve instructions without
any wait states. It can be accessed (with a few wait states) through 32-bit load and store instructions
only, and is therefore not suitable for general application data. Initializing the instruction local RAM
is done from software via stores as that is the only way to write into it.
The local data RAM will serve data accesses of any size without adding wait states. It can however
not serve instructions.
The local instruction/data RAM implementation is not compatible with the MMU functionality, as it
will “shadow” the virtual address space regardless of page table setup.
GRIP, Sep 2018, Version 2018.3 1190 www.cobham.com/gaisler

GRLIB IP Core

Since the local RAM implementation does not support error protection, it is not applicable for FT con-
figurations of the LEON3.

81.3.15 Fault tolerance support

The cache memories (tags and data) can optionally be protected against soft errors using byte-parity-
codes. Enabling of the data protection is done through the cmft VHDL generic and the functionality is
only enabled for users that have licensed the fault-tolerant version of LEON3. Cache memory data
protection is further described in section 81.9.5.

81.4 Memory management unit

81.4.1 Overview

A memory-management unit can optionally be enabled. This is compatible with the SPARC V8 refer-
ence MMU (SRMMU) architecture described inthe SPARC V8 manual, appendix H.
The MMU provides address translation of both instructions and data via page tables stored in mem-
ory.When needed, the MMU will automatically access the page tables to calculate the correct physical
address. The latest translations are stored in a special cache called the translation lookaside buffer
(TLB), also referred to as Page Descriptor Cache (PDC) in the SRMMU specification. The MMU also
provides access control, making it possible to “sandbox” unpriviledged code from accessing the rest
of the system.

81.4.2 MMU/Cache operation

When the MMU is disabled, the MMU is bypassed and the caches operate with physical address map-
ping. When the MMU is enabled, the cache tags store the virtual address and also include an 8-bit
context field. Both the tag address and context field must match to generate a cache hit. When mmuen
generic is set to 2 and MMU is enabled, the cache tags store a bit in addition to context called SO bit
(supervisor only access). The SO bit is used to check the access permission of the data and instruc-
tions that resides in the level-1 caches when MMU is enabled. Without SO bit, access permissions of
the load operations that hit in the data cache or the instruction accesses that hit in the instruction cache
will not be checked properly.
If cache snooping is used, physical tags (separate snoop tags) must be enabled for it to work when
address translation is used, see section 81.3.8.
Because the cache is virtually tagged, no extra clock cycles are needed in case of a cache load or
instruction cache hit. In case of miss or write buffer processing, a translation is required that might
add extra latency to the processing time, depending on TLB configuration and if there is a TLB miss.
The TLB can be configured in three different ways:
• Separate TLBs, slow access. TLB lookup adds 2 extra clock cycles.
• Shared TLB, slow access. TLB lookup adds 2 extra clock cycles, the TLB may be used by the

other cache, leading to up to 4 extra cycles lookup time in the worst case.
• Separate TLBs, fast access. TLB lookup is done at the same time as tag lookup and therefore add

no extra clock cycles.
If there is a TLB miss the page table must be traversed, resulting in up to four AMBA read accesses
and one possible writeback operation. See the SRMMU specification for the exact format of the page
table.
An MMU page fault will generate trap 0x09 for the D-cache and trap 0x01 for the I cache, and update
the MMU status registers according to table 1453 and the SRMMU specification. In case of multiple
GRIP, Sep 2018, Version 2018.3 1191 www.cobham.com/gaisler

GRLIB IP Core

errors, they fault type values are prioritized as the SRMMU specification requires. The cache and
memory will not be modified on an MMU page fault.

81.4.3 Translation look-aside buffer (TLB)

The MMU can be configured to use a shared TLB, or separate TLB for instructions and data. The
number of TLB entries (for each implemented TLB) can be set to 2 - 64 via VHDL generics. The
organisation of the TLB and number of entries is not visible to the software and does thus not require
any modification to the operating system. The TLB can be flushed using an STA instruction to ASI
0x18, see section 81.10.7.

81.4.4 Variable minimum page sizes

The standard minimum page size for the SRMMU is 4 KiB. The minimum page size can also be con-
figured to 8, 16 or 32 KiB in order to allow for large data cache ways. The page size can either be con-
figured hard at implementation time or made software-configurable via the MMU control register.
The page sizes for level 1, 2 and 3 is seen in the table below:

The layouts of the indexes are chosen so that PTE page tables can be joined together inside one MMU
page without leaving holes.
Note that most operating systems are hard-coded for a specific page size and using one other than 4
KiB usually requires reconfiguration/recompilation of the operating system kernel.

81.5 Floating-point unit

The SPARC V8 architecture defines two (optional) co-processors: one floating-point unit (FPU) and
one user-defined co-processor. Two different FPU’s can be interfaced the LEON3 pipeline: Cobham
Gaisler’s GRFPU and GRFPU-Lite. Selection of which FPU to use is done through the fpu generic.
The characteristics of the FPU’s are described in the next sections.

Table 1453.LEON3 MMU Fault Status Register, fault type values

Fault type SPARC V8 ref Priority Condition
6 Internal error 1 Never issued by LEON SRMMU
4 Translation error 2 AHB error response while performing table walk. Transla-

tions errors as defined in SPARC V8 manual. A translation
error caused by an AMBA ERROR response will over-
write all other errors. Other translation errors do no over-
write existing translation errors when FAV = 1.

1 Invalid address error 3 Page table entry for address was marked invalid
3 Privlege violation error 4 Access denied based on page table and su status (see

SRMMU spec for how privilege and protection error are
prioritized)

2 Protection error 5

0 None - No error (inside trap this means the trap occurred when
fetching the actual data)

Table 1454.MMU page size

Scheme Level-1 Level-2 Level-3
4 KiB (default) 16 MiB 256 KiB 4 KiB
8 KiB 32 MiB 512 KiB 8 KiB
16 KiB 64 MiB 1 MiB 16 KiB
32 KiB 256 MiB 2 MiB 32 KiB
GRIP, Sep 2018, Version 2018.3 1192 www.cobham.com/gaisler

GRLIB IP Core

81.5.1 Cobham Gaisler’s floating-point unit (GRFPU)

The high-performance GRFPU operates on single- and double-precision operands, and implements all
SPARC V8 FPU operations including square root and division. The FPU is interfaced to the LEON3
pipeline using a LEON3-specific FPU controller (GRFPC) that allows FPU instructions to be exe-
cuted simultaneously with integer instructions. Only in case of a data or resource dependency is the
integer pipeline held. The GRFPU is fully pipelined and allows the start of one instruction each clock
cycle, with the exception is FDIV and FSQRT which can only be executed one at a time. The FDIV
and FSQRT are however executed in a separate divide unit and do not block the FPU from performing
all other operations in parallel.
All instructions except FDIV and FSQRT has a latency of three cycles, but to improve timing, the
LEON3 FPU controller inserts an extra pipeline stage in the result forwarding path. This results in a
latency of four clock cycles at instruction level. The table below shows the GRFPU instruction timing
when used together with GRFPC:

The GRFPC controller implements the SPARC deferred trap model, and the FPU trap queue (FQ) can
contain up to 7 queued instructions when an FPU exception is taken. When the GRFPU is enabled in
the model, the version field in %fsr has the value of 2.
The GRFPU does not handle denormalized numbers as inputs and will in that case cause an fp_excep-
tion with the FPU trap type set to unfinised_FPOP (tt=2). There is a non-standard mode in the FPU
that will instead replace the denormalized inputs with zero and thus never create this condition.

81.5.2 GRFPU-Lite

GRFPU-Lite is a smaller version of GRFPU, suitable for FPGA implementations with limited logic
resources. The GRFPU-Lite is not pipelined and executes thus only one instruction at a time. To
improve performance, the FPU controller (GRLFPC) allows GRFPU-Lite to execute in parallel with
the processor pipeline as long as no new FPU instructions are pending. Below is a table of worst-case
throughput of the GRFPU-Lite:

The GRLFPC controller implements the SPARC deferred trap model, but the FPU trap queue (FQ)
can contain only one queued instructions when an FPU exception is taken.When the GRFPU-Lite is
enabled in the model, the version field in %fsr has the value of 3.

Table 1455.GRFPU instruction timing with GRFPC

Instruction Throughput Latency
FADDS, FADDD, FSUBS, FSUBD,FMULS, FMULD, FSMULD, FITOS, FITOD,
FSTOI, FDTOI, FSTOD, FDTOS, FCMPS, FCMPD, FCMPES. FCMPED 1 4
FDIVS 14 16
FDIVD 15 17
FSQRTS 22 24
FSQRTD 23 25

Table 1456.GRFPU-Lite worst-case instruction timing with GRLFPC

Instruction Throughput Latency
FADDS, FADDD, FSUBS, FSUBD,FMULS, FMULD, FSMULD, FITOS, FITOD,
FSTOI, FDTOI, FSTOD, FDTOS, FCMPS, FCMPD, FCMPES. FCMPED 8 8
FDIVS 31 31
FDIVD 57 57
FSQRTS 46 46
FSQRTD 65 65
GRIP, Sep 2018, Version 2018.3 1193 www.cobham.com/gaisler

GRLIB IP Core

81.6 Co-processor interface

No implementation for the user-defined co-processor is currently provided.

81.7 AMBA interface

81.7.1 Overview

The LEON3 processor uses one AHB master interface for all data, instruction and MMU table-walk
accesses. Instructions are fetched with incremental bursts if the IB bit is set in the cache control regis-
ter, otherwise single READ cycles are used. Read data is accessed using bursts for cachable data, and
byte, half-word and word accesses for uncacheable data. Store data is performed using single accesses
or a two-beat incremental burst in case of 64-bit store.
The HPROT signals of the AHB bus are driven to indicate if the accesses is instruction or data, and if
it is a user or supervisor access.

In case of atomic accesses, a locked access will be made on the AMBA bus to guarantee atomicity as
seen from other masters on the bus.

81.7.2 Cachability control

Cachability for both caches can be controlled through the AHB plug&play address information or set
manually via the cached VHDL generic.
For plug’n’play based cachability, the memory mapping for each AHB slave indicates whether the
area is cachable, and this information is used to (statically) determine which access will be treated as
cacheable. This approach means that the cachability mapping is always coherent with the current
AHB configuration.
When the cached VHDL generic is not zero, it is treated as a 16-bit field, defining the cachability of
each 256 MiB address block on the AMBA bus. For example, a value of 16#00F3# will define cacha-
ble areas in 0 - 0x20000000 and 0x40000000 - 0x80000000.
In order to access the plug’n’play information, the processor takes the ahbso vector as input. Only the
static hconfig signals are used so the use of this input will be eliminated through constant propagation
during synthesis.

81.7.3 Error handling

An AHB ERROR response received while fetching instructions will normally cause an instruction
access exception (tt=0x1). However if this occurs during streaming on an address which is not
needed, the I cache controller will just not set the corresponding valid bit in the cache tag. If the IU
later fetches an instruction from the failed address, a cache miss will occur, triggering a new access to
the failed address.
An AHB ERROR response while fetching data into the data cache will normally trigger a data_ac-
cess_exception trap (tt=0x9). If the error was for a part of the cache line other than what was currently
being requested by the pipeline, a trap is not generated and the valid bit for that line is not set.

Table 1457.HPROT values

Type of access User/Super HPROT
Instruction User 1100
Instruction Super 1110
Data User 1101
Data Super 1111
MMU Any 1101
GRIP, Sep 2018, Version 2018.3 1194 www.cobham.com/gaisler

GRLIB IP Core

An ERROR response during an MMU table walk will lead the MMU to set the fault type to Internal
error (1) and generate an instruction or data access exception, depending on which type of access that
caused the table walk.
Error responses to writes will result in the data_store_error trap as described in section 81.3.6.

81.7.4 Snoop port

For the snooping logic, the LEON3 has an ahbsi input. For correct function, this must be tied to the
same AHB bus that the master interface. It is not possible to snoop on another bus or to add extra
pipeline registers to the snoop port, because the snoop logic must be in sync with the master interface.

81.8 Multi-processor system support

This section gives an overview of issues when using the LEON3 in multi-processor configuration.
Using the features described in earlier sections together with a multiprocessor capable IRQ controller
(IRQMP), the LEON3 processor can support symmetric multiprocessing (SMP) configurations with
shared memory, with up to 16 processors attached to the same AHB bus.
Enabling SMP features (sleeping on reset for CPU 1-N) is done by setting the smp VHDL generic to 1
or higher. Cache snooping should always be enabled in SMP systems to maintain data cache coher-
ency between the processors.

81.8.1 Start-up

In multiprocessor systems, only the first processor will start after reset and all other processors will
remain halted in power-down mode. After the system has been initialized, the remaining processors
can be started by writing to the ‘multiprocessor status register’, located in the multiprocessor interrupt
controller. The halted processors start executing from the reset address (0 or rstaddr VHDL generic,
see section 81.2.20).
An application in a multiprocessor system can determine which processor it is executing on by check-
ing the processor index field in the LEON3 configuration register (%asr17). As all processors typi-
cally have the same reset start address value, boot software must check the processor index and
perform processor specific setup (e.g. initialization of stack pointer) based on the value of the proces-
sor index.
In recent versions of the LEON3, and if the IRQ controller is configured with the extended boot regis-
ter extension, it is possible for one processor to monitor and reboot another processor.via the interrupt
controller. This requires careful software design.
For earlier versions of the LEON3, this is not supported and if software detects that one processor is
unresponsive and needs to restart the processor then the full system should be reset, for example by
triggering the system’s watchdog, if implemented. In order for software to monitor that all processors
in a system are up and running it is recommended to implement a heartbeat mechanism in software.
While it is possible to have more fine-grained control over processor behaviour via the Debug Sup-
port Unit (if implemented) this is not recommended as the debug support unit is typically disabled in
production mode.

81.8.2 Shared memory model

Each processor core has it’s own separate AHB master interface and the AHB controller will arbitrate
between them to share access to the on-chip bus.
If caches are not used, the processors will form a sequentially consistent (SC) system, where every
processor will execute it’s loads, stores and atomics to memory in program order on the AHB bus and
the different processors operations will be interleaved in some order through the AHB arbitration. The
GRIP, Sep 2018, Version 2018.3 1195 www.cobham.com/gaisler

GRLIB IP Core

shared memory controller AHB slave is assumed to not reorder accesses so a read always returns the
latest written value to that location on the bus.
When using caches with snooping (and with physical tags, also called separate snoop tags, if using the
MMU), the shared memory will act according to the slightly weaker SPARC Total Store Order (TSO)
model. The TSO model is close to SC, except that loads may be reordered before stores coming from
the same CPU. The stores and atomics are conceptually placed in a FIFO (see the diagrams in the
SPARC manual) and the loads are allowed to bypass the FIFO if they are not to the same address as
the stores. Loaded data from other addresses may therefore be either older or newer, with respect to
the global memory order, than the stores that have been performed by the same CPU.
In the LEON3 case this happens because cache hits are served without blocking even when there is
data in the write buffer. The loaded data will always return the stored data in case of reading the same
address, because if it is cached, the store updates the cache before being put in the write buffer, and if
it was not in cache then the load will result in a miss which waits for the write buffer to complete.
Loaded data from a different address can be older than the store if it is served by cache before the
write has completed, or newer if it results in a cache miss or if there is a long enough delay for the
store to propagate to memory before reading.
See relevant literature on shared memory systems for more information. These details are mainly of
concern for complex applications using lock-free data structures such as the Linux kernel, the recom-
mendation for applications is to instead avoid concurrent access to shared structures by using
mutexes/semaphores based on atomic instructions, or to use message passing schemes with one-direc-
tional circular buffers.

81.8.3 Memory-mapped hardware

Hardware resources (IP cores) are normally memory mapped on uncacheable address spaces. They
will be accessible from all the CPU:s in a sequentially consistent manner. Since software drivers usu-
ally expect to be “alone” accessing the IP core and the IP cores register interfaces are not designed for
concurrent use by multiple masters, using a bare-C application designed for single-processor usage on
multiple cores at the same time will generally not work. This can be solved by partitioning the appli-
cations so that each IP core is only accessed by one of the CPU:s. This partitioning also need to be
done between the interrupts so the IP core’s interrupts will be received by the correct processor.

81.9 Fault tolerance

81.9.1 Overview

The LEON3 processor can be enhanced with fault-tolerance against SEU errors (referred to as
LEON3FT). The fault-tolerance is focused on the protection of on-chip RAM blocks, which are used
to implement IU/FPU register files and the cache memory.
The LEON3FT is licensed separately, and in the commercial LEON3 releases setting the FT VHDL
generics will not have any effect.

81.9.2 Integer register file protection

The SEU protection for the integer unit register file can be implemented in four different ways,
depending on target technology and available RAM blocks. The SEU protection scheme is selected
GRIP, Sep 2018, Version 2018.3 1196 www.cobham.com/gaisler

GRLIB IP Core

during synthesis, using the iuft VHDL generic. Table 1458 below shows the implementation charac-
teristics of the four possible SEU protection schemes.

The SEU error detection has no impact on behavior, but a correction cycle (scheme 1 and 3) will delay
the current instruction with 6 clock cycles. An uncorrectable error in the IU register file will cause
trap 0x20 (r_register_access_error). A dedicated counter exists in ASR16 to count the number of reg-
ister file corrections.
The register file is implemented using scheme 0 if the regfile_3p_infer array is set for the selected
memory technology in the techmap library, or if bits 16-17 of memtech are set, regardless of iuft/fpft
setting.

81.9.3 Floating-point register file protection

The FPU register file has similar SEU protection as the IU register file, but with less configuration
options. The FPU register file protection scheme is enabled with the fpft generic and has the same
encoding as iuft. The protection schemes that are supported for the GRFPU and the GRFPU-Lite are
listed in table 1458. An uncorrectable error in the FPU register file will cause an (deferred) FPU
exception with %fsr.ftt set to 5 (hardware_error).
Note that the restrictions on protection scheme is not enforced, so it is recommended to simulate the
configuration with error injection to ensure that the scheme chosen is functioning correctly. It is also
recommended to confirm in the netlist that the expected register file type (memory block or flip flops)
was implemented.

Table 1458.Integer unit SEU protection schemes

ID Implementation Description Usage
0 No protection (hardening at

lower level)
No error checking, equivalent to non-FT version. Regis-
ter file hardness must be ensured separately, for example
by mapping the register file memories to SEU hardened
flip-flops.

IU, GRFPU,
GRFPU-Lite

1 4-bit parity with restart 4-bit checksum per 32-bit word. Detects and corrects 1
bit per byte (4 bits per word). Pipeline restart on correc-
tion.

IU, GRFPU-
Lite

2 8-bit parity without restart 8-bit checksum per 32-bit word. Detects and corrects 1
bit per byte (4 bits per word). Correction on-the-fly with-
out pipeline restart.

IU, GRFPU

3 7-bit BCH with restart 7-bit BCH checksum per 32-bit word. Detects 2 bits and
corrects 1 bit per word. Pipeline restart on correction.

IU

4 Memory triplication Memory blocks triplicated and bit by bit voted on out-
puts. Correction on-the-fly without pipeline restart, no
error injection interface or error counters. Note that care
must be taken by the implementer to ensure that the
TMR is not collapsed in optimization by synthesis tools.

IU, GRFPU,
GRFPU-Lite

5 7-bit BCH without restart 7-bit BCH checksum per 32-bit word. Correction on the
fly without pipeline restart. Error correction logic per-
formed on same cycle as memory read.

IU

6 Technology specific Implement register files using native ECC capability of
the technology (via syncram_2pft in the techmap
library). Only valid for subset of (FPGA) technologies.
Correction on-the-fly without pipeline restart. Error
injection and error counters may be supported depending
on technology.
Technology specific protection is further documented in
the GRLIB-FT User’s Manual (grlib-ft.pdf).

IU
GRIP, Sep 2018, Version 2018.3 1197 www.cobham.com/gaisler

GRLIB IP Core

81.9.4 Register file EDAC/parity bits diagnostic read-out and error injection

The register file parity bits can be read out via ASI 0xF as described in section 81.10.6.
For test purposes, the IU and FPU register file EDAC/parity checkbits can be modified by software.
This is done by setting the ITE or FTE bits in asr16 to ‘1’. In this mode, the EDAC/parity bits are first
XORed with the contents of %asr16.FTB before written to the register files. This is done for all writes
into the register file while the feature is enabled, so diagnostic code must be carefully designed to
avoid accidentally injecting errors in other registers than intended. Also note that due to result for-
warding in the pipeline, an injected error will not affect the immediately following instructions, which
might cause surprising behavior such as errors triggering only when single stepping through the code.
Bit 0 (RF EDAC disable) in %asr16 should be set to 1 during diagnostic accesses and fault injection
to the register file, to avoid EDAC correction cycles or error traps.

81.9.5 Cache protection

Each word in the tag or data memories is normally protected by four check bits. Use of the SYN-
CRAM protection allows the processor to use technology specific protection and this can lead to sav-
ings in resource utilization on target technologies that have built-in protection of SRAM blocks. If
separate physical tags for snooping are enabled, the physical tag memory is also protected. An error
during cache access will cause an invalidation of that cache line, and a re-execution of the failing
instruction. This will ensure that the complete cache line (tags and data) is refilled from external
memory.
If snooping is enabled, an error detected in the tags while snooping a write to that set will lead to that
cache data being invalidated (since the tag before the error might have matched the written address).
For every detected error, a counter in the cache control register is incremented. The counters saturate
at their maximum value (3), and should be reset by software after read-out.
The cache memory check bits can be diagnostically read and modified by setting the PS bit in the
cache control register and then perform a normal tag or data diagnostic access, see section 81.10.5 for
details.
GRIP, Sep 2018, Version 2018.3 1198 www.cobham.com/gaisler

GRLIB IP Core

81.10 ASI assignments

81.10.1 Summary

The table shows the ASI usage for LEON.

81.10.2 ASI 0x1, Forced cache miss

ASI 1 is used for systems without cache coherency, to load data that may have changed in the back-
ground, for example by DMA units. It can also be used for other reasons, for example diagnostic pur-
poses, to force a AHB load from memory regardless of cache state.
The address mapping of this ASI is matched with the regular address space, and if MMU is enabled
then the address will be translated normally. Stores to this ASI will perform the same way as ordinary
data stores.
For situations where you want to guarantee that the cache is not modified by the access, the MMU and
cache bypass ASI, 0x1C, can be used instead.

81.10.3 ASI 0x2, System control registers

ASI 2 contains a few control registers that have not been assigned as ancillary state registers. These
should only be read and written using 32-bit LDA/STA instructions.

Table 1459.ASI usage

ASI Usage

0x01 Forced cache miss.

0x02 System control registers (cache control register)

0x08, 0x09 Not supported

0x0A Access level is determined by ‘S’ bit in %psr when MMU is enabled and mmuen
generic is set to 1
User Access when MMU is enabled and mmuen generic is set to 2
Sets HPROT to user data regardless of MMU

0x0B Access level is determined by ‘S’ bit in %psr when MMU is enabled and mmuen
generic is set to 1
Supervisor Access when MMU is enabled and mmuen generic is set to 2, otherwise
normal cache access
Sets HPROT to supervisor data regardless of MMU

0x0C Instruction cache tags

0x0D Instruction cache data

0x0E Data cache tags

0x0F Data cache data

0x0F Register file diagnostic parity read-out (FT only)

0x10 Flush instruction cache (and also data cache when system is implemented with MMU)

0x11 Flush data cache

0x13 MMU only: Flush instruction and data cache

0x14 MMU only: MMU diagnostic D context cache access (deprecated, do not use)

0x15 MMU only: MMU diagnostic I cache context access (deprecated, do not use)

0x18, 0x03 MMU only: Flush TLB and I/D cache

0x19, 0x04 MMU only: MMU registers

0x1C MMU and cache bypass

0x1D MMU only: MMU diagnostic access (deprecated, do not use)

0x1E MMU only: MMU snoop tags diagnostic access
GRIP, Sep 2018, Version 2018.3 1199 www.cobham.com/gaisler

GRLIB IP Core

All cache registers are accessed through load/store operations to the alternate address space (LDA/
STA), using ASI = 2. The table below shows the register addresses:

81.10.4 ASI 0x8-0xB, Data/Instruction

These ASIs are assigned by the SPARC manual for normal data and instruction fetches.
Accessing the instruction ASIs (0x8,0x9) explicitly via LDA/STA instructions is not supported in the
LEON3 implementation.
Using LDA/STA with the user/supervisor data ASI (0xA,0xB) will behave as the affect the HPROT
signal emitted by the processor according to section 81.7.1. If mmuen generic is set to 2, MMU access
control will be done according to the indicated user or supervisor ASI inline with reference MMU
description in Sparc V8 manual. If mmuen generic is set to 1, MMU access control will be done
depending on the SU bit in the %psr register.

81.10.5 ASI 0xC-0xF, ICache tags/data, DCache tags/data

Note that on LEON3FT, ASI 0xF is double mapped and the description in this section is valid only if
the RFT bit is not set.
ASI 0xC-0xF provide diagnostic access to the instruction cache memories. These ASIs should only be
accessed by 32-bit LDA/STA instructions. These ASIs can not be used while a cache flush is in prog-
ress.
The same address bits used normally as index are used to index the cache also in the diagnostic
access. For a multi-way cache, the lowest bits above the index part, the lowest bits that would nor-
mally be used as tag, are used to select which way to read/write. The remaining address bits are don’t
cares, leading the address map to wrap around.
If fault tolerance is enabled, the tag parity, context and SO bits can also be read out through these
ASIs by setting the PS bit in the cache configuration register. When this bit is set, the parity data is
read instead of the ordinary data. When writing the tag bits, the context bits will always be written
with the current context in the MMU control register. The SO bit in the tag will be written with the SO
bit value in the MMU control register (SO bit in MMU control register only exists in the tag when
mmuen generic is set to 2). The parity to be written is calculated based on the supply write-value, the
context ID and optionally SO bit (if mmuen is set to 2) in the MMU control register. The parity bits
can be modified via the TB field in the cache control register.

Table 1460.ASI 2 (system registers) address map

Address Register
0x00 Cache control register
0x04 Reserved
0x08 Instruction cache configuration register
0x0C Data cache configuration register
GRIP, Sep 2018, Version 2018.3 1200 www.cobham.com/gaisler

GRLIB IP Core
Field Definitions:
Address Tag (ATAG) - Contains the tag address of the cache line.
LRR - Used by LRR algorithm to store replacement history, otherwise 0.
LOCK - Locks a cache line when set. 0 if cache locking not implemented.
Valid (V) - When set, the corresponding 32-bit sub-block of the cache line contains valid data. V[0]
corresponds to address 0 in the cache line, V[1] to address 1, V[2] to address 2 and so on. The D-
Cache only has one valid bit per cache line which is replicated for the whole 8-bit diagnostic field.
CTXID - Context ID, used when MMU is enabled
SO - (Supervisor only access) It is used when MMU is enabled and mmuen (see Sec. 81.16) generic is
set to 2. This bit is set to 1 when the associated page with the tag has access permission of 6 or 7
(supervisor access only) for other access permissions it is set to 0. (For detailed information about
access permissions refer to the reference MMU part of the Sparc V8 manual)
TPAR - Byte-wise parity of tag bits, context ID parity is XOR:ed into bit 3.
DPAR - Byte-wise parity of data bits

NOTE: only the necessary bits will be implemented in the cache tag, depending on the cache configu-
ration. As an example, a 4 KiB cache with 16 bytes per line would only have four valid bits and 20 tag
bits. The cache rams are sized automatically by the RAM generators in GRLIB.

81.10.6 ASI 0xF (alternate), FT register file parity read-out

In the FT version, an alternate function to ASI 0xF is selected by enabling the RFT bit in the cache
control register. When enabled, this will override (shadow) the D-Cache data ASI function.

Figure 221. ASI 0xC-0xF address mapping and data layout

04591031
(don’t care)

Example for 1 KiB way, 32 bytes/line, 4 ways

Offset Index
11

Way
12

04591031
(don’t care) (don’t care)Index

11
Way

12

Data diagnostic ASIs (ASI 0xD,F):

Tag diagnostic ASIs (ASI 0xC,E):

Addr:

07891031
VALIDATAG LRR LOCKData:

031

Addr:

Data: Cached data word

031531
TPARCTXIDParity:

1623
ReservedReserved

4

0331
DPARParity: Reserved

4

SO
14
GRIP, Sep 2018, Version 2018.3 1201 www.cobham.com/gaisler

GRLIB IP Core

This ASI allows you to read out parity bits for the register file. The parity should be read out using a
half-word LDUHA instruction. The parity bits are read out simultaneously for the two read ports. This
is read only, for write access (fault injection) see section 81.9.4.
The ASI is not address-mapped, instead the registers used in the LDUHA instruction directly select
which register’s parity bits are returned. For example the instruction:
lduha [%l0 + %l1] 0x0F, %g1

will read out the parity bit of %l0 on port 2 and %l1 on port 1, and store those values in register %g1.
The layout is shown in the figure below:

When the checkbits are read out using LDUHA, bit 29 (RFT) in the cache control register should be
set to 1. The desired register should be used as address.

81.10.7 ASI 0x10, 0x11, 0x13, 0x18 - Flush

For historical reasons there are multiple ASIs that flush the cache in different ways.
Writing to ASI 0x10 will flush the entire instruction cache. If MMU is implemented in the core, both
instruction and data cache will be flushed.
Writing to ASI 0x11 will flush the data cache only.
Writing to ASI 0x13 will flush the data cache and the instruction cache, only available when MMU is
implemented.
Writing to ASI 0x18 (and 0x03), which is available only if MMU is implemented, will flush both the
MMU TLB, the I-cache, and the D-cache. This will block execution for a few cycles while the TLB is
flushed and then continue asynchronously with the cache flushes continuing in the background.

81.10.8 ASI 0x19 and 0x04 - MMU registers

This ASI provides access to the MMU:s control and status registers. The following MMU registers
are implemented:

81.10.9 ASI 0x1C - MMU and cache bypass

Performing an access via ASI 0x1C will act as if MMU and cache were disabled. The address will not
be translated and the cache will not be used or updated by the access.

Table 1461.MMU registers (ASI = 0x19)

Address Register
0x000 MMU control register
0x100 Context pointer register
0x200 Context register
0x300 Fault status register
0x400 Fault address register

Figure 222. Register file ECC read-out layout

RF ECC Port 2
15 07

RF ECC port 1
8

GRIP, Sep 2018, Version 2018.3 1202 www.cobham.com/gaisler

GRLIB IP Core

81.10.10ASI 0x1E - MMU snoop/physical tags diagnostic access

If the MMU has been configured to use separate snoop (physical) tags, they can be accessed via ASI
0x1E. This is primarily useful for RAM testing, and should not be performed during normal opera-
tion. This ASI is addressed the same way as the regular diagnostic ASI:s 0xC, 0xE, and the read/writ-
ten data has the layout as shown below (example for a 1 KiB/way data cache):

[31:10] Address tag. The physical address tag of the cache line.
[1]: Parity. The odd parity over the data tag. LEON3FT only.
[0]: Invalid. When set, the cache line is not valid and will cause a cache miss if accessed by the processor. Only present

if fast snooping is enabled.

81.11 Configuration registers

81.11.1 PSR, WIM, TBR registers

The %psr, %wim, %tbr registers are implemented as required by the SPARC V8 manual.

Table 1462.LEON3 Processor state register (%psr)
31 28 27 24 23 20 19 16

IMPL VER ICC RESERVED

0xF 0x3 0 0

r r r r

15 14 13 12 11 8 7 6 5 4 0

AW PAW EC EF PIL S PS ET CWP

0 0 0 0 0 1 1 0 0

rw’ rw* r rw* rw rw rw rw rw

31:28 Implementation ID (IMPL), read-only hardwired to “1111” (15)
27:24 Implementation version (VER), read-only hardwired to “0011” (3) for LEON3.
23:20 Integer condition codes (ICC), see sparcv8 for details
19:16 Reserved
15 Alternative window pointer select (AW), read-only if AWP not implemented
14 Previous alternative window pointer select (PAW), read-only if AWP not implemented
13 Enable coprocessor (EC), read-only if coprocessor not implemented
12 Enable floating-point (EF), read-only if FPU not implemented.
11:8 Processor interrupt level (PIL) - controls the lowest IRQ number that can generate a trap
7 Supervisor (S)
6 Previous supervisor (PS), see sparcv8 for details
5 Enable traps (ET)
4:0 Current window pointer

Table 1463.LEON3 Window invalid mask (%wim)
31 NWIN NWIN-1 0

RESERVED WIM

0 NR

r rw

Figure 223. Snoop cache tag layout

09 2 11031
ATAG PAR IVRESERVED
GRIP, Sep 2018, Version 2018.3 1203 www.cobham.com/gaisler

GRLIB IP Core

Table 1464.LEON3 Trap base address register (%tbr)

31 12 11 4 3 0

TBA TT R

* 0 0

rw r r

31:12 Trap base address (TBA) - Top 20 bits used for trap table address
11:4 Trap type (TT) - Last taken trap type. Read only.
3:0 Always zero, read only
GRIP, Sep 2018, Version 2018.3 1204 www.cobham.com/gaisler

GRLIB IP Core

81.11.2 ASR17, LEON3 configuration register

The ancillary state register 17 (%asr17) provides information on how various configuration options
were set during synthesis. This can be used to enhance the performance of software, or to support enu-
meration in multi-processor systems. There are also a few bits that are writable to configure certain
aspects of the processor.

Table 1465.LEON3 configuration register (%asr17)
31 28 27 26 25 24 23 22 21 18 17 16

INDEX DBP NOTAG DBPM REXV REXM RESERVED CS CF[1]

* 0 1 1 * * * *

r rw* r rw* r rw* r r r

15 14 13 12 11 10 9 8 7 5 4 0

CF[0] DW SV LD FPU M V8 NWP NWIN

* 0 0 * * * * * *

r rw rw* r r r r r r

31:28 Processor index (INDEX) - In multi-processor systems, each LEON core gets a unique index to
support enumeration. The value in this field is identical to the hindex VHDL generic parameter in
the VHDL model.

27 Disable Branch Prediction (DBP) - Disables branch prediction when set to ‘1’. Field is only avail-
able if the VHDL generic bp is set to the value 2.

26 Tagged arithmetic (NOTAG) - If this read-only field is ‘1’ then the processor supports tagged arith-
metic and the compare-and-swap (CASA) instruction. The current version if the LEON3 always
supports tagged arithmetic and CASA.

25 Disable Branch Prediction on instruction cache misses (DBPM) - When set to ‘1’ this avoids
instruction cache fetches (and possible MMU table walk) for predicted instructions that may be
annulled. This feature is on by default (reset value ‘1’), if branch prediction is programmable then
this is also programmable.

24:23 REX version (REXV) - read-only field that is set to ‘00’ if REX is not implemented, ‘01’ if REX is
implemented, ‘10’ and ‘11’ values are reserved for future implementations

22:21 REX mode (REXM) - set to ‘00’ for REX enabled, ‘01’ for REX illegal and ‘10’ for REX transpar-
ent mode. Writable with reset value ‘01’ when REX support has been enabled

20:18 Reserved for future implementations
17 Clock switching enabled (CS). If set, switching between AHB and CPU frequency is available.
16:15 CPU clock frequency (CF). CPU core runs at (CF+1) times AHB frequency.
14 Disable write error trap (DWT). When set, a write error trap (tt = 0x2b) will be ignored. Set to zero

after reset.
13 Single-vector trapping (SVT) enable. If set, will enable single-vector trapping. Fixed to zero if SVT

is not implemented. Set to zero after reset.
12 Load delay (LDDEL) - If set, the pipeline uses a 2-cycle load delay. Otherwise, a 1-cycle load

delay i s used. Generated from the lddel VHDL generic parameter in the VHDL model.
11:10 FPU option. “00” = no FPU; “01” = GRFPU; “10” = Meiko FPU, “11” = GRFPU-Lite
9 If set, the optional multiply-accumulate (MAC) instruction is available
8 If set, the SPARC V8 multiply and divide instructions are available
7:5 Number of implemented watchpoints (NWP) (0 - 4)
4:0 Number of implemented registers windows corresponds to NWIN+1.
GRIP, Sep 2018, Version 2018.3 1205 www.cobham.com/gaisler

GRLIB IP Core

81.11.3 ASR20, Alternative window register

This register allows access to the alternative window pointer. It is only implemented if the AWP sup-
port has been enabled in the processor.

Table 1466.LEON3 alternative window register (%asr20)
31 26 25 21 20 16

RESERVED STWIN CWPMAX

0 0 *

r rw* rw*

15 5 4 0

RESERVED WCWP AWP

0 - *

r w rw

31:26 Reserved for future implementations
25:21 Starting window (STWIN) - Starting window of partition.
20:16 Maximum value of current window pointer (CWPMAX) - Partition size minus 1. Reset value is

number of windows minus 1, which with STWIN=0 maps whole register file into partition. If this
field is written with value 0, STWIN and CWPMAX fields are unmodified.

15:5 Reserved for future implementations
5 Write CWP - If written with 1, then the CWP field in PSR will simultaneously be written with the

value written to AWP.
4:0 Alternative Window Pointer (AWP). Continuously updated with the value of CWP when the alterna-

tive window feature is disabled.
GRIP, Sep 2018, Version 2018.3 1206 www.cobham.com/gaisler

GRLIB IP Core

81.11.4 ASR22-23 - Up-counter

The ancillary state registers 22 and 23 (%asr22-23) contain an internal up-counter that can be read by
software without causing any access on the on-chip AMBA bus. The number of available bits in the
counter is implementation dependent and is decided by the number of counter bits in the DSU time
tag counter. %ASR23 contains the least significant part of the counter value and %ASR22 contains
the most significant part. In case the implementation does not contain a debug support unit connected
to the processor then the up-counter is not available (value is always zero).
The time tag value accessible in these registers is the same time tag value used for the system’s trace
buffers (if implemented) and for all processors connected to the same debug support unit. The time
tag counter will increment when any of the trace buffers is enabled, or when the time tag counter is
forced to be enabled via the DSU register interface, or when any processor has its %ASR22 Disable
Up-counter (DUCNT) field set to zero.
The up-counter value will increment even if all processors have entered power-down mode.

81.11.5 ASR24-31, Hardware watchpoint/breakpoint registers

Each breakpoint consists of a pair of ancillary state registers (%asr24/25, %asr26/27, %asr28/29 and
%asr30/31) registers; one with the break address and one with a mask:

WADDR - Address to compare against
WMASK - Bit mask controlling which bits to check (1) or ignore (0) for match
IF - break on instruction fetch from the specified address/mask combination
DL - break on data load from the specified address/mask combination

Table 1467.LEON3 up-counter MSbs (%ASR22)
31 30 0

DUCNT UPCNT(62:32)

31 Disable Up-counter (DUCNT) - Disable upcounter. When set to ‘1’ the up-counter may be disabled.
When cleared, the counter will increment each processor clock cycle. Default (reset) value is ‘1’.

30:0 Counter value (UPCNT(62:32)) - Most significant bits of internal up-counter. Read-only.

Table 1468.LEON3 up-counter LSbs (%ASR23)
31 0

UPCNT(31:0)

31:0 Counter value (UPCNT(31:0)) - Least significant bits of internal up-counter. Read-only.

01231

DL

WADDR[31:2]%asr24, %asr26
%asr28, %asr30

0231
DSWMASK[31:2]%asr25, %asr27

%asr29, %asr31

Figure 224. Watch-point registers

IF

00

rwr

00

rwr

NR

rw

NR

rw
GRIP, Sep 2018, Version 2018.3 1207 www.cobham.com/gaisler

GRLIB IP Core

DS - break on data store to the specified address/mask comination
Note: Setting IF=DL=DS=0 disables the breakpoint
When there is a hardware watchpoint match and DL or DS is set then trap 0x0B will be generated.
Hardware watchpoints can be used with or without the LEON3 debug support unit (DSU) enabled.
GRIP, Sep 2018, Version 2018.3 1208 www.cobham.com/gaisler

GRLIB IP Core

81.11.6 Cache control register

The cache control register located at ASI 0x2, offset 0, contains control and status registers for the I
and D cache.

Table 1469.LEON3 Cache Control Register (CCR)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RESERVED RFT PS TB DS FD FI FT RES ST IB

0 0 0 0 0 0 0 * 0 * 0

r rw* rw* rw* rw rw* rw* r r r rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IP DP ITE IDE DTE DDE DF IF DCS ICS

0 0 0 0 0 0 0 0 0 0

r r r* r* r* r* rw rw rw rw

31:30 Reserved for future implementations
29 Register file test select (RFT). If set, will allow the read-out of IU register file checkbits via ASI

0x0F. Only available if fault-tolerance is enabled (FT field in this register is non-zero).
28 Parity Select (PS) - if set diagnostic read will return 4 check bits in the lsb bits, otherwise tag or data

word is returned. Only available if fault-tolerance is enabled (FT field in this register is non-zero).
When the technology specific FT scheme is implemented (FT field is “10”) then PS selects if cor-
rectable or uncorrectable errors should generate cache misses. The recommended setting is to use
PS=’0’ that treats uncorrectable RAM errors in the same way as parity errors would traditionally be
handled.

27:24 Test Bits (TB) - if set, check bits will be xored with test bits TB during diagnostic write. Only avail-
able if fault-tolerance is enabled (FT field in this register is non-zero).

23 Data cache snoop enable (DS) - if set, will enable data cache snooping.
22 Flush data cache (FD). If set, will flush the data cache. Always reads as zero.
21 Flush Instruction cache (FI). If set, will flush the instruction cache. Always reads as zero.
20:19 FT scheme (FT) - “00” = no FT, “01” = 4-bit checking implemented, “10” - Technology-specific

protection implemented
18 Reserved for future implementations
17 Separate snoop tags (ST). This read-only bit is set if separate physical/snoop tags are implemented.
16 Instruction burst fetch (IB). This bit enables burst fill during instruction fetch.
15 Instruction cache flush pending (IP). This bit is set when an instruction cache flush operation is in

progress
14 Data cache flush pending (DP). This bit is set when an data cache flush operation is in progress.
13:12 Instruction Tag Errors (ITE) - Number of detected parity errors in the instruction tag cache. Only

available if fault-tolerance is enabled (FT field in this register is non-zero).
11:10 Instruction Data Errors (IDE) - Number of detected parity errors in the instruction data cache. Only

available if fault-tolerance is enabled (FT field in this register is non-zero).
9:8 Data Tag Errors (DTE) - Number of detected parity errors in the data tag cache. Only available if

fault-tolerance is enabled (FT field in this register is non-zero).
7:6 Data Data Errors (DDE) - Number of detected parity errors in the data data cache. Only available if

fault-tolerance is enabled (FT field in this register is non-zero).
5 Data Cache Freeze on Interrupt (DF) - If set, the data cache will automatically be frozen when an

asynchronous interrupt is taken.
4 Instruction Cache Freeze on Interrupt (IF) - If set, the instruction cache will automatically be frozen

when an asynchronous interrupt is taken.
3:2 Data Cache state (DCS) - Indicates the current data cache state according to the following: X0= dis-

abled, 01 = frozen, 11 = enabled.
1:0 Instruction Cache state (ICS) - Indicates the current data cache state according to the following: X0=

disabled, 01 = frozen, 11 = enabled.
GRIP, Sep 2018, Version 2018.3 1209 www.cobham.com/gaisler

GRLIB IP Core

81.11.7 I-cache and D-cache configuration registers

The configuration of the two caches if defined in two registers: the instruction and data configuration
registers. These registers are read-only and indicate the size and configuration of the caches. They are
located under ASI 2 at offset 8 and 12.

Table 1470.LEON3 Cache configuration register
31 30 28 27 26 24 23 20 19 18 16

CL REPL SN WAYS WSIZE LR LSIZE

* * * * * * *

r r r r r r r

15 12 11 4 3 2 1 0

LRSIZE LRSTART M SO RESERVED

* * * * 0

r r r r r

31 Cache locking (CL). Set if cache locking is implemented.
30:28 Cache replacement policy (REPL). 00 - no replacement policy (direct-mapped cache), 01 - least

recently used (LRU), 10 - least recently replaced (LRR), 11 - random
27 Cache snooping (SN). Set if snooping is implemented.
26:24 Cache associativity (WAYS). Number of ways in the cache: 000 - direct mapped, 001 - 2-way asso-

ciative, 010 - 3-way associative, 011 - 4-way associative
23:20 Way size (WSIZE). Indicates the size (Kibs) of each cache way. Size = 2SIZE

19 Local ram (LR). Set if local scratch pad ram is implemented.
18:16 Line size (LSIZE). Indicated the size (words) of each cache line. Line size = 2LSZ

15:12 Local ram size (LRSZ). Indicates the size (Kibs) of the implemented local scratch pad ram. Local
ram size = 2LRSZ

11:4 Local ram start address (LRSTART). Indicates the 8 most significant bits of the local ram start
address.

3 MMU present (M). This bit is set to ‘1’ if an MMU is present.
2 SO (supervisor only access) bit is present. This bit is set if mmuen generic is set to 2.
1:0 Reserved for future implementations
GRIP, Sep 2018, Version 2018.3 1210 www.cobham.com/gaisler

GRLIB IP Core

81.11.8 ASR16, Register protection control register (FT only)

ASR register 16 (%asr16) is used to control the IU/FPU register file SEU protection. It is possible to
disable the SEU protection by setting the IDI/FDI bits, and to inject errors using the ITE/FTE bits.
Corrected errors in the register file are counted, and available in ICNT and FCNT fields. The counters
saturate at their maximum value (7), and should be reset by software after read-out.

Table 1471.LEON3FT Register protection control register (%asr16)
31 30 29 27 26 22 21 20 19 18 17 16

FPFT FCNT RESERVED EFPFT EIUFT FTE FDI

* 0 0 * * 0 0

r rw r r r rw r

15 14 13 11 10 3 2 1 0

IUFT ICNT RFTB[7:0] DP ITE IDI

* 0 0 0 0 0

r rw rw rw rw rw

31:30 FP FT ID - Defines which SEU protection is implemented in the FPU (see table 1458)
29:27 FP RF error counter - Number of detected parity errors in the FP register file.
26:22 Reserved for future implementations
21:20 Extended IU FT ID - Top bits of IUFT field to indicate FT values higher than 3
19:18 Extended IU FT ID - Top bits of IUFT field to indicate FT values higher than 3
17 FPU RF Test Enable - Enables FPU register file test mode. Parity bits are xored with TB before writ-

ten to the FPU register file.
16 FP RF protection disable (FDI) - Disables FP RF parity protection when set.
15:14 IU FT ID - Defines which SEU protection is implemented in the IU (see table 1458)
13:11 IU RF error counter - Number of detected parity errors in the IU register file.
10:3 RF Test bits (RFTB) - In test mode, these bits are xored with correct parity bits before written to the

register file.
2 DP ram select (DP) - Only applicable if the IU or FPU register files consists of two dual-port rams.

See table 1472 below.
1 IU RF Test Enable - Enables register file test mode. Parity bits are xored with TB before written to

the register file.
0 IU RF protection disable (IDI) - Disables IU RF parity protection when set.

Table 1472.DP ram select usage

ITE/FTE DP Function
1 0 Write to IU register (%i, %l, %o, %g) will only write location of %rs2

Write to FPU register (%f) will only write location of %rs2
1 1 Write to IU register (%i, %l, %o, %g) will only write location of %rs1

Write to FPU register (%f) will only write location of %rs1
0 X IU and FPU registers written nominally
GRIP, Sep 2018, Version 2018.3 1211 www.cobham.com/gaisler

GRLIB IP Core

81.11.9 MMU control register

The MMU control register is located in ASI 0x19 offset 0, and the layout can be seen in table 1473.

81.11.10MMU context pointer and context registers

The MMU context pointer register is located in ASI 0x19 offset 0x100 and the MMU context register
is located in ASI 0x19 offset 0x200. They together determine the location of the root page table
descriptor for the current context. Their definition follows the SRMMU specification in the SPARC
V8 manual with layouts shown below..

Table 1473.LEON3 MMU control register
31 28 27 24 23 21 20 18 17 16

IMPL VER ITLB DTLB PSZ

0 1 * * 0

r r r r rw*

15 14 13 2 1 0

TD ST SO RESERVED NF E

NR 0 0 0 0 0

rw* r rw r rw rw

31:28 MMU Implementation ID. Hardcoded to “0000”
27:24 MMU Version ID. Hardcoded to “0001”.
23:21 Number of ITLB entries. The number of ITLB entries is calculated as 2ITLB. If the TLB is shared

between instructions and data, this field indicates to total number of TLBs.
20:18 Number of DTLB entries. The number of DTLB entries is calculated as 2DTLB. If the TLB is shared

between instructions and data, this field is zero.
17:16 Page size. The size of the smallest MMU page. 0 = 4 Kib; 1 = 8 Kib; 2 = 16 Kib; 3 = 32 Kib. If the

page size is programmable, this field is writable, otherwise it is read-only.
15 TLB disable. When set to 1, the TLB will be disabled and each data access will generate an MMU

page table walk. See Section 81.12.3 for detailed information.
14 Separate TLB. This bit is set to 1 if separate instruction and data TLBs are implemented
13 This bit only exists if mmuen generic is set to 2. This bit is written to the SO (supervisor only access)

part of the TAG during diagnostic writes.
12:2 Reserved for future implementations
1 No Fault. When NF= 0, any fault detected by the MMU causes FSR and FAR to be updated and

causes a fault to be generated to the processor. When NF= 1, a fault on an access to ASI 9 is handled
as when NF= 0; a fault on an access to any other ASI causes FSR and FAR to be updated but no fault
is generated to the processor.

0 Enable MMU. 0 = MMU disabled, 1 = MMU enabled.

Table 1474. LEON3 MMU context pointer register
31 2 1 0

CONTEXT TABLE POINTER R

NR 0

rw r

31:2 Context table pointer, physical address bits 35:6 (note address is shifted 4 bits)
1:0 Reserved, always 0

Table 1475. LEON3 MMU context register
31 8 7 0

RESERVED CONTEXT

0 0

r rw
GRIP, Sep 2018, Version 2018.3 1212 www.cobham.com/gaisler

GRLIB IP Core
In the LEON3, the context bits are OR:ed with the lower MMU context pointer bits when calculating
the address, so one can use less context bits to reduce the size/alignment requirements for the context
table.

81.11.11MMU fault status register

The MMU fault status register is located in ASI 0x19 offset 0x300, and the definition follows the
SRMMU specification in the SPARC V8 manual. The SPARC V8 specifies that the fault status regis-
ter should be cleared on read, on the LEON3 only the FAV bit is cleared on read. The FAV bit is
always set on error in the LEON3 implementation, so it can be used as a valid bit for the other fields..

81.11.12MMU fault address register

The MMU fault address register is located in ASI 0x19 offset 0x400, and the definition follows the
SRMMU specification in the SPARC V8 manual...

81.12 Software considerations

81.12.1 Register file initialization on power up (for LEON3FT)

After power-on, the check bits in the IU and FPU register files are not initialized. This means that
access to an un-initialized (un-written) general-purpose register could cause a register access trap (tt =
0x20). Such behavior is considered as a software error, as the software should not read a register
before it has been written. It is recommended that the boot code for the processor writes all registers in

31:8 Reserved
7:0 Current context ID

Table 1476.LEON3 MMU fault status register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RESERVED EBE

0 0

r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EBE L AT FT FAV OW

0 0 0 0 0 0

r r r r r r

31:18 Reserved
17:10 External bus error (EBE) - Never set on the LEON3
9:8 Level (L) - Level of page table entry causing the fault
7:5 Access type (AT) - See V8 manual
4:2 Fault type (FT) - See table 1453
1 Fault address valid (FAV) - Cleared on read, always written to 1 on fault
0 Overwrite (W) - Multiple faults of the same priority encountered

Table 1477.LEON3 MMU fault address register
31 12 11 0

FAULT ADDRESS RESERVED

NR 0

r r

31:12 Top bits of virtual address causing translation fault
11:0 Reserved, always 0

Table 1475. LEON3 MMU context register
GRIP, Sep 2018, Version 2018.3 1213 www.cobham.com/gaisler

GRLIB IP Core

the IU and FPU register files before launching the main application. This can be done also for the reg-
ular LEON3 to allow software to be portable to both FT and non-FT versions.

81.12.2 Start-up

After reset, the caches are disabled and the cache control register (CCR) is 0. Before the caches may
be enabled, a flush operation must be performed to initialized (clear) the tags and valid bits. A suitable
assembly sequence could be:
flush
set 0x81000f, %g1
sta %g1, [%g0] 2

81.12.3 MMU & TLB

After reset, the MMU is disabled and TLB is configured to be on (will not have any effect until MMU
is enabled). Hence with default reset values the TLB has to be flushed before the MMU is being acti-
vated to initialize the valid bits in TLB. If the TLB is disabled while the MMU is active, the TLB must
be flushed before enabled again.

81.12.4 Data scrubbing (LEON3FT)

There is generally no need to perform data scrubbing on either IU/FPU register files or the cache
memory. During normal operation, the active part of the IU/FPU register files will be flushed to mem-
ory on each task switch. This will cause all registers to be checked and corrected if necessary. Since
most real-time operating systems performs several task switches per second, the data in the register
files will be frequently refreshed.
The similar situation arises for the cache memory. In most applications, the cache memory is signifi-
cantly smaller than the full application image, and the cache contents is gradually replaced as part of
normal operation. For very small programs, the only risk of error build-up is if a part of the applica-
tion is resident in the cache but not executed for a long period of time. In such cases, executing a
cache flush instruction periodically (e.g. once per minute) is sufficient to refresh the cache contents.

81.13 LEON3 versions

81.13.1 Overview

The primary way to identify the version of a implemented LEON3 processor is to look at the GRLIB
build ID, plug&play device identifier and plug&play core revision (part of plug&play information,
see GRLIB User’s Manual for additional information). This documentation applies to version 3 of the
LEON3 processor. Figure 225 shows the relationship between the different earlier LEON3 versions
and the current LEON3v3.
GRIP, Sep 2018, Version 2018.3 1214 www.cobham.com/gaisler

GRLIB IP Core
81.13.2 Data cache and AMBA behavior changes

Earlier versions of the LEON3 processor made use of one separate word access for each accessed
word, even with cache enabled. This manual describes LEON3v3 which is the only LEON3 version
included by default in the GRLIB IP Library. The table below also show the behaviour of earlier ver-
sions of the processor.

81.13.3 ASI 0x1 side effects

Reading from ASI 0x1 forces a real AMBA bus read and returns that data to the pipeline, and this
behavior is implemented in all LEON3 and LEON3FT versions. However the side effects on the
cache state (whether the cache is updated, and whether a line might be allocated) differs between dif-
ferent versions of the LEON3. Customers needing more information on this issue may contact
Cobham Gaisler.

81.13.4 ASR writes from user mode

Ancillary state registers ASR17 and ASR19-31 were made privileged on write, starting from
LEON3v3. To preserve backward compatibility, these registers are still readable from user mode.

Processor operation
 Area not

cacheable1

LEON3FTv1/LEON3v1 LEON3FTv2/LEON3v3

Area is cacheable1 Area is cacheable1

Cache enabled2 Cache disabled Cache enabled2 Cache disabled
Data load <= 32-bit Read access

with size speci-
fied by load
instruction

Word access Read access with
size specified by
load instruction

Burst of 32-bit
accesses to fetch
full cache line.

Read access with
size specified by
load instruction

Data load 64-bit (LDD) Burst of two 32-bit accesses Burst of two 32-
bit accesses

Data store <= 32-bit Store access with size specified by store instruction.
Data store 64-bit (STD) Burst of two 32-bit store accesses
1 Cachability is determined by the cached VHDL generic, if cached is zero then cachability is determined via AMBA PnP.
2 Bus accesses for reads will only be made on L1 cache miss or forced cache miss.

LEON3v0

New data cache behaviour

LEON3v1 LEON3FTv1

Branch prediction added

Figure 225. LEON3 processor evolution

LEON3FTv2

LEON3v3
GRIP, Sep 2018, Version 2018.3 1215 www.cobham.com/gaisler

GRLIB IP Core

81.13.5 MMU alias handling

LEON3v3 and LEON3FTv2 can handle double-mapped virtual addresses via self-snooping as
described in section 81.3.8. This behavior is not available in earlier editions of LEON3, there the
aliases can remain with incorrect data indefinitely.

81.13.6 CASA and load delay 2

With the current LEON3 (starting with GRLIB build 4178) CASA is always supported. LEON3 ver-
sions before GRLIB build 4161 only supported the compare-and-swap (CASA) instruction when the
processor was implemented with load delay 1 (lddel VHDL generic set to 1) while the current version
supports CASA for all load delays.
For GRLB versions more recent than build 4161, software can check if CASA is supported by reading
%asr17 and checking the NOTAG field. For earlier GRLIB versions (prior to GRLIB build 4161) the
%asr17 LDDEL field must be set to 0 for CASA to be supported and software can then probe for
CASA support by trying to execute the instruction and handle the illegal instruction trap that is gener-
ated if CASA is unsupported by the implementation.

81.14 Vendor and device identifiers

The core will have one of two device identifiers depending on if the processor has been implemented
with or without fault-tolerance features.
The standard core has vendor identifiers 0x01 (Cobham Gaisler) and device identifier 0x003.
If the core has been implemented with fault-tolerance features then the core will be identified with
vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x053.
For a description of vendor and device identifiers see GRLIB IP Library User’s Manual.

81.15 Implementation

81.15.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core does not support grlib_async_reset_enable. All registers that react on the reset signal will
have a synchronous reset.

81.15.2 Technology mapping

LEON3 has two technology mapping VHDL generics, fabtech and memtech. The fabtech generic
controls the implementation of some pipeline features, while memtech selects which memory blocks
will be used to implement cache memories and the IU/FPU register file. fabtech can be set to any of
the provided technologies (0 - NTECH) as defined in the TECHMAP.GENCOMP package. See the
GRLIB Users’s Manual for available settings for memtech.

81.15.3 RAM usage

The LEON3 core maps all usage of RAM memory on the syncram, syncram_2p and syncram_dp
components from the technology mapping library (TECHMAP). The type, configuration and number
of RAM blocks is described below.
Register file
GRIP, Sep 2018, Version 2018.3 1216 www.cobham.com/gaisler

GRLIB IP Core

The register file is implemented with two synram_2p blocks for all technologies where the reg-
file_3p_infer constant in TECHMAP.GENCOMP is set to 0. The organization of the syncram_2p is
shown in the following table:

If regfile_3p_infer is set to 1, the synthesis tool will automatically infer the register. On FPGA tech-
nologies, it can be in either flip-flops or RAM cells, depending on the tool and technology. On ASIC
technologies, it will be flip-flops. The amount of flip-flops inferred is equal to the number of registers:
Number of flip-flops = ((NWINDOWS *16) + 8) * 32

FP register file
If FPU support is enabled, the FP register file is implemented with four synram_2p blocks when the
regfile_3p_infer constant in TECHMAP.GENCOMP is set to 0. The organization of the syncram_2p
blocks is 16x32.
If regfile_3p_infer is set to 1, the synthesis tool will automatically infer the FP register file. For ASIC
technologies the number of inferred flip-flops is equal to number of bits in the FP register file which is
32 * 32 = 1024.
Cache memories
RAM blocks are used to implement the cache tags and data memories. Depending on cache configura-
tion, different types and sizes of RAM blocks are used.
The tag memory is implemented with one syncram per cache way when no snooping is enabled. The
tag memory depth and width is calculated as follows:
Depth = (cache way size in bytes) / (cache line size in bytes)
Width = 32 - log2(cache way size in bytes) + (cache line size in bytes)/4 + lrr + lock
For a 2 Kib cache way with lrr replacement and 32 bytes/line, the tag RAM depth will be (2048/32) =
64. The width will be: 32 - log2(2048) + 32/4 + 1 = 32 - 11 + 8 + 1 = 28. The tag RAM organization
will thus be 64x28 for the configuration. If the MMU is enabled, the tag memory width will increase
with 8 to store the process context ID, and the above configuration will us a 64x36 RAM.
If simple (MMU-less) snooping is enabled, the data cache tag memory will instead of single-port
RAM blocks be implemented with a dual-port RAMs (syncram_dp) of the same size.
If physical (MMU-compatible) snooping is enabled, the data cache tag memories will be implemented
using two syncram_2p components (with one read-only and one write-only port) per way , one mem-
ory for virtual and one for physical tags. The size of the virtual tag block will be the same as when
snooping is disabled. The physical tag block will have the same depth as above and the data width
corresponds to the width of the tag: 32 - log2(way size). A 4 KiB data cache way will thus require a 32
- 12 = 20 bit wide RAM block for the physical tags.
Physical snooping can also be implemented with valid bits placed in flip flops, the tag memories are
then implemented using single-port memories and with one bit less in width for the virtual tag.

Table 1478.syncram_2p sizes for LEON3 register file

Register windows Syncram_2p organization
2 - 3 64x32
4 - 7 128x32
8 - 15 256x32
16-31 512x31
32 1024x32
GRIP, Sep 2018, Version 2018.3 1217 www.cobham.com/gaisler

GRLIB IP Core

The data part of the caches (storing instructions or data) is always 32 bit wide. The depth is equal to
the way size in bytes, divided by 4. A cache way of 2 KiB will thus use syncram component with and
organization of 512x32.
Instruction Trace buffer
The instruction trace buffer will use four identical RAM blocks (syncram) to implement the buffer
memory. The syncrams will always be 32-bit wide. The depth will depend on the tbuf VHDL generic,
which indicates the total size of trace buffer in KiBs. If tbuf = 1 (1 KiB), then four RAM blocks of
64x32 will be used. If tbuf = 2, then the RAM blocks will be 128x32 and so on.
Scratch pad RAM
If the instruction scratch pad RAM is enabled, a syncram block will be instantiated with a 32-bit data
width. The depth of the RAM will correspond to the configured scratch pad size. An 8 KiB scratch
pad will use a syncram with 2048x32 organization. The RAM block for the data scratch pad will be
configured in the same way as the instruction scratch pad.

81.15.4 Double clocking

LEON3 double clocking is described in the LEON/GRLIB Configuration and Development Guide.

81.15.5 Clock gating

LEON3 clock gating is described in the LEON/GRLIB Configuration and Development Guide.

81.15.6 Scan support

Scan test support using signals distributed via the AMBA records is included in the LEON3 as
described in the GRLIB User’s Manual. It can be enabled using the scantest VHDL generic.

81.16 Configuration options

Table 1479 shows the configuration options of the core (VHDL generics).

Table 1479.Configuration options

Generic Function Allowed range Default
hindex AHB master index 0 - NAHBMST-1 0
fabtech Target technology 0 - NTECH 0 (inferred)
memtech Vendor library for regfile and cache RAMs.

Bits 16, 17 and 18 of this generic can be used to for the MMU
TLB data RAM, IU register file and FP register file to inferred
technology:
+ 2**16: Force inferred technology for MMU TLB data RAM
+ 2**17: Force inferred technology for IU register file
+ 2**18: Force inferred technology for FP register file
Adding the value (2**17 + 2**18) is equivalent to setting the
grlib.gencomp.regfile_3p_infer(memtech) to 1 (used for some
technologies to force the register file implementations to
inferred).

0 -
16#FFFFFFFF#

0 (inferred)

nwindows Number of SPARC register windows. Choose 8 windows to be
compatible with Bare-C and RTEMS cross-compilers.

2 - 32 8

dsu Enable Debug Support Unit interface 0 - 1 0
GRIP, Sep 2018, Version 2018.3 1218 www.cobham.com/gaisler

GRLIB IP Core
fpu Floating-point Unit
0 : no FPU
1 - 7: GRFPU 1 - inferred multiplier, 2 - DW multiplier, 3 - Mod-
ule Generator multiplier, 4 - Technology specific multiplier
8 - 14: GRFPU-Lite 8 - simple FPC, 9 - data forwarding FPC, 10
- non-blocking FPC
15: Obsolete
16 - 31: as above (modulo 16) but use netlist
Netlist or technology specific multiplier is recommended when
using Synplify to target Virtex-5.

0 - 31 0

v8 Generate SPARC V8 MUL and DIV instructions
This generic is assigned with the value: mult + 4*struct

Where mult selects between the following implementation
options for the multiplier and divider:
0 : No multiplier or divider
1 : 16x16 multiplier
2 : 16x16 pipelined multiplier
16#32# : 32x32 pipelined multiplier
Where struct selects the structure option for the integer multi-
plier. The following structures can be selected:
0: Inferred by synthesis tool
1: Generated using Module Generators from NTNU
2: Using technology specific netlists (techspec). Only supported
for RTAX-D FPGAs. Other technologies will assert a simulation
error.
3: Using Synopsys DesignWare (DW02_mult and DW_-
mult_pipe)

0 - 16#3F# 0

cp Generate co-processor interface 0 -1 0
mac Generate SPARC V8e SMAC/UMAC instruction. Can only be

used together with a 16x16 multiplier.
0 - 1 0

pclow Least significant bit of PC (Program Counter) that is actually
generated. PC[1:0] are always zero and are normally not gener-
ated. Generating PC[1:0] is convenient for VHDL-debugging
and these bits should be optimized out by the synthesis tool.

0, 2 2

notag Unused. Was previously used to disable tagged arithmetic and
CASA instructions

0 - 1 0

nwp Number of hardware watchpoints 0 - 4 0
icen Enable instruction cache 0 - 1 1
irepl Instruction cache replacement policy.

0 - least recently used (LRU), 1 - least recently replaced (LRR),
2 - random

0 - 1 0

isets Number of instruction cache ways.
Note: Generic named isets due to historical reasons.

1 - 4 1

ilinesize Instruction cache line size in number of words 4, 8 4
isetsize Size of each instruction cache way in KiB 1 - 256 1
isetlock Enable instruction cache line locking 0 - 1 0
dcen Data cache enable 0 - 1 1
drepl Data cache replacement policy.

0 - least recently used (LRU), 1 - least recently replaced (LRR),
2 - random

0 - 1 0

Table 1479.Configuration options

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 1219 www.cobham.com/gaisler

GRLIB IP Core
dsets Number of data cache ways
Note: Generic named dsets due to historical reasons.

1 - 4 1

dlinesize Data cache line size in number of words 4, 8 4
dsetsize Size of each data cache way in KiB

Note: If the processor is implemented with the MMU then the
cache way size needs to be equal or less then the MMU page size
for hardware cache coherency.

1 - 256 1

dsetlock Enable data cache line locking 0 - 1 0
dsnoop Enable data cache snooping

Bit 0-1: 0: disable, 1: obsolete, 2: enabled, 3: single-port physical
Bit 2: 0: simple MMU-less snooping, 1: save extra physical tags
(MMU snooping)

0 - 7 0

ilram Enable local instruction RAM 0 - 1 0
ilramsize Local instruction RAM size in kB 1 - 512 1
ilramstart 8 MSB bits used to decode local instruction RAM area 0 - 255 16#8E#
dlram Enable local data RAM (scratch-pad RAM) 0 - 1 0
dlramsize Local data RAM size in kB 1 - 512 1
dlramstart 8 MSB bits used to decode local data RAM area 0 - 255 16#8F#
mmuen Enable memory management unit (MMU)

Note: Bus snooping is required to avoid cache aliasing effects
when the MMU is enabled if the cache has more than one way.
0 : MMU does not exist.
1 : MMU exists.
2 : MMU exists and the cache tags include an additional bit
called SO (supervisor only access). See sec. 81.3.2 for more
details.
If MMU is going to be instantiated in the processor, it is recom-
mended to set the mmuen generic to 2.

0 - 2 0

itlbnum Number of instruction TLB entries 2 - 64 8
dtlbnum Number of data TLB entries 2 - 64 8
tlb_type 0 : separate TLB with slow write

1: shared TLB with slow write
2: separate TLB with fast write

0 - 2 1

tlb_rep LRU (0) or Random (1) TLB replacement 0 - 1 0
lddel Load delay. One cycle gives best performance, but might create a

critical path on targets with slow (data) cache memories. A 2-
cycle delay can improve timing but will reduce performance
with about 5%.

1 - 2 2

disas Print instruction disassembly in VHDL simulator console.
Has no effect on synthesis (code removed via pragma trans-
late_off)

0 - 1 0

tbuf Size of instruction trace buffer in kB (0 - instruction trace dis-
abled). For values 1-64 a single-port trace buffer of size tbuf is
used. For values 65-128 a two-port trace buffer of size tbuf-64 is
used.

0 - 128 0

pwd Power-down. 0 - disabled, 1 - area efficient, 2 - timing efficient. 0 - 2 1
svt Enable single-vector trapping 0 - 1 0

Table 1479.Configuration options

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 1220 www.cobham.com/gaisler

GRLIB IP Core
rstaddr Default reset start address. This generic sets the 20 most signifi-
cant bits of the reset address. The reset address must always be
aligned on a 4 KiB address boundary. If this generic is set to
16#fffff# the processor will read its start address from the inter-
rupt controller interface signal IRQI.RSTVEC (dynamic reset
start address).
See section 81.2.20 for more information.

0 - (2**20-1) 0

smp Enable multi-processor support in pipeline (usually set in tem-
plate designs to number of CPUs minus 1)

0 - 15 0

iuft, fpft Register file SEU protection. (0: no protection; 1 : 4-bit parity, 2
: 8-bit parity; 3 : 7-bit BCH, 4: TMR, 5: BCH on-the-fly, 6:
Tech-specific)
See section 81.9.3 for fpft value restrictions.

0 - 6 0

cft Enable cache memory SEU protection., bitfield
Bit 7:4: Selects technology specific protection cache protection.
0 is parity protection, 5 is technology specific protection
Bit 3:1: Unused
Bit 0: If set, enable cache memory protection
Technology specific protection is further documented in the
GRLIB-FT User’s Manual (grlib-ft.pdf).

0 - 255 0

iuinj ceinj Enable random error injection during simulation. Used for simu-
lation only, removed on synthesis using pragma translate_off.
Only supported for FT version of LEON3FT.

0 - 3 0

cached Fixed cacheability mask. Setting to nonzero overrides
plug’n’play cacheability information.

0 - 16#FFFF# 0

clk2x Double-clocking, frequency factor 0
netlist Use netlist rather than RTL code (currently unused) 0 - 1 0
scantest Enable scan test support 0 - 1 0
mmupgsz MMU Page size. 0 = 4K, 1 = 8K, 2 = 16K, 3 = 32K, 4 = pro-

grammable.
0 - 4 0

bp Enable branch prediction support, 0 - disabled, 1 - always
enabled, 2 - programmable

0 - 2 1

npasi Enable SPARC V8E nonprivileged ASI access. 0 - All accesses
to alternate address space are privileged. 1 - LOAD and STORE
from alternate space instructions accessing ASIs 0x00-0x7F are
privileged, ASIs 0x80-0xFF are nonprivileged.

0 - 1 0

pwrpsr Enable SPARC V8E partial write PSR (WRPSR). 0 - 1 0
rex Enable LEON-REX extension 0 - 1 0
altwin Enable alternative window pointer extension and register file

partitioning
0 - 1 0

Table 1479.Configuration options

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 1221 www.cobham.com/gaisler

GRLIB IP Core

81.17 Signal descriptions

Table 1480 shows the interface signals of the core (VHDL ports). There are several top-level entities
available for the LEON3 processor. The leon3x entity contains all signals and settings. The other enti-
ties are wrappers around leon3x. The available entities are:
• leon3cg - Top-level with support for clock gating. Deprecated, do not use for new designs.
• leon3ft2x - Top-level with support for FT, double clocking and clock gating.
• leon3ftsh - Entity with support for FT and shared FPU.
• leon3ft - Entity with support for FT and clock gating, no separate FPU clock.
• leon3s2x - Top-level with support for clock gating and double clocking, no separate FPU clock.
• leon3sh - Top-level with support for shared FPU.
• leon3s - Simplest top-level, no FT, clock gating or shared FPU.
• leon3x - Entity with support for all features (double clocking, FT, clock gating, shared FPU)

Table 1480.Signal descriptions

Signal name Field Type Function Active
leon3x:CLK
leon3s2x:CLK
leon3ftsh:CLK

N/A Input AMBA clock, used in 2x mode.
Note that this only applies to the processor enti-
ties listed.

-

leon3x:GCLK2
leon3s:CLK
leon3sh:CLK
leon3s2x:GCLK2
leon3ft:GCLK
leon3ftsh:GCLK
leon3cg:GCLK
leon3ft2x:GCLK2

N/A Input Processor clock, can be gated when using an
entity where the clock name starts with “G”.

Note that this clock has different names depend-
ing on which top-level entity that is used to
instantiate the processor. For example, LEON3S
only has one clock input which covers three of
the rows in this table (Processor clock, FPU-
clock, free running processor clock).

-

leon3x:GFCLK2
leon3s:CLK
leon3sh:CLK
leon3s2x:GCLK2
leon3ft:CLK
leon3ftsh:CLK
leon3cg:CLK
leon3ft2x:GCLK2

N/A Input FPU clock, can be gated

Note that this clock has different names depend-
ing on which top-level entity that is used to
instantiate the processor. For example, LEON3S
only has one clock input which covers three of
the rows in this table (Processor clock, FPU-
clock, free running processor clock).

-

leon3x:CLK2
leon3s:CLK
leon3sh:CLK
leon3s2x:GCLK2
leon3ft:CLK
leon3ftsh:CLK
leon3cg:CLK
leon3ft2x:GCLK2

N/A Input Free running processor clock

Note that this clock has different names depend-
ing on which top-level entity that is used to
instantiate the processor. For example, LEON3S
only has one clock input which covers three of
the rows in this table (Processor clock, FPU-
clock, free running processor clock).

-

RSTN N/A Input Reset Low
AHBI * Input AHB master input signals -
GRIP, Sep 2018, Version 2018.3 1222 www.cobham.com/gaisler

GRLIB IP Core
81.18 Signal definitions and reset values

When the processor enters error mode, the errorn output is driven active.
The signals and their reset values are described in table 1481.

AHBO * Output AHB master output signals -
AHBSI * Input AHB slave input signals -
AHBSO[] * Input AHB slave output signals from all slaves on

same bus. The processor makes use of the
plug&play sideband signals to decode cacheabil-
ity information of the bus. This can be overrid-
den by the cached VHDL generic.

-

IRQI IRL[3:0] Input Interrupt level High
RESUME Input Clear power-down and error mode High
RSTRUN Input Start after reset (SMP system only) High
RSTVEC[31:12] Input Reset start addr. (SMP and dynamic reset addr.) -
INDEX[3:0] Input Unused -
PWDSETADDR Input In power-down/error mode, shift PC to nPC and

set PWDNEWADDR to PC.
High

PWDNEWADDR
[31:2]

Input New PC value used with PWDSETADDR -

FORCEERR Input Force CPU into error mode High
IRQO INTACK Output Interrupt acknowledge High

IRL[3:0] Output Processor interrupt level High
PWD Output Processor in power-down mode High
FPEN Output Floating-point unit enabled High
ERR Output Processor in error mode High

DBGI - Input Debug inputs from DSU -
DBGO - Output Debug outputs to DSU -

ERROR Processor in error mode, execution halted Low
CLKEN Input Clock enable/qualifier used in 2x mode High
* see GRLIB IP Library User’s Manual

Table 1481.Signal definitions and reset values

Signal name Type Function Active Reset value
errorn Tri-state output Processor error mode indicator Low Tri-state

Table 1480.Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 1223 www.cobham.com/gaisler

GRLIB IP Core

81.19 Timing

The timing waveforms and timing parameters are shown in figure 226 and are defined in table 1482.

81.20 Library dependencies

Table 1483 shows the libraries used when instantiating the core (VHDL libraries).

81.21 Component declaration

The core has the following component declaration.

entity leon3s is
 generic (
 hindex : integer := 0;
 fabtech : integer range 0 to NTECH := 0;
 memtech : integer range 0 to NTECH := 0;
 nwindows : integer range 2 to 32 := 8;
 dsu : integer range 0 to 1 := 0;
 fpu : integer range 0 to 3 := 0;
 v8 : integer range 0 to 2 := 0;
 cp : integer range 0 to 1 := 0;
 mac : integer range 0 to 1 := 0;
 pclow : integer range 0 to 2 := 2;
 notag : integer range 0 to 1 := 0;
 nwp : integer range 0 to 4 := 0;
 icen : integer range 0 to 1 := 0;
 irepl : integer range 0 to 2 := 2;
 isets : integer range 1 to 4 := 1;
 ilinesize : integer range 4 to 8 := 4;
 isetsize : integer range 1 to 256 := 1;
 isetlock : integer range 0 to 1 := 0;
 dcen : integer range 0 to 1 := 0;
 drepl : integer range 0 to 2 := 2;
 dsets : integer range 1 to 4 := 1;
 dlinesize : integer range 4 to 8 := 4;
 dsetsize : integer range 1 to 256 := 1;
 dsetlock : integer range 0 to 1 := 0;
 dsnoop : integer range 0 to 6:= 0;
 ilram : integer range 0 to 1 := 0;
 ilramsize : integer range 1 to 512 := 1;

Table 1482.Timing parameters

Name Parameter Reference edge Min Max Unit
tLEON3_0 clock to output delay rising clk edge TBD TBD ns

Table 1483.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB signal definitions
GAISLER LEON3 Component, signals LEON3 component declaration, interrupt and

debug signals declaration

Figure 226. Timing waveforms

tLEON3_0
errorn

clk

tLEON3_0
GRIP, Sep 2018, Version 2018.3 1224 www.cobham.com/gaisler

GRLIB IP Core

 ilramstart : integer range 0 to 255 := 16#8e#;
 dlram : integer range 0 to 1 := 0;
 dlramsize : integer range 1 to 512 := 1;
 dlramstart : integer range 0 to 255 := 16#8f#;
 mmuen : integer range 0 to 2 := 0;
 itlbnum : integer range 2 to 64 := 8;
 dtlbnum : integer range 2 to 64 := 8;
 tlb_type : integer range 0 to 1 := 1;
 tlb_rep : integer range 0 to 1 := 0;
 lddel : integer range 1 to 2 := 2;
 disas : integer range 0 to 1 := 0;
 tbuf : integer range 0 to 64 := 0;
 pwd : integer range 0 to 2 := 2; -- power-down
 svt : integer range 0 to 1 := 1; -- single vector trapping
 rstaddr : integer := 0;
 smp : integer range 0 to 15 := 0; -- support SMP systems
 cached : integer := 0; -- cacheability table
 scantest : integer := 0

mmupgsz : integer range 0 to 5 := 0;
 bp : integer := 1
);

port (
 clk : in std_ulogic;
 rstn : in std_ulogic;
 ahbi : in ahb_mst_in_type;
 ahbo : out ahb_mst_out_type;
 ahbsi : in ahb_slv_in_type;
 ahbso : in ahb_slv_out_vector;
 irqi : in l3_irq_in_type;
 irqo : out l3_irq_out_type;
 dbgi : in l3_debug_in_type;
 dbgo : out l3_debug_out_type
);
end;
GRIP, Sep 2018, Version 2018.3 1225 www.cobham.com/gaisler

GRLIB IP Core

82 LEON4 - High-performance SPARC V8 32-bit Processor

82.1 Overview

LEON4 is a 32-bit processor core conforming to the IEEE-1754 (SPARC V8) architecture. It is
designed for embedded applications, combining high performance with low complexity and low
power consumption.
The LEON4 core has the following main features: 7-stage pipeline with Harvard architecture, sepa-
rate instruction and data caches, hardware multiplier and divider, on-chip debug support and multi-
processor extensions.
The LEON4 processor can be enhanced with fault-tolerance against SEU errors. The fault-tolerance is
focused on the protection of on-chip RAM blocks, which are used to implement IU/FPU register files
and the cache memory. Configuring the processor to implement fault-tolerance enables additional
internal register and register fields.

Note: This manual describes the full functionality of the LEON4 core. Through the use of VHDL
generics, parts of the described functionality can be suppressed or modified to generate a smaller or
faster implementation.
Please also refer to the LEON/GRLIB Configuration and Development Guide for recommendations on
system design and LEON4 configuration.

82.1.1 Integer unit

The LEON4 integer unit implements the full SPARC V8 manual, including hardware multiply and
divide instructions. The number of register windows is configurable within the limit of the SPARC
manual (2 - 32), with a default setting of 8. The pipeline consists of 7 stages with a separate instruc-
tion and data cache interface (Harvard architecture).

82.1.2 Cache sub-system

LEON4 has a highly configurable cache system, consisting of a separate instruction and data cache.
Both caches can be configured with 1 - 4 ways, 1 - 256 KiB/way, 16 or 32 bytes per line. The instruc-
tion cache maintains one valid bit per cache line and uses streaming during line-refill to minimize
refill latency. The data cache has one valid bit per cache line, uses write-through policy and imple-

Integer pipeline

I-Cache D-Cache

4-Port Register File

AMBA AHB Master (32/64/128-bit)

AHB I/F

7-Stage

Interrupt controller

Co-Processor

HW MUL/DIV

IEEE-754 FPU Trace Buffer

Debug port

Interrupt port

Debug support unit

Figure 227. LEON4 processor core block diagram

SRMMU DTLBITLB
GRIP, Sep 2018, Version 2018.3 1226 www.cobham.com/gaisler

GRLIB IP Core

ments a double-word write-buffer. Bus-snooping on the AHB bus can be used to maintain cache
coherency for the data cache.

82.1.3 Floating-point unit and co-processor

The LEON4 integer unit provides interfaces for a floating-point unit (FPU), and a custom co-proces-
sor. Two FPU controllers are available, one for the high-performance GRFPU and one for the
GRFPU-Lite core. The floating-point processors and co-processor execute in parallel with the integer
unit, and does not block the operation unless a data or resource dependency exists. Note that the FPUs
are provided separately.

82.1.4 Memory management unit

A SPARC V8 Reference Memory Management Unit (SRMMU) can optionally be enabled. The
SRMMU implements the full SPARC V8 MMU specification, and provides mapping between multi-
ple 32-bit virtual address spaces and physical memory. A three-level hardware table-walk is imple-
mented, and the MMU can be configured to up to 64 fully associative TLB entries per implemented
TLB.

82.1.5 On-chip debug support

The LEON4 pipeline includes functionality to allow non-intrusive debugging on target hardware. To
aid software debugging, up to four watchpoint registers can be enabled. Each register can cause a
breakpoint trap on an arbitrary instruction or data address range. When the (optional) debug support
unit is attached, the watchpoints can be used to enter debug mode. Through a debug support interface,
full access to all processor registers and caches is provided. The debug interfaces also allows single
stepping, instruction tracing and hardware breakpoint/watchpoint control. An internal trace buffer can
monitor and store executed instructions, which can later be read out via the debug interface.

82.1.6 Interrupt interface

LEON4 supports the SPARC V8 interrupt model with a total of 15 asynchronous interrupts. The inter-
rupt interface provides functionality to both generate and acknowledge interrupts.

82.1.7 AMBA interface

The cache system implements an AMBA AHB master to load and store data to/from the caches. The
interface is compliant with the AMBA-2.0 standard. During line refill, incremental burst are gener-
ated to optimise the data transfer. The AMBA interface can be configured to use a 64 or 128-bit bus
on cache line fills. The processor also has a snoop AHB slave input port which is used to monitor the
accesses made by other masters, if snooping has been enabled.

82.1.8 Power-down mode

The LEON4 processor core implements a power-down mode, which halts the pipeline and caches
until the next interrupt. The processor supports optional clock gating during the power down period
by providing a clock-enable signal that can be tied to an external clock gate cell, and by providing a
separate clock input for the small part of the CPU that needs to run during power-down to check for
wake-up conditions and maintain cache coherency.

82.1.9 Multi-processor support

LEON4 is designed to be used in multi-processor systems. Each processor has a unique index to allow
processor enumeration. The write-through caches and snooping mechanism guarantees memory
coherency in shared-memory systems.
GRIP, Sep 2018, Version 2018.3 1227 www.cobham.com/gaisler

GRLIB IP Core

82.2 LEON4 integer unit

82.2.1 Overview

The LEON4 integer unit implements the integer part of the SPARC V8 instruction set. The implemen-
tation is focused on high performance and low complexity. The LEON4 integer unit has the following
main features:
• 7-stage instruction pipeline
• Separate instruction and data cache interface
• Support for 2 - 32 register windows
• Hardware multiplier with optional 16x16 bit MAC and 40-bit accumulator
• Radix-2 divider (non-restoring)
• Static branch prediction
• Single-vector trapping for reduced code size

Figure 228 shows a block diagram of the integer unit.

Figure 228. LEON4 integer unit datapath diagram

alu/shift mul/div
y

64-bit 4-port register file

D-cache
dcache read data64

op2rs1

Ywres

result m_y

Decode

Execute

Memory

Write-back

rs2rs1

rd

tbr, wim, psr

32 dcache address

e pc

30

+1

d_pc

jmpa

f_pc

Add

call/branch address

tbr‘0’

e_pc

m_pc

w_pc

d_inst

e_inst

m_inst

w_inst

Fetch

I-cache
addressdata

Register Access

x_yxres

Exception

x_pcx_inst

r_pcr_inst

y, tbr, wim, psr

r_imm

rs3

stdata
64 dcache write data
GRIP, Sep 2018, Version 2018.3 1228 www.cobham.com/gaisler

GRLIB IP Core

82.2.2 Instruction pipeline

The LEON4 integer unit uses a single instruction issue pipeline with 7 stages:
1. FE (Instruction Fetch): If the instruction cache is enabled, the instruction is fetched from the instruction cache.

Otherwise, the fetch is forwarded to the memory controller. The instruction is valid at the end of this stage and is
latched inside the IU.

2. DE (Decode): The instruction is decoded and the CALL/Branch target addresses are generated.
3. RA (Register access): Operands are read from the register file or from internal data bypasses.
4. EX (Execute): ALU, logical, and shift operations are performed. For memory operations (e.g., LD) and for JMPL/

RETT, the address is generated.
5. ME (Memory): Data cache is accessed. Store data read out in the execution stage is written to the data cache at this

time.
6. XC (Exception) Traps and interrupts are resolved. For cache reads, the data is aligned.
7. WR (Write): The result of ALU and cache operations are written back to the register file.

Table 1484 lists the cycles per instruction (assuming cache hit and no icc or load interlock):

* Multiplication cycle count is 1 clock (1 clock issue rate, 2 clock data latency), for the 32x32 multiplier and 4 clocks (issue
rate, 4/5 clocks data latency for standard/pipelined version) for the 16x16 version.

Additional conditions that can extend an instructions duration in the pipeline are listed in the table and
text below.
Branch interlock: When a conditional branch or trap is performed 1-2 cycles after an instruction
which modifies the condition codes, 1-2 cycles of delay is added to allow the condition to be com-
puted. If static branch prediction is enabled, this extra delay is incurred only if the branch is not taken.
Load delay: When using data resulting on a load shortly after the load, the instruction will be delayed
to satisfy the pipeline’s load delay. The processor pipeline has one cycle load delay.
Mul latency: For pipelined multiplier implementations there is 1 cycle extra data latency, accessing
the result immediately after a MUL or MAC will then add one cycle pipeline delay.
Hold cycles: During cache miss processing or when blocking on the store buffer, the pipeline will be
held still until the data is ready, effectively extending the execution time of the instruction causing the
miss by the corresponding number of cycles. Note that since the whole pipeline is held still, hold
cycles will not mask load delay or interlock delays. For instance on a load cache miss followed by a
data-dependent instruction, both hold cycles and load delay will be incurred.
FPU/Coprocessor: The floating-point unit or coprocessor may need to hold the pipeline or extend a
specific instruction. When this is done is specific to the FP/CP unit.

Table 1484.Instruction timing

Instruction Cycles (MMU disabled)
JMPL, RETT 3
SMUL/UMUL 1/4*

SDIV/UDIV 35
Taken Trap 5
Atomic load/store 5
All other instructions 1
GRIP, Sep 2018, Version 2018.3 1229 www.cobham.com/gaisler

GRLIB IP Core

Certain specific events that cause these types of locks and their timing are listed in table 1485 below.

82.2.3 SPARC Implementor’s ID

Cobham Gaisler is assigned number 15 (0xF) as SPARC implementor’s identification. This value is
hard-coded into bits 31:28 in the %psr register. The version number for LEON4 is 3 (same as for
LEON3 to provide software compatibility), which is hard-coded in to bits 27:24 of the %psr.

82.2.4 Divide instructions

Full support for SPARC V8 divide instructions is provided (SDIV, UDIV, SDIVCC & UDIVCC). The
divide instructions perform a 64-by-32 bit divide and produce a 32-bit result. Rounding and overflow
detection is performed as defined in the SPARC V8 manual.
The divide instruction is required for full SPARC V8 compliance but can be configured out to save
area using the v8 VHDL generic.

82.2.5 Multiply instructions

The LEON processor supports the SPARC integer multiply instructions UMUL, SMUL UMULCC
and SMULCC. These instructions perform a 32x32-bit integer multiply, producing a 64-bit result.
SMUL and SMULCC performs signed multiply while UMUL and UMULCC performs unsigned
multiply. UMULCC and SMULCC also set the condition codes to reflect the result. The multiply
instructions are performed using a 32x32 pipelined hardware multiplier, or a 16x16 hardware multi-
plier which is iterated four times. To improve the timing, the 16x16 multiplier can optionally be pro-
vided with a pipeline stage.
The multiply instruction is required for full SPARC V8 compliance, but can be configured out to save
area using the v8 VHDL generic.

82.2.6 Multiply and accumulate instructions

To accelerate DSP algorithms, two multiply&accumulate instructions are implemented: UMAC and
SMAC. The UMAC performs an unsigned 16-bit multiply, producing a 32-bit result, and adds the
result to a 40-bit accumulator made up by the 8 lsb bits from the %y register and the %asr18 register.
The least significant 32 bits are also written to the destination register. SMAC works similarly but per-
forms signed multiply and accumulate. The MAC instructions execute in one clock but have two
clocks latency, meaning that one pipeline stall cycle will be inserted if the following instruction uses
the destination register of the MAC as a source operand.
The UMAC and SMAC instructions occupy the unused opcodes op=10,op3=1111110 for UMAC and
op=10,op3=1111111 for SMAC.

Table 1485.Event timing

Event Cycles
Instruction cache miss processing, MMU disabled 3 + mem latency
Instruction cache miss processing, MMU enabled 5 + mem latency
Data cache miss processing, MMU disabled (read), L2 hit 3 + mem latency
Data cache miss processing, MMU disabled (write), write-buffer empty 0
Data cache miss processing, MMU enabled (read) 5 + mem latency
Data cache miss processing, MMU enabled (write), write-buffer empty 0
MMU page table walk 10 + 3 * mem latency
Branch prediction miss, branch follows ICC setting 2
Branch prediction miss, one instruction between branch and ICC setting 1
Pipeline restart due to register file or cache error correction 7
GRIP, Sep 2018, Version 2018.3 1230 www.cobham.com/gaisler

GRLIB IP Core

Assembler syntax:

umac rs1, reg_imm, rd
smac rs1, reg_imm, rd

Operation:
prod[31:0] = rs1[15:0] * reg_imm[15:0]
result[39:0] = (Y[7:0] & %asr18[31:0]) + prod[31:0]
(Y[7:0] & %asr18[31:0]) = result[39:0]
rd = result[31:0]

%asr18 can be read and written using the RDASR and WRASR instructions.
The MAC instructions are an optional extension to SPARC V8, and enabled using the mac VHDL
generic. The multiply and accumulate support also requires MUL/DIV support enabled by the v8
VHDL generic and can only be used together with a 16x16 multiplier.

82.2.7 Compare and Swap instruction (CASA)

LEON4 implements the SPARC V9 Compare and Swap Alternative (CASA) instruction. The CASA
operates as described in the SPARC V9 manual. The instruction is privileged, except when setting
ASI = 0xA (user data).

82.2.8 Branch prediction

Static branch prediction can be optionally be enabled, and reduces the penalty for branches preceded
by an instruction that modifies the integer condition codes. The predictor uses a branch-always strat-
egy, and starts fetching instruction from the branch address. On a prediction hit, 1 or 2 clock cycles
are saved, and there is no extra penalty incurred for misprediction as long as the branch target can be
fetched from cache.

82.2.9 Register file data protection

The integer register file can optionally be protected against soft errors using triple modular redun-
dancy (TMR) or technology specific protection (Technology specific protection is further documented
in the GRLIB-FT User’s Manual). Data errors will then be transparently corrected without impact at
application level. The protection is enabled through the ft VHDL generic. The floating-point register
file should be implemented with registers for applications that need FP register file protection.

82.2.10 Hardware breakpoints

The integer unit can be configured to include up to four hardware breakpoints. Each breakpoint con-
sists of a pair of ancillary state registers (see section 82.11.4). Any binary aligned address range can
be watched for instruction or data access, and on a breakpoint hit, trap 0x0B is generated.

82.2.11 Instruction trace buffer

The (optional) instruction trace buffer consists of a circular buffer that stores executed instructions.
This is enabled and accessed only through the processor’s debug port via the Debug Support Unit.
When enabled, the following information is stored in real time, without affecting performance:
• Instruction address and opcode
• Instruction result
• Load/store data and address
• Trap information
• 30-bit time tag
GRIP, Sep 2018, Version 2018.3 1231 www.cobham.com/gaisler

GRLIB IP Core

The operation and control of the trace buffer is further described in section 25.4. Note that in multi-
processor systems, each processor has its own trace buffer allowing simultaneous tracing of all
instruction streams.
The size of the trace buffer is configurable from 1 to 64 KiB through the tbuf VHDL generic. If the
value of tbuf is in the 65-128 range, a two-port instruction trace buffer of size tbuf-64 KiB will be
used, allowing contextual reading of instructions while tracing is ongoing.

82.2.12 Processor configuration register

The ancillary state register 17 (%asr17) provides information on how various configuration options
were set during synthesis. This can be used to enhance the performance of software, or to support enu-
meration in multi-processor systems. See section 82.11.4 for layout.
GRIP, Sep 2018, Version 2018.3 1232 www.cobham.com/gaisler

GRLIB IP Core

82.2.13 Exceptions

LEON4 adheres to the general SPARC trap model. The table below shows the implemented traps and
their individual priority. When PSR (processor status register) bit ET=0, an exception trap causes the
processor to halt execution and enter error mode, and the external error signal will then be asserted.

The prioritization follows the SPARC V8 manual.
The fp/cp_exception traps may be either deferred or precise depending on implementation, for the
GRFPU and GRFPU-Lite implementations they are deferred. The data_store_error is delivered as a
deferred exception but is non-resumable and therefore classed as interrupting in above table.

Table 1486.Trap allocation and priority

Trap TT Pri Description Class
reset 0x00 1 Power-on reset Interrupting
data_store_error 0x2b 2 write buffer error during data store Interrupting
instruction_access_exception 0x01 3 Error or MMU page fault during instruction fetch Precise
privileged_instruction 0x03 4 Execution of privileged instruction in user mode Precise
illegal_instruction 0x02 5 UNIMP or other un-implemented instruction Precise
fp_disabled 0x04 6 FP instruction while FPU disabled Precise
cp_disabled 0x24 6 CP instruction while Co-processor disabled Precise
watchpoint_detected 0x0B 7 Hardware breakpoint match Precise
window_overflow 0x05 8 SAVE into invalid window Precise
window_underflow 0x06 8 RESTORE into invalid window Precise
mem_address_not_aligned 0x07 10 Memory access to un-aligned address Precise
fp_exception 0x08 11 FPU exception Deferred
cp_exception 0x28 11 Co-processor exception Deferred
data_access_exception 0x09 13 Access error during data load, MMU page fault Precise
tag_overflow 0x0A 14 Tagged arithmetic overflow Precise
division_by_zero 0x2A 15 Divide by zero Precise
trap_instruction 0x80 - 0xFF 16 Software trap instruction (TA) Precise
interrupt_level_15 0x1F 17 Asynchronous interrupt 15 Interrupting
interrupt_level_14 0x1E 18 Asynchronous interrupt 14 Interrupting
interrupt_level_13 0x1D 19 Asynchronous interrupt 13 Interrupting
interrupt_level_12 0x1C 20 Asynchronous interrupt 12 Interrupting
interrupt_level_11 0x1B 21 Asynchronous interrupt 11 Interrupting
interrupt_level_10 0x1A 22 Asynchronous interrupt 10 Interrupting
interrupt_level_9 0x19 23 Asynchronous interrupt 9 Interrupting
interrupt_level_8 0x18 24 Asynchronous interrupt 8 Interrupting
interrupt_level_7 0x17 25 Asynchronous interrupt 7 Interrupting
interrupt_level_6 0x16 26 Asynchronous interrupt 6 Interrupting
interrupt_level_5 0x15 27 Asynchronous interrupt 5 Interrupting
interrupt_level_4 0x14 28 Asynchronous interrupt 4 Interrupting
interrupt_level_3 0x13 29 Asynchronous interrupt 3 Interrupting
interrupt_level_2 0x12 30 Asynchronous interrupt 2 Interrupting
interrupt_level_1 0x11 31 Asynchronous interrupt 1 Interrupting
GRIP, Sep 2018, Version 2018.3 1233 www.cobham.com/gaisler

GRLIB IP Core

82.2.14 Single vector trapping (SVT)

Single-vector trapping (SVT) is an SPARC V8e option to reduce code size for embedded applications.
When enabled, any taken trap will always jump to the reset trap handler (%tbr.tba + 0). The trap type
will be indicated in %tbr.tt, and must be decoded by the shared trap handler. SVT is enabled by setting
bit 13 in %asr17. The model must also be configured with the VHDL generic svt = 1.

82.2.15 Address space identifiers (ASI)

In addition to the address, a SPARC processor also generates an 8-bit address space identifier (ASI),
providing up to 256 separate, 32-bit address spaces. During normal operation, the LEON4 processor
accesses instructions and data using ASI 0x8 - 0xB as defined in the SPARC manual. Using the LDA/
STA instructions, alternative address spaces can be accessed. The different available ASIs are
described in section 82.10.

82.2.16 Partial WRPSR

Partial write %PSR (WRPSR) is a SPARC V8e option that allows WRPSR instructions to only affect
the %PSR.ET field. If the processor has been implemented with support for partial WRPSR and the
WRPSR instruction’s rd field is non-zero, then the WRPSR write will only update ET.
The model must be configured with the VHDL generic pwrpsr = 1 for partial WRPSR to be sup-
ported. Implementations that do not support partial WRPSR will write the full %PSR register regard-
less of the value of the WRPSR instruction’s rd field.

82.2.17 Power-down

The processor can be configured to include a power-down feature to minimize power consumption
during idle periods. The power-down mode is entered by performing a WRASR instruction to
%asr19:
wr %g0, %asr19

During power-down, the pipeline is halted until the next interrupt occurs. Signals inside the processor
pipeline and caches are then static, reducing power consumption from dynamic switching.
Note: %asr19 must always be written with the data value zero to ensure compatiblity with future
extensions.
Note: This instruction must be performed in supervisor mode with interrupts enabled.
When resuming from power-down, the pipeline will be re-filled from the point of power-down and the
first instruction following the WRASR instruction will be executed prior to taking the interrupt trap.
Up to six instructions after the WRASR instruction will be fetched (possibly with cache miss if they
are not in cache) prior to fetching the trap handler.

82.2.18 Processor reset operation

The processor is reset by asserting the RESET input for at least 4 clock cycles. The following table
indicates the reset values of a subset of the registers which are affected by the reset..

Table 1487.Processor reset values

Register Reset value
Trap Base Register Trap Base Address field reset (value given by rstaddr VHDL generic)
PC (program counter) 0x0 (rstaddr VHDL generic)
nPC (next program counter) 0x4 (rstaddr VHDL generic + 4)
PSR (processor status register) ET=0, S=1
GRIP, Sep 2018, Version 2018.3 1234 www.cobham.com/gaisler

GRLIB IP Core

By default, the execution will start from address 0. This can be overridden by setting the rstaddr
VHDL generic in the model to a non-zero value. The reset address is always aligned on a 4 KiB
boundary. If rstaddr is set to 16#FFFFF#, then the reset address is taken from the signal IRQI.RST-
VEC. This allows the reset address to be changed dynamically.

82.2.19 Multi-processor systems

In multiprocessor systems, the ID of the processor on which the code is executing can be read out by
reading the index field of the LEON4 configuration register. Only processor 0 starts executing after
reset, the others are in power-down mode and are activated by a signal from the interrupt controller.

82.2.20 LEON-REX extension

The processor can be built with support for the LEON-REX addition to the SPARC instruction set,
allowing a more compact code representation than the regular SPARC machine code. The details of
the extension are given in a separate document. The extension is implemented when the rex VHDL
generic is set.
Detection of whether support is present can be done by checking the REXV field in the asr17 register
(see section 82.11.2). The REX support can be set to enabled, illegal or transparent mode via the
REXEN/REXILL bits in the asr17 register, after reset the default setting is illegal so any LEON-REX
code will cause an illegal instruction trap.
The extension is implemented as a decompressor internally inside the pipeline and does not affect the
behavior of the caches, MMU or AHB bus interfaces.
When the rex generic is set, the instruction trace buffer entries are changed so the two most significant
bits of the time tag are instead used to represent REX mode enabled status, and bit 1 of the program
counter. The instructions opcodes logged into the trace buffer are the regular SPARC opcodes that are
generated internally in the pipeline, not the LEON-REX opcodes that are in memory and cache.

82.3 Cache system

82.3.1 Overview

The LEON4 processor pipeline implements a Harvard architecture with separate instruction and data
buses, connected to two separate cache controllers. As long as the execution does not cause a cache
miss, the cache controllers can serve one beat of an instruction fetch and one data load/store per cycle,
keeping the pipeline running at full speed. Each cache controller can be configured with different
sizes and replacement policy.
On cache miss, the cache controller will assert a hold signal freezing the IU pipeline, and after deliv-
ering the data the hold signal is again lifted so execution continues. For accessing the bus, the cache
controllers share the same AHB connection to the on-chip bus. Certain parts of the MMU (table walk
logic, and depending on configuration also TLB buffer) are also shared between the two caches.
Another important component included in the data cache is the write buffer, allowing stores to pro-
ceed in parallel to executing instructions.
Cachability (memory areas that are cachable) for both caches is controlled through the AHB
plug&play address information or using a VHDL generic, see section 82.7.2.

82.3.2 Cache operation

Each cache controller has two main memory blocks, the tag memory and the data memory. At each
address in the tag memory, a number of cache entries, ways, are stored for a certain set of possible
memory addresses. The data memory stores the data for the corresponding ways.
For each way, the tag memory contains the following information:
GRIP, Sep 2018, Version 2018.3 1235 www.cobham.com/gaisler

GRLIB IP Core

• Valid bits saying if the entry contains valid data or is free. Both caches have a single valid bit for

each cache line.
• The tag, all bits of the cached memory address that are not implied by the set
• If MMU is enabled, the context ID of the cache entry
• If MMU is enabled with mmuen generic set to 2, SO bit (supervisor only access)
• If LRR is used, a bit specifying the replacement order
• If FT is enabled, check bits for detecting errors (depending on the fault-tolerance implementation

selected the check bits may or may not be visible to the user)
When a read from cache is performed, the tags and data for all cache ways of the corresponding set
are read out in parallel, the tags and valid bits are compared to the desired address and the matching
way is selected. In the hit case, this is all done in the same cycle to support the full execution rate of
the processor.
In the miss case, the cache will at first deliver incorrect data. However on the following cycle, a hold
signal will be asserted to prevent the processor from proceeding with that data. After the miss has
been processed, the correct data is injected into the pipeline using a memory data strobe (mds) signal,
and afterwards the hold signal can be released. If the missed address is cacheable, then the data read in
from the cache miss will be stored into the cache, possibly replacing one of the existing ways.
In the instruction streaming case, the processor pipeline is stepped one step for every received instruc-
tion. If the processor needs extra pipeline cycles to stretch a multi-cycle instruction or due to an inter-
lock condition (see section 82.2), or if the processor jumps/branches away, then the instruction cache
will hold the pipe, fetch the remainder of the cache line, and the pipeline will then proceed normally.

82.3.3 Cache configuration options

Each cache controller can be configured to implement a single-way (direct-mapped) cache or a multi-
way cache with set associativity of 2 - 4. The way size is configurable to 1 - 256 KiB, divided into
cache lines with 16 or 32 bytes of data.
In multi-way configurations, one of three replacement policies can be selected:
• Least-recently-used (LRU) - This maintains the order of usage for each set in the cache and

replaces the one which has was used last. The LRU information needs to be updated on every
cache hit and is therefore not stored with the tags but in separate flip flops. When the LRU option
is enabled the replacement policy becomes dynamically configurable between LRU, Least-
recently-replaced, pseudo-random and a direct-mapped mode.

• Least-recently-replaced (LRR) - This stores the index of the oldest replaced way along with the
tags and uses this to select which way to replace. This policy can only be implemented when the
number of ways is set to 2.

• Pseudo-random - This method samples a free-running counter to select which way to replace.
System jitter (AMBA bus delay variations) will help to randomize the selected value.

Note that when using locking together with LRU and more than two ways, this will add extra lookup
tables to determine which way to replace and this might become a critical path in the core.

82.3.4 Address mapping

The addresses seen by the CPU are divided into tag, index and offset bits. The index is used to select
the set in the cache, therefore only a limited number of cache lines with the same index part can be
stored at one time in the cache. The tag is stored in the cache and compared upon read.
GRIP, Sep 2018, Version 2018.3 1236 www.cobham.com/gaisler

GRLIB IP Core
82.3.5 Data cache policy

The data cache employs a write-through policy, meaning that every store made on the CPU will prop-
agate, via the write buffer, to the bus and there are no “dirty” lines in the cache that has not yet been
written out apart from what is in the buffer. The store will also update the cache if the address is pres-
ent, however a new line will not be allocated in that case.

82.3.6 Write buffer

The data cache contains a write buffer able to hold a single 8,16,32, or 64-bit write. For half-word or
byte stores, the stored data replicated into proper byte alignment for writing to a word-addressed
device. The write is processed in the background so the system can keep executing while the write is
being processed. However, any following instruction that requires bus access will block until the write
buffer has been emptied. Loads served from cache will however not block, due to the cache policy
used there can not be a mismatch between cache data and store buffer (the effect of this behavior on
SMP systems is discussed in section 82.7).
Since the processor executes in parallel with the write buffer, a write error will not cause an exception
to the store instruction. Depending on memory and cache activity, the write cycle may not occur until
several clock cycles after the store instructions has completed. If a write error occurs, the currently

Table 1488.LEON4 Data caching behavior

Operation In cache Cacheable Bus action Cache action Load data
Data load No No Read No change Bus

No Yes Read Line allocated/replaced Bus
Yes - None No change Cache

Data load with
forced cache
miss (ASI 1)

No No Read No change Bus
No Yes Read Line allocated/replaced Bus

Yes - Read Data updated Bus

Data load with
MMU bypass
(ASI 0x1C)

- - Read (phys addr) No change Bus

Data store No No Write (via buffer) No change (N/A)
No Yes Write (via buffer) No change (N/A)
Yes - Write (via buffer) Data updated (N/A)

Data store with
MMU bypass
(ASI 0x1C)

- - Write (via buffer,
phys addr)

No change (N/A)

Figure 229. Cache address mapping examples

04591031
Tag

034111231
OffsetTag

1 KiB way, 32 bytes/line

4 KiB way, 16bytes/line

OffsetIndex

Index
GRIP, Sep 2018, Version 2018.3 1237 www.cobham.com/gaisler

GRLIB IP Core

executing instruction will take trap 0x2b. This trap can be disabled using the DWT configuration (see
section 82.11.2).
Note: a 0x2b trap handler should flush the data cache, since a write hit would update the cache while
the memory would keep the old value due the write error

82.3.7 Operating with MMU

When MMU is enabled, the virtual addresses seen by the running code no longer correspond directly
to the physical addresses on the AHB bus. The cache uses tags based on the virtual addresses, as this
avoids having to do any additional work to translate the address in the most timing-critical hit case.
However, any time a bus access needs to be made, a translation request has to be sent to the MMU to
convert the virtual address to a physical address. For the write buffer, this work is included in the
background processing of the store. The translation request to the MMU may result in memory
accesses from the MMU to perform table walk, depending on the state of the MMU.
The MMU context ID is included in the cache tags in order to allow switching between multiple
MMU contexts mapping the same virtual address to different physical addresses. Note that the cache
does not detect aliases to the same physical address so in that case the same physical address may be
cached in multiple ways (also see snooping below).

82.3.8 Snooping

The data cache can be configured to support AHB bus snooping. The AHB bus the processor is con-
nected to, is monitored for writes from other masters to an address which is in the cache. If a write is
done to a cached address, that cache line is marked invalid and the processor will be forced to fetch
the (new) data from memory the next time it is read.
For using snooping together with the MMU, an extra tag memory storing physical tags must be added
to allow comparing with the physical address on the AHB bus (called separate snoop tags or physical
tags).
The processor can snoop on itself and invalidate any other cache lines aliased to the same physical
address in case there are multiple virtual mappings to the same physical address that is being written.
However, note that this does not happen until the write occurs on the bus so the other virtual aliases
will return the old data in the meantime.
Snooping requires the way size of the cache to be equal or smaller than the MMU page size, otherwise
the index into the physical and virtual tag RAM:s may not match, resulting in aliasing problems.

82.3.9 Enabling and disabling cache

Both I and D caches are disabled after reset. They are enabled by writing to the cache control register
(see 82.11.5). Before enabling the caches after a reset they must be flushed to ensure that all tags are
marked invalid.

82.3.10 Cache freeze

Each cache can be in one of three modes: disabled, enabled and frozen. If disabled, no cache operation
is performed and load and store requests are passed directly to the memory controller. If enabled, the
cache operates as described above. In the frozen state, the cache is accessed and kept in sync with the
main memory as if it was enabled, but no new lines are allocated on read misses.
If the DF or IF bit is set, the corresponding cache will be frozen when an asynchronous interrupt is
taken. This can be beneficial in real-time system to allow a more accurate calculation of worst-case
execution time for a code segment. The execution of the interrupt handler will not evict any cache
lines and when control is returned to the interrupted task, the cache state is identical to what it was
before the interrupt. If a cache has been frozen by an interrupt, it can only be enabled again by
GRIP, Sep 2018, Version 2018.3 1238 www.cobham.com/gaisler

GRLIB IP Core

enabling it in the CCR. This is typically done at the end of the interrupt handler before control is
returned to the interrupted task.

82.3.11 Flushing

Both instruction and data cache are flushed either by executing the FLUSH instruction, setting the FI/
FD bits in the cache control register, or by writing to certain ASI address spaces.
Cache flushing takes one clock cycle per cache set, during which the IU will not be halted, but during
which the caches are disabled. When the flush operation is completed, the cache will resume the state
(disabled, enabled or frozen) indicated in the cache control register. Diagnostic access to the cache is
not possible during a flush operation and will cause a data exception (trap=0x09) if attempted.
Note that while the SPARC V8 specifies only that the instructions pointed to by the FLUSH argument
will be flushed, the LEON4 will additionally flush the entire I and D cache (which is permitted by the
manual as the additional flushing only affects performance and not operation). While the LEON4 cur-
rently ignores the address argument, it is recommended for future compatibility to only use the basic
flush %g0 form if you want the full flush behavior.

82.3.12 Locking

Cache line locking is not supported by LEON4. The VHDL generics to enable this feature are present
in the LEON4 component declaration, but are unused.

82.3.13 Diagnostic access

The cache tag and data contents can be directly accessed for diagnostics and for locking purposes via
various ASI:s, see section 82.10.5.

82.3.14 Local scratch pad RAM

Local scratch pad RAM is not supported by LEON4. The VHDL generics to enable this feature are
present in the LEON4 component declaration, but are unused.

82.3.15 Fault tolerance support

The instruction and data cache can be protected a using mechanism implemented in the processor core
(byte-parity codes) or by using functionality from SYNCRAMFT and SYNCRAM_2PFT. The most
common option is to use parity protection that is provided by the processor. Use of the SYNCRAM
protection allows the processor to use technology specific protection and this can lead to savings in
resource utilization on target technologies that have built-in protection of SRAM blocks
On a detected error, the corresponding cache (I or D) will be flushed and the data will be refetched
from external memory. This is done transparently to execution, and incur the same timing penalty as a
regular cache miss. Enabling of the data protection is done through the ft VHDL generic and can only
be implemented in GRLIB-FT releases.

82.4 Memory management unit

82.4.1 Overview

A memory-management unit can optionally be enabled. This is compatible with the SPARC V8 refer-
ence MMU (SRMMU) architecture described inthe SPARC V8 manual, appendix H.
The MMU provides address translation of both instructions and data via page tables stored in mem-
ory.When needed, the MMU will automatically access the page tables to calculate the correct physical
address. The latest translations are stored in a special cache called the translation lookaside buffer
(TLB), also referred to as Page Descriptor Cache (PDC) in the SRMMU specification. The MMU also
GRIP, Sep 2018, Version 2018.3 1239 www.cobham.com/gaisler

GRLIB IP Core

provides access control, making it possible to “sandbox” unpriviledged code from accessing the rest
of the system.

82.4.2 MMU/Cache operation

When the MMU is disabled, the MMU is bypassed and the caches operate with physical address map-
ping. When the MMU is enabled, the cache tags store the virtual address and also include an 8-bit
context field. Both the tag address and context field must match to generate a cache hit. When mmuen
generic is set to 2 and MMU is enabled, the cache tags store a bit in addition to context called SO bit
(supervisor only access). The SO bit is used to check the access permission of the data and instruc-
tions that resides in the level-1 caches when MMU is enabled. Without SO bit, access permissions of
the load operations that hit in the data cache or the instruction accesses that hit in the instruction cache
will not be checked properly.
If cache snooping is used, physical tags (separate snoop tags) must be enabled for it to work when
address translation is used, see section 82.3.8.
Because the cache is virtually tagged, no extra clock cycles are needed in case of a cache load or
instruction cache hit. In case of miss or write buffer processing, a translation is required which might
add extra latency to the processing time, depending on TLB configuration and if there is a TLB miss.
The TLB can be configured in three different ways:
• Separate TLBs, slow access. TLB lookup adds 2 extra clock cycles.
• Shared TLB, slow access. TLB lookup adds 2 extra clock cycles, the TLB may be used by the

other cache, leading to up to 4 extra cycles lookup time in the worst case.
• Separate TLBs, fast access. TLB lookup is done at the same time as tag lookup and therefore add

no extra clock cycles.
If there is a TLB miss the page table must be traversed, resulting in up to four AMBA read accesses
and one possible writeback operation. See the SRMMU specification for the exact format of the page
table.
An MMU page fault will generate trap 0x09 for the D-cache and trap 0x01 for the I cache, and update
the MMU status registers according to table 1489 and the SRMMU specification. In case of multiple
errors, they fault type values are prioritized as the SRMMU specification requires. The cache and
memory will not be modified on an MMU page fault.

82.4.3 Translation look-aside buffer (TLB)

The MMU can be configured to use a shared TLB, or separate TLB for instructions and data. The
number of TLB entries (for each implemented TLB) can be set to 2 - 64 via VHDL generics. The

Table 1489.LEON4 MMU Fault Status Register, fault type values

Fault type SPARC V8 ref Priority Condition
6 Internal error 1 Never issued by LEON SRMMU
4 Translation error 2 AHB error response while performing table walk. Transla-

tions errors as defined in SPARC V8 manual. A translation
error caused by an AMBA ERROR response will over-
write all other errors. Other translation errors do no over-
write existing translation errors when FAV = 1.

1 Invalid address error 3 Page table entry for address was marked invalid
3 Privilege violation

error
4 Access denied based on page table and su status (see

SRMMU spec for how privilege and protection error are
prioritized)2 Protection error 5

0 None - No error (inside trap this means the trap occurred when
fetching the actual data)
GRIP, Sep 2018, Version 2018.3 1240 www.cobham.com/gaisler

GRLIB IP Core

organisation of the TLB and number of entries is not visible to the software and does thus not require
any modification to the operating system. The TLB can be flushed using an STA instruction to ASI
0x18, see section 82.10.6.

82.4.4 Variable minimum page sizes

The standard minimum page size for the SRMMU is 4 KiB. The minimum page size can also be con-
figured to 8, 16 or 32 KiB in order to allow for large data cache ways. The page size can either be con-
figured hard at implementation time or made software-configurable via the MMU control register.
The page sizes for level 1, 2 and 3 is seen in the table below:

The layouts of the indexes are chosen so that PTE page tables can be joined together inside one MMU
page without leaving holes.
Note that most operating systems are hard-coded for a specific page size and using one other than 4
KiB usually requires reconfiguration/recompilation of the operating system kernel.

82.5 Floating-point unit

The SPARC V8 architecture defines two (optional) co-processors: one floating-point unit (FPU) and
one user-defined co-processor. Two different FPU’s can be interfaced the LEON4 pipeline: Cobham
Gaisler’s GRFPU and GRFPU-Lite. Selection of which FPU to use is done through the VHDL
model’s VHDL generic map. The characteristics of the FPU’s are described in the next sections.

82.5.1 Cobham Gaisler’s floating-point unit (GRFPU)

The high-performance GRFPU operates on single- and double-precision operands, and implements all
SPARC V8 FPU operations including square root and division. The FPU is interfaced to the LEON4
pipeline using a LEON4-specific FPU controller (GRFPC) that allows FPU instructions to be exe-
cuted simultaneously with integer instructions. Only in case of a data or resource dependency is the
integer pipeline held. The GRFPU is fully pipelined and allows the start of one instruction each clock
cycle, with the exception is FDIV and FSQRT which can only be executed one at a time. The FDIV
and FSQRT are however executed in a separate divide unit and do not block the FPU from performing
all other operations in parallel.
All instructions except FDIV and FSQRT has a latency of three cycles, but to improve timing, the
LEON4 FPU controller inserts an extra pipeline stage in the result forwarding path. This results in a

Table 1490.MMU page size

Scheme Level-1 Level-2 Level-3
4 KiB (default) 16 MiB 256 KiB 4 KiB
8 KiB 32 MiB 512 KiB 8 KiB
16 KiB 64 MiB 1 MiB 16 KiB
32 KiB 256 MiB 2 MiB 32 KiB
GRIP, Sep 2018, Version 2018.3 1241 www.cobham.com/gaisler

GRLIB IP Core

latency of four clock cycles at instruction level. The table below shows the GRFPU instruction timing
when used together with GRFPC:

The GRFPC controller implements the SPARC deferred trap model, and the FPU trap queue (FQ) can
contain up to 7 queued instructions when an FPU exception is taken. When the GRFPU is enabled in
the model, the version field in %fsr has the value of 2.
The GRFPU does not handle denormalized numbers as inputs and will in that case cause an fp_excep-
tion with the FPU trap type set to unfinised_FPOP (tt=2). There is a non-standard mode in the FPU
that will instead replace the denormalized inputs with zero and thus never create this condition.

82.5.2 GRFPU-Lite

GRFPU-Lite is a smaller version of GRFPU, suitable for FPGA implementations with limited logic
resources. The GRFPU-Lite is not pipelined and executes thus only one instruction at a time. To
improve performance, the FPU controller (GRLFPC) allows GRFPU-Lite to execute in parallel with
the processor pipeline as long as no new FPU instructions are pending. Below is a table of worst-case
throughput of the GRFPU-Lite:

The GRLFPC controller implements the SPARC deferred trap model, but the FPU trap queue (FQ)
can contain only one queued instructions when an FPU exception is taken.When the GRFPU-Lite is
enabled in the model, the version field in %fsr has the value of 3.

82.6 Co-processor interface

No implementation for the user-defined co-processor is currently provided.

82.7 AMBA interface

82.7.1 Overview

The LEON4 processor has one AHB master interface. The types of AMBA accesses supported and
performed by the processor depend on the accessed memory area’s cachability, the maximum bus
width, if the corresponding cache is enabled, and if the accessed memory area has been marked as
being on the wide bus.

Table 1491.GRFPU instruction timing with GRFPC

Instruction Throughput Latency
FADDS, FADDD, FSUBS, FSUBD,FMULS, FMULD, FSMULD, FITOS, FITOD,
FSTOI, FDTOI, FSTOD, FDTOS, FCMPS, FCMPD, FCMPES. FCMPED 1 4
FDIVS 14 16
FDIVD 15 17
FSQRTS 22 24
FSQRTD 23 25

Table 1492.GRFPU-Lite worst-case instruction timing with GRLFPC

Instruction Throughput Latency
FADDS, FADDD, FSUBS, FSUBD,FMULS, FMULD, FSMULD, FITOS, FITOD,
FSTOI, FDTOI, FSTOD, FDTOS, FCMPS, FCMPD, FCMPES. FCMPED 8 8
FDIVS 31 31
FDIVD 57 57
FSQRTS 46 46
FSQRTD 65 65
GRIP, Sep 2018, Version 2018.3 1242 www.cobham.com/gaisler

GRLIB IP Core

Cacheable instructions are fetched with a burst of 32-bit accesses, or 64- or 128-bit accesses depend-
ing on the cache line size and the AHB bus width.
The HPROT signals of the AHB bus are driven to indicate if the accesses is instruction or data, and if
it is a user or supervisor access.

In case of atomic accesses, a locked access will be made on the AMBA bus to guarantee atomicity as
seen from other masters on the bus.

82.7.2 Cachability

Cachability for both caches can be controlled through the AHB plug&play address information or set
manually via the cached VHDL generic.
For plug’n’play based cachability, the memory mapping for each AHB slave indicates whether the
area is cachable, and this information is used to (statically) determine which access will be treated as
cacheable. This approach means that the cachability mapping is always coherent with the current
AHB configuration.
When the cached VHDL generic is not zero, it is treated as a 16-bit field, defining the cachability of
each 256 MiB address block on the AMBA bus. For example, a value of 16#00F3# will define cacha-
ble areas in 0 - 0x20000000 and 0x40000000 - 0x80000000.
In order to access the plug’n’play information, the processor takes the ahbso vector as input. Only the
static hconfig signals are used so the use of this input will be eliminated through constant propagation
during synthesis.

82.7.3 AMBA access size

Cacheable data is fetched in a burst of 64- or 128-bit accesses, depending on the cache line size and
AHB bus width. Data access to uncacheable areas may only be done with 8-, 16- and 32-bit accesses,
i.e. the LDD and STD instructions may not be used.
If an area is marked as cacheable then the data cache will automatically try to use 64- or 128-bit
accesses. This means that if 64- or 128-bit accesses need to be avoided, for example when performing
Flash programming or if a slave does not support 64- or 128-bit accesses and is mapped as cacheable
(this is a system design error), then software should only perform data accesses with using the cache
bypass ASI and no 64-bit loads (LDD) when accessing the slave. One example of how to use cache
bypass for loads is given by the following function:
static inline int load(int addr)
{
 int tmp;
 asm volatile(" lda [%1]0x1c, %0 "
 : "=r"(tmp)
 : "r"(addr)
);
 return tmp;
}

The type of AMBA accesses used, and supported by the processor, for a memory area depends on the
area’s cachability and the values of the wbmask and busw VHDL generics.

Table 1493.HPROT values

Type of access User/Super HPROT
Instruction User 1100
Instruction Super 1110
Data User 1101
Data Super 1111
MMU Any 1101
GRIP, Sep 2018, Version 2018.3 1243 www.cobham.com/gaisler

GRLIB IP Core

The area which supports 64- or 128-bit access is indicated in the wbmask VHDL generic. This VHDL
generic is treated as a 16-bit field, defining the 64/128-bit capability of each 256 MiB address block
on the AMBA bus. A value of 16#00F3# will thus define areas in 0 - 0x20000000 and 0x40000000 -
0x80000000 to be 64/128-bit capable. The maximum access size to be used in the area(s) marked with
WBMASK is determined by the busw VHDL generic.
Store instructions result in a AMBA access with size corresponding to the executed instruction, 64-bit
store instructions (STD) are always translated to 64-bit accesses (never converted into two 32-bit
stores as is done for LEON3). The table below indicates the access types used for instruction and data
accesses depending on cachability, wide bus mask (wbmask), and cache configuration.

82.7.4 Error handling

An AHB ERROR response received while fetching instructions will normally case an instruction
access exception (tt=0x1). However if this occurs during streaming on an address that is not needed,
the I cache controller will just not set the corresponding valid bit in the cache tag. If the IU later
fetches an instruction from the failed address, a cache miss will occur, triggering a new access to the
failed address.

Processor
operation

Accessed memory area is 32-bit only,
wbmask(address) = 0

Accessed memory area is on wide bus
wbmask(address) = 1

Area not
cacheable1

Area is cacheable1
Area not
cacheable1

Area is cacheable1

Cache
enabled2

Cache
disabled

Cache
enabled2

Cache
disabled

Instruction
fetch

Burst of 32-bit
read accesses

Burst of 32-bit read accesses Burst of 64- or 128-bit accesses5

Data load <=
32-bit

Read access
with size speci-
fied by load
instruction

Illegal3,6

Burst of 32-bit
accesses, soft-
ware may get
incorrect data

Read access
with size speci-
fied by load
instruction Read access

with size speci-
fied by load
instruction

Burst of 64- or
128-bit access-
es5

Read access
with size speci-
fied by load
instruction

Data load <=
32-bit with
ASI 0x01
Data load <=
32-bit with
ASI 0x1C

Read access with size specified
by load instruction6

Read access with size specified
by load instruction6

Data load 64-
bit (LDD)

Illegal4

Single 64-bit
access will be
performed

Illegal3

Burst of 64- or
128-bit access-
es5

Illegal3

Single 64-bit
access will be
performed

Illegal4

Single 64-bit
access will be
performed

Burst of 64- or
128-bit access-
es5

Single 64-bit
read access

Data store <=
32-bit

Store access with size specified by store instruction.

Data store 64-
bit (STD)

Illegal (64-bit store performed to 32-bit area)
64-bit store access will be performed.

64-bit store access

Cells with red text show unsupported combinations of settings for wide bus and cacheability. The LEON4 core requires
that all cacheable areas are can handle wide bus accesses (64- or 128-bit). Implementing the core with cacheable areas
where wbmask is 0 is unsupported. The table lists the behaviour in these cases for completeness.
1 Cachability is determined by the cached VHDL generic, if cached is zero then cachability is determined via AMBA PnP.
2 Bus accesses for reads will only be made on L1 cache miss, load with forced cache miss or loads with cache bypass.
3 LEON4 is designed to always make use of wide bus accesses for cacheable data. Cacheable data can only be handled
with 64- or 128 bit accesses.
4 Data accesses to uncachable areas may only be done with 8-, 16- and 32-bit accesses.
5 64- or 128-bit accesses depending on busw VHDL generic.
6 Loads with cache bypass (ASI 0x1C) can be used to perform single accesses to cachable slaves.
GRIP, Sep 2018, Version 2018.3 1244 www.cobham.com/gaisler

GRLIB IP Core

An AHB ERROR response while fetching data into the data cache will normally trigger a data_ac-
cess_exception trap (tt=0x9). If the error was for a part of the cache line other than what was currently
being requested by the pipeline, a trap is not generated and the valid bit for that line is not set.
An ERROR response during an MMU table walk will lead the MMU to set the fault type to Internal
error (1) and generate an instruction or data access exception, depending on which type of access that
caused the table walk.

82.7.5 Snoop port

For the snooping logic, the LEON4 has an ahbsi input. For correct function, this must be tied to the
same AHB bus that the master interface. It is not possible to snoop on another bus or to add extra
pipeline registers to the snoop port, because the snoop logic must be in sync with the master interface.

82.8 Multi-processor system support

This section gives an overview of issues when using the LEON4 in multi-processor configuration.
Using the features described in earlier sections together with a multiprocessor capable IRQ controller
(IRQMP, IRQ(A)MP), the LEON4 processor can support symmetric multiprocessing (SMP) configu-
rations with shared memory, with up to 16 processors attached to the same AHB bus.
Enabling SMP features (sleeping on reset for CPU 1-N) is done by setting the smp VHDL generic to 1
or higher. Cache snooping should always be enabled in SMP systems to maintain data cache coher-
ency between the processors.

82.8.1 Start-up

In multiprocessor systems, only the first processor will start after reset and all other processors will
remain halted in power-down mode. After the system has been initialized, the remaining processors
can be started by writing to the ‘multiprocessor status register’, located in the multiprocessor interrupt
controller. The halted processors start executing from the reset address (0 or rstaddr VHDL generic,
see section 82.2.18).
An application in a multiprocessor system can determine which processor it is executing on by check-
ing the processor index field in the LEON4 configuration register (%asr17). As all processors typi-
cally have the same reset start address value, boot software must check the processor index and
perform processor specific setup (e.g. initialization of stack pointer) based on the value of the proces-
sor index.
In recent versions of the LEON4, and if the IRQ controller is configured with the extended boot regis-
ter extension, it is possible for one processor to monitor and reboot another processor.via the interrupt
controller. This requires careful software design.
For earlier versions of the LEON4, this is not supported and if software detects that one processor is
unresponsive and needs to restart the processor then the full system should be reset, for example by
triggering the system’s watchdog, if implemented. In order for software to monitor that all processors
in a system are up and running it is recommended to implement a heartbeat mechanism in software.
While it is possible to have more fine-grained control over processor behaviour via the Debug Sup-
port Unit (if implemented) this is not recommended as the debug support unit is typically disabled in
production mode.

82.8.2 Shared memory model

Each processor core has it’s own separate AHB master interface and the AHB controller will arbitrate
between them to share access to the on-chip bus.
If caches are not used, the processors will form a sequentially consistent (SC) system, where every
processor will execute it’s loads, stores and atomics to memory in program order on the AHB bus and
GRIP, Sep 2018, Version 2018.3 1245 www.cobham.com/gaisler

GRLIB IP Core

the different processors operations will be interleaved in some order through the AHB arbitration. The
shared memory controller AHB slave is assumed to not reorder accesses so a read always returns the
latest written value to that location on the bus.
When using caches with snooping (and with separate physical tags, also called separate snoop tags, if
using the MMU), the shared memory will act according to the slightly weaker SPARC Total Store
Order (TSO) model. The TSO model is close to SC, except that loads may be reordered before stores
coming from the same CPU. The stores and atomics are conceptually placed in a FIFO (see the dia-
grams in the SPARC manual) and the loads are allowed to bypass the FIFO if they are not to the same
address as the stores. Loaded data from other addresses may therefore be either older or newer, with
respect to the global memory order, than the stores that have been performed by the same CPU.
In the LEON4 case this happens because cache hits are served without blocking even when there is
data in the write buffer. The loaded data will always return the stored data in case of reading the same
address, because if it is cached, the store updates the cache before being put in the write buffer, and if
it was not in cache then the load will result in a miss which waits for the write buffer to complete.
Loaded data from a different address can be older than the store if it is served by cache before the
write has completed, or newer if it results in a cache miss or if there is a long enough delay for the
store to propagate to memory before reading.
See relevant literature on shared memory systems for more information. These details are mainly of
concern for complex applications using lock-free data structures such as the Linux kernel, the recom-
mendation for applications is to instead avoid concurrent access to shared structures by using
mutexes/semaphores based on atomic instructions, or to use message passing schemes with one-direc-
tional circular buffers.

82.8.3 Memory-mapped hardware

Hardware resources (IP cores) are normally memory mapped on uncacheable address spaces. They
will be accessible from all the CPU:s in a sequentially consistent manner. Since software drivers usu-
ally expect to be “alone” accessing the IP core and the IP cores register interfaces are not designed for
concurrent use by multiple masters, using a bare-C application designed for single-processor usage on
multiple cores at the same time will generally not work. This can be solved by partitioning the appli-
cations so that each IP core is only accessed by one of the CPU:s. This partitioning also need to be
done between the interrupts so the IP core’s interrupts will be received by the correct processor.

82.9 Fault tolerance

82.9.1 Overview

The LEON3 processor can be enhanced with fault-tolerance against SEU errors (referred to as
LEON3FT). The fault-tolerance is focused on the protection of on-chip RAM blocks, which are used
to implement IU register file and the cache memory.
The LEON4 with FT features is licensed separately, and in the commercial LEON4 releases setting
the FT VHDL generic will not have any effect.

82.9.2 Integer register file protection

The SEU protection for the integer unit register file can be implemented in two different ways,
depending on target technology and available RAM blocks. The SEU protection scheme is selected
GRIP, Sep 2018, Version 2018.3 1246 www.cobham.com/gaisler

GRLIB IP Core

during synthesis, using the ft VHDL generic. Table 1494 below shows the implementation character-
istics of the four possible SEU protection schemes.

An uncorrectable error in the IU register file will cause trap 0x20 (r_register_access_error). A dedi-
cated counter exists in ASR16 to count the number of register file corrections.
The register file is implemented using scheme 0 if the regfile_4p_infer array is set for the selected
memory technology in the techmap library, or if bits 16-17 of the memtech VHDL generic are set.

82.9.3 Floating-point register file protection

The FPU register file is implemented with registers.
Note that the restrictions on protection scheme is not enforced, so it is recommended to simulate the
configuration with error injection to ensure that the scheme chosen is functioning correctly. It is also
recommended to confirm in the netlist that the expected register file type (memory block or flip flops)
was implemented.

82.9.4 Cache protection

Each word in the tag or data memories is normally protected by four check bits. Use of the SYN-
CRAM protection allows the processor to use technology specific protection and this can lead to sav-
ings in resource utilization on target technologies that have built-in protection of SRAM blocks. If
separate physical tags for snooping are enabled, the physical tag memory is also protected. An error
during cache access will cause an invalidation of the cache, and a re-execution of the failing instruc-
tion. This will ensure that the complete cache line (tags and data) is refilled from external memory.
If snooping is enabled, an error detected in the tags while snooping a write to that set will lead to that
cache data being invalidated (since the tag before the error might have matched the written address).

Table 1494.Integer unit SEU protection schemes

ID Implementation Description Usage
0 No protection (hardening at

lower level)
No error checking, equivalent to non-FT version. Regis-
ter file hardness must be ensured separately, for example
by mapping the register file memories to SEU hardened
flip-flops.

IU

4 Memory triplication Memory blocks triplicated and bit by bit voted on out-
puts. Correction on-the-fly without pipeline restart, no
error injection interface or error counters. Note that care
must be taken by the implementer to ensure that the
TMR is not collapsed in optimization by synthesis tools.

IU

6 Technology specific Implement register files using native ECC capability of
the technology (via syncram_2pft in the techmap
library). Only valid for subset of (FPGA) technologies.
Correction on-the-fly without pipeline restart. Error
injection and error counters may be supported depending
on technology.
Technology specific protection is further documented in
the GRLIB-FT User’s Manual (grlib-ft.pdf).

IU
GRIP, Sep 2018, Version 2018.3 1247 www.cobham.com/gaisler

GRLIB IP Core

82.10 ASI assignments

82.10.1 Summary

The table shows the ASI usage for LEON.

82.10.2 ASI 0x1, Forced cache miss

ASI 1 is used for systems without cache coherency, to load data that may have changed in the back-
ground, for example by DMA units. It can also be used for other reasons, for example diagnostic pur-
poses, to force a AHB load from memory regardless of cache state.
The address mapping of this ASI is matched with the regular address space, and if MMU is enabled
then the address will be translated normally. Stores to this ASI will perform the same way as ordinary
data stores.
For situations where you want to guarantee that the cache is not modified by the access, the MMU and
cache bypass ASI, 0x1C, can be used instead.

82.10.3 ASI 0x2, System control registers

ASI 2 contains a few control registers that have not been assigned as ancillary state registers. These
should only be read and written using 32-bit LDA/STA instructions.

Table 1495.ASI usage

ASI Usage

0x01 Forced cache miss.

0x02 System control registers (cache control register)

0x08, 0x09 Not supported

0x0A Access level is determined by ‘S’ bit in %psr when MMU is enabled and mmuen
generic is set to 1
User Access when MMU is enabled and mmuen generic is set to 2
Sets HPROT to user data regardless of MMU

0x0B Access level is determined by ‘S’ bit in %psr when MMU is enabled and mmuen
generic is set to 1
Supervisor Access when MMU is enabled and mmuen generic is set to 2, otherwise
normal cache access
Sets HPROT to supervisor data regardless of MMU

0x0C Instruction cache tags

0x0D Instruction cache data

0x0E Data cache tags

0x0F Data cache data

0x0F Register file diagnostic parity read-out (FT only)

0x10 Flush instruction cache (and also data cache when system is implemented with MMU)

0x11 Flush data cache

0x13 MMU only: Flush instruction and data cache

0x14 MMU only: MMU diagnostic D context cache access (deprecated, do not use)

0x15 MMU only: MMU diagnostic I cache context access (deprecated, do not use)

0x18, 0x03 MMU only: Flush TLB and I/D cache

0x19, 0x04 MMU only: MMU registers

0x1C MMU and cache bypass

0x1D MMU only: MMU diagnostic access (deprecated, do not use)

0x1E MMU only: MMU snoop tags diagnostic access
GRIP, Sep 2018, Version 2018.3 1248 www.cobham.com/gaisler

GRLIB IP Core

All cache registers are accessed through load/store operations to the alternate address space (LDA/
STA), using ASI = 2. The table below shows the register addresses:

82.10.4 ASI 0x8-0xB, Data/Instruction

These ASIs are assigned by the SPARC manual for normal data and instruction fetches.
Accessing the instruction ASIs explicitly via LDA/STA instructions is not supported in the LEON4
implementation.
Using LDA/STA with the user/supervisor data ASI (0xA,0xB) will behave as the affect the HPROT
signal emitted by the processor according to section 82.7.1. If mmuen generic is set to 2, MMU access
control will be done according to the indicated user or supervisor ASI inline with reference MMU
description in Sparc V8 manual. If mmuen generic is set to 1, MMU access control will be done
depending on the SU bit in the %psr register.

82.10.5 ASI 0xC-0xF, ICache tags/data, DCache tags/data

ASI 0xC-0xF provide diagnostic access to the instruction cache memories. These ASIs should only be
accessed by 32-bit LDA/STA instructions. These ASIs can not be used while a cache flush is in prog-
ress.
The same address bits used normally as index are used to index the cache also in the diagnostic
access. For a multi-way cache, the lowest bits above the index part, the lowest bits that would nor-
mally be used as tag, are used to select which way to read/write. The remaining address bits are don’t
cares, leading the address map to wrap around.
If fault tolerance is enabled, the tag parity, context and SO bits can also be read out through these
ASIs by setting the PS bit in the cache configuration register. When this bit is set, the parity data is
read instead of the ordinary data. When writing the tag bits, the context bits will always be written
with the current context in the MMU control register. The SO bit in the tag will be written with the SO
bit value in the MMU control register (SO bit in MMU control register only exists in the tag when
mmuen generic is set to 2). The parity to be written is calculated based on the supply write-value, the
context ID and optionally SO bit (if mmuen is set to 2) in the MMU control register. The parity bits
can be modified via the TB field in the cache control register.

Table 1496.ASI 2 (system registers) address map

Address Register
0x00 Cache control register
0x04 Reserved
0x08 Instruction cache configuration register
0x0C Data cache configuration register
GRIP, Sep 2018, Version 2018.3 1249 www.cobham.com/gaisler

GRLIB IP Core
Field Definitions:
Address Tag (ATAG) - Contains the tag address of the cache line.
LRR - Used by LRR algorithm to store replacement history, otherwise 0.
Valid (V) - When set, the cache line contains valid data. The LEON4 caches only have one valid bit
per cache line which is replicated for the whole 8-bit diagnostic field to keep software backward com-
patibility.
CTXID - Context ID, used when MMU is enabled.
SO - (Supervisor only access) It is used when MMU is enabled and mmuen (see Sec. 82.15) generic is
set to 2. This bit is set to 1 when the associated page with the tag has access permission of 6 or 7
(supervisor access only) for other access permissions it is set to 0. (For detailed information about
access permissions refer to the reference MMU part of the Sparc V8 manual)
TPAR - Byte-wise parity of tag bits, context ID parity is XOR:ed into bit 3.
DPAR - Byte-wise parity of data bits

NOTE: only the necessary bits will be implemented in the cache tag, depending on the cache configu-
ration. As an example, a 4 KiB cache with 16 bytes per line would only have four valid bits and 20 tag
bits. The cache rams are sized automatically by the RAM generators in GRLIB.

82.10.6 ASI 0x10, 0x11, 0x13, 0x18 - Flush

For historical reasons there are multiple ASIs that flush the cache in different ways.
Writing to ASI 0x10 will flush the entire instruction cache. If MMU is implemented in the core, both
instruction and data cache will be flushed.
Writing to ASI 0x11 will flush the data cache only.

Figure 230. ASI 0xC-0xF address mapping and data layout

04591031
(don’t care)

Example for 1 KiB way, 32 bytes/line, 4 ways

Offset Index
11

Way
12

04591031
(don’t care) (don’t care)Index

11
Way

12

Data diagnostic ASIs (ASI 0xD,F):

Tag diagnostic ASIs (ASI 0xC,E):

Addr:

07891031
VALIDATAG LRR 0Data:

031

Addr:

Data: Cached data word

031531
TPARCTXIDParity:

1623
ReservedReserved

4

0331
DPARParity: Reserved

4

SO
14
GRIP, Sep 2018, Version 2018.3 1250 www.cobham.com/gaisler

GRLIB IP Core

Writing to ASI 0x13 will flush the instruction cache and data cache. Only available when MMU is
implemented.
Writing to ASI 0x18 and 0x03, which is available only if MMU is implemented, will flush both the
MMU TLB, the I-cache, and the D-cache. This will block execution for a few cycles while the TLB is
flushed and then continue asynchronously with the cache flushes continuing in the background.

82.10.7 ASI 0x19 and 0x04 - MMU registers

This ASI provides access to the MMU:s control and status registers. The following MMU registers
are implemented:

82.10.8 ASI 0x1C - MMU and cache bypass

Performing an access via ASI 0x1C will act as if MMU and cache were disabled. The address will not
be translated and the cache will not be used or updated by the access.

82.10.9 ASI 0x1E - MMU physical/snoop tags diagnostic access

If the MMU has been configured to use separate snoop (physical) tags, they can be accessed via ASI
0x1E. This is primarily useful for RAM testing, and should not be performed during normal opera-
tion. This ASI is addressed the same way as the regular diagnostic ASI:s 0xC, 0xE, and the read/writ-
ten data has the layout as shown below (example for a 1 KiB/way data cache):

[31:10] Address tag. The physical address tag of the cache line.
[1]: Parity. The odd parity over the data tag. Only used when processor is implemented with fault-tolerance features.
[0]: Invalid. When set, the cache line is not valid and will cause a cache miss if accessed by the processor. Only present

if fast snooping is enabled.

Table 1497.MMU registers (ASI = 0x19)

Address Register
0x000 MMU control register
0x100 Context pointer register
0x200 Context register
0x300 Fault status register
0x400 Fault address register

Figure 231. Snoop cache tag layout

09 2 11031
ATAG PAR IV“0000”
GRIP, Sep 2018, Version 2018.3 1251 www.cobham.com/gaisler

GRLIB IP Core

82.11 Configuration registers

82.11.1 PSR, WIM, TBR registers

The %psr, %wim, %tbr registers are implemented as required by the SPARC V8 manual.

Table 1498.LEON4 Processor state register (%psr)
31 28 27 24 23 20 19 16

IMPL VER ICC RESERVED

0xF 0x3 0 0

r r r r

15 14 13 12 11 8 7 6 5 4 0

RESERVED EC EF PIL S PS ET CWP

0 0 0 0 1 1 0 0

r r rw* rw rw rw rw rw

31:28 Implementation ID (IMPL), read-only hardwired to “1111” (15)
27:24 Implementation version (VER), read-only hardwired to “0011” (3) for LEON3/LEON4.
23:20 Integer condition codes (ICC), see sparcv8 for details
19:14 Reserved
13 Enable coprocessor (EC), read-only if coprocessor not implemented
12 Enable floating-point (EF), read-only if FPU not implemented.
11:8 Processor interrupt level (PIL) - controls the lowest IRQ number that can generate a trap
7 Supervisor (S)
6 Previous supervisor (PS), see sparcv8 for details
5 Enable traps (ET)
4:0 Current window pointer

Table 1499.LEON4 Window invalid mask (%wim)
31 NWIN NWIN-1 0

RESERVED WIM

0 NR

r rw

Table 1500.LEON4 Trap base address regsiter (%tbr)
31 12 11 4 3 0

TBA TT R

* 0 0

rw rw r

31:12 Trap base address (TBA) - Top 20 bits used for trap table address
11:4 Trap type (TT) - Last taken trap type. Read only.
3:0 Always zero, read only
GRIP, Sep 2018, Version 2018.3 1252 www.cobham.com/gaisler

GRLIB IP Core

82.11.2 ASR17, LEON4 configuration register

The ancillary state register 17 (%asr17) provides information on how various configuration options
were set during synthesis. This can be used to enhance the performance of software, or to support enu-
meration in multi-processor systems. There are also a few bits that are writable to configure certain
aspects of the processor.

Table 1501.LEON4 configuration register (%asr17)
31 30 29 28 27 26 25 24 23 22 21 18 17 16

INDEX DBP RES DBPM REXV REXM RESERVED CS CF[1]

* 0 0 0 * * 0 * *

r rw r rw r rw* r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CF[0] DWT SVT LD FPU M V8 NWP NWIN

* * 0 0 * * * * *

r rw rw* r r r r r r

31:28 Processor index (INDEX) - In multi-processor systems, each LEON core gets a unique index to sup-
port enumeration. The value in this field is identical to the hindex VHDL generic parameter in the
VHDL model.

27 Disable Branch Prediction (DBP) - Disables branch prediction when set to ‘1’. Default value is ‘0’.
26 Reserved for future implementations
25 Disable Branch Prediction on instruction cache misses (DBPM) - When set to ‘1’ this avoids instruc-

tion cache fetches (and possible MMU table walk) for predicted instructions that may be annullated.
This feature is on by default (reset value ‘1’).

24:23 REX version (REXV) - read-only field that is set to ‘00’ if REX is not implemented, ‘01’ if REX is
implemented, ‘10’ and ‘11’ values are reserved for future implementations

22:21 REX mode (REXM) - set to ‘00’ for REX enabled, ‘01’ for REX illegal and ‘10’ for REX transpar-
ent mode. Writable with reset value ‘01’ when REX support has been enabled

20:18 Reserved for future implementations
17 Clock switching enabled (CS). If set, switching between AHB and CPU frequency is available.
16:15 CPU clock frequency (CF). CPU core runs at (CF+1) times AHB frequency.
14 Disable write error trap (DWT). When set, a write error trap (tt = 0x2b) will be ignored. Set to zero

after reset.
13 Single-vector trapping (SVT) enable. If set, will enable single-vector trapping. Fixed to zero if SVT

is not implemented. Set to zero after reset.
12 Load delay. 1-cycle load delay i s used.
11:10 FPU option. “00” = no FPU; “01” = GRFPU; “11” = GRFPU-Lite
9 If set, the optional multiply-accumulate (MAC) instruction is available
8 If set, the SPARC V8 multiply and divide instructions are available
7:5 Number of implemented watchpoints (NWP) (0 - 4)
4:0 Number of implemented registers windows corresponds to NWIN+1.
GRIP, Sep 2018, Version 2018.3 1253 www.cobham.com/gaisler

GRLIB IP Core

82.11.3 ASR22-23 - Up-counter

The ancillary state registers 22 and 23 (%asr22-23) contain an internal up-counter that can be read by
software without causing any access on the on-chip AMBA bus. The number of available bits in the
counter is implementation dependent and is decided by the number of counter bits in the DSU time
tag counter. %ASR23 contains the least significant part of the counter value and %ASR22 contains
the most significant part. In case the implementation does not contain a debug support unit connected
to the processor then the up-counter is not available (value is always zero).
The time tag value accessible in these registers is the same time tag value used for the system’s trace
buffers (if implemented) and for all processors connected to the same debug support unit. The time
tag counter will increment when any of the trace buffers is enabled, or when the time tag counter is
forced to be enabled via the DSU register interface, or when any processor has its %ASR22 Disable
Up-counter (DUCNT) field set to zero.
The up-counter value will increment even if all processors have entered power-down mode.

Table 1502.LEON4 up-counter MSbs (%ASR22)
31 30 0

DUCNT UPCNT(62:32)

31 Disable Up-counter (DUCNT) - Disable upcounter. When set to ‘1’ the up-counter may be disabled.
When cleared, the counter will increment each processor clock cycle. Default (reset) value is ‘1’.

30:0 Counter value (UPCNT(62:32)) - Most significant bits of internal up-counter. Read-only.

Table 1503.LEON4 up-counter LSbs (%ASR23)
31 0

UPCNT(31:0)

31:0 Counter value (UPCNT(31:0)) - Least significant bits of internal up-counter. Read-only.
GRIP, Sep 2018, Version 2018.3 1254 www.cobham.com/gaisler

GRLIB IP Core

82.11.4 ASR24-31, Hardware watchpoint/breakpoint registers

Each breakpoint consists of a pair of ancillary state registers (%asr24/25, %asr26/27, %asr28/29 and
%asr30/31) registers; one with the break address and one with a mask:

WADDR - Address to compare against
WMASK - Bit mask controlling which bits to check (1) or ignore (0) for match
IF - break on instruction fetch from the specified address/mask combination
DL - break on data load from the specified address/mask combination
DS - break on data store to the specified address/mask combination
Note: Setting IF=DL=DS=0 disables the breakpoint
When there is a hardware watchpoint match and DL or DS is set then trap 0x0B will be generated.
Hardware watchpoints can be used with or without the LEON4 debug support unit (DSU) enabled.

01231

DL

WADDR[31:2]%asr24, %asr26
%asr28, %asr30

0231
DSWMASK[31:2]%asr25, %asr27

%asr29, %asr31

Figure 232. Watch-point registers

IF

0 0

rw rw

0 0

r rw

NR

rw

NR

rw
GRIP, Sep 2018, Version 2018.3 1255 www.cobham.com/gaisler

GRLIB IP Core

82.11.5 Cache control register

The cache control register located at ASI 0x2, offset 0, contains control and status registers for the I
and D cache.

Table 1504.LEON4 Cache Control Register (CCR)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R STE R PS TB DS FD FI FT R ST R

0 * 0 * 0 0 0 0 * 0 * 0

r rw* r rw* rw* rw rw rw r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IP DP ITE IDE DTE DDE DF IF DCS ICS

0 0 0 0 0 0 0 0 0 0

r r rw* rw* rw* rw* rw* rw* rw rw

31 Reserved
30 Snoop Tag Flag (STE) - Set when parity error is detected in the data physical (snoop) tags. Only

available if fault-tolerance is enabled (FT field in this register is non-zero).
29 Reserved
28 Parity Select (PS) - if set diagnostic read will return 4 check bits in the lsb bits, otherwise tag or data

word is returned. Only available if fault-tolerance is enabled (FT field in this register is non-zero).
When the technology specific FT scheme is implemented (FT field is “10”) then PS selects if cor-
rectable or uncorrectable errors should generate cache misses. The recommended setting is to use
PS=’0’ that treats uncorrectable RAM errors in the same way as parity errors would traditionally be
handled.

27:24 Test Bits (TB) - if set, check bits will be xored with test bits TB during diagnostic write. Only avail-
able if fault-tolerance is enabled (FT field in this register is “01”).

23 Data cache snoop enable (DS) - if set, will enable data cache snooping.
22 Flush data cache (FD). If set, will flush the data cache. Always reads as zero.
21 Flush Instruction cache (FI). If set, will flush the instruction cache. Always reads as zero.
20:19 FT scheme (FT) - “00” = no FT, “01” = 4-bit checking implemented, “10” - Technology-specific

protection implemented.
18 Reserved for future implementations
17 Separate snoop tags (ST). This read-only bit is set if separate physical/snoop tags are implemented.
16 Reserved
15 Instruction cache flush pending (IP). This bit is set when an instruction cache flush operation is in

progress
14 Data cache flush pending (DP). This bit is set when an data cache flush operation is in progress.
13:12 Instruction Tag Errors (ITE) - Number of detected parity errors in the instruction tag cache. Only

available if fault-tolerance is enabled (FT field in this register is non-zero).
11:10 Instruction Data Errors (IDE) - Number of detected parity errors in the instruction data cache. Only

available if fault-tolerance is enabled (FT field in this register is non-zero).
9:8 Data Tag Errors (DTE) - Number of detected parity errors in the data tag cache. Only available if

fault-tolerance is enabled (FT field in this register is non-zero).
7:6 Data Data Errors (DDE) - Number of detected parity errors in the data data cache. Only available if

fault-tolerance is enabled (FT field in this register is non-zero).
5 Data Cache Freeze on Interrupt (DF) - If set, the data cache will automatically be frozen when an

asynchronous interrupt is taken.
4 Instruction Cache Freeze on Interrupt (IF) - If set, the instruction cache will automatically be frozen

when an asynchronous interrupt is taken.
3:2 Data Cache state (DCS) - Indicates the current data cache state according to the following: X0= dis-

abled, 01 = frozen, 11 = enabled.
1:0 Instruction Cache state (ICS) - Indicates the current data cache state according to the following: X0=

disabled, 01 = frozen, 11 = enabled.
GRIP, Sep 2018, Version 2018.3 1256 www.cobham.com/gaisler

GRLIB IP Core

82.11.6 I-cache and D-cache configuration registers

The configuration of the two caches if defined in two registers: the instruction and data configuration
registers. These registers are read-only, except for the REPL field that may be writable, and indicate
the size and configuration of the caches. They are located under ASI 2 at offset 8 and 12.

82.11.7 MMU control register

The MMU control register is located in ASI 0x19 offset 0, and the layout can be seen in table 1506.

Table 1505.LEON4 Cache configuration register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CL R REPL SN WAYS WSIZE LR LSIZE

0 0 * * * * 0 *

r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED M SO RESERVED

0 * * 0

r r r r

31 Cache locking (CL). Set if cache locking is implemented (always zeo)
30:28 Cache replacement policy (REPL). 00 - no replacement policy (direct-mapped cache), 01 - least

recently used (LRU), 10 - least recently replaced (LRR), 11 - random. This field is writable when
LRU policy is implemented.

27 Cache snooping (SN). Set if snooping is implemented.
26:24 Cache associativity (WAYS). Number of ways in the cache: 000 - direct mapped, 001 - 2-way asso-

ciative, 010 - 3-way associative, 011 - 4-way associative
23:20 Way size (WSIZE). Indicates the size (KiB) of each cache way. Size = 2SIZE

19 Local ram (LR). Set if local scratch pad ram is implemented. (Always zero for LEON4)
18:16 Line size (LSIZE). Indicated the size (words) of each cache line. Line size = 2LSZ

15:4 RESERVED
3 MMU present (M). This bit is set to ‘1’ if an MMU is present.
2 SO (supervisor only access) bit is present. This bit is set if mmuen generic is set to 2.
1:0 Reserved for future implementations

Table 1506.LEON4 MMU control register
31 28 27 24 23 21 20 18 17 16

IMPL VER ITLB DTLB PSZ

0 1 * * 0

r r r r rw*

15 14 13 2 1 0

TD ST RESERVED NF E

NR 0 0 0 0

rw* r r rw rw

31:28 MMU Implementation ID. Hardcoded to “0000”
GRIP, Sep 2018, Version 2018.3 1257 www.cobham.com/gaisler

GRLIB IP Core
82.11.8 MMU context pointer and context registers

The MMU context pointer register is located in ASI 0x19 offset 0x100 and the MMU context register
is located in ASI 0x19 offset 0x200. They together determine the location of the root page table
descriptor for the current context. Their definition follows the SRMMU specification in the SPARC
V8 manual with layouts shown below..

In the LEON4, the context bits are OR:ed with the lower MMU context pointer bits when calculating
the address, so one can use less context bits to reduce the size/alignment requirements for the context
table.

82.11.9 MMU fault status register

The MMU fault status register is located in ASI 0x19 offset 0x300, and the definition is based on the
SRMMU specification in the SPARC V8 manual. The SPARC V8 specifies that the fault status regis-

27:24 MMU Version ID. Hardcoded to “0001”.
23:21 Number of ITLB entries. The number of ITLB entries is calculated as 2ITLB. If the TLB is shared

between instructions and data, this field indicates to total number of TLBs.
20:18 Number of DTLB entries. The number of DTLB entries is calculated as 2DTLB. If the TLB is shared

between instructions and data, this field is zero.
17:16 Page size. The size of the smallest MMU page. 0 = 4 Kib; 1 = 8 Kib; 2 = 16 Kib; 3 = 32 Kib. If the

page size is programmable, this field is writable, otherwise it is read-only.
15 TLB disable. When set to 1, the TLB will be disabled and each data access will generate an MMU

page table walk. See Section 82.12.3 for detailed information.
14 Separate TLB. This bit is set to 1 if separate instruction and data TLBs are implemented
13 This bit only exists if mmuen generic is set to 2. This bit is written to the SO (supervisor only access)

part of the TAG during diagnostic writes.
13:2 Reserved for future implementations
1 No Fault. When NF= 0, any fault detected by the MMU causes FSR and FAR to be updated and

causes a fault to be generated to the processor. When NF= 1, a fault on an access to ASI 9 is handled
as when NF= 0; a fault on an access to any other ASI causes FSR and FAR to be updated but no fault
is generated to the processor.

0 Enable MMU. 0 = MMU disabled, 1 = MMU enabled.

Table 1507.LEON4 MMU context pointer register
31 2 1 0

CONTEXT TABLE POINTER RES

NR 0

rw r

31:2 Context table pointer, physical address bits 35:6 (note address is shifted 4 bits)
1:0 Reserved, always 0

Table 1508.LEON4 MMU context register
31 8 7 0

RESERVED CONTEXT

0 0

r rw

31:8 Reserved
7:0 Current context ID

Table 1506.LEON4 MMU control register
GRIP, Sep 2018, Version 2018.3 1258 www.cobham.com/gaisler

GRLIB IP Core

ter should be cleared on read, on the LEON4 only the FAV bit is cleared on read. The FAV bit is
always set on error in the LEON4 implementation, so it can be used as a valid bit for the other fields..

Table 1509.LEON4 MMU fault status register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RESERVED EBE

0 0

r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EBE L AT FT FAV OW

0 0 0 0 0 0

r r r r r r

31:18 Reserved
17:10 External bus error (EBE) - Never set on the LEON3
9:8 Level (L) - Level of page table entry causing the fault
7:5 Access type (AT) - See V8 manual
4:2 Fault type (FT) - See table 1489
1 Fault address valid (FAV) - Cleared on read, always written to 1 on fault
0 Overwrite (W) - Multiple faults of the same priority encountered
GRIP, Sep 2018, Version 2018.3 1259 www.cobham.com/gaisler

GRLIB IP Core

82.11.10MMU fault address register

The MMU fault address register is located in ASI 0x19 offset 0x400, and the definition follows the
SRMMU specification in the SPARC V8 manual..

82.12 Software considerations

82.12.1 Register file initialization on power up

It is recommended that the boot code for the processor writes all registers in the IU and FPU register
files before launching the main application. This allows software to be portable to both FT and non-
FT versions of the LEON3 and LEON4 processors.

82.12.2 Start-up

After reset, the caches are disabled and the cache control register (CCR) is 0. Before the caches may
be enabled, a flush operation must be performed to initialized (clear) the tags and valid bits. A suitable
assembly sequence could be:
flush
set 0x81000f, %g1
sta %g1, [%g0] 2

82.12.3 MMU & TLB

After reset, the MMU is disabled and TLB is configured to be on (will not have any effect until MMU
is enabled). Hence with default reset values the TLB has to be flushed before the MMU is being acti-
vated to initialize the valid bits in TLB. If the TLB is disabled while the MMU is active, the TLB must
be flushed before enabled again.

82.12.4 Data scrubbing (for fault-tolerant implementations)

There is generally no need to perform data scrubbing on either IU/FPU register files or the cache
memory. During normal operation, the active part of the IU/FPU register files will be flushed to mem-
ory on each task switch. This will cause all registers to be checked and corrected if necessary. Since
most real-time operating systems performs several task switches per second, the data in the register
files will be frequently refreshed.
The similar situation arises for the cache memory. In most applications, the cache memory is signifi-
cantly smaller than the full application image, and the cache contents is gradually replaced as part of
normal operation. For very small programs, the only risk of error build-up is if a part of the applica-
tion is resident in the cache but not executed for a long period of time. In such cases, executing a
cache flush instruction periodically (e.g. once per minute) is sufficient to refresh the cache contents.

Table 1510.LEON4 MMU fault address register
31 12 11 0

FAULT ADDRESS RESERVED

NR 0

r r

31:12 Top bits of virtual address causing translation fault
11:0 Reserved, always 0
GRIP, Sep 2018, Version 2018.3 1260 www.cobham.com/gaisler

GRLIB IP Core

82.13 Vendor and device identifiers

The core has vendor identifiers 0x01 (Cobham Gaisler) and device identifiers 0x048. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

82.14 Implementation

82.14.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers, except synchronization registers, if the GRLIB config pack-
age setting grlib_sync_reset_enable_all is set.
The core will use asynchronous reset for all registers, except synchronization registers, if the GRLIB
config package setting grlib_async_reset_enable is set.

82.14.2 Technology mapping

LEON4 has two technology mapping VHDL generics, fabtech and memtech. The fabtech generic
controls the implementation of some pipeline features, while memtech selects which memory blocks
will be used to implement cache memories and the IU/FPU register file. Fabtech can be set to any of
the provided technologies (0 - NTECH) as defined in the TECHMAP.GENCOMP package. See the
GRLIB Users’s Manual for available settings for memtech.

82.14.3 RAM usage

The LEON4 core maps all usage of RAM memory on the syncram, syncram_2p and syncram_dp
components from the technology mapping library (TECHMAP). The type, configuration and number
of RAM blocks is described below.
Register file
The register file is implemented with six synram_2p blocks for all technologies where the reg-
file_4p_infer constant in TECHMAP.GENCOMP is set to 0. The organization of the syncram_2p is
shown in the following table:

If regfile_4p_infer is set to 1, the synthesis tool will automatically infer the register. On FPGA tech-
nologies, it can be in either flip-flops or RAM cells, depending on the tool and technology. On ASIC
technologies, it will be flip-flops. The amount of flip-flops inferred is equal to the number of registers:
Number of flip-flops = ((NWINDOWS *16) + 8) * 32

Table 1511.syncram_2p sizes for LEON4 register file

Register windows Syncram_2p organization
2 - 3 32x32
4 - 7 64x32
8 - 15 128x32
16-31 256x31
32 512x32
GRIP, Sep 2018, Version 2018.3 1261 www.cobham.com/gaisler

GRLIB IP Core

FP register file
If FPU support is enabled, the FP register file is implemented with four synram_2p blocks when the
regfile_3p_infer constant in TECHMAP.GENCOMP is set to 0. The organization of the syncram_2p
blocks is 16x32.
If regfile_3p_infer is set to 1, the synthesis tool will automatically infer the FP register file. For ASIC
technologies the number of inferred flip-flops is equal to number of bits in the FP register file which is
32 * 32 = 1024.
Cache memories
RAM blocks are used to implement the cache tags and data memories. Depending on cache configura-
tion, different types and sizes of RAM blocks are used.
The tag memory is implemented with one syncram per cache way when no snooping is enabled. The
tag memory depth and width is calculated as follows:
Depth = (cache way size in bytes) / (cache line size in bytes)
Width = 32 - log2(cache way size in bytes) + 1
For a 2 KiB cache way with 32 bytes/line, the tag RAM depth will be (2048/32) = 64. The width will
be: 32 - log2(2048) + 1 = 32 - 11 + 1 = 22. The tag RAM organization will thus be 64x22 for the con-
figuration. If the MMU is enabled, the tag memory width will increase with 8 to store the process con-
text ID, and the above configuration will us a 64x30 RAM.
If simple (MMU-less) snooping is enabled, the data cache tag memory will instead of single-port
RAM blocks be implemented with a dual-port RAMs (syncram_dp) of the same size.
If physical (MMU-compatible) snooping is enabled, the data cache tag memories will be implemented
using two syncram_2p components (with one read-only and one write-only port) per way, one mem-
ory for virtual and one for separate physical tags. The size of the virtual tag block will be the same as
when snooping is disabled. The physical tag block will have the same depth as above and the data
width corresponds to the width of the tag: 32 - log2(way size). A 4 KiB data cache way will thus
require a 32 - 12 = 20 bit wide RAM block for the physical tags.
The data part of the caches (storing instructions or data) is either 64 or 128 bit wide, depending on the
setting of the busw VHDL generic. The depth is equal to the way size in bytes, divided by 8
(BUSW=64) or 16 (BUSW=128). A 64-bit cache way of 4 KiB will use two syncram components
with and organization of 512x32. If the 128-bit AHB bus option is used, the data RAM will be divided
on four 32-bit RAM blocks to allow loading of a 16-bit cache line in one clock. A 4 KiB data cache
will then use four 256x32 RAM blocks.
Instruction Trace buffer
The instruction trace buffer will use four identical RAM blocks (syncram) to implement the buffer
memory. The syncrams will always be 32-bit wide. The depth will depend on the tbuf VHDL generic,
which indicates the total size of trace buffer in KiBs. If tbuf = 1 (1 KiB), then four RAM blocks of
64x32 will be used. If tbuf = 2, then the RAM blocks will be 128x32 and so on.

82.14.4 Double clocking

LEON4 implements double clocking in the same way as LEON3. Please refer to the LEON3 Double-
Clocking section in the LEON/GRLIB Configuration and Development Guide.

82.14.5 Clock gating

LEON4 clock gating is described in the LEON/GRLIB Configuration and Development Guide.
GRIP, Sep 2018, Version 2018.3 1262 www.cobham.com/gaisler

GRLIB IP Core

82.14.6 Scan support

If the scantest VHDL generic is set to 1, support for scan testing is enabled. This will make use of the
AHB scan support signals in the following manner: when AHBI.testen and AHBI.scanen are both ‘1’,
the select signals to all RAM blocks (cache RAM, register file and DSU trace buffers) are disabled.
This means that when the scan chain is shifted, no accidental write or read can occur in the RAM
blocks. The scan signal AHBI.testrst is not used as there are no asynchronous resets in the LEON4
core.

82.15 Configuration options

Table 1512 shows the configuration options of the core (VHDL generics).

Table 1512.Configuration options

Generic Function Allowed range Default
hindex AHB master index 0 - NAHBMST-1 0
fabtech Target technology 0 - NTECH 0 (inferred)
memtech Vendor library for regfile and cache RAMs.

Bits 16, 17 and 18 of this generic can be used to for the MMU
TLB data RAM, IU register file and FP register file to inferred
technology:
+ 2**16: Force inferred technology for MMU TLB data RAM
+ 2**17: Force inferred technology for IU register file
+ 2**18: Force inferred technology for FP register file
Adding the value (2**17) is equivalent to setting the grlib.gen-
comp.regfile_4p_infer(memtech) to 1 (used for some technolo-
gies to force the register file implementations to inferred).
Adding the value (2**18) is equivalent to setting the grlib.gen-
comp.regfile_3p_infer(memtech) to 1 (used for some technolo-
gies to force the register file implementations to inferred).

0 -
16#FFFFFFFF#

0 (inferred)

nwindows Number of SPARC register windows. Choose 8 windows to be
compatible with Bare-C and RTEMS cross-compilers.

2 - 32 8

dsu Enable Debug Support Unit interface 0 - 1 0
fpu Floating-point Unit

0 : no FPU
1 - 7: GRFPU 1 - inferred multiplier, 2 - DW multiplier, 3 - Mod-
ule Generator multiplier
8 - 14: GRFPU-Lite 8 - simple FPC, 9 - data forwarding FPC, 10
- non-blocking FPC
16 - 31: as above (modulo 16) but use netlist
32 - 63: as above (modulo 32) but uses shared GRFPU interface
Netlist or technology specific multiplier is recommended when
using Synplify to target Virtex-5.

0 - 63 0
GRIP, Sep 2018, Version 2018.3 1263 www.cobham.com/gaisler

GRLIB IP Core
v8 Generate SPARC V8 MUL and DIV instructions
This generic is assigned with the value: mult + 4*struct

Where mult selects between the following implementation
options for the multiplier and divider:
0 : No multiplier or divider
1 : 16x16 multiplier
2 : 16x16 pipelined multiplier
16#32# : 32x32 pipelined multiplier
Where struct selects the structure option for the integer multi-
plier. The following structures can be selected:
0: Inferred by synthesis tool
1: Generated using Module Generators from NTNU
2: Using technology specific netlists (techspec). Only supported
for RTAX-D FPGAs. Other technologies will assert a simulation
error.
3: Using Synopsys DesignWare (DW02_mult and DW_-
mult_pipe)

0 - 16#3F# 0

cp Generate co-processor interface 0 -1 0
mac Generate SPARC V8e SMAC/UMAC instruction. Can only be

used together with a 16x16 multiplier.
0 - 1 0

pclow Least significant bit of PC (Program Counter) that is actually
generated. PC[1:0] are always zero and are normally not gener-
ated. Generating PC[1:0] makes VHDL-debugging easier.

0, 2 2

notag Disable tagged instructions. 0 - 1 0
nwp Number of watchpoints 0 - 4 0
icen Enable instruction cache 0 - 1 1
irepl Instruction cache replacement policy.

0 - least recently used (LRU)/LRR/random/direct, 2 - random
only

0, 2 0

isets Number of instruction cache ways 1 - 4 1
ilinesize Instruction cache line size in number of words 4, 8 4
isetsize Size of each instruction cache way in KiB 1 - 256 1
isetlock Unused 0 - 1 0
dcen Data cache enable 0 - 1 1
drepl Data cache replacement policy.

0 - least recently used (LRU)/LRR/random/direct, 2 - random
only

0, 2 0

dsets Number of data cache ways 1 - 4 1
dlinesize Data cache line size in number of words 4, 8 4
dsetsize Size of each data cache way in KiB

Note: If the processor is implemented with the MMU then the
cache way size needs to be equal or less then the MMU page size
for hardware cache coherency.

1 - 256 1

dsetlock Unused 0 - 1 0
dsnoop Enable data cache snooping

Bit 0-1: 0: disable, 1: obsolete, 2: enable
Bit 2: 0: simple (no-MMU) snooping, 1: separate physical tags

0 - 6 0

ilram Enable local instruction RAM (not used at this point) 0 - 1 0
ilramsize Local instruction RAM size in kB (not used at this point) 1 - 512 1

Table 1512.Configuration options

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 1264 www.cobham.com/gaisler

GRLIB IP Core
ilramstart 8 MSB bits used to decode local instruction RAM area (not used
at this point)

0 - 255 16#8E#

dlram Enable local data RAM (scratch-pad RAM) (not used at this
point)

0 - 1 0

dlramsize Local data RAM size in kB (not used at this point) 1 - 512 1
dlramstart 8 MSB bits used to decode local data RAM area (not used at this

point)
0 - 255 16#8F#

mmuen Enable memory management unit (MMU)
Note: Bus snooping is required to avoid cache aliasing effects
when the MMU is enabled if the cache has more than one way.
0 : MMU does not exist.
1 : MMU exists.
2 : MMU exists and the cache tags include an additional bit
called SO (supervisor only access). See sec. 82.4.2 for more
details.
If MMU is going to be instantiated in the processor, it is recom-
mended to set the mmuen generic to 2.

0 - 2 0

itlbnum Number of instruction TLB entries 2 - 64 8
dtlbnum Number of data TLB entries 2 - 64 8
tlb_type 0 : separate TLB with slow write

1: shared TLB with slow write
2: separate TLB with fast write

0 - 2 1

tlb_rep LRU (0) or Random (1) TLB replacement 0 - 1 0
lddel Unused. LEON4 is always implemented with load delay 1. 1 - 2 2
disas Print instruction disassembly in VHDL simulator console. 0 - 1 0
tbuf Size of instruction trace buffer in kB (0 - instruction trace dis-

abled). For values 1-64 a single-port trace buffer of size tbuf is
used. For values 65-128 a two-port trace buffer of size tbuf-64 is
used.

0 - 128 0

pwd Power-down. 0 - disabled, 1 - area efficient, 2 - timing efficient. 0 - 2 1
svt Enable single-vector trapping 0 - 1 0
rstaddr Default reset start address. This generic sets the 20 most signifi-

cant bits of the reset address. The reset address must always be
aligned on a 4 KiB address boundary. If this generic is set to
16#fffff# the processor will read its start address from the inter-
rupt controller interface signal IRQI.RSTVEC (dynamic reset
start address).
See section 82.2.18 for more information.

0 - (2**20-1) 0

smp Enable multi-processor support
0: SMP support disabled
1- 15: SMP enabled, cpu index is taken from hindex generic
16-31: SMP enabled, cpu index is taken from irqi.index signal

0 - 31 0

cached Fixed cacheability mask. See sections 82.3 and 82.7 for more
information.

0 - 16#FFFF# 0

clk2x Enables double-clocking. See section 82.14.4 and the LEON/
GRLIB Design and Configuration Guide. Not present on all top-
level entites.

0 - 15 0

scantest Enable scan test support 0 - 1 0

Table 1512.Configuration options

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 1265 www.cobham.com/gaisler

GRLIB IP Core
82.16 Signal descriptions

Table 1513 shows the interface signals of the core (VHDL ports). Note that there are several top-level
entities available for the LEON4 processor: leon4x, leon4s, leon4sh, leon4s2x, leon4ft and leon4cg.
The leon4x entity exposes all signals and settings. The other entities are wrapper around leon4x.

wbmask Wide-bus mask. Indicates which address ranges are 64/128 bit
capable. Treated as a 16-bit vector with LSB bit (right-most)
indicating address 0 - 0x10000000. See section 82.7 for more
information.

0 - 16#FFFF# 0

busw Bus width of the wide bus area (64 or 128). See section 82.7 for
more information.

64, 128 64

netlist Use technology specific netlist 0 - 1 0
ft Register file and cache memory protection, bitfield

Bit 10:7: Selects technology specific protection cache protection.
0 to disable, 5 to enable.
Bit 6:4: Unused
Bit 3: enable cache memory parity protection
Bit 2:0 Register file SEU protection. (0: no protection; 4: TMR,
6: Tech-specific)
Technology specific protection is further documented in the
GRLIB-FT User’s Manual (grlib-ft.pdf).

0 - 2047 0

npasi Enable SPARC V8E nonprivileged ASI access. 0 - All accesses
to alternate address space are privileged. 1 - LOAD and STORE
from alternate space instructions accessing ASIs 0x00-0x7F are
privileged, ASIs 0x80 - 0xFF are nonprivileged.

0 - 1 0

pwrpsr Enable SPARC V8E partial write PSR (WRPSR). 0 - 1 0
ahbpipe Add pipeline registers to AHB read data vectors. Only has effect

for busw = 128. Setting only present on leon4x entity.
0 - 1 0

rex Enable LEON-REX extension 0 - 1 0
mmupgsz MMU Page size. 0 = 4K, 1 = 8K, 2 = 16K, 3 = 32K, 4 = pro-

grammable.
0 - 4 0

Table 1513.Signal descriptions

Signal name Field Type Function Active
leon4x:AHBCLK
leon4s2x:CLK

N/A Input AMBA clock in 2x mode
Note that this only applies to the processor enti-
ties listed.

-

leon4x:CPUCLK
leon4s: CLK
leon4sh: CLK
leon4s2x: CLK2
leon4ft: CLK
leon4cg: CLK

N/A Input Processor clock, can be gated.
Note that this clock has different names depend-
ing on which top-level entity that is used to
instantiate the processor. For example, LEON4S
only has one clock input which covers three of
the rows in this table (Processor clock, FPU-
clock, free running processor clock).

-

Table 1512.Configuration options

Generic Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 1266 www.cobham.com/gaisler

GRLIB IP Core
82.17 Signal definitions and reset values

When the processor enters error mode, the errorn output is driven active.

leon4x:GCPUCLK
leon4s: CLK
leon4sh: CLK
leon4s2x: GCLK2
leon4ft: GCLK
leon4cg: GCLK

N/A Input Free running processor clock.
Note that this clock has different names depend-
ing on which top-level entity that is used to
instantiate the processor. For example, LEON4S
only has one clock input which covers three of
the rows in this table (Processor clock, FPU-
clock, free running processor clock).

-

leon4x:FPUCLK
leon4s: CLK
leon4sh: CLK
leon4s2x: GCLK2
leon4ft: GCLK
leon4cg: GCLK

N/A Input FPU clock, can be gated.
Note that this clock has different names depend-
ing on which top-level entity that is used to
instantiate the processor. For example, LEON4S
only has one clock input which covers three of
the rows in this table (Processor clock, FPU-
clock, free running processor clock).

-

RSTN N/A Input Reset Low
AHBI * Input AHB master input signals -
AHBO * Output AHB master output signals -
AHBSI * Input AHB slave input signals -
AHBSO[] * Input AHB slave output signals from all slaves on

same bus. The processor makes use of the
plug&play sideband signals to decode cacheabil-
ity information of the bus. This can be overrid-
den by the cached VHDL generic.

-

IRQI IRL[3:0] Input Interrupt level High
RESUME Input Reset power-down and error mode High
RSTRUN Input Start after reset (SMP system only) High
RSTVEC[31:12] Input Reset start addr. (SMP and dynamic reset addr.) -
INDEX[3:0] Input CPU index when SMP = 2 -
PWDSETADDR Input In power-down/error mode, shift PC to nPC and

set PWDNEWADDR to PC.
High

PWDNEWADDR
[31:2]

Input New PC value used with PWDSETADDR -

FORCEERR Input Force CPU into error mode High
IRQO INTACK Output Interrupt acknowledge High

IRL[3:0] Output Processor interrupt level High
PWD Output Processor in power-down mode High
FPEN Output Floating-point unit enabled High
ERR Output Processor in error mode High

DBGI - Input Debug inputs from DSU -
DBGO - Output Debug outputs to DSU -

ERROR Processor in error mode, execution halted Low
GCLK Input Gated processor clock for LEON4cg
* see GRLIB IP Library User’s Manual

Table 1513.Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 1267 www.cobham.com/gaisler

GRLIB IP Core

The signals and their reset values are described in table 1514.

82.18 Timing

The timing waveforms and timing parameters are shown in figure 233 and are defined in table 1515.

82.19 Library dependencies

Table 1516 shows the libraries used when instantiating the core (VHDL libraries).

Table 1514.Signal definitions and reset values

Signal name Type Function Active Reset value
errorn Tri-state output Processor error mode indicator Low Tri-state

Table 1515.Timing parameters

Name Parameter Reference edge Min Max Unit
tLEON3_0 clock to output delay rising clk edge TBD TBD ns

Table 1516.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB signal definitions
GAISLER LEON3, LEON4 Component, signals LEON4 component declaration, interrupt and

debug signals declaration

Figure 233. Timing waveforms

tLEON3_0
errorn

clk

tLEON3_0
GRIP, Sep 2018, Version 2018.3 1268 www.cobham.com/gaisler

GRLIB IP Core

82.20 Component declaration

The LEON4 core has the following component declaration. There are also LEON4 top-levels that
support clock gating (leon4cg), double-clocking (leon4s2x), shared FPU (leon4sh) and all available
interfaces (leon4x). See the GRLIB template designs for instantiation examples.
entity leon4s is
 generic (
 hindex : integer := 0;
 fabtech : integer range 0 to NTECH := DEFFABTECH;
 memtech : integer range 0 to NTECH := DEFMEMTECH;
 nwindows : integer range 2 to 32 := 8;
 dsu : integer range 0 to 1 := 0;
 fpu : integer range 0 to 31 := 0;
 v8 : integer range 0 to 63 := 0;
 cp : integer range 0 to 1 := 0;
 mac : integer range 0 to 1 := 0;
 pclow : integer range 0 to 2 := 2;
 notag : integer range 0 to 1 := 0;
 nwp : integer range 0 to 4 := 0;
 icen : integer range 0 to 1 := 0;
 irepl : integer range 0 to 2 := 2;
 isets : integer range 1 to 4 := 1;
 ilinesize : integer range 4 to 8 := 4;
 isetsize : integer range 1 to 256 := 1;
 isetlock : integer range 0 to 1 := 0;
 dcen : integer range 0 to 1 := 0;
 drepl : integer range 0 to 2 := 2;
 dsets : integer range 1 to 4 := 1;
 dlinesize : integer range 4 to 8 := 4;
 dsetsize : integer range 1 to 256 := 1;
 dsetlock : integer range 0 to 1 := 0;
 dsnoop : integer range 0 to 6 := 0;
 ilram : integer range 0 to 1 := 0;
 ilramsize : integer range 1 to 512 := 1;
 ilramstart : integer range 0 to 255 := 16#8e#;
 dlram : integer range 0 to 1 := 0;
 dlramsize : integer range 1 to 512 := 1;
 dlramstart : integer range 0 to 255 := 16#8f#;
 mmuen : integer range 0 to 2 := 0;
 itlbnum : integer range 2 to 64 := 8;
 dtlbnum : integer range 2 to 64 := 8;
 tlb_type : integer range 0 to 3 := 1;
 tlb_rep : integer range 0 to 1 := 0;
 lddel : integer range 1 to 2 := 2;
 disas : integer range 0 to 2 := 0;
 tbuf : integer range 0 to 64 := 0;
 pwd : integer range 0 to 2 := 2; -- power-down
 svt : integer range 0 to 1 := 1; -- single vector trapping
 rstaddr : integer := 0;
 smp : integer range 0 to 15 := 0; -- support SMP systems
 cached : integer := 0; -- cacheability table
 scantest : integer := 0;
 wbmask : integer := 0; -- Wide-bus mask
 busw : integer := 64; -- AHB/Cache data width (64/128)
 ft : integer := 0
);
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;
 ahbi : in ahb_mst_in_type;
 ahbo : out ahb_mst_out_type;
 ahbsi : in ahb_slv_in_type;
 ahbso : in ahb_slv_out_vector;
 irqi : in l3_irq_in_type;
 irqo : out l3_irq_out_type;
 dbgi : in l3_debug_in_type;
 dbgo : out l3_debug_out_type
);
end;
GRIP, Sep 2018, Version 2018.3 1269 www.cobham.com/gaisler

GRLIB IP Core

83 LOGAN - On-chip Logic Analyzer

83.1 Introduction

The LOGAN core implements an on-chip logic analyzer for tracing and displaying of on-chip signals.
LOGAN consists of a circular trace buffer and a triggering module. When armed, the logic analyzers
stores the traced signals in the circular buffer until a trigger condition occurs. A trigger condition will
freeze the buffer, and the traced data can then be read out via an APB interface.
The depth and width of the trace buffer is configurable through VHDL generics, as well as the number
of trigger levels.

Figure 234. On-chip Logic Analyzer block diagram

83.2 Operation

83.2.1 Trace buffer

When the logic analyzer is armed, the traced signals are sampled and stored to the trace buffer on the
rising edge of the sample clock (TCLK). The trace buffer consists of a circular buffer with an index
register pointing to the next address in the buffer to be written. The index register is automatically
incremented after each store operation to the buffer.

83.2.2 Clocking

LOGAN uses two clocks: TCLK and the APB clock. The trace signals are sampled on the rising edge
of the sample clock (TCLK), while the control unit and the APB interface use the APB clock. TCLK
and the APB clock does not need to be synchronized or have the same frequency.

On-chip Logic Analyzer core

AMBA APB

Control unit with
APB slave interface

Trace buffer
On-chip RAM

Read port

Write port

Trigger engineTraced
signals
GRIP, Sep 2018, Version 2018.3 1270 www.cobham.com/gaisler

GRLIB IP Core

83.2.3 Triggering

The logic analyzer contains a configurable number of trig levels. Each trig level is associated with a
pattern and a mask. The traced signals are compared with the pattern, only comparing the bits set in
the mask. This allows for triggering on any specific value or range. Furthermore each level has a
match counter and a boolean equality flag. The equality flag specifies whether a match means that the
pattern should equal the traced signals or that it should not be equal. It is possible to configure the trig-
ger engine to stay at a certain level while the traced signals have a certain value using this flag. The
match counter is a 6 bit counter which can be used to specify how many times a level should match
before proceeding to the next. This is all run-time configurable through registers described in the reg-
ister section.
To specify post-, center- or pre-triggering mode, the user can set a counter register that controls when
the sampling stops relative to the triggering event. It can be set to any value in the range 0 to depth-1
thus giving total control of the trace buffer content.
To support the tracing of slowly changing signals, the logic analyzer has a 16-bit sample frequency
divider register that controls how often the signals are sampled. The default divider value of 1 will
sample the signals every clock cycle.
The usequal configuration option has a similar purpose as the sample frequency divider. The user can
define one of the traced signals as a qualifier bit that has to have a specified value for the current sig-
nals to be stored in the trace buffer. This makes sampling of larger time periods possible if only some
easily distinguished samples are interesting. This option has to be enabled with the usequal generic
and the qualifier bit and value are written to a register.

83.2.4 Arming

To start operation, the logic analyzer needs to be armed. This is done by writing to the status register
with bit 0 set to 1. A reset can be performed anytime by writing zero to the status register. After the
final triggering event, the trigged flag will be raised and can be read out from the status register. The
logic analyzer remains armed and trigged until the trigger counter reaches zero. When this happens
the index of the oldest sample can be read from the trace buffer index register.

83.3 Registers

Both trace data and all registers are accessed through an APB interface. The LOGAN core will allo-
cate a 64 kbyte block in the APB address space.

Table 1517.APB address mapping

APB address offset Registers
0x0000 Status register
0x0004 Trace buffer index
0x0008 Page register
0x000C Trig counter
0x0010 Sample freq. divider
0x0014 Storage qualifier setting
0x2000 - 0x20FF Trig control settings
0x6000 - 0x6FFF Pattern/mask configuration
0x8000 - 0xFFFF Trace data
GRIP, Sep 2018, Version 2018.3 1271 www.cobham.com/gaisler

GRLIB IP Core

83.3.1 Status register

Table 1518. 0x0000 - STAT - Status register

83.3.2 Trace buffer index

Table 1519. 0x0004 - INDEX - Trace buffer index register

Note that this register is written by the trigger engine clock domain and thus needs to be known stable
when read out. Only when the ‘armed’ bit in the status register is zero is the content of this register
reliable.

83.3.3 Page register

Table 1520. 0x0008 - PAGE - Trace buffer index register

The trace buffer is organized into pages of 1024 samples. Each sample can be between 1 and 256 bits.
If the depth of the buffer is more than 1024 the page register has to be used to access the other pages.
To access the i:th page the register should be set i (where i=0..15).

31 30 29 28 27 20 19 6 5 0

usereg qualifier armed trigged dbits depth trig levels

* * 0 0 * * *

r r rw rw r r r

31: 28 These bits indicate whether an input register and/or storage qualifier is used and if the Logic Ana-
lyzer is armed and/or trigged.

27: 20 Number of traced signals (Read Only).
19: 6 Last index of trace buffer. Depth-1 (Read Only).
5: 0 Number of trig levels (Read Only).

31 abits abits-1 0

RESERVED the index of the oldest sample

0 0

r r

31: abits Reserved.
abits-1:0 The index of the oldest sample in the buffer. The trace buffer index simply points to where a new

sample will be written , in a circular buffer it is the oldest sample if it was previously written. abits is
the number of bits needed to represent the configured depth.

31 4 3 0

RESERVED current page

0 0

r rw

31: 4 Reserved.
3: 0 This register selects what page that will be used when reading from the trace buffer.
GRIP, Sep 2018, Version 2018.3 1272 www.cobham.com/gaisler

GRLIB IP Core

83.3.4 Trig counter

Table 1521. 0x000C - TRIGC - Trig counter register

83.3.5 Sample frequency divider

Table 1522.0x0010 - CLKDIV - Sample freq. divider register

83.3.6 Storage qualifier

Table 1523.0x0014 - SQUAL - Storage qualifier register

83.3.7 Trig control registers

This memory area contains the registers that control when the trigger engine shall proceed to the next
level, i.e the match counter and a one bit field that specifies if it should trig on equality or inequality.
There are trigl words where each word is used like in the figure below.

31 abits abits-1 0

RESERVED trig counter value

0 0

r rw

31:abits Reserved.
nbits-1:0 Trig counter value. A counter is incremented by one for each stored sample after the final triggering

event and when it reaches the value stored in this register the sampling stops. 0 means posttrig and
depth-1 is pretrig. Any value in between can be used.

31 16 15 0

RESERVED divider value

0 0x0001

r rw

31: 16 Reserved.
15: 0 A sample is stored on every i:th clock cycle where i is specified through this register. This resets to 1

thus sampling occurs every cycle if not changed.

31 9 8 7 0

RESERVED val qualifier

0 0 0

r rw rw

31: 9 Reserved.
8: Qualify storage if bit is 1/0.
7: 0 Which bit to use as qualifier.

Table 1524. 0x2000-0x20FF - TCTRL - Trigger control register
31 7 6 1 0

RESERVED match counter eq

0 NR nr

r rw rw

31: 7 Reserved.
6: 1 Match counter. A counter is increased with one on each match on the current level and when it

reaches the value stored in this register the trigger engine proceeds to the next level or if it is the last
level it raises the trigged flag and starts the count of the trigger counter.

0: Specifies if a match is that the pattern/mask combination is equal or inequal compared to the traced
signals. 1 - equal

0- inequal.
GRIP, Sep 2018, Version 2018.3 1273 www.cobham.com/gaisler

GRLIB IP Core

83.3.8 Pattern/mask configuration

In these registers the pattern and mask for each trig level is configured. The pattern and mask can con-
tain up to 8 words (256 bits) each so a number of writes can be necessary to specify just one pattern.
They are stored with the LSB at the lowest address. The pattern of the first trig level is at 0x6000 and
the mask is located 8 words later at 0x6020. Then the next trig levels starts at address 0x6040 and so
on.

83.3.9 Trace data

It is placed in the upper half of the allocated APB address range. If the configuration needs more than
the allocated 32 kB of the APB range the page register is used to page into the trace buffer. Each
stored word is dbits wide but 8 words of the memory range is always allocated so the entries in the
trace buffer are found at multiples of 0x20, i.e. 0x8000, 0x8020 and so on.

83.4 Graphical interface

The logic analyzer is normally controlled by the LOGAN debug driver in GRMON. It is also possible
to control the LOGAN operation using a graphical user interface (GUI) written in Tcl/Tk. The GUI is
provided with GRMON, refer to the GRMON manual for more details.

83.5 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x062. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.
GRIP, Sep 2018, Version 2018.3 1274 www.cobham.com/gaisler

GRLIB IP Core

83.6 Implementation

83.6.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

83.7 Configuration options

Table 1525 shows the configuration options of the core (VHDL generics).

The usereg VHDL generic specifies whether to use an input register to synchronize the traced signals
and to minimize their fan out. If usereg=1 then all signals will be clocked into a register on the posi-
tive edge of the supplied clock signal, otherwise they are sent directly to the RAM.

83.8 Signal descriptions

Table 1526 shows the interface signals of the core (VHDL ports).

* See GRLIB IP Library users manual

83.9 Library dependencies

Table 1527 shows libraries used when instantiating the core (VHDL libraries).

Table 1525.Configuration options

Generic Function Allowed range Default
dbits Number of traced signals 1 - 255 32
depth Number of stored samples 256 - 16384 1024
trigl Number of trigger levels 1 - 63 1
usereg Use input register 0 - 1 1
usequal Use storage qualifier 0 - 1 0
pindex APB slave index 0 - NAPBSLV - 1 0
paddr The 12-bit MSB APB address 0 -16#FFF# 0
pmask The APB address mask 16#000 - 16#F00# F00
memtech Memory technology 0 - NTECH 0

Table 1526.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input System clock -
TCLK N/A Input Sample clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
SIGNALS N/A Input Vector of traced signals -

Table 1527.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER MISC Component Component declaration
GRIP, Sep 2018, Version 2018.3 1275 www.cobham.com/gaisler

GRLIB IP Core

83.10 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

entity logan_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 ... -- other signals
);
end;

architecture rtl of logan_ex is

 -- AMBA signals
signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector := (others => apb_none);
signal signals : std_logic_vector(63 downto 0);

begin

-- Logic analyzer core
 logan0 : logan
 generic map (dbits=>64,depth=>4096,trigl=>2,usereg=>1,usequal=>0,
 pindex => 3, paddr => 3, pmask => 16#F00#, memtech => memtech)
 port map (rstn, clk, clk, apbi, apbo(3), signals);

end;
GRIP, Sep 2018, Version 2018.3 1276 www.cobham.com/gaisler

GRLIB IP Core

84 MCTRL - Combined PROM/IO/SRAM/SDRAM Memory Controller

84.1 Overview

The memory controller handles a memory bus hosting PROM, memory mapped I/O devices, asyn-
chronous static ram (SRAM) and synchronous dynamic ram (SDRAM). The controller acts as a slave
on the AHB bus. The function of the memory controller is programmed through memory configura-
tion registers 1, 2 & 3 (MCFG1, MCFG2 & MCFG3) through the APB bus. The memory bus supports
four types of devices: PROM, SRAM, SDRAM and local I/O. The memory bus can also be config-
ured in 8- or 16-bit mode for applications with low memory and performance demands.
Chip-select decoding is done for two PROM banks, one I/O bank, five SRAM banks and two
SDRAM banks.
The controller decodes three address spaces (PROM, I/O and RAM) whose mapping is determined
through VHDL-generics.
Figure 235 shows how the connection to the different device types is made.

84.2 PROM access

Accesses to prom have the same timing as RAM accesses, the differences being that PROM cycles
can have up to 15 waitstates.

Figure 235. Memory controller conected to AMBA bus and different types of 32-bit memory devices

CS
OE
WE

A
D

PROM

CS
OE
WE

A
D

I/O

CS
OE
WE

A
D

SRAM
MEMO.RAMSN[4:0]

MEMO.RAMOEN[4:0]
MEMO.RWEN[3:0]

MEMO.ROMSN[1:0]
MEMO.OEN

MEMO.WRITEN

MEMO.IOSN

A D

MEMORY

MEMI.A[27:0]

MEMI.D[31:0]/

RAS
CAS
WE

BA

D

SDRAMMEMO.SDRASN
MEMO.SDCASN
MEMO.SDWEN

A[16:15]

DQMMEMO.SDDQM[3:0]

CLK
CSN

MEMO.SDCLK
MEMO.SDCSN[1:0]

A
A[14:2]

CONTROLLER

AHBAPB

MEMO.D[31:0]

MBENMEMO.MBEN[3:0]
GRIP, Sep 2018, Version 2018.3 1277 www.cobham.com/gaisler

GRLIB IP Core
Figure 236. Prom non-consecutive read cyclecs.

data1 data2

address

romsn

data

oen

cb

data1 data2lead-out lead-out
clk

D1 D2

CB2CB1

A1 A2

Figure 237. Prom consecutive read cyclecs.

data1 data2

address

romsn

data

oen

cb

data2data lead-out
clk

A1

D2

CB2CB1

D1

A2

data1

Figure 238. Prom read access with two waitstates.

data1 data2

address

romsn

data

oen

cb

data2data lead-out
clk

A1

D1

CB1

data2
GRIP, Sep 2018, Version 2018.3 1278 www.cobham.com/gaisler

GRLIB IP Core

Two PROM chip-select signals are provided, MEMO.ROMSN[1:0]. MEMO.ROMSN[0] is asserted
when the lower half of the PROM area as addressed while MEMO.ROMSN[1] is asserted for the
upper half.

84.3 Memory mapped I/O

Accesses to I/O have similar timing to ROM/RAM accesses, the differences being that a additional
waitstates can be inserted by de-asserting the MEMI.BRDYN signal. The I/O select signal
(MEMO.IOSN) is delayed one clock to provide stable address before MEMO.IOSN is asserted.

Figure 239. Prom write cycle (0-waitstates)

data

address

romsn

data

rwen

cb

lead-out
clk

A1

D1

lead-in

CB1

Figure 240. Prom write cycle (2-waitstates)

data

address

romsn

data

rwen

cb

lead-out

clk

A1

D1

CB1

lead-in datadata
GRIP, Sep 2018, Version 2018.3 1279 www.cobham.com/gaisler

GRLIB IP Core
84.4 SRAM access

The SRAM area can be up to 1 Gbyte, divided on up to five RAM banks. The size of banks 1-4
(MEMO.RAMSN[3:0]is programmed in the RAM bank-size field (MCFG2[12:9]) and can be set in
binary steps from 8 Kbyte to 256 Mbyte. The fifth bank (RAMSN[4]) decodes the upper 512 Mbyte
(controlled by means of the sdrasel VHDL generic) and cannot be used simultaneously with SDRAM
memory. A read access to SRAM consists of two data cycles and between zero and three waitstates.
Accesses to MEMO.RAMSN[4] can further be stretched by de-asserting MEMI.BRDYN until the
data is available. On non-consecutive accesses, a lead-out cycle is added after a read cycle to prevent
bus contention due to slow turn-off time of memories or I/O devices. Figure 243 shows the basic read
cycle waveform (zero waitstate).

Figure 241. I/O read cycle (0-waitstates)

data1

address

iosn

data

oen

cb

lead-out
clk

A1

D1

lead-in data2

CB1

Figure 242. I/O write cycle (0-waitstates)

address

iosn

data

writen

cb

lead-out
clk

A1

D1

lead-in data

CB1
GRIP, Sep 2018, Version 2018.3 1280 www.cobham.com/gaisler

GRLIB IP Core
For read accesses to MEMO.RAMSN[4:0], a separate output enable signal (MEMO.RAMOEN[n]) is
provided for each RAM bank and only asserted when that bank is selected. A write access is similar to
the read access but takes a minimum of three cycles:
Through an (optional) feed-back loop from the write strobes, the data bus is guaranteed to be driven
until the write strobes are de-asserted. Each byte lane has an individual write strobe to allow efficient
byte and half-word writes. If the memory uses a common write strobe for the full 16- or 32-bit data,
the read-modify-write bit in the MCFG2 register should be set to enable read-modify-write cycles for
sub-word writes.

A drive signal vector for the data I/O-pads is provided which has one drive signal for each data bit. It
can be used if the synthesis tool does not generate separate registers automatically for the current
technology. This can remove timing problems with output delay.

84.5 8-bit and 16-bit PROM and SRAM access

To support applications with low memory and performance requirements efficiently, it is not neces-
sary to always have full 32-bit memory banks. The SRAM and PROM areas can be individually con-
figured for 8- or 16-bit operation by programming the ROM and RAM size fields in the memory
configuration registers. Since read access to memory is always done on 32-bit word basis, read access
to 8-bit memory will be transformed in a burst of four read cycles while access to 16-bit memory will

Figure 243. SRAM non-consecutive read cyclecs.

data1 data2

address

ramsn

data

oen,

cb

data1 data2lead-out lead-out
clk

D1 D2

CB2CB1

A1 A2

ramoen

Figure 244. Sram write cycle (0-waitstates)

data

address

ramsn

data

rwen

cb

lead-out
clk

A1

D1

CB1

lead-in
GRIP, Sep 2018, Version 2018.3 1281 www.cobham.com/gaisler

GRLIB IP Core

generate a burst of two 16-bits reads. During writes, only the necessary bytes will be writen. Figure
245 shows an interface example with 8-bit PROM and 8-bit SRAM. Figure 246 shows an example of
a 16-bit memory interface.

Figure 245. 8-bit memory interface example

CS
OE
WE

A
D

PROM

CS
OE
WE

A
D

SRAM
MEMO.RAMSN[0]

MEMO.RAMOEN[0]
MEMO.RWEN[0]

MEMO.ROMSN[0]
MEMO.OEN

A D

MEMORY

MEMI.A[27:0]

MEMI.D[31:24]/

RWE[0]

D[31:24]

D[31:24]

A[27:0]

A[27:0]

MEMO.WRITEN

8-bit PROM

8-bit RAMCONTROLLER

MEMO.D[31:24]

Figure 246. 16-bit memory interface example

CS
OE
WE

A
D

PROM

CS
OE
WE

A
D

SRAM
MEMO.RAMSN[0]

MEMO.RAMOEN[0]
MEMO.RWEN[0:1]

MEMO.ROMSN[0]
MEMO.OEN

A D

MEMI.A[27:0]

MEMI.D[31:16]/

RWE[1:0]

D[31:16]

D[31:16]

A[27:1]

A[27:1]

MEMO.WRITEN

16-bit PROM

16-bit RAM
MEMORY

CONTROLLER

MEMO.D[31:16]
GRIP, Sep 2018, Version 2018.3 1282 www.cobham.com/gaisler

GRLIB IP Core

84.6 Burst cycles

To improve the bandwidth of the memory bus, accesses to consecutive addresses can be performed in
burst mode. Burst transfers will be generated when the memory controller is accessed using an AHB
burst request. These includes instruction cache-line fills, double loads and double stores. The timing
of a burst cycle is identical to the programmed basic cycle with the exception that during read cycles,
the lead-out cycle will only occurs after the last transfer. Burst cycles will not be generated to the IO
area.
Only word (HSIZE = "010") bursts of incremental type (HBURST=INCR, INCR4, INCR8 or
INCR16) are supported.

84.7 8- and 16-bit I/O access

Similar to the PROM/RAM areas, the I/O area can also be configured to 8- or 16-bit mode. However,
the I/O device will NOT be accessed by multiple 8/16 bit accesses as the memory areas, but only with
one single access just as in 32-bit mode. To access an I/O device on a 16-bit bus, LDUH/STH instruc-
tions should be used while LDUB/STB should be used with an 8-bit bus.

84.8 SDRAM access

84.8.1 General

Synchronous dynamic RAM (SDRAM) access is supported to two banks of PC100/PC133 compati-
ble devices. This is implemented by a special version of the SDCTRL SDRAM controller core from
Cobham Gaisler, which is optionally instantiated as a sub-block. The SDRAM controller supports
64M, 256M and 512M devices with 8 - 12 column-address bits, and up to 13 row-address bits. The
size of the two banks can be programmed in binary steps between 4 Mbyte and 512 Mbyte. The oper-
ation of the SDRAM controller is controlled through MCFG2 and MCFG3 (see below). Both 32- and
64-bit data bus width is supported, allowing the interface of 64-bit DIMM modules. The memory con-
troller can be configured to use either a shared or separate bus connecting the controller and SDRAM
devices. When the VHDL generic mobile is set to a value not equal to 0, the controller supports
mobile SDRAM.

84.8.2 Address mapping

The two SDRAM chip-select signals are decoded. SDRAM area is mapped into the upper half of the
RAM area defined by BAR2 register. When the SDRAM enable bit is set in MCFG2, the controller is
enabled and mapped into upper half of the RAM area as long as the SRAM disable bit is not set. If the
SRAM disable bit is set, all access to SRAM is disabled and the SDRAM banks are mapped into the
lower half of the RAM area.

84.8.3 Initialisation

When the SDRAM controller is enabled, it automatically performs the SDRAM initialisation
sequence of PRECHARGE, 2x AUTO-REFRESH and LOAD-MODE-REG on both banks simultane-
ously. When mobile SDRAM functionality is enabled the initialization sequence is appended by a
LOAD-EXTMODE-REG command. The controller programs the SDRAM to use page burst on read
and single location access on write.
GRIP, Sep 2018, Version 2018.3 1283 www.cobham.com/gaisler

GRLIB IP Core

84.8.4 Configurable SDRAM timing parameters

To provide optimum access cycles for different SDRAM devices (and at different frequencies), some
SDRAM parameters can be programmed through memory configuration register 2 (MCFG2) The pro-
grammable SDRAM parameters can be seen in tabel 1528.

Remaining SDRAM timing parameters are according the PC100/PC133 specification.
When mobile SDRAM support is enabled, one additional timing parameter (TXSR) can be pro-
grammed though the Power-Saving configuration register.

84.9 Refresh

The SDRAM controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the MCFG3 register. Depending on SDRAM type, the
required period is typically 7.8 or 15.6 s (corresponding to 780 or 1560 clocks at 100 MHz). The
generated refresh period is calculated as (reload value+1)/sysclk. The refresh function is enabled by
setting bit 31 in MCFG2.

84.9.1 Self Refresh

The self refresh mode can be used to retain data in the SDRAM even when the rest of the system is
powered down. When in the self refresh mode, the SDRAM retains data without external clocking
and refresh are handled internally. The memory array that is refreshed during the self refresh opera-
tion is defined in the extended mode register. These settings can be changed by setting the PASR bits
in the Power-Saving configuration register. The extended mode register is automatically updated
when the PASR bits are changed. The supported “Partial Array Self Refresh” modes are: Full, Half,
Quarter, Eighth, and Sixteenth array. “Partial Array Self Refresh” is only supported when mobile
SDRAM functionality is enabled. To enable the self refresh mode, set the PMODE bits in the Power-
Saving configuration register to “010” (Self Refresh). The controller will enter self refresh mode after
every memory access (when the controller has been idle for 16 clock cycles), until the PMODE bits
are cleared. When exiting this mode the controller introduce a delay defined by tXSR in the Power-
Saving configuration register and a AUTO REFRESH command before any other memory access is
allowed. The minimum duration of this mode is defined by tRAS. This mode is only available then
the VHDL generic mobile >=1.

84.9.2 Power-Down

When entering the power-down mode all input and output buffers, excluding SDCKE, are deacti-
vated. All data in the SDRAM is retained during this operation. To enable the power-down mode, set
the PMODE bits in the Power-Saving configuration register to “001” (Power-Down). The controller
will enter power-down mode after every memory access (when the controller has been idle for 16

Table 1528.SDRAM programmable timing parameters

Function Parameter Range Unit
CAS latency, RAS/CAS delay tCAS, tRCD 2 - 3 clocks

Precharge to activate tRP 2 - 3 clocks

Auto-refresh command period tRFC 3 - 11 clocks

Auto-refresh interval 10 - 32768 clocks

Table 1529.Mobile SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)
Exit Self Refresh mode to first valid command (tXSR) tXSR
GRIP, Sep 2018, Version 2018.3 1284 www.cobham.com/gaisler

GRLIB IP Core

clock cycles), until the PMODE bits is cleared. The REFRESH command will still be issued by the
controller in this mode. When exiting this mode a delay of one clock cycles are added before issue any
command to the memory. This mode is only available then the VHDL generic mobile >=1.

84.9.3 Deep Power-Down

The deep power-down operating mode is used to achieve maximum power reduction by eliminating
the power of the memory array. Data will not be retained after the device enters deep power-down
mode. To enable the deep power-down mode, set the PMODE bits in the Power-Saving configuration
register to “101” (Deep Power-Down). To exit the deep power-down mode the PMODE bits in the
Power-Saving configuration register must be cleared. The controller will respond with an AMBA
ERROR response to an AMBA access, that will result in a memory access, during Deep Power-Down
mode. This mode is only available then the VHDL generic mobile >=1 and mobile SDRAM function-
ality is enabled.

84.9.4 Temperature-Compensated Self Refresh

The settings for the temperature-compensation of the Self Refresh rate can be controlled by setting the
TCSR bits in the Power-Saving configuration register. The extended mode register is automatically
updated when the TCSR bits are changed. Note that some vendors implements a Internal Tempera-
ture-Compensated Self Refresh feature, which makes the memory to ignore the TCSR bits. This func-
tionality is only available then the VHDL generic mobile >=1 and mobile SDRAM functionality is
enabled.

84.9.5 Drive Strength

The drive strength of the output buffers can be controlled by setting the DS bits in the Power-Saving
configuration register. The extended mode register is automatically updated when the DS bits are
changed. The available options are: full, three-quarter, one-half, and one-quarter drive strengths. This
functionality is only available then the VHDL generic mobile >=1 and mobile SDRAM functionality
is enabled.

84.9.6 SDRAM commands

The controller can issue four SDRAM commands by writing to the SDRAM command field in
MCFG2: PRE-CHARGE, AUTO-REFRESH, LOAD-MODE-REG (LMR) and LOAD-EXTMODE-
REG (EMR). If the LMR command is issued, the CAS delay as programmed in MCFG2 will be used,
remaining fields are fixed: page read burst, single location write, sequential burst. If the EMR com-
mand is issued, the DS, TCSR and PASR as programmed in Power-Saving configuration register will
be used. To issue the EMR command, the EMR bit in the MCFG4 register has to be set. The command
field will be cleared after a command has been executed. Note that when changing the value of the
CAS delay, a LOAD-MODE-REGISTER command should be generated at the same time.

84.9.7 Read cycles

A read cycle is started by performing an ACTIVATE command to the desired bank and row, followed
by a READ command after the programmed CAS delay. A read burst is performed if a burst access
has been requested on the AHB bus. The read cycle is terminated with a PRE-CHARGE command,
no banks are left open between two accesses.

84.9.8 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE commands are
issued after activation. A write burst on the AHB bus will generate a burst of write commands without
idle cycles in-between.
GRIP, Sep 2018, Version 2018.3 1285 www.cobham.com/gaisler

GRLIB IP Core

84.9.9 Address bus connection

The memory controller can be configured to either share the address and data buses with the SRAM,
or to use separate address and data buses. When the buses are shared, the address bus of the SDRAMs
should be connected to A[14:2], the bank address to A[16:15]. The MSB part of A[14:2] can be left
unconnected if not used. When separate buses are used, the SDRAM address bus should be connected
to SA[12:0] and the bank address to SA[14:13].

84.9.10 Data bus

SDRAM can be connected to the memory controller through the common or separate data bus. If the
separate bus is used the width is configurable to 32 or 64 bits. 64-bit data bus allows the 64-bit
SDRAM devices to be connected using the full data capacity of the devices. 64-bit SDRAM devices
can be connected to 32-bit data bus if 64-bit data bus is not available but in this case only half the full
data capacity will be used. There is a drive signal vector and separate data vector available for
SDRAM. The drive vector has one drive signal for each data bit. These signals can be used to remove
timing problems with the output delay when a separate SDRAM bus is used. SDRAM bus signals are
described in section 84.14, for configuration options refer to section 84.17.

84.9.11 Clocking

The SDRAM clock typically requires special synchronisation at layout level. For Xilinx and Altera
device, the GR Clock Generator can be configured to produce a properly synchronised SDRAM
clock. For other FPGA targets, the GR Clock Generator can produce an inverted clock.

84.10 Using bus ready signaling

The MEMI.BRDYN signal can be used to stretch access cycles to the I/O area and the ram area
decoded by MEMO.RAMSN[4]. The accesses will always have at least the pre-programmed number
of waitstates as defined in memory configuration registers 1 & 2, but will be further stretched until
MEMI.BRDYN is asserted. MEMI.BRDYN should be asserted in the cycle preceding the last one.
The use of MEMI.BRDYN can be enabled separately for the I/O and RAM areas.

Figure 247. READ cycle with one extra data2 cycle added with BRDYN (synchronous sampling). Lead-out cycle is
only applicable for I/O accesses.

data1 data2

address

romsn/iosn/ramsn[4]

data

oen

data2 lead-out
clk

D1

A1

brdyn
GRIP, Sep 2018, Version 2018.3 1286 www.cobham.com/gaisler

GRLIB IP Core
84.11 Access errors

An access error can be signaled by asserting the MEMI.BEXCN signal, which is sampled together
with the data. If the usage of MEMI.BEXCN is enabled in memory configuration register 1, an error
response will be generated on the internal AMBA bus. MEMI.BEXCN can be enabled or disabled
through memory configuration register 1, and is active for all areas (PROM, I/O an RAM).

Figure 248. Read cycle with one waitstate (configured) and one BRDYN generated waitstate (synchronous
sampling).

data1 data2

address

romsn/iosn/ramsn[4]

data

oen

data2 lead-out

clk

D1

A1

brdyn

data2
ws brdyn

Figure 249. Read cycle with BEXCN.

data1 data2

address

romsn/iosn/ramsn

data

oen

lead-out

clk

D1

A1

bexcn
GRIP, Sep 2018, Version 2018.3 1287 www.cobham.com/gaisler

GRLIB IP Core
84.12 Attaching an external DRAM controller

To attach an external DRAM controller, MEMO.RAMSN[4] should be used since it allows the cycle
time to vary through the use of MEMI.BRDYN. In this way, delays can be inserted as required for
opening of banks and refresh.

84.13 Endianness

The core is designed for big-endian systems.

84.14 Registers

The memory controller is programmed through registers mapped into APB address space.

84.14.1 Memory configuration register 1 (MCFG1)

Memory configuration register 1 is used to program the timing of rom and local I/O accesses.

Table 1530.Memory controller registers

APB address offset Register
0x0 MCFG1
0x4 MCFG2
0x8 MCFG3
0xC MCFG4 (Power-Saving configuration register)

Table 1531.0x00 - MCFG1 - Memory configuration register 1.
31 29 28 27 26 25 24 23 20 19 18

RESERVED IOBUSW IBRDY BEXCN R IO WAITSTATES IOEN RESERVED

0 NR 0 0 0 0 0 0

r rw rw rw r rw rw r

12 11 10 9 8 7 4 3 0

RESERVED PWEN R PROM WIDTH PROM WRITE WS PROM READ WS

0 0 0 * 0xF 0xF

r rw r rw rw rw

31 : 29 RESERVED
28 : 27 I/O bus width (IOBUSW) - Sets the data width of the I/O area (“00”=8, “01”=16, “10” =32).

Figure 250. Write cycle with BEXCN. Chip-select (iosn) is not asserted in lead-in cycle for io-accesses.

lead-in data2

address

romsn/iosn/ramsn

data

rwen

lead-out

clk

D1

A1

bexcn
GRIP, Sep 2018, Version 2018.3 1288 www.cobham.com/gaisler

GRLIB IP Core
During power-up, the prom width (bits [9:8]) are set with value on MEMI.BWIDTH inputs. The prom
waitstates fields are set to 15 (maximum). External bus error and bus ready are disabled. All other
fields are undefined.

84.14.2 Memory configuration register 2 (MCFG2)

Memory configuration register 2 is used to control the timing of the SRAM and SDRAM.

26 I/O bus ready enable (IBRDY) - Enables bus ready (BRDYN) signalling for the I/O area. Reset to
‘0’.

25 Bus error enable (BEXCN) - Enables bus error signalling. Reset to ‘0’.
24 RESERVED
23 : 20 I/O waitstates (IO WAITSTATES) - Sets the number of waitstates during I/O accesses (“0000”=0,

“0001”=1, “0010”=2,..., “1111”=15).
19 I/O enable (IOEN) - Enables accesses to the memory bus I/O area.
18:12 RESERVED
11 PROM write enable (PWEN) - Enables write cycles to the PROM area.
10 RESERVED
9 : 8 PROM width (PROM WIDTH) - Sets the data width of the PROM area (“00”=8, “01”=16,

“10”=32).
7 : 4 PROM write waitstates (PROM WRITE WS) - Sets the number of wait states for PROM write

cycles (“0000”=0, “0001”=1, “0010”=2,..., “1111”=15).
3 : 0 PROM read waitstates (PROM READ WS) - Sets the number of wait states for PROM read cycles

(“0000”=0, “0001”=1, “0010”=2,...,”1111”=15). Reset to “1111”.

Table 1532.0x04 - MCFG2 - Memory configuration register 2.
31 30 29 27 26 25 23 22 21 20 19 18 17 16

SDRF TRP SDRAM TRFC TCAS SDRAM BANKSZ SDRAM COLSZ SDRAM CMD D64 R MS

0 1 0b111 1 0 0b10 0 * 0 *

rw rw rw rw rw rw rw r r r

15 14 13 12 9 8 7 6 5 4 3 2 1 0

RES SE SI RAM BANK SIZE R RBRDY RMW RAM WIDTH RAM WRITE WS RAM READ WS

0 0 0 NR 0 NR NR NR 0 0

r rw rw rw r rw rw rw rw rw

31 SDRAM refresh (SDRF) - Enables SDRAM refresh.
30 SDRAM TRP parameter (TRP) - tRP will be equal to 2 or 3 system clocks (0/1).

29 : 27 SDRAM TRFC parameter (SDRAM TRFC) - tRFC will be equal to 3+field-value system clocks.

26 SDRAM TCAS parameter (TCAS) - Selects 2 or 3 cycle CAS delay (0/1). When changed, a LOAD-
COMMAND-REGISTER command must be issued at the same time. Also sets RAS/CAS delay
(tRCD).

25 : 23 SDRAM bank size (SDRAM BANKSZ) - Sets the bank size for SDRAM chip selects (“000”=4
Mbyte, “001”=8 Mbyte, “010”=16 Mbyte.... “111”=512 Mbyte).
When configured for 64-bit wide SDRAM data bus (sdbits=64), the meaning of this field doubles so
that “000”=8 Mbyte, .., “111”=1024 Mbyte

22 : 21 SDRAM column size (SDRAM COLSZ) - “00”=256, “01”=512, “10”=1024, “11”=2048 except
when bit[25:23]=˘111˘ then ˘11˘=4096

20 : 19 SDRAM command (SDRAM CMD) - Writing a non-zero value will generate a SDRAM command.
“01”=PRECHARGE, “10”=AUTO-REFRESH, “11”=LOAD-COMMAND-REGISTER. The field is
reset after the command has been executed.

18 64-bit SDRAM data bus (D64) - Reads ‘1’ if the memory controller is configured for 64-bit SDRAM
data bus width, ‘0’ otherwise. Read-only.

17 RESERVED
16 Mobile SDR support enabled. ‘1’ = Enabled, ‘0’ = Disabled (read-only)

Table 1531.0x00 - MCFG1 - Memory configuration register 1.
GRIP, Sep 2018, Version 2018.3 1289 www.cobham.com/gaisler

GRLIB IP Core
84.14.3 Memory configuration register 3 (MCFG3)

MCFG3 is contains the reload value for the SDRAM refresh counter.

The period between each AUTO-REFRESH command is calculated as follows:
tREFRESH = ((reload value) + 1) / SYSCLK

15 RESERVED
14 SDRAM enable (SE) - Enables the SDRAM controller.
13 SRAM disable (SI) - Disables accesses RAM if bit 14 (SE) is set to ‘1’.
12 : 9 RAM bank size (RAM BANK SIZE) - Sets the size of each RAM bank (“0000”=8 kbyte, “0001”=16

kbyte, ..., “1111”=256 Mbyte).
8 RESERVED
7 RAM bus ready enable (RBRDY) - Enables bus ready signalling for the RAM area.
6 Read-modify-write enable (RMW) - Enables read-modify-write cycles for sub-word writes to 16- bit

32-bit areas with common write strobe (no byte write strobe).
5 : 4 RAM width (RAM WIDTH) - Sets the data width of the RAM area (“00”=8, “01”=16, “1X”=32).
3 : 2 RAM write waitstates (RAM WRITE WS) - Sets the number of wait states for RAM write cycles

(“00”=0, “01”=1, “10”=2, “11”=3).
1 : 0 RAM read waitstates (RAM READ WS) - Sets the number of wait states for RAM read cycles

(“00”=0, “01”=1, “10”=2, “11”=3).

TABLE 1533. 0x08 - MCFG3 - Memory Configuration register 3
31 27 26 12 11 0

RESERVED SDRAM REFRESH RELOAD VALUE RESERVED

31: 27 RESERVED
26: 12 SDRAM refresh counter reload value (SDRAM

REFRESH RELOAD VALUE)
11: 0 RESERVED

Table 1532.0x04 - MCFG2 - Memory configuration register 2.
GRIP, Sep 2018, Version 2018.3 1290 www.cobham.com/gaisler

GRLIB IP Core

84.14.4

Table 1534.0x0C - MCFG4 - Power-Saving configuration register

Power-Saving Configuration Register

84.15 Vendor and device identifiers

The core has vendor identifier 0x04 (ESA) and device identifier 0x00F. For description of vendor and
device identifier see GRLIB IP Library User’s Manual.

84.16 Implementation

84.16.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers. See the documentation for the syncrst VHDL generic for information on asynchronous
reset affecting external signals.

31 30 29 28 24 23 20 19 18 16 15 7 6 5 4 3 2 0

ME CE EM RESERVED tXSR R PMODE RESERVED DS TCSR PASR

* * 0 0 0b111 0 0 0 0 0 0

rw rw rw r rw r rw r rw rw rw

31 Mobile SDRAM functionality enabled. ‘1’ = Enabled (support for Mobile SDRAM), ‘0’ = disabled
(support for standard SDRAM)

30 Clock enable (CE). This value is driven on the CKE inputs of the SDRAM. Should be set to ‘1’ for
correct operation. This register bit is read only when Power-Saving mode is other then none.

29 EMR. When set, the LOAD-COMMAND-REGISTER command issued by the SDRAM command
field in MCFG2 will be interpret as a LOAD-EXTENDED-COMMAND-REGISTER command.

28: 24 Reserved
23: 20 SDRAM tXSR timing. tXSR will be equal to field-value system clocks. (Read only when Mobile

SDR support is disabled).
19 Reserved
18: 16 Power-Saving mode (Read only when Mobile SDR support is disabled).

“000”: none
“001”: Power-Down (PD)
“010”: Self-Refresh (SR)
“101”: Deep Power-Down (DPD)

15: 7 Reserved
 6: 5 Selectable output drive strength (Read only when Mobile SDR support is disabled).

“00”: Full
“01”: One-half
“10”: One-quarter
“11”: Three-quarter

 4: 3 Reserved for Temperature-Compensated Self Refresh (Read only when Mobile SDR support is disa-
bled).
“00”: 70ªC
“01”: 45ªC
“10”: 15ªC
“11”: 85ªC

 2: 0 Partial Array Self Refresh (Read only when Mobile SDR support is disabled).
“000”: Full array (Banks 0, 1, 2 and 3)
“001”: Half array (Banks 0 and 1)
“010”: Quarter array (Bank 0)
“101”: One-eighth array (Bank 0 with row MSB = 0)
“110”: One-sixteenth array (Bank 0 with row MSB = 00)
GRIP, Sep 2018, Version 2018.3 1291 www.cobham.com/gaisler

GRLIB IP Core

84.17 Configuration options

Table 1535 shows the configuration options of the core (VHDL generics).

Table 1535.Configuration options

Generic Function Allowed range Default
hindex AHB slave index 1 - NAHBSLV-1 0
pindex APB slave index 0 - NAPBSLV-1 0
romaddr ADDR field of the AHB BAR0 defining PROM address space.

Default PROM area is 0x0 - 0x1FFFFFFF.
0 - 16#FFF# 16#000#

rommask MASK field of the AHB BAR0 defining PROM address space. 0 - 16#FFF# 16#E00#
ioaddr ADDR field of the AHB BAR1 defining I/O address space.

Default I/O area is 0x20000000 - 0x2FFFFFFF.
0 - 16#FFF# 16#200#

iomask MASK field of the AHB BAR1 defining I/O address space. 0 - 16#FFF# 16#E00#
ramaddr ADDR field of the AHB BAR2 defining RAM address space.

Default RAM area is 0x40000000-0x7FFFFFFF.
0 - 16#FFF# 16#400#

rammask MASK field of the AHB BAR2 defining RAM address space. 0 -16#FFF# 16#C00#
paddr ADDR field of the APB BAR configuration registers address

space.
0 - 16#FFF# 0

pmask MASK field of the APB BAR configuration registers address
space.

0 - 16#FFF# 16#FFF#

wprot RAM write protection. 0 - 1 0
invclk Inverted clock is used for the SDRAM. 0 - 1 0
fast Enable fast SDRAM address decoding. 0 - 1 0
romasel log2(PROM address space size) - 1. E.g. if size of the PROM

area is 0x20000000 romasel is log2(2^29)-1 = 28.
0 - 31 28

sdrasel log2(RAM address space size) - 1. E.g if size of the RAM
address space is 0x40000000 sdrasel is log2(2^30)-1= 29.

0 - 31 29

srbanks Number of SRAM banks. 0 - 5 4
ram8 Enable 8-bit PROM and SRAM access. 0 - 1 0
ram16 Enable 16-bit PROM and SRAM access. 0 - 1 0
sden Enable SDRAM controller. 0 - 1 0
sepbus SDRAM is located on separate bus. 0 - 1 1
sdbits 32 or 64 -bit SDRAM data bus. 32, 64 32
sdlsb Can be used to shift address lines used for SDRAM. Leave at

default value.
- 2

oepol Select polarity of drive signals for data pads. 0 = active low, 1 =
active high.

0 - 1 0

syncrst When syncrst is set to 0 then the output registers of the core have
asynchronous reset. When syncrst is set to 1 only synchronous
reset is used within the core and the output signals are instead
gated with the reset signal.

0 - 1 0

pageburst Line burst read of length 8 when 0, page burst read when 1, pro-
grammable read burst type when 2.

0 - 2 0

scantest Enable scan test support (connects test oen to output enables,
handles asynchronous reset case).

0 - 1 0

mobile Enable Mobile SDRAM support
0: Mobile SDRAM support disabled
1: Mobile SDRAM support enabled but not default
2: Mobile SDRAM support enabled by default
3: Mobile SDRAM support only (no regular SDR support)

0 - 3 0
GRIP, Sep 2018, Version 2018.3 1292 www.cobham.com/gaisler

GRLIB IP Core

84.18 Signal descriptions

Table 1536 shows the interface signals of the core (VHDL ports).

Table 1536.Signal descriptions

Signal name Field Type Function Active
CLK N/A Input Clock -
RST N/A Input Reset Low
MEMI DATA[31:0] Input Memory data High

BRDYN Input Bus ready strobe Low
BEXCN Input Bus exception Low
WRN[3:0] Input SRAM write enable feedback signal Low
BWIDTH[1:0] Input Sets the reset value of the PROM data bus width

field in the MCFG1 register
High

SD[31:0] Input SDRAM separate data bus High
MEMO ADDRESS[31:0] Output Memory address High

DATA[31:0] Output Memory data -
SDDATA[63:0] Output Sdram memory data -
RAMSN[4:0] Output SRAM chip-select Low
RAMOEN[4:0] Output SRAM output enable Low
IOSN Output Local I/O select Low
ROMSN[1:0] Output PROM chip-select Low
OEN Output Output enable Low
WRITEN Output Write strobe Low
WRN[3:0] Output SRAM write enable:

 WRN[0] corresponds to DATA[31:24],
 WRN[1] corresponds to DATA[23:16],
 WRN[2] corresponds to DATA[15:8],
 WRN[3] corresponds to DATA[7:0].

Low

MBEN[3:0] Output Byte enable:
 MBEN[0] corresponds to DATA[31:24],
 MBEN[1] corresponds to DATA[23:16],
 MBEN[2] corresponds to DATA[15:8],
 MBEN[3] corresponds to DATA[7:0].

Low

BDRIVE[3:0] Output Drive byte lanes on external memory bus.Con-
trols I/O-pads connected to external memory
bus:
 BDRIVE[0] corresponds to DATA[31:24],
 BDRIVE[1] corresponds to DATA[23:16],
 BDRIVE[2] corresponds to DATA[15:8],
 BDRIVE[3] corresponds to DATA[7:0].

Low/High

VBDRIVE[31:0] Output Vectored I/O-pad drive signals. Low/High
SVBDRIVE[63:0] Output Vectored I/O-pad drive signals for separate

sdram bus.
Low/High

READ Output Read strobe High
SA[14:0] Output SDRAM separate address bus High

AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
GRIP, Sep 2018, Version 2018.3 1293 www.cobham.com/gaisler

GRLIB IP Core
84.19 Library dependencies

Table 1537 shows libraries used when instantiating the core (VHDL libraries).

84.20 Instantiation

This example shows how the core can be instantiated.
The example design contains an AMBA bus with a number of AHB components connected to it
including the memory controller. The external memory bus is defined on the example designs port
map and connected to the memory controller. System clock and reset are generated by GR Clock Gen-
erator and Reset Generator.
Memory controller decodes default memory areas: PROM area is 0x0 - 0x1FFFFFFF, I/O-area is
0x20000000-0x3FFFFFFF and RAM area is 0x40000000 - 0x7FFFFFFF. SDRAM controller is
enabled. SDRAM clock is synchronized with system clock by clock generator.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.pads.all; -- used for I/O pads

APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
WPROT WPROTHIT Input Unused -
SDO SDCASN Output SDRAM column address strobe Low

SDCKE[1:0] Output SDRAM clock enable High
SDCSN[1:0] Output SDRAM chip select Low
SDDQM[7:0] Output SDRAM data mask:

 DQM[7] corresponds to DATA[63:56],
 DQM[6] corresponds to DATA[55:48],
 DQM[5] corresponds to DATA[47:40],
 DQM[4] corresponds to DATA[39:32],
 DQM[3] corresponds to DATA[31:24],
 DQM[2] corresponds to DATA[23:16],
 DQM[1] corresponds to DATA[15:8],
 DQM[0] corresponds to DATA[7:0].

Low

SDRASN Output SDRAM row address strobe Low
SDWEN Output SDRAM write enable Low

* see GRLIB IP Library User’s Manual

Table 1537.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB signal definitions
GAISLER MEMCTRL Signals

Components
Memory bus signals definitions
SDMCTRL component

ESA MEMORYCTRL Component Memory controller component declaration

Table 1536.Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 1294 www.cobham.com/gaisler

GRLIB IP Core

library esa;
use esa.memoryctrl.all;

entity mctrl_ex is
 port (
 clk : in std_ulogic;
 resetn : in std_ulogic;
 pllref : in std_ulogic;

 -- memory bus
 address : out std_logic_vector(27 downto 0); -- memory bus
 data : inout std_logic_vector(31 downto 0);
 ramsn : out std_logic_vector(4 downto 0);
 ramoen : out std_logic_vector(4 downto 0);
 rwen : inout std_logic_vector(3 downto 0);
 romsn : out std_logic_vector(1 downto 0);
 iosn : out std_logic;
 oen : out std_logic;
 read : out std_logic;
 writen : inout std_logic;
 brdyn : in std_logic;
 bexcn : in std_logic;
-- sdram i/f
 sdcke : out std_logic_vector (1 downto 0); -- clk en
 sdcsn : out std_logic_vector (1 downto 0); -- chip sel
 sdwen : out std_logic; -- write en
 sdrasn : out std_logic; -- row addr stb
 sdcasn : out std_logic; -- col addr stb
 sddqm : out std_logic_vector (7 downto 0); -- data i/o mask
 sdclk : out std_logic; -- sdram clk output
 sa : out std_logic_vector(14 downto 0); -- optional sdram address
 sd : inout std_logic_vector(63 downto 0) -- optional sdram data
);
end;

architecture rtl of mctrl_ex is

 -- AMBA bus (AHB and APB)
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

 -- signals used to connect memory controller and memory bus
 signal memi : memory_in_type;
 signal memo : memory_out_type;

 signal sdo : sdram_out_type;

 signal wprot : wprot_out_type; -- dummy signal, not used
 signal clkm, rstn : std_ulogic; -- system clock and reset

-- signals used by clock and reset generators
 signal cgi : clkgen_in_type;
 signal cgo : clkgen_out_type;

 signal gnd : std_ulogic;

begin

 -- Clock and reset generators
 clkgen0 : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1,
 tech => virtex2, sdinvclk => 0)
 port map (clk, gnd, clkm, open, open, sdclk, open, cgi, cgo);

 cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pllref <= pllref;

 -- Memory controller
 mctrl0 : mctrl generic map (srbanks => 1, sden => 1)
GRIP, Sep 2018, Version 2018.3 1295 www.cobham.com/gaisler

GRLIB IP Core

 port map (rstn, clkm, memi, memo, ahbsi, ahbso(0), apbi, apbo(0), wprot, sdo);

 -- memory controller inputs not used in this configuration
 memi.brdyn <= ’1’; memi.bexcn <= ’1’; memi.wrn <= "1111";
 memi.sd <= sd;

 -- prom width at reset
 memi.bwidth <= "10";

 -- I/O pads driving data memory bus data signals
 datapads : for i in 0 to 3 generate
 data_pad : iopadv generic map (width => 8)
 port map (pad => data(31-i*8 downto 24-i*8),
 o => memi.data(31-i*8 downto 24-i*8),
 en => memo.bdrive(i),
 i => memo.data(31-i*8 downto 24-i*8));
 end generate;

 -- connect memory controller outputs to entity output signals
 address <= memo.address; ramsn <= memo.ramsn; romsn <= memo.romsn;
 oen <= memo.oen; rwen <= memo.wrn; ramoen <= "1111" & memo.ramoen(0);
 sa <= memo.sa;
 writen <= memo.writen; read <= memo.read; iosn <= memo.iosn;
 sdcke <= sdo.sdcke; sdwen <= sdo.sdwen; sdcsn <= sdo.sdcsn;
 sdrasn <= sdo.rasn; sdcasn <= sdo.casn; sddqm <= sdo.dqm;
end;
GRIP, Sep 2018, Version 2018.3 1296 www.cobham.com/gaisler

GRLIB IP Core

85 MEMSCRUB - AHB Memory Scrubber and Status Register

85.1 Overview

The memory scrubber monitors an AMBA AHB bus for accesses triggering an error response, and for
correctable errors signaled from fault tolerant slaves on the bus. The core can be programmed to scrub
a memory area by reading through the memory and writing back the contents using a locked read-
write cycle whenever a correctable error is detected. It can also be programmed to initialize a memory
area to known values.
The memory scrubber core is largely backwards compatible with the AHBSTAT core, and can replace
it in many cases. Unlike AHBSTAT, the scrubber’s registers are accessed through the AMBA AHB
bus.

85.2 Operation

85.2.1 Errors

All AMBA AHB bus transactions are monitored and current HADDR, HWRITE, HMASTER and
HSIZE values are stored internally. When an error response (HRESP = “01”) is detected, an internal
counter is increased. When the counter exceeds a user-selected threshold, the status and address regis-
ter contents are frozen and the New Error (NE) bit is set to one. At the same time an interrupt is gen-
erated, as described hereunder.
The default threshold is zero and enabled on reset so the first error on the bus will generate an inter-
rupt.
Note that many of the fault tolerant units containing EDAC signal an un-correctable error as an
AMBA error response, so that it can be detected by the processor as described above.

85.2.2 Correctable errors

Not only error responses on the AHB bus can be detected. Many of the fault tolerant units containing
EDAC have a correctable error signal which is asserted each time a correctable error is detected.
When such an error is detected, the effect will be the same as for an AHB error response. The only dif-
ference is that the Correctable Error (CE) bit in the status register is set to one when a correctable
error is detected. Correctable and uncorrectable errors use separate counters and threshold values.

Scrubber DMA

Registers

AHB Error monitorMemory with EDAC

ce

AMBA AHB

Figure 251. Memory scrubber block diagram
GRIP, Sep 2018, Version 2018.3 1297 www.cobham.com/gaisler

GRLIB IP Core

When the CE bit is set, the interrupt routine can acquire the address containing the correctable error
from the failing address register and correct it. When it is finished it resets the CE bit and the monitor-
ing becomes active again. Interrupt handling is described in detail hereunder.
The correctable error signals from the fault tolerant units should be connected to the scrubi.cerror
input signal vector of the AHB status register core, which is or-ed internally and if the resulting signal
is asserted, it will have the same effect as an AHB error response.

85.2.3 Scrubbing

The memory scrubber can be commanded to scrub a certain memory area, by writing a start and end
address to the scrubbers start/end registers, followed by writing “00” to the scrub mode field and ‘1’
to the scrub enable bit in the scrubber control register.
After starting, the core will proceed to read the memory region in bursts. The burst size is fixed (set by
the burstlen generic) and typically tuned to match the cache-line size or native block size of the slave.
When a correctable error is detected, the scrubber performs a locked read-write cycle to correct the
error, and then resumes the scrub operation.
If the correctable error detected is in the middle of a burst, the following read in the burst is completed
before the read-write cycle begins. The core can handle the special case where that access also had a
correctable error within the same locked scrub cycle.
If an uncorrectable error is detected, that location is left untouched.
Note that the status register functionality is running in parallel with the scrubber, so correctable and
uncorrectable errors will be logged as usual. To prevent double logging, the core masks out the
(expected) correctable error arising during the locked correction cycle.
To allow normal access to the bus, the core sleeps for a number of cycles between each burst. The
number of cycles can be adjusted in the config register.
If the ID bit is set in the config register, the core will interrupt when the complete scrub is done.

85.2.4 Scrubber error counters

The core keeps track of the number of correctable errors detected during the current scrub run and the
number of errors detected during processing of the current “count block”. The size of the count block
is a fixed power of two equal or larger than the burst length (set by the countlen generic).
The core can be set up to interrupt when the counters exceed given thresholds. When this happens, the
NE bit, plus one of the SEC/SBC bits, is set in the status register.

85.2.5 External start and clear

If the ES bit is set in the config register, the scrub enable bit is set automatically when the start input
signal goes high. This can be used to set up periodic scrubbing.
The external input signal clrerr can be used to clear the global error counters. If this is connected to a
timer, it is possible to count errors that have occurred within a specific unit of time. This signal can be
disabled through the EC bit in the config register.

85.2.6 Memory regeneration

The regeneration mode performs the same basic function as the scrub mode, but is optimised for the
case where many (or all) locations have correctable errors.
In this mode, the whole memory area selected is scrubbed using locked read/write bursts.
If an uncorrectable error is encountered during the read burst, that burst block is processed once again
using the regular scrub routine, and the regeneration mode resumes on the following block. This
avoids overwriting uncorrectable error locations.
GRIP, Sep 2018, Version 2018.3 1298 www.cobham.com/gaisler

GRLIB IP Core

85.2.7 Initialization

The scrubber can be used to write a pre-defined pattern to a block of memory. This is often necessary
on EDAC memory before it can be used.
Before running the initialization, the pattern to be written to memory should be written into the scrub-
ber initialization data register. The pattern has the same size as the burst length, so the corresponding
number of writes to the initialization data register must be made.

85.2.8 Interrupts

The interrupt is generated on the line selected by the hirq VHDL generic. The interrupt is connected
to the interrupt controller to inform the processor of the event.
After an interrupt is generated, either the NE bit or the DONE bit in the status register is set, to indi-
cate which type of event caused the interrupt.
The normal procedure is that an interrupt routine handles the error with the aid of the information in
the status registers. When it is finished it resets the NE bit in the AHB status register or the DONE bit
in the scrubber status register, and the monitoring becomes active again. Error interrupts can be gener-
ated for both AMBA error responses and correctable errors as described above.

85.2.9 Mode switching

Switching between scrubbing and regeneration modes can be done on the fly during a scrub by modi-
fying the MODE field in the scrubber configuration register. The mode change will take effect on the
following scrub burst.
If the address range needs to be changed, then the core should be stopped before updating the regis-
ters. This is done by clearing the SCEN bit, and waiting for the ACTIVE bit in the status register to go
low. An exception is when making the range larger (i.e. increasing the end address or decreasing the
start address), as this can be done on the fly.

85.2.10 Dual range support

The scrubber can work over two non-overlapping memory ranges. This feature is enabled by writing
the start/end addresses of the second range into the scrubber’s second range start/end registers and set-
ting the SERA bit in the configuration register. The two address ranges should not overlap.
GRIP, Sep 2018, Version 2018.3 1299 www.cobham.com/gaisler

GRLIB IP Core

85.3 Registers

The core is programmed through registers mapped into an I/O region in the AHB address space. Only
32-bit single-accesses to the registers are supported.

Table 1538.Memory scrubber registers

AHB address offset Registers
0x00 AHB Status register
0x04 AHB Failing address register
0x08 AHB Error configuration register
0x0C Reserved
0x10 Scrubber status register
0x14 Scrubber configuration register
0x18 Scrubber range low address register
0x1C Scrubber range high address register
0x20 Scrubber position register
0x24 Scrubber error threshold register
0x28 Scrubber initialization data register
0x2C Scrubber second range start address register
0x30 Scrubber second range end address register
GRIP, Sep 2018, Version 2018.3 1300 www.cobham.com/gaisler

GRLIB IP Core

85.3.1

Table 1539. 0x00 - AHBS - AHB Status register

AHB Status Register

85.3.2

Table 1540. 0x04 - AHBFAR - AHB Failing address register

AHB Failing Address Register

85.3.3

Table 1541. 0x08 - AHBERC - AHB Error configuration register

AHB Error Configuration Register

31 22 21 14 13 12 11 10 9 8 7 6 3 2 0

CECNT UECNT DONE RES SEC SBC CE NE HWRITE HMASTER HSIZE

0 0 0 0 0 0 0 0 NR NR NR

rw rw r r rw rw rw rw r r r

31: 22 CECNT: Global correctable error count
21: 14 UECNT: Global uncorrectable error count
13 DONE: Task completed. (read-only)

This is a read-only copy of the DONE bit in the status register.
12 RESERVED
11 SEC: Scrubber error counter threshold exceeded. Asserted together with NE.
10 SBC: Scrubber block error counter threshold exceeded. Asserted together with NE.
9 CE: Correctable Error. Set if the detected error was caused by a correctable error and zero otherwise.
8 NE: New Error. Deasserted at start-up and after reset. Asserted when an error is detected. Reset by

writing a zero to it.
7 The HWRITE signal of the AHB transaction that caused the error.
6: 3 The HMASTER signal of the AHB transaction that caused the error.
2: 0 The HSIZE signal of the AHB transaction that caused the error

31 0

AHB FAILING ADDRESS

NR

r

31: 0 The HADDR signal of the AHB transaction that caused the error.

31 22 21 14 13 2 1 0

CORRECTABLE ERROR COUNT THRESHOLD UNCORR. ERROR COUNT THRESH. RESERVED CECTE UECTE

0 0 0 0 0

rw rw r rw rw

31: 22 Interrupt threshold value for global correctable error count
21: 14 Interrupt threshold value for global uncorrectable error count
13: 2 RESERVED
1 CECTE: Correctable error count threshold enable
0 UECTE: Uncorrectable error count threshold enable
GRIP, Sep 2018, Version 2018.3 1301 www.cobham.com/gaisler

GRLIB IP Core

85.3.4

Table 1542. 0x10 - STAT - Scrubber status register

Scrubber Status Register

85.3.5

Table 1543.0x14 - CONFIG - Scrubber configuration register

Scrubber Configuration Register

85.3.6

Table 1544. 0x18 - RANGEL - Scrubber range low address register

Scrubber Range Low Address Register

31 22 21 14 13 12 5 4 1 0

SCRUB RUN ERROR COUNT BLOCK ERROR COUNT DONE RESERVED BURSTLEN ACTIVE

0 0 0 0 * 0

r r wc r r r

31: 22 Number of correctable errors in current scrub run (read-only)
21: 14 Number of correctable errors in current block (read-only)
13 DONE: Task completed.

Needs to be cleared (by writing zero) before a new task completed interrupt can occur.
12: 5 RESERVED
4: 1 Burst length in 2-log of AHB bus cycles; “0000”=1, “0001”=2, “0010”=4, “0011”=8, ...
0 Current state: 0=Idle, 1=Running (read-only)

31 16 15 8 7 6 5 4 3 2 1 0

RESERVED DELAY IRQD EC SERA LOOP MODE ES SCEN

0 0 0 0 0 0 0 0 0

r rw rw r rw rw rw rw rw

31: 16 RESERVED
15: 8 Delay time between processed blocks, in cycles
7 Interrupt when scrubber has finished
6 External clear counter enable
5 Second memory range enable
4 Loop mode, restart scrubber when run finishes
3: 2 Mode (00=Scrub, 01=Regenerate, 10=Initialize, 11=Undefined)
1 External start enable
0 Enable

31 0

SCRUBBER RANGE LOW ADDRESS

0

rw*

31: 0 The lowest address in the range to be scrubbed
The address bits below the burst size alignment are constant ‘0’
GRIP, Sep 2018, Version 2018.3 1302 www.cobham.com/gaisler

GRLIB IP Core

85.3.7

Table 1545. 0x1C - RANGEH - Scrubber range high address register

Scrubber Range High Address Register

85.3.8

Table 1546. 0x20 - POS - Scrubber position register

Scrubber Position Register

31 0

SCRUBBER RANGE HIGH ADDRESS

0

rw*

31: 0 The highest address in the range to be scrubbed
The address bits below the burst size alignment are constant ‘1’

31 0

SCRUBBER POSITION

0

rw

31: 0 The current position of the scrubber while active, otherwise zero.
The address bits below the burst size alignment are constant ‘0’
GRIP, Sep 2018, Version 2018.3 1303 www.cobham.com/gaisler

GRLIB IP Core

85.3.9

Table 1547. 0x24 - ERROR - Scrubber error threshold register

Scrubber Error Threshold Register

85.3.10

Table 1548. 0x28 - INIT - Scrubber initialization data register (write-only)

Scrubber Initialization Data Register

85.3.11

Table 1549. 0x2C - RANGEL2 - Scrubber second range low address register

Scrubber Second Range Low Address Register

85.3.12

Table 1550. 0x30 - RANGEH2 - Scrubber second range high address register

Scrubber Second Range High Address Register

85.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x057. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

31 22 21 14 13 2 1 0

RECT BECT RESERVED RECTE BECTE

0 0 0 0 0

rw rw r rw rw

31: 22 Interrupt threshold value for current scrub run correctable error count
21: 14 Interrupt threshold value for current scrub block correctable error count
13: 2 RESERVED
1 RECTE: Scrub run correctable error count threshold enable
0 BECTE: Scrub block correctable error count threshold enable

31 0

SCRUBBER INITIALIZATION DATA

-

w

31: 0 Part of data pattern to be written in initialization mode. A write operation assigns the first part of the
buffer and moves the rest of the words in the buffer one step.

31 0

SCRUBBER RANGE LOW ADDRESS

0

rw*

31: 0 The lowest address in the second range to be scrubbed (if SERA=1)
The address bits below the burst size alignment are constant ‘0’

31 0

SCRUBBER RANGE HIGH ADDRESS

0

rw*

31: 0 The highest address in the second range to be scrubbed (if SERA=1)
The address bits below the burst size alignment are constant ‘1’
GRIP, Sep 2018, Version 2018.3 1304 www.cobham.com/gaisler

GRLIB IP Core

85.5 Implementation

85.5.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

85.6 Configuration options

Table 1551 shows the configuration options of the core (VHDL generics).

85.7 Signal descriptions

Table 1552 shows the interface signals of the core (VHDL ports).

85.8 Library dependencies

Table 1553 shows libraries used when instantiating the core (VHDL libraries).

Table 1551.Configuration options

Generic Function Allowed range Default
hmindex AHB master index 0 - NAHBMST-1 0
hsindex AHB slave index 0 - NAHBSLV-1 0
ioaddr AHB slave register area address 0 - 16#FFF# 0
iomask AHB slave register area address mask 0 - 16#FFF# 16#FFF#
hirq Interrupt line driven by the core 0 - 16#FFF# 0
nftslv Number of FT slaves connected to the cerror vector 1 - NAHBSLV-1 3
memwidth Width of accesses to scrubbed memory slave in bits 32, 64, ..., 1024 AHBDW
burstlen Length of burst accesses to scrubbed memory slave 2, 4, 8, 16, ... 2
countlen Length of blocks used for block error count burstlen x (1,2,4,8 ...) 8

Table 1552.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
AHBMI * Input AHB master input signals -
AHBMO * Output AHB master output signal -
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
SCRUBI CERROR Input Correctable Error Signals High

CLRCOUNT Input Clear global error counters High
START Input External start signal High

* see GRLIB IP Library User’s Manual

Table 1553.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB signal definitions
GAISLER MISC Component Component declaration
GRIP, Sep 2018, Version 2018.3 1305 www.cobham.com/gaisler

GRLIB IP Core

85.9 Instantiation

This example shows how the core can be instantiated.
The example design contains an AMBA bus with a number of AHB components connected to it
including the memory scrubber. There are three Fault Tolerant units with EDAC connected to the
scrubber’s cerror vector. The connection of the different memory controllers to external memory is
not shown.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.misc.all;

entity mctrl_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;
 --other signals

);
end;

architecture rtl of mctrl_ex is

 -- AMBA bus (AHB and APB)
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

 -- signals used to connect memory controller and memory bus
 signal memi : memory_in_type;
 signal memo : memory_out_type;

 signal sdo, sdo2: sdctrl_out_type;

 signal sdi : sdctrl_in_type;

 signal aramo : ahbram_out_type;

 -- correctable error vector
 signal scrubi : memscrub_in_type;

begin

 -- AMBA Components are defined here ...

 -- AHB Memory Scrubber and Status Register
 mscrub0 : memscrub
 generic map(hmindex => 4, hsindex => 5, ioaddr => 16#C00#,
 hirq => 11, nftslv => 3);
 port map(rstn, clkm, ahbmi, ahbmo(4), ahbsi, ahbso(5), scrubi);

 scrubi.start <= ’0’; scrubi.clrcount <= ’0’;
 scrubi.cerror(3 to NAHBSLV-1) <= (others => ’0’);

 --FT AHB RAM
 a0 : ftahbram
 generic map(hindex => 1, haddr => 1, tech => inferred, kbytes => 64,
 pindex => 4, paddr => 4, edacen => 1, autoscrub => 0,
 errcnt => 1, cntbits => 4)
GRIP, Sep 2018, Version 2018.3 1306 www.cobham.com/gaisler

GRLIB IP Core

 port map(rst, clk, ahbsi, ahbso(1), apbi, apbo(4), aramo);

 scrubi.cerror(0) <= aramo.ce;

 -- SDRAM controller
 sdc : ftsdctrl
 generic map (hindex => 3, haddr => 16#600#, hmask => 16#F00#, ioaddr => 1,
 fast => 0, pwron => 1, invclk => 0, edacen => 1, errcnt => 1,
 cntbits => 4)
 port map (rstn, clk, ahbsi, ahbso(3), sdi, sdo);

 stati.cerror(1) <= sdo.ce;

 -- Memory controller
 mctrl0 : ftsrctrl
 generic map (rmw => 1, pindex => 10, paddr => 10, edacen => 1, errcnt => 1,
 cntbits => 4)
 port map (rstn, clk, ahbsi, ahbso(0), apbi, apbo(10), memi, memo, sdo2);

 scrubi.cerror(2) <= memo.ce;

end;
GRIP, Sep 2018, Version 2018.3 1307 www.cobham.com/gaisler

GRLIB IP Core

86 MMA - Memory Mapped AMBA bridge

86.1 Overview

The bridge acts as a slave on the memory bus and provides a master interface on the AMBA AHB
bus. A read/write access issued towards the slave memory bus interface for the defined memory range
is transferred to the AHB master interface and issued on the AMBA bus.

86.2 Operation

86.2.1 Read

Only 32-bit read accesses is allowed for the slave memory interface. When a read access is detected
and decoded by the bridge, the bus ready signal is combinatorially deasserted. When corresponding
AMBA access is done, the bus ready signal is asserted and the data is driven on the memory bus.
When output enable / chip select signal is detected deasserted the data bus is tri-stated.

86.2.2 Write

Only 32-bit write accesses is allowed for the slave memory interface. When a write access is detected
and decoded by the bridge, the bus ready signal is combinatorially deasserted. The bus ready signal is
reasserted as soon as the write data is stored by the bridge. The bridge can store a write access when
the last access has completed on the AMBA bus.

86.3 Default configuration

The default configuration is set by the defcfg signal. The configuration is arranged in the following
order:

Table 1554.

DEFCFG bits Configuration
407 - 380 Reconfiguration area
379 - 356 Config for CSN[9]
355 - 332 Config for CSN[8]
331 - 308 Config for CSN[7]
307 - 284 Config for CSN[6]
283 - 260 Config for CSN[5]
259 - 236 Config for CSN[4]
235 - 212 Config for CSN[3]
211 - 188 Config for CSN[2]
187 - 164 Config for CSN[1]
163 - 140 Config for CSN[0]
139 - 126 Address map for CSN[9]
125 - 112 Address map for CSN[8]
111 - 98 Address map for CSN[7]
97 - 84 Address map for CSN[6]
83 - 70 Address map for CSN[5]
69 - 56 Address map for CSN[4]
GRIP, Sep 2018, Version 2018.3 1308 www.cobham.com/gaisler

GRLIB IP Core
86.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x07F. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

86.5 Implementation

86.5.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.

55 - 42 Address map for CSN[3]
41 - 28 Address map for CSN[2]
27 - 14 Address map for CSN[1]
13 - 0 Address map for CSN[0]

Table 1555. Config for CSN
23 14 13 12 11 2 1 0

Address RES Mask R EN

27: 8 Base memory address for CSN
13: 12 Reserved
11: 2 Address mask

1 Reserved
0 CSN enable

Table 1556. Address for CSN
13 0

Address map

13: 0 Accesses to this CSN are using this address map as bit[31:18] on the AHB bus

Table 1557. Reconfiguration area
27 8 7 4 3 0

Address Reserved CSN

27: 8 Base address for the reconfiguration area
7: 4 Reserved
3: 0 The reconfiguration area is located at this CSN

Table 1554.

DEFCFG bits Configuration
GRIP, Sep 2018, Version 2018.3 1309 www.cobham.com/gaisler

GRLIB IP Core

The core does not support grlib_async_reset_enable. All registers that react on the reset signal will
have a synchronous reset.

86.6 Configuration options

Table 1558 shows the configuration options of the core (VHDL generics).

86.7 Signal descriptions

Table 1559 shows the interface signals of the core (VHDL ports).

Table 1558.Configuration options

Generic Function Allowed range Default
hindex AHB master index 0 - NAHBMST-1 0
oepol Output enable polarity 0 - 1 0
filter Memory bus signal filtering/sampling 1 1
csnnum Number of chip selects 1 - 10 1
config Implement reconfiguration 0 - 1 0

Table 1559.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
SCLK N/A Input Not used -
MMAI ADDRESS[31:0] Input Memory address High

CSN[9:0] Input Chip select Low
DATA[31:0] Input Memory data -
OEN Input Output enable Low
WRITEN Input Write strobe Low
WREN[3:0] Input Write enable:

 WREN[0] corresponds to DATA[31:24],
 WREN[1] corresponds to DATA[23:16],
 WREN[2] corresponds to DATA[15:8],
 WREN[3] corresponds to DATA[7:0].

Low

READ Input Read strobe High
MMAO DATA[31:0] Output Memory data High

DATAOEN[31:0] Output Memory data output enable High/Low
BRDYN Output Bus ready strobe Low
BRDYOEN Output Bus ready strobe output enable High/Low
BEXCN Output Bus exception Low
BEXCOEN Output Bus exception output enable High/Low

AHBMI * Input AHB master input signals -
AHBMO * Output AHB master output signals -
DEFCFG[407:0] Input Default configuration -
* see GRLIB IP Library User’s Manual
GRIP, Sep 2018, Version 2018.3 1310 www.cobham.com/gaisler

GRLIB IP Core

86.8 Library dependencies

Table 1560 shows libraries used when instantiating the core (VHDL libraries).

86.9 Instantiation

This example shows how the core can be instantiated.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.misc.all;

entity mctrl_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;
 -- memory bus
 address : in std_logic_vector(27 downto 0);
 data : inout std_logic_vector(31 downto 0);
 csn : in std_logic_vector(0 downto 0);
 rwen : in std_logic_vector(3 downto 0);
 oen : in std_logic;
 read : in std_logic;
 writen : in std_logic;
 brdyn : out std_logic;
 bexcn : out std_logic;
 --other signals

);
end;

architecture rtl of mctrl_ex is

 -- AMBA bus (AHB and APB)
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

 -- signals used to connect memory controller and memory bus
 signal mmai : mma_in_type;
 signal mmao : mma_out_type;

begin

-- MMA core
mma0 : mma
generic map(
 hindex => 0,
 oepol => 0,
 filter => 1,
 csnnum => 1,
 config => 0)
port map(
 rst => rst,
 clk => clk,
 sclk => ‘0’,

Table 1560.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB signal definitions
GAISLER MMA_PKG Component Component declaration
GRIP, Sep 2018, Version 2018.3 1311 www.cobham.com/gaisler

GRLIB IP Core

 mmai => mmai,
 mmao => mmao,
 ahbmi => ahbmi,
 ahbmo => ahbmo(0),
 defcfg => mma_cfgi);

mma_cfgi <= mma_cfg(
 csn0 => mma_csn_cfg(x”2340”, x”340”, x”FC0”, “00“, ‘0’, ‘1’));

-- I/O pads driving data memory bus data signals
 datapads : for i in 0 to 3 generate
 data_pad : iopadv generic map (width => 8)
 port map (pad => data(31-i*8 downto 24-i*8),
 o => mmai.data(31-i*8 downto 24-i*8),
 en => mmao.dataoen(31-i*8 downto 24-i*8),
 i => mmao.data(31-i*8 downto 24-i*8));
 end generate;

 -- connect memory controller outputs to entity output signals
 mmai.address <= address; mmai.csn(0) <= csn(0);
 mmai.oen <= oen; mmai.wren <= rwen;
 mmai.writen <= writen; mmai.read <= read; mmai.iosn <= iosn;
 brdyn <= mmao.brdyn; bexcn <= mmao.bexcn;
end;
GRIP, Sep 2018, Version 2018.3 1312 www.cobham.com/gaisler

GRLIB IP Core

87 MUL32 - Signed/unsigned 32x32 multiplier module

87.1 Overview

The multiplier module is highly configurable module implementing 32x32 bit multiplier. Multiplier
takes two signed or unsigned numbers as input and produces 64-bit result. Multiplication latency and
hardware complexity depend on multiplier configuration. Variety of configuration option makes it
possible to configure the multiplier to meet wide range of requirements on complexity and perfor-
mance.
For DSP applications the module can be configured to perform multiply & accumulate (MAC) opera-
tion. In this configuration 16x16 multiplication is performed and the 32-bit result is added to 40-bit
value accumulator.

87.2 Operation

The multiplication is started when ‘1’ is samples on MULI.START on positive clock edge. Operands
are latched externally and provided on inputs MULI.OP1 and MULI.OP2 during the whole operation.
The result appears on the outputs during the clock cycle following the clock cycle when
MULO.READY is asserted if multiplier if 16x16, 32x8 or 32x16 configuration is used. For 32x32
configuration result appears on the output during the second clock cycle after the MULI.START was
asserted.
Signal MULI.MAC shall be asserted to start multiply & accumulate (MAC) operation. This signal is
latched on positive clock edge. Multiplication is performed between two 16-bit values on inputs
MULI.OP1[15:0] and MULI.OP2[15:0]. The 32-bit result of the multiplication is added to the 40-bit
accumulator value on signal MULI.ACC to form a 40-bit value on output MULO.RESULT[39:0].
The result of MAC operation appears during the second clock cycle after the MULI.MAC was
asserted.

87.3 Implementation

87.3.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core will use asynchronous reset for all registers if the GRLIB config package setting grlib_asyn-
c_reset_enable is set.

87.3.2 Complexity

Table 1561 shows hardware complexity in ASIC gates and latency for different multiplier configura-
tions.

Table 1561.Multiplier latencies and hardware complexity

Multiplier size
(multype) Pipelined (pipe) Latency (clocks) Approximate area (gates)
16x16 1 5 6 500
16x16 0 4 6 000
32x8 - 4 5 000
32x16 - 2 9 000
32x32 - 1 15 000
GRIP, Sep 2018, Version 2018.3 1313 www.cobham.com/gaisler

GRLIB IP Core

87.4 Configuration options

Table 1562 shows the configuration options of the core (VHDL generics).

Table 1562.Configuration options

Generic Function Allowed range Default
tech Multiplier technolofy selection.

If set to 0 the multipliers will be inferred by the synthesis tool.
Use this option if your synthesis tool i capable of inferring effi-
cient multiplier implementation.

0 to NTECH-1 0

multype Size of the multiplier that is actually implemented. All configu-
ration produce 64-bit result with different latencies.
0 - 16x16 bit multiplier
1 - 32x8 bit multiplier
2 - 32x16 bit multiplier
3 - 32x32 bit multiplier

0 to 3 0

pipe Used in 16x16 bit multiplier configuration. Adds a pipeline reg-
ister stage to the multiplier. This option gives better timing but
adds one clock cycle to latency.

0 to 1 0

mac Enable multiply & accumulate operation. Use only with 16x16
multiplier option with no pipelining (pipe = 0)

0 to 1 0

arch Multiplier structure
0: Inferred by synthesis tool
1: Generated using Module Generators from NTNU
2: Using technology specific netlists (techspec). Only supported
for RTAX-D FPGAs. Other technologies will assert a simulation
error.
3: Using Synopsys DesignWare (DW02_mult and DW_-
mult_pipe)

0 to 3 0

scantest Enable scan test support. Only required if GRLIB has been
changed to use asynchronous reset.

0 - 1 0
GRIP, Sep 2018, Version 2018.3 1314 www.cobham.com/gaisler

GRLIB IP Core

87.5 Signal descriptions

Table 1563 shows the interface signals of the core (VHDL ports).

87.6 Library dependencies

Table 1564 shows the libraries used when instantiating the core (VHDL libraries).

87.7 Component declaration

The core has the following component declaration.
component mul32

Table 1563.Signal declarations

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
HOLDN N/A Input Hold Low
MULI OP1[32:0] Input Operand 1

OP1[32] - Sign bit.
OP1[31:0] - Operand 1 in 2’s complement for-
mat

High

OP2[32:0] Operand 2
OP2[32] - Sign bit.
OP2[31:0] - Operand 2in 2’s complement format

High

FLUSH Flush current operation High
SIGNED Signed multiplication High
START Start multiplication High
MAC Multiply & accumulate High
ACC[39:0] Accumulator. Accumulator value is held exter-

nally.
High

MULO READY Output Result is ready during the next clock cycle for
16x16, 32x8 and 32x16 configurations. Not used
for 32x32 configuration or MAC operation.

High

NREADY Not used -
ICC[3:0] Condition codes

ICC[3] - Negative result (not used in 32x32
conf)
ICC[1] - Zero result (not used in 32x32 conf)
ICC[1:0] - Not used

High

RESULT[63:0] Result. Available at the end of the clock cycle if
MULO.READY was asserted in previous clock
cycle. For 32x32 configuration the result is avail-
able during second clock cycle after the
MULI.START was asserted.

High

TESTEN N/A Input Test enable (only used together with async. reset) High
TESTRST N/A Input Test reset (only used together with async. reset) Low

Table 1564.Library dependencies

Library Package Imported unit(s) Description
GAISLER ARITH Signals, component Signals, component declaration
GRIP, Sep 2018, Version 2018.3 1315 www.cobham.com/gaisler

GRLIB IP Core

generic (
 infer : integer := 1;
 multype : integer := 0;
 pipe : integer := 0;
 mac : integer := 0
);
port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 holdn : in std_ulogic;
 muli : in mul32_in_type;
 mulo : out mul32_out_type
);
end component;

87.8 Instantiation

This example shows how the core can be instantiated.
The module is configured to implement 16x16 pipelined multiplier with support for MAC operations.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use gaisler.arith.all;

.

.

.

signal muli : mul32_in_type;
signal mulo : mul32_out_type;

begin

mul0 : mul32 generic map (infer => 1, multype => 0, pipe => 1, mac => 1)
 port map (rst, clk, holdn, muli, mulo);

end;
GRIP, Sep 2018, Version 2018.3 1316 www.cobham.com/gaisler

GRLIB IP Core

88 MULTLIB - High-performance multipliers

88.1 Overview

The GRLIB.MULTLIB VHDL-library contains a collection of high-performance multipliers from the
Arithmetic Module Generator at Norwegian University of Science and Technology. 32x32, 32x8,
32x16, 16x16 unsigned/signed multipliers are included. 16x16-bit multiplier can be configured to
include a pipeline stage. This option improves timing but increases latency with one clock cycle.

88.2 Configuration options

Table 1565 shows the configuration options of the core (VHDL generics).

88.3 Signal descriptions

Table 1566 shows the interface signals of the core (VHDL ports).

88.4 Library dependencies

Table 1567 shows libraries used when instantiating the core (VHDL libraries).

Table 1565.Configuration options

Generic Function Allowed range Default
mulpipe Include a pipeline stage

(0 -pipelining disabled, 1 - pipelining enabled)
0 - 1 0

Table 1566.Signal descriptions

Signal name Type Function Active
CLK
(16x16 multiplier only)

Input Clock -

HOLDN
(16x16 multiplier only)

Input Hold. When active, the pipeline register is not
updates

Low

X[16:0] (16x16 mult)
X[32:0] (32x8 mult)
X[32:0] (32x16 mult)
X[32:0] (32x32 mult)

Input Operand 1. MBS bit is sign bit. High

Y[16:0] (16x16 mult)
Y[8:0] (32x8 mult)
Y[16:0] (32x16 mult)
Y[32:0] (32x32 mult)

Input Operand 2. MSB bit is sign bit. High

P[33:0] (16x16 mult)
P[41:0] (32x8 mult)
P[49:0] (32x16 mult)
P[65:0] (32x32 mult)

Result. Two MSB bits are sign bits. High

Table 1567.Library dependencies

Library Package Imported unit Description
GRLIB MULTLIB Component Multiplier component declarations
GRIP, Sep 2018, Version 2018.3 1317 www.cobham.com/gaisler

GRLIB IP Core

88.5 Component declaration

The core has the following component declaration.
component mul_33_33
 port (
 x : in std_logic_vector(32 downto 0);
 y : in std_logic_vector(32 downto 0);
 p : out std_logic_vector(65 downto 0)
);
end component;

88.6 Implementation

88.6.1 Reset
The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its
internal registers.

88.7 Instantiation

This example shows how the core can be instantiated.
The core is configured to implement 16x16 pipelined multiplier with support for MAC operations.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.multlib.all;

.

.

signal op1, op2 : std_logic_vector(32 downto 0);
signal prod : std_logic_vector(65 downto 0);

begin

m0 : mul_33_33
 port map (op1, op2, prod);

end;
GRIP, Sep 2018, Version 2018.3 1318 www.cobham.com/gaisler

GRLIB IP Core

89 NANDFCTRL - NAND Flash Memory Controller

89.1 Overview

The NAND Flash Memory Controller (NANDFCTRL) core provides a bridge between external
NAND flash memory and the AMBA bus. The memory controller is an Open NAND Flash Interface
(ONFI) 2.2 command compliant core (see exceptions below) and it can communicate with multiple
parallel flash memory devices simultaneously, where each device in turn can consist of up to four
individually addressable targets, one target addressed at a time. The core is configured through a set of
AMBA APB registers, described in section 89.4, and data is written to / read from the flash memory
by accessing internal buffers mapped over AMBA AHB.
This document mainly describes the NANDFCTRL core’s functionality. For details about the actual
flash memory interface, flash memory architecture and ONFI 2.2 command set please refer to the
Open NAND Flash Interface specification, revision 2.2, hereafter called the ONFI 2.2 specification.

89.2 Operation

89.2.1 System overview

A block diagram of the core can be seen in figure 252. Features and limitations of the core are listed
below:
• All commands defined in the ONFI 2.2 standard are supported, except Synchronous Reset and

Interleaved Read.
• The core does not implement support for the source synchronous data interface, only asynchro-

nous data interface.
• The core does not place any other limitation on the device architecture other than those specified

in the ONFI 2.2 standard. For example, the core does not need to know how many LUNs, blocks,
or pages a connected flash memory device has. (See the ONFI 2.2 specification for information
about LUNs, blocks, and pages.)

• Multiple parallel data lanes are supported, which gives the possibility to read / write several flash
memory devices at the same time.

Figure 252. Block diagram

NANDFCTRL

CTRL

AMBA
APB
Slave

Target

BUFFER 0

AMBA
AHB
Slave

A
M

B
A

 A
H

B

A
M

B
A

 A
P

B

LUN

BUFFER 1

Device

Target

LUN

Device

Target

LUN

Device

Target

LUN

Device

lanes

targetsd[63:56], dh[63:56]

d[7:0], dh[7:0]

we0

we7

ce0 ce3

Note: One device might have more than one target, using one chip enable signal for each target.
This will reduce the number devices that can be placed horizontally in the figure.
All devices (and the internal targets) placed vertically in the figure belong to the same chip enable signal,
with individual write enable signals controlling each 8-bit/16-bit data lane.
GRIP, Sep 2018, Version 2018.3 1319 www.cobham.com/gaisler

GRLIB IP Core

• To support interleaving of flash memory accesses and AMBA accesses and give greater through-

put, two buffers for reading / writing flash memory data are implemented.
• The data interface timing can either be fixed (set at implementation time) or programmable

through AMBA APB registers. With fixed data interface timing support for ONFI timing modes
0 - 5 can be implemented and then switched between during run-time. Programmable timing
interface allows for clock frequencies unknown at implementation time, as well as custom tim-
ing. It is highly recommended to use programmable timing as the additional delays (like I/O tim-
ings) might require custom timing options. Read section 89.5 (Timing Modes) for more
information.

• The core does not implement any wear-leveling or bad block management.
• The core does not implement any direct access to flash memory devices from the AMBA AHB

bus. Instead accesses are performed through two temporary buffers by initiating command and
data transfers through control registers via the AMBA APB bus.

• The temporary buffers are mapped into AMBA AHB memory space. Note that the buffer
addresses are not directly mapped to the flash memory, but are mapped specific addressing regis-
ters. This allows large amount of flash memory to be address, exceeding the 4 Gbyte address
space of the AMBA bus.

89.2.2 Internal buffer structure

The number of buffers implemented in the core depends on whether or not the core is implemented
with separate buffers for each parallel 8-bit/16-bit data lane or not. This is indicated by the sepb field
in the Capability register. How many data lanes the core implements can be found by reading the
nlane field of the Capability register and adding one. If separate buffers are used then for each data
lane there are four different buffers implemented. Two buffers are used for data that are read from /
written to any page area in the flash memory device (hereafter called page buffer), and the other two
are used for data read from / written to any page’s spare area (hereafter called spare buffer). The size
of each page buffer (in bytes) is 2^(pbits+1), where pbits is the value of the pbits field in the Capability
register. The size of each spare buffer (in bytes) is 2^(sbits+1), where sbits is the value of the sbits field
in the Capability register. If separate buffers aren’t used, then the core implements one set of the
above mentioned four buffers and uses them for all data lanes.
One page buffer and one spare buffer for each data lane (or all lanes if separate buffers aren’t used) are
grouped together into what in this document is called buffer 0. The other set of page buffers and spare
buffers are grouped into buffer 1. For example, if the core has support for eight data lanes with sepa-
rate buffers, and the page buffers are 4096 bytes, and the spare buffers are 256 bytes, then buffer 0 and
buffer 1 will each be 32768 + 2048 bytes large. Buffer 0 and buffer 1 are associated with their own set
of control registers, described in section 89.4.
Note that support for buffer 1 is optional. Whether or not support for buffer 1 is implemented is indi-
cated by the b1en bit in the Capability register.
All buffers are mapped into AMBA AHB address space, and the core supports two different mapping
schemes, with their own designated AMBA AHB address space:
• For the first address map, called Consecutive address map, the first part of the assigned AHB

memory area is mapped to the page buffer corresponding to the first 8-bit/16-bit data lane, fol-
lowed by the page buffer corresponding to the second 8-bit/16-bit data lane etc. After all the page
buffers the spare buffers follow in the same manner. See table 1568 for an example with 4096
bytes page buffer and 256 bytes spare buffer and table 1569 for an example with 2048 bytes page
buffer and 128 bytes spare buffer.

• For the second address map, called By page address map, the first part of the assigned AHB
memory area is mapped to the page buffer corresponding to the first 8-bit/16-bit data lane, fol-
lowed by the spare buffer corresponding to the same data lane. After that follows the page buffer
and spare buffer pairs for all other data lanes. Note that since the spare buffers normally are much
GRIP, Sep 2018, Version 2018.3 1320 www.cobham.com/gaisler

GRLIB IP Core

smaller than the page buffers there is normally a gap between the last address of a spare buffer
and the first address of the next page buffer. The size of the gap is page buffer size - spare buffer
size. See table 1570 for an example with 4096 bytes page buffer and 256 bytes spare buffer and
see table 1571 for an example with 2048 bytes page buffer and 128 bytes spare buffer.

• See table 1572 for an example which illustrates both Consecutive address map and page address
map for 8192 bytes page buffer and 2048 bytes spare buffer with two lanes, separate buffers and
buffer 1 is not implemented.

Note that the page and spare buffer areas might be larger than the size of the page and spare memory
implemented in the actual flash memory device. Thus, there might be gaps in the addressing schemes.
If the EDAC is implemented (indicated by the edac bit in the Capability register) then the buffers
have an additional AHB address map. Read and write accesses to the additional AHB address space
will trigger EDAC operation. This additional address map is also shown in table 1568 and table 1569.

Table 1568. Buffer memory map, consecutive addressing. Example with 4096 B page size, 256 B spare size, separate
buffers, both buffer 0 and buffer 1 implemented, and with EDAC.

AMBA AHB address
offset

Contents AMBA AHB address
offset

Contents

Normal address space (no EDAC operation) Normal address space (no EDAC operation)
0x00000 0x00FFF Buffer 0, 4096 byte page data, lane 0 0x10000 0x10FFF Buffer 1, 4096 byte page data, lane 0

0x01000 0x01FFF Buffer 0, 4096 byte page data, lane 1 0x11000 0x11FFF Buffer 1, 4096 byte page data, lane 1

0x02000 0x02FFF Buffer 0, 4096 byte page data, lane 2 0x12000 0x12FFF Buffer 1, 4096 byte page data, lane 2

0x03000 0x03FFF Buffer 0, 4096 byte page data, lane 3 0x13000 0x13FFF Buffer 1, 4096 byte page data, lane 3

0x04000 0x04FFF Buffer 0, 4096 byte page data, lane 4 0x14000 0x14FFF Buffer 1, 4096 byte page data, lane 4

0x05000 0x05FFF Buffer 0, 4096 byte page data, lane 5 0x15000 0x15FFF Buffer 1, 4096 byte page data, lane 5

0x06000 0x06FFF Buffer 0, 4096 byte page data, lane 6 0x16000 0x16FFF Buffer 1, 4096 byte page data, lane 6

0x07000 0x07FFF Buffer 0, 4096 byte page data, lane 7 0x17000 0x17FFF Buffer 1, 4096 byte page data, lane 7

0x08000 0x080FF Buffer 0, 256 byte spare data, lane 0 0x18000 0x180FF Buffer 1, 256 byte spare data, lane 0

0x08100 0x081FF Buffer 0, 256 byte spare data, lane 1 0x18100 0x181FF Buffer 1, 256 byte spare data, lane 1

0x08200 0x082FF Buffer 0, 256 byte spare data, lane 2 0x18200 0x182FF Buffer 1, 256 byte spare data, lane 2

0x08300 0x083FF Buffer 0, 256 byte spare data, lane 3 0x18300 0x183FF Buffer 1, 256 byte spare data, lane 3

0x08400 0x084FF Buffer 0, 256 byte spare data, lane 4 0x18400 0x184FF Buffer 1, 256 byte spare data, lane 4

0x08500 0x085FF Buffer 0, 256 byte spare data, lane 5 0x18500 0x185FF Buffer 1, 256 byte spare data, lane 5

0x08600 0x086FF Buffer 0, 256 byte spare data, lane 6 0x18600 0x186FF Buffer 1, 256 byte spare data, lane 6

0x08700 0x087FF Buffer 0, 256 byte spare data, lane 7 0x18700 0x187FF Buffer 1, 256 byte spare data, lane 7

EDAC address space (EDAC operation on page buffers) EDAC address space (EDAC operation on page buffers)
0x20000 0x20FFF Buffer 0, 4096 byte page data, lane 0 0x30000 0x30FFF Buffer 1, 4096 byte page data, lane 0

0x21000 0x21FFF Buffer 0, 4096 byte page data, lane 1 0x31000 0x31FFF Buffer 1, 4096 byte page data, lane 1

0x22000 0x22FFF Buffer 0, 4096 byte page data, lane 2 0x32000 0x32FFF Buffer 1, 4096 byte page data, lane 2

0x23000 0x23FFF Buffer 0, 4096 byte page data, lane 3 0x33000 0x33FFF Buffer 1, 4096 byte page data, lane 3

0x24000 0x24FFF Buffer 0, 4096 byte page data, lane 4 0x34000 0x34FFF Buffer 1, 4096 byte page data, lane 4

0x25000 0x25FFF Buffer 0, 4096 byte page data, lane 5 0x35000 0x35FFF Buffer 1, 4096 byte page data, lane 5

0x26000 0x26FFF Buffer 0, 4096 byte page data, lane 6 0x36000 0x36FFF Buffer 1, 4096 byte page data, lane 6

0x27000 0x27FFF Buffer 0, 4096 byte page data, lane 7 0x37000 0x37FFF Buffer 1, 4096 byte page data, lane 7

0x28000 0x280FF Buffer 0, 256 byte spare data, lane 0 0x38000 0x380FF Buffer 1, 256 byte spare data, lane 0

0x28100 0x281FF Buffer 0, 256 byte spare data, lane 1 0x38100 0x381FF Buffer 1, 256 byte spare data, lane 1

0x28200 0x282FF Buffer 0, 256 byte spare data, lane 2 0x38200 0x382FF Buffer 1, 256 byte spare data, lane 2

0x28300 0x283FF Buffer 0, 256 byte spare data, lane 3 0x38300 0x383FF Buffer 1, 256 byte spare data, lane 3

0x28400 0x284FF Buffer 0, 256 byte spare data, lane 4 0x38400 0x384FF Buffer 1, 256 byte spare data, lane 4

0x28500 0x285FF Buffer 0, 256 byte spare data, lane 5 0x38500 0x385FF Buffer 1, 256 byte spare data, lane 5

0x28600 0x286FF Buffer 0, 256 byte spare data, lane 6 0x38600 0x386FF Buffer 1, 256 byte spare data, lane 6

0x28700 0x287FF Buffer 0, 256 byte spare data, lane 7 0x38700 0x387FF Buffer 1, 256 byte spare data, lane 7
GRIP, Sep 2018, Version 2018.3 1321 www.cobham.com/gaisler

GRLIB IP Core

Table 1569. Buffer memory map, consecutive addressing. Example with 2048 B page size, 128 B spare size, separate

buffers, both buffer 0 and buffer 1 implemented, using sing lane, and with EDAC.

AMBA AHB address
offset

Contents AMBA AHB address
offset

Contents

Normal address space (no EDAC operation) Normal address space (no EDAC operation)
0x0000 0x007FF Buffer 0, 2048 byte page data, lane 0 0x1000 0x17FF Buffer 1, 2048 byte page data, lane 0

0x0800 0x0087F Buffer 0, 128 byte spare data, lane 0 0x1800 0x187F Buffer 1, 128 byte spare data, lane 0

EDAC address space (EDAC operation on page buffer) EDAC address space (EDAC operation on page buffer)
0x2000 0x27FF Buffer 0, 2048 byte page data, lane 0 0x3000 0x37FF Buffer 1, 2048 byte page data, lane 0

0x2800 0x287F Buffer 0, 128 byte spare data, lane 0 0x3800 0x387F Buffer 1, 128 byte spare data, lane 0

Table 1570. Buffer memory map, by page addressing. Example with 4096 B page size, 256 B spare size, separate buffers,
both buffer 0 and buffer 1 implemented, and with EDAC.

AMBA AHB address
offset

Contents AMBA AHB address
offset

Contents

Normal address space (no EDAC operation) Normal address space (no EDAC operation)
0x00000 0x00FFF Buffer 0, 4096 byte page data, lane 0 0x10000 0x10FFF Buffer 1, 4096 byte page data, lane 0

0x01000 0x010FF Buffer 0, 256 byte spare data, lane 0 0x11000 0x110FF Buffer 1, 256 byte spare data, lane 0

0x02000 0x02FFF Buffer 0, 4096 byte page data, lane 1 0x12000 0x12FFF Buffer 1, 4096 byte page data, lane 1

0x03000 0x030FF Buffer 0, 256 byte spare data, lane 1 0x13000 0x130FF Buffer 1, 256 byte spare data, lane 1

0x04000 0x04FFF Buffer 0, 4096 byte page data, lane 2 0x14000 0x14FFF Buffer 1, 4096 byte page data, lane 2

0x05000 0x050FF Buffer 0, 256 byte spare data, lane 2 0x15000 0x150FF Buffer 1, 256 byte spare data, lane 2

0x06000 0x06FFF Buffer 0, 4096 byte page data, lane 3 0x16000 0x16FFF Buffer 1, 4096 byte page data, lane 3

0x07000 0x070FF Buffer 0, 256 byte spare data, lane 3 0x17000 0x170FF Buffer 1, 256 byte spare data, lane 3

0x08000 0x08FFF Buffer 0, 4096 byte page data, lane 4 0x18000 0x18FFF Buffer 1, 4096 byte page data, lane 4

0x09000 0x090FF Buffer 0, 256 byte spare data, lane 4 0x19000 0x190FF Buffer 1, 256 byte spare data, lane 4

0x0A000 0x0AFFF Buffer 0, 4096 byte page data, lane 5 0x1A000 0x1AFFF Buffer 1, 4096 byte page data, lane 5

0x0B000 0x0B0FF Buffer 0, 256 byte spare data, lane 5 0x1B000 0x1B0FF Buffer 1, 256 byte spare data, lane 5

0x0C000 0x0CFFF Buffer 0, 4096 byte page data, lane 6 0x1C000 0x1CFFF Buffer 1, 4096 byte page data, lane 6

0x0D000 0x0D0FF Buffer 0, 256 byte spare data, lane 6 0x1D000 0x1D0FF Buffer 1, 256 byte spare data, lane 6

0x0E000 0x0EFFF Buffer 0, 4096 byte page data, lane 7 0x1E000 0x1EFFF Buffer 1, 4096 byte page data, lane 7

0x0F000 0x0F0FF Buffer 0, 256 byte spare data, lane 7 0x1F000 0x1F0FF Buffer 1, 256 byte spare data, lane 7

EDAC address space (EDAC operation on page buffer) EDAC address space (EDAC operation on page buffer)
0x20000 0x20FFF Buffer 0, 4096 byte page data, lane 0 0x30000 0x30FFF Buffer 1, 4096 byte page data, lane 0

0x21000 0x210FF Buffer 0, 256 byte spare data, lane 0 0x31000 0x310FF Buffer 1, 256 byte spare data, lane 0

0x22000 0x22FFF Buffer 0, 4096 byte page data, lane 1 0x32000 0x32FFF Buffer 1, 4096 byte page data, lane 1

0x23000 0x230FF Buffer 0, 256 byte spare data, lane 1 0x33000 0x330FF Buffer 1, 256 byte spare data, lane 1

0x24000 0x24FFF Buffer 0, 4096 byte page data, lane 2 0x34000 0x34FFF Buffer 1, 4096 byte page data, lane 2

0x25000 0x250FF Buffer 0, 256 byte spare data, lane 2 0x35000 0x350FF Buffer 1, 256 byte spare data, lane 2

0x26000 0x26FFF Buffer 0, 4096 byte page data, lane 3 0x36000 0x36FFF Buffer 1, 4096 byte page data, lane 3

0x27000 0x270FF Buffer 0, 256 byte spare data, lane 3 0x37000 0x370FF Buffer 1, 256 byte spare data, lane 3

0x28000 0x28FFF Buffer 0, 4096 byte page data, lane 4 0x38000 0x38FFF Buffer 1, 4096 byte page data, lane 4

0x29000 0x290FF Buffer 0, 256 byte spare data, lane 4 0x39000 0x390FF Buffer 1, 256 byte spare data, lane 4

0x2A000 0x2AFFF Buffer 0, 4096 byte page data, lane 5 0x3A000 0x3AFFF Buffer 1, 4096 byte page data, lane 5

0x2B000 0x2B0FF Buffer 0, 256 byte spare data, lane 5 0x3B000 0x3B0FF Buffer 1, 256 byte spare data, lane 5

0x2C000 0x2CFFF Buffer 0, 4096 byte page data, lane 6 0x3C000 0x3CFFF Buffer 1, 4096 byte page data, lane 6

0x2D000 0x2D0FF Buffer 0, 256 byte spare data, lane 6 0x3D000 0x3D0FF Buffer 1, 256 byte spare data, lane 6

0x2E000 0x2EFFF Buffer 0, 4096 byte page data, lane 7 0x3E000 0x3EFFF Buffer 1, 4096 byte page data, lane 7

0x2F000 0x2F0FF Buffer 0, 256 byte spare data, lane 7 0x3F000 0x3F0FF Buffer 1, 256 byte spare data, lane 7
GRIP, Sep 2018, Version 2018.3 1322 www.cobham.com/gaisler

GRLIB IP Core
89.2.3 Data interface timing

The ONFI timing parameters that the core explicitly handles are:
• tCCS - Change Column setup time
• tADL - ALE to data loading time
• tCS - CE setup time
• tRP - RE pulse width
• tREH - RE high hold time (starting from REV. 2)
• tRR - Ready to RE low (data only)
• tWP - WE pulse width
• tWB - WE high to SR[6] low
• tRHW - RE high to we WE low
• tWH - WE high hold time
• tWHR - WE high to RE low
• tWW - WP transition to WE low
All other timing requirements are either fulfilled through design, or are handled by the flash memory
devices. See the ONFI specification for details about the different timing parameters.
The data interface timing can be either fixed (set at implementation time) or programmable to allow
both system clock frequencies unknown at implementation time as well as custom timing parameters.

Table 1571. Buffer memory map, by page addressing. Example with 2048 B page size, 128 B spare size, separate buffers,
both buffer 0 and buffer 1 implemented, using sing lane, and with EDAC.

AMBA AHB address
offset

Contents AMBA AHB address
offset

Contents

Normal address space (no EDAC operation) Normal address space (no EDAC operation)
0x0000 0x007FF Buffer 0, 2048 byte page data, lane 0 0x1000 0x17FF Buffer 1, 2048 byte page data, lane 0

0x0800 0x0087F Buffer 0, 128 byte spare data, lane 0 0x1800 0x187F Buffer 1, 128 byte spare data, lane 0

EDAC address space (EDAC operation on page buffer) EDAC address space (EDAC operation on page buffer)
0x2000 0x27FF Buffer 0, 2048 byte page data, lane 0 0x3000 0x37FF Buffer 1, 2048 byte page data, lane 0

0x2800 0x287F Buffer 0, 128 byte spare data, lane 0 0x3800 0x387F Buffer 1, 128 byte spare data, lane 0

Table 1572. Buffer memory map, by consecutive addressing and by page addressing. Example with 8192B page size, 2048 B
spare size, separate buffers, only buffer 0 implemented, and with EDAC.

CONSECUTIVE ADDRESSING PAGE ADDRESSING
AMBA AHB address
offset

Contents AMBA AHB address
offset

Contents

Normal address space (no EDAC operation) Normal address space (no EDAC operation)
0x00000 0x01FFF Buffer 0, 8192 byte page data, lane 0 0x00000 0x01FFF Buffer 0, 8192 byte page data, lane 0

0x02000 0x03FFF Buffer 0, 8192 byte page data, lane 1 0x02000 0x027FF Buffer 0, 2048 byte spare data, lane 0

0x04000 0x047FF Buffer 0, 2048 byte spare data, lane 0 0x04000 0x05FFF Buffer 0, 8192 byte page data, lane 1

0x04800 0x04FFF Buffer 0, 2048 byte spare data, lane 1 0x06000 0x067FF Buffer 0, 2048 byte spare data, lane 1

EDAC address space (EDAC operation on page buffer) EDAC address space (EDAC operation on page buffer)
0x10000 0x11FFF Buffer 0, 8192 byte page data, lane 0 0x10000 0x11FFF Buffer 0, 8192 byte page data, lane 0

0x12000 0x13FFF Buffer 0, 8192 byte page data, lane 1 0x12000 0x127FF Buffer 0, 2048 byte spare data, lane 0

0x14000 0x147FF Buffer 0, 2048 byte spare data, lane 0 0x14000 0x15FFF Buffer 0, 8192 byte page data, lane 1

0x14800 0x14FFF Buffer 0, 2048 byte spare data, lane 1 0x16000 0x167FF Buffer 0, 2048 byte spare data, lane 1
GRIP, Sep 2018, Version 2018.3 1323 www.cobham.com/gaisler

GRLIB IP Core

When the timing is fixed all timing parameters are calculated on implementation time based on the
specified system clock frequency. When programmable timing is used the timing parameters are pro-
grammed through AMBA APB registers, described in section 89.4. The registers power-up / reset val-
ues are set at implementation time.
Note that the timing parameter tCCS is always programmable, even if fixed timing is used for all
other parameters. This is because the ONFI specification says that after initialization is complete, the
value for tCCS specified in the flash memory’s parameter page should be used.

89.2.4 Accessing the NAND flash memory devices

The steps that need to be taken to access (i.e. send an ONFI 2.2 command to) the flash memory
devices are:
1. Make sure that the chosen buffer is not busy by checking the run and bsy bits in the Buffer control /
status register. If both the run bit and bsy bits are set then the core is currently executing a command
associated with that buffer, and the buffer can not be used. If only the bsy bit is set then the core is
done executing a command but the corresponding data buffer and control bits are still write protected.
Software then needs to clear the bsy bit by writing ‘1’ to it.
2. If the command requires a row address to be sent, write it to the Buffer row address register. Other-
wise this step can be skipped.
3. If the command requires a column address to be sent, write it to the coladdr field of the Buffer col-
umn address register. Bits 7:0 of the coladdr field also need to be written with the one byte address
used for SET FEATURES, GET FEATURES, READ ID, READ UNIQUE ID, and READ PARAME-
TER PAGE commands. Otherwise this step can be skipped.
4. Write the command value to the Buffer command register, and possibly set the control bits sel, cd,
or sc2 if needed. See table 1580 in section 89.4 for a description of these bits.
5. If the command should include a data phase then set the size of the data by writing to the size field
of the Buffer column address register. This step is not necessary for the SET FEATURES, GET FEA-
TURES, READ STATUS, and READ STATUS ENHANCED commands since they always have a
fixed size data phase.
6. If data should be written to the flash memory devices then write this data to the corresponding buf-
fers. Note that the core uses the coladdr field in the Buffer column address register to index into the
buffers, which means that data that should be written with an offset into a flash memory page (i.e. col-
umn address is not zero) need to be written with the same offset into the buffers. The exception is the
commands mentioned in step 3. They always read from the beginning of the buffers. This step can be
skipped if no data are to be written.
7. Select which data lanes and targets the command should be sent to, if an interrupt should be gener-
ated when the command is finished, and start execution by writing to the lanesel, targsel, irqmsk, and
exe bits in the Buffer control / status register. See table 1581 in section 89.4 for a description of these
bits.
Once command execution has been started software can monitor the run bit in the Buffer control / sta-
tus register (or wait for an interrupt if the core was configured to generate one) to learn when the com-
mand is finished. If data was read from the flash memory then it can be found in the buffers. Note that
the core uses the coladdr field in the Buffer column address register to index into the buffers, which
means that data that was read from a flash memory page with an offset (i.e. column address is not
zero) was written into the buffers with the same offset. The exception are the commands mentioned in
step 3. They always place their data in the beginning of the buffers.

89.2.5 Endianness

The core is designed for big-endian systems.
GRIP, Sep 2018, Version 2018.3 1324 www.cobham.com/gaisler

GRLIB IP Core

89.3 EDAC

89.3.1 EDAC operation

The optional NAND Flash Memory controller EDAC automatically encode and decode data being
stored in the NAND Flash memory with an error correcting code. The edac bit in the Capability regis-
ter shows if the EDAC is implemented or not. If implemented, the EDAC is enabled by setting the
edacen bit in the Core control register. Optional AHB error responses can be generated upon an
uncorrectable error by setting the ahberren bit in the same register. See section 89.4 for more informa-
tion.
The checksum of the code is calculated and stored for each word that is written, via the AMBA inter-
face, into the page data part of the buffer, and automatically stored in parallel in the spare data part of
the buffer. For each word of data written, one byte is stored. Note that data must be written into the
EDAC part of the AHB address space. Data written to the non EDAC part of the address space does
not trigger EDAC operation. See section 89.2.2 for information about the buffer memory map. Half-
word and byte writes are not supported when the EDAC is enabled.
Since the number of spare bytes normally is less than what is sufficient to protect the full page data,
the page data size is limited by the programmable lpaddr field in the Core control register. The lpaddr
field defines how much user data (i.e. page data) is to be used, with the remaining part of the page data
and spare data being used for checksums. Note that the spare data buffer portion is therefore made
bigger than the actual spare data in the NAND Flash memory. When the NAND Flash memory is
written, the data will be fetched first from the page data buffer up to lpaddr, and then the rest will be
fetched from the spare data buffer. Errors can be detected in the underlying buffer memory when read-
ing them as part of the write operation to the NAND Flash memory.
The reverse applies to when data is fetched from the NAND Flash memory during read. When the
buffer contents are read out, via the AMBA interface, each read page data word is automatically cor-
rected using the corresponding spare buffer checksum byte. Two levels of errors can occur, errors
stemming from the underlying buffer memory protection, or errors stemming from the EDAC protect-
ing the NAND Flash memory contents. All error flags are described in the Core status register.
It is possible to write or read additional dummy words to the page data buffer past the LPADDR
address. This can be used to handle any surplus spare data bytes.
The memory contents are protected by means of a Bose Chaudhuri Hocquenghem (BCH) type of
code. It is a Quad Error Correction/Quad Error Detection (QEC/QED) code.
The data symbols are 4-bit wide, represented as GF(2^4). The has the capability to detect and correct
a single symbol error anywhere in the codeword.

89.3.2 Code

The code has the following definition:
• there are 4 bits per symbol; most significant has index 3 (to the left), least significant has index 0
• there are 17 symbols per codeword, of which 2 symbols represent the checksum;
• the code is systematic;
• the code can correct one symbol error per codeword;
• the field polynomial is

• all multiplications are performed as Galois Field multiplications over the above field polynomial
• all additions/subtractions are performed as Galois Field additions (i.e. bitwise exclusive-or)
Note that only 8 of the 17 symbols are used for data, 2 symbols are used for the checksum, and the
reset are not used, the code is thus shortened by 7 symbols.

f x  x4 x 1+ +=
GRIP, Sep 2018, Version 2018.3 1325 www.cobham.com/gaisler

GRLIB IP Core

89.3.3 Encoding

• a codeword is defined as 17 symbols:
[c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16]

where c0 to c14 represent information symbols and c15 to c16 represent check symbols.
• c15 is calculated as follows

• c16 is calculated as follows

• where the constant vector k is defined as:
k0=0xF, k1=0xE, .., k14=0x1 (one can assume k15=0x1 and k16=0x1 for correction purposes)

• bit 1 of c15, and bits 3 and 1 of c16 are inverted after encoded

89.3.4 Decoding

• the corrupt codeword is defined as 17 symbols:
[r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16]

• the corrupt codeword can also be defined as 17 uncorrupt symbols and an error:
[c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16] + [ex]
where the error is defined as ex, e being the unknown magnitude and
x being the unknown index position in the codeword

• recalculated checksum rc0 is calculated as follows (ki is as defined above, x being the unknown
index)

• recalculated rc1 is calculated as follows

• syndrome s0 is calculated as follows

• syndrome s1 is calculated as follows, which gives the magnitude (not applicable to c15 and c16)

• in case s0 and s1 are both non-zero, to located the error in range c0 to c14, multiply error magni-
tude ex with each element of the constant vector defined above:

c15 ki ci 
0

14

=

c16 ci
0

14

=

rc0 ki ri 
0

14

 ki ci  kx ex +
0

14

= =

rc1 ri
0

14

 ci ex+
0

14

= =

s0 rc0 r15 ki ri 
0

14

 ki ci 
0

14

 kx ex=+=+=

s1 rc1 r16 ri
0

14

 ci
0

14

 ex=+=+=

kiex ki s1 k= i ex= i 0 14[,]=
GRIP, Sep 2018, Version 2018.3 1326 www.cobham.com/gaisler

GRLIB IP Core

• search the resulting vector to find the element matching syndrome s0, the resulting index i points

to the error location (applicable only to i in [0, 14])

• finally perform the correction (applicable only to i in [0, 14])

• when s0 is zero and s1 is non-zero, the error is located in checksum r15, no correction is necessary
• when s1 is zero and s0 is non-zero, the error is located in checksum r16, no correction is necessary
• when s0 and s1 are both zero, no error has been detected, no correction is necessary
• bit 1 of r15, and bits 3 and 1 of r16 are inverted before decoded

89.4 Registers

The core is programmed through registers mapped into APB address space. Vendor and device identi-
fier

Table 1573.NANDFCTRL registers

APB address offset Register
0x00 Core control register
0x04 Core status register
0x08 Interrupt pending register
0x0C Capability register
0x10 Buffer 0 row address register
0x14 Buffer 0 column address register
0x18 Buffer 0 command register
0x1C Buffer 0 control / status register
0x20* Buffer 1 row address register
0x24* Buffer 1 column address register
0x28* Buffer 1 command register
0x2C* Buffer 1 control / status register
0x30 Programmable timing register 0
0x34** Programmable timing register 1
0x38** Programmable timing register 2
0x3C**+ Programmable timing register 3
* Only present if buffer 1 registers are implemented. Indicated by b1en bit in Capability register.
** Only present if programmable timing is implemented. Indicated by prgt bit in Capability register.
+ Present starting from the revision 2 of the core.
Note: The Buffer 0 and Buffer 1 registers are identical, and therefore only one set of tables describing the registers are pre-
sented below.

kiex ki ex

ci ri s1– ri ex– ci ex–  ex ci ex ex ci=+–= = = =
GRIP, Sep 2018, Version 2018.3 1327 www.cobham.com/gaisler

GRLIB IP Core

Table 1574.0x00 - CTRL - Core control register

31 16

LPADDR

0xFFFF

rw

15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DW CMDO R AHBERREN EDACEN R EDO ABO
RT

TMODE WP RST

0 0 * 0 0 0 0 0 0 0 1 0

r rw* rw r rw rw* r rw* rw* rw* rw rw

31:16 Last page address (LPADDR) - This field should be set to the last addressable byte in a flash memory
page, not including the spare area. The core uses these bits to know when to switch to the internal buf-
fers for the page’s spare area. For example: If the flash memory devices have a page size of 4096 bytes
(and an arbitrary sized spare area for each page) this field should be set to 0xFFF (= 4095). The actual
number of bits used for this field depends on the size of the implemented buffers. The number of bits
can be found by reading the pbits field of the Capability register and adding one. Reset value: 0xF..F

15:13 Reserved (R) - Always reads zero.
12 Data width (DW) - Sets the default data lane width. 0 = Core uses 8-bit data lanes. 1 = Core uses 16-bit

data lanes. This can be overridden for individual commands by setting the dwo bit in the Buffer com-
mand register. This bit is only available if the dw16 bit in the Capability register is 1. Reset value 0.

11 Command bit order (CMDO) - When this bit is set to 0 the ONFI command bytes are mapped to the
core’s data lane(s) as follows: Cmd bit 0 -> Data lane bit 7, Cmd bit 1 -> Data lane bit 6., and so on.
When this bit is set to 1 the commands are mapped as follows: Cmd bit 0 -> Data lane bit 0, Cmd bit 1 -
> Data lane bit 1, and so on. Reset value equals the value of the cmdo bit in the Capability register.

10 Reserved (R) - Always reads zero.
9 AHB error response generation (AHBERREN) - If this bit is set then the core will generate an AMBA

error response if the EDAC detects an uncorrectable error, or if the fault tolerance logic for the internal
buffers report and uncorrectable error, upon and AHB read. If this bit is not set when an uncorrectable
error is detected, the core’s output signal error is set high for one clock cycle instead. This bit is only
present when the EDAC is implemented or when the internal buffers are implemented with either byte
parity and DMR or only byte parity. The ft bits in the Capability register shows which fault tolerance
that is implemented, and the edac bit in the Capability register shows if EDAC is implemented. Reset
value 0.

8 EDAC enable (EDACEN) - When this bit is set the EDAC is enabled. This bit is only present when the
EDAC is implemented. The edac bit in the Capability register shows if EDAC is implemented or not.
Reset value 0.

7 Reserved (R) - Always reads zero.
6 EDO data output (EDO) - If programmable timing is implemented (indicated by the prgt field in the

Capability register) then this bit should be set if EDO data output cycles should be used. See ONFI 2.2
Specification for more information. If programmable timing is not implemented then this bit is read-
only. When programmable timing is not implemented the EDO is only enabled when timing mode 5 is
selected and tm5_edoen generic is set to 1.

5 Command abort (ABORT) - This bit can be set to 1 to abort a command that for some reason has put the
core in a dead lock waiting for the rb input signal to go high. This could happen for example if a pro-
gram or erase command was issued while the memory was in write protect mode. This bit is automati-
cally cleared by the core. Reset value 0. Only available if the rev field in the Capability register > 0,
otherwise always 0.

4:2 Timing mode (TMODE) - If programmable timing is not implemented (indicated by the prgt field in the
Capability register) then writing this field changes the core’s internal timing mode. See ONFI 2.2 Spec-
ification for more information on the different timing modes. Note that in order to change timing mode
on the flash memory devices a SET FEATURES command needs to be issued. This is not done automat-
ically when writing these bits. Timing mode 0 i always supported. Additional supported timing modes is
indicated by the tm[5:1] bits in the Capability register. Should not be written while a command is in
progress. Note that if this field is written with a value matching a timing mode that is not supported,
then the core will operate in timing mode 0 (even though this field still changes to the invalid value). If
programmable timing is implemented then this field is not present. Reset value: 0b000
GRIP, Sep 2018, Version 2018.3 1328 www.cobham.com/gaisler

GRLIB IP Core
1 Write protect (WP) - When this bit is set to 1 the core puts the flash memory devices in write protect
mode by asserting the wp signal. In write protect mode, the memories won’t respond to PROGRAM or
ERASE commands. If the core is active when software writes this bit there is a delay before the actual
write protect signal goes low. Software can use the wp field in the Core status register to see when the
signal has changed value. Reset value: 1

0 Software reset (RST) - If software writes this bit to 1 the core is reset, and a RESET (0xFF) command is
issued to all targets on all attached flash memory devices. The only difference between a software reset
and a hardware reset / power up is that the core does not reset it’s tmode field (described above) nor the
Programmable timing registers during software reset. The reason for this is that the flash memory
devices does not change timing mode after receiving a RESET command. This bit is cleared automati-
cally. Reset value: 0

Table 1575.0x04 - STAT - Core status register (read only)
31 24 23 22 21 20 19 18 17 16

R FTNERRFLAGS R FTAERRFLAGS R

0 0 0 0 0

r wc* r wc* r

15 12 11 9 8 4 3 2 1 0

EERRFLAGS R STATE R WP RDY

0 0 0 0 1 0

wc* r r r r r

31:24 Reserved (R) - Always reads zero.
23:22 Fault tolerance error flags on NAND side (FTNERRFLAGS) - The bits in this field indicates the fol-

lowing errors:
Bit 22: Uncorrectable error in buffer 0.
Bit 23: Uncorrectable error in buffer 1.
If the fault tolerance logic for the internal buffers indicates an error when the buffers are read during
a NAND flash write operation the corresponding error flag in this register is set. These bits can be
cleared by writing a 1 to them. The error flag for each buffer is also automatically cleared when an
AHB write access occurs to that buffer (independent of address). These bits are only present when
the internal buffers are implemented with either byte parity and DMR or only byte parity. The ft bits
in the Capability register shows which fault tolerance that is implemented. Reset value 0.

21:20 Reserved (R) - Always reads zero.
19:18 Fault tolerance error flags on AHB side (FTAERRFLAGS) - The bits in this field indicates the fol-

lowing errors:
Bit 18: Uncorrectable error in buffer 0.
Bit 19: Uncorrectable error in buffer 1.
If the fault tolerance logic for the internal buffers indicates an error when the buffers are read over
AHB the corresponding error flag in this register is set. These bits can be cleared by writing a 1 to
them. The error flag for each buffer is also automatically cleared when an AHB read access occurs to
that buffer with an address which is at offset 0 in the page data buffer for any data lane. For example,
if the core is configured with four data lanes and 4096 byte large page buffers, then an AHB read
access with offsets 0x0000, 0x1000, 0x2000, and 0x3000 (with consecutive address scheme) would
reset the error flag for buffer 0. These bits are only present when the internal buffers are imple-
mented with either byte parity and DMR or only byte parity. The ft bits in the Capability register
shows which fault tolerance that is implemented.
When these bits get set then the core’s output signal err is also set high for one clock cycle, if the
ahberren bit in the Core control register is not set.
Reset value 0.

17:16 Reserved (R) - Always reads zero.

Table 1574.0x00 - CTRL - Core control register
GRIP, Sep 2018, Version 2018.3 1329 www.cobham.com/gaisler

GRLIB IP Core
15:12 EDAC error flags (EERRFLAGS) - The different bits indicate the following errors:
Bit 12: Correctable error in buffer 0.
Bit 13: Correctable error in buffer 1.
Bit14: Uncorrectable error in buffer 0.
Bit 15: Uncorrectable error in buffer 1.
If the EDAC detects an error while an internal buffer is being read over AHB the corresponding error
flag in this register is set. These bits can be cleared by writing a 1 to them. The error flags for each
buffer are also automatically cleared when an AHB read access occurs to that buffer with an address
which is at offset 0 in the page data buffer for any data lane. For example, if the core is configured
with four data lanes and 4096 byte large page buffers, then an AHB read access with offsets 0x0000,
0x1000, 0x2000, and 0x3000 (with the consecutive address scheme) would reset the error flag for
buffer 0. These bits are only present when the EDAC is implemented. The edac bit in the Capability
register shows if EDAC is implemented or not.
When the correctable error status bits get set then the core’s output signal err is also set high for one
clock cycle. The err output is also set for one cycle if the error flags for uncorrectable errors get set
and the ahberren bit in the Core control register is not set.
Reset value 0x0.

11:9 Reserved (R) - Always reads zero.

8:4 Core state - Shows the core’s internal state. Implemented for debugging purposes. 0 = reset, 1-2 =
idle, 3-8 = command state, 9-11 = address state, 12-15 = data in state, 16-18 = data out state, 19-31 =
unused.

3:2 Reserved (R) - Always reads zero.
1 Write protect (WP) - Shows if the flash memory devices are in write protect mode or not. 0 = Not in

write protect mode. 1 = In write protect mode. Reset value: 1
0 Core ready (RDY) - After a power up / reset this bit will be cleared. Once the core is done with it’s

reset procedure (waiting for ready signal from all flash memory devices and issuing a RESET com-
mand) this bit is set to 1. Reset value: 0

Table 1576.0x08 - IPEND - Interrupt pending register
31 2 1 0

R B1IRQ B0IRQ

0 0 0

r wc wc

31:2 Reserved (R) - Always reads zero.
1 Buffer 1 interrupt (B1IRQ) - This bit is set to one when an interrupt linked to buffer 1 is generated.

Software can clear this bit by writing 1 to it. Only present if the b1en bit in the Capability register
indicates that buffer 1 is implemented. Reset value: 0

0 Buffer 0 interrupt (B0IRQ) - This bit is set to one when an interrupt linked to buffer 0 is generated.
Software can clear this bit by writing 1 to it. Reset value: 0

Table 1575.0x04 - STAT - Core status register (read only)
GRIP, Sep 2018, Version 2018.3 1330 www.cobham.com/gaisler

GRLIB IP Core

Table 1577.0x0C - CAP - Capability register (read only)

15 14 13 10 9 8 7 6 5 4 2 1 0

SBITS PBITS TM5 TM4 TM3 TM2 TM1 NLANES NTARGS

* * * * * * * * *

r r r r r r r r r

31 28 27 26 25 24 23 22 21 20 19 18 17 16

REV R PRGT SEPB CMDO FT R B1EN EDAC DW16 SBITS

* 0 * * * * 0 * * * ‘

r r r r r r r r r r r

31:28 Revision (REV) - Indicates the revision of the core.
27 Reserved (R) - Always reads zero.
26 Programmable timing (PRGT) - 0 = Data interface timing is set at implementation time and not pro-

grammable. 1 = Data interface timing is programmable (only reset values are set at implementation
time). Reflects value of VHDL generic progtime.

25 Separate buffers (SEPB) - Indicates if the buffers for the data lanes are shared or separate. 0 = All
data lanes share buffers. 1 = All data lanes have their own buffers. When 0 a command with a data in
phase should only be issued to one target and lane. A command with a data out phase can still be
issued to several lanes but with the limitation that the same data will be sent to all lanes. When set to
1 several lanes can be read at the same time, and lanes can be written with individual data simultane-
ously. Reflects value of VHDL generic sepbufs.

24 Command bit order (CMDO) - Indicates the reset value for the cmdo bit in the Core control register.
Reflects value of VHDL generic cmdorder.

23:22 Fault tolerant buffers (FT) - These bits indicate if the internal buffers in the core is implemented with
fault tolerance. 0b00 = no fault tolerance, 0b01 = Byte parity DMR, 0b10 = TMR, 0b11 = Byte par-
ity, no DMR. Reflects value of VHDL generic ft.

21 Reserved (R) - Always reads zero.
20 Buffer 1 enabled (B1EN) - If this bit is 1 then the core implements both buffer 0 and buffer 1, other-

wise only buffer 0 is implemented. See section 89.2.2 for more information about the buffer struc-
ture. Reflects value of VHDL generic b1en.

19 EDAC support (EDAC) - If this bit is 1 then the core implements error detection and correction on
data read from the NAND flash memory. See section 89.3 for details. Reflects value of VHDL
generic edac.

18 16-bit memory support (DW16) - If this bit is 0 the core only support 8-bit memories. If this bit is 1
the core support both 8-bit and 16-bit memories. Only available if the rev field > 0, otherwise always
0. Reflects value of VHDL generic dwidth16.

17:14 Spare area buffer address bits (SBITS) - This field indicates how many address bits that are imple-
mented for the buffers for the pages spare area. Add one to the value of this field to get the number of
bits. The size of the buffers are 2^(SBITS+1) Reflects value of VHDL generic sbufsize.

13:10 Page buffer address bits (PBITS) - This field indicated how many address bits that are implemented
for the page buffers. Add one to the value of this field to get the number of bits. The size (in bytes) of
the buffers are 2^(PBITS+1) Reflects value of VHDL generic pbufsize.

9 Timing mode 5 support (TM5) - If the core does not support programmable timing (indicated by prgt
bit described above) then this bit is 1 if the core supports timing mode 5. If programmable timing is
implemented, or if the core does not support timing mode 5 then this bit is 0. Reflects value of
VHDL generic tm5.

8 Timing mode 4 support (TM4) - If the core does not support programmable timing (indicated by prgt
bit described above) then this bit is 1 if the core supports timing mode 4. If programmable timing is
implemented, or if the core does not support timing mode 4then this bit is 0. Reflects value of VHDL
generic tm4.

7 Timing mode 3 support (TM3) - If the core does not support programmable timing (indicated by prgt
bit described above) then this bit is 1 if the core supports timing mode 3. If programmable timing is
implemented, or if the core does not support timing mode 3then this bit is 0. Reflects value of VHDL
generic tm3.
GRIP, Sep 2018, Version 2018.3 1331 www.cobham.com/gaisler

GRLIB IP Core
6 Timing mode 2 support (TM2) - If the core does not support programmable timing (indicated by prgt
bit described above) then this bit is 1 if the core supports timing mode 2. If programmable timing is
implemented, or if the core does not support timing mode 2then this bit is 0. Reflects value of VHDL
generic tm2.

5 Timing mode 1 support (TM1) - If the core does not support programmable timing (indicated by prgt
bit described above) then this bit is 1 if the core supports timing mode 1. If programmable timing is
implemented, or if the core does not support timing mode 1 then this bit is 0. Reflects value of
VHDL generic tm1.

4:2 Number of flash memory devices (NLANES) - This field indicates how many 8-bit/16-bit data lanes
(minus one) the core can access, i.e. number of write enable signals. A write enable signal can be
connected to one or more targets (i.e. one or more flash memory devices). Reflects value of VHDL
generic nlanes.

1:0 Number of targets per device (NTARGS) - This field indicates how many individual targets (minus
one) the core can access, i.e. number of chip enable signals. A flash memory device can have one or
more targets, each with an individual chip enable signal. Reflects value of VHDL generic ntargets.

Table 1578.0x10,0x20 - ROW - Buffer row address register
31 24 23 0

R ROWADDR

0 NR

r rw*

31:24 Reserved (R) - Always reads zero.
23:0 Row address (ROWADDR) - This field sets the three byte row address, which is used to address

LUNs, blocks and pages. As described in the ONFI 2.2 specification the least significant part of the
row address is the page address, the middle part block address, and the most significant part is the
LUN address. Exactly how many bits that are used for each part of the address depends on the archi-
tecture of the flash memory. Software needs to write this field prior to issuing any command that has
an address phase that includes the row address. The core ignores this field if the command doesn’t
use the row address. This field can only be written if the bsy bit in the Buffer control / status register
is zero.

Table 1579.0x14,0x24 - COL - Buffer column address register
31 16 15 0

SIZE COLADDR

NR NR

rw* rw*

31:16 Command data size (SIZE) - If a command has a data out or data in phase then software needs to set this
field to the size of the data that should be read / written. Software does not need to set this field for the
commands SET FEATURES, GET FEATURES, READ STATUS, or READ STATUS ENHANCED
their data phases are always the same size. The core also ignores this field if the command issued doesn’t
have a data phase, as for example BLOCK ERASE. The actual number of bits used for this field depends
on the size of the implemented buffers. The number of bits can be found by reading the pbits field of the
Capability register and adding one. This field can only be written if the bsy bit in the Buffer control / sta-
tus register is zero.

15:0 Column address (COLADDR) - This field sets the two byte column address, which is used to address
into a flash memory page. See the ONFI 2.2 specification for more information about column address.
Software needs to write this field for those commands that have an address phase that includes the col-
umn address, as well as for those special commands that only have a one byte address phase (SET FEA-
TURES; GET FEATURES; READ ID, READ UNIQUE ID, and READ PARAMETER PAGE). The
core uses this field as an offset into the buffers when reading / writing data. The exception is the one byte
address commands mentioned above, which always store their data in the beginning of the buffers. This
field is ignored by the core if the command only uses the row address. This field can only be written if
the bsy bit in the Buffer control / status register is zero.

Table 1577.0x0C - CAP - Capability register (read only)
GRIP, Sep 2018, Version 2018.3 1332 www.cobham.com/gaisler

GRLIB IP Core

Table 1580.0x18, 0x28 - CMD - Buffer command register

31 21 20 19 18 17 16 15 8 7 0

RESERVED DWO R SEL SC2 CD CMD2 CMD1

0 0 0 NR NR NR NR NR

r rw* r rw* rw* rw* rw* rw*

31:21 Reserved (R) - Always reads zero.
20 Data width override (DWO) - Set this bit to 1 to override the dw bit in the Core control register for the

current command. If this bit is 0, then the dw bit in the Core control register decides whether to use an 8-
bit or 16-bit data lane for the current command. This bit is only available if the dw16 bit in the Capabil-
ity register is 1. Reset value 0.

19 Reserved (R) - Always reads zero.
18 Command select (SEL) - This bit is used to select between commands that have the same opcode in the

first command cycle. This applies to the CHANGE WRITE COLUMN and COPYBACK PROGRAM
commands, which both have a first command byte with the value of 0x85. If a COPYBACK PRO-
GRAM is to be executed, this bit should be set to 0. If a CHANGE WRITE COLUMM command is to
be executed, this bit should be set to 1. If the rev field in the Capability register > 0 then this bit is also
used to select between a PAGE PROGRAM and a SMALL DATA MOVE (with opcode 0x80). If the
SMALL DATA MOVE should be executed then this bit should be set to 1, otherwise it should be set to
0. The core ignores this bit for all other commands. This field can only be written if the bsy bit in the
Buffer control / status register is zero.

17 Skip second command phase (SC2) - If this bit is set and a program command (PAGE PROGRAM,
COPYBACK PROGRAM, or CHANGE WRITE COLUMN) is being executed the core skips the sec-
ond command phase for that command and jumps back to idle state once all data has been written. This
is done in order to support the CHANGE WRITE COLUMN command, which needs to be executed in
between the first and second phase of the program command. If a CHANGE WRITE COLUMN com-
mand is required during a PAGE PROGRAM, the PAGE PROGRAM command is issued with SC2 set
to 1. After that when issuing a CHANGE WRITE COLUMN command if more than one CHANGE
WRITE COLUMN commands needs to be issued all the ones apart from the last one is issued with SC”
set to 0. The last CHANGE WRITE COLUMN command is issued with SC2 set to ‘1’ this way the
PAGE PROGRAM command is ended. See the ONFI 2.2 specification for details on the CHANGE
WRITE COLUMN command. This bit is ignored by the core for all other commands. . This field can
only be written if the bsy bit in the Buffer control / status register is zero.

16 Common data (CD) - Sometimes, for example for the SET FEATURES command, it is desirable to send
the same data on all data lanes. If this is the case, software can write the data to send in the buffer corre-
sponding to the first data lane and then set to this bit to 1. When the core executes the command it will
then send the same data on all lanes without the need for software to fill all the corresponding buffers.
Needs to be set to 0 if individual data should be send to the devices. This field can only be written if the
bsy bit in the Buffer control / status register is zero.

15:8 Second command phase (CMD2) - If the command to execute is a two byte (two phase) command then
software should write the second byte of the command to this field. The core ignores this field for com-
mands that only have one command phase. This field can only be written if the bsy bit in the Buffer con-
trol / status register is zero.

7:0 First command phase (CMD1) - Software should write this field with the first byte of the command to
execute. This field can only be written if the bsy bit in the Buffer control / status register is zero.
GRIP, Sep 2018, Version 2018.3 1333 www.cobham.com/gaisler

GRLIB IP Core

Table 1581.0x1C,0x2C - BCS - Buffer control / status register

31 27 26 25 24 23 16 15 8 7 4 3 2 1 0

R INV BSY RUN R LANESEL TARGSEL R IRQM EXE

0 0 0 0 0 NR NR 0 1 0

r rw wc r r rw* rw* r rw* rw*

31:27 Reserved (R) - Always reads zero.
26 Invalid command (INV) - This bit is set to one if an invalid command is written to the Buffer command

register when the exe bit is written. This bit is cleared automatically once a new command is started. Reset
value: 0

25 Buffer busy (BSY) - Core sets this bit to 1 when a command is being executed. Once the command is done
(run bit is cleared) software can clear this bit by writing 1 to it. While this bit is set it prevents software
from writing to the buffer. This bit is write clear, but only when the run bit is zero. Reset value: 0

24 Command running (RUN) - Core sets this bit to 1 when a command is being executed, and clears it again
automatically once the command is done. While this bit is set it prevents software from accessing the buf-
fer. Reset value: 0

23:16 Reserved (R) - Always reads zero.
15:8 Data lane select (LANESEL) - The core uses this field to select which of the connected 8-bit/16-bit data

lanes to send the command to (which write enable (WE) signals to assert). (A write enable signal can be
connected to one or more flash memory devices but only one of the targets is selected at a time.) The least
significant bit in this field corresponds to the first connected data lane (WE(0)) etc. The actual number of
bits implemented equals the nlanes field in the Capability register plus one. This field can only be written
if the bsy bit in the Buffer control / status register is zero.

7:4 Target select (TARGSEL) - The core uses this field to select which targets to send the command to (which
chip enable (CE) signals to assert). The least significant bit in this field corresponds to the first target
(CE(0)) etc. (A chip enable signal can be connected to one or more flash memory devices, all on different
8-bit/16-bit memory lanes. One or more chip enable signals can be connected to a flash memory device,
depending on how many targets the device implements.) The actual number of bits implemented equals the
ntargs field in the Capability register plus one. This field can only be written if the bsy bit in the Buffer
control / status register is zero.

3:2 Reserved (R) - Always reads zero.
1 Interrupt mask (IRQM) - If this bit is set to 1 an interrupt will be generated when the command linked to

the corresponding buffer has been executed. This field can only be written if the bsy bit in the Buffer con-
trol / status register is zero. Reset value: 1

0 Execute command (EXE) - When software writes this bit to 1 the core sends the command programmed
into the corresponding Buffer command register to the lanes and targets selected by the lanesel and targsel
field in this register. This field can only be written if the bsy bit in the Buffer control / status register is zero.
Reset value: 0

Table 1582.0x30 - TIM0 - Programmable timing register 0
15 9 8 0

tCS tCCS

* *

rw* rw*

31 30 29 24 23 16

R tRP tRHW

0 * *

r rw* rw*

31:30 Reserved (R) - Always reads zero.
29:24 RE pulse width (tRP) - Length of tRP in clock cycles, minus one. See ONFI 2.2 specification for

more information. Field only present if programmable timing is implemented. Indicated by prgt bit
in Capability register. Reset value calculated from VHDL generic sysfreq to match value for timing
mode 0.

23:16 RE high to WE low (tRHW) - Length of tRHW in clock cycles, minus one. See ONFI 2.2 specifica-
tion for more information. Field only present if programmable timing is implemented. Indicated by
prgt bit in Capability register. Reset value calculated from VHDL generic sysfreq to match value for
timing mode 0.
GRIP, Sep 2018, Version 2018.3 1334 www.cobham.com/gaisler

GRLIB IP Core
15:9 CE setup time (tCS) - Length of tCS in clock cycles, minus one. See ONFI 2.2 specification for more
information. Field only present if programmable timing is implemented. Indicated by prgt bit in
Capability register. Reset value calculated from VHDL generic sysfreq to match value for timing
mode 0.

8:0 Change Column setup time (tCCS) - Length of tCCS in clock cycles, minus one. See ONFI 2.2 spec-
ification for more information. Reset value calculated from VHDL generic sysfreq to match value for
timing mode 0.

Table 1583. 0x34 - TIM1 - Programmable timing register 1 (only present if programmable timing is implemented, which is
indicated by prgt bit in Capability register)

15 14 8 7 5 4 0

R tWHR R tWH

0 * 0 *

r rw* r rw*

31 30 29 24 23 22 21 16

tWB R tWP

* 0 *

rw* r rw*

31:24 WE high to SR[6] low (tWB) - Length of tWB in clock cycles, minus one.ee ONFI 2.2 specification
for more information. Reset value calculated from VHDL generic sysfreq to match value for timing
mode 0.

23:22 Reserved (R) - Always reads zero.
21:16 WE pulse width (tWP) - Length of tWP in clock cycles, minus one. See ONFI 2.2 specification for

more information. Reset value calculated from VHDL generic sysfreq to match value for timing
mode 0.

15 Reserved (R) - Always reads zero.
14:8 WE high to RE low (tWHR) - Length of tWHR in clock cycles, minus one. See ONFI 2.2 specifica-

tion for more information. Reset value calculated from VHDL generic sysfreq to match value for
timing mode 0.

7:5 Reserved (R) - Always reads zero.
4:0 WE high hold time (tWH) - Length of tWH in clock cycles, minus one. See ONFI 2.2 specification

for more information. Reset value calculated from VHDL generic sysfreq to match value for timing
mode 0.

Table 1584.0 x38 - TIM2 - Programmable timing register 2 (only present if programmable timing is implemented, which is
indicated by prgt bit in Capability register)

15 14 8 7 6 5 0

R tWW R tRR

0 * 0 *

r rw* r rw*

31 24 23 16

R tADL

0 *

r rw*

31:24 Reserved (R) - Always reads zero.
23:16 ALE to data loading time (tADL) - Length of tADL in clock cycles, minus one. See ONFI 2.2 speci-

fication for more information. Reset value calculated from VHDL generic sysfreq to match value for
timing mode 0.

15 Reserved (R) - Always reads zero.

Table 1582.0x30 - TIM0 - Programmable timing register 0
GRIP, Sep 2018, Version 2018.3 1335 www.cobham.com/gaisler

GRLIB IP Core
Vendor and device identifier
The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x059. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

89.5 Timing Modes

It is highly recommended to use programmable timing to be able to customize timing, which is
needed when additional timing delays are needed to be accounted like I/O delays. In addition it gives
the flexibility to correct timing errors by software. See ONFI specification 2.2 for more details about
timing.

89.5.1 Timing Register Values when Programmable Timing is Disabled

This section shows how the timing counter values are calculated when programmable timing is dis-
abled. It should be noted that this values are calculated without taking additional delays into account,
for example the delay from the NANDFCTRL core outputs to NANDFLASH DEVICE or vice versa.
Hence it is highly recommended to use programmable timing, to mitigate additional delays and man-
age custom timing.
The values are floored if there is a remainder after the division. The following calculations show
which values are used instead of the values that are defined in the timing registers when programma-
ble timing is not enabled.
CLOCK_PERIOD = 1000000/sysfreq (sysfreq is a generic)
tWW = 100/CLK_PERIOD (TM0,TM1,TM2,TM3,TM4,TM5)
tCCS = 500/CLK_PERIOD (TM0,TM1,TM2,TM3,TM4,TM5)

14:8 WP transition to WE low (tWW) - Length of tWW in clock cycles, minus one. See ONFI 2.2 speci-
fication for more information. Reset value calculated from VHDL generic sysfreq to match value for
timing mode 0.

7:6 Reserved (R) - Always reads zero.
5:0 Ready to RE low (tRR) - Length of tRR in clock cycles, minus one. See ONFI 2.2 specification for

more information. Reset value calculated from VHDL generic sysfreq to match value for timing
mode 0.

Table 1585. 0x3C - TIM3 - Programmable timing register 3 (only present if programmable timing is implemented and core
revision is bigger or equal to 2, which is indicated by prgt bit and REV bits in Capability register)

31 6 5 0

R tREH

0 *

r rw*

31:6 Reserved (R) - Always reads zero.
5:0 RE high hold time (tREH) - Length of tREH in clock cycles, minus one. For backward compatibility

purposes the value of tREH is set to the value of tRP when TIM0 register is updated. As a result if
the required tREH value is different than tRP, then the TIM3 has to be updated after TIM0 is
updated. It should be noted that if tREH value is set something different than tRP, the tRC
(tRP+tREH) timing should be met. See ONFI 2.2 specification for more information. Reset value
calculated from VHDL generic sysfreq to match value for timing mode 0.

Table 1584.0 x38 - TIM2 - Programmable timing register 2 (only present if programmable timing is implemented, which is
indicated by prgt bit in Capability register)
GRIP, Sep 2018, Version 2018.3 1336 www.cobham.com/gaisler

GRLIB IP Core

tADL = 200/CLK_PERIOD (TM0); 100/CLK_PERIOD (TM1); 100/CLK_PERIOD (TM2); 100/
CLK_PERIOD (TM3); 70/CLK_PERIOD (TM4); 70/CLK_PERIOD (TM5);
tCS = 70/CLK_PERIOD (TM0); 35/CLK_PERIOD (TM1); 25/CLK_PERIOD (TM2); 25/CLK_PE-
RIOD (TM3); 20/CLK_PERIOD (TM4); 15/CLK_PERIOD (TM5);
tRHW = 200/CLK_PERIOD (TM0); 100/CLK_PERIOD (TM1); 100/CLK_PERIOD (TM2); 100/
CLK_PERIOD (TM3); 100/CLK_PERIOD (TM4); 100/CLK_PERIOD (TM5);
tRP = 50/CLK_PERIOD (TM0); 30/CLK_PERIOD (TM1); 25/CLK_PERIOD (TM2); 20/CLK_PE-
RIOD (TM3); 20/CLK_PERIOD (TM4); 16/CLK_PERIOD (TM5);
tREH = 50/CLK_PERIOD (TM0); 20/CLK_PERIOD (TM1); 15/CLK_PERIOD (TM2); 10/
CLK_PERIOD (TM3); 10/CLK_PERIOD (TM4); 7/CLK_PERIOD (TM5);
tWH = 30/CLK_PERIOD (TM0); 15/CLK_PERIOD (TM1); 15/CLK_PERIOD (TM2); 10/CLK_PE-
RIOD (TM3); 10/CLK_PERIOD (TM4); 7/CLK_PERIOD (TM5);
tWHR = 120/CLK_PERIOD (TM0); 80/CLK_PERIOD (TM1); 80/CLK_PERIOD (TM2); 60/
CLK_PERIOD (TM3); 60/CLK_PERIOD (TM4); 60/CLK_PERIOD (TM5);
tWP = 50/CLK_PERIOD (TM0); 25/CLK_PERIOD (TM1); 17/CLK_PERIOD (TM2); 15/CLK_PE-
RIOD (TM3); 12/CLK_PERIOD (TM4); 10/CLK_PERIOD (TM5);
tWB = 200/CLK_PERIOD (TM0); 100/CLK_PERIOD (TM1); 100/CLK_PERIOD (TM2); 100/
CLK_PERIOD (TM3); 100/CLK_PERIOD (TM4); 100/CLK_PERIOD (TM5);
tRR = 40/CLK_PERIOD (TM0); 20/CLK_PERIOD (TM1); 20/CLK_PERIOD (TM2); 20/CLK_PE-
RIOD (TM3); 20/CLK_PERIOD (TM4); 20/CLK_PERIOD (TM5);

If TM5 mode is intended to be used when programmable timing is disabled, the user has to calculate
if the tRC period is going to be less than 30 ns. If it less than 30 ns the tm5_edoen generic shall be set
to 1 according to ONFI 2.2 specification. In other cases tm5_edoen should be set to 0.

89.5.2 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers. The Flash interface signals have asynchronous reset.

89.5.3 Core instantiation

The core maps all usage of RAM on the syncram (or syncramft if ft generic is not set to 0) component
from the technology mapping library (TECHMAP). The size of the instantiated RAM is determined
by the pbufsize, sbufsize, nlanes, and sepbufs generics. Fault tolerance - byte parity DMR or TMR -
can be added to the RAM by setting the ft generic to 1 or 2.
Note that both the ft and edac generics need to be set to 0 unless the core is used together with the
fault tolerant GRLIB.
The core implements one interrupt, mapped by means of the pirq VHDL generic.

89.5.4 Scan test support

The VHDL generic scantest enables scan test support. If the core has been implemented with scan test
support and the testen input signal is high, the core will:
• disable the internal RAM blocks when the scanen signal is asserted.
• use the testoen signal as output enable signal.
• use the testrst signal as the reset signal for those registers that are asynchronously reseted.
GRIP, Sep 2018, Version 2018.3 1337 www.cobham.com/gaisler

GRLIB IP Core

The testen, scanen, testrst, and testoen signals are routed via the AHB slave interface.

89.6 Configuration options

Table 1586 shows the configuration options of the core (VHDL generics).

Table 1586.Configuration options

Generic name Function Allowed range Default
hsindex AHB slave index 0 - NAHBSLV-1 0
haddr0 AHB slave address for BAR 0. See section 89.2.2 for

explanation of address scheme.
0 - 16#FFF# 16#000#

haddr1 AHB slave address for BAR 1. See section 89.2.2 for
explanation of address scheme.

0 - 16#FFF# 16#001#

hmask0 AHB slave address mask for BAR 0. If set to zero, BAR
0 is disabled. See section 89.2.2 for explanation of
address scheme.

0 - 16#FFF# 16#FFF#

hmask1 AHB slave address mask for BAR 1. If set to zero, BAR
1 is disabled. See section 89.2.2 for explanation of
address scheme.

0 - 16#FFF# 16#FFF#

pindex APB slave index 0 - NAPBSLV-1 0
paddr ADDR field of the APB BAR. 0 - 16#FFF# 0
pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#
pirq APB irq number. 0 - NAHBIRQ-1 0
memtech Memory technology used for the buffers. 0 - NTECH inferred
sysfreq System clock frequency in kHz. 1 - 1 000 000 50000
ntargets Number of targets = Number of chip select signals con-

nected to the core. A flash memory device can have one
or more targets.

1 - 4 2

nlanes Number of 8-bit/16-bit data lanes = Number of write
enable signals. A write enable signal can be connected to
one or more targets (i.e. one or more flash memory
devices).

1 - 8 8

dwidth16 0 = Core implements 8-bit data lanes. 1 = Core imple-
ments 16-bit data lanes.

0 - 1 0

pbufsize Size of each page buffer (in bytes). One or two page buf-
fers are implemented for each connected flash memory
device (depends on value of generic buf1en.). Generic
needs to be set to a value equal to or greater than the
flash memory device’s page area. Value also needs to be
a power of two.

8, 16, 32 ... 32768 4096

sbufsize Size of each spare area buffer (in bytes). One or two
spare buffers are implemented for each connected flash
memory device (depends on value of generic buf1en.).
Generic needs to be set to a value equal to or greater than
the flash memory device’s page spare area. Value also
needs to be a power of two.

8, 16, 32 ... 32768 256

tm1 Enable support for timing mode 1 in the case with fixed
data interface timing (progtime generic set to 0). This
generic has no effect if the progtime generic is set to 1.

0 - 1 0

tm2 Enable support for timing mode 2 in the case with fixed
data interface timing (progtime generic set to 0). This
generic has no effect if the progtime generic is set to 1.

0 - 1 0
GRIP, Sep 2018, Version 2018.3 1338 www.cobham.com/gaisler

GRLIB IP Core
tm3 Enable support for timing mode 3 in the case with fixed
data interface timing (progtime generic set to 0). This
generic has no effect if the progtime generic is set to 1.

0 - 1 0

tm4 Enable support for timing mode 4 in the case with fixed
data interface timing (progtime generic set to 0). This
generic has no effect if the progtime generic is set to 1.

0 - 1 0

tm5 Enable support for timing mode 5 in the case with fixed
data interface timing (progtime generic set to 0). This
generic has no effect if the progtime generic is set to 1.

0 - 1 0

tm5_edoen Enable EDO data output cycles when timing mode 5 is
used in the case fixed data interface timing (progtime
generic set to 0). This generic has no effect if the prog-
time generic is set to 1. This generic is only available if
the core revision is bigger or equal to 2.

0 - 1 0

nsync Number of synchronization registers on R/B input. (Data
input is always synchronized through one set of regis-
ters.)

0 - 3 2

ft This generic determines if fault tolerance should be
added to the buffers. 0 = no fault tolerance, 1 = Byte par-
ity DMR, 2 = TMR. 3 = Byte parity, no DMR. Note that
this generic needs to be set to 0 if the core is used
together with the GPL version of GRLIB, since that ver-
sion does not include any fault tolerance.

0 - 2 0

oepol Polarity of pad output enable signal. 0 - 1 0
scantest Enable scan test support. 0 - 1 0
edac Enable EDAC support. See section 89.3.1 for EDAC

information. Note that this generic needs to be set to 0 if
the core is used together with the GPL version of
GRLIB, since that version does not include any fault tol-
erance.

0 - 1 0

cmdorder Sets the default way the ONFI command bytes are
mapped to the core’s data lane(s). When set to 0 the com-
mands are mapped as follows: Cmd bit 0 -> Data lane bit
7, Cmd bit 1 -> Data lane bit 6., and so on. When this bit
is set to 1 the commands are mapped as follows: Cmd bit
0 -> Data lane bit 0, Cmd bit 1 -> Data lane bit 1, and so
on.

0 - 1 1

sepbufs When set to 0 all data lanes share the same internal mem-
ory buffers. When set to 1 all data lanes have their own
internal memory buffers. When set to 0 a command with
a data in phase should only be issued to one target and
lane at the time. A command with a data out phase can
still be issued to several lanes and targets but with the
limitation that the same data will be sent on all lanes.
When set to 1 several lanes can be read at the same time,
and lanes can be written with individual data simultane-
ously.

0 - 1 1

progtime When set to 0 the data interface timing for the different
timing modes are set at implementation time from the
sysfreq generic. When set to 1 the data interface timing is
programmable through APB registers (reset values are
set at implementation time from the sysfreq generic).
Maximum system frequency when this generic is set to 1
is 1 GHz.

0 - 1 0

Table 1586.Configuration options

Generic name Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 1339 www.cobham.com/gaisler

GRLIB IP Core
89.7 Signal descriptions

Table 1587 shows the interface signals of the core (VHDL ports).

buf1en When this generic is set to 1 then both buffer 0 and buf-
fer 1 are implemented. If set to 0, only buffer 0 is imple-
mented. See section 89.2.2 for more information about
the buffer structure.

0 - 1 1

Table 1587.Signal descriptions

Signal name Field Type Function Active
rst N/A Input Reset Logical 0
clk N/A Input Clock -
apbi * Input APB slave input signals -
apbo * Output APB slave output signals -
ahbsi * Input AHB slave input signals -
ahbso * Output AHB slave output signals -
nandfi rb Input Ready/Busy signal -

di(63:0) 2 Input Data input (used both for 8-bit and 16-bit lanes) -

dih(63:0) 2 Input Data input (upper byte for 16-bit lanes) -

nandfo ce(3:0) 3 Output Chip enable Logical 0

we(7:0) 4 Output Write enable Logical 0

do(63:0) 2 Output Data output (used both for 8-bit and 16-bit lanes) -

doh(63:0)2 Output Data output (upper byte for 16-bit memories) -

cle Output Command latch enable Logical 1
ale Output Address latch enable Logical 1
re Output Read enable Logical 0
wp Output Write protect Logical 0
err Output EDAC / Buffer error on AHB access Logical 1
oe Output Output enable 5

* see GRLIB IP Library User’s Manual
2 The actual number of data input/output signals used depends on core configuration. Eight bits are used for each lane.
3 The core drives one chip select signal for each target, i.e. on or more attached flash memory devices.
4 The core drives one write enable signal for each 8-bit/16-bit data lane, i.e. one or more attached flash memory devices.
5 The polarity of the output enable signal is implementation dependent.

Table 1586.Configuration options

Generic name Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 1340 www.cobham.com/gaisler

GRLIB IP Core

89.8 Signal definitions and reset values

The signals and their reset values are described in table 1588.

89.9 Library dependencies

Table 1589 shows the libraries used when instantiating the core (VHDL libraries).

Table 1588.Signal definitions and reset values

Signal name Type Function Active Reset value
rb Input Ready/Busy signal - -

d(63:0) 1 Input/Output Data (used both for 8-bit and 16-bit lanes) - -

dh(63:0) 1 Input/Output Data (upper byte for 16-bit lanes) - -

ce(3:0) 2 Output Chip enable Logical 0 Logical 1

we(7:0) 3 Output Write enable Logical 0 Logical 1

cle Output Command latch enable Logical 1 Logical 0
ale Output Address latch enable Logical 1 Logical 0
re Output Read enable Logical 0 Logical 1
wp Output Write protect Logical 0 Logical 1
err Output EDAC / Buffer error on AHB access Logical 1 Logical 0
oe Output Output enable 4 4

1 The actual number of data input/output signals used depends on core configuration. Eight bits are used for each attached
flash memory device.
2 The core drives one chip select signal for each target, i.e. on or more attached flash memory devices.
3 The core drives one write enable signal for each 8-bit data lane, i.e. on or more attached flash memory devices.
4 The polarity of the output enable signal is implementation dependent.

Table 1589.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER MEMCTRL Signals, component Component declaration
GRIP, Sep 2018, Version 2018.3 1341 www.cobham.com/gaisler

GRLIB IP Core

89.10 Timing

The timing waveforms and timing parameters are shown in figure 253 and are defined in table 1590.

Note: The rb input is re-synchronized internally. The signal does not have to meet any setup or hold
requirements.

89.11 Instantiation

This example shows how the core can be instantiated. The instantiated core has all its generics, except
hsindex, pindex, paddr, and pirq at their default values. The impact of the generics can be seen in table
1586.

library ieee, grlib, gaisler;
use ieee.std_logic_1164.all;
use grlib.amba.all;
use gaisler.nandpkg.all;

entity nandfctrl_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;
 nandf_d : inout std_logic_vector(63 downto 0);
 nandf_dh : inout std_logic_vector(63 downto 0);
 nandf_rb : in std_ulogic;
 nandf_ce : out std_logic_vector(1 downto 0);
 nandf_we : out std_logic_vector(7 downto 0);
 nandf_re : out std_ulogic;
 nandf_cle : out std_ulogic;
 nandf_ale : out std_ulogic;
 nandf_wp : out std_ulogic;
 nandf_err : out std_ulogic
);
end;

architecture rtl of nandfctrl_ex is

Table 1590.Timing parameters

Name Parameter Reference edge Min Max Unit
tNANDFCTRL0 clock to output delay rising clk edge TBD TBD ns

tNANDFCTRL1 clock to non-tri-state delay rising clk edge TBD TBD ns

tNANDFCTRL2 clock to tri-state delay rising clk edge TBD TBD ns

tNANDFCTRL3 input to clock hold rising clk edge TBD - ns

tNANDFCTRL4 input to clock setup rising clk edge TBD - ns

Figure 253. Timing waveforms

tNANDFCTRL0ce/we/re/cle/ale/wp

system clk

tNANDFCTRL0

tNANDFCTRL1
d/dh

tNANDFCTRL2

tNANDFCTRL3d/dh tNANDFCTRL4

(output)

(output)

(input)
GRIP, Sep 2018, Version 2018.3 1342 www.cobham.com/gaisler

GRLIB IP Core

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);

 -- NANDFCTRL signals
 signal nandfo : nandfctrl_out_type;
 signal nandfi : nandfctrl_in_type;

begin

 -- AMBA Components are instantiated here
 ...

 -- NANDFCTRL core
 nand0 : nandfctrl
 generic map (hsindex => 1, pindex => 10, paddr => 10, pirq => 10)
 port map (rstn, clk, apbi, apbo(10), ahbsi, ahbso(1), nandfi, nandfo);

 -- Pads for NANDFCTRL core
 nandf_d : iopadv generic map (tech => padtech, width => 64)
 port map (nandf_d, nandfo.do, nandfo.oe, nandfi.di);
 nandf_dh : iopadv generic map (tech => padtech, width => 64)
 port map (nandf_dh, nandfo.doh, nandfo.oe, nandfi.dih);
 nandf_rb : inpad generic map (tech => padtech)
 port map (nandf_rb, nandfi.rb);
 nandf_ce : outpadv generic map (tech => padtech, width => 2)
 port map (nandf_ce, nandfo.ce);
 nandf_we : outpadv generic map (tech => padtech, width => 8)
 port map (nandf_we, nandfo.we);
 nandf_re : outpad generic map (tech => padtech)
 port map (nandf_re, nandfo.re);
 nandf_cle : outpad generic map (tech => padtech)
 port map (nandf_cle, nandfo.cle);
 nandf_ale : outpad generic map (tech => padtech)
 port map (nandf_ale, nandfo.ale);
 nandf_wp : outpad generic map (tech => padtech)
 port map (nandf_wp, nandfo.wp);
 nandf_err : outpad generic map (tech => padtech)
 port map (nandf_err, nandfo.err);

end;
GRIP, Sep 2018, Version 2018.3 1343 www.cobham.com/gaisler

GRLIB IP Core

90 PHY - Ethernet PHY simulation model

90.1 Overview

The PHY is a simulation model of an IEEE 802.3 compliant Ethernet PHY. It provides a complete MII
and GMII interface with the basic, extended status and extended capability registers accessible
through the management interface (MDIO). Not all of the functionality is implemented and many of
the register bits are therefore only writable and readable but do not have any effect. Currently only the
loopback is supported.

90.2 Operation

The PHY simulation model was designed to make it possible to perform simple simulations on the
GRETH and GRETH_GBIT cores in GRLIB. It provides the complete set of basic, extended capabil-
ity and extended status registers through the MII management interface (MDIO) and a loopback mode
for data transfers. Figure 1 shows a block diagram of a typical connection.

The PHY model provides the complete GMII and MII interface as defined by the IEEE 802.3 stan-
dard. The model can be used in any of the following modes: 10 Mbit half- or full duplex, 100 Mbit
half- or full-duplex and 1000 Mbit half- or full-duplex. This support refers only to the configuration
settings available through the MDIO registers. Since the datapath implementation is loopback no col-
lisions will ever be seen on the network and operation will essentially be full-duplex all the time. In
loopback mode, rx_clk and tx_clk are identical in both frequency and phase and are driven by the
PHY when not in gigabit mode. In gigabit mode the gtx_clk input is used as the transmitter clock and
it also drives rx_clk.
When not configured to loopback mode the PHY just sits idle and ignores transmitted packet and does
not insert any activity on the receive interface. Clocks are still generated but in this case rx_clk and
tx_clk does have the same frequency but not the same phase when not in gigabit mode.
A simple auto-negotiation function is provided and the supported and advertised modes are set
through vhdl generics. The generic values will be directly reflected in the reset values and read-only
values of all corresponding MII management registers.

PHY

MAC
MAC

GMII/MII Interface

Figure 254. Block diagram of the PHY simulation model connected to a MAC.

Loopback
GRIP, Sep 2018, Version 2018.3 1344 www.cobham.com/gaisler

GRLIB IP Core

90.3 Configuration options

Table 1591 shows the configuration options of the model (VHDL generics).

90.4 Signal descriptions

Table 1592 shows the interface signals of the model (VHDL ports).

Table 1591.Configuration options

Generic Function Allowed range Default
address Address of the PHY on the MII management interface 0 - 31 0
extended_regs Include extended register capability 0 - 1 1
aneg Enable auto-negotiation functionality 0 - 1 1
base100_t4 Enable support for 100Base-T4 0 - 1 0
base100_x_fd Enable support for 100Base-X full-duplex 0 - 1 1
base100_x_hd Enable support for 100Base-X half-duplex 0 - 1 1
fd_10 Enable support for 10Base-T full-duplex 0 - 1 1
hd_10 Enable support for 10Base-T half-duplex 0 - 1 1
base100_t2_fd Enable support for 100Base-T2 full-duplex 0 - 1 1
base100_t2_hd Enable support for 100Base-T2 half-duplex 0 - 1 1
base1000_x_fd Enable support for 1000Base-X full-duplex 0 - 1 0
base1000_x_hd Enable support for 1000Base-X half-duplex 0 - 1 0
base1000_t_fd Enable support for 1000Base-T full-duplex 0 - 1 1
base1000_t_hd Enable support for 1000Base-T half-duplex 0 - 1 1
rmii Set PHY in RMII mode 0 - 1 0

Table 1592.Signal descriptions

Signal name Field Type Function Active
RSTN - Input Reset Low
MDIO - Input/

Output
Data signal for the management interface (Cur-
rently not used)

-

TX_CLK - Output Transmitter clock -
RX_CLK - Output Receiver clock -
RXD - Output Receiver data -
RX_DV - Output Receiver data valid High
RX_ER - Output Receiver error High
RX_COL - Output Collision High
RX_CRS - Output Carrier sense High
TXD - Input Transmitter data -
TX_EN - Input Transmitter enable High
TX_ER - Input Transmitter error High
MDC - Input Management interface clock (Currently not

used)
-

GTX_CLK - Input Gigabit transmitter clock -
see the IEEE 802.3 standard for a description of how the signals are used.
GRIP, Sep 2018, Version 2018.3 1345 www.cobham.com/gaisler

GRLIB IP Core

90.5 Library dependencies

Table 1593 shows the libraries used when instantiating the model (VHDL libraries).

90.6 Instantiation

This example shows how the model can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library gaisler;
use gaisler.sim.all;

entity phy_ex is
 port (
rst : std_ulogic;
clk : std_ulogic;
);
end;

architecture rtl of phy_ex is

 -- Signals

 signal etx_clk : std_logic;
 signal gtx_clk : std_logic;
 signal erx_clk : std_logic;
 signal erxd : std_logic_vector(7 downto 0);
 signal erx_dv : std_logic;
 signal erx_er : std_logic;
 signal erx_col : std_logic;
 signal erx_crs : std_logic;
 signal etxd : std_logic_vector(7 downto 0);
 signal etx_en : std_logic;
 signal etx_er : std_logic;
 signal emdc : std_logic;

begin

 -- Other components are instantiated here
 ...

 -- PHY model
 phy0 : phy
 generic map (address => 1)
 port map(resetn => rst, mdio => open, tx_clk => etx_clk, rx_clk => erx_clk, rxd => erxd,
 rx_dv => erx_dv, rx_er => erx_er,
 rx_col => erx_col, rx_crs => erx_crs, txd => etxd, tx_en => etx_en,
 tx_er => etx_er, mdc => emdc, gtx_clk => gtx_clk);
end;

Table 1593.Library dependencies

Library Package Imported unit(s) Description
GAISLER SIM Component Component declaration
GRIP, Sep 2018, Version 2018.3 1346 www.cobham.com/gaisler

GRLIB IP Core

91 RGMII - Reduced Ethernet Media Access Controller

91.1 Overview

Cobham Gaisler's RGMII IP provides the RGMII adaptation layer between the Ethernet physical
media device and the GRETH or GRETH_GBIT IP core.
The RGMII adaptation layer supports version 2.0 of the Reduced Gigabit Media Independent inter-
face and can dynamically switch between diffrent speed modes of operation.

91.2 Operation

91.2.1 Protocol support

The RGMII adaptation layer supports version 2.0 of the Reduced Gigabit Media Independent inter-
face and IEEE standard 802.3-2002 for GMII.

91.2.2 Transmit clock

The trasnsmitter clock is used by the transmit logic of the core. The transmit clock is also an output
from the RGMII IP and will be used as the TX clock in the Ethernet MAC. There are three options of
generating and using the transmit clock inside the IP. The VHDL generics ‘no_clock_mux’ and
‘use90degtxclk’ determines the clock mode used by the RGMII IP.

APB

Ethernet MAC

Registers

MDIO

MDIO_OE
MDIO_O
MDIO_I
MDC

Transmitter

Receiver

RAM

TX_EN
TX_ER
TXD(7:0)
TX_CLK
RX_CRS
RX_COL

RX_DV
RX_ER
RXD(7:0)
RX_CLK

Figure 255. Block diagram of the internal structure of the RGMII.

GTX_CLK

RGMIIExternal PHY

MDIO_OE
MDIO_O
MDIO_I
MDC

RAM

RXD(3:0)
RX_DV
RX_CLK

TXD(3:0)
TX_EN
TX_CLK

TX_DBG
RX_DBG
GRIP, Sep 2018, Version 2018.3 1347 www.cobham.com/gaisler

GRLIB IP Core
Figure 256 shows the clocking scheme when the transmit clock for 10Mb/s and 100Mb/s mode is gen-
erated internally. This clock mode is used when the VHDL generic ‘no_clock_mux’ is set to ‘0’. In
this case user must ensure that the GMII clock frequency and AMBA clock frequency is appropriate
for the line speed. That is, 50Mhz AMBA clock for 10/100 Mb/s and 125Mhz for 1000Mb/s.
Local clock resources will provide 2.5MHz and 25MHz frequency clocks for 10 Mb/s and 100 Mb/s
speeds of operation, respectively. The local clock logic generates the 2.5MHz and 25MHz TX_CLK
clock from the 50MHz AHB_CLK.
The SPEED and GBIT signals from the Ethernet MAC are used as selection pins of the local clock
muxes.

Figure 257 show an alternative clock scheme using only one clock domain for the transmitter. This
clock mode is used when setting the VHDL generic 'no_clock_mux' to 1. The local clock divider is
replaced by a counter in the GTX_CLK clock domain to generate bit pattern for clock generation in
10 Mb/s, 100 Mb/s, and 1 Gb/s speeds of operation.
The bit pattern is connected to the DDR output buffers data inputs and 125MHz GTX_CLK clock is
connected to the DDR output buffer clock in order to generate the transmit clock to the external PHY.

Figure 256. 10/100 Mb/s transmiter clocks generated by internal logic

PLL
125Mhz

PLL
AMBA
50Mhz

Div2

Div20

SPEED
GBIT

TX_CLK

RGMII

External

MAC

ODDR
‘1’

‘0’
PHY

Local Clock Dividers

D1
D2

GTX_CLK

Figure 257. All transmit clocks generated by internal logic

PLL
125Mhz

SPEED
GBIT

TX_CLK

RGMII

External

MAC

ODDR

PHY

Tx Clock Generator D1
D2

GTX_CLK
GRIP, Sep 2018, Version 2018.3 1348 www.cobham.com/gaisler

GRLIB IP Core
The RGMII v2.0 standard specifies that the external PHY TX clock to have a setup of 2 ns with
respect to the TX data. The 2ns setup can be achieved by phase shifting the external transmit clock to
the external PHY by 90 degrees relative the internal MAC transmit clock. This mode is shown in fig-
ure 258 and is used when setting the VHDL generic 'no_clock_mux' to 1 and 'use90degtxclk' to 1.

91.2.3 Transmitter Operation

The transmitter is enabled when the GMII transmitter enable is high. Data is transferred from the
GMII to RGMII as long as the GMII transmitter enable signal is high.
The transmitter enable signal is expected to be high during the complete transmission of the Ethernet
MAC frame.

91.2.4 Side-band information

The RGMII receiver samples input data at all time. Side-band information is stored in the RGMII sta-
tus register accessible via the APB interface. The status register has an address offset of 0x0.

91.2.5 MDIO Management

The RGMII IP only forwards the MDIO signals from the MDIO bus master (GRTEH/GRETH_GBIT)
to the external PHY. The RGMII does not affect any MDIO transactions.

91.2.6 RAM debug support

The IP RGMII can optionally be build to include debug memories. The debug memories will record
and store the last received and transmitted MAC frame. The RAM debug support is used when the
VHDL generic ’debugmem’ to 1.
The transmit frame buffer is accessed starting from the APB address offset 0x400 and the receive
frame buffer is located at APB address offset 0x800.

91.2.7 External debug support

Interface for optionality connection to an on-chip logic analyzer for tracing and displaying of on-chip
signals e.g. LOGAN IP included in the GRIP.

Figure 258. External PHY transmit clock 90deg phase shift

PLL
125Mhz

SPEED
GBIT

TX_CLK

RGMII

External

MAC

ODDR

PHY

Tx Clock Generator D1
D2

TX_CLK_90

GTX_CLK
GRIP, Sep 2018, Version 2018.3 1349 www.cobham.com/gaisler

GRLIB IP Core

91.3 Media Independent Interfaces

There are several interfaces defined between the MAC sublayer and the Physical layer. The
GRETH_GBIT supports the Media Independent Interface (MII) and the Gigabit Media Independent
Interface (GMII).
The GMII is used in 1000 Mbit mode and the MII in 10 and 100 Mbit. These interfaces are defined
separately in the 802.3-2002 standard but in practice they share most of the signals. The GMII has 9
additional signals compared to the MII. Four data signals are added to the receiver and transmitter
data interfaces respectively and a new transmit clock for the gigabit mode is also introduced.
The RGMII interface uses the same signal with the additional signal tx_clk_90.

91.4 Registers

The core is programmed through registers mapped into APB address space.

Table 1594.Signals in RGMII, GMII and MII.

MII and GMII GMII Only RGMII Only
txd[3:0] txd[7:4] tx_clk_90
tx_en rxd[7:4]
tx_er gtx_clk
rx_col
rx_crs
rxd[3:0]
rx_clk
rx_er
rx_dv
rx_en
tx_dv

Table 1595.RGMII registers

APB address offset Register
0x0 Status register
0x4 Interrupt-source register
0x8 Interrupt mask register
0xC 25Mhz bit pattern wrap register
0x10 25Mhz bit pattern first edge register
0x14 25Mhz bit pattern second edge register
0x18 2.5Mhz bit pattern wrap register
0x1C 2.5Mhz bit pattern first edge register
0x20 2.5Mhz bit pattern second edge register
0x24 Bit pattern register
0x28 Data bit 4 to 7 (negative clocked) delay register
0x2C Data bit 0 to 3 (positive clocked) delay register
0x30 Data bit swap register
0x400 - 0x7FC Transmit RAM buffer debug access
0x800 - 0xBFC Receiver RAM buffer debug access
GRIP, Sep 2018, Version 2018.3 1350 www.cobham.com/gaisler

GRLIB IP Core

91.4.1 Status / Interrupt / Mask Register

Table 1596.RGMII status/interrupt/mask register

91.4.2 25 MHz Clock Warp Register

Table 1597.RGMII 25MHz clock warp register

91.4.3 25 MHz First Edge Register

Table 1598.RGMII 25MHz first edge register.

31 16 15 14 13 12 10 9 8 7 6 5 4 3 2 1 0

RESERVED NM RD GA RESERVED GB SP CS CE CX FC DS CS LS

15 No Clock Mux Mode (NM) - If this bit always reads as a 1 no internal clock logic has been used
14 RAM debug enable (RD) - If this bit always reads as a 1 the debug ram is available.
13 Gigabit MAC available (GA) - If this bit always reads as a 1 the MAC has 1000 Mbit capability.
9 Gigabit (GB) - 1 shows the current speed mode is1000 Mbit in the MAC and when set to 0, the speed

mode is selected with bit 7 (SP). Reset value: ‘0’.
8 Speed (SP) - Shows the current speed mode of the MAC. 0 = 10 Mbit, 1 = 100 Mbit. Must not be set

to 1 at the same time as bit 8 (GB). Reset valuie: ‘0’.
7 Carrier Sense (CS) - Carrier detected
6 Carrier Extend Error (CE) - Carrier Extend frames Error
5 Carrier Extend (CX) - Carrier Extend frames
4 False Carrier (FC) - False Carrier is detected
3 Duplex Status (DS) - Indicates duplex status 0=half-duplex, 1=full duplex
2: 1 Link Clock Speed (CS) - Indicates RXC clock speed 00=2.5Mhz, 01=25Mhz, and 10=125Mhz,

11=reserved
0 Links status (LS) - Indicates link status 0=down, 1=up

31 16 15 6 5 0

RESERVED WRAP

31: 6 RESERVED
5: 0 25Mhz warp register (WARP) - Number of GTX_CLK cycles to generate 25Mhz clock pattern

31 16 15 6 5 0

RESERVED EDGE1

31: 6 RESERVED
5: 0 25Mhz first edge (EDGE1) - Number of GTX_CLK cycles to before clock change state
GRIP, Sep 2018, Version 2018.3 1351 www.cobham.com/gaisler

GRLIB IP Core

91.4.4 25 MHz Second Edge Register

Table 1599.RGMII 25MHz Second edge register.

91.4.5 Bit Pattern Register

Table 1600.RGMII bit pattern register.

91.4.6 Positive / Negative Clocked Data Receiver Delay Register

Table 1601.RGMII positive / negative clocked data receiver delay register.

91.4.7 Receiver Data Swap Register

Table 1602.RGMII receiver data swap register

91.5 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x093. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

91.6 Implementation

91.6.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).

31 16 15 6 5 0

RESERVED EDGE2

31: 6 RESERVED
5: 0 25Mhz Second edge (EDGE2) - Number of GTX_CLK cycles after the first edge the clock change

state

31 18 17 16 15 14 13 8 7 6 5 0

Not Used P125M Not Used P25M Not Used P2M5

17: 16 125Mhz clock pattern (P125M) - Pattern for generating 125Mhz clock
9: 3 25Mhz clock pattern (P25M) - Pattern for generating 25Mhz clock
5: 0 2.5Mhz clock pattern (P2M5) - Pattern for generating 2.5Mhz clock

31 2 1 0

Not Used DEL

2: 0 Delay input (DEL) - Number of RX clock cycles to delay input data

31 1 0

Not Used SW

0 Swap receiver input clock edge (SW) - Swaps data between negative and positive clocked data input
GRIP, Sep 2018, Version 2018.3 1352 www.cobham.com/gaisler

GRLIB IP Core

The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core does not support grlib_async_reset_enable. All registers that react on the reset signal will
have a synchronous reset.

91.7 Configuration options

Table 1603 shows the configuration options of the core (VHDL generics).

91.8 Signal descriptions

Table 1604 shows the interface signals of the core (VHDL ports).

Table 1603.Configuration options

Generic Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0
paddr Addr field of the APB bar. 0 - 16#FFF# 0
pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#
pirq Interrupt line used by the RGMII. 0 - NAHBIRQ-1 0
tech Technology used for the DDR buffers. 0 - NTECH inferred
debugmem Enables debug access to the core’s RAM blocks through the

APB interface.
0 - 1 0

abits Selects the number of APB address bits used to decode the regis-
ter addresses

3 - 8 8

no_clk_mux Dont’t generate 10Mb and 100Mb mode clock in RGMII logic 0 - 1 0
use90degtxclk Use external generated trasnmit clock to to have a setup of 2 ns

with respect to the TX data. VHDL generic ‘no_clk_mux’ must
be set to ‘1’ to use this option.

0 - 1 0

Table 1604.Signal descriptions

Signal name Field Type Function Active
RST N/A Input System reset Low
APB_RSTN N/A Input AMBA Reset Low
APB_CLK N/A Input AMBA Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
GRIP, Sep 2018, Version 2018.3 1353 www.cobham.com/gaisler

GRLIB IP Core
GMIII gtx_clk Output Ethernet gigabit transmit clock. -
rmii_clk Output Ethernet RMII clock. -
tx_clk Output Ethernet transmit clock. -
tx_dv Output Ethernet transmitter enable -
rx_clk Output Ethernet receive clock. -
rxd Output Ethernet receive data. -
rx_dv Output Ethernet receive data valid. High
rx_er Output Ethernet receive error. High
rx_col Output Ethernet collision detected. (Asynchronous,

sampled with tx_clk)
High

rx_crs Output Ethernet carrier sense. (Asynchronous, sampled
with tx_clk)

High

rx_en Output Ethernet receiver enable. -
mdio_i Output Ethernet management data input -
mdint Output Ethernet management interrupt -

GMIIO reset Input Ethernet reset (asserted when the MAC is reset). Low
txd Input Ethernet transmit data. -
tx_en Input Ethernet transmit enable. High
tx_er Input Ethernet transmit error. High
mdc Input Ethernet management data clock. -
mdio_o Input Ethernet management data output. -
mdio_oe Input Ethernet management data output enable. Set by the

oepol generic
in MAC.

RGMIII gtx_clk Input Ethernet gigabit transmit clock. -
rx_clk Input Ethernet receive clock. -
tx_clk Input Ethernet receive clock. -
tx_clk_90 Input Ethernet receive clock phase shifted 90 deg. -
rxd Input Ethernet receive data. -
rx_dv Input Ethernet receive data valid. High
mdint Input Ethernet management data input -
mdio_i Input Ethernet management interrupt -

RGMIIO reset Output External RGMII PHY reset Low
tx_clk Output Ethernet transmit clock output -
txd Output Ethernet transmit data. -
tx_en Output Ethernet transmit data valid. -
mdio_o Output Ethernet management data output. -
mdio_oe Output Ethernet management data output enable. Set by the

oepol
generic.

mdc Output Ethernet management data output enable. Set by the
oepol generic
in MAC.

Table 1604.Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 1354 www.cobham.com/gaisler

GRLIB IP Core
91.9 Library dependencies

Table 1605 shows libraries used when instantiating the core (VHDL libraries).

91.10 Instantiation

The first example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.ethernet_mac.all;

entity rgmii_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- ethernet signals
 rgmiii : in eth_in_type;
 rgmiio : in eth_out_type
);
end;

architecture rtl of rgmii_ex is

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ethi : eth_in_type;
 signal etho : eth_out_type;

begin

 -- AMBA Components are instantiated here
 ...

 -- RGMII
 rgmii0 : rgmii
 generic map (
 pindex => 11,
 paddr => 16#010#,

DEBUG ** debug_rgmii_phy_tx Output Ethernet transmit debug port. -
debug_rgmii_phy_rx Output Ethernet receive debug port. -

* see GRLIB IP Library User’s Manual
** Leave port unconnected if not used.

Table 1605.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER ETHERNET_MAC Signals, component GRETH_GBIT component declarations,

GRETH_GBIT signals.
GAISLER NET Signals Ethernet signals

Table 1604.Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 1355 www.cobham.com/gaisler

GRLIB IP Core

 pmask => 16#ff0#,
 tech => fabtech,
 gmii => CFG_GRETH1G,
 debugmem => 1,
 abits => 8,
 no_clk_mux => 1,
 pirq => 11,
 use90degtxclk => 1)
 port map (
 rstn => rstn,
 gmiii => ethi,
 gmii0 => etho,
 rgmiii => rgmiii,
 rgmiio => rgmii0,
 apb_clk => apb_clk,
 apb_rstn => apb_rstn,
 apbi => apbi,
 apbo => apbo(11));
GRIP, Sep 2018, Version 2018.3 1356 www.cobham.com/gaisler

GRLIB IP Core

92 REGFILE_3P 3-port RAM generator (2 read, 1 write)

92.1 Overview

The 3-port register file has two read ports and one write port. Each port has a separate address and
data bus. All inputs are latched on the rising edge of clk. The read data appears on dataout directly
after the clk rising edge. Note: on most technologies, the register file is implemented with two 2-port
RAMs with combined write ports. Address width, data width and target technology is parametrizable
through generics.
Write-through is supported if the function syncram_2p_write_through(tech) returns 1 for the target
technology.

92.2 Configuration options

Table 1606 shows the configuration options of the core (VHDL generics).

Table 1607 shows the supported technologies for the core.

Table 1606.Configuration options

Name Function Range Default
tech Technology selection 0 - NTECH 0
abits Address bits. Depth of RAM is 2abits-1 see table 1607 -

dbits Data width see table 1607l -
wrfst Write-first (write-through). Only applicable to inferred technol-

ogy
0 - 1 0

numregs Not used

Table 1607.Supported technologies

Tech name Technology RAM cell abit range dbit range
axcel / axdsp Actel AX/RTAX & RTAX-DSP RAM64K36 2 - 12 unlimited
altera All Altera devices altsyncram unlimited unlimited
ihp25 IHP 0.25 flip-flops unlimited unlimited
inferred Behavioural description synthesis tool dependent
rhumc Rad-hard UMC 0.18 flip-flops unlimited unlimited
virtex Xilinx Virtex, Virtex-E, Spartan-2 RAMB4_Sn 2 - 10 unlimited
virtex2 Xilinx Virtex2, Spartan3, Virtex4 RAMB16_Sn 2 - 14 unlimited
proasic3 Actel Proasic3 ram4k9 2 - 12 unlimited
lattice Lattice XP/EC/ECP dp8ka 2 - 13 unlimited
memvirage Virage ASIC RAM hdss2_64x32cm4sw0

hdss2_128x32cm4sw0
hdss2_256x32cm4sw0
hdss2_512x32cm4sw0

6 - 9 32

eclipse Aeroflex/Quicklogic FPGA RAM128x18_25um
RAM256X9_25um
RAM512X4_25um
RAM1024X2_25um

2 - 10 unlimited

easic90 eASIC 90 nm Nextreme eram 2 - 12 unlimited
GRIP, Sep 2018, Version 2018.3 1357 www.cobham.com/gaisler

GRLIB IP Core

92.3 Signal descriptions

Table 1608 shows the interface signals of the core (VHDL ports).

92.4 Library dependencies

Table 1609 shows libraries used when instantiating the core (VHDL libraries).

92.5 Component declaration

The core has the following component declaration.

library techmap;
use techmap.gencomp.all;

component regfile_3p
 generic (tech : integer := 0; abits : integer := 6; dbits : integer := 8;
 wrfst : integer := 0; numregs : integer := 64);
 port (
 wclk : in std_ulogic;
 waddr : in std_logic_vector((abits -1) downto 0);
 wdata : in std_logic_vector((dbits -1) downto 0);
 we : in std_ulogic;
 rclk : in std_ulogic;
 raddr1 : in std_logic_vector((abits -1) downto 0);
 re1 : in std_ulogic;
 rdata1 : out std_logic_vector((dbits -1) downto 0);
 raddr2 : in std_logic_vector((abits -1) downto 0);
 re2 : in std_ulogic;
 rdata2 : out std_logic_vector((dbits -1) downto 0)
);
 end component;

Table 1608.Signal descriptions

Signal name Field Type Function Active
WCLK N/A Input Write port clock
WADDR N/A Input Write address
WDATA N/A Input Write data
WE N/A Input Write enable High
RCLK N/A Input Read ports clock -
RADDR1 N/A Input Read port1 address -
RE1 N/A Input Read port1 enable High
RDATA1 N/A Output Read port1 data -
RADDR2 N/A Input Read port2 address -
RE2 N/A Input Read port2 enable High
RDATA2 N/A Output Read port2 data -

Table 1609.Library dependencies

Library Package Imported unit(s) Description
TECHMAP GENCOMP Constants Technology contants
GRIP, Sep 2018, Version 2018.3 1358 www.cobham.com/gaisler

GRLIB IP Core

93 RSTGEN - Reset generation

93.1 Overview

The RSTGEN reset generator implements input reset signal synchronization with glitch filtering and
generates the internal reset signal. The input reset signal can be asynchronous.

93.2 Operation

The reset generator latches the value of the clock lock signal on each rising edge of the clock. The
lock signal serves as input to a five-bit shift register. The three most significant bits of this shift regis-
ter are clocked into the reset output register. The reset signal to the system is high when both the reset
output register and the reset input signal are high. Since the output register depends on the system
clock the active low reset output from the core will go high synchronously to the system clock. The
raw reset output does not depend on the system clock or clock lock signal and is polarity adjusted to
be active low.
The VHDL generic syncrst determines how the core resets its shift register and the reset output regis-
ter. When syncrst is set to 1 the core’s shift register will have an synchronous reset and no reset signal
will be connected to the output reset register, see figure 259. Note that the core’s reset output signal
will always go low when the input reset signal is activated.

When syncrst is 0 the shift register will be reset asynchronously together with the reset output register.
Figure 260 shows the reset generator when scan test support is disabled. The shift register reset will be
connected to the core’s normal reset input and the test reset input will be unused. When scan test sup-
port is enabled, the core’s test reset input can be connected to the reset input on both registers. The
reset signal to use for the registers is selected with the test enable input, see figure 261.

When syncin is 1 the reset input is synchronized to the same clock domain as the rstgen block.

Figure 259. Reset generator with VHDL generic syncrst set to 1

D[4:0]

Q[4:0]

CLKLOCK

Q[3:0]

Q[2]
Q[3]
Q[4]

D

QCLK CLK

[4:0]

[4:0]

RSTIN
RSTOUT

RSTOUTRAW

5-bit shiftreg

Figure 260. Reset generator with VHDL generic syncrst set to 0 and scan test disabled

D[4:0]

Q[4:0]

CLKLOCK

Q[3:0]

Q[2]
Q[3]
Q[4]

D

QCLK CLK

RSTIN

RSTOUT

RSTOUTRAW

RR

5-bit shiftreg

Figure 261. Reset generator with VHDL generic syncrst set to 0 and scan test enabled

D[4:0]

Q[4:0]

CLKLOCK

Q[3:0]

Q[2]
Q[3]
Q[4]

D

QCLK CLK

RSTIN

RSTOUT

RSTOUTRAW

RR

TESTRST

5-bit shiftreg

TESTEN

0

1 s
GRIP, Sep 2018, Version 2018.3 1359 www.cobham.com/gaisler

GRLIB IP Core
93.3 Configuration options

Table 1610 shows the configuration options of the core (VHDL generics).

93.4 Signal descriptions

Table 1611 shows the interface signals of the core (VHDL ports).

Table 1610.Configuration options

Generic name Function Allowed range Default
acthigh Set to 1 if reset input is active high. The core outputs an

active low reset.
0 - 1 0

syncrst When this generic is set to 1 the reset signal will use a
synchronous reset to reset the filter registers. When this
generic is set to 1 the TESTRST and TESTEN inputs
will not be used.

0 - 1 0

scanen Setting this generic to 1 enables scan test support. This
connects the TESTRST input via a multiplexer so that
the TESTRST and TESTEN signals can be used to asyn-
chronously reset the core’s registers. This also requires
that the generic syncrst is set to 0.

0 - 1 0

syncin Setting this generic to 1 will add reset synchronizer to
the input reset. This option can be used to break false
timing paths in designs when input reset is not generated
from same clock domain as the input clock of rstgen

0 - 1 0

Table 1611.Signal descriptions

Signal name Field Type Function Active
RSTIN N/A Input Reset -
CLK N/A Input Clock -
CLKLOCK N/A Input Clock lock High
RSTOUT N/A Output Filtered reset Low
RSTOUTRAW N/A Output Raw reset Low
TESTRST N/A Input Test reset -
TESTEN N/A Input Test enable High

Figure 262. Extra Reset generator logic with VHDL generic syncin set to 1 to synchronize input reset and scan test enabled

RSTIN

‘1’

D

QCLK

RD

QCLK

D

QCLK
D

QCLK

R

RSTINSYNC

TESTRST

TESTEN

0

1 s
GRIP, Sep 2018, Version 2018.3 1360 www.cobham.com/gaisler

GRLIB IP Core

93.5 Signal definitions and reset values

The signals and their reset values are described in table 1612.

93.6 Timing

The timing waveforms and timing parameters are shown in figure 263 and are defined in table 1613.

Note: The resetn input is re-synchronized internally. The signals does not have to meet any setup or
hold requirements.

93.7 Library dependencies

Table 1614 shows the libraries used when instantiating the core (VHDL libraries).

93.8 Instantiation

This example shows how the core can be instantiated together with the GRLIB clock generator.
library ieee;
use ieee.std_logic_1164.all;
library techmap;
use techmap.gencomp.all;
library gaisler;
use gaisler.misc.all;

entity rstgen_ex is
 port (
 resetn : in std_ulogic;
 clk : in std_ulogic; -- 50 MHz main clock
 pllref : in std_ulogic;
 testrst : in std_ulogic;
 testen : in std_ulogic
);
end;

architecture example of rstgen_ex is

signal lclk, clkm, rstn, rstraw, sdclkl, clk50: std_ulogic;
signal cgi : clkgen_in_type;

Table 1612.Signal definitions and reset values

Signal name Type Function Active Reset value
resetn Input Reset Low

Table 1613.Timing parameters

Name Parameter Reference edge Min Max Unit
tRSTGEN0 asserted period - TBD - ns

Table 1614.Library dependencies

Library Package Imported unit(s) Description
GAISLER MISC Component Component definition

Figure 263. Timing waveforms

resetn

clk

tRSTGEN0
GRIP, Sep 2018, Version 2018.3 1361 www.cobham.com/gaisler

GRLIB IP Core

signal cgo : clkgen_out_type;

begin
 cgi.pllctrl <= "00"; cgi.pllrst <= rstraw;
 pllref_pad : clkpad generic map (tech => padtech) port map (pllref, cgi.pllref);
 clk_pad : clkpad generic map (tech => padtech) port map (clk, lclk);
 clkgen0 : clkgen -- clock generator
 generic map (clktech, CFG_CLKMUL, CFG_CLKDIV, CFG_MCTRL_SDEN,
 CFG_CLK_NOFB, 0, 0, 0, BOARD_FREQ)
 port map (lclk, lclk, clkm, open, open, sdclkl, open, cgi, cgo, open, clk50);
 sdclk_pad : outpad generic map (tech => padtech, slew => 1, strength => 24)
 port map (sdclk, sdclkl);

 resetn_pad : inpad generic map (tech => padtech) port map (resetn, rst);

 rst0 : rstgen -- reset generator
 generic map (acthigh => 0, syncrst => 0, scanen => 1)
 port map (rst, clkm, cgo.clklock, rstn, rstraw, testrst, testen);
end;
GRIP, Sep 2018, Version 2018.3 1362 www.cobham.com/gaisler

GRLIB IP Core

94 GR(2^4)(68, 60, 8, T=1) - QEC/QED error correction code encoder/decoder

94.1 Overview

The gf4_e1 VHDL package provides functions for encoding and decoding a Bose Chaudhuri Hoc-
quenghem (BCH) type of code. It is a Quad Error Correction/Quad Error Detection (QEC/QED) code.
The data symbols are 4-bit wide, represented as GF(2^4). The has the capability to detect and correct
a single symbol error anywhere in the codeword. The data is represented as 60 bits and the checksum
is represented as 8 bits, and the code can correct up to four bit errors when located in the same nibble.

94.2 Code

The code has the following definition:
• there are 4 bits per symbol;
• there are 17 symbols per codeword, of which 2 symbols represent the checksum;
• the code is systematic;
• the code can correct one symbol error per codeword;
• the field polynomial is

• all multiplications are performed as Galois Field multiplications over the above field polynomial
• all additions/subtractions are performed as Galois Field additions (i.e. bitwise exclusive-or)

94.3 Encoding

• a codeword is defined as 17 symbols:
[c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16]

where c0 to c14 represent information symbols and c15 to c16 represent check symbols.
• c15 is calculated as follows

• c16 is calculated as follows

• where the constant vector k is defined as:
k0=0xF, k1=0xE, ..., k14=0x1 (one can assume k15=0x1 and k16=0x1 for correction purposes)

94.4 Decoding

• the corrupt codeword is defined as 17 symbols:
[r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16]

• the corrupt codeword can also be defined as 17 uncorrupt symbols and an error:
[c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16] + [ex]
where the error is defined as ex, e being the unknown magnitude and
x being the unknown index position in the codeword

f x  x4 x 1+ +=

c15 ki ci 
0

14

=

c16 ci
0

14

=
GRIP, Sep 2018, Version 2018.3 1363 www.cobham.com/gaisler

GRLIB IP Core

• recalculated checksum rc0 is calculated as follows (ki is as defined above, x being the unknown

index)

• recalculated rc1 is calculated as follows

• syndrome s0 is calculated as follows

• syndrome s1 is calculated as follows, which gives the magnitude (not applicable to c15 and c16)

• in case s0 and s1 are both non-zero, to located the error in range c0 to c14, multiply error magni-
tude ex with each element of the constant vector defined above:

• search the resulting vector to find the element matching syndrome s0, the resulting index i points
to the error location (applicable only to i in [0, 14])

• finally perform the correction (applicable only to i in [0, 14])

• when s0 is zero and s1 is non-zero, the error is located in checksum r15, no correction is necessary
• when s1 is zero and s0 is non-zero, the error is located in checksum r16, no correction is necessary
• when s0 and s1 are both zero, no error has been detected, no correction is necessary

94.5 Capability

The decoder has the following capabilities. It detects and corrects up to four bit errors in the same nib-
ble. The described errors can be located anywhere in the codeword.

94.6 Operation

94.6.1 Encoder

The encoder is defined by the gf4_60_8_encode function. The function is called with the 60-bit wide
data that should be encoded, and returns a 68-bit wide codeword of which bits 67 downto 8 represent
the data and bits 7 downto 0 represent the checksum.

94.6.2 Decoder

The decoder is defined by the gf4_60_8_decode function.

rc0 ki ri 
0

14

 ki ci  kx ex +
0

14

= =

rc1 ri
0

14

 ci ex+
0

14

= =

s0 rc0 r15 ki ri 
0

14

 ki ci 
0

14

 kx ex=+=+=

s1 rc1 r16 ri
0

14

 ci
0

14

 ex=+=+=

kiex ki s1 k= i ex= i 0 14[,]=

kiex ki ex

ci ri s1– ri ex– ci ex–  ex ci ex ex ci=+–= = = =
GRIP, Sep 2018, Version 2018.3 1364 www.cobham.com/gaisler

GRLIB IP Core

The gf4_60_8_decode function calculates the syndromes, calculates the error magnitude and the error
location, and returns a bit indicating whether an error has been detected and corrected, and the cor-
rected data.
The function is called with a 68-bit wide codeword of which bits 67 downto 8 represent the data and
bits 7 downto 0 represent the checksum. It returns the record type gf4_60_8_type, containing the 60-
bit wide corrected data and an indication if an error was detected and corrected over the complete
codeword.

94.7 Type descriptions

Table 1615 shows the type declarations used by the functions in the package (VHDL types).

94.8 Library dependencies

Table 1616 shows the libraries used when instantiating the functions in the package (VHDL libraries).

94.9 Instantiation

This example shows how the functions in the package can be instantiated. Note that all input and out-
puts are synchronized to remove any timing constraints for pads in an example design. Timing analy-
sis can then be made purely for the register-to-register paths.
library IEEE;
use IEEE.Std_Logic_1164.all;

entity gf4_60_8_encode_sync is
 port(
 clk: in std_ulogic;
 data: in std_logic_vector(59 downto 0);
 codeword: out std_logic_vector(67 downto 0));
end entity gf4_60_8_encode_sync;

library grlib;
use grlib.gf4_e1.all;

architecture rtl of gf4_60_8_encode_sync is
 signal int_data: std_logic_vector(59 downto 0);
 signal int_codeword: std_logic_vector(67 downto 0);
begin
 process(clk)
 begin
 if rising_edge(clk) then
 codeword <= int_codeword;
 int_codeword <= gf4_60_8_encode(int_data);
 int_data <= data;
 end if;
 end process;
end architecture;

Table 1615.Type declarations

Name Field Type Function Active
gf4_60_8_type cerr Std_Logic error corrected

data Std_Logic_Vector(59 downto 0) data

Table 1616.Library dependencies

Library Package Imported unit(s) Description
GRLIB StdLib All Common VHDL functions
GRIP, Sep 2018, Version 2018.3 1365 www.cobham.com/gaisler

GRLIB IP Core

library IEEE;
use IEEE.Std_Logic_1164.all;

entity gf4_60_8_decode_sync is
 port(
 clk: in std_ulogic;
 codeword: in std_logic_vector(67 downto 0);
 cerr: out std_ulogic;
 data: out std_logic_vector(59 downto 0));
end entity gf4_60_8_decode_sync;

library grlib;
use grlib.gf4_e1.all;

architecture rtl of gf4_60_8_decode_sync is
 signal int_codeword: std_logic_vector(67 downto 0);
 signal int_result: gf4_60_8_type;
begin
 process(clk)
 begin
 if rising_edge(clk) then
 cerr <= int_result.cerr;
 data <= int_result.data;
 int_result <= gf4_60_8_decode(int_codeword);
 int_codeword <= codeword;
 end if;
 end process;
end architecture;
GRIP, Sep 2018, Version 2018.3 1366 www.cobham.com/gaisler

GRLIB IP Core

95 RS(24, 16, 8, E=1) - Reed-Solomon encoder/decoder

95.1 Overview

The rs_gf4_e1 VHDL package provides functions for encoding and decoding data with a Reed-Solo-
mon code. It also provides a data type storing intermediate results from the functions.
The Reed-Solomon data symbols are 4-bit wide, represented as GF(2^4). The Reed-Solomon code is
a shortened RS(15, 13, 2) code, represented as RS(6, 4, 2). It has the capability to detect and correct a
single symbol error anywhere in the codeword. The data is represented as 16 bits and the checksum is
represented as 8 bits, and the code can correct 4-bit errors when located in the same nibble.

95.2 Capability

The Reed-Solomon decoder has the following capabilities. The described errors can be located any-
where in the codeword.

It detects and corrects any single bit error.

It detects 63% of all double bit errors and reports them as multiple bit errors.
It detects 27% of all double bit errors and reports them (incorrectly) as single bit errors.

It detects 63,5% of all triple bit errors and reports them as multiple bit errors.
It detects 36% of all triple bit errors and reports them (incorrectly) as single bit errors.
It does not detect 0,5% of all triple bit errors and reports them (incorrectly) as without errors.

It detects 63,5% of all quadruple bit errors and reports them as multiple bit errors.
It detects 36% of all quadruple bit errors and reports them (incorrectly) as single bit errors.
It does not detect 0,5% of all quadruple bit errors and reports them (incorrectly) as without error.

It detects and corrects up to four bit errors in the same nibble.

95.3 Operation

95.3.1 Encoder

The encoder is defined by the rs_16_8_encode function. The function is called with the 16-bit wide
data that should be encoded, and returns 24-bit wide codeword of which bits 0 to 15 represent the data
and bits 16 to 23 represent the checksum.

95.3.2 Decoder

The decoder is defined by the rs_16_8_check, rs_16_8_precorrect and rs_16_8_correct functions. The
decoder has been split in three functions to facilitate pipelining, with each function being fairly bal-
anced with respect to the depth of the resulting combinatorial logic.
The rs_16_8_check function calculates the syndrome and returns a bit indicating whether an error has
been detected. Note that it can be any type of error: correctable or uncorrectable. The function is
called with a 24-bit wide codeword of which bits 0 to 15 represent the data and bits 16 to 23 represent
GRIP, Sep 2018, Version 2018.3 1367 www.cobham.com/gaisler

GRLIB IP Core

the checksum. It returns the record type rs_16_8_type, containing the 16-bit wide data to be corrected,
the syndrome and an indication if an error was detected over the complete codeword.
The rs_16_8_precorrect function is called with the intermediate result from the rs_16_8_check func-
tion. The input is the record type rs_16_8_type. It returns the record type rs_16_8_type, containing
the 16-bit wide data to be corrected, the syndrome, intermediate data and an indication if an error was
detected over the complete codeword.
The rs_16_8_correct function is called with the intermediate result from the rs_16_8_precorrect func-
tion. The input is the record type rs_16_8_type. It returns the record type rs_16_8_type, containing
the corrected 16-bit wide data, an indication if the error was correctable or non-correctable over the
complete codeword, and the union of the two.
To pipeline the decoder, the rs_16_8_check function should be called in the first stage and the inter-
mediated result should be stored. Note that the intermediate result contains the input data required for
the correction in the next stage. The rs_16_8_precorrect function should be called in the second stage.
The rs_16_8_correct function should be called in the third stage.

95.4 Type descriptions

Table 1617 shows the type declarations used by the functions in the package (VHDL types).

95.5 Library dependencies

Table 1618 shows the libraries used when instantiating the functions in the package (VHDL libraries).

95.6 Instantiation

This example shows how the functions in the package can be instantiated.
The example design shows a codec for which the decoder is pipelined, with the error flag output one
clock cycle earlier than the corrected data. Note that all input and outputs are synchronised to remove
any timing constraints for pads in an example design. Timing analysis can be made purely for the reg-
ister-to-register paths.

library IEEE;
use IEEE.Std_Logic_1164.all;

entity rs_gf4_16_8_codec is
 port(
 clk: in Std_Logic;

Table 1617.Type declarations

Name Field Type Function Active
rs_16_8_type err Std_Logic error detected High

cerr Std_Logic error corrected
merr Std_Logic errors uncorrected
data Std_Logic_Vector(0 to 15) data
s_1 Std_Logic_Vector(0 to 3) - -
s_2 Std_Logic_Vector(0 to 3) - -
elp_3_1 Std_Logic_Vector(0 to 3) - -

Table 1618.Library dependencies

Library Package Imported unit(s) Description
GRLIB StdLib All Common VHDL functions
GRIP, Sep 2018, Version 2018.3 1368 www.cobham.com/gaisler

GRLIB IP Core

 din: in Std_Logic_Vector(0 to 15); -- encoder input
 cout: out Std_Logic_Vector(0 to 23); -- encoder output

 cin: in Std_Logic_Vector(0 to 23); -- decoder input
 terr: out Std_Logic; -- intermediate error

 dout: out Std_Logic_Vector(0 to 15); -- decoder output
 err: out Std_Logic; -- error detected
 cerr: out Std_Logic; -- error corrected
 merr: out Std_Logic); -- errors uncorrected
end entity;

library grlib;
use grlib.rs_gf4_e1.all;

architecture rtl of rs_gf4_16_8_codec is
 signal s_din: Std_Logic_Vector(0 to 15);
 signal s_cout: Std_Logic_Vector(0 to 23);

 signal s_cin: Std_Logic_Vector(0 to 23);
 signal s_dout: Std_Logic_Vector(0 to 15);
 signal s_err: Std_Logic;
 signal s_cerr: Std_Logic;
 signal s_merr: Std_Logic;

 signal check: rs_16_8_type; -- intermediate
 signal precorr: rs_16_8_type;
 signal corr: rs_16_8_type;
begin
 SyncronizeInput: process(clk)
 begin
 if Rising_Edge(clk) then
 s_din <= din;
 s_cin <= cin;
 end if;
 end process;

 SyncronizeOutput: process(clk)
 begin
 if Rising_Edge(clk) then
 cout <= s_cout;
 err <= corr.err;
 cerr <= corr.cerr;
 merr <= corr.merr;
 dout <= corr.data;
 terr <= check.err;
 end if;
 end process;

 encoder: process(clk)
 begin
 if Rising_Edge(clk) then
 s_cout <= rs_16_8_encode(s_din);
 end if;
 end process;

 decoder: process(clk)
 begin
 if Rising_Edge(clk) then
 corr <= rs_16_8_correct(precorr); -- third phase
 precorr <= rs_16_8_precorrect(check); -- second phase
 check <= rs_16_8_check(s_cin); -- first phase
 end if;
 end process;
end architecture rtl;
GRIP, Sep 2018, Version 2018.3 1369 www.cobham.com/gaisler

GRLIB IP Core

96 RS(48, 32, 16, E=1+1) - Reed-Solomon encoder/decoder - interleaved

96.1 Overview

The rs_gf4_e1 VHDL package provides functions for encoding and decoding data with a Reed-Solo-
mon code. It also provides a data type storing intermediate results from the functions.
The Reed-Solomon data symbols are 4-bit wide, represented as GF(2^4). The Reed-Solomon code is
a shortened RS(15, 13, 2) code, represented as RS(6, 4, 2). It has the capability to detect and correct a
single symbol error anywhere in the codeword. The data is represented as 16 bits and the checksum is
represented as 8 bits, and the code can correct 4-bit errors when located in the same nibble.
The gf4_32_16 functions provide an interleaved RS(6, 4, 2) where the data is represented as 32 bits
and the checksum is represented as 16 bits, and the code can correct two 4-bit errors when each error
is located in a nibble and not in the same original RS(6, 4, 2) codeword. The codewords are inter-
leaved nibble-wise.

96.2 Capability

The Reed-Solomon decoder has the same capabilities as the original RS(6, 4, 2) code, but distributed
per original RS(6, 4, 2) codeword.

96.3 Operation

96.3.1 Encoder

The encoder is defined by the rs_32_16_encode function. The function is called with the 32-bit wide
data that should be encoded, and returns 48-bit wide codeword of which bits 0 to 31 represent the data
and bits 32 to 47 represent the checksum.

96.3.2 Decoder

The decoder is defined by the rs_32_16_check, rs_32_16_precorrect and rs_32_16_correct functions.
The decoder has been split in three functions to facilitate pipelining, with each function being fairly
balanced with respect to the depth of the resulting combinatorial logic.
The rs_32_16_check function calculates the syndrome and returns a bit indicating whether an error
has been detected. Note that it can be any type of error: correctable or uncorrectable. The function is
called with a 48-bit wide codeword of which bits 0 to 31 represent the data and bits 32 to 47 represent
the checksum. It returns the record type rs_32_16_type, containing the 32-bit wide data to be cor-
rected, the syndrome and an indication if an error was detected over the two complete codewords.
The rs_32_16_precorrect function is called with the intermediate result from the rs_32_16_check
function. The input is the record type rs_32_16_type. It returns the record type rs_32_16_type, con-
taining the 32-bit wide data to be corrected, the syndrome, intermediate data and an indication if an
error was detected over the two complete codewords.
The rs_32_16_correct function is called with the intermediate result from the rs_32_16_precorrect
function. The input is the record type rs_32_16_type. It returns the record type rs_32_16_type, con-
taining the corrected 32-bit wide data, an indication if the error was correctable or non-correctable
over the complete two codewords, and the union of the two.
To pipeline the decoder, the rs_32_16_check function should be called in the first stage and the inter-
mediated result should be stored. Note that the intermediate result contains the input data required for
the correction in the next stage. The rs_32_16_precorrect function should be called in the second
stage. The rs_32_16_correct function should be called in the third stage.
GRIP, Sep 2018, Version 2018.3 1370 www.cobham.com/gaisler

GRLIB IP Core

96.4 Type descriptions

Table 1619 shows the type declarations used by the functions in the package (VHDL types).

96.5 Library dependencies

Table 1620 shows the libraries used when instantiating the functions in the package (VHDL libraries).

Table 1619.Type declarations

Name Field Type Function Active
rs_32_16_type err Std_Logic error detected High

cerr Std_Logic error corrected
merr Std_Logic errors uncorrected
data Std_Logic_Vector(0 to 31) data
e_0 Std_Logic - -
s_1_0 Std_Logic_Vector(0 to 3) - -
s_2_0 Std_Logic_Vector(0 to 3) - -
elp_3_1_0 Std_Logic_Vector(0 to 3) - -
e_1 Std_Logic - -
s_1_1 Std_Logic_Vector(0 to 3) - -
s_2_1 Std_Logic_Vector(0 to 3) - -
elp_3_1_1 Std_Logic_Vector(0 to 3) - -

Table 1620.Library dependencies

Library Package Imported unit(s) Description
GRLIB StdLib All Common VHDL functions
GRIP, Sep 2018, Version 2018.3 1371 www.cobham.com/gaisler

GRLIB IP Core

97 RS(40, 32, 8, E=1) - Reed-Solomon encoder/decoder

97.1 Overview

The rs_gf4_e1 VHDL package provides functions for encoding and decoding data with a Reed-Solo-
mon code. It also provides a data type storing intermediate results from the functions.
The Reed-Solomon data symbols are 4-bit wide, represented as GF(2^4). The Reed-Solomon code is
a shortened RS(15, 13, 2) code, represented as RS(10, 8, 2). It has the capability to detect and correct
a single symbol error anywhere in the codeword. The data is represented as 32 bits and the checksum
is represented as 8 bits, and the code can correct 4-bit errors when located in the same nibble.

97.2 Operation

97.2.1 Encoder

The encoder is defined by the rs_32_8_encode function. The function is called with the 32-bit wide
data that should be encoded, and returns 40-bit wide codeword of which bits 0 to 31 represent the data
and bits 32 to 39 represent the checksum.

97.2.2 Decoder

The decoder is defined by the rs_32_8_check, rs_32_8_precorrect and rs_32_8_correct functions. The
decoder has been split in three functions to facilitate pipelining, with each function being fairly bal-
anced with respect to the depth of the resulting combinatorial logic.
The rs_32_8_check function calculates the syndrome and returns a bit indicating whether an error has
been detected. Note that it can be any type of error: correctable or uncorrectable. The function is
called with a 24-bit wide codeword of which bits 0 to 31 representsthe data and bits 32 to 39 represent
the checksum. It returns the record type rs_32_8_type, containing the 32-bit wide data to be corrected,
the syndrome and an indication if an error was detected over the complete codeword.
The rs_32_8_precorrect function is called with the intermediate result from the rs_32_8_check func-
tion. The input is the record type rs_32_8_type. It returns the record type rs_32_8_type, containing
the 32-bit wide data to be corrected, the syndrome, intermediate data and an indication if an error was
detected over the complete codeword.
The rs_32_8_correct function is called with the intermediate result from the rs_32_8_precorrect func-
tion. The input is the record type rs_32_8_type. It returns the record type rs_32_8_type, containing
the corrected 32-bit wide data, an indication if the error was correctable or non-correctable over the
complete codeword, and the union of the two.
To pipeline the decoder, the rs_32_8_check function should be called in the first stage and the inter-
mediated result should be stored. Note that the intermediate result contains the input data required for
the correction in the next stage. The rs_32_8_precorrect function should be called in the second stage.
The rs_32_8_correct function should be called in the third stage.
GRIP, Sep 2018, Version 2018.3 1372 www.cobham.com/gaisler

GRLIB IP Core

97.3 Type descriptions

Table 1621 shows the type declarations used by the functions in the package (VHDL types).

97.4 Library dependencies

Table 1622 shows the libraries used when instantiating the functions in the package (VHDL libraries).

97.5 Instantiation

This example shows how the functions in the package can be instantiated.
The example design shows a codec for which the decoder is pipelined, with the error flag output one
clock cycle earlier than the corrected data. Note that all input and outputs are synchronised to remove
any timing constraints for pads in an example design. Timing analysis can be made purely for the reg-
ister-to-register paths.

library IEEE;
use IEEE.Std_Logic_1164.all;

entity rs_gf4_32_8_codec is
 port(
 clk: in Std_Logic;

 din: in Std_Logic_Vector(0 to 31); -- encoder input
 cout: out Std_Logic_Vector(0 to 39); -- encoder output

 cin: in Std_Logic_Vector(0 to 39); -- decoder input
 terr: out Std_Logic; -- intermediate error

 dout: out Std_Logic_Vector(0 to 31); -- decoder output
 err: out Std_Logic; -- error detected
 cerr: out Std_Logic; -- error corrected
 merr: out Std_Logic); -- errors uncorrected
end entity;

library grlib;
use grlib.rs_gf4_e1.all;

architecture rtl of rs_gf4_32_8_codec is
 signal s_din: Std_Logic_Vector(0 to 31);
 signal s_cout: Std_Logic_Vector(0 to 39);

 signal s_cin: Std_Logic_Vector(0 to 39);
 signal s_dout: Std_Logic_Vector(0 to 31);

Table 1621.Type declarations

Name Field Type Function Active
rs_32_8_type err Std_Logic error detected High

cerr Std_Logic error corrected
merr Std_Logic errors uncorrected
data Std_Logic_Vector(0 to 31) data
s_1 Std_Logic_Vector(0 to 3) - -
s_2 Std_Logic_Vector(0 to 3) - -
elp_3_1 Std_Logic_Vector(0 to 3) - -

Table 1622.Library dependencies

Library Package Imported unit(s) Description
GRLIB StdLib All Common VHDL functions
GRIP, Sep 2018, Version 2018.3 1373 www.cobham.com/gaisler

GRLIB IP Core

 signal s_err: Std_Logic;
 signal s_cerr: Std_Logic;
 signal s_merr: Std_Logic;

 signal check: rs_32_8_type; -- intermediate
 signal precorr: rs_32_8_type;
 signal corr: rs_32_8_type;
begin
 SyncronizeInput: process(clk)
 begin
 if Rising_Edge(clk) then
 s_din <= din;
 s_cin <= cin;
 end if;
 end process;

 SyncronizeOutput: process(clk)
 begin
 if Rising_Edge(clk) then
 cout <= s_cout;
 err <= corr.err;
 cerr <= corr.cerr;
 merr <= corr.merr;
 dout <= corr.data;
 terr <= check.err;
 end if;
 end process;

 encoder: process(clk)
 begin
 if Rising_Edge(clk) then
 s_cout <= rs_32_8_encode(s_din);
 end if;
 end process;

 decoder: process(clk)
 begin
 if Rising_Edge(clk) then
 corr <= rs_32_8_correct(precorr); -- third phase
 precorr <= rs_32_8_precorrect(check); -- second phase
 check <= rs_32_8_check(s_cin); -- first phase
 end if;
 end process;
end architecture rtl;
GRIP, Sep 2018, Version 2018.3 1374 www.cobham.com/gaisler

GRLIB IP Core

98 RS(48, 32, 16, E=2) - Reed-Solomon encoder/decoder

98.1 Overview

The rs_gf4_e2 VHDL package provides functions for encoding and decoding data with a Reed-Solo-
mon code. It also provides a data type storing intermediate results from the functions.
The Reed-Solomon data symbols are 4-bit wide, represented as GF(2^4). The Reed-Solomon code is
a shortened RS(15, 11, 4) code, represented as RS(12, 8, 4). It has the capability to detect and correct
two symbol errors anywhere in the codeword. The data is represented as 32 bits and the checksum is
represented as 16 bits, and the code can correct up to two 4-bit errors when located within nibble
boundaries.

98.2 Operation

98.2.1 Encoder

The encoder is defined by the rs_32_16_2_encode function. The function is called with the 32-bit
wide data that should be encoded, and returns 48-bit wide codeword of which bits 0 to 31 represent
the data and bits 32 to 47 represent the checksum.

98.2.2 Decoder

The decoder is defined by the rs_32_16_2_check, rs_32_16_2_precorrect and rs_32_16_2_correct
functions. The decoder has been split in three functions to facilitate pipelining, with each function
being fairly balanced with respect to the depth of the resulting combinatorial logic.
The rs_32_16_2_check function calculates the syndrome and returns a bit indicating whether an error
has been detected. Note that it can be any type of error: correctable or uncorrectable. The function is
called with a 48-bit wide codeword of which bits 0 to 31 represent the data and bits 32 to 47 represent
the checksum. It returns the record type rs_32_16_2_type, containing the 32-bit wide data to be cor-
rected, the syndrome and an indication if an error was detected.
The rs_32_16_2_precorrect function is called with the intermediate result from the rs_32_16_2_check
function. The input is the record type rs_32_16_2_type. It returns the record type rs_32_16_2_type,
containing the 32-bit wide data to be corrected, the syndrome, intermediate data and an indication if
an error was detected.
The rs_32_16_2_correct function is called with the intermediate result from the rs_32_16_2_precor-
rect function. The input is the record type rs_32_16_2_type. It returns the record type rs_32_16_2_-
type, containing the corrected 32-bit wide data, an indication if the error was correctable or non-
correctable, and the union of the two.
To pipeline the decoder, the rs_32_16_2_check function should be called in the first stage and the
intermediated result should be stored. Note that the intermediate result contains the input data
required for the correction in the next stage. The rs_32_16_2_precorrect function should be called in
the second stage. The rs_32_16_2_correct function should be called in the third stage.
GRIP, Sep 2018, Version 2018.3 1375 www.cobham.com/gaisler

GRLIB IP Core

98.3 Type descriptions

Table 1623 shows the type declarations used by the functions in the package (VHDL types).

98.4 Library dependencies

Table 1624 shows the libraries used when instantiating the functions in the package (VHDL libraries).

98.5 Instantiation

This example shows how the functions in the package can be instantiated.
The example design shows a codec for which the decoder is pipelined, with the error flag output one
clock cycle earlier than the corrected data. Note that all input and outputs are synchronised to remove

Table 1623.Type declarations

Name Field Type Function Active
rs_32_16_2_type err Std_Logic errors detected High

cerr Std_Logic errors corrected High
merr Std_Logic errors uncorrected High
data Std_Logic_Vector(0 to 31) data
l_u Std_Logic_Vector(0 to 1) indicates number of

detected errors, only for
rs_32_16_2_correct
function

s_1 Std_Logic_Vector(0 to 3)
s_2 Std_Logic_Vector(0 to 3)
s_3 Std_Logic_Vector(0 to 3)
s_4 Std_Logic_Vector(0 to 3)
elp_5_1 Std_Logic_Vector(0 to 3) indicates index of

detected error in code-
word, only for
rs_32_16_2_correct
function:
0x0 = codeword(0:3)
0x1 = codeword(4:7)
0x2 = codeword(8:11)
0x3 = codeword(12:15)
0x4 = codeword(16:19)
0x5 = codeword(20:23)
0x6 = codeword(24:27)
0x7 = codeword(28:31)
0x8 = codeword(32:35)
0x9 = codeword(36:39)
0xA = codeword(40:43)
0xB = codeword(44:47)
0xF = unidentified
(can be used with erasure
information)

elp_5_2 Std_Logic_Vector(0 to 3) indicates index of
detected error, as above

Table 1624.Library dependencies

Library Package Imported unit(s) Description
GRLIB StdLib All Common VHDL functions
GRIP, Sep 2018, Version 2018.3 1376 www.cobham.com/gaisler

GRLIB IP Core

any timing constraints for pads in an example design. Timing analysis can be made purely for the reg-
ister-to-register paths.

library IEEE;
use IEEE.Std_Logic_1164.all;

entity rs_gf4_32_16_2_codec is
 port(
 clk: in Std_Logic;

 din: in Std_Logic_Vector(0 to 31); -- encoder input
 cout: out Std_Logic_Vector(0 to 47); -- encoder output

 cin: in Std_Logic_Vector(0 to 47); -- decoder input
 terr: out Std_Logic; -- intermediate error

 dout: out Std_Logic_Vector(0 to 31); -- decoder output
 err: out Std_Logic; -- error detected
 cerr: out Std_Logic; -- error corrected
 merr: out Std_Logic); -- errors uncorrected
end entity;

library grlib;
use grlib.rs_gf4_e2.all;

architecture rtl of rs_gf4_32_16_2_codec is
 signal s_din: Std_Logic_Vector(0 to 31);
 signal s_cout: Std_Logic_Vector(0 to 47);
 signal s_cin: Std_Logic_Vector(0 to 47);
 signal s_dout: Std_Logic_Vector(0 to 31);
 signal s_err: Std_Logic;
 signal s_cerr: Std_Logic;
 signal s_merr: Std_Logic;
 signal check: rs_32_16_2_type; -- intermediate
 signal precorr: rs_32_16_2_type;
 signal corr: rs_32_16_2_type;
begin
 SyncronizeInput: process(clk)
 begin
 if Rising_Edge(clk) then
 s_din <= din;
 s_cin <= cin;
 end if;
 end process;

 SyncronizeOutput: process(clk)
 begin
 if Rising_Edge(clk) then
 cout <= s_cout;
 err <= corr.err;
 cerr <= corr.cerr;
 merr <= corr.merr;
 dout <= corr.data;
 terr <= check.err;
 end if;
 end process;

 encoder: process(clk)
 begin
 if Rising_Edge(clk) then
 s_cout <= rs_32_16_2_encode(s_din);
 end if;
 end process;

 decoder: process(clk)
 begin
 if Rising_Edge(clk) then
 corr <= rs_32_16_2_correct(precorr); -- third phase
 precorr <= rs_32_16_2_precorrect(check); -- second phase
GRIP, Sep 2018, Version 2018.3 1377 www.cobham.com/gaisler

GRLIB IP Core

 check <= rs_32_16_2_check(s_cin); -- first phase
 end if;
 end process;
end architecture rtl;
GRIP, Sep 2018, Version 2018.3 1378 www.cobham.com/gaisler

GRLIB IP Core

99 SDCTRL - 32/64-bit PC133 SDRAM Controller

99.1 Overview

The SDRAM controller handles PC133 SDRAM compatible memory devices attached to a 32 or 64
bit wide data bus. The controller acts as a slave on the AHB bus where it occupies a configurable
amount of address space for SDRAM access. The SDRAM controller function is programmed by
writing to a configuration register mapped into AHB I/O address space.
Chip-select decoding is provided for two SDRAM banks.

99.2 Operation

99.2.1 General

Synchronous dynamic RAM (SDRAM) access is supported to two banks of PC100/PC133 compati-
ble devices. The controller supports 64M, 256M and 512M devices with 8 - 12 column-address bits,
up to 13 row-address bits, and 4 banks. The size of each of the two banks can be programmed in
binary steps between 4 Mbyte and 512 Mbyte. The operation of the SDRAM controller is controlled
through the configuration register SDCFG (see section 99.3). The SDRAM bank’s data bus width is
configurable between 32 and 64 bits. When the VHDL generic mobile is set to a value not equal to 0,
the controller supports mobile SDRAM.

99.2.2 Initialization

When the SDRAM controller is enabled, it automatically performs the SDRAM initialization
sequence of PRECHARGE, 8x AUTO-REFRESH and LOAD-MODE-REG on both banks simultane-
ously. When mobile SDRAM functionality is enabled the initialization sequence is appended with a
LOAD-EXTMODE-REG command. The controller programs the SDRAM to use page burst on read
accesses and single location access on write accesses. If the pwron VHDL generic is 1, the initializa-
tion sequence is also sent automatically when reset is released. Note that some SDRAM devices
require a stable clock of 100 us before any commands might be sent. When using on-chip PLL, this
might not always be the case and the pwron VHDL generic should be set to 0 in such cases.

Figure 264. SDRAM Memory controller connected to AMBA bus and SDRAM

A D

SDRAM

ADDRESS[16:2]

D[63:0]

RAS
CAS
WE

BA

D

SDRAMSDRASN
SDCASN
SDWEN

A[16:15]

DQMSDDQM[7:0]

CLK
CSN

SDCLK
SDCSN[1:0]

A
A[14:2]

CONTROLLER

AHB

SDCKE CKE

D[63:0]
GRIP, Sep 2018, Version 2018.3 1379 www.cobham.com/gaisler

GRLIB IP Core

99.2.3 Configurable SDRAM timing parameters

To provide optimum access cycles for different SDRAM devices (and at different frequencies), three
SDRAM parameters can be programmed through memory configuration register 2 (MCFG2): TCAS,
TRP and TRFCD. The value of these fields affect the SDRAM timing as described in table 1625.

If the TCAS, TRP and TRFC are programmed such that the PC100/133 specifications are fulfilled,
the remaining SDRAM timing parameters will also be met. The table below shows typical settings for
100 and 133 MHz operation and the resulting SDRAM timing (in ns):

When mobile SDRAM support is enabled, one additional timing parameter (TXSR) can be pro-
grammed though the Power-Saving configuration register.

99.2.4 Refresh

The SDRAM controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the SDCFG register. Depending on SDRAM type, the
required period is typically 7.8 or 15.6 s (corresponding to 780 or 1560 clocks at 100 MHz). The
generated refresh period is calculated as (reload value+1)/sysclk. The refresh function is enabled by
setting bit 31 in SDCFG register.

99.2.5 Self Refresh

The self refresh mode can be used to retain data in the SDRAM even when the rest of the system is
powered down. When in the self refresh mode, the SDRAM retains data without external clocking
and refresh are handled internally. The memory array that is refreshed during the self refresh opera-
tion is defined in the extended mode register. These settings can be changed by setting the PASR bits
in the Power-Saving configuration register. The extended mode register is automatically updated

Table 1625.SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)
CAS latency, RAS/CAS delay (tCAS, tRCD) TCAS + 2

Precharge to activate (tRP) TRP + 2

Auto-refresh command period (tRFC) TRFC + 3

Activate to precharge (tRAS) TRFC + 1

Activate to Activate (tRC) TRP + TRFC + 4

Table 1626.SDRAM example programming

SDRAM settings tCAS tRC tRP tRFC tRAS

100 MHz, CL=2; TRP=0, TCAS=0, TRFC=4 20 80 20 70 50
100 MHz, CL=3; TRP=0, TCAS=1, TRFC=4 30 80 20 70 50
133 MHz, CL=2; TRP=1, TCAS=0, TRFC=6 15 82 22 67 52
133 MHz, CL=3; TRP=1, TCAS=1, TRFC=6 22 82 22 67 52

Table 1627.Mobile SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)
Exit Self Refresh mode to first valid command (tXSR) tXSR
GRIP, Sep 2018, Version 2018.3 1380 www.cobham.com/gaisler

GRLIB IP Core

when the PASR bits are changed. The supported “Partial Array Self Refresh” modes are: Full, Half,
Quarter, Eighth, and Sixteenth array. “Partial Array Self Refresh” is only supported when mobile
SDRAM functionality is enabled. To enable the self refresh mode, set the PMODE bits in the Power-
Saving configuration register to “010” (Self Refresh). The controller will enter self refresh mode after
every memory access (when the controller has been idle for 16 clock cycles), until the PMODE bits
are cleared. When exiting this mode the controller introduce a delay defined by tXSR in the Power-
Saving configuration register and a AUTO REFRESH command before any other memory access is
allowed. The minimum duration of this mode is defined by tRAS. This mode is only available when
the VHDL generic mobile is >= 1.

99.2.6 Power-Down

When entering the power-down mode all input and output buffers, excluding SDCKE, are deacti-
vated. All data in the SDRAM is retained during this operation. To enable the power-down mode, set
the PMODE bits in the Power-Saving configuration register to “001” (Power-Down). The controller
will enter power-down mode after every memory access (when the controller has been idle for 16
clock cycles), until the PMODE bits is cleared. The REFRESH command will still be issued by the
controller in this mode. When exiting this mode a delay of one clock cycles are added before issue any
command to the memory. This mode is only available when the VHDL generic mobile is >= 1.

99.2.7 Deep Power-Down

The deep power-down operating mode is used to achieve maximum power reduction by eliminating
the power of the memory array. Data will not be retained after the device enters deep power-down
mode. To enable the deep power-down mode, set the PMODE bits in the Power-Saving configuration
register to “101” (Deep Power-Down). To exit the deep power-down mode the PMODE bits in the
Power-Saving configuration register must be cleared. The controller will respond with an AMBA
ERROR response to an AMBA access, that will result in a memory access, during Deep Power-Down
mode. This mode is only available when the VHDL generic mobile is >= 1 and mobile SDRAM func-
tionality is enabled.

99.2.8 Temperature-Compensated Self Refresh

The settings for the temperature-compensation of the Self Refresh rate can be controlled by setting the
TCSR bits in the Power-Saving configuration register. The extended mode register is automatically
updated when the TCSR bits are changed. Note that some vendors implements a Internal Tempera-
ture-Compensated Self Refresh feature, which makes the memory ignore the TCSR bits. This func-
tionality is only available when the VHDL generic mobile is >= 1 and mobile SDRAM functionality
is enabled.

99.2.9 Drive Strength

The drive strength of the output buffers can be controlled by setting the DS bits in the Power-Saving
configuration register. The extended mode register is automatically updated when the DS bits are
changed. The available options are: full, three-quarter, one-half, and one-quarter drive strengths. This
functionality is only available when the VHDL generic mobile is >= 1 and mobile SDRAM function-
ality is enabled.

99.2.10 SDRAM commands

The controller can issue four SDRAM commands by writing to the SDRAM command field in the
SDRAM Configuration register: PRE-CHARGE, AUTO-REFRESH, LOAD-MODE-REG (LMR)
and LOAD-EXTMODE-REG (EMR). If the LMR command is issued, the CAS delay as programmed
in SDCFG will be used, remaining fields are fixed: page read burst, single location write, sequential
burst. If the EMR command is issued, the DS, TCSR and PASR as programmed in Power-Saving con-
figuration register will be used. The command field will be cleared after a command has been exe-
GRIP, Sep 2018, Version 2018.3 1381 www.cobham.com/gaisler

GRLIB IP Core

cuted. Note that when changing the value of the CAS delay, a LOAD-MODE-REGISTER command
should be generated at the same time.

99.2.11 Read cycles

A read cycle is started by performing an ACTIVATE command to the desired bank and row, followed
by a READ command with data read after the programmed CAS delay. A read burst is performed if a
burst access has been requested on the AHB bus. The read cycle is terminated with a PRE-CHARGE
command, no banks are left open between two accesses. Note that only word bursts are supported by
the SDRAM controller. The AHB bus supports bursts of different sizes such as bytes and half-words
but they cannot be used.

99.2.12 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE commands are
issued after activation. A write burst on the AHB bus will generate a burst of write commands without
idle cycles in-between. As in the read case, only word bursts are supported.

99.2.13 Address bus connection

The SDRAM address bus should be connected to SA[12:0], the bank address to SA[14:13], and the
data bus to SD[31:0] or SD[63:0] if a 64-bit SDRAM data bus is used.

99.2.14 Data bus

The external SDRAM data bus is configurable to either 32 or 64 bits width, using the sdbits VHDL
generic. A 64-bit data bus allows 64-bit (SO)DIMMs to be connected using the full data capacity of
the devices. The polarity of the output enable signal to the data pads can be selected with the oepol
generic. Sometimes it is difficult to fulfil the output delay requirements of the output enable signal. In
this case, the vbdrive signal can be used instead of bdrive. Each index in this vector is driven by a sep-
arate register and a directive is placed on them so that they will not be removed by the synthesis tool.

99.2.15 Clocking

The SDRAM controller is designed for an external SDRAM clock that is in phase or slightly earlier
than the internal AHB clock. This provides the maximum margin for setup and hold on the external
signals, and allows highest possible frequency. For Xilinx and Altera devices, the GRLIB Clock Gen-
erator (CLKGEN) can be configured to produce a properly synchronized SDRAM clock. For other
FPGA targets, the custom clock synchronization must be designed, or the inverted clock option can be
used (see below). For ASIC targets, the SDRAM clock can be derived from the AHB clock with
proper delay adjustments during place&route.
If the VHDL generic INVCLK is set, then all outputs from the SDRAM controller are delayed for 1/2
clock. This is done by clocking all output registers on the falling clock edge. This option can be used
on FPGA targets where proper SDRAM clock synchronization cannot be achieved. The SDRAM
clock can be the internal AHB clock without further phase adjustments. Since the SDRAM signals
will only have 1/2 clock period to propagate, this option typically limits the maximum SDRAM fre-
quency to 40 - 50 MHz.

99.2.16 Endianness

The core is designed for big-endian systems.
GRIP, Sep 2018, Version 2018.3 1382 www.cobham.com/gaisler

GRLIB IP Core

99.3 Registers

The memory controller is programmed through register(s) mapped into the AHB I/O space defined by
the controllers AHB BAR1. Only 32-bit single-accesses to the registers are supported.

Table 1628.SDRAM controller registers

AHB address offset Register
0x0 SDRAM Configuration register
0x4 SDRAM Power-Saving configuration register

Table 1629. 0x00 - SDCFG1 - SDRAM configuration register
31 30 29 27 26 25 23 22 21 20 18 17 16 15 14 0

Refresh tRP tRFC tCD SDRAM
bank size

SDRAM
col. size

SDRAM
command

Page-
Burst

MS D64 SDRAM refresh load value

0 1 0b111 1 0 0b10 0 * * * NR

rw rw rw rw rw rw rw rw* r r rw

31 SDRAM refresh. If set, the SDRAM refresh will be enabled.
30 SDRAM tRP timing. tRP will be equal to 2 or 3 system clocks (0/1). When mobile SDRAM support

is enabled, this bit also represent the MSB in the tRFC timing.
29: 27 SDRAM tRFC timing. tRFC will be equal to 3 + field-value system clocks. When mobile SDRAM

support is enabled, this field is extended with the bit 30.
26 SDRAM CAS delay. Selects 2 or 3 cycle CAS delay (0/1). When changed, a LOAD-COMMAND-

REGISTER command must be issued at the same time. Also sets RAS/CAS delay (tRCD).
25: 23 SDRAM banks size. Defines the decoded memory size for each SDRAM chip select: “000”= 4

Mbyte, “001”= 8 Mbyte, “010”= 16 Mbyte “111”= 512 Mbyte.
When configured for 64-bit wide SDRAM data bus (sdbits=64), the meaning of this field doubles so
that “000”=8 Mbyte, .., “111”=1024 Mbyte

22: 21 SDRAM column size. “00”=256, “01”=512, “10”=1024, “11”=2048 except when bit[25:23]=˘111˘
then ˘11˘=4096

20: 18 SDRAM command. Writing a non-zero value will generate an SDRAM command: “010”=PRE-
CHARGE, “100”=AUTO-REFRESH, “110”=LOAD-COMMAND-REGISTER, “111”=LOAD-
EXTENDED-COMMAND-REGISTER. The field is reset after command has been executed.

17 1 = pageburst is used for read operations, 0 = line burst of length 8 is used for read operations. (Only
available when VHDL generic pageburst i set to 2)

16 Mobile SDR support enabled. ‘1’ = Enabled, ‘0’ = Disabled (read-only)
15 64-bit data bus (D64) - Reads ‘1’ if memory controller is configured for 64-bit data bus, otherwise

‘0’. Read-only.
14: 0 The period between each AUTO-REFRESH command - Calculated as follows: tREFRESH =

((reload value) + 1) / SYSCLK

Table 1630.0x04 - SDCFG2 - SDRAM Power-Saving configuration register
31 30 29 24 23 20 19 18 16 15 7 6 5 4 3 2 0

ME CE RESERVED tXSR R PMODE RESERVED DS TCSR PASR

* * 0 * 0 0 0 0 0 0

rw* rw* r rw* r rw r rw rw rw

31 Mobile SDRAM functionality enabled. ‘1’ = Enabled (support for Mobile SDRAM), ‘0’ = disabled
(support for standard SDRAM)

30 Clock enable (CE). This value is driven on the CKE inputs of the SDRAM. Should be set to ‘1’ for
correct operation. This register bit is read only when Power-Saving mode is other then none.

29: 24 Reserved
GRIP, Sep 2018, Version 2018.3 1383 www.cobham.com/gaisler

GRLIB IP Core
99.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x009. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

99.5 Implementation

99.5.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers. The registers driving SDRAM chip select and output enables for the SDRAM data bus
have asynchronous reset.

23: 20 SDRAM tXSR timing. tXSR will be equal to field-value system clocks. (Read only when Mobile
SDR support is disabled).

19 Reserved
18: 16 Power-Saving mode (Read only when Mobile SDR support is disabled).

“000”: none
“001”: Power-Down (PD)
“010”: Self-Refresh (SR)
“101”: Deep Power-Down (DPD)

15: 7 Reserved
 6: 5 Selectable output drive strength (Read only when Mobile SDR support is disabled).

“00”: Full
“01”: One-half
“10”: One-quarter
“11”: Three-quarter

 4: 3 Reserved for Temperature-Compensated Self Refresh (Read only when Mobile SDR support is disa-
bled).
“00”: 70ªC
“01”: 45ªC
“10”: 15ªC
“11”: 85ªC

 2: 0 Partial Array Self Refresh (Read only when Mobile SDR support is disabled).
“000”: Full array (Banks 0, 1, 2 and 3)
“001”: Half array (Banks 0 and 1)
“010”: Quarter array (Bank 0)
“101”: One-eighth array (Bank 0 with row MSB = 0)
“110”: One-sixteenth array (Bank 0 with row MSB = 00)

Table 1630.0x04 - SDCFG2 - SDRAM Power-Saving configuration register
GRIP, Sep 2018, Version 2018.3 1384 www.cobham.com/gaisler

GRLIB IP Core

99.6 Configuration options

Table 1631 shows the configuration options of the core (VHDL generics).

Table 1631.Configuration options

Generic Function Allowed range Default
hindex AHB slave index 1 - NAHBSLV-1 0
haddr ADDR field of the AHB BAR0 defining SDRAM area. Default

is 0xF0000000 - 0xFFFFFFFF.
0 - 16#FFF# 16#000#

hmask MASK field of the AHB BAR0 defining SDRAM area. 0 - 16#FFF# 16#F00#
ioaddr ADDR field of the AHB BAR1 defining I/O address space

where SDCFG register is mapped.
0 - 16#FFF# 16#000#

iomask MASK field of the AHB BAR1 defining I/O address space. 0 - 16#FFF# 16#FFF#
wprot Write protection. 0 - 1 0
invclk Inverted clock is used for the SDRAM. 0 - 1 0
pwron Enable SDRAM at power-on initialization 0 - 1 0
sdbits 32 or 64-bit data bus width. 32, 64 32
oepol Polarity of bdrive and vbdrive signals. 0=active low, 1=active

high
0 - 1 0

pageburst Enable SDRAM page burst operation.
0: Controller uses line burst of length 8 for read operations.
1: Controller uses pageburst for read operations.
2: Controller uses pageburst/line burst depending on PageBurst
bit in SDRAM configuration register.

0 - 2 0

mobile Enable Mobile SDRAM support
0: Mobile SDRAM support disabled
1: Mobile SDRAM support enabled but not default
2: Mobile SDRAM support enabled by default
3: Mobile SDRAM support only (no regular SDR support)

0 - 3 0
GRIP, Sep 2018, Version 2018.3 1385 www.cobham.com/gaisler

GRLIB IP Core

99.7 Signal descriptions

Table 1632 shows the interface signals of the core (VHDL ports).

99.8 Library dependencies

Table 1633 shows libraries used when instantiating the core (VHDL libraries).

99.9 Instantiation

This example shows how the core can be instantiated.

Table 1632.Signal descriptions

Signal name Field Type Function Active
CLK N/A Input Clock -
RST N/A Input Reset Low
AHBSI 1) Input AHB slave input signals -
AHBSO 1) Output AHB slave output signals -
SDI WPROT Input Not used -

DATA[63:0] Input Data High
SDO SDCKE[1:0] Output SDRAM clock enable High

SDCSN[1:0] Output SDRAM chip select Low
SDWEN Output SDRAM write enable Low
RASN Output SDRAM row address strobe Low
CASN Output SDRAM column address strobe Low
DQM[7:0] Output SDRAM data mask:

 DQM[7] corresponds to DATA[63:56],
 DQM[6] corresponds to DATA[55:48],
 DQM[5] corresponds to DATA[47:40],
 DQM[4] corresponds to DATA[39:32],
 DQM[3] corresponds to DATA[31:24],
 DQM[2] corresponds to DATA[23:16],
 DQM[1] corresponds to DATA[15:8],
 DQM[0] corresponds to DATA[7:0].

Low

BDRIVE Output Drive SDRAM data bus Low/High2

VBDRIVE[31:0] Output Identical to BDRIVE but has one signal for each
data bit. Every index is driven by its own regis-
ter. This can be used to reduce the output delay.

Low/High2

ADDRESS[16:2] Output SDRAM address Low
DATA[31:0] Output SDRAM data Low

1) see GRLIB IP Library User’s Manual
2) Polarity selected with the oepol generic

Table 1633.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB signal definitions
GAISLER MEMCTRL Signals, component Memory bus signals definitions, component dec-

laration
GRIP, Sep 2018, Version 2018.3 1386 www.cobham.com/gaisler

GRLIB IP Core

The example design contains an AMBA bus with a number of AHB components connected to it
including the SDRAM controller. The external SDRAM bus is defined on the example designs port
map and connected to the SDRAM controller. System clock and reset are generated by GR Clock
Generator and Reset Generator.
SDRAM controller decodes SDRAM area:0x60000000 - 0x6FFFFFFF. SDRAM Configuration regis-
ter is mapped into AHB I/O space on address (AHB I/O base address + 0x100).

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.pads.all; -- used for I/O pads
use gaisler.misc.all;

entity mctrl_ex is
 port (
 clk : in std_ulogic;
 resetn : in std_ulogic;
 pllref : in std_ulogic;
sdcke : out std_logic_vector (1 downto 0); -- clk en
 sdcsn : out std_logic_vector (1 downto 0); -- chip sel
 sdwen : out std_logic; -- write en
 sdrasn : out std_logic; -- row addr stb
 sdcasn : out std_logic; -- col addr stb
 sddqm : out std_logic_vector (7 downto 0); -- data i/o mask
 sdclk : out std_logic; -- sdram clk output
 sa : out std_logic_vector(14 downto 0); -- optional sdram address
 sd : inout std_logic_vector(63 downto 0) -- optional sdram data
);
end;

architecture rtl of mctrl_ex is

 -- AMBA bus (AHB and APB)
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

signal sdi : sdctrl_in_type;
 signal sdo : sdctrl_out_type;

 signal clkm, rstn : std_ulogic;
signal cgi : clkgen_in_type;
 signal cgo : clkgen_out_type;
 signal gnd : std_ulogic;

begin

 -- Clock and reset generators
 clkgen0 : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1,
 tech => virtex2, sdinvclk => 0)
 port map (clk, gnd, clkm, open, open, sdclk, open, cgi, cgo);

 cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pllref <= pllref;

 rst0 : rstgen
 port map (resetn, clkm, cgo.clklock, rstn);

 -- SDRAM controller
 sdc : sdctrl generic map (hindex => 3, haddr => 16#600#, hmask => 16#F00#,
 ioaddr => 1, pwron => 0, invclk => 0)
GRIP, Sep 2018, Version 2018.3 1387 www.cobham.com/gaisler

GRLIB IP Core

 port map (rstn, clkm, ahbsi, ahbso(3), sdi, sdo);

 -- input signals
 sdi.data(31 downto 0) <= sd(31 downto 0);

 -- connect SDRAM controller outputs to entity output signals
 sa <= sdo.address; sdcke <= sdo.sdcke; sdwen <= sdo.sdwen;
 sdcsn <= sdo.sdcsn; sdrasn <= sdo.rasn; sdcasn <= sdo.casn;
 sddqm <= sdo.dqm;

--Data pad instantiation with scalar bdrive
sd_pad : iopadv generic map (width => 32)
port map (sd(31 downto 0), sdo.data, sdo.bdrive, sdi.data(31 downto 0));
end;

--Alternative data pad instantiation with vectored bdrive
sd_pad : iopadvv generic map (width => 32)
port map (sd(31 downto 0), sdo.data, sdo.vbdrive, sdi.data(31 downto 0));
end;
GRIP, Sep 2018, Version 2018.3 1388 www.cobham.com/gaisler

GRLIB IP Core

100 SPI2AHB - SPI to AHB bridge

100.1 Overview

The SPI to AHB bridge is an SPI slave that provides a link between a SPI bus (that consists of two
data signals, one clock signal and one select signal) and AMBA AHB. On the SPI bus the slave acts as
an SPI memory device where accesses to the slave are translated to AMBA accesses. The core can
translate SPI accesses to AMBA byte, half-word or word accesses. The access size to use is configu-
rable via the SPI bus.
The core synchronizes the incoming clock and can operate in systems where other SPI devices are
driven by asynchronous clocks.
GRLIB also contains a SPI master/slave controller core, without an AHB interface, where the transfer
of each individual byte is controlled by software via an APB interface, see the SPICTRL core docu-
mentation for more information.

100.2 Transmission protocol

The SPI bus is a full-duplex synchronous serial bus. Transmission starts when a master selects a slave
through the slave’s Slave Select (SLVSEL) signal and the clock line SCK transitions from its idle
state. Data is transferred from the master through the Master-Output-Slave-Input (MOSI) signal and
from the slave through the Master-Input-Slave-Output (MISO) signal. In some systems with only one
master and one slave, the Slave Select input of the slave may be always active and the master does not
need to have a slave select output. This does not apply to this SPI to AHB bridge, the slave select sig-
nal must be used to mark the start and end of an operation.
During a transmission on the SPI bus data is either changed or read at a transition of SCK. If data has
been read at edge n, data is changed at edge n+1. If data is read at the first transition of SCK the bus is
said to have clock phase 0, and if data is changed at the first transition of SCK the bus has clock phase
1. The idle state of SCK may be either high or low. If the idle state of SCK is low, the bus has clock
polarity 0 and if the idle state is high the clock polarity is 1. The combined values of clock polarity
(CPOL) and clock phase (CPHA) determine the mode of the SPI bus. Figure 266 shows one byte
(0x55) being transferred MSb first over the SPI bus under the four different modes. Note that the idle
state of the MOSI line is ‘1’ and that CPHA = 0 means that the devices must have data ready before
the first transition of SCK. The figure does not include the MISO signal, the behavior of this line is
the same as for the MOSI signal. However, due to synchronization the MISO signal will be delayed
for a period of time that depends on the system clock frequency.

Figure 265. Block diagram, optional APB interface not shown

A
M
B
A

A
H
B

Shift register
SPI2AHB

SCK

MISOControl
FSM

SCK (filtered)
MOSI (filtered)

Fi
lte

r
MOSI

SLVSEL / SPISEL
GRIP, Sep 2018, Version 2018.3 1389 www.cobham.com/gaisler

GRLIB IP Core
The SPI to AHB bridge makes use of a protocol commonly used by SPI Flash memory devices. A
master first selects the slave via the slave select signal and then issues a one-byte instruction. The
instruction is then followed by additional bytes that contain address or data values. All instructions,
addresses and data are transmitted with the most significant bit first. All AMBA accesses are done in
big endian format. The first byte sent to or from the slave is the most significant byte.

100.3 System clock requirements and sampling

The core samples the incoming SPI SCK clock and does not introduce any additional clock domains
into the system. Both the SCK and MOSI lines first pass through two stage synchronizers and are then
filtered with a low pass filter.
The synchronizers and filters constrain the minimum system frequency. The core requires the SCK
signal to be stable for at least two system clock cycles before the core accepts the SCK value as the
new clock value. The core’s reaction to transitions will be additionally delayed since both lines are
taken through two-stage synchronizers before they are filtered. In order for the slave to be able to out-
put data on the SCK ‘change’ transition and for this data to reach the master before the next edge the
SCK frequency should not be higher than one tenth of the system frequency of core (with the standard
VHDL generic filter setting of 2).
The slave select input should be asserted at least two system clock cycles before the SCK line starts
transitioning.

Figure 266. SPI transfer of byte 0x55 in all modes

SCK

MOSI

CPOL = 0

CPHA = 0

CPHA = 1

CPOL = 1

CPHA = 0

CPHA = 1

Mode 0

Mode 1

Mode 2

Mode 3

SCK

MOSI

SCK

MOSI

SCK

MOSI
GRIP, Sep 2018, Version 2018.3 1390 www.cobham.com/gaisler

GRLIB IP Core

100.4 SPI instructions

100.4.1 Overview

The core is controlled from the SPI bus by sending SPI instructions. Some commands require addi-
tional bytes in the form of address or data. The core makes use of the same instructions as commonly
available SPI Flash devices. Table 1634 summarizes the available instructions.

All instructions, addresses and data are transmitted with the most significant bit first. All AMBA
accesses are done in big endian format. The first byte sent to or from the slave is the most significant
byte.

100.4.2 SPI status/control register accesses (RDSR/WRSR)

The RDSR and WRSR instructions access the core’s SPI status/control register. The register is
accessed by issuing the wanted instruction followed by the data byte to be written (WRSR) or any
value on the byte in order to shift out the current value of the status/control register (RDSR). The
fields available in the SPI status/control register are shown in table 1635.

100.4.3 Read and write instructions (WRITE and READ/READD)

The READD is the same as the READ instruction with an additional dummy byte inserted after the
four address bytes. To perform a read operation on AHB via the SPI bus the following sequence
should be performed:

Table 1634.SPI instructions

Instruction Description Instruction code Additional bytes
RDSR Read status/control register 0x05 Core responds with register value
WRSR Write status/control register 0x01 New register value
READ AHB read access 0x03 Four address bytes, after which core responds

with data.
READD AHB read access with dummy

byte
0x0B Four address bytes and one dummy byte, after

which core responds with data
WRITE AHB write access 0x02 Four address bytes followed by data to be written

Table 1635.SPI2AHB SPI status/control register
7 6 5 4 3 2 1 0

Reserved RAHEAD PROT MEXC DMAACT MALF HSIZE

7 Reserved, always zero (read only)

6 Read ahead (RAHEAD) - When this bit is set the core will make a new access to
fetch data as soon as the last current data bit has been moved. Otherwise the core
will not attempt the new access until the ‘change’ transition on SCK. Setting this bit
to ‘1’ allows higher SCK frequencies to be used but will also result in a data fetch as
soon as the current data has been read out. This means that RAHEAD may not be
suitable when accessing FIFO interfaces. (read/write)

5 Memory protection triggered (PROT) - ‘1’ if last AHB access was outside the allowed
memory area. Updated after each AMBA access (read only). Note that since this bit
is updated after each access the RAHEAD = ‘1’ setting may hide errors.

4 Memory exception (MEXC) - ‘1’ if core receives AMBA ERROR response. Updated
after each AMBA access (read only). Note that since this bit is updated after each
access the RAHEAD = ‘1’ setting may hide errors.

3 DMA active (DMAACT) - ‘1’ if core is currently performing a DMA operation.

2 Malfunction (MALF): This bit is set to one by the core is DMA is not finished when a
new byte starts getting shifted. If this bit is set to ‘1’ then the last AHB access was
not successful.

1:0 AMBA access size (HSIZE) - Controls the access size that the core will use for
AMBA accesses. 0: byte, 1: half-word, 2: word. HSIZE = “11” is illegal.

Reset value: 0x42
GRIP, Sep 2018, Version 2018.3 1391 www.cobham.com/gaisler

GRLIB IP Core

1. Assert slave select
2. Send READ instruction
3. Send four byte AMBA address, the most significant byte is transferred first
3a. Send dummy byte (if READD is used)
4. Read the wanted number of data bytes
5. De-assert slave select

To perform a write access on AHB via the SPI bus, use the following sequence:
1. Assert slave select
2. Send WRITE instruction
3. Send four byte AMBA address, the most significant byte is transferred first
4. Send the wanted number of data bytes
5. De-assert slave select

During consecutive read or write operations, the core will automatically increment the address. The
access size (byte, halfword or word) used on AHB is set via the HSIZE field in the SPI status/control
register.
The core always respects the access size specified via the HSIZE field. If a write operation writes
fewer bytes than what is required to do an access of the specified HSIZE then the write data will be
dropped, no access will be made on AHB. If a read operation reads fewer bytes than what is specified
by HSIZE then the remaining read data will be dropped when slave select is de-asserted.
The core will not mask any address bits. Therefore it is important that the SPI master respects AMBA
rules when performing half-word and word accesses. A half-word access must be aligned on a two
byte address boundary (least significant bit of address must be zero) and a word access must be
aligned on a four byte boundary (two least significant address bits must be zero).
The core can be configured to generate interrupt requests when an AHB access is performed if the
core is implemented with the APB register interface, see the APB register documentation for details.

100.4.4 Memory protection

The core is configured at implementation time to only allow accesses to a specified AHB address
range (which can be the full 4 GiB AMBA address range). If the core has been implemented with the
optional APB register interface then the address range is soft configurable and the reset value is spec-
ified with VHDL generics.
The VHDL generics ahbaddrh and ahbaddrl define the base address for the allowed area. The VHDL
generics ahbmaskh and ahbmaskl define the size of the area. The generics are used to assign the mem-
ory protection area’s address and mask in the following way:
Protection address, bits 31:16 (protaddr[31:16]): ahbaddrh
Protection address, bits 15:0 (protaddr[15:0]): ahbaddrl
Protection mask, bits 31:16 (protmask[31:16]): ahbmaskh
Protection mask, bits 15:0 (protmask[15:0]): ahbmaskl
Before the core performs an AMBA access it will perform the check:

(((incoming address) xor (protaddr)) and protmask) /= 0x00000000

If the above expression is true (one or several bits in the incoming address differ from the protection
address, and the corresponding mask bits are set to ‘1’) then the access is inhibited. As an example,
assume that protaddr is 0xA0000000 and protmask is 0xF0000000. Since protmask only has ones in
the most significant nibble, the check above can only be triggered for these bits. The address range of
allowed accessed will thus be 0xA0000000 - 0xAFFFFFFF..
GRIP, Sep 2018, Version 2018.3 1392 www.cobham.com/gaisler

GRLIB IP Core

The core will set the configuration register bit PROT if an access is attempted outside the allowed
address range. This bit is updated on each AHB access and will be cleared by an access inside the
allowed range. Note that the (optional) APB status register has a PROT field with a slightly different
behavior.

100.5 Registers

The core can optionally be implemented with an APB interface that provides registers mapped into
APB address space.

Table 1636.APB registers

APB address offset Register
0x00 Control register
0x04 Status register
0x08 Protection address register
0x0C Protection mask register
GRIP, Sep 2018, Version 2018.3 1393 www.cobham.com/gaisler

GRLIB IP Core

100.5.1

Table 1637.0x00 - CTRL - Control register

Control Register

100.5.2

Table 1638.0x04 - STAT - Status register

Status Register

100.5.3

Table 1639.0x08 - PADDR - Protection address register

Protection Address Register

100.5.4

Table 1640.0x0C - PMASK - Protection mask register

Protection Mask Register

31 2 1 0

RESERVED IRQEN EN

0 0 *

r rw rw

31 : 2 RESERVED
1 Interrupt enable (IRQEN) - When this bit is set to ‘1’ the core will generate an interrupt each time

the DMA field in the status register transitions from ‘0’ to ‘1’.
0 Core enable (EN) - When this bit is set to ‘1’ the core is enabled and will respond to SPI accesses.

Otherwise the core will not react to SPI traffic.

31 3 2 1 0

RESERVED PROT WR DMA

0 0 0 0

r wc r wc

31 : 3 RESERVED
2 Protection triggered (PROT) - Set to ‘1’ if an access has triggered the memory protection. This bit

will remain set until cleared by writing ‘1’ to this position. Note that the other fields in this register
will be updated on each AHB access while the PROT bit will remain at ‘1’ once set.

1 Write access (WR) - Last AHB access performed was a write access. This bit is read only.
0 Direct Memory Access (DMA) - This bit gets set to ‘1’ each time the core attempts to perform an

AHB access. By setting the IRQEN field in the control register this condition can generate an inter-
rupt. This bit can be cleared by software by writing ‘1’ to this position.

31 0

PROTADDR

*

rw

31 : 0 Protection address (PROTADDR) - Defines the base address for the memory area where the core is
allowed to make accesses.

31 0

PROTMASK

*

rw

31 : 0 Protection mask (PROTMASK) - Selects which bits in the Protection address register that are used
to define the protected memory area.

Reset value: Implementation dependent
GRIP, Sep 2018, Version 2018.3 1394 www.cobham.com/gaisler

GRLIB IP Core

100.6 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x05C. For a description
of vendor and device identifiers see the GRLIB IP Library User’s Manual.

100.7 Implementation

100.7.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

100.8 Configuration options

Table 1641 shows the configuration options of the core (VHDL generics). Two different top level
entities for the core is available. One with the optional APB interface (spi2ahb_apb) and one without
the APB interface (spi2ahb). The entity without the APB interface has fewer generics as indicated in
the table below.

Table 1641.Configuration options

Generic name Function Allowed range Default
hindex AHB master index 0 - NAHBMST 0
ahbaddrh Defines bits 31:16 of the address used for the memory

protection area
0 - 16#FFFF# 0

ahbaddrl Defines bits 15:0 of the address used for the memory
protection area

0 - 16#FFFF# 0

ahbmaskh Defines bits 31:16 of the mask used for the memory pro-
tection area

0 - 16#FFFF# 0

ahbmaskl Defines bits 15:0 of the mask used for the memory pro-
tection area

0 - 16#FFFF# 0

resen Reset value for core enable bit (only available on the
spi2ahb_apb entity).

0 - 1 0

pindex APB slave index (only available on the spi2ahb_apb
entity).

0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR (only available on the
spi2ahb_apb entity).

0 - 16#FFF# 0

pmask MASK field of the APB BAR (only available on the
spi2ahb_apb entity).

0 - 16#FFF# 16#FFF#

pirq Interrupt line driven by APB interface (only available on
the spi2ahb_apb entity).

0 - NAHBIRQ-1 0

oepol Output enable polarity 0 - 1 0
filter Low-pass filter length. This generic should specify, in

number of system clock cycles plus one, the time of the
shortest pulse on the SCK clock line to be registered as a
valid value.

2 - 512 2

cpol Clock polarity of SPI clock (SCK) 0 - 1 0
cpha Clock phase of SPI communication 0 - 1 0
GRIP, Sep 2018, Version 2018.3 1395 www.cobham.com/gaisler

GRLIB IP Core

100.9 Signal descriptions

Table 1642 shows the interface signals of the core (VHDL ports).

100.10 Signal definitions and reset values

The signals and their reset values are described in table 1643.

100.11 Library dependencies

Table 1644 shows the libraries used when instantiating the core (VHDL libraries).

100.12 Instantiation

The example below shows how the core can be instantiated.
library ieee;
use ieee.std_logic_1164.all;
library grlib, techmap;
use grlib.amba.all;
use techmap.gencomp.all;
library gaisler;

Table 1642.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
AHBI * Input AHB master input signals -
AHBO * Output AHB master output signals -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
SPII SCK Input SPI clock line input -

MOSI Input SPI data line input -
SPISEL Input SPI slave select input
Other fields Input Unused

SPIO MISO Output SPI data line output -
MISOOEN Output SPI data line output enable Low**
Other fields Output Unused -

* see GRLIB IP Library User’s Manual
** depends on value of OEPOL VHDL generic.

Table 1643.Signal definitions and reset values

Signal name Type Function Active Reset value
sck Input SPI clock line - Hi-Z
miso InputOutput SPI master-input, slave-output line - Hi-Z
mosi Input SPI master-output, slave-input line - -
spisel Input SPI slave select Low -

Table 1644.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER SPI Component, signals Component declaration, SPI signal definitions
GRIP, Sep 2018, Version 2018.3 1396 www.cobham.com/gaisler

GRLIB IP Core

use gaisler.misc.all;

entity spi2ahb_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- SPI signals
 miso : inout std_logic;
 mosi : in std_logic;
 sck : in std_logic;
 sel : in std_logic;
);
end;

architecture rtl of spi2ahb_ex is
 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector;
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector;
 -- SPI signals
 signal spislvi : spi_in_type;
 signal spislvo : spi_out_type;
begin

 -- AMBA Components are instantiated here
 ...
 -- SPI to AHB bridge
 spibridge : if CFG_SPI2AHB /= 0 generate
 withapb : if CFG_SPI2AHB_APB /= 0 generate
 spi2ahb0 : spi2ahb_apb
 generic map(hindex => 10,
 ahbaddrh => CFG_SPI2AHB_ADDRH, ahbaddrl => CFG_SPI2AHB_ADDRL,
 ahbmaskh => CFG_SPI2AHB_MASKH, ahbmaskl => CFG_SPI2AHB_MASKL,
 resen => CFG_SPI2AHB_RESEN, pindex => 11, paddr => 11, pmask => 16#fff#,
 pirq => 11, filter => CFG_SPI2AHB_FILTER, cpol => CFG_SPI2AHB_CPOL,
 cpha => CFG_SPI2AHB_CPHA)
 port map (rstn, clkm, ahbmi, ahbmo(10),
 apbi, apbo(11), spislvi, spislvo);
 end generate;
 woapb : if CFG_SPI2AHB_APB = 0 generate
 spi2ahb0 : spi2ahb
 generic map(hindex => 10,
 ahbaddrh => CFG_SPI2AHB_ADDRH, ahbaddrl => CFG_SPI2AHB_ADDRL,
 ahbmaskh => CFG_SPI2AHB_MASKH, ahbmaskl => CFG_SPI2AHB_MASKL,
 filter => CFG_SPI2AHB_FILTER,
 cpol => CFG_SPI2AHB_CPOL, cpha => CFG_SPI2AHB_CPHA)
 port map (rstn, clkm, ahbmi, ahbmo(10),
 spislvi, spislvo);
 end generate;
 spislv_miso_pad : iopad generic map (tech => padtech)
 port map (miso, spislvo.miso, spislvo.misooen, spislvi.miso);
 spislvl_mosi_pad : inpad generic map (tech => padtech)
 port map (miso, spislvi.mosi);
 spislv_sck_pad : inpad generic map (tech => padtech)
 port map (sck, spislvi.sck);
 spislv_slvsel_pad : iopad generic map (tech => padtech)
 port map (sel, spislvi.spisel);
 end generate;
 nospibridge : if CFG_SPI2AHB = 0 or CFG_SPI2AHB_APB = 0 generate
 apbo(11) <= apb_none;
 end generate;
end;
GRIP, Sep 2018, Version 2018.3 1397 www.cobham.com/gaisler

GRLIB IP Core

101 SPICTRL - SPI Controller

101.1 Overview

The core provides a link between the AMBA APB bus and the Serial Peripheral Interface (SPI) bus
and can be dynamically configured to function either as a SPI master or a slave. The SPI bus parame-
ters are highly configurable via registers. Core features also include configurable word length, bit
ordering, clock gap insertion, automatic slave select and automatic periodic transfers of a specified
length. All SPI modes are supported and optionally also dual SPI, quad SPI, and a 3-wire protocol
where one bidirectional data line is used. In slave mode the core synchronizes the incoming clock and
can operate in systems where other SPI devices are driven by asynchronous clocks.

101.2 Operation

101.2.1 SPI transmission protocol

The SPI bus is a full-duplex synchronous serial bus. Transmission starts when a master selects a slave
through the slave’s Slave Select (SLVSEL) signal and the clock line SCK transitions from its idle
state. Data is transferred from the master through the Master-Output-Slave-Input (MOSI) signal and
from the slave through the Master-Input-Slave-Output (MISO) signal. In a system with only one mas-
ter and one slave, the Slave Select input of the slave may be always active and the master does not
need to have a slave select output. If the core is configured as a master it will monitor the SPISEL sig-
nal to detect collisions with other masters, if SPISEL is activated the master will be disabled.
During a transmission on the SPI bus data is either changed or read at a transition of SCK. If data has
been read at edge n, data is changed at edge n+1. If data is read at the first transition of SCK the bus is
said to have clock phase 0, and if data is changed at the first transition of SCK the bus has clock phase
1. The idle state of SCK may be either high or low. If the idle state of SCK is low, the bus has clock
polarity 0 and if the idle state is high the clock polarity is 1. The combined values of clock polarity
(CPOL) and clock phase (CPHA) determine the mode of the SPI bus. Figure 268 shows one byte
(0x55) being transferred MSb first over the SPI bus under the four different modes. Note that the idle
state of the MOSI line is ‘1’ and that CPHA = 0 means that the devices must have data ready before
the first transition of SCK. The figure does not include the MISO signal, the behavior of this line is
the same as for the MOSI signal. However, due to synchronization issues the MISO signal will be
delayed when the core is operating in slave mode, please see section 101.2.6 for details.

Figure 267. Block diagram

A
M
B
A

A
P
B

Transmit
MISO

Mode register

Event register

Mask register

Com. register

Transmit register

Receive register

Slave select reg.

FIFO

Receive
FIFO

SCK
Control

Master ctrl

Slave ctrl

Clock gen.

S
y
n
c
r
e
g
i
s
t
e
r
s

SPISEL

SLVSEL

MOSI

SPICTRL

IO3
IO4
GRIP, Sep 2018, Version 2018.3 1398 www.cobham.com/gaisler

GRLIB IP Core
101.2.2 3-wire transmission protocol

The core can be configured to use a 3-wire protocol if the TWEN field in the core’s Capability register
0 is set to ‘1’, where the controller uses a bidirectional dataline instead of separate data lines for input
and output data. In 3-wire protocol the bus is thus a half-duplex synchronous serial bus. Transmission
starts when a master selects a slave through the slave’s Slave Select (SLVSEL) signal and the clock
line SCK transitions from its idle state. Only the Master-Output-Slave-Input (MOSI) signal is used for
data transfer in the 3-wire protocol. The MISO signal is not used.
The direction of the first data transfer is determined by the value of the 3-wire Transfer Order (TTO)
field in the core’s Mode register. If TTO is ‘0’, data is first transferred from the master (through the
MOSI signal). After a word has been transferred, the slave uses the same data line to transfer a word
back to the master. If TTO is ‘1’ data is first transferred from the slave to the master. After a word has
been transferred, the master uses the MOSI line to transfer a word back to the slave.
The data line transitions depending on the clock polarity and clock phase in the same manner as in SPI
mode. The aforementioned slave delay of the MISO signal in SPI mode will affect the MOSI signal
when using 3-wire protocol, when the core operates as a slave.

101.2.3 Dual and quad transmission protocols

The core can be configured to use dual and quad SPI protocols if support for these protocols is indi-
cated in the PROT field of the core’s Capability register 1. The SPROT field of the core’s Command
register determines the protocol to use.
In standard SPI mode, a master always transmits on the MOSI line and receives on the MISO line and
vice-versa for a slave. With dual SPI protocol the slave or master may use both of MISO and MOSI
for reception or transmission. In quad SPI mode the slave or master will use MISO, MOSI, IO2 and
IO3 for either transmission or reception. Since this all traffic in this controller is driven via the trans-

Figure 268. SPI transfer of byte 0x55 in all modes

SCK

MOSI

CPOL = 0

CPHA = 0

CPHA = 1

CPOL = 1

CPHA = 0

CPHA = 1

Mode 0

Mode 1

Mode 2

Mode 3

SCK

MOSI

SCK

MOSI

SCK

MOSI
GRIP, Sep 2018, Version 2018.3 1399 www.cobham.com/gaisler

GRLIB IP Core

mit queue it becomes necessary to mark the words to be transmitted so that the controller knows
which direction that should be used for the MISO, MOSI, IO2 and IO3 lines in the corresponding
transfer. The direction associated with the transfer is determined by the setting of the DIR field in the
core’s Command register.

101.2.4 Receive and transmit queues

The core’s transmit queue consists of the transmit register and the transmit FIFO. The receive queue
consists of the receive register and the receive FIFO. The total number of words that can exist in each
queue is thus the FIFO depth plus one. When the core has one or more free slots in the transmit queue
it will assert the Not full (NF) bit in the event register. Software may only write to the transmit register
when this bit is asserted. When the core has received a word, as defined by word length (LEN) in the
Mode register, it will place the data in the receive queue. When the receive queue has one or more ele-
ments stored the Event register bit Not empty (NE) will be asserted. The receive register will only
contain valid data if the Not empty bit is asserted and software should not access the receive register
unless this bit is set. If the receive queue is full and the core receives a new word, an overrun condi-
tion will occur. The received data will be discarded and the Overrun (OV) bit in the Event register will
be set.
The core will also detect underrun conditions. An underrun condition occurs when the core is
selected, via SPISEL, and the SCK clock transitions while the transmit queue is empty. In this sce-
nario the core will respond with all bits set to ‘1’ and set the Underrun (UN) bit in the Event register.
An underrun condition will never occur in master mode. When the master has an empty transmit
queue the bus will go into an idle state.

101.2.5 Clock generation

The core only generates the clock in master mode, the generated frequency depends on the system
clock frequency and the Mode register fields DIV16, FACT, and PM. Without DIV16 the SCK fre-
quency is:

With DIV16 enabled the frequency of SCK is derived through:

Note that the fields of the Mode register, which includes DIV16, FACT and PM, should not be
changed when the core is enabled. If the FACT field is set to 0 the core’s register interface is compat-
ible with the register interface found in MPC83xx SoCs. If the FACT field is set to 1, the core can
generate an SCK clock with higher frequency.

101.2.6 Slave operation

When the core is configured for slave operation it does not drive any SPI signal until the core is
selected, via the SPISEL input, by a master. If the core operates in SPI mode when SPISEL goes low
the core configures MISO as an output and drives the value of the first bit scheduled for transfer. If the
core is configured to use 3-wire protocol then the core will first listen to the MOSI line and when a
word has been transferred drive the response on the MOSI line. If the core is selected when the trans-
mit queue is empty it will transfer a word with all bits set to ‘1’ and the core will report an underflow.

SCKFrequency AMBAclockfrequency
4 2 FACT –  PM 1+ 

---=

SCKFrequency AMBAclockfrequency
16 4 2 FACT –  PM 1+  
---=
GRIP, Sep 2018, Version 2018.3 1400 www.cobham.com/gaisler

GRLIB IP Core

Since the core synchronizes the incoming clock it will not react to transitions on SCK until two sys-
tem clock cycles have passed. This leads to a delay of three system clock cycles when the data output
line should change as the result of a SCK transition. This constrains the maximum input SCK fre-
quency of the slave to (system clock) / 8 or less. The controlling master must also allow the decreased
setup time on the slave data out line.
The core can also filter the SCK input. The value of the PM field in the Mode register defines for how
many system clock cycles the SCK input must be stable before the core accepts the new value. If the
PM field is set to zero, then the maximum SCK frequency of the slave is, as stated above, (system
clock) / 8 or less. For each increment of the PM field the clock period of SCK must be prolonged by
two times the system clock period as the core will require longer time discover and respond to SCK
transitions.

101.2.7 Master operation

When the core is configured for master operation it will transmit a word when there is data available
in the transmit queue. When the transmit queue is empty the core will drive SCK to its idle state. If the
SPISEL input goes low during master operation the core will abort any active transmission and the
Multiple-master error (MME) bit will be asserted in the Event register. If a Multiple-master error
occurs the core will be disabled. Note that the core will react to changes on SPISEL even if the core is
operating in loop mode and that the core can be configured to ignore SPISEL by setting the IGSEL
field in the Mode register.

101.2.8 Automated periodic transfers

The core supports automated periodic transfers if the AMODE field in the core’s Capability register is
‘1’. In this mode the core will perform transfers with a specified period and length. The steps below
outline how to set up automated transfers:

1. Configure the core’s Mode register as a master and set the AMEN field (bit 31) to ‘1’. Possibly
also configure the automatic slave select settings.
2. Write to the AM Mask registers to configure which parts of the AM transmit queue that will be
used. The number of bits in the AM Mask registers that are set to one together with the word
length (set in the Mode register) defines how long the transfer should be.
3. Write data to the AM transmit queue (AM Transmit registers). Only those registers that corre-
spond to a bit that is set to one in the AM Mask registers need to be written.
4. Set the transfer period in the AM Period register.
5. Set the options for the automated transfers in the AM Configuration register
6. Set the ACT or EACT field in the AM Configuration register.
7. Wait for the Not Empty field to be set in the Event register
8. Read out the AM Receive queue (AM Receive registers). If lock bit (LOCK) in AM Configu-
ration register is set then all registers which have a bit in the AM Mask registers set must be read.
If the lock bit is not set software does not need to read out any data, the core can write new data
to the AM Receive registers anyway.
9. Go back to step 7.

When an automated transfer is performed, data is not immediately placed in AM receive queue.
Instead the data is placed in a temporary queue to ensure that a full transfer can be read out atomically
without interference from incoming data.
The AM receive queue is filled with the data from the temporary queue if the AM receive queue is
empty, or if it is full and Sequential transfers (SEQ) is disabled in the AM Configuration register. It is
possible to configure the core not to place new data in the AM receive queue while software is reading
GRIP, Sep 2018, Version 2018.3 1401 www.cobham.com/gaisler

GRLIB IP Core

out data from the queue. This is done by setting the lock bit (LOCK) in the AM Configuration regis-
ter.
If the AM Configuration register’s SEQ bit is set the core will not move data from the temporary
queue until the AM receive queue has been cleared. Demanding Sequential transfers means that the
AM receive queue’s data will never be overwritten. However, data may still be lost, depending on the
settings that determine how the temporary queue handles overflow conditions.
The controller will attempt to place data into the temporary receive queue when the automated trans-
fer period counter reaches zero. If the temporary queue is filled, which can occur if the controller is
prevented from moving the data to the receive queue, the core’s behavior will depend on the setting of
the Strict Period (STRICT) field in the AM Configuration register:
If the value of STRICT is ‘0’ the core will delay the transfer and wait until the temporary queue has
been cleared.
If the value of STRICT is ‘1’, and the contents of the temporary queue can not be moved to the AM
receive queue, there will be an overflow condition in the temporary queue. The core’s behavior on a
temporary queue overflow is defined by the AM Configuration register fields Overflow Transfer
Behavior (OVTB) and Overflow Data Behavior (OVDB). If there is a temporary queue overflow and
OVTB is set, the transfer will be skipped and the core’s internal period counter will be reloaded. If the
OVTB bit is not set the transfer will be performed. If the transfer is performed and the OVDB bit is set
the data will be disregarded. If the OVDB bit is not set the data will be placed in the temporary receive
queue and the previous data will be overwritten.
A series of automated transfers can be started by an external event. If the AM Configuration register
field EACT is set, the core will activate Automated transfers when its internal ASTART input signal
goes high. When the core detects that EACT and ASTART are both set, it will set the AM Configura-
tion register ACT bit and reset the EACT bit. Note that subsequent automated transfers will be started
when the period counter reaches zero, if ERPT field of the AM Configuration register is set to zero. If
the ERPT field is set to one then the ASTART input is used to start subsequent transfers instead.
When automated transfers are enabled by setting the AM Configuration register ACT bit, the core will
send a pulse on its internal ASTART output signal. This means that several cores can be connected
together and have their start event synchronized. To synchronize a start event, set the EACT bit in all
cores, except in the last core which is activated by setting the AM Configuration register ACT field.
The last core will then pulse its ASTART output and trigger the start event in all the other connected
cores. When this has been done the cores’ transfers will be synchronized. However this synchroniza-
tion may be lost if a core’s receive queues are filled and STRICT transfers are disabled, since this will
lead to a delay in the start of the core’s next transfer.
When the core operates in AM mode, the Receive and Transmit registers should not be accessed. Nor
should the AM transmit registers be updated when automatic transfers are enabled.
GRIP, Sep 2018, Version 2018.3 1402 www.cobham.com/gaisler

GRLIB IP Core

101.3 Registers

The core is programmed through registers mapped into APB address space.

Table 1645.SPI controller registers

APB address offset Register
0x00 Capability register 0
0x04 Capability register 1
0x08-0x1C Reserved
0x20 Mode register
0x24 Event register
0x28 Mask register
0x2C Command register
0x30 Transmit register
0x34 Receive register
0x38 Slave Select register (optional)
0x3C Automatic slave select register*
0x40 AM Configuration register**
0x44 AM Period register**
0x48-0x4C Reserved
0x50-0x5C AM Mask register(s)***
0x200-0x3FC AM Transmit register(s)****
0x400-0x5FC AM Receive register(s)****
*Only available if ASEL (bit 17) in the SPI controller Capability register is set.
**Only available if AMODE (bit 18) in the SPI controller Capability register is set.
***Only available if AMODE (bit 18) in the SPI controller Capability register is set. Number of implemented registers
depend on FDEPTH (bits 15:8) in the SPI controller Capability register in the following way: Number of registers =
(FDEPTH-1)/32 + 1.
****Only available if AMODE (bit 18) in the SPI controller Capability register is set. Number of implemented registers
equals FDEPTH (bits 15:8) in the SPI controller Capability register.
GRIP, Sep 2018, Version 2018.3 1403 www.cobham.com/gaisler

GRLIB IP Core

101.3.1

Table 1646.0x00 - CAP0 - SPI controller Capability register 0

SPI Controller Capability Register 0

101.3.2 SPI Controller Capability Register 1

Table 1647.0x04 - CAP1 - SPI controller Capability register 1

31 24 23 20 19 18 17 16

SSSZ MAXWLEN TWEN AMODE ASELA SSEN

* * * * * ‘

r r r r r r

15 8 7 6 5 4 0

FDEPTH SR FT REV

* * * 5

r r r r

31 : 24 Slave Select register size (SSSZ) - If the core has been configured with slave select signals this field
contains the number of available signals. This field is only valid is the SSEN bit (bit 16) is ‘1

23 : 20 Maximum word Length (MAXWLEN) - The maximum word length supported by the core:
0b0000 - 4-16, and 32-bit word length
0b0011-0b1111 - Word length is MAXWLEN+1, allows words of length 4-16 bits.
The core must not be configured to use a word length greater than what is defined by this register.

19 3-wire Protocol Enable (TWEN) - If this bit is ‘1’ the core supports 3-wire protocol. See also the
PROT field in Capability register 1.

18 Auto mode (AMODE) - If this bit is ‘1’ the core supports Automated transfers.
17 Automatic slave select available (ASELA) - If this bit is set, the core has support for setting slave

select signals automatically.
16 Slave Select Enable (SSEN) - If the core has a slave select register, and corresponding slave select

lines, the value of this field is one. Otherwise the value of this field is zero.
15 : 8 FIFO depth (FDEPTH) - This field contains the depth of the core’s internal FIFOs. The number of

words the core can store in each queue is FDEPTH+1, since the transmit and receive registers can
contain one word each.

7 SYNCRAM (SR) - If this field is ‘1’ the core has buffers implemented with SYNCRAM compo-
nents.

6 : 5 Fault-tolerance (FT) - This field signals if the core has any fault-tolerant capabilities. “00” - No
fault-tolerance. “01” - Parity DMR, “10” - TMR.

4 : 0 Core revision (REV) - This manual applies to core revision 5.

31 2 1 0

R PROT

0 *

r r

31 : 2 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
1 : 0 Protocols (PROT) - This field shows which SPI protocols that the core supports. Note that support

for the 3-wire protocol is shown using a separate bit in Capability register 0. The values for the
PROT field are decoded in the following way:
0 - Support for standard SPI protocol
1 - Support for standard and dual SPI protocols
2 - Support for standard, dual and quad SPI protocols
GRIP, Sep 2018, Version 2018.3 1404 www.cobham.com/gaisler

GRLIB IP Core

101.3.3 SPI Controller Mode Register

Table 1648.0x20 - MODE - SPI controller Mode register
31 30 29 28 27 26 25 24 23 20 19 16

AMEN LOOP CPOL CPHA DIV16 REV MS EN LEN PM

0 0 0 0 0 0 0 0 0 0

rw* rw rw rw rw rw rw rw rw rw

15 14 13 12 11 7 6 5 4 3 2 1 0

TWEN ASEL FACT OD CG ASELDEL TAC TTO IGSEL CITE R

0 0 0 0 0 0 0 0 0 * 0

rw* rw* rw rw* rw rw* rw rw rw rw r

31 Auto mode enable (AMEN) - When this bit is set to ‘1’ the core will be able to perform automated
periodic transfers. See the AM registers below. The core supports this mode if the AMODE field in
the capability register is set to ‘1’. Otherwise writes to this field has no effect. When this bit is set to
‘1’ the core can only perform automated transfers. Software is allowed to initialize the transmit
queue and to read out the receive queue but no transfers except the automated periodic transfers may
be performed. The core must be configured to act as a master (MS field set to ‘1’) when performing
automated transfers.

30 Loop mode (LOOP) - When this bit is set, and the core is enabled, the core’s transmitter and receiver
are interconnected and the core will operate in loopback mode. The core will still detect, and will be
disabled, on Multiple-master errors.

29 Clock polarity (CPOL) - Determines the polarity (idle state) of the SCK clock.
28 Clock phase (CPHA) - When CPHA is ‘0’ data will be read on the first transition of SCK. When

CPHA is ‘1’ data will be read on the second transition of SCK.
27 Divide by 16 (DIV16) - Divide system clock by 16, see description of PM field below and see sec-

tion 101.2.5 on clock generation. This bit has no significance in slave mode.
26 Reverse data (REV) - When this bit is ‘0’ data is transmitted LSB first, when this bit is ‘1’ data is

transmitted MSB first. This bit affects the layout of the transmit and receive registers.
25 Master/Slave (MS) - When this bit is set to ‘1’ the core will act as a master, when this bit is set to ‘0’

the core will operate in slave mode.
24 Enable core (EN) - When this bit is set to ‘1’ the core is enabled. No fields in the mode register

should be changed while the core is enabled. This can bit can be set to ‘0’ by software, or by the core
if a multiple-master error occurs.

23 : 20 Word length (LEN) - The value of this field determines the length in bits of a transfer on the SPI bus.
Values are interpreted as:
0b0000 - 32-bit word length
0b0001-0b0010 - Illegal values
0b0011-0b1111 - Word length is LEN+1, allows words of length 4-16 bits.
The value of this field must never specify a word length that is greater than the maximum allowed
word length specified by the MAXWLEN field in the Capability register.

19 : 16 Prescale modulus (PM) - This value is used in master mode to divide the system clock and generate
the SPI SCK clock. The value in this field depends on the value of the FACT bit.
If bit 13 (FACT) is ‘0’:The system clock is divided by 4*(PM+1) if the DIV16 field is ‘0’ and
16*4*(PM+1) if the DIV16 field is set to ‘1’. The highest SCK frequency is attained when PM is set
to 0b0000 and DIV16 to ‘0’, this configuration will give a SCK frequency that is (system clock)/4.
With this setting the core is compatible with the SPI register interface found in MPC83xx SoCs.
If bit 13 (FACT) is ‘1’: The system clock is divided by 2*(PM+1) if the DIV16 field is ‘0’ and
16*2*(PM+1) if the DIV16 field is set to ‘1’. The highest SCK frequency is attained when PM is set
to 0b0000 and DIV16 to ‘0’, this configuration will give a SCK frequency that is (system clock)/2.
In slave mode the value of this field defines the number of system clock cycles that the SCK input
must be stable for the core to accept the state of the signal. See section 101.2.6.

15 3-wire protocol (TW) - If this bit is set to ‘1’ the core will operate using 3-wire protocol. This bit can
only be set if the TWEN field of the Capability register is set to ‘1’.
GRIP, Sep 2018, Version 2018.3 1405 www.cobham.com/gaisler

GRLIB IP Core
14 Automatic slave select (ASEL) - If this bit is set to ‘1’ the core will swap the contents in the Slave
select register with the contents of the Automatic slave select register when a transfer is started and
the core is in master mode. When the transmit queue is empty, the slave select register will be
swapped back. Note that if the core is disabled (by writing to the core enable bit or due to a multiple-
master-error (MME)) when a transfer is in progress, the registers may still be swapped when the core
goes idle. This bit can only be set if the ASELA field of the Capability register is set to ‘1’. Also see
the ASELDEL field which can be set to insert a delay between the slave select register swap and the
start of a transfer.

13 PM factor (FACT) - If this bit is 1 the core’s register interface is no longer compatible with the
MPC83xx register interface. The value of this bit affects how the PM field is utilized to scale the SPI
clock. See the description of the PM field.

12 Open drain mode (OD) - If this bit is set to ‘0’, all pins are configured for operation in normal mode.
If this bit is set to ‘1’ all pins are set to open drain mode. The implementation of the core may or may
not support open drain mode. If this bit can be set to ‘1’ by writing to this location, the core supports
open drain mode. The pins driven from the slave select register are not affected by the value of this
bit.

11 : 7 Clock gap (CG) - The value of this field is only significant in master mode. The core will insert CG
SCK clock cycles between each consecutive word. This only applies when the transmit queue is kept
non-empty. After the last word of the transmit queue has been sent the core will go into an idle state
and will continue to transmit data as soon as a new word is written to the transmit register, regardless
of the value in CG. A value of 0b00000 in this field enables back-to-back transfers.

6 : 5 Automatic Slave Select Delay (ASELDEL) - If the core is configured to use automatic slave select
(ASEL field set to ‘1’) the core will insert a delay corresponding to ASELDEL*(SPI SCK cycle
time)/2 between the swap of the slave select registers and the first toggle of the SCK clock. As an
example, if this field is set to “10” the core will insert a delay corresponding to one SCK cycle
between assigning the Automatic slave select register to the Slave select register and toggling SCK
for the first time in the transfer. This field can only be set if the ASELA field of the Capability regis-
ter is set to ‘1’.

4 Toggle Automatic slave select during Clock Gap (TAC) - If this bit is set, and the ASEL field is set,
the core will perform the swap of the slave select registers at the start and end of each clock gap. The
clock gap is defined by the CG field and must be set to a value >= 2 if this field is set. This field can
only be set if the ASELA field of the Capability register is set to ‘1’.

3 3-wire Transfer Order (TTO) - This bit controls if the master or slave transmits a word first in 3-wire
protocol. If this bit is ‘0’, data is first transferred from the master to the slave. If this bit is ‘1’, data is
first transferred from the slave to the master. This bit can only be set if the TWEN field of the Capa-
bility register is set to ‘1’.

2 Ignore SPISEL input (IGSEL) - If this bit is set to ‘1’ then the core will ignore the value of the SPI-
SEL input.

1 Require Clock Idle for Transfer End (CITE) - If this bit is ‘0’ the core will regard the transfer of a
word as completed when the last bit has been sampled. If this bit is set to ‘1’ the core will wait until
it has set the SCK clock to its idle level (see CI field) before regarding a transfer as completed. This
setting only affects the behavior of the TIP status bit, and automatic slave select toggling at the end
of a transfer, when the clock phase (CP field) is ‘0’.

0 RESERVED (R) - Read as zero and should be written as zero to ensure forward compatibility.

Table 1648.0x20 - MODE - SPI controller Mode register
GRIP, Sep 2018, Version 2018.3 1406 www.cobham.com/gaisler

GRLIB IP Core

101.3.4

Table 1649.0x24 - EVENT - SPI controller Event register

SPI Controller Event Register

31 30 16 15 14 13 12 11 10 9 8 7 0

TIP R AT LT R OV UN MME NE NF R

0 0 0 0 0 0 0 0 0 0 0

r r r wc r wc wc wc r r r

31 Transfer in progress (TIP) - This bit is ‘1’ when the core has a transfer in progress. Writes have no
effect. This bit is set when the core starts a transfer and is reset to ‘0’ once the core considers the
transfer to be finished. Behavior affected by setting of CITE field in Mode register.

30 : 16 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
15 Automated transfers (AT) - This bit is ‘1’ when the core has an automated transfer in progress. This

bit is cleared automatically by the core. Writes have no effect.
14 Last character (LT) - This bit is set when a transfer completes if the transmit queue is empty and the

LST bit in the Command register has been written. This bit is cleared by writing ‘1’, writes of ‘0’
have no effect.

13 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
12 Overrun (OV) - This bit gets set when the receive queue is full and the core receives new data. The

core continues communicating over the SPI bus but discards the new data. This bit is cleared by writ-
ing ‘1’, writes of ‘0’ have no effect.

11 Underrun (UN) - This bit is only set when the core is operating in slave mode. The bit is set if the
core’s transmit queue is empty when a master initiates a transfer. When this happens the core will
respond with a word where all bits are set to ‘1’. This bit is cleared by writing ‘1’, writes of ‘0’ have
no effect.

10 Multiple-master error (MME) - This bit is set when the core is operating in master mode and the SPI-
SEL input goes active. In addition to setting this bit the core will be disabled. This bit is cleared by
writing ‘1’, writes of ‘0’ have no effect.

9 Not empty (NE) - This bit is set when the receive queue contains one or more elements. It is cleared
automatically by the core, writes have no effect.

8 Not full (NF) - This bit is set when the transmit queue has room for one or more words. It is cleared
automatically by the core when the queue is full, writes have no effect. This bit is only updated when
the core is enabled (EN field of Mode register is set to ‘1’).

7 : 0 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
GRIP, Sep 2018, Version 2018.3 1407 www.cobham.com/gaisler

GRLIB IP Core

101.3.5

Table 1650.0x28 - MASK - SPI controller Mask register

SPI Controller Mask Register

31 30 16 15 14 13 12 11 10 9 8 7 0

TIPE R AT LTE R OVE UNE MMEE NEE NFE R

0 0 0 0 0 0 0 0 0 0 0

rw r rw rw rw rw rw rw rw rw r

31 Transfer in progress enable (TIPE) - When this bit is set the core will generate an interrupt when the
TIP bit in the Event register transitions from ‘0’ to ‘1’.

30 : 16 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
15 Automated transfers (AT) - When this bit is set, the core will generate an interrupt when an auto-

mated transfer is completed.
14 Last character enable (LTE) - When this bit is set the core will generate an interrupt when the LT bit

in the Event register transitions from ‘0’ to ‘1’.
13 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
12 Overrun enable (OVE) - When this bit is set the core will generate an interrupt when the OV bit in

the Event register transitions from ‘0’ to ‘1’.
11 Underrun enable (UNE) - When this bit is set the core will generate an interrupt when the UN bit in

the Event register transitions from ‘0’ to ‘1’.
10 Multiple-master error enable (MMEE) - When this bit is set the core will generate an interrupt when

the MME bit in the Event register transitions from ‘0’ to ‘1’.
9 Not empty enable (NEE) - When this bit is set the core will generate an interrupt when the NE bit in

the Event register transitions from ‘0’ to ‘1’.
8 Not full enable (NFE) - When this bit is set the core will generate an interrupt when the NF bit in the

Event register transitions from ‘0’ to ‘1’.
7 : 0 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
GRIP, Sep 2018, Version 2018.3 1408 www.cobham.com/gaisler

GRLIB IP Core

101.3.6

Table 1651.0x2C - CMD - SPI controller Command register

SPI Controller Command Register

101.3.7

Table 1652.0x30 - TX - SPI controller Transmit register

SPI Controller Transmit Register

31 23 22 21 4 3 2 1 0

R LST R PGRD DIR SPROT

0 0 0 0 0 0

r w* r w* rw* rw*

31 : 23 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
22 Last (LST) - After this bit has been written to ‘1’ the core will set the Event register bit LT when a

character has been transmitted and the transmit queue is empty. If the core uses the 3-wire protocol
then the Event register bit is set when the whole transfer has completed. This bit is automatically
cleared when the Event register bit has been set and is always read as zero.
As of revision 6 of this SPI controller the LST bit can only be set to ‘1’. Previous revisions of the
core allowed the LST bit to be set to ‘0’ by writing to this bit. As of revision 6, writes of zero do not
affect the core’s internal state of the LST bit.

21 : 4 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
3 Protocol guard (PGRD) - This field must be set to ‘1’ to modify the IO and SPROT fields. If the

value of this field is 0 for a write operation then no change will be made to IO and SPROT.
2 Direction (DIR) - This field determines the direction for transfers when the SPROT field is non-zero.

0 - Output
1 - Input
This field can only be modified when the PGRD field is set in the write data.

1 : 0 SPI protocol (SPROT) - This field selects between standard, dual and quad SPI mode. The settings
are:
0b00 - Standard SPI mode
0bx1 - Dual SPI mode
0b10 - Quad SPI mode
Dual and quad SPI modes can only be enabled if they are supported by the implementation as indi-
cated by the PROT field in Capability register 1. This field must not be changed while the core is
transmitting or receiving data. The same protocol is also used for the words received while transmit-
ting.
This field must be set to 0 when using 3-wire protocol (controlled via Mode register).
This field can only be modified when the PGRD field is set in the write data.

31 0

TDATA

0

w

31 : 0 Transmit data (TDATA) - Writing a word into this register places the word in the transmit queue.
This register will only react to writes if the Not full (NF) bit in the Event register is set. The layout of
this register depends on the value of the REV field in the Mode register:
Rev = ‘0’: The word to transmit should be written with its least significant bit at bit 0.
Rev = ‘1’: The word to transmit should be written with its most significant bit at bit 31.
GRIP, Sep 2018, Version 2018.3 1409 www.cobham.com/gaisler

GRLIB IP Core

101.3.8

Table 1653.0x34 - RXC - SPI controller Receive register

SPI Controller Receive Register

101.3.9

Table 1654.0x38 - SLVSEL - SPI Slave select register (optional)

SPI Slave Select Register (optional)

101.3.10

Table 1655.0x3C - ASLVSEL - SPI controller Automatic slave select register

SPI Controller Automatic Slave Select Register

31 0

RDATA

0

r

31 : 0 Receive data (RDATA) - This register contains valid receive data when the Not empty (NE) bit of the
Event register is set. The placement of the received word depends on the Mode register fields LEN
and REV:
For LEN = 0b0000 - The data is placed with its MSb in bit 31 and its LSb in bit 0.
For other lengths and REV = ‘0’ - The data is placed with its MSB in bit 15.
For other lengths and REV = ‘1’ - The data is placed with its LSB in bit 16.
To illustrate this, a transfer of a word with eight bits (LEN = 7) that are all set to one will have the
following placement:
REV = ‘0’ - 0x0000FF00
REV = ‘1’ - 0x00FF0000

31 SSSZ SSSZ-1 0

R SLVSEL

0 all 1

r rw

31 : SSSZ RESERVED (R) - The lower bound of this register is determined by the Capability register field
SSSZ if the SSEN field is set to 1. If SSEN is zero bits 31:0 are reserved.

(SSSZ-1) : 0 Slave select (SLVSEL) - If SSEN in the Capability register is 1 the core’s slave select signals are
mapped to this register on bits (SSSZ-1):0. Software is solely responsible for activating the correct
slave select signals, the core does not assert or deassert any slave select signal automatically.

31 SSSZ SSSZ-1 0

R ASLVSEL

0 0

r rw

31 : SSSZ RESERVED (R) - The lower bound of this register is determined by the Capability register field
SSSZ if the SSEN field is set to 1. If SSEN is zero bits 31:0 are reserved.

(SSSZ-1) : 0 Automatic Slave select (ASLVSEL) - If SSEN and ASELA in the Capability register are both ‘1’ the
core’s slave select signals are assigned from this register when the core is about to perform a transfer
and the ASEL field in the Mode register is set to ‘1’. After a transfer has been completed the core’s
slave select signals are assigned the original value in the slave select register.

Note: This register is only available if ASELA (bit 17) in the SPI controller Capability register is set
GRIP, Sep 2018, Version 2018.3 1410 www.cobham.com/gaisler

GRLIB IP Core

101.3.11

Table 1656.0x40 - AMCFG - SPI controller AM configuration register

SPI Controller AM Configuration Register

31 30 16

RESERVED

0

r

15 9 8 7 6 5 4 3 2 1 0

RESERVED ECGC LOCK ERPT SEQ STRICT OVTB OVDB ACT EACT

0 0 0 0 0 0 0 0 0 0

r rw rw rw rw rw rw rw rw rw

31 : 9 RESERVED - This field is reserved for future use and should always be written as zero.
8 External clock gap control (ECGC) - If software sets this bit to ‘1’ then the clock gap between indi-

vidual transfers in a set of automated transfers is controller by the core’s CSTART input instead of
the CG field in the Mode registers. Note that the requirement that the CG field must be set to a value
>= 2 if the TAC bit is set still applies even if this bit is set. Reset value ‘0’.

7 Lock bit (LOCK) - If software sets this bit to ‘1’ then the core will not place new data in the AM
Receive registers while software is reading out new data.

6 External repeat (ERPT) - When this bit is set the core will use the input signal astart to start a new
periodic transfer. If this bit is cleared, the period counter will be used instead.

5 Sequential transfers (SEQ) - When this bit is set the core will not update the receive queue unless the
queue has been emptied by reading out its contents. Note that the contents in the temporary FIFO
may still be overwritten with incoming data, depending on the setting of the other fields in this regis-
ter.

4 Strict period (STRICT) - When this bit is set the core will always try to perform a transfer when the
period counter reaches zero, if this bit is not set the core will wait until the receive FIFO is empty
before it tries to perform a new transfer.

3 Overflow Transfer Behavior (OVTB) - If this bit is set to ‘1’ the core will skip transfers that would
result in data being overwritten in the temporary receive queue. Note that this bit only decides if the
transfer is performed. If this bit is set to ‘0’ a transfer will be performed and the setting of the Over-
flow Data Behavior bit (OVDB) will decide if data is actually overwritten.

2 Overflow Data Behavior (OVDB) - If this bit is set to ‘1’ the core will skip incoming data that would
overwrite data in the receive queues. If this bit is ‘0’ the core will overwrite data in the temporary
queue.

1 Activate automated transfers (ACT) - When this bit is set to ‘1’ the core will start to decrement the
AM period register and perform automated transfers. The system clock cycle after this bit has been
written to ‘1’ there will be a pulse on the core’s ASTART output.
Automated transfers can be deactivated by writing this bit to ‘0’. The core will wait until any ongo-
ing transfer has finished before deactivating automated transfers. Software should not perform any
operation on the core before this bit has been read back as ‘0’. The data in the last transfer(s) will be
lost if there is a transfer in progress when this bit is written to ‘0’. All words present in the transmit
queue will also be dropped.

0 External activation of automated transfers (EACT) - When this bit is set to ‘1’ the core will activate
automated transfers when the core’s ASTART input goes HIGH. When the core has been activated
by the external signal this bit will be reset and the ACT field (bit 1 will be set).

Note: This register is only available if AMODE (bit 18) in the SPI controller Capability register is set
GRIP, Sep 2018, Version 2018.3 1411 www.cobham.com/gaisler

GRLIB IP Core

101.3.12

Table 1657.0x44 - AMPER - SPI controller AM period register

SPI Controller AM Period Register

101.3.13

Table 1658.0x50-0x5C - AMMASK - SPI controller AM Mask register(s)

SPI Controller AM Mask Register(s)

101.3.14

Table 1659.0x200-0x3FC - AMTX - SPI controller AM Transmit register(s)

SPI Controller AM Transmit Register(s)

31 0

AMPER

0

rw

31 : 0 AM Period (AMPER) - This field contains the period, in system clock cycles, of the automated
transfers. The core has an internal counter that is decremented each system clock cycle. When the
counter reaches zero the core will begin to transmit all data in the transmit queue and reload the
internal counter, which will immediately begin to start count down again. If the core has a transfer in
progress when the counter reaches zero, the core will stall and not start a new transfer, or reload the
internal counter, before the ongoing transfer has completed.
The number of bits in this register is implementation dependent. Software should write this register
with 0xFFFFFFFF and read back the value to see how many bits that are available.

Note: This register is only available if AMODE (bit 18) in the SPI controller Capability register is set

31 0

AM MASK

0

rw

31 : 0 AM Mask - This field is used as a bit mask to determine which words in the AM Transmit / Receive
queues to read from / write to. Bit 0 of the first mask register corresponds to the first position in the
queues, bit 1 of the first mask register to the second position, bit 0 of the second mask register corre-
sponds to the 33:d position, etc. The total number of bits implemented equals FDEPTH (bit 15:8) in
the SPI controller Capability register. If a bit is set to one then the core will read / write the corre-
sponding position in the queue, otherwise it will be skipped. Software can write these registers at all
times. However if a automated transfer is in progress when the write occurs, then the core will save
the new value in a temporary register until the transfer is complete. The reset value is all ones.

Note: This register is only available if AMODE (bit 18) in the SPI controller Capability register is set

31 0

TDATA

0

rw

31 : 0 Transmit data (TDATA) - Writing a word into these register places the word in the AM Transmit
queue. The address of the register determines the position in the queue. Address offset 0x200 corre-
sponds to the first position, offset 0x204 to the second position etc.
The layout of the registers during write depends on the value of the REV field in the Mode register:
Rev = ‘0’: The word to transmit should be written with its least significant bit at bit 0.
Rev = ‘1’: The word to transmit should be written with its most significant bit at bit 31.
The layout of the registers during read is fixed, the word is read with its least significant bit at bit 0.

Note: This register is only available if AMODE (bit 18) in the SPI controller Capability register is set
GRIP, Sep 2018, Version 2018.3 1412 www.cobham.com/gaisler

GRLIB IP Core

101.3.15

Table 1660.0x400-0x5FC - SPI controller AM Receive register(s)

SPI Controller AM Receive Register

101.4 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x02D. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

101.5 Implementation

101.5.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core will use asynchronous reset for all registers, except synchronization registers, if the GRLIB
config package setting grlib_async_reset_enable is set.
See also the documentation for the syncrst VHDL generic.

101.6 Configuration options

Table 1661 shows the configuration options of the core (VHDL generics).

31 0

RDATA

0

rw

31 : 0 Receive data (RDATA) - The address of the register determines the position in the queue. Address
offset 0x200 corresponds to the first position, offset 0x204 to the second position etc. The placement
of the received word depends on the Mode register fields LEN and REV.
For LEN = 0b0000 - The data is placed with its MSb in bit 31 and its LSb in bit 0.
For other lengths and REV = ‘0’ - The data is placed with its MSB in bit 15.
For other lengths and REV = ‘1’ - The data is placed with its LSB in bit 16.
To illustrate this, a transfer of a word with eight bits (LEN = 7) that are all set to one will have the
following placement:
REV = ‘0’ - 0x0000FF00
REV = ‘1’ - 0x00FF0000

Note: This register is only available if AMODE (bit 18) in the SPI controller Capability register is set

Table 1661.Configuration options

Generic name Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0
paddr ADDR field of the APB BAR. 0 - 16#FFF# 0
pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#
pirq Interrupt line used by SPI controller 0 - NAHBIRQ-1 0
GRIP, Sep 2018, Version 2018.3 1413 www.cobham.com/gaisler

GRLIB IP Core
fdepth FIFO depth. The FIFO depth in the core is 2fdepth. Note
that the depth of the transmit and receive queues is FIFO
depth + 1 since the Transmit and Receive registers can
hold one word.
The number of AM Transmit / Receive registers are
however 2fdepth.

1 - 7 1

slvselen Enable Slave Select register. When this value is set to 1
the core will include a slave select register that controls
slvselsz slave select signals.

0 - 1 0

slvselsz Number of Slave Select (slvsel) signals that the core will
generate. These signals can be controlled via the Slave
select register if the generic slvselen has been set to 1,
otherwise they are driven to ‘1’.

1 - 32 1

oepol Selects output enable polarity 0 - 1 0
odmode Open drain mode. If this generic is set to 1, the OD bit in

the mode register can be set to 1 and the core must be
connected to I/O or OD pads.

0 - 1 0

automode Enable automated transfers. If this generic is set to 1 the
core will include support to automatically perform peri-
odic transfers. The core’s receive and transmit queues
must not contain more than 128 words if automode is
enabled.

0 - 1 0

acntbits Selects the number of bits used in the AM period
counter. This generic is only of importance if the auto-
mode generic is set to 1.

1 - 32 32

aslvsel Enable automatic slave select. If this generic is set to 1
the core will include support for automatically setting the
slave select register from the automatic slave select reg-
ister before a transfer, or queue of transfers, starts. This
generic is only significant of the slvselen generic is set to
1.

0 - 1 0

twen Enable 3-wire protocol. If this generic is set to 1 the core
will include support for 3-wire protocol.

0 - 1 1

maxwlen Determines the maximum supported word length. Values
are defined as:
0 - Core will support lengths up to 32-bit words
0-3 - Illegal values
4-15 - Maximum word length is maxlen+1, allows words
of length 4-16 bits.
This generic sets the size of the slots in the transmit and
receive queues. If the core will be used in an application
that will never need to perform transfers with words as
long as 32-bits, this setting can be used to save area.

0 - 15 0

netlist If this generic is set to 0 (default) then the RTL version
of the core will be used. If this generic is non-zero, the
netlist version of the core will be used (if available) and
the value of netlist will specify the target technology.

0 - NTECH 0

syncram When this generic is set to 1 the core will instantiate
SYNCRAM_2P components for the receive and transmit
queues. The use of SYNCRAM_2P components can
reduce area requirements, particularly when automode is
enabled.

0 - 1 1

memtech Selects memory technology for SYNCRAM_2P compo-
nents.

0 - NTECH 0 (inferred)

Table 1661.Configuration options

Generic name Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 1414 www.cobham.com/gaisler

GRLIB IP Core
101.7 Signal descriptions

Table 1662 shows the interface signals of the core (VHDL ports).

ft Enables fault tolerance for receive and transmit queues.
0 - No fault tolerance, 1 - Parity DMR, 2 - TMR. This
generic only has effect if generic syncram is non-zero.

0 - 2 0

scantest Enable scan test support. Only applicable if generic syn-
cram is /= 0.

0 - 1 0

syncrst Use only synchronous reset. If this generic is 0 then the
spio.sckoen, spio.misooen, spio.mosioen and slvsel out-
put will have asynchronous reset. If synchronous reset
for these registers is wanted then set this generic to 1.
Note that if grlib_async_reset_enable in the GRLIB con-
figuration package is enabled then this will override the
syncrst setting ans all registers, except synchronization
registers in the code will have asynchronous reset.

0 - 1 0

ignore Enable AIGNORE/CIGNORE inputs (experimental) 0 - 1 0
prot Selects what protocols (note that support for 3-wire pro-

tocol is selected by the twen generic). The value of prot
has the following effect:
0 - Support for standard SPI protocol
1 - Support for standard and dual SPI protocols
2 - Support for standard, dual and quad SPI protocols

0 - 2 0

Table 1662.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -

Table 1661.Configuration options

Generic name Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 1415 www.cobham.com/gaisler

GRLIB IP Core
SPII MISO Input Master-Input-Slave-Output data line, not used
with 3-wire protocol.

-

MOSI Input Master-Output-Slave-Input data line -
SCK Input Serial Clock. If the core is instantiated in a sys-

tem where it will work only as a master then
drive this signal constant Low to save some area.

-

SPISEL Input Slave select input. This signal should be driven
High if it is unused in the design.

Low

ASTART Input Automated transfer start. The core can be pro-
grammed to use this signal to start a set of auto-
mated transfers. This signal should be driven low
if it is unused in the design. This signal must be
synchronous to the CLK input.

High

CSTART Input Automated clock start. This signal can be used to
control when an individual transfer in a set of
automated transfers should start. This signal
doesn’t affect the start of the first transfer in the
set. Also the core needs to be programmed to use
the signal. This signal should be driven low if it
is unused in the design. This signal must be syn-
chronous to the CLK input.

High

AIGNORE Input Ignore RX fifo adddress increment, ignore first
TX fifo address increment

High

CIGNORE Input Ignore TX fifo address increment High
IO2 Input Data line 2, used with quad SPI protocol -
IO3 Input Data line 3, used with quad SPI protocol -

SPIO MISO Output Master-Input-Slave-Output data line, not used in
with 3-wire protocol.

-

MISOOEN Output Master-Input-Slave-Output output enable, not
used with 3-wire protocol.

-

MOSI Output Master-Output-Slave-Input -
MOSIOEN Output Master-Output-Slave-Input output enable -
SCK Output Serial Clock -
SCKOEN Output Serial Clock output enable -
SSN Output Not used -
ASTART Output Automated transfer start indicator. High
AREADY Output Automated transfer ready indicator. Set each

time an individual transfer in a set of automated
transfers is completed.

High

IO2 Output Data line 2, used with quad SPI protocol -
IO2OEN Output Data line 2 output enable, used with quad SPI

protocol
-

IO3 Output Data line 3, used with quad SPI protocol -
IO3OEN Output Data line 3output enable, used with quad SPI

protocol
-

SLVSEL
[SSSZ-1:0]

N/A Output Slave select output(s). Used if the slvselen
VHDL generic is set to 1. The range of the vector
is (slvselsz-1):0

-

* see GRLIB IP Library User’s Manual

Table 1662.Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 1416 www.cobham.com/gaisler

GRLIB IP Core

101.8 Signal definitions and reset values

The signals and their reset values are described in table 1663.

101.9 Timing

The timing waveforms and timing parameters are shown in figure 269 and are defined in table 1664.

Note: The sck/miso/mosi/io2/io3/spisel inputs are re-synchronized internally. The signals do not have
to meet any setup or hold requirements.

Table 1663.Signal definitions and reset values

Signal name Type Function Active Reset value
sck InputOutput SPI clock - Hi-Z
miso InputOutput Master-Input-Slave-Output, not used with 3-wire

protocol
- Hi-Z

mosi InputOutput Master-Output-Slave-Input - Hi-Z
io2 InputOutput Data line 2, used with quad SPI protocol - Hi-Z
io3 InputOutput Data line 3, used with quad SPI protocol - Hi-Z
spisel Input Slave select input Logical 0 -
slvsel[SSSZ-1:0] Output Slave select signals Logical 0 Logical 1

Table 1664.Timing parameters

Name Parameter Reference edge Min Max Unit
tSPICTRL0 clock to output delay rising clk edge TBD TBD ns

tSPICTRL1 clock to non-tri-state delay rising clk edge TBD TBD ns

tSPICTRL2 clock to tri-state delay rising clk edge TBD TBD ns

tSPICTRL3 input to clock hold rising clk edge - - ns

tSPICTRL4 input to clock setup rising clk edge - - ns

Figure 269. Timing waveforms

tSPICTRL0sck/miso/mosi/slvsel/io*

system clk

tSPCTRLI0

tSPICTRL1
sck/miso/mosi/io*

tSPICTRL2

tSPICTRL3sck/miso/mosi/spisel/io* tSPICTRL4

(output)

(output)

(input)
GRIP, Sep 2018, Version 2018.3 1417 www.cobham.com/gaisler

GRLIB IP Core

101.10 Library dependencies

Table 1665 shows the libraries used when instantiating the core (VHDL libraries).

101.11 Instantiation

This example shows how the core can be instantiated.
library ieee;
use ieee.std_logic_1164.all;

library grlib, techmap;
use grlib.amba.all;
use techmap.gencomp.all;

library gaisler;
use gaisler.misc.all;

entity spi_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- SPI signals
 sck : inout std_ulogic;
 miso : inout std_ulogic;
 mosi : inout std_ulogic;
 spisel : in std_ulogic
);
end;

architecture rtl of spi_ex is

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);

 -- SPIsignals
 signal spii : spi_in_type;
 signal spio : spi_out_type;
begin

 -- AMBA Components are instantiated here
 ...

 -- SPI controller with FIFO depth 2 and no slave select register
 spictrl0 : spictrl generic map (pindex => 10, paddr => 10, pirq => 10,
 fdepth => 1, slvselen => 0, slvselsz => 1)
 port map (rstn, clkm, apbi, apbo(10), spii, spio, open);

 misopad : iopad generic map (tech => padtech)
 port map (miso, spio.miso, spio.misooen, spii.miso);
 mosipad : iopad generic map (tech => padtech)
 port map (mosi, spio.mosi, spio.mosioen, spii.mosi);
 sckpad : iopad generic map (tech => padtech)
 port map (sck, spio.sck, spio.sckoen, spii.sck);
 spiselpad : inpad generic map (tech => padtech)
 port map (spisel, spii.spisel);
end;

Table 1665.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER SPI Component, signals SPI component and signal definitions.
TECHMAP GENCOMP Constant values Technology constants
TECHMAP NETCOMP Component Netlist component
GRIP, Sep 2018, Version 2018.3 1418 www.cobham.com/gaisler

GRLIB IP Core

102 SPIMCTRL - SPI Memory Controller

102.1 Overview

The core maps a memory device connected via the Serial Peripheral Interface (SPI) into AMBA
address space. Read accesses are performed by performing normal AMBA read operations in the
mapped memory area. Other operations, such as writes, are performed by directly sending SPI com-
mands to the memory device via the core’s register interface. The core is highly configurable and sup-
ports most SPI Flash memory devices.

102.2 Operation

102.2.1 Operational model

The core has two memory areas that can be accessed via the AMBA bus; the I/O area and the ROM
area. The ROM area maps the memory device into AMBA address space and the I/O area is utilized
for status reporting and to issue user commands to the memory device.
When transmitting SPI commands directly to the device the ROM area should be left untouched. The
core will issue an AMBA ERROR response if the ROM area is accessed when the core is busy per-
forming an operation initiated via I/O registers.
Depending on the type of device attached the core may need to perform an initialization sequence.
Accesses to the ROM area during the initialization sequence receive AMBA error responses. The core
has successfully performed all necessary initialization when the Initialized bit in the core’s status reg-
ister is set, the value of this bit is also propagated to the core’s output signal spio.initialized.

102.2.2 I/O area

The I/O area contains registers that are used when issuing commands directly to the memory device.
By default, the core operates in System mode where it will perform read operations on the memory
device when the core’s ROM area is accessed. Before attempting to issue commands directly to the
memory device, the core must be put into User mode. This is done by setting the User Control
(USRC) bit in the core’s Control register. Care should be taken to not enter User mode while the core
is busy, as indicated by the bits in the Status register. The core should also have performed a success-
ful initialization sequence before User mode accesses (INIT bit in the Status register should be set).
Note that a memory device may need to be clocked when there has been a change in the state of the
chip select signal. It is recommended that software transmits a byte with the memory device dese-
lected after entering and before leaving User mode.
The following steps are performed to issue a command to the memory device after the core has been
put into User mode:
1. Check Status register and verify that the BUSY and DONE bits are cleared. Also verify that the
core is initialized and not in error mode.

Figure 270. Block diagram

A
M
B
A

A
H
B

AHB control

Register interface

Control FSM

SCK

CSN

Flash control FSM

SPI
MISO
MOSI

ERRORN
READY
INITIALIZED
GRIP, Sep 2018, Version 2018.3 1419 www.cobham.com/gaisler

GRLIB IP Core

2. Optionally enable DONE interrupt by setting the Control register bit IEN.
3. Write command to Transmit register.
4. Wait for interrupt (if enabled) or poll DONE bit in Status register.
5. When the DONE bit is set the core has transferred the command and will have new data available in
the Receive register.
6. Clear the Status register’s DONE bit by writing one to its position.
The core should not be brought out of User mode until the transfer completes. Accesses to ROM
address space will receive an AMBA ERROR response when the core is in User mode and when an
operation initiated under User mode is active.

102.2.3 ROM area

The ROM area only supports AMBA read operations. Write operations will receive AMBA ERROR
responses. When a read access is made to the ROM area the core will perform a read operation on the
memory device. If the system has support for AMBA SPLIT responses the core will SPLIT the master
until the read operation on the memory device has finished, unless the read operation is a locked
access. A locked access never receives a SPLIT response and the core inserts wait states instead. If the
system lacks AMBA SPLIT support the core will always insert wait states until the read operation on
the memory device has finished. The core uses the value of the VHDL generic spliten to determine if
the system has AMBA SPLIT support.
The ROM area is marked as cacheable and prefetchable. This must be taken into account if the data in
the ROM area is modified via the I/O area.

102.2.4 SPI memory device address offset

An offset can be specified at implementation via the core’s offset VHDL generic. This offset will be
added to all accesses to the ROM area before the address is propagated to the SPI memory device.
Specifying an offset can be useful when the SPI memory device contains, as an example, FPGA con-
figuration data at the lower addresses. By specifying an offset, the top of the SPI memory device can
be used to hold user data. The AMBA system is unaware of the offset being added. An access to
address n in the ROM area will be automatically translated to an access to address offset + n on the
SPI memory device.
The offset must be accounted for when accessing the SPI memory device via the core’s register inter-
face. If data is programmed to the SPI memory device then the data must be written starting at the off-
set specified by the VHDL generic offset.

102.2.5 Supported memory devices

The core supports a wide range of memory devices due to its configuration options of read instruction,
dummy byte insertion and dual output. Table 1666 below lists configurations for some memory
devices.

Table 1666.Configurations for some memory devices

Manufacturer Memory device

VHDL generic*

readcmd** dummybyte dualoutput
Spansion S25FL-series 0x0B 1 0
Winbond W25X-series 0x0B 1 0

W25X-series with
dual output read.

0x3B 1 1

* ‘-’ means don’t care
** Available in the core’s Configuration register.
GRIP, Sep 2018, Version 2018.3 1420 www.cobham.com/gaisler

GRLIB IP Core

The core is configured to issue the instruction defined by the VHDL generic readcmd to obtain data
from the device. After an access to the ROM area the core will issue the read instruction followed by
24 address bits. If the VHDL generic dummybyte is set to 1 the core will issue a dummy byte follow-
ing the address. After the possible dummy byte the core expects to receive data from the device. If the
VHDL generic dualoutput is set to 1 the core will read data on both the MISO and MOSI data line.
Otherwise the core will only use the MISO line for input data.
Many memory devices support both a READ and a FAST_READ instruction. The FAST_READ
instruction can typically be issued with higher device clock frequency compared to the READ instruc-
tion, but requires a dummy byte to be present after the address. The most suitable choice of read
instruction depends on the system frequency and on the memory device’s characteristics.

102.2.6 Clock generation and power-up timing

The core generates the device clock by scaling the system clock. The VHDL generic scaler selects the
divisor to use for the device clock that is used when issuing read instructions.
The alternate clock can be used for all communication by setting the Enable Alternate Scaler (EAS)
bit in the Control register. When configuring the core for communication with a device in a system
where the target frequency may change it is recommended to set the VHDL generic scaler to a conser-
vative value and configure the alternate scaler to produce a faster clock. A boot loader can then set the
Enable Alternate Scaler (EAS) bit early in the boot process when it has been determined that the sys-
tem can use the memory device at a higher frequency.
If the external device needs power-up time before being accessed then this needs to be handled at the
system level or by waiting to access the SPI memory controller until the power up time has passed.

102.3 Registers

The core is programmed through registers mapped into AHB address space. Only 32-bit single-
accesses to the registers are supported.

Table 1667.SPIMCTRL registers

AHB address offset Register
0x00 Configuration register
0x04 Control register
0x08 Status register
0x0C Receive register
0x10 Transmit register
GRIP, Sep 2018, Version 2018.3 1421 www.cobham.com/gaisler

GRLIB IP Core

102.3.1

Table 1668.0x00 - CONF - Configuration register

Configuration Register

102.3.2

Table 1669.0x04 - CTRL - Control register

Control Register

102.3.3

Table 1670.0x08 - STAT - Status register

Status Register

31 8 7 0

RESERVED READCMD

0 *

r r

31 :8 RESERVED
7:0 Read instruction (READCMD) - Read instruction that the core will use for reading from the memory

device.

31 5 4 3 2 1 0

RESERVED RST CSN EAS IEN USRC

0 1 0 0 0

rw* rw* rw rw rw

31 :5 RESERVED
4 Reset core (RST) - By writing ‘1’ to this bit the user can reset the core. This bit is automatically

cleared when the core has been reset. Reset core should be used with care. Writing this bit has the
same effect as system reset. Any ongoing transactions, both on AMBA and to the SPI device will be
aborted.

3 Chip select (CSN) - Controls core chip select signal. This field always shows the level of the core’s
internal chip select signal. This bit is always automatically set to ‘1’ when leaving User mode by
writing USRC to ‘0’.

2 Enable Alternate Scaler (EAS) - When this bit is set the SPI clock is divided by using the alternate
scaler.

1 Interrupt Enable (IEN) - When this bit is set the core will generate an interrupt when a User mode
transfer completes.

0 User control (USRC) - When this bit is set to ‘1’ the core will accept SPI data via the transmit regis-
ter. Accesses to the memory mapped device area will return AMBA ERROR responses.

31 3 2 1 0

RESERVED INIT BUSY DONE

0 0 0 0

r r r wc

31:3 RESERVED
2 Initialized (INIT) - This read only bit is set to ‘1’ when the SPI memory device has been initialized.

Accesses to the ROM area should only be performed when this bit is set to ‘1’.
1 Core busy (BUSY) - This bit is set to ‘1’ when the core is performing an SPI operation.
0 Operation done (DONE) - This bit is set to ‘1’ when the core has transferred an SPI command in user

mode.
Reset value: 0x00000000
GRIP, Sep 2018, Version 2018.3 1422 www.cobham.com/gaisler

GRLIB IP Core

102.3.4

Table 1671.0x0C - RX - Receive register

Receive Register

102.3.5

Table 1672.0X10 - TX - Transmit register

Transmit Register

102.4 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x045. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

102.5 Implementation

102.5.1 Reset

The core changes reset behaviour depending on settings in the GRLIB configuration package (see
GRLIB User’s Manual).
The core will add reset for all registers if the GRLIB config package setting grlib_sync_reset_en-
able_all is set.
The core does not support grlib_async_reset_enable. All registers that react on the reset signal will
have a synchronous reset.

102.5.2 Technology mapping

The core does not instantiate any technology specific primitives.

102.5.3 RAM usage

The core does not use any RAM components.

102.6 Configuration options

Table 1673 shows the configuration options of the core (VHDL generics).

31 8 7 0

RESERVED RDATA

0 nr

R rw

31 :8 RESERVED
7:0 Receive data (RDATA) : Contains received data byte

Reset value: 0x000000UU, where U is undefined

31 8 7 0

RESERVED TDATA

0 0

r rw

31 :8 RESERVED
7:0 Transmit data (TDATA) - Data byte to transmit

Table 1673.Configuration options

Generic name Function Allowed range Default
hindex AHB slave index 0 - (NAHBSLV-1) 0
GRIP, Sep 2018, Version 2018.3 1423 www.cobham.com/gaisler

GRLIB IP Core
102.7 Signal descriptions

Table 1674 shows the interface signals of the core (VHDL ports).

hirq Interrupt line 0 - (NAHBIRQ-1) 0
faddr ADDR field of the AHB BAR1 defining ROM address

space.
0 - 16#FFF# 16#000#

fmask MASK field of the AHB BAR1 defining ROM address
space.

0 - 16#FFF# 16#FFF#

ioaddr ADDR field of the AHB BAR0 defining register address
space.

0 - 16#FFF# 16#000#

iomask MASK field of the AHB BAR0 defining register space. 0 - 16#FFF# 16#FFF#
spliten If this generic is set to 1 the core will issue AMBA

SPLIT responses when it is busy performing an opera-
tion on the memory device. Otherwise the core will
insert wait states until the operation completes.

0 - 1 0

oepol Select polarity of output enable signals. 0 = active low. 0 - 1 0
sdcard Set to 0 0 - 0 0
readcmd Read instruction of memory device 0 - 16#FF# 16#0B#
dummybyte Output dummy byte after address 0 - 1 0
dualoutput Use dual output when reading data from device 0 - 1 0
scaler Clock divisor used when generating device clock is

2scaler
1 - 512 1

altscaler Clock divisor used when generating alternate device
clock is 2altscaler

1 - 512 1

pwrupcnt Unused N/A 0
maxahbaccsz Maximum supported AHB access size. The core will

support accesses ranging from 8-bit (BYTE) to the size
set by maxahbaccsz. The maximum access size is 256
bits (8WORD).

32, 64, 128, 256 AHBDW

offset Specifies offset that will be added to incoming AMBA
address before address is propagated to SPI flash device.
An access to memory position n in the core’s ROM area
will be translated to an access to SPI memory device
address n + offset. Note that this only applies to accesses
to the ROM area, accesses via the core’s register inter-
face are unaffected.

- 0

Table 1674.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB slave output signals -
SPII MISO Input Master-input slave-output data line -

MOSI Input Master-output slave-input data line -
CD Input Unused -

SPIO MOSI Output Master-output slave-input data line -
MOSIOEN Output Master-output slave-input output enable -

Table 1673.Configuration options

Generic name Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 1424 www.cobham.com/gaisler

GRLIB IP Core
102.8 Signal definitions and reset values

The signals and their reset values are described in table 1675.

102.9 Library dependencies

Table 1676 shows the libraries used when instantiating the core (VHDL libraries).

102.10 Instantiation

This example shows how the core can be instantiated.
library ieee;
use ieee.std_logic_1164.all;

library grlib, techmap;
use grlib.amba.all;
use techmap.gencomp.all;

library gaisler;
use gaisler.memctrl.all;

entity spimctrl_ex is

SCK Output SPI clock -
CSN Output Chip select Low
CDCSNOEN Output Chip select output enable. This signal can be left

unconnected and CSN should be connected to an
output pad.

-

READY Output When this signal is low the core is busy perform-
ing an operation.

High

INITIALIZED Output This bit goes high when the SPI memory device
has been initialized and can accept read accesses.
This signal has the same value as the Initialized
(INIT) bit in the core’s Status register.

High

* see GRLIB IP Library User’s Manual

Table 1675.Signal definitions and reset values

Signal name Type Function Active Reset value
miso Inout Data into the master - -
mosi Output Data out of the master, can also serve as bi-direc-

tional signal if the core is configured to function with
dual output memory devices.

- Logical 1

sck Output SPI clock Logical 1 Logical 0
csn Output Chip select, can also be used as a card detect signal

in which case the signal is bi-directinal.
Logical 0 Logical 1

ready Output Core ready Logial 1 Logical 0
initialized Output Memory device initialized Logical 1 Logical 0

Table 1676.Library dependencies

Library Package Imported unit(s) Description
GAISLER SPI Component, signals Component and signal definitions
GRLIB AMBA Signals AMBA signal definitions

Table 1674.Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 1425 www.cobham.com/gaisler

GRLIB IP Core

 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;
 -- SPIMCTRL signals
 -- For SPI Flash
 spi_c : out std_ulogic;
 spi_d : out std_ulogic;
 spi_q : in std_ulogic;
 spi_sn : out std_ulogic
);
end;

architecture rtl of spimctrl_ex is
 -- AMBA signals
 signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
 ...
 -- SPIMCTRL signals
 signal spmi1 : spimctrl_in_type;
 signal spmo1 : spimctrl_out_type;
begin

 -- AMBA Components are instantiated here
 ...

 -- SPMCTRL core, configured for use with generic SPI Flash memory with read
 -- command 0x0B and a dummy byte following the address.
 spimctrl1 : spimctrl
 generic map (hindex => 4, hirq => 4, faddr => 16#b00#, fmask => 16#fff#,
 ioaddr => 16#200#, iomask => 16#fff#, spliten => CFG_SPLIT,
 sdcard => 0, readcmd => 16#0B#, dummybyte => 1, dualoutput => 0,
 scaler => 1, altscaler => 1)
 port map (rstn, clk, ahbsi, ahbso(4), spmi1, spmo1);

 spi_miso_pad : inpad generic map (tech => padtech)
 port map (spi_q, spmi1.miso);
 spi_mosi_pad : outpad generic map (tech => padtech)
 port map (spi_d, spmo1.mosi);
 spi_sck_pad : outpad generic map (tech => padtech)
 port map (spi_c, spmo1.sck);
 spi_slvsel0_pad : outpad generic map (tech => padtech)
 port map (spi_sn, spmo1.csn);
end;
GRIP, Sep 2018, Version 2018.3 1426 www.cobham.com/gaisler

GRLIB IP Core

103 SPIMASTER - SPI Master Device

103.1 Overview

The core provides a link between the AMBA APB bus and the Serial Peripheral Interface (SPI) bus
and function as a SPI master. Core features include configurable word length (4, 5, 6... 32 bits), bit
ordering and all four SPI modes are supported. This IP is developed as part of ESA activity: Prototyp-
ing of space protocol(s) for SPI (Contract: 4000114112/15/NL/LF).

103.2 Transmission

The SPI bus is a full-duplex synchronous serial bus. Transmission starts when a master selects a slave
through the slave’s Slave Select (CS) signal and the clock line SCK transitions from its idle state. The
clock line transition occurs when the EN bit in the Transmit Enable register is set to “high”, the data
need to be transferred must be written into the Transmit register before writing the transmit enable
register. Data is transferred from the master through the Master-Output-Slave-Input (MOSI) signal
and from the slave through the Master-Input-Slave-Output (MISO) signal. The SCK is only available
during the data transfer and return to idle state after the transmission is completed.
During a transmission on the SPI bus data is either changed or read at a transition of SCK. If data has
been read at edge n, data is changed at edge n+1. If data is read at the first transition of SCK the bus is
said to have clock phase 0, and if data is changed at the first transition of SCK the bus has clock phase
1. The idle state of SCK may be either high or low. If the idle state of SCK is low, the bus has clock
polarity 0 and if the idle state is high the clock polarity is 1. The combined values of clock polarity
(CPOL) and clock phase (CPHA) determine the mode of the SPI bus. Figure below shows one byte
(0x55) being transferred MSb first over the SPI bus under the four different modes. Note that the idle
state of the MOSI line is ‘1’ and that CPHA = 0 means that the devices must have data ready before
the first transition of SCK. The figure does not include the MISO signal, the behavior of this line is
the same as for the MOSI signal.

Figure 271. Block diagram

A
M
B
A

A
P
B

MOSI

Control register

Status register

Transmit register

Receive register

MISO

Slave select reg.

Clock Gen SCK

DATA TX/RX

CS

SPIMASTER
GRIP, Sep 2018, Version 2018.3 1427 www.cobham.com/gaisler

GRLIB IP Core
103.3 Operation

The data transfer between this master and a slave device is performed using the registers mapped into
APB address space. The data need to be transferred must be written into the Transmit register and the
EN bit in the Transmit Enable register must be set “high” inorder to send and receive, the receive data
is available when the transmission is completed. The EN bit will be set by the core to “low” when all
the transmission is completed. It is also possible to generate an interrupt when all the transmission is
completed using Transmission Done interrupt. The core’s control, polarity, chip select, clock registers
must be appropriately set as per the requirements of the slave device. The SCK is only available
during the data transfer and return to idle state after the transmission is completed.
The core can hold a data in addition to the one currently in transfer. The BC field in Status register
specify the number of data available. If two words are written into the Transmit register the BC field
show a value of 2, after the first transfer the value will be 1and finally when the transfer is completed
the BC field will have value 0. The purpose of the hold register is to continuously transfer data to a
slave device. In order to transfer continuously the software should perform the following, write two
data to be transferred into the Transmit register and enable the transfer, after the first data is trans-
ferred (the software can learn about the data transfer either by polling the BC in Status register or
using the RX Received data interrupt) the software can write the consecutive data into the Transmit
register.
In order to receive a data the master should transmit a data. The Software should take care of clearing
(reading) the data available in the received register before transmitting (receiving) an another data.
The transmit buffer is maximum 32 bit (WLEN in Control register defines the Word length bit count),
note also a transmit hold register is available which is also maximum 32 bit (also depends on the
WLEN bit count). The Software controlling the master should take into account the response time of
the slave (or by polling the EN bit in the Transmit Enable register, or by using the interrupt triggered

Figure 272. SPI transfer of byte 0x55 in all modes

SCK

MOSI

CPOL = 0

CPHA = 0

CPHA = 1

CPOL = 1

CPHA = 0

CPHA = 1

Mode 0

Mode 1

Mode 2

Mode 3

SCK

MOSI

SCK

MOSI

SCK

MOSI
GRIP, Sep 2018, Version 2018.3 1428 www.cobham.com/gaisler

GRLIB IP Core

RX Received data interrupt) to determine when a transmission is completed, and also make sure the
received data is read back before the next data is set to be transfered.
It is possible an overrun condition could occur if a received data is not read before the arrival of next
data. If new data arrived before the Software could read the previously received data overrun condi-
tion is triggered. An Overrun interrupt is generated when overrun condition occurs for data reception.

103.4 Registers

The core is programmed through registers mapped into APB address space.

Table 1677.APB registers

APB address offset Register
0x00 Control register
0x04 Status register
0x08 Clock divide register
0x0C Chip select polarity register
0x10 Chip select register
0x14 Transmit register
0x18 Transmit enable register
0x1C Receive register
0x20 Interrupt enable register
0x24 Interrupt register
GRIP, Sep 2018, Version 2018.3 1429 www.cobham.com/gaisler

GRLIB IP Core

103.4.1

Table 1678.0x00 - CTRL - Control register

Control Register

103.4.2

Table 1679.0x00 - CTRL - Control register

Status Register

103.4.3 Clock Divide Register

31 24 23-17 16 15-13 12 8 7 6 5 4 3 2 1 0

Key R OD R WLEN IAMBA CPHA CPOL REV LOOP RESET R R

0 0 0 0 0x0F 0 0 0 1 0 0 0 0

w r rw r rw rw rw rw rw rw rw r r

31 Safety code (KEY) - Must be 0x94 when writing, otherwise register write is ignored
23 : 17 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
16 Overrun detect (OD) - To detect overrun condition (also to trigger overrun interrupt) this bit must be

enabled.
15 : 13 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
12 : 8 Word length (WLEN) - The value of this field determines the length in bits of a transfer on the SPI

bus. Valid values are 0x03 to 0x1F
Word length is WLEN+1, allows words of length 4-32 bits.

7 AMBA Interrupt enable (IAMBA) - If set, AMBA interrupt generation is enabled for the events that
are individually maskable by the Interrupt enable (INTE) register

6 Clock phase (CPHA) - When CPHA is ‘0’ data will be read on the first transition of SCK. When
CPHA is ‘1’ data will be read on the second transition of SCK.

5 Clock polarity (CPOL) - Determines the polarity (idle state) of the SCK clock.
4 Reverse data (REV) - When this bit is ‘0’ data is transmitted LSB first, when this bit is ‘1’ data is

transmitted MSB first.
3 Loop mode (LOOP) - When this bit is set, the core’s transmitter and receiver are interconnected and

the core will operate in loopback mode.
2 Reset (RESET) - Resets all the registers in the core.
1 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
0 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.

31 2 1 0

R BC

0

r

31: 2 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
1:0 Buffer count BC - Transmit buffer count (maximum 2)

Table 1680.0x08 - CDR - Clock divide register
31 24 23 0

Key CD

0 0

w rw
GRIP, Sep 2018, Version 2018.3 1430 www.cobham.com/gaisler

GRLIB IP Core
103.4.4

Table 1681.0x0C - CSP - Chip select polarity register

Chip Select Polarity Register

103.4.5

Table 1682.0x10 - CS - Chip select register

Chip Select Register

31 Safety code (KEY) - Must be 0x94 when writing, otherwise register write is ignored
23 : 0 Clock divide (CD) - This value is used to divide the system clock and generate the SPI SCK clock. If

the value is ‘0’ then the system clock is divided by two and the SCK frequency is half the system
clock. Similarly
if the value is ‘1’ the SCK frequency is 1/4 the system clock.
if the value is ‘2’ the SCK frequency is 1/6 the system clock.
if the value is ‘3’ the SCK frequency is 1/8 the system clock.
if the value is ‘4’ the SCK frequency is 1/10 the system clock.

31 24 23 8 7 0

Key R CSP

0 0 0

w r rw

31 : 24 Safety code (KEY) - Must be 0x94 when writing, otherwise register write is ignored
23 : 8 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
7 : 0 Chip select polarity (CSP) - This register is provided in order to be able to communicate with

devices having an active high chip select polarity. By default the polarity is active low.

31 24 23 8 7 0

Key R CS

0 0 0xFFFFFF

w r rw

31 : 24 Safety code (KEY) - Must be 0x94 when writing, otherwise register write is ignored
23 : 8 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
7 : 0 Chip select (CS) - The slave device must be selected before starting communication. Software is

solely responsible for activating the correct chip select signal, the core does not assert or deassert any
chip select signal automatically.

Table 1680.0x08 - CDR - Clock divide register
GRIP, Sep 2018, Version 2018.3 1431 www.cobham.com/gaisler

GRLIB IP Core

103.4.6

Table 1683.0x14 - TDATA - Transmit register

Transmit Register

103.4.7 Transmit Enable Register

Table 1684.0x18 - TE - Transmit enable register

103.4.8 Receive Register

Table 1685.0x1C - RDATA - Receive register

103.4.9

Table 1686.0x20 - INTE- Interrupt enable register

Interrupt Enable Register

31 0

TDATA

0

rw

31 : 0 Transmit data (TDATA) - The written data is transferred to the slave device when appropriate condi-
tions for CS and SCK are satisfied. The word to transmit should be written with its least significant
bit at bit 0. Also note that only the number of bits need to be transferred from this register should
match the word length register (WLEN).

31 24 23 1 0

Key R EN

0 0 0

w r rw

31 : 24 Safety code (KEY) - Must be 0x94 when writing, otherwise register write is ignored
23 : 1 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
0 Enable (EN) - The written data in the Transmit register is transferred to the slave device when EN bit

is set. This bit will go low when the transmission is completed.

31 0

RDATA

0

r

31 : 0 Receive data (RDATA) - This register contains received data.

31 24 23 3 2 1 0

Key RESERVED OVRE RXE TXDE

0 0 0 0 0

w r rw rw rw

31 : 24 Safety code (KEY) - Must be 0x94 when writing, otherwise register write is ignored.
23 : 3 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
2 Overrun interrupt enable (OVRE) - If enabled an interrupt will be generated when overrun condition

occurs for data reception.
1 Received data enable (RXE) - If enabled an interrupt is generated when a data is received.
0 Transmission done interrupt enable (TXDE) - If enabled an interrupt is generated when a data trans-

mission is completed.
GRIP, Sep 2018, Version 2018.3 1432 www.cobham.com/gaisler

GRLIB IP Core

103.4.10

Table 1687.0x24 - INT- Interrupt register

Interrupt Register

103.5 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x0A6. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

103.6 Implementation

103.6.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

103.7 Configuration options

Table 1688 shows the configuration options of the core (VHDL generics).

31 24 23 2 1 0

Key RESERVED OVR RX TXD

0 0 0 0 0

w r wc wc wc

31 : 24 Safety code (KEY) - Must be 0x94 when writing, otherwise register write is ignored.
23 : 1 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
2 Overrun interrupt (OVR) - An interrupt is generated when overrun condition occurs for data recep-

tion. (a received data must be read before the arrival of next data, if new data arrived before the Soft-
ware could read the previously received data overrun condition is triggered)

1 Received data (RX) - An interrupt is generated when a data is received.
0 Transmission done (TXD) - Data Transmission completed (when the transmit and hold buffer is

empty after a transmission).

Table 1688.Configuration options

Generic name Function Allowed range Default
gSLVSEL Number of slave select signals that the core will gener-

ate.
1 - 24 1

gPINDEX APB slave index 0 - NAPBSLV-1 0
gHINDEX Unused 0 0
gPADDR ADDR field of the APB BAR 0 - 16#FFF# 0
gPMASK MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#
gPIRQ Interrupt line driven by APB interface. 0 - NAHBIRQ-1 1
GRIP, Sep 2018, Version 2018.3 1433 www.cobham.com/gaisler

GRLIB IP Core

103.8 Signal descriptions

Table 1689 shows the interface signals of the core (VHDL ports).

103.9 Library dependencies

Table 1690 shows the libraries used when instantiating the core (VHDL libraries).

103.10 Instantiation
library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.devices.all;
use grlib.stdlib.all;
library gaisler;
use gaisler.spicomp.all;
use gaisler.grspicomp.all;

entity grspimaster_ex is
 generic (
 gSLVSEL : integer range 1 to 24 := 8);
 port (
 rstn : in std_ulogic;
 clk : in std_ulogic;
 apbi : in APB_Slv_In_Type;
 apbo : out APB_Slv_Out_Type;
 -- SPI signals
 miso : in std_ulogic;
 mosi : out std_ulogic;
 sck : out std_ulogic;
 slvsel : out std_logic_vector((gSLVSEL-1) downto 0));
end entity grspimaster_ex;

architecture rtl of grspimaster_ex is
 -- AMBA signals

Table 1689.Signal descriptions

Signal name Type Function Active
RSTN Input Reset Low
CLK Input Clock -
APBI Input APB slave input signals* -
APBO Output APB slave output signals* -
MISO Input SPI data line input -
MOSI Output SPI data line output -
SCK Output SPI clock line output -
SLVSEL Output Slave select output(s). The range of the vector is

(gSLVSEL-1):0
Low

* see GRLIB IP Library User’s Manual

Table 1690.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER SPICOMP Component, signals Component declaration, SPI signal definitions
GAISLER GRSPICOMP Component, signals Component declaration, SPI signal definitions
GRIP, Sep 2018, Version 2018.3 1434 www.cobham.com/gaisler

GRLIB IP Core

 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector;

 signal sck_mst : std_ulogic;
 signal miso_mst : std_ulogic;
 signal mosi_mst : std_ulogic;
 signal slvsel_mst : std_logic_vector(7 downto 0);

begin

 grspimaster0: grspimaster
 generic map (
 gSLVSEL => gSLVSEL,
 gPINDEX => 1,
 gPADDR => 1,
 gPIRQ => 1)
 port map (
 rstn => rstn,
 clk => clk,
 apbi => apbi,
 apbo => apbo(1),

 miso => miso_mst,
 mosi => mosi_mst,
 sck => sck_mst,
 slvsel => slvsel_mst);

 sck_m1pad: outpad generic map (tech => padtech)
 port map (sck, sck_mst);

 mosi_m1pad: outpad generic map (tech => padtech)
 port map (mosi, mosi_mst);

 miso_m1pad: inpad generic map (tech => padtech)
 port map (miso, miso_mst);

 cs_m1pad: outpadv generic map (width => 8, tech => padtech)
 port map (slvsel, slvsel_mst);

end architecture rtl;
GRIP, Sep 2018, Version 2018.3 1435 www.cobham.com/gaisler

GRLIB IP Core

104 SPISLAVE - Dual Port SPI Slave

104.1 Overview

This core is a Dual Port SPI Slave device that provides link between SPI and AMBA AHB and APB
ports. Core features include configurable word length (4, 5, 6 ... 32 bits), bit ordering and all four SPI
modes are supported. This core also has redundant SPI ports which can be interfaced using two differ-
ent masters. The slave takes two sets of SPI interfaces (nominal and redundant each consists of two
data signals, one clock signal and one chip select signal). This IP is developed as part of ESA activity:
Prototyping of space protocol(s) for SPI (Contract: 4000114112/15/NL/LF).

104.2 Implementation of SPI protocols

This slave device is based on the protocols developed for SPI4SPACE activity. The following text
explains the different protocols supported.
In order to support the SPI 0 protocol the slave provides configurable word length of 4, 5, 6 ... 32 bits
transmission and reception. The Word bit ordering can be MSB first or LSB first transferred.
For SPI 1 protocol the word length of the transfer can be 8, 16 or 24 bits. The word bit ordering MSB
transferred first and LSB transferred last is supported. The parity bit can be appended at the end of
every word, the parity bit is not included by the SPI slave device, since the implementation supports 9,
17 and 25 bits of word transfer the parity bit can be appended by the software.
All control and data transfer for SPI protocol 0 and 1 are supported only through the APB registers.
The SPI protocol 2 uses a fixed word length of 16 bits. The word bit ordering is MSB transferred first
and LSB transferred last. Also this core implements the network layer of the SPI protocol 2, the slave
hardware itself can process the SPI protocol 2 commands and provide responses. The APB interface is
only for control and status, all the data transfer to the AMBA is performed using the AHB Master.

:

104.3 Transmission

The SPI bus is a full-duplex synchronous serial bus. Transmission starts when a master selects a slave
through the slave’s Slave Select (CS) signal and the clock line SCK transitions from its idle state. Data
is transferred from the master through the Master-Output-Slave-Input (MOSI) signal and from the
slave through the Master-Input-Slave-Output (MISO) signal. In some systems with only one master
and one slave, the Slave Select input of the slave may be always active and the master does not need

Figure 273. Block diagram

AHB

 APB

SPI
Protocol
Handler

 SPI-N

 SPI-R

 Master
AMBA AHB

AMBA APB

SCK_N
MOSI_N
MISO_N
CS_N

SCK_R
MOSI_R
MISO_R
CS_R
GRIP, Sep 2018, Version 2018.3 1436 www.cobham.com/gaisler

GRLIB IP Core

to have a slave select output. This does not apply to this device, the slave select signal must be used to
mark the start and end of an operation.
During a transmission on the SPI bus data is either changed or read at a transition of SCK. If data has
been read at edge n, data is changed at edge n+1. If data is read at the first transition of SCK the bus is
said to have clock phase 0, and if data is changed at the first transition of SCK the bus has clock phase
1. The idle state of SCK may be either high or low. If the idle state of SCK is low, the bus has clock
polarity 0 and if the idle state is high the clock polarity is 1. The combined values of clock polarity
(CPOL) and clock phase (CPHA) determine the mode of the SPI bus. Figure below shows one byte
(0x55) being transferred MSb first over the SPI bus under the four different modes. Note that the idle
state of the MOSI line is ‘1’ and that CPHA = 0 means that the devices must have data ready before
the first transition of SCK. The figure does not include the MISO signal, the behavior of this line is
the same as for the MOSI signal.

104.4 Operation

The data transfer between the master and the slave is through APB registers or through command
transfer from a master is determined by the EN bit in the SPI2 control register. When APB registers
are used the data transferred by a master is available at receive registers (NRDATA or RRDATA
depending on the port used) while during the same reception period the contents of the transmit regis-
ters (TDATA) are transferred to the master. When appropriate commands are transferred by a master
SPI device and EN bit in the SPI2 control register is enabled then the commands are processed by the
SPI 2 protocol handler available in this core. The SPI protocol 2 implementation is explained in detail
in the following section.

Figure 274. SPI transfer of byte 0x55 in all modes

SCK

MOSI

CPOL = 0

CPHA = 0

CPHA = 1

CPOL = 1

CPHA = 0

CPHA = 1

Mode 0

Mode 1

Mode 2

Mode 3

SCK

MOSI

SCK

MOSI

SCK

MOSI
GRIP, Sep 2018, Version 2018.3 1437 www.cobham.com/gaisler

GRLIB IP Core

104.5 SPI 2 Protocol Handler

The core is capable of handling the commands (based on SPI protocol 2) transferred by a SPI master
and provide response. The message format transferred between a SPI master and SPI slave device is
defined below.

Table 1691.Example message format (write data)

Table 1692.Example message format (read data)

The message header is composed of a Command token from the master and a Response token from
the slave. The message also contains optional data words and CRC checksum appended at the end that
are calculated for the data words transferred. The CRC is mandatory, if the message contains payload
data then the message is always appended with one word of CRC. The received messages are pro-
cessed by the SPI slave device and response and data are transferred as per the received command.
Also note some of the status bits in the response token are status for the previously received com-
mand.
The SPI slave has the possibility to address incoming data with clock gaps (splitted) fashion. If the
SPI master transfers the data with a clock gap the slave can accept the data and provide proper
response. For example if the SPI master is software controlled and has a SPI controller with a word-
width that is less than the full message then software needs to keep at least one word in the transmit
queue at all times to avoid breaking the protocol. In order to provide a relaxed requirement on soft-
ware, the SPI2 protocol allow gaps between clock periods (equivalent to stretching a clock period).
The gaps must be at word level (16 bits) i.e. the clock gap can be between Command #1 and Com-
mand #2 not within the Command #1 16 bits.

104.5.1 Message Header - Command Token

The master transmits a message header that specifies the action need to be performed in slave. The
command token sent by the master device consist of two 16 bit words. The message header content
details are explained below.

Table 1693.Command word 1

Table 1694.Command word 2

Signal Message Header Payload Payload CRC

MOSI Command #1 Command #2 Data CRC-16

MISO Response #1 Response #2 0x0000 0x0000

Signal Message Header Payload Payload CRC

MOSI Command #1 Command #2 0x0000 0x0000

MISO Response #1 Response #2 Data CRC-16

MSB Command Token Word #1 LSB

Prefix Command Code Spare Message Length

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

'0' '1' C5 C4 C3 C2 C1 C0 '1' '1' L5 L4 L3 L2 L1 L0

MSB Command Token Word #2 LSB

Prefix Sub-address Spare CRC-4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
GRIP, Sep 2018, Version 2018.3 1438 www.cobham.com/gaisler

GRLIB IP Core
• Prefix and spare
The prefix bits are transmitted initially. In the command word#1 and #2 the prefix and spare bits have
fixed value in the current implementation, these are reserved bits. The spislave receives them and use
it for validating the token. If an invalid prefix and spare bits are received then Status illegal command
(SIC) status bit is enabled and also transmitted to master as part of the next response token.
• Message Length
The number of payload words that will be transmitted in the current message. The number should not
include the command token and the CRC checksum appended at the end of the message.
• Sub-address
This field provide additional sub-address location for write and read commands.
• CRC-4
The final four bits of the command token consist of a checksum for all the previous command token
bits transmitted in this message. The CRC-4 should be computed for the following 28 bits, Command
word #1 (16bits, MSB first sent to the CRC generator) and Command word #2 (excluding this CRC-4
field) (12bits, MSB first sent to the CRC generator). The Prefix and Spare fields are included in the
CRC calculation. The generator polynomial used is X4 + X + 1. In this SPI slave receiving end the
CRC-4 is calculated internally for the received command token, if the calculated CRC-4 does not
match the expected value (this field) the corresponding command token is discarded and message
error status is enabled and transmitted to master as part of the next response token.
• Payload data
The payload consist of the data need to be transferred from the master to slave. Depending on the
command executed the master must include valid data or dummy information in the form of string of
zeros. For example the write command have the data to be written as the payload but the read com-
mand have dummy information in the form of string of zeros.
• Payload CRC
When a valid payload is delivered in the payload data section of the message a Payload CRC (CRC-
16) must be included at the end of the message. The generator polynomial used is x16+ x15+ x2+ 1.
When dummy information in the form of string of zeros is included then no Payload CRC need to be
attached then the payload CRC field must be all zero (0X0000). In the SPI slave receiving end the
CRC-16 is calculated internally for the received payload data, if the calculated CRC-16 does not
match the expected value (this field) the corresponding operation with respect to the command is not
performed and message error status is enabled and transmitted to master as part of the next response
token.

104.5.2 Command Code

The command code specify the operating instruction for the receiving slave. The detailed explanation
of each command code and its implementation are explained in the table below.
• Reset command

'0' '1' SA7 SA6 SA5 SA4 SA3 SA2 SA1 SA0 '1' '1' CRC3 CRC

2

CRC1 CRC0

Code Command Length Sub-
address

Payload Description

0x00 RESET_SPI 0x00 0x00 None This command will reset all the spi slave device
registers to the default value except the time
registers (TIME1, TIME2) and core enable registers
(ENN and ENR).
GRIP, Sep 2018, Version 2018.3 1439 www.cobham.com/gaisler

GRLIB IP Core
The RESET_SPI command resets the SPI slave device to a power up initialized state. The SPI slave
resets the system only if it received a valid command. If the prefix and spare bits does not match or if
the calculated CRC-4 does not match the expected value then the RESET_SPI command is discarded.
• Time synchronization command

The time register is of 64 bit in width, the most significant time is transferred first in SYNC1 followed
by SYNC2, SYNC3 and SYNC4. The time register roll over when its maximum count is reached. The
time is synchronised only when all the words are received and also the command token CRC-4 and
data CRC-16 must be valid. All bits are zero at reset. The RESET_SPI does not reset the time register.
• Time increment command

A valid command increments the implemented time register. The sub address field specify from
which bit the time register must increment.

• Read back sent command

The SPI slave device after receiving the READBACK_CMD send the previous command token trans-
mitted by the SPI master. This command is useful only when some other command (other than
RESET_SPI) was previously transmitted. If the previous command is RESET_SPI, the SPI master
only receives zeros in the payload section of this command.

Code Command Length Sub-
address

Payload Description

0x07 SYNCH 0x04 0x00 MOSI:<SYNC1>
<SYNC2><SYNC3><SY
NC4><CRC-16>
MISO: <all zeros>

The master must transmit the SYNC command
token followed by payload words containing
synchronization information for it. These words
are copied inside dedicated registers
implemented in the SPI slave device after
validation.

Cod
e

Command Length Sub-
address

Payload Description

0x08 TICK 0x00 Used as
index for
increment.

None This command is used to advance the timing
synchronization register available in the SPI
slave device (same register used for the SYNC
command).

Code Command Length Sub-
address

Payload Description

0x0A READBACK_CMD 0x02 0x00 MOSI: <all zeros>
MISO:<CMDTOKEN><
CRC-16>

The command can be used to
verify the correct reception of the
previous command. Upon
reception of the command the
slave respond with the previous
command token.
GRIP, Sep 2018, Version 2018.3 1440 www.cobham.com/gaisler

GRLIB IP Core

• Write command

When a valid WRITE_SA command is received the payload data is stored at the address specified.
The address for writing the data is calculated by using the write address register (CONFIG_WRITE),
and sub-address. The CRC-16 is calculated for received words and compared with the received pay-
load CRC, if a data CRC error is detected then message error status is enabled and transmitted to mas-
ter as part of the next response token.
• Read command

When a valid READ_SA command is received the payload data is transferred from the address speci-
fied. The address for reading the data is calculated by using the read address register (CON-
FIG_READ), and sub-address. The CRC-16 is calculated for transmitted words and sent as payload
CRC by the slave device.

• Configure address commands

Dedicated registers for write address and read address is implemented, these registers takes value
from this command. The purpose of this register is to access upto 32 bits of address space. The most
significant word CW1 (or CR1) contains the most significant bytes of the target address.
• Redundancy commands

Code Command Length Sub-
address

Payload Description

0x0
D

WRITE_SA Number
of words
to be
written,
N

SA MOSI:<DW1>
<DW2> …<DWN>
<CRC-16>
MISO: <all zeros>

The command is used to write a certain number of
data words into a slave specific Sub Address.
Dedicated field of the command token select the
payload length and the target SA.

Cod
e

Command Length Sub-
address

Payload Description

0x0E READ_SA Number
of words
to be
read, N

SA MOSI: <all zeros>
MISO:<DW1>
<DW2> …<DWN>
<CRC-16>

The command is used to read a certain number of
data words into a slave specific Sub Address.
Dedicated field of the command token select the
payload length and the target SA.

Cod
e

Command Length Sub-
addres
s

Payload Description

0x2
0

CONFIGWRITE_ADD
R

0x02 0x00 MOSI:<CW1><CW2
> <CRC-16>
MISO: <all zeros>

The command can be used to notify the
slave about the address to which the data
from the master is written, used for
WRITE_SA command.

0x2
1

CONFIG
READ_ADDR

0x02 0x00 MOSI:<CR1> <CR2>
<CRC-16>
MISO: <all zeros>

The command can be used to notify the
slave about the address from which the data
to the master is read, used for READ_SA
command.
GRIP, Sep 2018, Version 2018.3 1441 www.cobham.com/gaisler

GRLIB IP Core
Figure 275. Redundant system

The SPI Slave device has two dedicated interfaces for two masters. The masters can send to its corre-
sponding slave interface to activate or deactivate the other SPI interface. The master device cannot
activate or deactivate the same ports on which it is connected, it can only activate or deactivate the
other ports.
Initially both the SPI port interfaces are enabled to receive commands, when the communication
between the nominal master and slave interface fails then the redundant master can deactivate the
nominal interface using its dedicated redundant interface. The redundant master can also activate the
nominal interface.
An example switchover scenario from nominal to redundant interface is described in the following
text.
The nominal master communicates with its dedicated interface to a slave device, a fault occurred can
be detected by the master using several options,
The status received by the master have invalid values (using the response token),
The Read back command sent does not provide appropriate values in the received payload,
Error bits are enabled in the status received by the master (using the response token),

Cod
e

Command Length Sub-
address

Payload Description

0x24 ACTIVATE 0x00 0x00 None The command is used to activate the other slave
interface. This command cannot activate the
interface in which it is receiving this command.

Cod
e

Command Length Sub-
address

Payload Description

0x25 DEACTIVATE 0x00 0x00 None The command is used to deactivate the other slave
interface. This command cannot deactivate the
interface in which it is receiving this command.
GRIP, Sep 2018, Version 2018.3 1442 www.cobham.com/gaisler

GRLIB IP Core

Based on any of the above mentioned fault detection methods the master can send deactivate com-
mand in the redundant interface to deactivate the nominal interface of the slave. The master can send
Read back sent commands (using redundant) to check if the previous deactivate command was
received by the slave and can check the status of the response token as well. After conforming a
proper communication has been established the master can use the redundant interface to perform its
normal operations.
• Others

Any other commands which are not implemented is received then the command token is discarded
and Status illegal command (SIC) bit is enabled and also transmitted to master as part of the next
response token.

104.5.3 Message Header -Response Token

The slave transmits a message header which consist of status of module and details of error occurred.
The message header sent by SPI slave device is called response token which consist of two 16 bit
words. The message header content details are explained below.

Table 1695.Response word #1

Table 1696.Response word #2

• Status bits

In SPI slave device this bit is enabled or disabled by SPI2 control register (STF) using APB.

Code Command Length Sub-address Payload Description

All
others

N/A 0x00 These command codes are currently
not implemented and their use is
reserved for future. Upon reception
of one of these codes the slave
discard the incoming data.

MSB Response Token Word #1 LSB

Prefix Status Spare Module State

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

'1' '0' STF ME AR IC ‘0’ '0' '0' '0' '0' '0' MS3 MS2 MS1 MS0

MSB Response Token Word #2 LSB

Prefix Data Spare CRC-4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

'1' '0' DNA '0' '0' '1' '1' '1 ' '1' '0' '0' '0' CRC

3

CRC

2

CRC1 CRC0

Bit Identifier Type Value Description Clear Condition

13 SPI_TERMINAL_FAULT Error ‘0’=no fault

‘1’=fault

The bit flag a SPI terminal

fault condition.

According to the

module current state.
GRIP, Sep 2018, Version 2018.3 1443 www.cobham.com/gaisler

GRLIB IP Core
This status bit is enabled when the received message fails to pass the command token and payload
data CRC checks. The next valid command clears this status bit.

The SPI slave device uses an AHB master to perform the memory read and write, this bit is enabled
when an AHB error is reported.

When the prefix and spare bits in the received command token do not match the intended value or an
unimplemented command is received this status bit is enabled. The next valid command clears this
status bit.
• Module state:
In the SPI slave device these bits are enabled or disabled by SPI2 control register (MODSTAT)
using APB. These bits can be used by Software controlling the slave device to provide addi-
tional status to the master.

104.6 Redundancy

The SPI slave has a two SPI ports which can be interfaced using two different masters. Two SPI mas-
ter capable of communicating individually to the respective port must be available inorder to achieve
redundancy using this Dual-port SPI slave.The slave takes two sets of SPI interfaces (nominal and

Bit Identifier Type Value Description Clear
Condition

12 MESSAGE_ERROR Error ‘0’=no fault
‘1’=fault

This bit is utilized to
indicate that the previous
message received from the
bus master has failed to
pass the validity tests.

Always related to the
previous command.
Reception of a valid
command will clear it
(with a delay of one
command).

Bit Identifier Type Value Description Clear
Condition

11 ADDRESS_ERROR Error ‘0’=no fault
‘1’=fault

This bit flag an AMBA
error occured while
performing the previous
command.

Always related to the
previous command.
Reception of a valid
command will clear it
(with a delay of one
command)

Bit Identifier Type Value Description Clear

Condition

10 ILLEGAL_COMMAND Error ‘0’=no fault

‘1’=fault

This bit flag that the
previous received
command was not
compatible with the SPI
slave device.

Always related to the
previous command.
Reception of a valid
command will clear it
(with a delay of one
command)
GRIP, Sep 2018, Version 2018.3 1444 www.cobham.com/gaisler

GRLIB IP Core

redundant). The configuration registers available in the device is used to enable which interface to
communicate and it is possible to use dedicated commands (using SPI 2 protocol) to activate and
deactivate ports.
While using configuration registers to activate or deactivate ports, the complete control of activation
and deactivation must be performed by the external unit, only one port must active at any time. If both
enabled then both the SPI ports are open for communication which is not supported while using exter-
nal configuration for redundancy. The system which initiates the communication should take respon-
sibility for which lane to take (there must be dedicated SPI Masters available in the system to
communicate with the respective slave). If both are disabled then no communication is possible. The
Master (driver) must have two dedicated SPI Master to perform communication on each lane of the
SPI bus.
When commands are used to control the ports, the device can receive commands from both the inter-
faces. By receiving from both the interfaces the slave device can deactivate a non-working interface.
The intention is to keep only one bus active for normal operation but using the redundant bus to
achieve switchover. The SPI protocol 2 implementation supports dedicated commands to achieve the
activation and deactivation of interfaces.
In normal working case the SPI masters Nominal and redundant (using HW or SW) should make sure
not to write at the same time to both lanes of dual-port SPI Slave (for example to make a transfer). The
SW or HW can command the Redundant master only when it detects problem with the Nominal com-
munication. For worst case lets say, the SPI masters Nominal (in error state babelling some command
repeatedly), using the redundant port the Nominal lane can be switched off (switch over command
using redundant port or external configuration), the slave takes the redundant port input, the SPI slave
is designed to take the redundant port inputs when it is available rather than nominal input.

104.7 Registers

The core is programmed through registers mapped into APB address space.

Table 1697.APB registers

APB address offset Register
0x00 Control register
0x04 Status register
0x08 Transmit register
0x0C Nominal receive register
0x10 Redundant receive register
0x14 Interrupt enable register
0x18 Interrupt register
0x1C Reserved
0x20 SPI2 control register
0x24 SPI2 time1 register
0x28 SPI2 time2 register
0x2C SPI2 config address write register
0x30 SPI2 config address read register
GRIP, Sep 2018, Version 2018.3 1445 www.cobham.com/gaisler

GRLIB IP Core

104.7.1

Table 1698.0x00 - CTRL - Control register

Control Register

31 24 23-17 16 15-13 12 8 7 6 5 4 3 2 1 0

Key R OD R WLEN IAMBA CPHA CPOL REV R RESET ENR ENN

0 0 0 0 0x0F 0 0 0 1 0 0 1 1

w r rw r rw rw rw rw rw r rw rw rw

31 Safety code (KEY) - Must be 0x68 when writing, otherwise register write is ignored
23 : 17 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
16 Overrun detect (OD) - To detect overrun condition (also to trigger overrun interrupt) this bit must be

enabled. Valid only for SPI protocol 0 and 1.
15 : 13 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
12 : 8 Word length (WLEN) - The value of this field determines the length in bits of a transfer on the SPI

bus. Valid values are 0x03 to 0x1F
Word length is WLEN+1, allows words of length 4-32 bits.

7 AMBA Interrupt enable (IAMBA) - If set, AMBA interrupt generation is enabled for the events that
are individually maskable by the Interrupt enable (INTE) register

6 Clock phase (CPHA) - When CPHA is ‘0’ data will be read on the first transition of SCK. When
CPHA is ‘1’ data will be read on the second transition of SCK.

5 Clock polarity (CPOL) - Determines the polarity (idle state) of the SCK clock.
4 Reverse data (REV) - When this bit is ‘0’ data is transmitted LSB first, when this bit is ‘1’ data is

transmitted MSB first.
3 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
2 Reset (RESET) - Resets all the registers in the core except time registers (TIME1, TIME2) and core

enable registers (ENN and ENR).
1 Enable redundant port transfer (ENR) - Enable bit for redundant port transfer. See section 5.6 for

more information.
0 Enable nominal port transfer (ENN)- Enable bit for nominal port transfer. See section 5.6 for more

information.
GRIP, Sep 2018, Version 2018.3 1446 www.cobham.com/gaisler

GRLIB IP Core

104.7.2

Table 1699.0x04 - STAT - Status register

Status Register

104.7.3 Transmit Register

Table 1700.0x08 - TDATA - Transmit register

104.7.4 Nominal Receive Register

Table 1701.0x0C - NRDATA - Nominal receive register

104.7.5 Redundant Receive Register

31 8 7 6 5 4 3 2 1 0

RESERVED ATR ATN SAR SIC R RR RN

0 0 1 0 0 0 0 0

r r r r r r r r

31 : 3 RESERVED
7 Active transmission in redundant port (ATR) - This bit provides the status of the redundant transmis-

sion port. Set based on the incoming activate and deactivate commands (active ‘1’ else ‘0’). Valid
only for SPI protocol 2 implementation.

6 Active transmission in nominal port (ATN) - This bit provides the status of the nominal transmission
port. Set based on the incoming activate and deactivate commands (active ‘1’ else ‘0’). Valid only
for SPI protocol 2 implementation.

5 Status address error (SAR) - This bit gets set to ‘1’ when an AMBA write or read access resulted in a
error. A valid new command clears this status bit. Valid only for SPI protocol 2 implementation.

4 Status illegal command (SIC) - This bit gets set to ‘1’ when an illegal command is received. A valid
new command clears this status bit. Valid only for SPI protocol 2 implementation.

3 : 2 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
1 Received data nominal (RR) - This bit gets set to ‘1’ each time a data is received in the redundant

port. The bit gets set to ‘0’ when the Redundant receive register is read.
0 Received data nominal (RN) - This bit gets set to ‘1’ each time a data is received in the nominal port.

The bit gets set to ‘0’ when the Nominal receive register is read.

31 0

TDATA

0

rw

31 : 0 Transmit data (TDATA) - The written data is transferred to the master device when appropriate con-
ditions for CS and SCK are satisfied. The word to transmit should be written with its least significant
bit at bit 0. Also note that only the number of bits need to be transferred from this register should
match the word length register (WLEN). Valid only for SPI protocol 0 and 1.

31 0

NRDATA

0

r

31 : 0 Nominal Receive data (NRDATA) - This register contains received data from the nominal port. Valid
only for SPI protocol 0 and 1.

Table 1702.0x10 - RRDATA - Redundant receive register
31 0

RRDATA

0

GRIP, Sep 2018, Version 2018.3 1447 www.cobham.com/gaisler

GRLIB IP Core
104.7.6

Table 1703.0x14 - INTE- Interrupt enable register

Interrupt Enable Register

r

31 : 0 Redundant Receive data (RRDATA) - This register contains received data from the redundant port.
Valid only for SPI protocol 0 and 1.

31 24 23 9 8 7 6 5 4 3 2 1 0

Key RESERVED OVRE WDE AE CRE CWE TICKE SYNCE RXRE RXNE

0 0 0 0 0 0 0 0 0 0 0

w r rw rw rw rw rw rw rw rw rw

31 : 24 Safety code (KEY) - Must be 0x68 when writing, otherwise register write is ignored.
23 : 9 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
8 Overrun interrupt enable (OVRE) - If enabled an interrupt will be generated when overrun condition

occurs for data reception. Valid only for SPI protocol 0 and 1.
7 Write data interrupt enable (WDE). Valid only for SPI protocol 2.
6 AMBA access error interrupt enable (AE). Valid only for SPI protocol 2.
5 Change in config read address interrupt enable (CRE). Valid only for SPI protocol 2.
4 Change in config write address interrupt enable (CWE). Valid only for SPI protocol 2.
3 Tick command received interrupt enable (TICKE). Valid only for SPI protocol 2.
2 Sync command received interrupt enable (SYNCE). Valid only for SPI protocol 2.
1 Data received in redundant port interrupt enable (RXRE).Valid only for SPI protocol 0 and 1.
0 Data received in nominal port interrupt enable (RXNE). Valid only for SPI protocol 0 and 1.

Table 1702.0x10 - RRDATA - Redundant receive register
GRIP, Sep 2018, Version 2018.3 1448 www.cobham.com/gaisler

GRLIB IP Core

104.7.7

Table 1704.0x18- INT- Interrupt register

Interrupt Register

104.7.8

Table 1705.0x20- SPI2C- SPI2 control register

SPI2 Control Register

104.7.9

Table 1706.0x24 - TIME1 - SPI2 time1 register

SPI2 Time1 Register

31 24 23 9 8 7 6 5 4 3 2 1 0

Key RESERVED OVR WD AI CR CW TICK SYNC RXR RXN

0 0 0 0 0 0 0 0 0 0 0

w r wc wc wc wc wc wc wc wc wc

31 : 24 Safety code (KEY) - Must be 0x68 when writing, otherwise register write is ignored.
23 : 9 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
8 Overrun interrupt (OVR) - An interrupt is generated when overrun condition occurs for data recep-

tion. (a received data must be read before the arrival of next data, if new data arrived before the Soft-
ware could read the previously received data overrun condition is triggered). Valid only for SPI
protocol 0 and 1.

7 Write data interrupt (WD). Valid only for SPI protocol 2.
6 AMBA access error interrupt (AI). Valid only for SPI protocol 2.
5 Change in config read address interrupt (CR). Valid only for SPI protocol 2.
4 Change in config write address interrupt (CW). Valid only for SPI protocol 2.
3 Tick command received interrupt (TICK). Valid only for SPI protocol 2.
2 Sync command received interrupt (SYNC). Valid only for SPI protocol 2.
1 Data received in redundant port interrupt (RXR).Valid only for SPI protocol 0 and 1.
0 Data received in nominal port interrupt (RXN). Valid only for SPI protocol 0 and 1.

31 24 23 8 7 6 5 4 3 2 1 0

Key RESERVED MODSTAT RESERVED STF EN

0 0 0 0 0 0 0 0 0 1

w r rw rw rw rw r r rw rw

31 : 24 Safety code (KEY) - Must be 0x68 when writing, otherwise register write is ignored.
23 : 8 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
7: 4 Module state (MODSTAT). The values in these bits are sent to the master via the response token.

These are user configurable registers which can be set to ‘1’ or ‘0’. Valid only for SPI protocol 2.
3: 2 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.
1 SPI terminal failure (STF). This value in this bit is sent to the master via the response token. In order

to intimate a terminal failure this bit can be written to ‘1’ through software. Valid only for SPI proto-
col 2.

0 Enable (EN). SPI protocol 2 enable bit. If set to ‘1’ the commands received from master are handled
by the SPI 2 protocol handler in the core. If set to ‘0’ the data received and transfered are using the
APB registers.

31 0

TIME1

0x00000000

r

31 : 0 Time 1 register (TIME1) - Provides the most significant 32 bits of the time register. This is a status
(read only) register, the contents of this register is a reflection of the time modified/incremented
using the sync and tick command respectively.
GRIP, Sep 2018, Version 2018.3 1449 www.cobham.com/gaisler

GRLIB IP Core

104.7.10

Table 1707.0x28 - TIME2 - SPI2 time2 register

SPI2 Time2 Register

104.7.11

Table 1708.0x2C - CONFW - SPI2 config address write register

SPI2 Config Address Write Register

104.7.12

Table 1709.0x30 - CONFR - SPI2 config address read register

SPI2 Config Address Read Register

104.8 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x0A7. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

104.9 Implementation

104.9.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

31 0

TIME2

0x00000000

r

31 : 0 Time 2 register (TIME2) - Provides the lower 32 bits of the time register. This is a status (read only)
register, the contents of this register is a reflection of the time modified/incremented using the sync
and tick command respectively.

31 0

CONFW

0x40000000

r

31 : 0 Configuration read address (CONFW) - Defines the base address for the memory area where the
core is allowed to make accesses. This is a status (read only) register, the contents of this register can
be modified by the configuration write address command.

31 0

CONFR

0x40000000

r

31 : 0 Configuration read address (CONFR) - Defines the base address for the memory area where the core
is allowed to make accesses. This is a status (read only) register, the contents of this register can be
modified by the configuration read address command.
GRIP, Sep 2018, Version 2018.3 1450 www.cobham.com/gaisler

GRLIB IP Core

104.10 Configuration options

Table 1710 shows the configuration options of the core (VHDL generics).

104.11 Signal descriptions

Table 1711 shows the interface signals of the core (VHDL ports).

Table 1710.Configuration options

Generic name Function Allowed range Default
gPINDEX APB slave index 0 - NAPBSLV-1 0
gHINDEX AHB master index 0 - NAHBMST 0
gPADDR ADDR field of the APB BAR 0 - 16#FFF# 0
gPMASK MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#
gPIRQ Interrupt line driven by APB interface. 0 - NAHBIRQ-1 1
gSPI2 Implement SPI protocol 2 0 - 1 1
gCONFW Default value for config write address register 0 - 16#FFFFFF# 16#400000#

gCONFR Default value for config read address register 0 - 16#FFFFFF# 16#400000#
gOEPOL Output enable polarity 0 - 1 0

Table 1711.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
AHBI * Input AHB master input signals -
AHBO * Output AHB master output signals -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
SCK_N N/A Input SPI clock line input Nominal -
MOSI_N N/A Input SPI data line input Nominal -
SLVSEL_N N/A Input SPI slave select output Nominal Low
MISO_N N/A Output SPI data line output Nominal -
MISO_EN_N N/A Output SPI data line output enable Nominal **
SCK_R N/A Input SPI clock line input Redundant -
MOSI_R N/A Input SPI data line input Redundant -
SLVSEL_R N/A Input SPI slave select output Redundant Low
MISO_R N/A Output SPI data line output Redundant -
MISO_EN_R N/A Output SPI data line output enable Redundant **
* see GRLIB IP Library User’s Manual
** depends on value of OEPOL VHDL generic.
GRIP, Sep 2018, Version 2018.3 1451 www.cobham.com/gaisler

GRLIB IP Core

104.12 Library dependencies

Table 1712 shows the libraries used when instantiating the core (VHDL libraries).

104.13 Instantiation
library ieee;
use ieee.std_logic_1164.all;

library grlib, techmap;
use grlib.amba.all;
use grlib.devices.all;
use grlib.stdlib.all;
use techmap.gencomp.all;
library gaisler;
use gaisler.spicomp.all;
use gaisler.grspicomp.all;

entity grspislave_ex is
 port (
 rstn : in std_ulogic;
 clk : in std_ulogic;
 ahbmi : in ahb_mst_in_type;
 ahbmo : out ahb_mst_out_type;
 apbi : in APB_Slv_In_Type;
 apbo : out APB_Slv_Out_Type;
 -- SPI signals
 miso_n : out std_ulogic;
 miso_en_n : out std_ulogic;
 mosi_n : in std_ulogic;
 sck_n : in std_ulogic;
 slvsel_n : in std_ulogic;

 miso_r : out std_ulogic;
 miso_en_r : out std_ulogic;
 mosi_r : in std_ulogic;
 sck_r : in std_ulogic;
 slvsel_r : in std_ulogic);
end entity grspislave_ex;

architecture rtl of grspislave_ex is

 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector;
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector;

 signal nom_sck : std_ulogic;
 signal nom_miso : std_ulogic;
 signal nom_miso_en : std_ulogic;
 signal nom_mosi : std_ulogic;
 signal nom_slvsel : std_ulogic;

 signal red_sck : std_ulogic;
 signal red_miso : std_ulogic;

Table 1712.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER SPICOMP Component, signals Component declaration, SPI signal definitions
GAISLER GRSPICOMP Component, signals Component declaration, SPI signal definitions
GRIP, Sep 2018, Version 2018.3 1452 www.cobham.com/gaisler

GRLIB IP Core

 signal red_miso_en : std_ulogic;
 signal red_mosi : std_ulogic;
 signal red_slvsel : std_ulogic;
 constant OEPOL : integer := padoen_polarity(padtech);

begin

 grspislave0: grspislave
 generic map (
 gHINDEX => 4,
 gPINDEX => 6,
 gPADDR => 6,
 gPIRQ => 6,
 gSPI2 => 1,
 gCONFW => 16#400000#,
 gCONFR => 16#400000#,
 gOEPOL => OEPOL)
 port map (
 rstn => rstn,
 clk => clk,
 ahbmi => ahbmi,
 ahbmo => ahbmo(4),
 apbi => apbi,
 apbo => apbo(6),

 miso_n => nom_miso,
 miso_en_n => nom_miso_en,
 mosi_n => nom_mosi,
 sck_n => nom_sck,
 slvsel_n => nom_slvsel,

 miso_r => red_miso,
 miso_en_r => red_miso_en,
 mosi_r => red_mosi,
 sck_r => red_sck,
 slvsel_r => red_slvsel);

 --Nominal
 sck_p1pad : inpad generic map (tech => padtech)
 port map (sck_n, nom_sck);

 mosi_p1pad : inpad generic map (tech => padtech)
 port map (mosi_n, nom_mosi);

 miso_p1pad : toutpad generic map (tech => padtech, oepol => OEPOL)
 port map (miso_n, nom_miso, nom_miso_en);

 cs_p1pad : inpad generic map (tech => padtech)
 port map (slvsel_n, nom_slvsel);

--Redundant
 sck_p2pad : inpad generic map (tech => padtech)
 port map (sck_r, red_sck);

 mosi_p2pad : inpad generic map (tech => padtech)
 port map (mosi_r, red_mosi);

 miso_p2pad : toutpad generic map (tech => padtech, oepol => OEPOL)
 port map (miso_r, red_miso, nom_miso_en);

 cs_p2pad : inpad generic map (tech => padtech)
 port map (slvsel_r, red_slvsel);
end architecture rtl;
GRIP, Sep 2018, Version 2018.3 1453 www.cobham.com/gaisler

GRLIB IP Core

105 SRCTRL- 8/32-bit PROM/SRAM Controller

105.1 Overview

SRCTRL is an 8/32-bit PROM/SRAM/IO controller that interfaces external asynchronous SRAM,
PROM and I/O to the AMBA AHB bus. The controller can handle 32-bit wide SRAM and I/O, and
either 8- or 32-bit PROM.

The controller is configured through VHDL-generics to decode three address ranges: PROM, SRAM
and I/O area. By default PROM area is mapped into address range 0x0 - 0x00FFFFFF, the SRAM area
is mapped into address range 0x40000000 - 0x40FFFFFF, and the I/O area is mapped to 0x20000000
- 0x20FFFFFF.
One chip select is decoded for the I/O area, while SRAM and PROM can have up to four and two
select signals respectively. The controller generates both a common write-enable signal (WRITEN) as
well as four byte-write enable signals (WREN). If the SRAM uses a common write enable signal the
controller can be configured to perform read-modify-write cycles for byte and half-word write
accesses. Number of waitstates is separately configurable for the three address ranges.
A single write-enable signal is generated for the PROM area (WRITEN), while four byte-write enable
signals (RWEN[3:0]) are provided for the SRAM area. If the external SRAM uses common write
enable signal, the controller can be configured to perform read-modify-write cycles for byte and half-
word write accesses.
Number of waitstates is configurable through VHDL generics for both PROM and SRAM areas.
A signal (BDRIVE) is provided for enabling the bidirectional pads to which the data signals are con-
nected. The oepol generic is used for selecting the polarity of these enable signals. If output delay is
an issue, a vectored output enable signal (VBDRIVE) can be used instead. In this case, each pad has

Figure 276. 8/32-bit PROM/SRAM/IO controller

CS
OE
WE

A
DPROM

CS
OE
WE

A
DSRAM

SRO.RAMSN
SRO.RAMOEN

SRO.RWEN[3:0]

SRO.ROMSN
SRO.OEN

SRO.WRITEN

A D

MEMORY

SRI.A[27:0]

SRI.D[31:0]

CONTROLLER

AHB

AHB/APB

Bridge

APB

CB

CB

CB

CB[7:0]

SRO.D[31:0]

CS
OE
WE

A
DIO

SRO.IOSN
GRIP, Sep 2018, Version 2018.3 1454 www.cobham.com/gaisler

GRLIB IP Core

its own enable signal driven by a separate register. A directive is placed on these registers so that they
will not be removed during synthesis (if the output they drive is used in the design).

105.1.1 Endianness

The core is designed for big-endian systems.

105.2 8-bit PROM access

The SRCTRL controller can be configured to access a 8-bit wide PROM. The data bus of external
PROM should be connected to the upper byte of the 32-bit data bus, i.e. D[31:24]. The 8-bit mode is
enabled with the prom8en VHDL generic. When enabled, read accesses to the PROM area will be
done in four-byte bursts. The whole 32-bit word is then presented on the AHB data bus. Writes should
be done one byte at a time and the byte should always be driven on bit 31-24 on the AHB data bus
independent of the byte address.
It is possible to dynamically switch between 8- and 32-bit PROM mode using the BWIDTH[1:0]
input signal. When BWIDTH is “00” then 8-bit mode is selected. If BWIDTH is “10” then 32-bit
mode is selected. Other BWIDTH values are reserved for future use.
SRAM access is not affected by the 8-bit PROM mode.

105.3 PROM/SRAM waveform

Read accesses to 32-bit PROM and SRAM has the same timing, see figure below.

The write access for 32-bit PROM and SRAM can be seen below.

Figure 277. 32-bit PROM/SRAM/IO read cycle

data1 data2

D1

lead-out

A1

CLK

A

ROMSN

D

OEN

RAMSN
GRIP, Sep 2018, Version 2018.3 1455 www.cobham.com/gaisler

GRLIB IP Core
If waitstates are configured through the VHDL generics, one extra data cycle will be inserted for each
waitstate in both read and write cycles.

105.4 Burst cycles

To improve the bandwidth of the memory bus, accesses to consecutive addresses can be performed in
burst mode. Burst transfers will be generated when the memory controller is accessed using an AHB
burst request. These includes instruction cache-line fills and burst from DMA masters. The timing of
a burst cycle is identical to the programmed basic cycle with the exception that during read cycles, the
lead-out cycle will only occurs after the last transfer.

105.5 Registers

The core does not implement any user programmable registers.
All configuration is done through the VHDL generics.

105.6 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x008. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

105.7 Implementation

105.7.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers. The registers driving external chip select, output enable and output enables for the data
bus have asynchronous reset.

Figure 278. 32-bit PROM/SRAM/IO write cycle

lead-in data lead-out

D1

A1

CLK

A

RAMSN

D

RWEN
GRIP, Sep 2018, Version 2018.3 1456 www.cobham.com/gaisler

GRLIB IP Core

105.8 Configuration options

Table 1714 shows the configuration options of the core (VHDL generics).

105.9 Signal description

Table 1713 shows the interface signals of the core (VHDL ports).

Table 1713.Configuration options

Generic Function Allowed range Default
hindex AHB slave index 1 - NAHBSLV-1 0
romaddr ADDR field of the AHB BAR0 defining PROM address space.

Default PROM area is 0x0 - 0xFFFFFF.
0 - 16#FFF# 16#000#

rommask MASK field of the AHB BAR0 defining PROM address space. 0 - 16#FFF# 16#FF0#
ramaddr ADDR field of the AHB BAR1 defining SRAM address space.

Default SRAM area is 0x40000000-0x40FFFFFF.
0 - 16#FFF# 16#400#

rammask MASK field of the AHB BAR1 defining SRAM address space. 0 -16#FFF# 16#FF0#
ioaddr ADDR field of the AHB BAR2 defining IO address space.

Default IO area is 0x20000000-0x20FFFFFF.
0 - 16#FFF# 16#200#

iomask MASK field of the AHB BAR2 defining IO address space. 0 -16#FFF# 16#FF0#
ramws Number of waitstates during access to SRAM area 0 - 15 0
romws Number of waitstates during access to PROM area 0 - 15 2
iows Number of waitstates during access to IO area 0 - 15 2
rmw Enable read-modify-write cycles. 0 - 1 0
prom8en Enable 8 - bit PROM accesses 0 - 1 0
oepol Polarity of bdrive and vbdrive signals. 0=active low, 1=active

high
0 - 1 0

srbanks Set the number of SRAM banks 1 - 5 1
banksz Set the size of bank 1 - 4. 0 = 8 Kbyte, 1 = 16 Kbyte, ... , 13 =

64Mbyte.
0 - 13 13

romasel address bit used for PROM chip select. 0 - 27 19

Table 1714.Signal descriptions

Signal name Field Type Function Polarity
CLK N/A Input Clock -
RST N/A Input Reset Low
SRI DATA[31:0] Input Memory data High

BRDYN Input Not used -
BEXCN Input Not used -
WRN[3:0] Input Not used -
BWIDTH[1:0] Input BWIDTH=”00” => 8-bit PROM mode

BWIDTH=”10” => 32-bit PROM mode
-

SD[31:0] Input Not used -
GRIP, Sep 2018, Version 2018.3 1457 www.cobham.com/gaisler

GRLIB IP Core
SRO ADDRESS[27:0] Output Memory address High
DATA[31:0] Output Memory data High
RAMSN[4:0] Output SRAM chip-select Low
RAMOEN[4:0] Output SRAM output enable Low
IOSN Output Not used. Driven to ‘1’ (inactive) Low
ROMSN[1:0] Output PROM chip-select Low
RAMN Output Common SRAM chip-select. Asserted when one

of the RAMSN[4:0] signals is asserted.
Low

ROMN Output Common PROM chip-select. Asserted when one
of the ROMSN[1:0] signals is asserted.

Low

OEN Output Output enable Low
WRITEN Output Write strobe Low
WRN[3:0] Output SRAM write enable:

 WRN[0] corresponds to DATA[31:24],
 WRN[1] corresponds to DATA[23:16],
 WRN[2] corresponds to DATA[15:8],
 WRN[3] corresponds to DATA[7:0].

Low

MBEN[3:0] Output Byte enable:
 MBEN[0] corresponds to DATA[31:24],
 MBEN[1] corresponds to DATA[23:16],
 MBEN[2] corresponds to DATA[15:8],
 MBEN[3] corresponds to DATA[7:0].

Low

BDRIVE[3:0] Output Drive byte lanes on external memory bus. Con-
trols I/O-pads connected to external memory
bus:
 BDRIVE[0] corresponds to DATA[31:24],
 BDRIVE[1] corresponds to DATA[23:16],
 BDRIVE[2] corresponds to DATA[15:8],
 BDRIVE[3] corresponds to DATA[7:0].

Low/High2

VBDRIVE[31:0] Output Identical to BDRIVE but has one signal for each
data bit. Every index is driven by its own regis-
ter. This can be used to reduce the output delay.

Low/High2

READ Output Read strobe High
SA[14:0] Output Not used High

AHBSI 1) Input AHB slave input signals -
AHBSO 1) Output AHB slave output signals -
SDO SDCASN Output Not used. All signals are driven to inactive state. Low
1) See GRLIB IP Library User’s Manual
2) Polarity is selected with the oepol generic

Table 1714.Signal descriptions

Signal name Field Type Function Polarity
GRIP, Sep 2018, Version 2018.3 1458 www.cobham.com/gaisler

GRLIB IP Core

105.10 Library dependencies

Table 1715 shows libraries used when instantiating the core (VHDL libraries).

105.11 Component declaration

The core has the following component declaration.
component srctrl
 generic (
 hindex : integer := 0;
 romaddr : integer := 0;
 rommask : integer := 16#ff0#;
 ramaddr : integer := 16#400#;
 rammask : integer := 16#ff0#;;
 ioaddr : integer := 16#200#;
 iomask : integer := 16#ff0#;
 ramws : integer := 0;
 romws : integer := 2;
 iows : integer := 2;
 rmw : integer := 0;-- read-modify-write enable
 prom8en : integer := 0;
 oepol : integer := 0;
 srbanks : integer range 1 to 5 := 1;
 banksz : integer range 0 to 13:= 13;
 romasel : integer range 0 to 27:= 19
);
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 ahbsi : in ahb_slv_in_type;
 ahbso : out ahb_slv_out_type;
 sri : in memory_in_type;
 sro : out memory_out_type;
 sdo : out sdctrl_out_type
);
end component;

105.12 Instantiation

This example shows how the core can be instantiated.
The example design contains an AMBA bus with a number of AHB components connected to it
including the memory controller. The external memory bus is defined on the example designs port
map and connected to the memory controller. System clock and reset are generated by GR Clock Gen-
erator and Reset Generator.
Memory controller decodes default memory areas: PROM area is 0x0 - 0xFFFFFF and SRAM area is
0x40000000 - 0x40FFFFF. The 8-bit PROM mode is disabled. Two SRAM banks of size 64 Mbyte
are used and the fifth chip select is disabled.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;

Table 1715.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB signal definitions
GAISLER MEMCTRL Signals, component Memory bus signals definitions, component dec-

laration
GRIP, Sep 2018, Version 2018.3 1459 www.cobham.com/gaisler

GRLIB IP Core

use gaisler.pads.all; -- used for I/O pads
use gaisler.misc.all;
library esa;
use esa.memoryctrl.all;

entity srctrl_ex is
 port (
 clk : in std_ulogic;
 resetn : in std_ulogic;
 pllref : in std_ulogic;

 -- memory bus
 address : out std_logic_vector(27 downto 0); -- memory bus
 data : inout std_logic_vector(31 downto 0);
 ramsn : out std_logic_vector(4 downto 0);
 ramoen : out std_logic_vector(4 downto 0);
 rwen : inout std_logic_vector(3 downto 0);
 romsn : out std_logic_vector(1 downto 0);
 iosn : out std_logic;
 oen : out std_logic;
 read : out std_logic;
 writen : inout std_logic;
 brdyn : in std_logic;
 bexcn : in std_logic;
 modesel : in std_logic; --PROM width select
-- sdram i/f
 sdcke : out std_logic_vector (1 downto 0); -- clk en
 sdcsn : out std_logic_vector (1 downto 0); -- chip sel
 sdwen : out std_logic; -- write en
 sdrasn : out std_logic; -- row addr stb
 sdcasn : out std_logic; -- col addr stb
 sddqm : out std_logic_vector (7 downto 0); -- data i/o mask
 sdclk : out std_logic; -- sdram clk output
 sa : out std_logic_vector(14 downto 0); -- optional sdram address
 sd : inout std_logic_vector(63 downto 0) -- optional sdram data
);
end;

architecture rtl of srctrl_ex is

 -- AMBA bus (AHB and APB)
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

 -- signals used to connect memory controller and memory bus
 signal memi : memory_in_type;
 signal memo : memory_out_type;

 signal sdo : sdctrl_out_type;

 signal wprot : wprot_out_type; -- dummy signal, not used
 signal clkm, rstn : std_ulogic; -- system clock and reset

-- signals used by clock and reset generators
 signal cgi : clkgen_in_type;
 signal cgo : clkgen_out_type;

 signal gnd : std_ulogic;

begin

 -- AMBA Components are defined here ...

 -- Clock and reset generators
 clkgen0 : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1,
 tech => virtex2, sdinvclk => 0)
GRIP, Sep 2018, Version 2018.3 1460 www.cobham.com/gaisler

GRLIB IP Core

 port map (clk, gnd, clkm, open, open, sdclk, open, cgi, cgo);

 cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pllref <= pllref;

 rst0 : rstgen
 port map (resetn, clkm, cgo.clklock, rstn);

 -- Memory controller
srctrl0 : srctrl generic map (rmw => 1, prom8en => 0, srbanks => 2,
 banksz => 13, ramsel5 => 0)
 port map (rstn, clkm, ahbsi, ahbso(0), memi, memo, sdo);

 -- I/O pads driving data memory bus data signals
 datapads : for i in 0 to 3 generate
 data_pad : iopadv generic map (width => 8)
 port map (pad => data(31-i*8 downto 24-i*8),
 o => memi.data(31-i*8 downto 24-i*8),
 en => memo.bdrive(i),
 i => memo.data(31-i*8 downto 24-i*8));
 end generate;

 -- Alternative I/O pad instantiation with vectored enable instead
 datapads : for i in 0 to 3 generate
 data_pad : iopadvv generic map (width => 8)
 port map (pad => data(31-i*8 downto 24-i*8),
 o => memi.data(31-i*8 downto 24-i*8),
 en => memo.bdrive(31-i*8 downto 24-i*8),
 i => memo.data(31-i*8 downto 24-i*8));
 end generate;

 -- connect memory controller outputs to entity output signals
 address <= memo.address; ramsn <= memo.ramsn; romsn <= memo.romsn;
 oen <= memo.oen; rwen <= memo.wrn; ramoen <= memo.ramoen;
 writen <= memo.writen; read <= memo.read; iosn <= memo.iosn;
 sdcke <= sdo.sdcke; sdwen <= sdo.sdwen; sdcsn <= sdo.sdcsn;
 sdrasn <= sdo.rasn; sdcasn <= sdo.casn; sddqm <= sdo.dqm;

end;
GRIP, Sep 2018, Version 2018.3 1461 www.cobham.com/gaisler

GRLIB IP Core

106 SSRCTRL- 32-bit SSRAM/PROM Controller

106.1 Overview

The memory controller (SSRCTRL) is an 32-bit SSRAM/PROM/IO controller that interfaces external
Synchronous pipelined SRAM, PROM, and I/O to the AMBA AHB bus. The controller acts as a slave
on the AHB bus and has a configuration register accessible through an APB slave interface. Figure
279 illustrates the connection between the different devices.

The controller is configured by VHDL-generics to decode three address ranges: PROM, SSRAM and
I/O area. By default PROM area is mapped into address range 0x0 - 0x00FFFFFF; the SSRAM area is
mapped into address range 0x40000000 - 0x40FFFFFF; and the I/O area is mapped to 0x20000000 -
0x20FFFFFF.
One chip select is generated for each of the address areas. The controller generates both a common
write-enable signal (WRITEN) as well as four byte-write enable signals (WRN). The byte-write
enable signal enables byte and half-word write access to the SSRAM.
A signal (BDRIVE) is provided for enabling the bidirectional pads to which the data signals are con-
nected. The oepol generic is used to select the polarity of these enable signals. If output delay is an
issue, a vectored output enable signal (VBDRIVE) can be used instead. In this case, each pad has its
own enable signal driven by a separate register. A directive is placed on these registers so that they
will not be removed during synthesis (in case the output they drive is used in the design).
The SSRCTRL conteoller can optionally support 16-bit PROM/IO devices. This is enabled through
the BUS16 generic. A 32-bit access to the PROM or IO area will be translated into two 16-bit
accesses with incrementing address.

106.1.1 Endianness

The core is designed for big-endian systems.

Figure 279. 32-bit SSRAM/PROM/IO controller

CS
OE
WE

A
DPROM

CS
OE
BW

A
DSSRAM

SRO.RAMSN

SRO.RWN[3:0]

SRO.ROMSN
SRO.OEN

SRO.WRITEN

A D

MEMORY

SRI.A[27:0]

SRI.D[31:0]

CONTROLLER

AHB

AHB/APB

Bridge

APB

SRO.D[31:0]

CS
OE
WE

A
DIO

SRO.IOSN

WE
GRIP, Sep 2018, Version 2018.3 1462 www.cobham.com/gaisler

GRLIB IP Core

106.2 SSRAM/PROM waveform

Because the SSRAM (Synchronous pipelined SRAM) has a pipelined structure, the data output has a
latency of three clock cycles. The pipelined structure enables a new memory operation to be issued
each clock cycle. Figure 279 and figure 280 show timing diagrams for the SSRAM read and write
accesses.

As shown in the figure above, the controller always perform a burst read access to the memory. This
eliminates all data output latency except for the first word when a burst read operation is executed.

A write operation takes three clock cycles. On the rising edge of the first clock cycle, the address and
control signals are latched into the memory. On the next rising edge, the memory puts the data bus in
high-impedance mode. On the third rising edge the data on the bus is latched into the memory and the
write is complete. The controller can start a new memory (read or write) operation in the second clock
cycle. In figure 281 this is illustrated by a read operation following the write operation.
Due to the memory automatically putting the data bus in high-impedance mode when a write opera-
tion is performed, the output-enable signal (OEN) is held active low during all SSRAM accesses
(including write operations).

Figure 280. 32-bit SSRAM read cycle

read1

address

ramsn

data

oen

read3
clk

A0

D0

read0 read2

A1 A2 A3

D1 D3D2

Figure 281. 32-bit SSRAM write cycle

read

address

ramsn

oen

writen

clk

A1

write

A0

data D1 D0
GRIP, Sep 2018, Version 2018.3 1463 www.cobham.com/gaisler

GRLIB IP Core

106.2.1 PROM and IO access

For the PROM and I/O operations, a number of waitstates can be inserted to increase the read and
write cycle. The number of waitstates can be configured separately for the I/O and PROM address
ranges, through a programmable register mapped into the APB address space. After a reset the wait-
states for PROM area is set to its maximum (15). Figure 282 and figure 283 show timing diagrams for
the PROM read and write accesses.
Read accesses to 32-bit PROM and I/O has the same timing, see figure 282

The write access for 32-bit PROM and I/O can be seen in figure 283

The SSRCTRL conteoller can optionally support 16-bit PROM/IO devices. This is enabled through
the BUS16 generic. A 32-bit access to the PROM or IO area will be translated into two 16-bit
accesses with incrementing address. A 16-bit access will result in one bus access only. 8-bit accesses
are not allowed.
16-bit PROM/IO operation is enabled by writing “01” to the romwidth field in SSRAM control regis-
ter. At reset, the romwidth field is set by the MEMI.BWIDTH input signal.

Figure 282. 32-bit PROM/IO read cycle

address

ramsn/iosn

oen

clk

A0

read lead-out

data D0

Figure 283. 32-bit PROM/IO write cycle

address

ramsn/iosn

writen

clk

A0

write lead-out

data D0

lead-in
GRIP, Sep 2018, Version 2018.3 1464 www.cobham.com/gaisler

GRLIB IP Core

Read accesses to 16-bit PROM and I/O has the same timing, see figure 284

The write access for 32-bit PROM and I/O can be seen in figure 285

106.3 Registers

The core is programmed through registers mapped into APB address space.

Table 1716.SSRAM controller registers

APB address offset Register
0x00 Memory configuration register

Figure 284. 32-bit PROM/IO read cycle in 16-bit mode

address

ramsn/iosn

oen

clk

A0

data D0

A0+2

D0

Figure 285. 32-bit PROM/IO write cycle in 16-bit mode

address

ramsn/iosn

writen

clk

A0

lead-in lead-out

data D0

A0+2

D0

write

I/O enable

Prom write enable
Prom width

Figure 286. Memory configuration register

03478910111217181920232425262731
RWSWWSReserved

I/O width
I/O ready enable
BEXCN enable

I/O waitstates Reserved
2829

0xF0xF0 0 0

rwrwr rw r

10E WE R PW

RR R0 00000

rw rw rw r rw r r r rw
GRIP, Sep 2018, Version 2018.3 1465 www.cobham.com/gaisler

GRLIB IP Core

[3:0]: Prom read waitstates. Defines the number of waitstates during prom read cycles (“0000”=0, “0001”=1,...

“1111”=15).
[7:4]: Prom write waitstates. Defines the number of waitstates during prom write cycles (“0000”=0, “0001”=1,...

“1111”=15).
[9:8]: Prom width. Defines the data with of the prom area (“01”=16, “10”=32).

[10]: Reserved
[11]: Prom write enable. If set, enables write cycles to the prom area. NOT USED.
[17:12]: Reserved
[19]: I/O enable. If set, the access to the memory bus I/O area are enabled. NOT USED.
[23:20]: I/O waitstates. Defines the number of waitstates during I/O accesses (“0000”=0,

“0001”=1, “0010”=2,..., “1111”=15).
[25]: Bus error (BEXCN) enable. NOT USED.
[26]: Bus ready (BRDYN) enable. NOT USED.
[28:27]: I/O bus width. Defines the data with of the I/O area (“01”=16, “10”=32).

During power-up (reset), the PROM waitstates fields are set to 15 (maximum) and the PROM bus
width is set to the value of MEMI.BWIDTH. All other fields are initialized to zero.

106.4 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x00A. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

106.5 Configuration options

Table 1717 shows the configuration options of the core (VHDL generics).

Table 1717.Configuration options

Generic Function Allowed range Default
hindex AHB slave index 1 - NAHBSLV-1 0
pindex APB slave index 0 - NAPBSLV-1 0
romaddr ADDR field of the AHB BAR0 defining PROM address space.

Default PROM area is 0x0 - 0xFFFFFF.
0 - 16#FFF# 16#000#

rommask MASK field of the AHB BAR0 defining PROM address space. 0 - 16#FFF# 16#FF0#
ramaddr ADDR field of the AHB BAR1 defining RAM address space.

Default RAM area is 0x40000000-0x40FFFFFF.
0 - 16#FFF# 16#400#

rammask MASK field of the AHB BAR1 defining RAM address space. 0 -16#FFF# 16#FF0#
ioaddr ADDR field of the AHB BAR2 defining IO address space.

Default IO area is 0x20000000-0x20FFFFFF.
0 - 16#FFF# 16#200#

iomask MASK field of the AHB BAR2 defining IO address space. 0 -16#FFF# 16#FF0#
paddr ADDR field of the APB BAR configuration registers address

space.
0 - 16#FFF# 0

pmask MASK field of the APB BAR configuration registers address
space.

0 - 16#FFF# 16#FFF#

oepol Polarity of bdrive and vbdrive signals. 0=active low, 1=active
high

0 - 1 0

bus16 Enable support for 16-bit PROM/IO accesses 0 - 1 0
GRIP, Sep 2018, Version 2018.3 1466 www.cobham.com/gaisler

GRLIB IP Core

106.6 Signal descriptions

Table 1718 shows the interface signals of the core (VHDL ports).

Table 1718.Signal descriptions

Signal name Field Type Function Polarity
CLK N/A Input Clock -
RST N/A Input Reset Low
SRI DATA[31:0] Input Memory data High

BRDYN Input Not used -
BEXCN Input Not used -
WRN[3:0] Input Not used -
BWIDTH[1:0] Input PROM bus width at reset -
SD[63:0] Input Not used -
CB[7:0] Input Not used -
SCB[7:0] Input Not used -
EDAC Input Not used -
GRIP, Sep 2018, Version 2018.3 1467 www.cobham.com/gaisler

GRLIB IP Core
SRO ADDRESS[27:0] Output Memory address High
DATA[31:0] Output Memory data High
SDDATA[63:0] Output Not used -
RAMSN[7:0] Output SSRAM chip-select, only bit 0 is used Low
RAMOEN[7:0] Output Same as OEN Low
IOSN Output I/O chip-select Low
ROMSN[7:0] Output PROM chip-select, only bit 0 is used Low
OEN Output Output enable Low
WRITEN Output Write strobe Low
WRN[3:0] Output SSRAM byte write enable:

 WRN[0] corresponds to DATA[31:24],
 WRN[1] corresponds to DATA[23:16],
 WRN[2] corresponds to DATA[15:8],
 WRN[3] corresponds to DATA[7:0].

Low

MBEN[3:0] Output Not used Low
BDRIVE[3:0] Output Drive byte lanes on external memory bus. Con-

trols I/O-pads connected to external memory
bus:
 BDRIVE[0] corresponds to DATA[31:24],
 BDRIVE[1] corresponds to DATA[23:16],
 BDRIVE[2] corresponds to DATA[15:8],
 BDRIVE[3] corresponds to DATA[7:0].
Any BDRIVE[] signal can be used for CB[].

Low/High2

VBDRIVE[31:0] Output Identical to BDRIVE but has one signal for each
data bit. Every index is driven by its own regis-
ter. This can be used to reduce the output delay.

Low/High2

SVBDRIVE Output Not used -
READ Output Not used -
SA[14:0] Output Not used -
CB[7:0] Output Not used -
SCB[7:0] Output Not used -
VCDRIVE[7:0] Output Not used -
SVCDRIVE[7:0] Output Not used -
CE Output Not used -

AHBSI 1) Input AHB slave input signals -
AHBSO 1) Output AHB slave output signals -
APBI 1) Input APB slave input signals -
APBO 1) Output APB slave output signals -
1) See GRLIB IP Library User’s Manual
2) Polarity is selected with the oepol generic

Table 1718.Signal descriptions

Signal name Field Type Function Polarity
GRIP, Sep 2018, Version 2018.3 1468 www.cobham.com/gaisler

GRLIB IP Core

106.7 Library dependencies

Table 1719 shows libraries used when instantiating the core (VHDL libraries).

106.8 Component declaration

The core has the following component declaration.
component ssrctrl
 generic (
 hindex : integer := 0;
 pindex : integer := 0;
 romaddr : integer := 0;
 rommask : integer := 16#ff0#;
 ramaddr : integer := 16#400#;
 rammask : integer := 16#ff0#;
 ioaddr : integer := 16#200#;
 iomask : integer := 16#ff0#;
 paddr : integer := 0;
 pmask : integer := 16#fff#;

oepol : integer := 0;
bus16 : integer := 0

);
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 ahbsi : in ahb_slv_in_type;
 ahbso : out ahb_slv_out_type;
 apbi : in apb_slv_in_type;
 apbo : out apb_slv_out_type;
 sri : in memory_in_type;
 sro : out memory_out_type

);
end component;

106.9 Instantiation

This example shows how the core can be instantiated.
The example design contains an AMBA bus with a number of AHB components connected to it,
including the memory controller. The external memory bus is defined in the example designs port
map and connected to the memory controller. System clock and reset are generated by the Clk-
gen_ml401 Clock Generator and GR Reset Generator.
The memory controller decodes default memory areas: PROM area is 0x0 - 0x00FFFFFF, I/O-area is
0x20000000-0x20FFFFFF and RAM area is 0x40000000 - 0x40FFFFFF.
library ieee;
use ieee.std_logic_1164.all;
library grlib, techmap;
use grlib.amba.all;
use grlib.stdlib.all;
use techmap.gencomp.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.misc.all;

entity ssrctrl_ex is

Table 1719.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AHB signal definitions
GAISLER MEMCTRL Signals, component Memory bus signals definitions, component dec-

laration
GRIP, Sep 2018, Version 2018.3 1469 www.cobham.com/gaisler

GRLIB IP Core

 port (
 sys_rst_in: in std_ulogic;
 sys_clk: in std_ulogic; -- 100 MHz main clock
 sram_flash_addr : out std_logic_vector(22 downto 0);
 sram_flash_data : inout std_logic_vector(31 downto 0);
 sram_cen : out std_logic;
 sram_bw : out std_logic_vector (0 to 3);
 sram_flash_oe_n : out std_ulogic;
 sram_flash_we_n : out std_ulogic;
 flash_ce : out std_logic;
 sram_clk : out std_ulogic;
 sram_clk_fb: in std_ulogic;
 sram_mode : out std_ulogic;
 sram_adv_ld_n : out std_ulogic;
 sram_zz : out std_ulogic;
 iosn : out std_ulogic;
);
end;

architecture rtl of ssrctrl_ex is

-- Clock generator component
component clkgen_ml401
 generic (
 clk_mul : integer := 1;
 clk_div : integer := 1;
 freq : integer := 100000);-- clock frequency in KHz
 port (
 clkin : in std_logic;
 clk : out std_logic;-- main clock
 ddrclk : out std_logic;-- DDR clock
 ddrclkfb: in std_logic;-- DDR clock feedback
 ddrclk90 : out std_logic;-- DDR 90 clock
 ddrclk180 : out std_logic;-- 180 clock
 ddrclk270 : out std_logic;-- DDR clock
 ssrclk : out std_logic;-- SSRAM clock
 ssrclkfb: in std_logic;-- SSRAM clock feedback
 cgi : in clkgen_in_type;
 cgo : out clkgen_out_type);
end component;

-- signals used to connect memory controller and memory bus
signal memi : memory_in_type;
signal memo : memory_out_type;

-- AMBA bus (AHB and APB)
signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector := (others => apb_none);
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi : ahb_mst_in_type;
signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

-- Signals used by clock and reset generators
signal clkm, rstn, rstraw, srclkl : std_ulogic;
signal cgi : clkgen_in_type;
signal cgo : clkgen_out_type;
signal ddrclkfb, ssrclkfb, ddr_clkl, ddr_clknl : std_ulogic;

begin

 clkgen0 : clkgen_ml401 -- clock generator
 port map (sys_clk, clkm, ddr_clkl, ddrclkfb, open, ddr_clknl, open, sram_clk,
 sram_clk_fb, cgi, cgo);

 rst0 : rstgen-- reset generator
 port map (sys_rst_in, clkm, cgo.clklock, rstn, rstraw);

 -- AMBA Components are defined here ...
GRIP, Sep 2018, Version 2018.3 1470 www.cobham.com/gaisler

GRLIB IP Core

 -- Memory controller
 mctrl0 : ssrctrl generic map (hindex => 0, pindex => 0)
 port map (rstn, clkm, ahbsi, ahbso(0), apbi, apbo(0), memi, memo);

 -- connect memory controller outputs to entity output signals
 sram_adv_ld_n <= ’0’; sram_mode <= ’0’; sram_zz <= ’0’;
 sram_flash_addr <= memo.address(24 downto 2); sram_cen <= memo.ramsn(0);
 flash_ce <= memo.romsn(0); sram_flash_oe_n <= memo.oen; iosn <= memo.iosn;
 sram_bw <= memo.wrn; sram_flash_we_n <= memo.writen;

 -- I/O pad instantiation with vectored enable instead
 bdr : for i in 0 to 31 generate
 data_pad : iopad generic map (tech => padtech)
 port map (sram_flash_data(i), memo.data(i),
 memo.vbdrive(i), memi.data(i));
 end generate;

end;
GRIP, Sep 2018, Version 2018.3 1471 www.cobham.com/gaisler

GRLIB IP Core

107 SVGACTRL - VGA Controller Core

107.1 Overview

The core is a pixel based video controller (frame buffer), capable of displaying standard and custom
resolutions with variable bit depth and refresh rates. The video controller consists of a synchroniza-
tion unit, main control unit, FIFO unit and an AHB master as shown in the figure below.

107.2 Operation

The core uses external frame buffer memory located in the AHB address space. A frame on the dis-
play is created by fetching the pixel data from memory and sending it to the screen through an exter-
nal DAC using three 8-bit color vectors. To hide the AHB bus latency, the pixel data is buffered in a
FIFO inside the core. The start address of the frame buffer is specified in the Frame buffer Memory
Position register, and can be anywhere in the AHB address space. In addition to the color vectors the
video controller also generates HSYNC, VSYNC, CSYNC and BLANK signals control signals.
The video timing is programmable through the Video Length, Front Porch, Sync Length and Line
Length registers. The bit depth selection and enabling of the controller is done through the status reg-
ister. These values make it possible to display a wide range of resolutions and refresh rates.
The pixel clock can be either static or dynamic multiplexed. The frequency of the pixel clock is calcu-
lated as Horizontal Line Length * Vertical Line Length * refresh rate. When using a dynamically mul-
tiplexed clock, bits [5:4] in the status register are used to control the clock selector. The dynamic pixel
clocks should be defined in the core’s VHDL generics to allow software to read out the available pixel
clock frequencies.
The core can use bit depths of 8, 16 and 32 bits. When using 32 bits, bits[23:0] are used, when 16 bits
a [5,6,5] color scheme is used and when using 8 bits a color lookup table “CLUT” is used. The CLUT
has 256 positions, each 24 bits wide, and the 8 bit values read from memory are used to index the
CLUT to obtain the actual color.

107.3 DVI support

In order to initialize a DVI transmitter, an additional core such as the I2C master is normally required.
Additional glue logic may also be required since the interfaces of DVI transmitters differ between
manufacturers and product lines. Examples on how to interface the core to a DVI transmitter are
available in the GRLIB IP Library’s template designs.

VGA
Controller

Hsync, Vsync, Csync, Blank

Red [7:0]
Green[7:0]
Blue[7:0]

AHB
Master

AHB bus

APB bus

Video clocks

Clk sel.

Clk mux
GRIP, Sep 2018, Version 2018.3 1472 www.cobham.com/gaisler

GRLIB IP Core

107.4 Registers

The core is programmed through registers mapped into APB address space.

Table 1720.VGA controller registers

APB address offset Register
0x00 Status register
0x04 Video length register
0x08 Front Porch register
0x0C Sync Length register
0x10 Line Length register
0x14 Framebuffer Memory Position register
0x18 Dynamic Clock 0 register
0x1C Dynamic Clock 1 register
0x20 Dynamic Clock 2 register
0x24 Dynamic Clock 3 register
0x28 CLUT Access register
GRIP, Sep 2018, Version 2018.3 1473 www.cobham.com/gaisler

GRLIB IP Core

107.4.1

Table 1721.0x00 -STAT - Status register

Status Register

107.4.2

Table 1722.0x04 - VLEN - Video Length register

Video Length Register

107.4.3

Table 1723.0x08 - FPORCH - Front porch register

Front Porch Register

107.4.4

Table 1724.0x0C - SYNLEN - Sync length register

Sync Length Register

31 10 9 8 7 6 5 4 3 2 1 0

RESERVED VPOL HPOL CLKSEL BDSEL VR R RST EN

0 NR NR 0 NR 0 0 0 0

r rw rw rw rw r r rw rw

31:10 RESERVED
9 V polarity (VPOL)- Sets the polarity for the vertical sync pulse.
8 H polarity (HPOL) - Sets the polarity for the horizontal sync pulse.
7:6 Clock Select (CLKSEL) Clock selector when using dynamic pixelclock
5:4 Bit depth selector (BDSEL) - “01” = 8-bit mode; “10” = 16-bit mode; “11” = 32-bit mode
3 Vertical refresh (VR) - High during vertical refresh
2 RESERVED
1 Reset (RST) - Resets the core
0 Enable (EN) - Enables the core

31 16 15 0

VRES HRES

0 0

rw rw

31:16 Vertical screen resolution (VRES) - Vertical screen resolution in pixels -1
15:0 Horisontal screen resolution (HRES) - Horizontal screen resolution in pixels -1.

31 16 15 0

VPORCH HPORCH

0 0

rw rw

31:16 Vertical front porch (VPORCH) - Vertical front porch in pixels.
15:0 Horisontal front porch (HPORCH) - Horizontal front porch in pixels.

31 16 15 0

VPLEN HPLEN

0 0

rw rw

31:16 Vertical sync pulse length (VPLEN) - Vertical sync pulse length in pixels.
15:0 Horisontal sync pulse length (HPLEN) - Horizontal sync pulse length in pixels.
GRIP, Sep 2018, Version 2018.3 1474 www.cobham.com/gaisler

GRLIB IP Core

107.4.5

Table 1725.0x10 - LINLEN - Line Length register

Line Length Register

107.4.6

Table 1726.0x14 - FBUF - Framebuffer Memory Position register

Framebutter Memory Position Register

107.4.7

Table 1727.0x18 - DCLK0 - Dynamic clock 0 register

Dynamic Clock 0 Register

107.4.8

Table 1728.0x1C - DCLK1 - Dynamic clock 1 register

Dynamic Clock 1 Register

107.4.9

Table 1729.0x20 - DCLK2 - Dynamic clock 2 register

Dynamic Clock 2 Register

31 16 15 0

VLLEN HLLEN

0 0

rw rw

31:16 Vertical line length (VLLEN) - The length of the total line with front and back porch, sync pulse
length and vertical screen resolution.

15:0 Horisontal line length (HLLEN) - The length of the total line with front and back porch, sync pulse
length and horizontal screen resolution,

31 0

FMEM

0

rw

31:0 Framebuffer memory position (FMEM) - Holds the memory position of the framebuffer, must be
aligned on a 1 Kbyte boundary.

31 0

CLK0

*

r

31:0 Dynamic pixel clock 0 (CLK0) - Dynamic pixel clock defined in ps.

31 0

CLK1

*

r

31:0 Dynamic pixel clock 1 (CLK1) - Dynamic pixel clock defined in ps.

31 0

CLK2

*

r

31:0 Dynamic pixel clock 2 (CLK2) - Dynamic pixel clock defined in ps.
GRIP, Sep 2018, Version 2018.3 1475 www.cobham.com/gaisler

GRLIB IP Core

107.4.10

Table 1730.0x24 - DCLK3 - Dynamic clock 3 register

Dynamic Clock 3 Register

107.4.11

Table 1731.0x28 - CLUT - CLUT Access register

CLUTA Access Register

107.5 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x063. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

107.6 Implementation

107.6.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.
See also the documentation for the asyncrst VHDL generic.

31 0

CLK3

*

e

31:0 Dynamic pixel clock 3 (CLK3) - Dynamic pixel clock defined in ps.

31 24 23 16 15 8 7 0

CREG RED GREEN BLUE

NR NR NR NR

w w w w

31:24 Color lookup table register (CREG) - Color lookup table register to set.
23:16 Red color data (RED) - Red color data to set in the specified register.
15:8 Green color data (GREEN) - Green color data to set in the specified register.
7:0 Blue color data (BLUE) - Blue color data to set in the specified register.
GRIP, Sep 2018, Version 2018.3 1476 www.cobham.com/gaisler

GRLIB IP Core

107.7 Configuration options

Table 1732 shows the configuration options of the core (VHDL generics).

Table 1732.Configuration options

Generic name Function Allowed range Default
length Size of the pixel FIFO 3 - 1008 384
part Pixel FIFO part length 1 - 336 128
memtech Memory technology 0 - NTECH 0
pindex APB slave index 0 - NAPBSLV-1 0
paddr 12-bit MSB APB address 0 - 16#FFF# 0
pmask APB address mask 0 - 16#FFF# 16#FFF#
hindex AHB master index 0 - NAHBMST-1 0
hirq Interrupt line 0 - NAHBIRQ-1 0
clk0 Period of dynamic clock 0 in ps 0- 16#FFFFFFFF# 40000
clk1 Period of dynamic clock 1 in ps 0- 16#FFFFFFFF# 20000
clk2 Period of dynamic clock 2 in ps 0- 16#FFFFFFFF# 15385
clk3 Period of dynamic clock 3 in ps 0- 16#FFFFFFFF# 0
burstlen AHB burst length. The core will burst 2burstlen words. 2 - 8 8

ahbaccsz Determines the size of the AMBA accesses that the core
will use when fetching data from memory.

32 - AHBDW 32

asyncrst Use asynchronous reset for the VGA clock domain. If
this generic is set to 1 the core will use the arst input to
reset part of the registers in the VGA domain. Asynchro-
nous reset should be used if the VGA clock is not avail-
able during system reset. If this generic is 0 the arst input
is not used.

0 - 1 0
GRIP, Sep 2018, Version 2018.3 1477 www.cobham.com/gaisler

GRLIB IP Core

107.8 Signal descriptions

Table 1733 shows the interface signals of the core (VHDL ports).

107.9 Library dependencies

Table 1734 shows the libraries used when instantiating the core (VHDL libraries).

107.10 Instantiation

This example shows how the core can be instantiated.

library grlib;
use grlib.amba.all;
library Gaisler;
use gaiser.misc.all;
.
architecture rtl of test is
signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out;
signal vgao : apbvga_out_type;
signal ahbi : ahb_mst_in_type;
signal ahbo : ahb_mst_out_type;
signal clk_sel :std_logic_vector(1 downto 0));
signal clkmvga : std_logic;
begin
.
.

Table 1733.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input System clock -
VGACLK N/A Input Pixel clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
VGAO HSYNC Output Horizontal sync -

VSYNC Output Vertical sync -
COMP_SYNC Output Composite sync -
BLANK Output Blanking -
VIDEO_OUT_R[7:0] Output Video out, red. -
VIDEO_OUT_G[7:0] Output Video out, green. -
VIDEO_OUT_B[7:0] Output Video out, blue. -
BITDEPTH[1:0] Output Value of Status register’s BDSEL field -

AHBI * Input AHB master input signals -
AHBO * Output AHB master output signals -
CLK_SEL[1:0] N/A Output 2-bit clock selector -
ARST N/A Input Asynchronous reset input Low
* see GRLIB IP Library User’s Manual

Table 1734.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
GAISLER MISC Component, signals Component and signal definitions.
GRIP, Sep 2018, Version 2018.3 1478 www.cobham.com/gaisler

GRLIB IP Core

-- VGA Controller
 vga0 : svgactrl
 generic map(memtech => memtech, pindex => 6, paddr => 6, hindex => 6,
 clk0 => 40000, clk1 => 20000, clk2 => 15385, clk3 => 0)
 port map(rstn,clkm,clkmvga, apbi, apbo(6), vgao,ahbmi,ahbmo(6),clk_sel);
end;

107.11 Linux 2.6 driver

A video driver for the core is provided Snapgear Linux (-p27 and later). The proper kernel command
line options must be used for the driver to detect the core. Please see the SnapGear Linux for LEON
manual for further information.
GRIP, Sep 2018, Version 2018.3 1479 www.cobham.com/gaisler

GRLIB IP Core

108 SYNCIOTEST - Test block for synchronous I/O interfaces

108.1 Overview

This IP core is a helper block for instantiation into other IP cores, in order to simplify clock-to-out and
setup/hold production testing on ASICs. It needs to be embedded into the IP in order to use the same
registers as is used in the functional mode in order to get relevant timing measurement.
It currently has a few conditions on its use for implementation reasons:
• Number of inputs+bidirs needs to be 8 or more.
• Number of outputs needs to be at least 1

108.2 Operation

The modes are:
• Idle
• Output pseudo-random sequence on outputs and bidirs (pattern repeats after 255 cycles)
• Output toggle values between all-ones and all-zeros
• Output toggle between all-one, tristate, all-zero, tristate, ...
• Output toggle each bit in sequence "00101010" with other values first as all-one and then again

with other outputs as all-zero.
• Input same pseudo-random sequence as in output mode above. If the wrong data is received on a

byte lane, one of the outputs is set to flag an error. The PRNG is re-seeded with the input data
every cycle to make the test mode self synchronizing with the input stream.

The tmodeact output controls when the test mode is activated, when high the surrounding IP core
should mux in the dataout vector to the output registers and the tmodeoe signal to bidir output-enable
registers.
A simple safety scheme is implemented. An inverted copy of the mode vector must be supplied on the
top bits of the tmode input, if this is incorrect then no mode is activated. If the tmode signal is mapped
to a register in the IP core, it can scrub the field for accidental bit-flips by clearing it when the tmode-
act signal is low.

108.3 Implementation

108.3.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

108.4 Configuration options

Table 1735 shows the configuration options of the core (VHDL generics).

Table 1735.Configuration options

Generic name Function Allowed range Default
ninputs Number of inputs 1
noutputs Number of outputs 1
nbidir Number of bidirectional signals 1
dirmode Direction mode. 0=both, 1=in-only, 2=out-only 1
GRIP, Sep 2018, Version 2018.3 1480 www.cobham.com/gaisler

GRLIB IP Core

108.5 Signal descriptions

Table 1736 shows the interface signals of the core (VHDL ports).

108.6 Library dependencies

Table 1737 shows the libraries used when instantiating the core (VHDL libraries).

Table 1736.Signal descriptions

Signal name Field Type Function Active
CLK N/A Input Clock -
RSTN N/A Input Reset Low
DATAIN N/A Input Data input -
DATAOUT N/A Output Data output -
TMODE N/A Input Test mode High
TMODEACT N/A Output Test mode activated High
TMODEOE N/A Output Test mode output enable High
* see GRLIB IP Library User’s Manual

Table 1737.Library dependencies

Library Package Imported unit(s) Description
GRLIB DFTLIB Component, signals Component declaration
GRIP, Sep 2018, Version 2018.3 1481 www.cobham.com/gaisler

GRLIB IP Core

109 SYNCRAM - Single-port RAM generator

109.1 Overview

SYNCRAM is a single port RAM that maps on technology-specific RAM blocks. The core has a
common address bus, and separate data-in and data-out buses. All inputs are latched on the on the ris-
ing edge of clk. The read data appears on dataout directly after the clk rising edge.

109.2 Configuration options

Table 1738 shows the configuration options of the core (VHDL generics).

109.3 Scan test support

Scan test support will be enabled if the TESTEN generic is set to 1. This option will generate a regis-
ter (flip-flops) connected between the DATAIN and DATAOUT of the syncram module. In test mode,
DATAOUT is driven from the register rather then from the RAM outputs. This will allow both input
and output paths around the syncram to be testable by scan. The address bus and control signals are
xored with the DATAIN signal to also increase test coverage of those. Test mode is enabled by driving
the TESTIN(3) signals to 1. This signal should typically be connected to the global test enable signals
of the design.

Table 1738.Configuration options

Name Function Range Default
tech Technology selection 0 - NTECH 0
abits Address bits. Depth of RAM is 2abits-1 see table below -

dbits Data width see table below -
testen Enable bypass logic for scan testing 0 - 1 0
custombits Bits used by custom interface
pipeline Adds pipeline register on data outputs. Adds one clock

cycle latency
0 - 15 0

RAM

DataOut

Address, DataIn, Ctrl

Test Enable

Register

Figure 287. Scan test support

Clk
GRIP, Sep 2018, Version 2018.3 1482 www.cobham.com/gaisler

GRLIB IP Core

Table 1739 shows the supported technologies for the core.

Table 1739.Supported technologies

Tech name Technology RAM cell abit range dbit range
altera All Altera devices altsyncram unlimited unlimited
ihp15 IHP 0.25 sram2k (512x32) 2 - 9 unlimited
inferred Behavioral description Tool dependent unlimited unlimited
virtex Xilinx Virtex, VirtexE, Spartan2 RAMB4_Sn unlimited unlimited
virtex2, virtex4,
virtex5, spartan3,
spartan6, virtex7,
kintex7, artix7,
zynq7000, kintexu

Xilinx Virtex2/4/5/6,
Spartan3/3a/3e/6, 7-Series, Ultras-
cale

RAMB16_Sn unlimited unlimited

axcel / axdsp Actel AX, RTAX and RTAX-DSP RAM64K36 2 - 12 unlimited
proasic Actel Proasic RAM256x9SST 2 - 14 unlimited
proasic3 Actel Proasic3 ram4k9, ram512x18 2 - 12 unlimited
lattice Lattice XP/EC/ECP sp8ka 2 - 13 unlimited
memvirage Virage ASIC RAM hdss1_128x32cm4sw0

hdss1_256x32cm4sw0
hdss1_512x32cm4sw0
hdss1_1024x32cm8sw0

7 - 11 32

memartisan Artisan ASIC RAM sp_256x32m32
sp_512x32m32
sp_1kx32m32
sp_2kx32m32
sp_4kx32m32
sp_8kx32m32
sp_16kx32m32

8 - 14 32

memvirage90 Virage 90 nm ASIC RAM SPRAM_HS_32x30
SPRAM_HS_128x32
SPRAM_HS_256x32
SPRAM_HS_1024x32

2 - 10 128

eclipse Aeroflex/Quicklogic FPGA RAM128x18_25um
RAM256X9_25um
RAM512X4_25um
RAM1024X2_25um

2 - 10 unlimited

easic90 eASIC 90 nm Nextreme eram, bram 2 - 15 unlimited
easic45 eASIC 45 nm Nextreme2 bRAM, rFile unlimited unlimited
igloo2 /
smartfusion2

Microsemi IGLOO2 / SmartFusion2 RAM1K18 2 - 14 unlimited

rtg4 Microsemi RTG4 RAM1K18_RT 2 - 16 unlimited
GRIP, Sep 2018, Version 2018.3 1483 www.cobham.com/gaisler

GRLIB IP Core

109.4 Signal descriptions

Table 1740 shows the interface signals of the core (VHDL ports).

109.5 Library dependencies

Table 1741 shows libraries used when instantiating the core (VHDL libraries).

109.6 Component declaration

The core has the following component declaration.
library techmap;
use techmap.gencomp.all;

 component syncram
 generic (tech : integer := 0; abits : integer := 6; dbits : integer := 8);
 port (
 clk : in std_ulogic;
 address : in std_logic_vector((abits -1) downto 0);
 datain : in std_logic_vector((dbits -1) downto 0);
 dataout : out std_logic_vector((dbits -1) downto 0);
 enable : in std_ulogic;
 write : in std_ulogic;
 testin : in std_logic_vector(3 downto 0) := "0000");
 end component;

109.7 Instantiation

This example shows how the core can be instantiated.
library ieee;
use ieee.std_logic_1164.all;
library techmap;
use techmap.gencomp.all;
.

clk : std_ulogic;
address : std_logic_vector((abits -1) downto 0);
datain : std_logic_vector((dbits -1) downto 0);
dataout : std_logic_vector((dbits -1) downto 0);
enable : std_ulogic;
write : std_ulogic);

Table 1740.Signal descriptions

Signal name Field Type Function Active
CLK N/A Input Clock. All input signals are latched on the rising

edge of the clock.
-

ADDRESS N/A Input Address bus. Used for both read and write
access.

-

DATAIN N/A Input Data inputs for write data -
DATAOUT N/A Output Data outputs for read data -
ENABLE N/A Input Chip select High
WRITE N/A Input Write enable High
TESTIN Input Test inputs (see text) High

Table 1741.Library dependencies

Library Package Imported unit(s) Description
TECHMAP GENCOMP Constants Technology contants
GRIP, Sep 2018, Version 2018.3 1484 www.cobham.com/gaisler

GRLIB IP Core

ram0 : syncram generic map (tech => tech, abits => addrbits, dbits => dbits)
 port map (clk, addr, datain, dataout, enable, write);
GRIP, Sep 2018, Version 2018.3 1485 www.cobham.com/gaisler

GRLIB IP Core

110 SYNCRAMBW - Single-port RAM generator with byte enables

110.1 Overview

SYNCRAMBW implements a single port RAM with byte enables, using the GRLIB technology
wrapping for different target technologies. The core operates identically to SYNCRAM, with the
addition that each byte has a separate chip select (ENABLE) and write select (WRITE). The core is
provided in a generic configuration and also in configurations of 128, 156 and 256 bits, and the corre-
sponding entities are named SYNCRAMBW, SYNCRAM128BW, SYNCRAM156BW and SYN-
CRAM256BW. In the simplest case, the IP cores just instantiate several eight bit wide SYNCRAM
components. SYNCRAM128BW, SYNCRAM156BW and SYNCRAM256BW, used in GRLIB’s
Level-2 cache core, contain specialized maps for several technologies to more efficiently utilize
device resources.
Note that some SYNCRAM components may be missing from the library depending on the type of
GRLIB distribution.

110.2 Configuration options

Table 1742 shows the configuration options of the core (VHDL generics).

110.3 Scan test support

Scan test support will be enabled if the TESTEN generic is set to 1. This option will generate a regis-
ter (flip-flops) connected between the DATAIN and DATAOUT of the syncram module. In test mode,
DATAOUT is driven from the register rather then from the RAM outputs. This will allow both input
and output paths around the syncram to be testable by scan. The address bus and control signals are
xored with the DATAIN signal to also increase test coverage of those. Test mode is enaled by driving
the TESTIN(3) signals to 1. This signal should typically be connected to the global test enable signals
of the design.

Table 1742.Configuration options

Name Function Range Default
tech Technology selection 0 - NTECH 0
abits Address bits. Depth of RAM is 2abits-1 see table below -

testen Enable bypass logic for scan testing 0 - 1 0
custombits Bits used by custom interface
pipeline Adds pipeline register on data outputs. Adds one clock

cycle latency
0 - 15 0
GRIP, Sep 2018, Version 2018.3 1486 www.cobham.com/gaisler

GRLIB IP Core
110.4 Technology support

Table 1743 shows the supported technologies for the core.

To add support for a new technology, the following steps should be taken:
• Add technology-specific version for the RAM core in lib/techmap/TECH
• Instantiate the technology-specific RAM core in lib/techmap/maps/syncram256bw.vhd, and set

the has_sram256bw() constant to 1 for the specific technology:
constant has_sram256bw : tech_ability_type := (
virtex2 => 1, virtex4 => 1, virtex5 => 1, spartan3 => 1,
spartan3e => 1, spartan6 => 1, virtex6 => 1,
altera => 1, cyclone3 => 1, stratix2 => 1, stratix3 => 1,
tm65gpl => 0, others => 0);

See also syncrambw.vhd, syncram128bw.vhd and syncram156bw.vhd under lib/techmap/maps/ for
the corresponding SYNCRAM BW IP cores.

Table 1743.Supported technologies

Tech name Technology RAM cell abit range dbit range
altera All Altera devices altsyncram unlimited unlimited
inferred Behavioral description Tool dependent unlimited unlimited
virtex2, virtex4,
virtex5, spartan3,
spartan6, virtex7,
kintex7, artix7,
zynq7000, kintexu

Xilinx Virtex2/4/5/6,
Spartan3/3a/3e/6, 7-Series, Ultras-
cale

RAMB16_Sn unlimited unlimited

all others - syncram core with dwidth=8 tech depend. tech depend.

RAM

DataOut

Address, DataIn, Ctrl

Test Enable

Register

Figure 288. Scan test support

Clk
GRIP, Sep 2018, Version 2018.3 1487 www.cobham.com/gaisler

GRLIB IP Core

110.5 Signal descriptions

Table 1744 shows the interface signals of the core (VHDL ports).

110.6 Library dependencies

Table 1745 shows libraries used when instantiating the core (VHDL libraries).

110.7 Component declaration

The core has the following component declaration.
library techmap;
use techmap.gencomp.all;

 component syncram_bw128
 generic (tech : integer := 0; abits : integer := 6);
 port (
 clk : in std_ulogic;
 address : in std_logic_vector((abits -1) downto 0);
 datain : in std_logic_vector(127 downto 0);
 dataout : out std_logic_vector(127 downto 0);
 enable : in std_logic_vector(15 downto 0);
 write : in std_logic_vector(15 downto 0);
 testin : in std_logic_vector(3 downto 0) := "0000");
 end component;

 component syncram_bw256
 generic (tech : integer := 0; abits : integer := 6);
 port (
 clk : in std_ulogic;
 address : in std_logic_vector((abits -1) downto 0);
 datain : in std_logic_vector(255 downto 0);
 dataout : out std_logic_vector(255 downto 0);
 enable : in std_logic_vector(31 downto 0);
 write : in std_logic_vector(31 downto 0);
 testin : in std_logic_vector(3 downto 0) := "0000");
 end component;

110.8 Instantiation

This example shows how the core can be instantiated.
library ieee;

Table 1744.Signal descriptions

Signal name Field Type Function Active
CLK N/A Input Clock. All input signals are latched on the rising

edge of the clock.
-

ADDRESS N/A Input Address bus. Used for both read and write
access.

-

DATAIN N/A Input Data inputs for write data -
DATAOUT N/A Output Data outputs for read data -
ENABLE N/A Input Byte Chip select High
WRITE N/A Input Byte Write enable High
TESTIN Input Test inputs (see text) High

Table 1745.Library dependencies

Library Package Imported unit(s) Description
TECHMAP GENCOMP Constants Technology contants
GRIP, Sep 2018, Version 2018.3 1488 www.cobham.com/gaisler

GRLIB IP Core

use ieee.std_logic_1164.all;
library techmap;
use techmap.gencomp.all;
.

clk : std_ulogic;
address : std_logic_vector(9 downto 0);
datain : std_logic_vector(255 downto 0);
dataout : std_logic_vector(255 downto 0);
enable : std_logic_vector(31 downto 0);
write : std_logic_vector(31 downto 0);

ram0 : syncram generic map (tech => tech, abits => 10)
 port map (clk, addr, datain, dataout, enable, write);
GRIP, Sep 2018, Version 2018.3 1489 www.cobham.com/gaisler

GRLIB IP Core

111 SYNCRAM_2P - Two-port RAM generator

111.1 Overview

The two-port RAM generator has a one read port and one write port. Each port has a separate address
and data bus. All inputs are registered on the rising edge of clk. The read data appears on dataout
directly after the clk rising edge. Address width, data width and target technology is parametrizable
through generics.

111.2 Write-through operation

Write-through is supported if the function syncram_2p_write_through(tech) returns 1 for the target
technology, or if the wrfst generic is set to 1. If wrfst = 1, additional logic will be generated to detect
simultaneous read/write to the same memory location, and in that case bypass the written data to the
data outputs.

111.3 Conflicts

Some technologies will produce unpredictable results when a read and write operation occurs simulta-
neously to the same memory location. The function syncram_2p_dest_rw_collision(tech) returns 1 for
technologies that has this characteristic. If SYNCRAM_2P is implemented with sepclk = 0 then logic
will be included that disables the read enable signal, if needed, when a collision is detected. If the core
is implemented with sepclk = 1 (and syncram_2p_dest_rw_collision(tech) returns 1) then collision
avoidance must be handled by external logic.

111.4 Scan test support

Scan test support will be enabled if the TESTEN generic is set to 1. This option will generate a regis-
ter (flip-flops) connected between the DATAIN and DATAOUT of the syncram module. In test mode,
DATAOUT is driven from the register rather then from the RAM outputs. This will allow both input
and output paths around the syncram to be testable by scan. The address bus and control signals are
xored with the DATAIN signal to also increase test coverage of those. Test mode is enaled by driving
the TESTIN(3) signals to 1. This signal should typically be connected to the global test enable signals
of the design.

RAM

DataOut

Address, DataIn, Ctrl

Test Enable

Register

Figure 289. Scan test support

Clk
GRIP, Sep 2018, Version 2018.3 1490 www.cobham.com/gaisler

GRLIB IP Core

111.5 Configuration options

Table 1746 shows the configuration options of the core (VHDL generics).

Table 1747 shows the supported technologies for the core.

Table 1746.Configuration options

Name Function Range Default
tech Technology selection 0 - NTECH 0
abits Address bits. Depth of RAM is 2abits-1 see table below -

dbits Data width see table below -
sepclk If 1, separate clocks (rclk/wclk) are used for the two ports. If 0, wclk

is used for both ports.
0 - 1 0

wrfst Enable bypass logic for write-through operation. Can only be
enabled for sepclk = 0.

0 - 1 0

testen Enable bypass logic for scan testing 0 - 1 0
pipeline Adds pipeline registers on data outputs 0 - 15 0

Table 1747.Supported technologies

Tech name Technology RAM cell abit range dbit range
Inferred Behavioural description Tool dependent unlimited unlimited
altera All Altera devices altsyncram umlimited unlimited
virtex Xilinx Virtex, Virtex-E, Spartan-2 RAMB4_Sn 2 - 10 unlimited
virtex2, virtex4,
virtex5, spartan3,
spartan6, virtex7,
kintex7, artix7,
zynq7000, kintexu

Xilinx Virtex2/4/5/6,
Spartan3/3a/3e/6, 7-Series, Ultras-
cale

RAMB16_Sn 2 - 14 unlimited

axcel / axdsp Actel AX, RTAX and RTAX-DSP RAM64K36 2 - 12 unlimited
proasic Actel Proasic RAM256x9SST 2 - 14 unlimited
proasic3 Actel Proasic3 ram4k9, ram512x18 2 - 12 unlimited
lattice Lattice XP/EC/ECP dp8ka 2 - 13 unlimited
memvirage Virage ASIC RAM hdss2_64x32cm4sw0

hdss2_128x32cm4sw0
hdss2_256x32cm4sw0
hdss2_512x32cm4sw0

6 - 9 32

memartisan Artisan ASIC RAM rf2_256x32m4
rf2_512x32m4

8 - 9 32

eclipse Aeroflex/Quicklogic FPGA RAM128x18_25um
RAM256X9_25um
RAM512X4_25um
RAM1024X2_25um

2 - 10 unlimited

easic90 eASIC 90 nm Nextreme eram 2 - 12 unlimited
easic45 eASIC 45 nm Nextreme2 bRAM, rFile unlimited unlimited
igloo2 /
smartfusion2

Microsemi IGLOO2 / SmartFusion2 RAM1K18 2 - 14 unlimited

rtg4 Microsemi RTG4 RAM1K18_RT 2 - 16 unlimited
GRIP, Sep 2018, Version 2018.3 1491 www.cobham.com/gaisler

GRLIB IP Core

111.6 Signal descriptions

Table 1748 shows the interface signals of the core (VHDL ports).

111.7 Library dependencies

Table 1749 shows libraries used when instantiating the core (VHDL libraries).

111.8 Component declaration

The core has the following component declaration.
library techmap;
use techmap.gencomp.all;

component syncram_2p
 generic (tech : integer := 0; abits : integer := 6; dbits : integer := 8; sepclk : integer
:= 0);
 port (
 rclk : in std_ulogic;
 renable : in std_ulogic;
 raddress : in std_logic_vector((abits -1) downto 0);
 dataout : out std_logic_vector((dbits -1) downto 0);
 wclk : in std_ulogic;
 write : in std_ulogic;
 waddress : in std_logic_vector((abits -1) downto 0);
 datain : in std_logic_vector((dbits -1) downto 0);
 testin : in std_logic_vector(3 downto 0) := "0000");
 end component;

111.9 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;
library techmap;
use techmap.gencomp.all;

rclk : in std_ulogic;
renable : in std_ulogic;
raddress : in std_logic_vector((abits -1) downto 0);

Table 1748.Signal descriptions

Signal name Type Function Active
RCLK Input Read port clock -
RENABLE Input Read enable High
RADDRESS Input Read address bus -
DATAOUT Output Data outputs for read data -
WCLK Input Write port clock -
WRITE Input Write enable High
WADDRESS Input Write address -
DATAIN Input Write data -
TESTEN Input Test inputs (see text) High

Table 1749.Library dependencies

Library Package Imported unit(s) Description
TECHMAP GENCOMP Constants Technology contants
GRIP, Sep 2018, Version 2018.3 1492 www.cobham.com/gaisler

GRLIB IP Core

dataout : out std_logic_vector((dbits -1) downto 0);
wclk : in std_ulogic;
write : in std_ulogic;
waddress : in std_logic_vector((abits -1) downto 0);
datain : in std_logic_vector((dbits -1) downto 0));

ram0 : syncram_2p generic map (tech => tech, abits => addrbits, dbits => dbits)
 port map (rclk, renable, raddress, dataout, wclk, write, waddress, datain, enable,
write);
GRIP, Sep 2018, Version 2018.3 1493 www.cobham.com/gaisler

GRLIB IP Core

112 SYNCRAM_DP - Dual-port RAM generator

112.1 Overview

The dual-port RAM generator has two independent read/write ports. Each port has a separate address
and data bus. All inputs are latched on the on the rising edge of clk. The read data appears on dataout
directly after the clk rising edge. Address width, data width and target technology is parametrizable
through generics. Simultaneous write to the same address is technology dependent, and generally not
allowed.

112.2 Configuration options

Table 1750 shows the configuration options of the core (VHDL generics).

Table 1750.Configuration options

Name Function Range Default
tech Technology selection 0 - NTECH 0
abits Address bits. Depth of RAM is 2abits-1 see table below -

dbits Data width see table below -
testen Enable bypass logic for scan testing 0 - 1 0
custombits Bits used by custom interface
sepclk If 1, separate clocks are used for the two ports. 0 - 1 0
wrfst Enable bypass logic for write-through operation. Can

only be enabled for sepclk = 0.
0 - 1 0

pipeline Adds pipeline registers on data outputs 0 - 15 0
GRIP, Sep 2018, Version 2018.3 1494 www.cobham.com/gaisler

GRLIB IP Core

Table 1751 shows the supported technologies for the core.

112.3 Signal descriptions

Table 1752 shows the interface signals of the core (VHDL ports).

Table 1751.Supported technologies

Tech name Technology RAM cell abit range dbit range
altera All altera devices altsyncram unlimited unlimited
virtex Xilinx Virtex, Virtex-E, Spartan-2 RAMB4_Sn 2 - 10 unlimited
virtex2, virtex4,
virtex5, spartan3,
spartan6, virtex7,
kintex7, artix7,
zynq7000, kintexu

Xilinx Virtex2/4/5/6,
Spartan3/3a/3e/6, 7-Series, Ultras-
cale

RAMB16_Sn 2 - 14 unlimited

proasic3 Actel Proasic3 ram4k9 2 - 12 unlimited
lattice Lattice XP/EC/ECP dp8ka 2 - 13 unlimited
memvirage Virage ASIC RAM hdss2_64x32cm4sw0

hdss2_128x32cm4sw0
hdss2_256x32cm4sw0
hdss2_512x32cm4sw0

6 - 9 32

memartisan Artisan ASIC RAM dp_256x32m4
dp_512x32m4
dp_1kx32m4

8 - 10 32

memvirage90 Virage 90 nm ASIC RAM DPRAM_HS_256x20
DPRAM_HS_256x32

2 - 8 128

easic45 eASIC 45 nm Nextreme2 bRAM unlimited unlimited
igloo2 /
smartfusion2

Microsemi IGLOO2 / SmartFusion2 RAM1K18 2 - 14 unlimited

rtg4 Microsemi RTG4 RAM1K18_RT 2 - 16 unlimited

Table 1752.Signal descriptions

Signal name Field Type Function Active
CLK1 N/A Input Port1 clock -
ADDRESS1 N/A Input Port1 address -
DATAIN1 N/A Input Port1 write data -
DATAOUT1 N/A Output Port1 read data -
ENABLE1 N/A Input Port1 chip select High
WRITE1 N/A Input Port 1 write enable High
CLK2 N/A Input Port2 clock -
ADDRESS2 N/A Input Port2 address -
DATAIN2 N/A Input Port2 write data -
DATAOUT2 N/A Output Port2 read data -
ENABLE2 N/A Input Port2 chip select High
WRITE2 N/A Input Port 2 write enable High
GRIP, Sep 2018, Version 2018.3 1495 www.cobham.com/gaisler

GRLIB IP Core

112.4 Library dependencies

Table 1753 shows libraries used when instantiating the core (VHDL libraries).

112.5 Component declaration

The core has the following component declaration.
library techmap;
use techmap.gencomp.all;

component syncram_dp
 generic (tech : integer := 0; abits : integer := 6; dbits : integer := 8);
 port (
 clk1 : in std_ulogic;
 address1 : in std_logic_vector((abits -1) downto 0);
 datain1 : in std_logic_vector((dbits -1) downto 0);
 dataout1 : out std_logic_vector((dbits -1) downto 0);
 enable1 : in std_ulogic;
 write1 : in std_ulogic;
 clk2 : in std_ulogic;
 address2 : in std_logic_vector((abits -1) downto 0);
 datain2 : in std_logic_vector((dbits -1) downto 0);
 dataout2 : out std_logic_vector((dbits -1) downto 0);
 enable2 : in std_ulogic;
 write2 : in std_ulogic);
 end component;

112.6 Instantiation

This example shows how the core can be instantiated.
library ieee;
use ieee.std_logic_1164.all;
library techmap;
use techmap.gencomp.all;

clk1 : in std_ulogic;
address1 : in std_logic_vector((abits -1) downto 0);
datain1 : in std_logic_vector((dbits -1) downto 0);
dataout1 : out std_logic_vector((dbits -1) downto 0);
enable1 : in std_ulogic;
write1 : in std_ulogic;
clk2 : in std_ulogic;
address2 : in std_logic_vector((abits -1) downto 0);
datain2 : in std_logic_vector((dbits -1) downto 0);
dataout2 : out std_logic_vector((dbits -1) downto 0);
enable2 : in std_ulogic;
write2 : in std_ulogic);

ram0 : syncram_dp generic map (tech => tech, abits => addrbits, dbits => dbits)
 port map (clk1, address1, datain1, dataout1, enable1, write1, clk2, address2, datain2,
dataout2, enable2, write2);

Table 1753.Library dependencies

Library Package Imported unit(s) Description
TECHMAP GENCOMP Constants Technology contants
GRIP, Sep 2018, Version 2018.3 1496 www.cobham.com/gaisler

GRLIB IP Core

113 SYNCRAMFT - Single-port RAM generator with EDAC

113.1 Overview

SYNCRAMFT is a single port RAM that maps on technology-specific RAM blocks. The core has a
common address bus, and separate data-in and data-out buses. All inputs are latched on the on the ris-
ing edge of clk. The read data appears on dataout directly after the clk rising edge. SYNCRAMFT can
be configured to include logic for error detection or error detection and correction. This protection is
added either as logic connected to an internal SYNCRAM instantiation or by mapping directly to
technology specific memory resources with SECDED EDAC.

113.2 Configuration options

Table 1754 shows the configuration options of the core (VHDL generics).

113.3 Scan test support

See SYNCRAM documentation.

Table 1754.Configuration options

Name Function Range Default
tech Technology selection 0 - NTECH 0
abits Address bits. Depth of RAM is 2abits-1 - -

dbits Data width - -
ft Fault-tolerance

0: Standard SYNCRAM, no FT
1: byte parity DMR
2: true TMR
3: byte-parity, no DMR (only error detection)
4: SECDED - BCH
5: SECDED - target technology specific
Technology specific protection is further documented in
the GRLIB-FT User’s Manual (grlib-ft.pdf).

0 - 5 0

testen Enable bypass logic for scan testing 0 - 1 0
custombits Bits used by custom interface
pipeline Adds pipeline registers on data outputs.

Bits 3:0 of is a field that adds registers to the data outputs
of the RAM cell. This adds one additional clock cycle
before the read data is available on the SYNCRAM data
outputs.
Bits 7:4 is a field that adds a register after the error cor-
rection logic. This adds one additional clock cycle before
the read data is available on the data outputs. The error
signals are delayed in the same way as the data.
This has the following effect on data read latency
Pipeline value: added latency
0 : 0
1 : 1
16: 1
17: 2

0 - 255 0
GRIP, Sep 2018, Version 2018.3 1497 www.cobham.com/gaisler

GRLIB IP Core

113.4 Signal descriptions

Table 1755 shows the interface signals of the core (VHDL ports).

113.5 Library dependencies

Table 1756 shows libraries used when instantiating the core (VHDL libraries).

Table 1755.Signal descriptions

Signal name Field Type Function Active
CLK N/A Input Clock. All input signals are latched on the rising

edge of the clock.
-

ADDRESS N/A Input Address bus. Used for both read and write
access.

-

DATAIN N/A Input Data inputs for write data -
DATAOUT N/A Output Data outputs for read data -
ENABLE N/A Input Chip select High
WRITE N/A Input Write enable High
ERROR N/A Output Different behaviour depending on setting of

VHDL generic ft:
0 .. 3: Error output has one position per byte
4 .. 5: Error output has two positions: 0:CERR, 1:
UCERR. CERR is asserted for correctable error.
UCERR is asserted for uncorrectable errors and
overrides CERR.

High

TESTIN N/A Input Test inputs (see text) High
ERRINJ N/A Input Different behaviour depending on setting of

VHDL generic ft:
errinj bits (((dbits + 7)/8)*2-1 downto 0) are used
for byte parity DMR (FT = 1)
errinj cannot currently be used with FT = 2
(TMR)
errinj bits (((dbits + 7)/8)-1 downto 0) are used
for byte parity, no DMR (FT = 3)
errinj bits 6 downto 0 are used for SECDED -
BCH (FT = 4)
errinj bits used for technology specific EDAC
(FT = 5) depends on the target technology. For
Xilinx, bits 1:0 are used. 0: inject correctable
error. 1: inject uncorrectable error. For RTG4
only bit 0 is used and is used to disabled the
EDAC logic.

High

Table 1756.Library dependencies

Library Package Imported unit(s) Description
TECHMAP GENCOMP Constants Technology constants
GRIP, Sep 2018, Version 2018.3 1498 www.cobham.com/gaisler

GRLIB IP Core

114 TAP - JTAG TAP Controller

114.1 Overview

JTAG TAP Controller provides an Test Access Port according to IEEE-1149 (JTAG) Standard. The
core implements the Test Access Port signals, the synchronous TAP state-machine, a number of JTAG
data registers (depending on the target technology) and an interface to user-defined JTAG data regis-
ters.

114.2 Operation

114.2.1 Generic TAP Controller

The generic TAP Controller implements JTAG Test Access Point interface with signals TCK, TMS,
TDI and TDO, a synchronous state-machine compliant to the IEEE-1149 standard, JTAG instruction
register and two JTAG data registers: bypass and device identification code register. The core is capa-
ble of shifting and updating the JTAG instruction register, putting the device into bypass mode
(BYPASS instruction) and shifting out the devices identification number (IDCODE instruction).
User-defined JTAG test registers are accessed through user-defined data register interface.
The access to the user-define test data registers is provided through the user-defined data register
interface. The instruction in the TAP controller instruction register appears on the interface as well as
shift-in data and signals indicating that the TAP controller is in Capture-Data-Register, Shift-Data-
Register or Update-Data-Register state. Logic controlling user-defined data registers should observe
value in the instruction register and TAP controller state signals in order to capture data, shift data or
update data-registers.
JTAG test registers such as boundary-scan register can be interfaced to the TAP controller through the
user data register interface.

114.3 Technology specific TAP controllers

The core instantiates technology specific TAP controller for Altera and Xilinx devices.

114.4 Registers

The core implements three JTAG registers: instruction, bypass and device identification code register.

114.5 Vendor and device identifiers

The core does not have vendor and device identifiers since it does not have AMBA interfaces.

Figure 290. TAP controller block diagram

JTAG TAP
Controller

TCK
TMS

TDI

TDO

Interface to user-defined
data registersTRST

(*optional)
GRIP, Sep 2018, Version 2018.3 1499 www.cobham.com/gaisler

GRLIB IP Core

114.6 Implementation

114.6.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). If the VHDL generic trsten is non-zero then the corer makes use of asyn-
chronous reset. Otherwise synchronous reset is used.

114.7 Configuration options

Table 1757 shows the configuration options of the core (VHDL generics).

Table 1757.Configuration options

Generic Function Allowed range Default
tech Target technology 0 - NTECH 0
irlen Instruction register length (generic tech only) 2 - 8 4
idcode JTAG IDCODE instruction code(generic tech only) 0 - 255 9
manf Manufacturer id. Appears as bits 11-1 in TAP controllers device

identification register. Used only for generic technology. Default
is Cobham Gaisler manufacturer id.

0 - 2047 804

part Part number (generic tech only). Bits 27-12 in device id. reg. 0 - 65535 0
ver Version number (generic tech only). Bits 31-28 in device id. reg. 0-15 0
trsten Support optional TRST signal (generic tech only) 0 - 1 1
scantest Enable scan test support 0 - 1 0
oepol Polarity for TDOEN signal 0 - 1 1
tcknen Support externally inverted TCK signal (generic tech only) 0 - 1 0
GRIP, Sep 2018, Version 2018.3 1500 www.cobham.com/gaisler

GRLIB IP Core

114.8 Signal descriptions

Table 1758 shows the interface signals of the core (VHDL ports).

*) If the target technology is Xilinx or Altera the cores JTAG signals TCK, TCKN, TMS, TDI and
TDO are not used. Instead the dedicated FPGA JTAG pins are used. These pins are implicitly made
visible to the core through technology-specific TAP macro instantiation.

Table 1758.Signal declarations

Signal name Field Type Function Active
TRST N/A Input JTAG TRST signal* Low
TCK N/A Input JTAG clock* -
TMS N/A Input JTAG TMS signal* High
TDI N/A Input JTAG TDI signal* High
TDO N/A Output JTAG TDO signal* High
User-defined data register interface
TAPO_TCK N/A Output TCK signal High

TAPO_TDI N/A Output TDI signal High
TAPO_INST[7:0] N/A Output Instruction in the TAP Ctrl instruction register High
TAPO_RST N/A Output TAP Controller in Test-Logic_Reset state High
TAPO_CAPT N/A Output TAP Controller in Capture-DR state High
TAPO_SHFT N/A Output TAP Controller in Shift-DR state High
TAPO_UPD N/A Output TAP Controller in Update-DR state High
TAPO_XSEL1 N/A Output Xilinx User-defined Data Register 1 selected

(Xilinx tech only)
High

TAPO_XSEL2 N/A Output Xilinx User-defined Data Register 2 selected
(Xilinx tech only)

High

TAPI_EN1 N/A Input Enable shift-out data port 1 (TAPI_TDO1), when
disabled data on port 2 is used

High

TAPI_TDO1 N/A Input Shift-out data from user-defined register port 1 High
TAPI_TDO2 N/A Input Shift-out data from user-defined register port 2 High
TAPO_NINST N/A Output Instruction to be written into TAP Ctrl instruc-

tion register, only valid when TAPO_IUPD is
high. (Generic tech only)

High

TAPO_IUPD N/A Output TAP Controller in Update-IR state (Generic tech
only)

High

TAPO_TCKN N/A Outpu Inverted TCK signal High
Additional signals
TESTEN N/A Input Test mode enable signal High
TESTRST N/A Input Test mode reset signal Low
TESTOEN N/A Input Test mode output-enable control see oepol
TDOEN N/A Output JTAG TDO enable signal* see oepol
TCKN N/A Input Inverted clock in (if tcknen generic is set)
GRIP, Sep 2018, Version 2018.3 1501 www.cobham.com/gaisler

GRLIB IP Core

114.9 Library dependencies

Table 1759 shows libraries used when instantiating the core (VHDL libraries).

114.10 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library techmap;
use gaisler.gencomp.all;

entity tap_ex is
 port (
 clk : in std_ulogic;
 rst : in std_ulogic;

 -- JTAG signals
 tck : in std_ulogic;
 tms : in std_ulogic;
 tdi : in std_ulogic;
 tdo : out std_ulogic
);
end;

architecture rtl of tap_ex is

signal gnd : std_ulogic;

signal tapo_tck, tapo_tdi, tapo_rst, tapo_capt : std_ulogic;
signal tapo_shft, tapo_upd : std_ulogic;
signal tapi_en1, tapi_tdo : std_ulogic;
signal tapo_inst : std_logic_vector(7 downto 0);

begin

 gnd <= ‘0’;
 tckn <= not tck;

-- TAP Controller

 tap0 : tap (tech => 0)
 port map (rst, tck, tckn, tms, tdi, tdo, open, tapo_tck, tapo_tdi, tapo_inst,
 tapo_rst, tapo_capt, tapo_shft, tapo_upd, open, open,
 tapi_en1, tapi_tdo, gnd);

-- User-defined JTAG data registers

 ...

end;

Table 1759.Library dependencies

Library Package Imported unit(s) Description
TECHMAP GENCOMP Component TAP Controller component declaration
GRIP, Sep 2018, Version 2018.3 1502 www.cobham.com/gaisler

GRLIB IP Core

115 GRTM - CCSDS/ECSS Telemetry Encoder

115.1 Overview

The CCSDS/ECSS/PSS Telemetry Encoder implements part of the Data Link Layer, covering the
Protocol Sub-layer and the Frame Synchronization and Coding Sub-layer and part of the Physical
Layer of the packet telemetry encoder protocol.
The operation of the Telemetry Encoder is highly programmable by means of control registers. The
design of the Telemetry Encoder is highly configurable by means of VHDL generics.
The Telemetry Encoder comprises several encoders and modulators implementing the Consultative
Committee for Space Data Systems (CCSDS) recommendations, European Cooperation on Space
Standardization (ECSS) and the European Space Agency (ESA) Procedures, Standards and Specifica-
tions (PSS) for telemetry and channel coding. The Telemetry Encoder comprises the following:
• Packet Telemetry and/or Advanced Orbiting Systems (AOS) Encoder
• Reed-Solomon Encoder
• Turbo Encoder (future option)
• Pseudo-Randomiser (PSR)
• Non-Return-to-Zero Mark encoder (NRZ)
• Convolutional Encoder (CE)
• Split-Phase Level modulator (SP)
• Sub-Carrier modulator (SC)
• Clock Divider (CD)

Figure 291. Block diagram

GRTM

Pseudo-Randomiser

DMA

AMBA
APB
Slave

D
at

a
Li

nk
 P

ro
to

co
l S

ub
-L

ay
er

NRZ-M

Sub Carrier (BPSK)

SP-L

Convolutional

Reed-Solomon

Attached Sync Mark

C
od

in
g

Su
b-

La
ye

r

Clock
Divider

All Frame Generation

Master Channel

Idle Frame

FIFO Generation

Master Channel Mux

Virtual Channel Mux Generation
AMBA
AHB

Master

Virtual Channel & Master Channel

Octet clock domain

System clock domain

Transponder
clock domain

Frame Services

Telemetry output

A
M

B
A

 A
H

B

A
M

B
A

 A
P

B

OCF

FSH

Insert Zone

Virtual Channel
Generation

Ph
ys

ic
al

 L
ay

er
GRIP, Sep 2018, Version 2018.3 1503 www.cobham.com/gaisler

GRLIB IP Core

115.2 References

115.2.1 Documents

[CCSDS-131.0-B-2] TM Synchronization and Channel Coding
[CCSDS-132.0-B-1] TM Space Data Link Protocol
[CCSDS-133.0-B-1] Space Packet Protocol
[CCCSDS-732.0-B-2] AOS Space Data Link Protocol
[ECSS-E-ST-50-01C] Space engineering - Space data links - Telemetry synchronization and channel

coding
[ECSS-E-ST-50-03C] Space engineering - Space data links - Telemetry transfer frame protocol
[ECSS-E-ST-50-05C] Space engineering - Radio frequency and modulation
[PSS-04-103] Telemetry channel coding standard
[PSS-04-105] Radio frequency and modulation standard
[PSS-04-106] Packet telemetry standard

115.2.2 Acronyms and abbreviations

AOSAdvanced Orbiting Systems
ASMAttached Synchronization Marker
CCSDSConsultative Committee for Space Data Systems
CLCWCommand Link Control Word
CRCCyclic Redundancy Code
DMADirect Memory Access
ECSSEuropean Cooperation for Space Standardization
ESAEuropean Space Agency
FECFFrame Error Control Field
FHECFrame Header Error Control
FHPFirst Header Pointer
GF Galois Field
LFSRLinear Feedback Shift Register
MC Master Channel
NRZNon Return to Zero
OCFOperational Control Field
PSR Pseudo Randomiser
PSS Procedures, Standards and Specifications
RS Reed-Solomon
SP Split-Phase
TE Turbo Encoder
TM Telemetry
VC Virtual Channel
GRIP, Sep 2018, Version 2018.3 1504 www.cobham.com/gaisler

GRLIB IP Core

115.3 Layers

115.3.1 Introduction

The Packet Telemetry (or simply Telemetry or TM) and Advanced Orbiting System (AOS) standards
are similar in their format, with only some minor variations. The AOS part covered here is the down-
link or transmitter, not the uplink or receiver.
The relationship between these standards and the Open Systems Interconnection (OSI) reference
model is such that the OSI Data Link Layer corresponds to two separate layer, namely the Data Link
Protocol Sub-layer and Synchronization and Channel Coding Sub-Layer. The OSI Data Link Layer is
covered here.
The OSI Physical Layer is also covered here to some extended, as specified in [ECSS-E-ST-50-05C]
and [PSS-04-105].
The OSI Network Layer or higher layers are not covered here.

115.3.2 Data Link Protocol Sub-layer

The Data Link Protocol Sub-layer differs somewhat between TM and AOS. Differences are pointed
out where needed in the subsequent descriptions.
The following functionality is not implemented in the core:
• Packet Processing
• Bitstream Processing (applies to AOS only)
The following functionality is implemented in the core:
• Virtual Channel Generation (for Idle Frame generation only)
• Virtual Channel Multiplexing (for Idle Frame generation only)
• Master Channel Generation (applies to Packet Telemetry only)
• Master Channel Multiplexing (including Idle Frame generation)
• All Frame Generation

115.3.3 Synchronization and Channel Coding Sub-Layer

The Synchronization and Channel Coding Sub-Layer does not differ between TM and AOS.
The following functionality is implemented in the core:
• Attached Synchronization Marker
• Reed-Solomon coding
• Turbo coding (future option)
• Pseudo-Randomiser
• Convolutional coding

115.3.4 Physical Layer

The Physical Layer does not differ between TM and AOS.
The following functionality is implemented in the core:
• Non-Return-to-Zero modulation
• Split-Phase modulation
• Sub-Carrier modulation
GRIP, Sep 2018, Version 2018.3 1505 www.cobham.com/gaisler

GRLIB IP Core

115.4 Data Link Protocol Sub-Layer

115.4.1 Physical Channel

The configuration of a Physical Channel covers the following parameters:
• Transfer Frame Length (in number of octets)
• Transfer Frame Version Number
Note that there are other parameters that need to be configured for a Physical Channel, as listed in sec-
tion 115.4.8, covering the All Frame Generation functionality.
The Transfer Frame Length can be programmed by means of the DMA length register.
The Transfer Frame Version Number can be programmed by means of a register, and can take one of
two legal values: 00b for Telemetry and 01b for AOS.

115.4.2 Virtual Channel Frame Service

The Virtual Channel Frame Service is implemented by means of a DMA interface, providing the user
with a means for inserting Transfer Frames into the Telemetry Encoder. Transfer Frames are automat-
ically fetched from memory, for which the user configures a descriptor table with descriptors that
point to each individual Transfer Frame. For each individual Transfer Frame the descriptor also pro-
vides means for bypassing functions in the Telemetry Encoder. This includes the following:
• Virtual Channel Counter generation can be enabled in the Virtual Channel Generation function

(this function is normally only used for Idle Frame generation but can be used for the Virtual
Channel Frame Service when sharing a Virtual Channel)

• Master Channel Counter generation can be bypassed in the Master Channel Generation function
(TM only)

• Frame Secondary Header (FSH) generation can be bypassed in the Master Channel Generation
function (TM only)

• Operational Control Field (OCF) generation can be bypassed in the Master Channel Generation
function (TM only)

• Frame Error Header Control (FECH) generation can be bypassed in the All Frame Generation
function (AOS only)

• Insert Zone (IZ) generation can be bypassed in the All Frame Generation function (AOS only)
• Frame Error Control Field (FECF) generation can be bypassed in the All Frame Generation func-

tion
• A Time Strobe can be generated for the Transfer Frame.
Note that the above features can only be bypassed for each Transfer Frame, the overall enabling of the
features is done for the corresponding functions in the Telemetry Encoder, as described in the subse-
quent sections.
The detailed operation of the DMA interface is described in section 115.8.

115.4.3 Virtual Channel Generation

The Virtual Channel Generation function is used to generate the Virtual Channel Counter for Idle
Frames as described hereafter. The function can however also be enabled for any Transfer Frame
inserted via the Virtual Channel Frame Service described above, allowing a Virtual Channel to be
shared between the two services. In this case the Virtual Channel Counter, the Extended Virtual Chan-
nel Counter (only for TM, as defined for ECSS and PSS, including the complete Transfer Frame Sec-
ondary Header) and the Virtual Channel Counter Cycle (only for AOS) fields will be inserted and
incremented automatically when enabled as described hereafter.
GRIP, Sep 2018, Version 2018.3 1506 www.cobham.com/gaisler

GRLIB IP Core

115.4.4 Virtual Channel Multiplexing

The Virtual Channel Multiplexing Function is used to multiplex Transfer Frames of different Virtual
Channels of a Master Channel. Virtual Channel Multiplexing in the core is performed between two
sources: Transfer Frames provided through the Virtual Channel Frame Service and Idle Frames. Note
that multiplexing between different Virtual Channels is assumed to be done as part of the Virtual
Channel Frame Service outside the core.
The Virtual Channel Frame Service user interface is described above. The Idle Frame generation is
described hereafter.
Idle Frame generation can be enabled and disabled by means of a register. The Spacecraft ID to be
used for Idle Frames is programmable by means of a register. The Virtual Channel ID to be used for
Idle Frames is programmable by means of a register.
Master Channel Counter generation for Idle Frames can be enabled and disabled by means of a regis-
ter (only for TM). Note that it is also possible to generate the Master Channel Counter field as part of
the Master Channel Generation function described in the next section. When Master Channel Counter
generation is enabled for Idle Frames, then the generation in the Master Channel Generation function
is bypassed.
The Virtual Channel Counter generation for Idle Frames is always enabled (both for TM and AOS)
and generated in the Virtual Channel Generation function described above.
Extended Virtual Channel Counter generation for Idle Frames can be enabled and disabled by means
of a register (only for TM, as defined for ECSS and PSS). This includes the complete Transfer Frame
Secondary Header.
Virtual Channel Counter Cycle generation for Idle Frames can be enabled and disabled by means of a
register (only for AOS).
If Frame Secondary Header generation is enabled in the Master Channel Generation function
described in the next section, it can be bypassed for Idle Frames, programmable by means of a regis-
ter. This allows VC_FSH or MC_FSH realization.
If Operation Control Field generation is enabled in the Master Channel Generation function described
in the next section, it can be bypassed for Idle Frames, programmable by means of a register. This
allows VC_OCF or MC_OCF realization.

115.4.5 Master Channel Generation

The Master Channel Counter can be generated for all frames on a master channel (only for TM). It can
be can be enabled and disabled by means of a register. The generation can also be bypassed for Idle
Frames or Transfer Frames provided via the DMA interface.
The Frame Secondary Header (FSH) can be generated from a 128-bit register (only for TM). This can
be done for all frames on an master channel (MC_FSH) or be bypassed for Idle Frames or Transfer
Frames provided via the DMA interface, effectively implementing FSH on a per virtual channel basis
(VC_FSH). The FSH length is programmable by means of a register.
The Operational Control Field (OCF) can be generated from a 32-bit register. This can be done for all
frames on an master channel (MC_OCF) or be bypassed for Idle Frames or Transfer Frames provided
via the DMA interface, effectively implementing OCF on a per virtual channel basis (VC_OCF).

115.4.6 Master Channel Frame Service

The Master Channel Frame Service user interface is equivalent to the previously described Virtual
Channel Frame Service user interface, using the same DMA interface. The interface can thus be used
for inserting both Master Channel Transfer Frame and Virtual Channel Transfer Frames.
GRIP, Sep 2018, Version 2018.3 1507 www.cobham.com/gaisler

GRLIB IP Core

115.4.7 Master Channel Multiplexing

The Master Channel Multiplexing Function is used to multiplex Transfer Frames of different Master
Channels of a Physical Channel. Master Channel Multiplexing is performed between three sources:
Master Channel Generation Service, Master Channel Frame Service and Idle Frames.
Bypassing all the functionality of the Master Channel Generation functionality described above effec-
tively establishes the master channel frame service. The same holds for the Idle Frame generation
described above, allowing the core to generate Idle Frame on the level of the Physical Channel.

115.4.8 All Frame Generation

The All Frame Generation functionality operates on all transfer frames of a Physical Channel. Each of
the individual functions can be bypassed for each frame coming from the DMA interface or idle frame
generation functionality.
The Frame Header Error Control (FHEC) generation can be enabled and disabled by means of a regis-
ter (AOS only).
The Insert Zone can be generated from a 128-bit register (only for AOS). This can be done for all
frames on an physical channel (MC_FSH) or be bypassed for Idle Frames or Transfer Frames pro-
vided via the DMA interface. The Insert Zone length is programmable by means of a register. Note
that the Insert Zone and Frame Secondary Header functionality share the same resources, since they
cannot be used simultaneously for a Physical Channel.
Frame Error Control Field (FECF) generation can be enabled and disabled by means of a register.

115.5 Synchronization and Channel Coding Sub-Layer

115.5.1 Attached Synchronization Marker

The 32-bit Attached Synchronization Marker is placed in front of each Transfer Frame as per
[CCSDS-131.0-B-2] and [ECSS-E-ST-50-03C].
An alternative Attached Synchronization Marker for embedded data streams can also be used, its
enabling and bit pattern being programmable via a configuration register.

115.5.2 Reed-Solomon Encoder

The CCSDS recommendation [CCSDS-131.0-B-2] and ECSS standard [ECSS-E-ST-50-03C] specify
Reed-Solomon codes, one (255, 223) code and one (255, 239) code. The ESA PSS standard [PSS013]
only specifies the former code. Although the definition style differs between the documents, the (255,
223) code is the same in all three documents. The definition used in this document is based on the PSS
standard [PSS013].
The Reed-Solomon Encoder implements both codes.
The Reed-Solomon encoder is compliant with the coding algorithms in [CCSDS-131.0-B-2] and
[ECSS-E-ST-50-03C]:
• there are 8 bits per symbol;
• there are 255 symbols per codeword;
• the encoding is systematic:
• for E=8 or (255, 239), the first 239 symbols transmitted are information symbols, and the last 16

symbols transmitted are check symbols;
• for E=16 or (255, 223), the first 223 symbols transmitted are information symbols, and the last 32

symbols transmitted are check symbols;
• the E=8 code can correct up to 8 symbol errors per codeword;
GRIP, Sep 2018, Version 2018.3 1508 www.cobham.com/gaisler

GRLIB IP Core

• the E=16 code can correct up to 16 symbol errors per codeword;
• the field polynomial is

• the code generator polynomial for E=8 is

for which the highest power of x is transmitted first;
• the code generator polynomial for E=16 is

for which the highest power of x is transmitted first;
• interleaving is supported for depth I = {1 to 8}, where information symbols are encoded as I

codewords with symbol numbers i + j*I belonging to codeword i {where 0  i < I and 0  j <
255};

• shortened codeword lengths are supported;
• the input and output data from the encoder are in the representation specified by the following

transformation matrix Tesa, where i0 is transferred first

• the following matrix T-1
esa specifying the reverse transformation

• the Reed-Solomon output is non-return-to-zero level encoded.
The Reed-Solomon Encoder encodes a bit stream from preceding encoders and the resulting symbol
stream is output to subsequent encoder and modulators. The encoder generates codeblocks by receiv-
ing information symbols from the preceding encoders which are transmitted unmodified while calcu-
lating the corresponding check symbols which in turn are transmitted after the information symbols.
The check symbol calculation is disabled during reception and transmission of unmodified data not

f esa x  x8 x6 x4 x3 x2 x 1+ + + + + +=

gesa x  x i+ 
i 120=

135

 g j x j
j 0=

16

= =

gesa x  x i+ 
i 112=

143

 g j x j
j 0=

32

= =

0 1 2 3 4 5 6 7 7 6 5 4 3 2 1 0

0 0 1 1 0 1 1 1
0 1 0 1 1 1 1 1
1 0 0 0 0 1 1 1
0 0 0 0 1 0 0 1
0 0 1 1 1 1 1 1
0 0 1 0 1 0 1 1
0 1 1 1 1 0 0 1
0 1 1 1 1 0 1 1

=

7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7=

1 1 1 0 1 1 0 1
0 1 0 1 1 1 1 1
0 0 0 1 0 1 1 1
0 1 0 1 1 0 1 0
1 0 0 0 1 0 0 0
0 1 0 1 0 1 1 0
0 0 0 0 0 0 1 1
1 0 0 1 1 0 0 0



GRIP, Sep 2018, Version 2018.3 1509 www.cobham.com/gaisler

GRLIB IP Core

related to the encoding. The calculation is independent of any previous codeblock and is perform cor-
rectly on the reception of the first information symbol after a reset.
Each information symbol corresponds to an 8 bit symbol. The symbol is fed to a binary network in
which parallel multiplication with the coefficients of a generator polynomial is performed. The prod-
ucts are added to the values contained in the check symbol memory and the sum is then fed back to
the check symbol memory while shifted one step. This addition is performed octet wise per symbol.
This cycle is repeated until all information symbols have been received. The contents of the check
symbol memory are then output from the encoder. The encoder is based on a parallel architecture,
including parallel multiplier and adder.
The encoder can be configured at compile time to support only the E=16 (255, 223) code, only the
E=8 (255, 239) code, or both. This is done with the reed VHDL generic. Only the selected coding
schemes are implemented. The choice between the E=16 and E=8 coding can be performed during
operation by means of a configuration register.
The maximum number of supported interleave depths Imax is selected at compile time with the reed-
depth VHDL generic, the range being 1 to 8. For a specific instantiation of the encoder, the choice of
any interleave depth ranging from 1 to the chosen Imax is supported during operation. The area of the
encoder is minimized, i.e. logic required for a greater interleave depth than Imax is not unnecessarily
included.
The interleave depth is chosen during operation by means of a configuration register.

115.5.3 Pseudo-Randomiser

The Pseudo-Randomiser (PSR) generates a bit sequence according to [CCSDS-131.0-B-2] and
[ECSS-E-ST-50-03C] which is xor-ed with the data output of preceding encoders. This function
allows the required bit transition density to be obtained on a channel in order to permit the receiver on
ground to maintain bit synchronization.
The polynomial for the Pseudo-Randomiser is h (x) = x8+x7+x5+x3+1 and is implemented as a Fibo-
nacci version (many-to-one implementation) of a Linear Feedback Shift Register (LFSR). The regis-
ters of the LFSR are initialized to all ones between Transfer Frames. The Attached Synchronization
Marker (ASM) is not effected by the encoding.

115.5.4 Convolutional Encoder

The Convolutional Encoder (CE) implements two convolutional encoding schemes. The ESA PSS
standard [PSS-04-103] specifies a basic convolutional code without puncturing. This basic convolu-
tional code is also specified in the CCSDS recommendation [CCSDS-131.0-B-2] and ECSS standard
[ECSS-E-ST-50-03C], which in addition specifies a punctured convolutional code.
The basic convolutional code has a code rate of 1/2, a constraint length of 7, and the connection vec-
tors G1 = 1111001b (171 octal) and G2 = 1011011b (133 octal) with symbol inversion on output path,
where G1 is associated with the first symbol output.
The punctured convolutional code has a code rate of 1/2 which is punctured to 2/3, 3/4, 5/6 or 7/8, a
constraint length of 7, and the connection vectors G1 = 1111001b (171 octal) and G2 = 1011011b (133
octal) without any symbol inversion. The puncturing and output sequences are defined in [CCSDS-

x8 x7 x6 x5 x4 x3 x2 x1

data in data out

initialise to all zero

Figure 292. Pseudo-randomiser
GRIP, Sep 2018, Version 2018.3 1510 www.cobham.com/gaisler

GRLIB IP Core

131.0-B-2]. The encoder also supports rate 1/2 unpunctured coding with aforementioned connection
vectors and no symbol inversion.

115.6 Physical Layer

115.6.1 Non-Return-to-Zero Mark encoder

The Non-Return-to-Zero Mark encoder (NRZ) encodes differentially a bit stream from preceding
encoders according to [ECSS-E-ST-50-05C]. The waveform is shown in figure 295
Both data and the Attached Synchronization Marker (ASM) are affected by the coding. When the
encoder is not enabled, the bit stream is by default non-return-to-zero level encoded.

115.6.2 Split-Phase Level modulator

The Split-Phase Level modulator (SP) modulates a bit stream (output symbols) from preceding
encoders according (input symbols) to [ECSS-E-ST-50-05C]. The waveform is shown in figure 296.
Both data and the Attached Synchronization Marker (ASM) are effected by the modulator. The modu-
lator will increase the output bit rate with a factor of two.

x6 x5 x4 x3 x2 x1data in data out

1

2

G1

G2

data out G1

data out G2

Figure 293. Unpuctured convolutional encoder

x6 x5 x4 x3 x2 x1data in data out

G1

G2

Puncture

data out G1

data out G2

Figure 294. Punctured convolutional encoder

Input symbol:

NRZ-L

NRZ-M

1 1 1 10 0 0 0

Figure 295. NRZ-L and NRZ-M waveform
GRIP, Sep 2018, Version 2018.3 1511 www.cobham.com/gaisler

GRLIB IP Core
115.6.3 Sub-Carrier modulator

The Sub-Carrier modulator (SC) modulates a bit stream (output symbols) from preceding encoders
according (input symbols) to [ECSS-E-ST-50-05C], which is Binary Phase Shift Key modulation
(BPSK) or Phase Shift Key Square.
The sub-carrier modulation frequency is programmable. The symbol rate clock be divided to a degree
215. The divider can be configured during operation to divide the symbol rate clock frequency from 1/
2 to 1/215. The phase of the sub-carrier is programmable, selecting which phase 0º or 180º should cor-
respond to a logical one on the input.

115.6.4 Clock Divider

The Clock Divider (CD) provides clock enable signals for the telemetry and channel encoding chain.
The clock enable signals are used for controlling the bit rates of the different encoder and modulators.
The source for the bit rate frequency is the dedicated bit rate clock input. The bit rate clock input can
be divided to a degree 215. The divider can be configured during operation to divide the bit rate clock
frequency from 1/1 to 1/215. In addition, the Sub-Carrier modulator can divide the above resulting
clock frequency from 1/2 to 1/215. The divider in the sub-carrier modulator can be used without
enabling actual sub-carrier modulation, allowing division up to 1/230.
The bit rate frequency is based on the output frequency of the last encoder in a coding chain, except
for the sub-carrier modulator. No actual clock division is performed, since clock enable signals are
used. No clock multiplexing is performed in the core.
The Clock Divider (CD) supports clock rate increases for the following encoders and rates:
• Convolutional Encoder (CE), 1/2, 2/3, 3/4, 5/6 and 7/8;
• Split-Phase Level modulator (SP-L), rate 1/2;
• Sub-Carrier modulator (SC), rate 1/2 to 1/215.
The resulting symbol rate and telemetry rate are depended on what encoders and modulators are
enabled. The following variables are used in the tables hereafter: f = input bit frequency, n = SYM-
BOLRATE+1 (GRTM physical layer register field +1), and m = SUBRATE+1 (physical layer register
field +1), c = convolutional coding rate {1/2, 2/3, 3/4, 5/6, 7/8) (see CERATE field in GRTM coding
sub-layer register).

Table 1760.Data rates without sub-carrier modulation (SUB=0)

Coding &
Modulation

Telemetry
rate

Convolutional
rate

Split-Phase
rate

Sub-carrier
frequency

Output symbol
rate

Output clock
frequency

- f / n / m - - - f / n / m f / n / m
CE (f / n / m) * c f / n / m - - f / n / m f / n / m
SP-L f / n / m / 2 - f / n / m - f / n / m f / n / m
CE + SP-L (f / n / m / 2) * c f / n / m / 2 f / n / m - f / n / m f / n / m
For n = 1, no output symbol clock is generated, i.e. SYMBOLRATE register field equals 0.
m should be an even number, i.e. SUBRATE register field should be uneven and > 0 to generate an output symbol clock with 50% duty cycle.
If m > 1 then also n must be > 1, i.e. if SUBRATE register field is > 0 then SYMBOLRATE register field must be > 0.

Input symbol:

SP-L

1 1 1 10 0 0 0

Figure 296. SP-L waveform
GRIP, Sep 2018, Version 2018.3 1512 www.cobham.com/gaisler

GRLIB IP Core
115.7 Connectivity

The output from the Packet Telemetry and AOS encoder can be connected to:
• Reed-Solomon encoder
• Pseudo-Randomiser
• Non-Return-to-Zero Mark encoder
• Convolutional encoder
• Split-Phase Level modulator
• Sub-Carrier modulator

The input to the Reed-Solomon encoder can be connected to:
• Packet Telemetry and AOS encoder
The output from the Reed-Solomon encoder can be connected to:
• Pseudo-Randomiser
• Non-Return-to-Zero Mark modulator
• Convolutional encoder
• Split-Phase Level modulator
• Sub-Carrier modulator

The input to the Pseudo-Randomiser (PSR) can be connected to:
• Packet Telemetry and AOS encoder
• Reed-Solomon encoder
The output from the Pseudo-Randomiser (PSR) can be connected to:
• Non-Return-to-Zero Mark modulator
• Convolutional encoder
• Split-Phase Level modulator
• Sub-Carrier modulator

The input to the Non-Return-to-Zero Mark encoder (NRZ) can be connected to:
• Packet Telemetry and AOS encoder
• Reed-Solomon encoder
• Pseudo-Randomiser

Table 1761.Data rates with sub-carrier modulation (SUB=1)

Coding &
Modulation

Telemetry
rate

Convolutional
rate

Split-Phase
rate

Sub-carrier
frequency

Output symbol
rate 1

Output clock
frequency

SC f / n / m - - f / n / 2 f / n f / n
CE + SC (f / n / m) * c f / n / m - f / n / 2 f / n f / n
SP-L+ SC f / n / m / 2 - f / n / m f / n / 2 f / n f / n
CE + SP-L + SC (f / n / m / 2) * c f / n / m / 2 f / n / m f / n / 2 f / n f / n
n = 1 or m = 1 are invalid settings for sub-carrier modulation, i.e SYMBOLRATE and SUBRATE register fields must be > 0.
m must be an even number, i.e. SUBRATE register field must be uneven and > 0.
m defines number of sub-carrier phases per input bit from preceding encoder or modulator.
Note 1: The output symbol rate for sub-carrier modulation corresponds to the rate of phases, not the frequency. Sub-carrier frequency is half the symbol rate.
GRIP, Sep 2018, Version 2018.3 1513 www.cobham.com/gaisler

GRLIB IP Core

The output from the Non-Return-to-Zero Mark encoder (NRZ) can be connected to:
• Convolutional encoder
• Split-Phase Level modulator
• Sub-Carrier modulator

The input to the Convolutional Encoder (CE) can be connected to:
• Packet Telemetry and AOS encoder
• Reed-Solomon encoder
• Pseudo-Randomiser
• Non-Return-to-Zero Mark encoder
The output from the Convolutional Encoder (CE) can be connected to:
• Split-Phase Level modulator
• Sub-Carrier modulator

The input to the Split-Phase Level modulator (SP) can be connected to:
• Packet Telemetry and AOS encoder
• Reed-Solomon encoder
• Pseudo-Randomiser
• Non-Return-to-Zero Mark encoder
• Convolutional encoder
The output from the Split-Phase Level modulator (SP) can be connected to:
• Sub-Carrier modulator

The input to the Sub-Carrier modulator (SC) can be connected to:
• Packet Telemetry and AOS encoder
• Reed-Solomon encoder
• Pseudo-Randomiser
• Non-Return-to-Zero Mark encode
• Convolutional encoder
• Split-Phase Level modulator

115.8 Operation

115.8.1 Introduction

The DMA interface provides a means for the user to insert Transfer Frames in the Packet Telemetry
and AOS Encoder. Depending on which functions are enabled in the encoder, the various fields of the
Transfer Frame are overwritten by the encoder. It is also possible to bypass some of these functions
for each Transfer Frame by means of the control bits in the descriptor associated to each Transfer
Frame. The DMA interface allows the implementation of Virtual Channel Frame Service and Master
Channel Frame Service, or a mixture of both, depending on what functions are enabled or bypassed.
GRIP, Sep 2018, Version 2018.3 1514 www.cobham.com/gaisler

GRLIB IP Core

115.8.2 Descriptor setup

The transmitter DMA interface is used for transmitting transfer frames on the downlink. The trans-
mission is done using descriptors located in memory.
A single descriptor is shown in table 1762 and 1763. The number of bytes to be sent is set globally for
all transfer frames in the length field in register DMA length register. The the address field of the
descriptor should point to the start of the transfer frame. The address must be word-aligned. If the
interrupt enable (IE) bit is set, an interrupt will be generated when the transfer frame has been sent
(this requires that the transmitter interrupt enable bit in the control register is also set). The interrupt
will be generated regardless of whether the transfer frame was transmitted successfully or not. The
wrap (WR) bit is also a control bit that should be set before transmission and it will be explained later
in this section.

To enable a descriptor the enable (EN) bit should be set and after this is done, the descriptor should
not be touched until the enable bit has been cleared by the core.

115.8.3 Starting transmissions

Enabling a descriptor is not enough to start a transmission. A pointer to the memory area holding the
descriptors must first be set in the core. This is done in the transmitter descriptor pointer register. The
address must be aligned to a 1 kByte boundary. Bits 31 to 10 hold the base address of descriptor area
while bits 9 to 3 form a pointer to an individual descriptor.The first descriptor should be located at the
base address and when it has been used by the core, the pointer field is incremented by 8 to point at

Table 1762.GRTM transmit descriptor word 0 (address offset 0x0)
31 16 15 14 13 10 9 8 7 6 5 4 3 2 1 0

RESERVED UE TS 0000 VCE MCB FSHB OCFB FHECB IZB FECFB IE WR EN

31: 16 RESERVED
15 Underrun Error (UE) - underrun occurred while transmitting frame (status bit only)
14 Time Strobe (TS) - generate a time strobe for this frame
13: 10 RESERVED
9 Virtual Channel Counter Enable (VCE) - enable virtual channel counter generation (using the Idle

Frame virtual channel counter)
8 Master Channel Counter Bypass (MCB) - bypass master channel counter generation (TM only)
7 Frame Secondary Header Bypass (FSHB) - bypass frame secondary header generation (TM only)
6 Operational Control Field Bypass (OCFB) - bypass operational control field generation
5 Frame Error Header Control Bypass (FECHB) - bypass frame error header control generation (AOS)
4 Insert Zone Bypass (IZB) - bypass insert zone generation (AOS)
3 Frame Error Control Field Bypass (FECFB) - bypass frame error control field generation
2 Interrupt Enable (IE) - an interrupt will be generated when the frame from this descriptor has been

sent provided that the transmitter interrupt enable bit in the control register is set. The interrupt is
generated regardless if the frame was transmitted successfully or if it terminated with an error.

1 Wrap (WR) - Set to one to make the descriptor pointer wrap to zero after this descriptor has been
used. If this bit is not set the pointer will increment by 8. The pointer automatically wraps to zero
when the 1 kB boundary of the descriptor table is reached.

0 Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor
fields.

Table 1763.GRTM transmit descriptor word 1 (address offset 0x4)
31 2 1 0

ADDRESS RES

31: 2 Address (ADDRESS) - Pointer to the buffer area from where the packet data will be loaded.
1: 0 RESERVED
GRIP, Sep 2018, Version 2018.3 1515 www.cobham.com/gaisler

GRLIB IP Core

the next descriptor. The pointer will automatically wrap back to zero when the next 1 kByte boundary
has been reached (the descriptor at address offset 0x3F8 has been used). The WR bit in the descriptors
can be set to make the pointer wrap back to zero before the 1 kByte boundary.
The pointer field has also been made writable for maximum flexibility but care should be taken when
writing to the descriptor pointer register. It should never be touched when a transmission is active.
The final step to activate the transmission is to set the transmit enable bit in the DMA control register.
This tells the core that there are more active descriptors in the descriptor table. This bit should always
be set when new descriptors are enabled, even if transmissions are already active. The descriptors
must always be enabled before the transmit enable bit is set.

115.8.4 Descriptor handling after transmission

When a transmission of a frame has finished, status is written to the first word in the corresponding
descriptor. The Underrun Error bit is set if the FIFO became empty before the frame was completely
transmitted. The other bits in the first descriptor word are set to zero after transmission while the sec-
ond word is left untouched. The enable bit should be used as the indicator when a descriptor can be
used again, which is when it has been cleared by the core.
There are multiple bits in the DMA status register that hold transmission status.
The Transmitter Interrupt (TI) bit is set each time a DMA transmission of a transfer frame ended suc-
cessfully. The Transmitter Error (TE) bit is set each time an DMA transmission of a transfer frame
ended with an underrun error. For either event, an interrupt is generated for transfer frames for which
the Interrupt Enable (IE) was set in the descriptor. The interrupt is maskable with the Interrupt Enable
(IE) bit in the control register.
The Transmitter AMBA error (TA) bit is set when an AMBA AHB error was encountered either when
reading a descriptor or when reading transfer frame data. Any active transmissions were aborted and
the DMA channel was disabled. It is recommended that the Telemetry Encoder is reset after an
AMBA AHB error. The interrupt is maskable with the Interrupt Enable (IE) bit in the control register.
The Transfer Frame Sent (TFS) bit is set whenever a transfer frame has been sent, independently if it
was sent via the DMA interface or generated by the core. The interrupt is maskable with the Transfer
Frame Interrupt Enable (TFIE) bit in the control register.
The Transfer Frame Failure (TFF) bit is set whenever a transfer frame has failed for other reasons,
such as when Idle Frame generation is not enabled and no user Transfer Frame is ready for transmis-
sion, independently if it was sent via the DMA interface or generated by the core. The interrupt is
maskable with the Transfer Frame Interrupt Enable (TFIE) bit in the control register.
The Transfer Frame Ongoing (TFO) bit is set when DMA transfers are enabled, and is not cleared
until all DMA induced transfer frames have been transmitted after DMA transfers are disabled.

115.8.5 Interrupts

The Transfer Frame Sent (TFS) and Transfer Frame Failure (TFF) interrupts are maskable with the
Transfer Frame Interrupt Enable (TFIE) bit in the DMA control register, and can be observed via the
DMA status register.
The Transmitter Interrupt (TI), Transmitter Error (TE) and Transmitter AMBA Error (TA) interrupts
are maskable with the Interrupt Enable (IE) bit in the DMA control register, and can be observed via
the DMA status register.
The Time Strobe Interrupt (TSI) is maskable with the Transfer Frame Interrupt Enable (TFIE) bit in
the DMA control register.
All interrupts except Time Strobe Interrupt (TSI) are output on interrupt number defined by pirq
VHDL generic.
The Time Strobe Interrupt (TSI) is output on interrupt number defined by pirq+1 VHDL generic.
GRIP, Sep 2018, Version 2018.3 1516 www.cobham.com/gaisler

GRLIB IP Core

115.9 Registers

The core is programmed through registers mapped into APB address space.

Table 1764.GRTM registers

APB address offset Register
0x00 GRTM DMA Control register
0x04 GRTM DMA Status register
0x08 GRTM DMA Length register
0x0C GRTM DMA Descriptor Pointer register
0x10 GRTM DMA Configuration register
0x14 GRTM DMA Revision register
0x20 GRTM DMA External VC Control & Status register
0x2C GRTM DMA External VC Descriptor Pointer register
0x80 GRTM Control register
0x84 GRTM Status register (unused)
0x88 GRTM Configuration register
0x90 GRTM Physical Layer register
0x94 GRTM Coding Sub-Layer register
0x98 GRTM Attached Synchronization Marker
0xA0 GRTM All Frames Generation register
0xA4 GRTM Master Frame Generation register
0xA8 GRTM Idle Frame Generation register
0xC0 GRTM FSH/Insert Zone register 0
0xC4 GRTM FSH/Insert Zone register 1
0xC8 GRTM FSH/Insert Zone register 2
0xCC GRTM FSH/Insert Zone register 3
0xD0 GRTM Operational Control Field register
GRIP, Sep 2018, Version 2018.3 1517 www.cobham.com/gaisler

GRLIB IP Core

115.9.1

Table 1765.0x00 - DCR - DMA control register

GRTM DMA Control Register

115.9.2

Table 1766.0x04 - DSR - DMA status register

GRTM DMA Status Register

115.9.3

Table 1767. 0x08 - DLR - DMA length register

GRTM DMA Length Register

31 5 4 3 2 1 0

RESERVED TFIE RST TXRST IE EN

0 0 0 * 0 *

r rw rw rw rw rw*

31: 5 RESERVED
4 Transfer Frame Interrupt Enable (TFIE) - enable telemetry frame sent (TFS) and failure (TFF) inter-

rupt, and time strobe interrupt
3 Reset (RST) - reset DMA and telemetry transmitter
2 Reset Transmitter (TXRST) - reset telemetry transmitter
1 Interrupt Enable (IE) - enable DMA interrupt (TI), (TE) and (TA)
0 Enable (EN) - enable DMA transfers

31 8 7 6 5 4 3 2 1 0

RESERVED TXSTAT TXRDY TFO TFS TFF TA TI TE

0 0 0 * 0 0 0 * *

r r r r wc wc wc wc wc

31: 8 RESERVED
7 Transmitter Reset Status (TXSTAT) - telemetry transmitter is in reset mode when set (read-only)
6 Transmitter Ready (TXRDY) - telemetry transmitter ready for operation after setting the TE bit in

GRTM control register (read-only)
5 Transfer Frame Ongoing (TFO) - telemetry frames via DMA transfer are on-going (read-only)
4 Transfer Frame Sent (TFS) - telemetry frame interrupt, cleared by writing a logical 1
3 Transfer Frame Failure (TFF) - telemetry transmitter failure, cleared by writing a logical 1
2 Transmitter AMBA Error (TA) - DMA AMBA AHB error, cleared by writing a logical 1
1 Transmitter Interrupt (TI) - DMA interrupt, cleared by writing a logical 1
0 Transmitter Error (TE) - DMA transmitter underrun, cleared by writing a logical 1

31 27 26 16 15 11 10 0

RESERVED LIMIT-1 RESERVED LENGTH-1

0 * 0 *

r rw r rw

31: 27 RESERVED
26: 16 Transfer Limit (LIMIT)- length-1 of data to be fetched by DMA before transfer starts.

Note: LIMIT must be equal to or less than LENGTH.
LIMIT must be equal to or less than FIFOSZ.
LIMIT must be equal to or larger than BLOCKSZ*2 for LENGTH > BLOCKSZ*2.

15: 11 RESERVED
10: 0 Transfer Length (LENGTH) - length-1 of data to be transferred by DMA
GRIP, Sep 2018, Version 2018.3 1518 www.cobham.com/gaisler

GRLIB IP Core

115.9.4

Table 1768. 0x0C - DPR - DMA descriptor pointer register

GRTM DMA Descriptor Pointer Register

115.9.5

Table 1769. 0x10 - DCF - DMA configuration register (read-only)

GRTM DMA Configuration Register (read-only)

115.9.6

Table 1770. 0x14 - DRR - DMA revision register (read-only)

GRTM DMA Revision Register (read-only)

31 10 9 3 2 0

BASE INDEX RESERVED

* * 0

rw rw r

31: 10 Descriptor base (BASE) - base address of descriptor table
9: 3 Descriptor index (INDEX) - index of active descriptor in descriptor table
2: 0 Reserved - fixed to “00”

31 16 15 0

FIFOSZ BLOCKSZ

* *

r r

31: 16 FIFO size (FIFOSZ) - size of FIFO memory in number of bytes (read-only)
15: 0 Block size (BLOCKSZ) - size of block in number of bytes (read-only)

31 22 21 20 19 18 17 16 15 8 7 0

RESERVED AS ASX FIX EX IN TIRQ REVISION SUB REVISION

0 - - * * * * * 0x04

r r r r r r r r r

31: 22 RESERVED
21 Autostart (AS) - Automatic start for telemetry
20 Autostart external (ASX) - Automatic start for external Virtual Channels
19 Fixed Frame Length (FIX) - Frame length fixed
18 External Virtual Channels (EX) - External Virtual Channels supported
17 Internal Virtual Channels (IN) - Internal Virtual Channels supported
16 Time Strobe Interrupt (TIRQ) - Separate time strobe interrupt supported
15: 8 REVISION - Main revision number

0x00: Initial release
7: 0 SUB REVISION - Sub revision number

0x00: Initial release
0x01: Added time interrupt, moved TXRDY bit, added TXSTAT bit, added this revision register
0x02: Added support for internal and external virtual channels
0x03: Added Master Channel Frame Counter value to master and idle frame generation registers
0x04: Added indicators for autostart of Telemetry and autostart of external Virtual Channels
GRIP, Sep 2018, Version 2018.3 1519 www.cobham.com/gaisler

GRLIB IP Core

115.9.7

Table 1771.0x20 - EUCS - DMA external VC control & status register

GRTM DMA External VC Control & Status Register

115.9.8

Table 1772. 0x2C - EVDP - DMA external VC descriptor pointer register

GRTM DMA External VC Descriptor Pointer Register

115.9.9

Table 1773. 0x80 - CTRL - control register

GRTM Control Register

31 6 5 4 3 2 1 0

RESERVED XTFO RESERVED XTI XTE XEN

0 * 0 * * *

r r r wc wc rw

31: 6 RESERVED
5 External Transfer Frame Ongoing (XTFO) - telemetry frames via DMA transfer for external VC are

on-going (read-only)
4: 3 RESERVED
2 External Transmitter Interrupt (XTI) - DMA interrupt for external VC, cleared by writing a logical 1
1 External Transmitter Error (XTE) - DMA transmitter underrun for external VC, cleared by writing a

logical 1
0 External Enable (XEN) - enable DMA transfers for external VC (note that descriptor table is

checked continuously till this bit is cleared).

31 10 9 3 2 0

BASE INDEX RESERVED

* * 0

rw rw r

31: 10 Descriptor base (BASE) - base address of descriptor table
9: 3 Descriptor index (INDEX) - index of active descriptor in descriptor table
2: 0 Reserved - fixed to “00”

31 1 0

RESERVED TE

0 *

r rw

31: 1 RESERVED
0: Transmitter Enable (TE) - enables telemetry transmitter (should be done after the complete configu-

ration of the telemetry transmitter, including the LENGTH field in the GRTM DMA length register)
GRIP, Sep 2018, Version 2018.3 1520 www.cobham.com/gaisler

GRLIB IP Core

115.9.10

Table 1774. 0x88 - CONF - configuration register (read-only)

GRTM Configuration Register (read-only)

115.9.11

Table 1775. 0x90 - PLR - physical layer register

GRTM Physical Layer Register

31 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 6 5 4 3 2 1 0

RESERVED
O
C
F
B

C
I
F

A
O
S

F
H
E
C

I
Z

M
C
G

F
S
H

I
D
L
E

E
V
C

O
C
F

F
E
C
F

A
A
S
M

RS RS
DEPTH

TE P
S
R

N
R
Z

CE SP SC

0 *

r r

31: 23 RESERVED
22 Operational Control Field Bypass (OCFB) - CLCW implemented externally, no OCF_SDU register
21 Encryption/Cipher Interface (CIF) - interface between protocol and channel coding sub-layers
20 Advanced Orbiting Systems (AOS) - AOS transfer frame generation implemented
19 Frame Header Error Control (FHEC) - frame header error control implemented, only if AOS also set
18 Insert Zone (IZ) - insert zone implemented, only if AOS also set
17 Master Channel Generation (MCG) - master channel counter generation implemented
16 Frame Secondary Header (FSH) - frame secondary header implemented
15 Idle Frame Generation (IDLE) - idle frame generation implemented
14 Extended VC Cntr (EVC) - extended virtual channel counter implemented (ECSS)
13 Operational Control Field (OCF) - CLCW implemented
12 Frame Error Control Field (FECF) - transfer frame CRC implemented
11 Alternative ASM (AASM) - alternative attached synchronization marker implemented
10: 9 Reed-Solomon (RS) - reed-solomon encoder implemented, “01” E=16, “10” E=8, “11” E=16 & 8
8: 6 Reed-Solomon Depth (RSDEPTH) - reed-solomon interleave depth -1 implemented
5 Turbo Encoder (TE) - turbo encoder implemented (reserved)
4 Pseudo-Randomiser (PSR) - pseudo-Randomiser implemented
3 Non-Return-to-Zero (NRZ) - non-return-to-zero - mark encoding implemented
2 Convolutional Encoding (CE) - convolutional encoding implemented
1 Split-Phase Level (SP) - split-phase level modulation implemented
0 Sub Carrier (SC) - sub carrier modulation implemented

31 30 16 15 14 0

SF SYMBOLRATE SCF SUBRATE

‘* * * *

rw rw rw rw

31 Symbol Fall (SF) - symbol clock has a falling edge at start of symbol bit
30: 16 Symbol Rate (SYMBOLRATE) - symbol rate division factor - 1
15 Sub Carrier Fall (SCF) -sub carrier output start with a falling edge for logical 1
14: 0 Sub Carrier Rate (SUBRATE) - sub carrier division factor - 1
GRIP, Sep 2018, Version 2018.3 1521 www.cobham.com/gaisler

GRLIB IP Core

115.9.12

Table 1776. 0x94 - CSL - coding sub-layer register

GRTM Coding Sub-Layer Register

115.9.13

Table 1777. 0x98 - ASM - attached synchronization marker register

GRTM Attached Synchronization Marker Register

31 20 19 18 17 16 15 14 12 11 10 8 7 6 5 4 2 1 0

RESERVED C
I
F

CSEL A
A
S
M

RS RSDEPTH R
S
8

RESERVED P
S
R

N
R
Z

CE CE
RATE

SP SC

0 * * * * * * 0 * * * * * *

r rw rw rw rw rw rw r rw rw rw rw rw rw

31: 20 RESERVED
19 Encryption/Cipher Interface (CIF) - enable external encryption/cipher interface between sub-layers
18: 17 Clock Selection (CSEL) - selection of external telemetry clock source (application specific)
16 Alternative ASM (AASM) - alternative attached synchronization marker enable. When enabled the

value from the GRTM Attached Synchronization Marker register is used, else the standardized ASM
value 0x1ACFFC1D is used

15 Reed-Solomon (RS) - reed-solomon encoder enable
14: 12 Reed-Solomon Depth (RSDEPTH) - reed-solomon interleave depth -1
11 Reed-Solomon Rate (RS8) - ‘0’ E=16, ‘1’ E=8
10: 8 RESERVED
7 Pseudo-Randomiser (PSR) - pseudo-Randomiser enable
6 Non-Return-to-Zero (NRZ) - non-return-to-zero - mark encoding enable
5 Convolutional Encoding (CE) - convolutional encoding enable
4: 2 Convolutional Encoding Rate (CERATE): “00-” rate 1/2, no puncturing

“01-” rate 1/2, punctured
“100” rate 2/3, punctured
“101” rate 3/4, punctured
“110” rate 5/6, punctured
“111” rate 7/8, punctured

1 Split-Phase Level (SP) - split-phase level modulation enable
0 Sub Carrier (SC) - sub carrier modulation enable

31 0

ASM

*

rw

31: 0 Attached Synchronization Marker (ASM) - pattern for alternative ASM, (bit 31 MSB sent first, bit 0
LSB sent last) (The reset value is the standardized alternative ASM value 0x352EF853.)
GRIP, Sep 2018, Version 2018.3 1522 www.cobham.com/gaisler

GRLIB IP Core

115.9.14

Table 1778. 0xA0 - AFGR - all frames generation register

GRTM All Frames Generation Register

115.9.15

Table 1779. 0xA4 - MFGR - master frame generation register

GRTM Master Frame Generation Register

31 22 21 17 16 15 14 13 12 11 0

RESERVED FSH / IZ LENGTH IZ F
E
C
F

F
H
E
C

VER RESERVED

0 * * * * * 0

r rw rw rw rw rw r

31: 22 RESERVED
21: 17 Frame Secondary Header (TM) / Insert Zone (AOS) (FSH / IZ LENGTH) - length in bytes
16 Insert Zone (IZ) - insert zone enabled, only with AOS
15 Frame Error Control Field (FECF) - transfer frame CRC enabled
14 Frame Header Error Control (FHEC) - frame header error control enabled, only with AOS
13: 12 Version (VER) - Transfer Frame Version - “00” Packet Telemetry, “01” AOS
11: 0 RESERVED

31 24 23 4 3 2 1 0

MCFC RESERVED MC FSH OCF OW

* 0 * * * *

r r rw rw rw rw

31: 24 Master Channel Frame Counter (MCFC) - diagnostic read out (read only, TM only)
23: 4 RESERVED
3 Master Channel (MC) - enable master channel counter generation (TM only)
2 Frame Secondary Header (FSH) - enable MC_FSH for master channel (TM only)
1 Operation Control Field (OCF) - enable MC_OCF for master channel
0 Over Write OCF (OW) - overwrite OCF bits 16 and 17 when set
GRIP, Sep 2018, Version 2018.3 1523 www.cobham.com/gaisler

GRLIB IP Core

115.9.16

Table 1780. 0xA8 - IFGR - idle frame generation register

GRTM Idle Frame Generation Register

115.9.17

Table 1781. 0xC0 - FSH0 - FSH / IZ register 0, MSB

GRTM FSH / IZ Register 0, MSB

115.9.18

Table 1782. 0xC4 - FSH1 - FSH / IZ register 1

GRTM FSH / IZ Register 1

115.9.19

Table 1783. 0xC8 - FSH2 - FSH / IZ register 2

GRTM FSH / IZ Register 2

31 24 23 22 21 20 19 18 17 16 15 10 9 0

IDLEMCFC RESER
VED

ID
LE

O
C
F

E
V
C

F
S
H

V
C
C

MC VCID SCID

* 0 * * * * * * * *

r r rw rw rw rw rw rw rw rw

31: 24 Idle Master Channel Frame Counter (IDLEMCFC) - diagnostic read out (read only, TM only)
23: 22 RESERVED
21 Idle Frames (IDLE) - enable idle frame generation
20 Operation Control Field (OCF) - enable OCF for idle frames
19 Extended Virtual Channel Counter (EVC) - enable extended virtual channel counter generation for

idle frames (TM only, ECSS)
18 Frame Secondary Header (FSH) - enable FSH for idle frames (TM only)
17 Virtual Channel Counter Cycle (VCC) - enable virtual channel counter cycle generation for idle

frames (AOS only)
16 Master Channel (MC) - enable separate master channel counter generation for idle frames (TM only)
15: 10 Virtual Channel Identifier (VCID) - virtual channel identifier for idle frames
9: 0 Spacecraft Identifier (SCID) - spacecraft identifier for idle frames

31 0

DATA

*

rw

31: 0 FSH / Insert Zone Data (DATA) - data (bit 31 MSB sent first)
Note: Writing to this register prevents the new FSH/Insert Zone data value to be transferred.

31 0

DATA

*

rw

31: 0 FSH / Insert Zone Data (DATA) - data

31 0

DATA

*

rw

31: 0 FSH / Insert Zone Data (DATA) - data
GRIP, Sep 2018, Version 2018.3 1524 www.cobham.com/gaisler

GRLIB IP Core

115.9.20

Table 1784. 0xCC - FSH3 - FSH / IZ register 3, LSB

GRTM FSH / IZ Register 3, LSB

115.9.21

Table 1785. 0x00 - OCF - OCF register

GRTM OCF Register

115.10 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x030. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

115.11 Configuration options

Table 1786 shows the configuration options of the core (VHDL generics).

31 0

DATA

*

rw

31: 0 FSH / Insert Zone Data (DATA) - data (bit 0 LSB sent last)
Note: Writing to this registers enables the new FSH/Insert Zone data value to be transferred.

31 0

CLCW

*

rw

31: 0 Operational Control Field (OCF) - CLCW data (bit 31 MSB, bit 0 LSB)

Table 1786.Configuration options

Generic name Function Allowed range Default
hindex AHB master index 0 - NAHBMST-1 0
pindex APB slave index 0 - NAPBSLV-1 0
paddr ADDR field of the APB BAR 0 - 16#FFF# 0
pmask MASK field of the APB BAR 0 - 16#FFF# 16#FFF#
pirq Interrupt line used by core 0 - NAHBIRQ-1 0
memtech Memory technology 0 to NTECH 0
ft Enable fault-tolerance against SEU errors 0 - 2 0
blocksize Block size (in number of bytes) 16 to 512 512
fifosize FIFO size (in number of bytes) 32 to 4096 4096
fixedsize Fixed Transfer Frame Length 0 - 1 0
framelength Default Transfer Frame Length 0 - 4095 0
txlimit Default Limit size 0 - 4095 0
nsync Level of synchronization 1 - 2 2
exconf External reset configuration 0 - 1 0
autostart Automatic start of Telemetry 0 - 1 0
internal Support for internal Virtual Channels 0 - 1 1
GRIP, Sep 2018, Version 2018.3 1525 www.cobham.com/gaisler

GRLIB IP Core
external Support for external Virtual Channels
1 = support external virtual channels
2 = support external virtual channels, autostart
external virtual channels
3 = support external virtual channels, stand alone
operation (autostart external virtual channels, never stop)

0 - 3 0

externaladdr Default base address for external Virtual Channels - 16#000#
resync Resynchronization of internal constants 0 - 1 0
altasm Alternative Attached Synchronization Marker 0 - 1 1
aos Advanced Orbiting System (AOS) 0 - 1 1
fhec Frame Header Error Control, AOS only 0 - 1 1
insertzone Insert Zone, AOS only 0 - 1 1
mcgf Master Channel Generation Function 0 - 1 1
fsh Frame Secondary Header 0 - 1 1
idle Idle Frame Generation 0 - 1 1
idleextvccntr Extended Virtual Channel Counter, Idle Frames 0 - 1 1
ocf Operation Control Field (2 equals external bypass) 0 - 2 1
fecf Frame Error Control Field 0 - 1 1
cipher Encryption / Cipher Interface 0-1 0
reed Reed-Solomon, 1- E=16, 2 - E=8, 3 - E=8 & 16 0 - 3 3
reeddepth Reed-Solomon Interleave Depth, maximum 1 - 8 8
turbo Reserved 0 0
pseudo Pseudo-Randomiser encoding 0 - 1 1
mark Non-Return-to-Zero Mark modulation 0 - 1 1
conv Convolutional coding 0 - 1 1
split Split-Phase Level modulation 0 - 1 1
sub Sub-Carrier modulation 0 - 1 1
timeirq Separate time strobe interrupt 0 - 1 0
synchronous 0 = octet clock derived from transponder clock, separate

clock domain
1 = octet clock equals the transponder clock, same clock
domain

0 - 1 0

syncassert 0 = combinatorial (asynchronous) assertion of internal
reset signal
1= sequential (synchronous) assertion of internal reset
signal

0 - 1 0

Table 1786.Configuration options

Generic name Function Allowed range Default
GRIP, Sep 2018, Version 2018.3 1526 www.cobham.com/gaisler

GRLIB IP Core

115.12 Signal descriptions

Table 1787 shows the interface signals of the core (VHDL ports).

Table 1787.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
TMI BITLOCK Input Bit Lock High

RFAVAIL RF Available High
OCF_SDU[0:31] OCF_SDU Bypass -
CIPHER Encryption/ Cipher Interface -
EXREQUEST External VC Request High
CONF External configuration -

TMO TIME Output Time strobe High
SYNC ASM indicator High
FRAME Frame indicator High
SERIAL Serial bit data High
CLOCK Serial bit data clock High
DATA [0:7] Parallel data, octet High
STROBE Parallel data strobe High
CLKSEL[0:1] External clock selection -
FRAMELSB[0:1] MC Counter least significant bits -
CIPHER Encryption/ Cipher Interface -
SCID[0:9] SCID setting -
OCF OCF setting High
FECF FECF setting High
EXENABLE External VC enable High
EXGRANT External VC grant High
EXREADY External VC ready High

TCLK N/A Input Transponder clock -
OCLKO N/A Output Octet clock output -
OCLKI N/A Input Octet clock input -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
AHBMI * Input AMB master input signals -
AHBMO * Output AHB master output signals -
* see GRLIB IP Library User’s Manual
GRIP, Sep 2018, Version 2018.3 1527 www.cobham.com/gaisler

GRLIB IP Core

115.13 Signal definitions and reset values

The signals and their reset values are described in table 1788.

115.14 Timing

The timing waveforms and timing parameters are shown in figure 297 and are defined in table 1789.

Note: The inputs are re-synchronized inside the core. The signals do not have to meet any setup or
hold requirements.

115.15 Library dependencies

Table 1790 shows the libraries used when instantiating the core (VHDL libraries).

Table 1788.Signal definitions and reset values

Signal name Type Function Active Reset value
bitlock Input Bit Lock High -
rfavail Input RF Available High -
time Output Time strobe High Logical 0
sync Output ASM indicator High Logical 0
frame Output Frame indicator High Logical 0
serial Output Serial bit data - -
clock Output Serial bit data clock High Logical 0
data[0:7] Output Parallel data, octet - -
strobe Output Parallel data strobe High Logical 0

Table 1789.Timing parameters

Name Parameter Reference edge Min Max Unit
tGRTM0 clock to output delay rising clk edge TBD TBD ns

tGRTM1 input to clock hold rising clk edge - - ns

tGRTM2 input to clock setup rising clk edge - - ns

Table 1790.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
TMTC TMTC_TYPES Signals, component Component declaration

Figure 297. Timing waveforms

tGRTM0sync, frame,

clk

tGRTM0

tGRTM1bitlock, rfavail tGRTM2

serial, clock,
data[], strobe
GRIP, Sep 2018, Version 2018.3 1528 www.cobham.com/gaisler

GRLIB IP Core
GRIP, Sep 2018, Version 2018.3 1529 www.cobham.com/gaisler

GRLIB IP Core

116 GRTM_DESC - CCSDS/ECSS Telemetry Encoder - Descriptor

116.1 Overview

The CCSDS/ECSS/PSS Telemetry Encoder Descriptor implements an automatic descriptor handler
for external Telemetry Virtual Channels implemented in hardware (Telemetry Encoder Virtual Chan-
nel Generation function), not requiring software support.

116.2 Operation

116.2.1 Introduction

Warning: software should not read or write the descriptor table. All interaction is performed automat-
ically by hardware.
The bandwidth is allocated equally between the external Telemetry Virtual Channels. Note that the
descriptor table will be continuously checked by the Telemetry Encoder, even when all descriptors
have their Enable (EN) bit cleared. This will go on until the External Enable (XEN) bit in the Teleme-
try Encoder is cleared by software.

116.2.2 Descriptor definition

A single descriptor is shown in table 1791 and 1792.

Table 1791. Transmit descriptor word 0 (address offset 0x0)
31 16 15 14 13 10 9 8 7 6 5 4 3 2 1 0

RESERVED UE TS 0000 VCE MCB FSHB OCFB FHECB IZB FECFB IE WR EN

31: 16 RESERVED
15 Underrun Error (UE) - underrun occurred while transmitting frame (status bit only)
14 Time Strobe (TS) - generate a time strobe for this frame (static 0)
13: 10 RESERVED
9 Virtual Channel Counter Enable (VCE) - enable virtual channel counter generation (using the Idle

Frame virtual channel counter) (static 0)
8 Master Channel Counter Bypass (MCB) - bypass master channel counter generation (TM only)

(static 0)
7 Frame Secondary Header Bypass (FSHB) - bypass frame secondary header generation (TM only)

(static 0)
6 Operational Control Field Bypass (OCFB) - bypass operational control field generation (static 0)
5 Frame Error Header Control Bypass (FECHB) - bypass frame error header control generation (AOS)

(static 0)
4 Insert Zone Bypass (IZB) - bypass insert zone generation (AOS) (static 0)
3 Frame Error Control Field Bypass (FECFB) - bypass frame error control field generation (static 0)
2 Interrupt Enable (IE) - an interrupt will be generated when the frame from this descriptor has been

sent provided that the transmitter interrupt enable bit in the control register is set. (static 0)
1 Wrap (WR) - Set to one to make the descriptor pointer wrap to zero after this descriptor has been

used. If this bit is not set the pointer will increment by 8. The pointer automatically wraps to zero
when the 1 kB boundary of the descriptor table is reached. (Set to 1 for last descriptor entry, other-
wise static 0).

0 Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor
fields. (Automatically set an cleared by hardware)
GRIP, Sep 2018, Version 2018.3 1530 www.cobham.com/gaisler

GRLIB IP Core
116.3 Registers

The core does not implement any memory mapped registers.

116.4 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x084. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

116.5 Configuration options

Table 1793 shows the configuration options of the core (VHDL generics).

116.6 Signal descriptions

Table 1794 shows the interface signals of the core (VHDL ports).

116.7 Signal definitions and reset values

None.

116.8 Timing

None.

Table 1792. Transmit descriptor word 1 (address offset 0x4)
31 2 1 0

ADDRESS RES

31: 2 Address (ADDRESS) - Pointer to the buffer area from where the packet data will be loaded.
1: 0 RESERVED

Table 1793.Configuration options

Generic name Function Allowed range Default
hindex Selects which AHB select signal (HSEL) will be used to

access the memory.
0 to NAHBMAX-1 0

haddr ADDR field of the AHB BAR 0 to 16#FFF# 0
hmask MASK field of the AHB BAR 0 to 16#FFF# 16#FFF#
channels Number of Virtual Channels power of 2 2
frames Number of frames per Virtual Channel 2 - 2

Table 1794.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
VCRI - Input Virtual Channel Request Interface -
VCRO - Output -
DI - Input Descriptor Interface -
DO - Output -
AHBI * Input AMB master input signals -
AHBO * Output AHB master output signals -
* see GRLIB IP Library User’s Manual
GRIP, Sep 2018, Version 2018.3 1531 www.cobham.com/gaisler

GRLIB IP Core

116.9 Library dependencies

Table 1795 shows the libraries used when instantiating the core (VHDL libraries).

Table 1795. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
TMTC TMTC_TYPES Signals, component Component declaration
TMTC GRTM_PKG Signals, component Component declaration
GRIP, Sep 2018, Version 2018.3 1532 www.cobham.com/gaisler

GRLIB IP Core

117 GRTM_VC - CCSDS/ECSS Telemetry Encoder - Virtual Channel Generation

117.1 Overview

The CCSDS/ECSS/PSS Telemetry Encoder Virtual Channel Generation function implements:
• Transfer Frame Primary Header insertion
• Transfer Frame Data Field insertion (with support for different lengths due to OCF and FECF)
• First Header Pointer (FHP) handling and insertion
The function keeps track of the number of octets received and the packet boundaries in order to calcu-
lated the First Header Pointer (FHP). The data are stored in pre-allocated slots in the buffer memory
comprising complete Transfer Frames. The module fully supports the FHP generation and does not
require any alignment of the packets with the Transfer Frame Data Field boundary.
The data input format can be CCSDS Space Packet [CCSDS-133.0-B-1] or any user-defined data-
block. Data is input via a separate Virtual Channel Generation function input interface.
The function communicates with the Telemetry Encoder Virtual Channel Frame Service by means of
a buffer memory space. The buffer memory space allocated to the Virtual Channel is treated as a cir-
cular buffer. The buffer memory space is accessed by means of a AMBA AHB master interface.

117.2 Registers

The core does not implement any memory mapped registers.

117.3 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x085. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

117.4 Configuration options

Table 1796 shows the configuration options of the core (VHDL generics).

Table 1796.Configuration options

Generic name Function Allowed range Default
hindex Selects which AHB select signal (HSEL) will be used to

access the memory.
0 to NAHBMAX-1 0

index Channel index 0
id 0-7: Virtual Channel Identifier

> 7: Virtual Channel Identifier is picked from the DYN-
VCID input.

0

roomsize Packet size for ready signalling 0
frames Number of frames 2
framepitch Distance between consequtive frames 2048
frameoffset Offset for all frames 4096
framelength Frame length (transmitted) 1115
frameaddress Start address of frames 16#000#
GRIP, Sep 2018, Version 2018.3 1533 www.cobham.com/gaisler

GRLIB IP Core

117.5 Signal descriptions

Table 1797 shows the interface signals of the core (VHDL ports).

117.6 Signal definitions and reset values

None.

117.7 Timing

None.

117.8 Library dependencies

Table 1798 shows the libraries used when instantiating the core (VHDL libraries).

Table 1797.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
FECF N/A Input Frame Error Control Field High
OCF N/A Input Operational Control Field High
SCID N/A Input Spacecraft Identifier -
VCII - Input Virtual Channel Input Interface -
VCIO - Output -
VCRI - Input Virtual Channel Request Interface -
VCRO - Output -
AHBI * Input AMB master input signals -
AHBO * Output AHB master output signals -
DYNVCID N/A Input Dynamic Virtual Channel Identifier to be used

instead of the id generic in transfer frame genera-
tion if id > 7

-

* see GRLIB IP Library User’s Manual

Table 1798. Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
TMTC TMTC_TYPES Signals, component Component declaration
TMTC GRTM_PKG Signals, component Component declaration
GRIP, Sep 2018, Version 2018.3 1534 www.cobham.com/gaisler

GRLIB IP Core

118 GRTM_PAHB - CCSDS/ECSS Telemetry Encoder -

Virtual Channel Generation Input - AMBA

118.1 Overview

The Telemetry Encoder Virtual Channel Generation function input interface implements an interfaces
towards the automatic Virtual Channel Generation function of the Telemetry Encoder (also called
external Virtual Channels). Space Packets or any other user-defined data block can be input.
Data is transferred to the Virtual Channel Generation function by writing to the AMBA AHB slave
interface, located in the AHB I/O area. Writing is only possible when the packet valid delimiter is
asserted, else the access results in an AMBA access error. It is possible to transfer one, two or four
bytes at a time, following the AMBA big-endian convention regarding send order. The last written
data can be read back via the AMBA AHB slave interface. Data are output as octets to the Virtual
Channel Generation function.
In the case the data from a previous write access has not been fully transferred over the interface, a
new write access will result in an AMBA retry response. The progress of the interface can be moni-
tored via the AMBA APB slave interface. An interrupt is generated when the data from the last write
access has been transferred. An interrupt is also generated when the ready for input packet indicator is
asserted.
The core incorporates status and monitoring functions accessible via the AMBA APB slave interface.
This includes:
• Busy and ready signalling from Virtual Channel Generation function
• Interrupts on ready for new word, or ready for new packet (size 518 octets (set with roomsize

VHDL generic))

118.2 Interrupts

Two interrupts are implemented by the interface:
Index:Name:Description:
0 NOT BUSYReady for a new data (word, half-word or byte)
1 READYReady for new packet

The interrupts are configured by means of the pirq VHDL generic.

118.3 Registers

The core is programmed through registers mapped into APB address space.

Table 1799.GRTM_PAHB registers

APB address offset Register
16#004# Status Register
16#008# Control Register
GRIP, Sep 2018, Version 2018.3 1535 www.cobham.com/gaisler

GRLIB IP Core

118.3.1 Status Register (R

Table 1800.0x04 - STAT - Status Register

)

1: BUSY Not ready for new input, busy with octet
0: READY Ready for new packet of maximum size

All bits are cleared to 0 at reset.

118.3.2 Control Register (R/W

Table 1801.0x08 - CTRL - Control Register

)

8: BUSYEN
9: READYENEnable ready for packet interrupt when 1
2: VALID Packet valid delimiter, packet valid when 1, in-between packets when 0 (read-only)
1: RST Reset complete core when 1
0: EN Enable interface when 1

All bits are cleared to 0 at reset. Note that RST is read back as 0.

118.4 AHB I/O area

Data to be transferred to the Virtual Channel Generation function is written to the AMBA AHB slave
interface which implements a AHB I/O area. See [GRLIB] for details.
Note that the address is not decoded by the core. Address decoding is only done by the AMBA AHB
controller, for which the I/O area location and size is configured by means of the ioaddr and iomask
VHDL generics. It is possible to transfer one, two or four bytes at a time, following the AMBA big-
endian convention regarding send order. The last written data can be read back via the AMBA AHB
slave interface. Data are output as octets on the Virtual Channel Generation interface.

31 2 1 0
RESERVED BUSY READY

0 * *
r r r

31 10 9 8 7 3 2 1 0
RESERVED BUSYEN READYEN RESERVED VALID RST EN

0 0 0 0 0 0 0
r rw rw r rw* rw rw

Table 1802.AHB I/O area - data word definition

31 24 23 16 15 8 7 0
DATA [31:24] DATA [23:16] DATA [15:8] DATA [7:0]
GRIP, Sep 2018, Version 2018.3 1536 www.cobham.com/gaisler

GRLIB IP Core
118.5 Vendor and device identifiers

The module has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x088. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

118.6 Configuration options

Table 1804 shows the configuration options of the core (VHDL generics).

118.7 Signal descriptions

Table 1805 shows the interface signals of the core (VHDL ports).

Table 1803.AHB I/O area - send order

Transfer size Address offset DATA [31:24] DATA [23:16] DATA [15:8] DATA [7:0] Comment
Word 0 first second third last Four bytes sent
Halfword 0 first last - - Two bytes sent

2 - - first last Two bytes sent
Byte 0 first - - - One byte sent

1 - first - - One byte sent
2 - - first - One byte sent
3 - - - first One byte sent

Table 1804.Configuration options

Generic name Function Allowed range Default
hindex AHB master index. 1 - NAHBSLV-1 0
ioaddr Addr field of the AHB IO bar. 0 - 16#FFF# 0
iomask Mask field of the AHB IO bar. 0 - 16#FFF# 16#F00#
pindex APB slave index 0 - NAPBSLV-1 0
paddr Addr field of the APB bar. 0 - 16#FFF# 0
pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFC#
pirq Interrupt line used by the GRTM_PAHB. 0 - NAHBIRQ-1 0
syncrst Only synchronous reset 0, 1 1

roomsize Size of packet 518

Table 1805.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
AHBI * Input AMB slave input signals -
AHBO * Output AHB slave output signals -
* see GRLIB IP Library User’s Manual
GRIP, Sep 2018, Version 2018.3 1537 www.cobham.com/gaisler

GRLIB IP Core

118.8 Library dependencies

Table 1806 shows the libraries used when instantiating the core (VHDL libraries).

Table 1806.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
TMTC TMTC_Types Signals, component Component declarations, signals.

TMTC GRTM_PKG Signals, component Component declaration
GRIP, Sep 2018, Version 2018.3 1538 www.cobham.com/gaisler

GRLIB IP Core

119 GRTM_PW - CCSDS/ECSS Telemetry Encoder -

Virtual Channel Generation Input - PacketWire

The PacketWire (PW) interface to a telemetry encoder is a simple bit synchronous protocol. There is
one PacketWire interface for each telemetry Virtual Channel.
The data can be any CCSDS supported packets. The interface comprises three input signals; bit data,
bit clock and packet delimiter. There is an additional discrete signal provided for busy signalling.
Data should consist of multiples of eight bits otherwise the last bits will be lost. The input packet
delimiter signal is used to delimit packets. It should be asserted while a packet is being input, and de-
asserted in between. In addition, the input packet delimiter signal should define the octet boundaries
in the input data stream, the first octet explicitly and the following octets each subsequent eight bit
clock cycles.
The interface is based on the de facto standard PacketWire interface used by the European Space
Agency (ESA). At the time of writing there were no relevant documents available from the European
Cooperation for Space Standardization (ECSS).

119.1 Operation

The PacketWire interface accepts and generates the waveform format shown in figure 298.

Figure 298. Synchronous bit serial waveform

The PacketWire protocol follows the CCSDS transmission convention, the most significant bit being
sent first. Transmitted data should consist of multiples of eight bits otherwise the last bits will be lost.
The input message delimiter port is used to delimit messages (packets). It should be asserted while a
message is being input, and deasserted in between. In addition, the message delimiter port should
define the octet boundaries in the data stream, the first octet explicitly and the following octets each
subsequent eight bit clock cycles.
The maximum receiving input baud rate is defined as half the frequency of the system clock input.
There is no lower limit for the input bit rate in the receiver.
The handshaking between the PacketWire links and the interface is implemented with a busy port.
When a message is sent, the busy signal on the PacketWire input link will be asserted as soon as the
input interface is not ready to receive more data, it will then be deasserted as soon as the interface is
ready to receive the next octet. This gives the transmitter ample time to stop transmitting after the
completion of an octet and wait for the busy signal deassertion before starting the transmission of the
next octet. The handshaking is continued through out the message.

Delimiter

Clock

Data 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 70 1 2 376
GRIP, Sep 2018, Version 2018.3 1539 www.cobham.com/gaisler

GRLIB IP Core

119.2 Signal definitions and reset values

The signals and their reset values are described in table 1807.

119.3 Timing

The timing waveforms and timing parameters are shown in figure 299 and are defined in table 1808.

Table 1807.Signal definitions and reset values

Signal name Type Function Active Reset value
pw*valid_n Input Delimiter: This input port is the message delimiter

for the input interface. It should be deasserted
between messages.

Low -

pw*clk Input Bit clock: This input port is the PacketWire bit clock.
The receiver registers are clocked on the rising edge.

Rising -

pw*data Input Data: This input port is the serial data input for the
interface. Data are sampled on the rising pw*clk
edge when pw*valid_n is asserted.

- -

pw*busy Output Not ready for octet: This port indicates whether the
receiver is ready to receive one octet.

High Logical 0

Table 1808.Timing parameters

Name Parameter Reference edge Min Max Unit
tGRPW0 clock to output delay rising clk edge TBD TBD ns

tGRPW1 input to clock hold rising pw*clk edge TBD - ns

tGRPW2 input to clock setup rising pw*clk edge TBD - ns

tGRPW3 pw*valid_n to pw*clk edge rising pw*clk edge TBD - ns

tGRPW3 pw*valid_n de-asserted period - TBD system clock
periods

Figure 299. Timing waveforms

tGRPW0pw*busy

clk

tGRPW0

pw*clk
tGRPW1

pw*data
tGRPW2
GRIP, Sep 2018, Version 2018.3 1540 www.cobham.com/gaisler

GRLIB IP Core

120 GRTM_UART - CCSDS/ECSS Telemetry Encoder -

Virtual Channel Generation Input - UART

The PacketAsynchronous (PA) interface to a telemetry encoder is a simple bit asynchronous protocol.
There can be one bit asynchronous interface per telemetry Virtual Channel.
The protocol has a fixed or programmable baud rate, 1 start bit, 8 data bits, optional odd parity, 1 or 2
stop bits, with a BREAK command for message delimiting (sending 13 bits of logical zero).
The data can be any CCSDS supported packet. The interface comprises one input signal with bit asyn-
chronous data. There are two additional discrete signals provided for busy signalling.

120.1 Asynchronous bit serial data format

The asynchronous bit serial interface complies to the data format defined in [EIA 232]. It also com-
plies to the data format and waveform shown in table 1809 and figure 300. The interface is indepen-
dent of the transmitted data contents. Positive logic is considered for the data bits. The number of stop
bits can optionally be either one or two. The parity bit can be optionally included.

The handshaking for the bit asynchronous links is implemented with a busy signal. When a message is
sent, the busy signal on the input link will be asserted as soon as the input interface is not ready to
receive more data, it will then be deasserted as soon as the interface is ready to receive the next octet.
The handshaking is continued through out the packet.

120.2 Registers

The core has not user accessible registers.

120.3 Vendor and device identifiers

The core has has neither a vendor identifier nor a device identifier.

Asynchronous
bit serial format

start D0 D1 D2 D3 D4 D5 D6 D7 parity stop stop
first lsb msb last

General data format
i = {0, n}

8*i+7 8*i+6 8*i+5 8*i+4 8*i+3 8*i+2 8*i+1 8*i
last first

Table 1809.Asynchronous bit serial data format

Figure 300. Asynchronous bit serial protocol / waveform

StopLSB MSBStart

Data

StopLSBStart

StopLSB MSBStart

StopLSB MSBStart

Start

Parity

Parity Stop

Stop

StopBreak

MSB
GRIP, Sep 2018, Version 2018.3 1541 www.cobham.com/gaisler

GRLIB IP Core

120.4 Configuration options

Table 1810 shows the configuration options of the core (VHDL generics).

120.5 Signal descriptions

Table 1811 shows the interface signals of the core (VHDL ports).

120.6 Signal definitions and reset values

The signals and their reset values are described in table 1812.

Table 1810.Configuration options

Generic Function Description Allowed range Default
gSystemClock System frequency [Hz] Integer 8000000
gBaud Baud rate [Baud] Integer 115200
gProgrammable Baud rate Enables programmable baud rate when 1 0 - 1 0
syncreset Sync reset Synchronous reset when 1 0 - 1 0

Table 1811.Signal descriptions

Signal name Field Type Function Description Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
IGNOREPARITY N/A Input Generate odd parity, else none High
TWOSTOPBITS N/A Input Generate two stop bits, else one High
BAUDTHRESH-
OLD

N/A Input Sets baud rate, if gProgrammable
is 1

-

VCIO * Output Virtual Channel Interface -
VCII * Input Virtual Channel Interface -
TMUART N/A Input Data -
TMBUSYN N/A Output Not ready for octet Low
TMRDY N/A Output Ready for packet High

Table 1812.Signal definitions and reset values

Signal name Type Function Active Reset value
tm*data Input Data: This input port is the serial data input for the

interface. Data are sampled on the rising pw*clk
edge when pw*valid_n is asserted.

- -

tm*busyn Output Not ready for octet: This port indicates whether the
receiver is ready to receive one octet.

Low Logical 1

tm*ready Output Not ready for octet: This port indicates whether the
receiver is ready to receive one octet.

High Logical 0
GRIP, Sep 2018, Version 2018.3 1542 www.cobham.com/gaisler

GRLIB IP Core

120.7 Timing

The timing waveforms and timing parameters are shown in figure 301 and are defined in table 1813.

Note: The inputs are re-synchronized internally. The signals do not have to meet any setup or hold
requirements.

Table 1813.Timing parameters

Name Parameter Reference edge Min Max Unit
tGRTMUART0 hold from clock rising clk edge - - ns

tGRTMUART1 setup to clock rising clk edge - - ns

Figure 301. Timing waveforms

clk

tGRTMUART0tmdata tGRTMUART1
GRIP, Sep 2018, Version 2018.3 1543 www.cobham.com/gaisler

GRLIB IP Core

121 GEFFE - CCSDS/ECSS Telemetry Encoder - Geffe Generator

121.1 Overview

The Geffe Generator implements a simple stream based cipher to encrypt Telemetry Transfer Frames.
The Geffe generator acts as a keystream generator. It uses three Linear Feed-back Shift Registers
(LFSR) combined in a nonlinear manner. Two of the LFSRs (LFSR1 and LFSR2) are inputs into a
multiplexer, and the third LFSR (LFSR0) controls the output of the multiplexer. Suppose LFSR0,
LFSR1, and LFSR2 are the outputs of the three LFSRs, then the generator output is as follows:
 b(x) = (LFSR0 and LFSR1) xor (not LFSR0 and LFSR2)

The generator is programmable, in terms of the power of the polynomials used (i.e. stages or states),
the polynomials (POLY0, POLY1 and POLY2) and the initialization values (INIT0, INIT1 and
INIT2), individually for each of the three LFSRs.
The Geffe Generator interfaces with the GRTM CCSDS Telemetry Encoder via its external encryp-
tion/cipher interface located between the Data Link Protocol Sub-Layer and the Synchronization and
Channel Coding Sub-Layer. This corresponds to Link Layer Security Option A according CCSDS
definitions (see CCSDS 350.0-G-2 “The application of CCSDS protocols to secure systems”). This
corresponds to Link Layer Security Option A according to CCSDS 350.0-G-2, i.e. between Logical
Link Sublayer and Coding Sublayer.
The implementation of security services is below the Transfer Frame level. The full Transfer Frame is
encrypted after any other necessary security services are applied. The generated keystream is XOR-ed
bit wise with the Transfer Frame bit stream, starting with first bit transmitted. The LFSRs are only
shifted when there is data to be encrypted. The shift is made after each bit has been encrypted.
The three LFSRs are initialized once when the generator is enabled, with the contents of the program-
mable INIT0, INIT1 and INIT2 register fields, respectively.
The LFSRs initialization value can be optionally XOR-ed with the Transfer Frame Master Channel
Counter (only supported for hardware implemented Master Channel Counter in telemetry encoder),
according to the following formula:
 LFSR(31:24) = INIT(31:24) xor MCC(0:7), LFSR(23:16) = INIT(23:16) xor MCC(0:7)
 LFSR(15: 8) = INIT(15: 8) xor MCC(0:7), LFSR(7: 0) = INIT(7: 0) xor MCC(0:7)

where INIT(31:0) is the programmable register field (bit 31 being the most significant), and
MCC(0:7) is the Transfer Frame Master Channel Counter (bit 0 being the most significant).
The keystream is optionally restarted for each Transfer Frame, i.e. the LFSRs are re-initialized.
The Attached Synchronization Marker remains in plaintext to enable the ground systems to delimit
the Channel Access Service Data Units. Also the Reed-Solomon check symbols are in plaintext, i.e.
error detection & correction before decrypting begins.
Encryption for Idle Transfer Frames can be optionally disabled (only supported for hardware imple-
mented Idle Transfer Frame generation in telemetry encoder).
A Cyclic Redundancy Code (CRC) can be optionally calculated over the encrypted data according to
CCSDS/ECSS algorithm and replace the Frame Error Control Field (FECF) when transmitted in a
Transfer Frame (only supported for hardware implemented CRC calculation in telemetry encoder).
The Geffe generator provides support for the following programmable functions:
• Enable/disable encryption on Transfer Frame boundaries
• Initialize LFSRs in-between Transfer Frames
• Initialize LFSRs taking Master Channel Counter value into account
• Skip encryption for Idle Transfer Frames
• Recalculate Cyclic Redundancy Code (CRC) and replace Frame Error Control Field (FECF)
GRIP, Sep 2018, Version 2018.3 1544 www.cobham.com/gaisler

GRLIB IP Core

121.2 Linear Feed-back Shift Registers

The three Linear Feed-back Shift Registers (LFSR) are Many-to-One implementation, i.e. Fibonacci
version of LFRS. The One-to-Many implementation, i.e. Galois version of LFSR is not supported.
There are two mathematical representations for Fibonacci LFSR:
• output has the highest power, h(x)
• output has the lowest power, l(x)
The implementation of the Geffe Generator supports both representations. Note that both representa-
tions generate the same keystream.
The LFSRs are always shifted to the left. The feedback is always entered to the right. The output bits
corresponds to the leftmost set bits in the POLY fields in the polynomial configuration registers. The
POLY field defined the feedback taps. The initialization values of the LFSRs is defined in the INIT
fields in the polynomial initialization value configuration registers.
Note that the bit index of the configuration registers is not directly related to the polynomial powers.
The interpretation of the bit index values depends on which of the above representations is assumed.
A first example of an LFSR configuration and the two possible interpretations is shown hereafter. The
POLY field is set to 0x0000000B1. Since the leftmost bit set has index 7, the LFSR has 8 stages, and
the output is taken from bit index 7, indicated with out in the figure.
Assuming that the output has the highest power, indicated with High and h(x), the resulting polyno-
mial is h(x) = x8 + x6 + x5 + x1 + x0.
Assuming that the output has the highest power, indicated with Low and l(x), the resulting polynomial
is l(x) = x0 + x2 + x3 + x7 + x8.
 out
 |
 +-+-+---+---+---+---+---+---+---+
Bit: | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |<-+
 +-+-+---+-+-+-+-+---+---+---+-+-+ |
 | | | | |
 +------XOR-XOR-------------XOR---+

POLY: 1 0 1 1 0 0 0 1

High: x8 x7 x6 x5 x4 x3 x2 x1 x0

h(x) = x8+ x6+ x5+ x1+ x0

Low: x0 x1 x2 x3 x4 x5 x6 x7 x8

l(x) = x0+ x2+ x3+ x7+ x8

A second example of an LFSR configuration and the two possible interpretations is shown hereafter.
The POLY field is set to 0x000000071. Since the leftmost bit set has index 6, the LFSR has 7 stages,
and the output is taken from bit index 6, indicated with out in the figure.
Assuming that the output has the highest power, indicated with High and h(x), the resulting polyno-
mial is h(x) = x7 + x6 + x5 + x1 + x0.
Assuming that the output has the highest power, indicated with Low and l(x), the resulting polynomial
is l(x) = x0 + x1 + x2 + x6 + x7.
 out
 |
 +---+-+-+---+---+---+---+---+---+
Bit: | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |<-+
 +---+-+-+-+-+-+-+---+---+---+-+-+ |
 | | | | |
 +--XOR-XOR-------------XOR---+

POLY: 0 1 1 1 0 0 0 1

High: x7 x6 x5 x4 x3 x2 x1 x0

h(x) = x7+ x6+ x5+ x1+ x0

Low: x0 x1 x2 x3 x4 x5 x6 x7

l(x) = x0+ x1+ x2+ x6+ x7
GRIP, Sep 2018, Version 2018.3 1545 www.cobham.com/gaisler

GRLIB IP Core

121.3 Connectivity

The connectivity of the Geffe Generator is tightly coupled to the functionality of the GRTM CCSDS
Telemetry Encoder.
The input to the Geffe Generator can be connected to:
• Packet Telemetry and AOS encoder
The output from the Geffe Generator can be connected to:
• Reed-Solomon encoder
• Pseudo-Randomiser
• Non-Return-to-Zero Mark encoder
• Convolutional encoder
• Sub-Carrier modulator

121.4 Registers

The core is programmed through registers mapped into APB address space.

Table 1814.GEFFE registers

APB address offset Register
0x00 GEFFE Control Register
0x10 GEFFE LFSR 0 Polynomial Configuration Register
0x14 GEFFE LFSR 1 Polynomial Configuration Register
0x18 GEFFE LFSR 2 Polynomial Configuration Register
0x20 GEFFE LFSR 0 Initialization Value Configuration Register
0x24 GEFFE LFSR 1 Initialization Value Configuration Register
0x28 GEFFE LFSR 2 Initialization Value Configuration Register
GRIP, Sep 2018, Version 2018.3 1546 www.cobham.com/gaisler

GRLIB IP Core

121.4.1

Table 1815.0x00 - CTRL - GEFFE control register

Control Register

121.4.2

Table 1816. 0x10 - PcRn - GEFFE LFSR Polynomial Configuration Registers 0 to 2

LFSR Polymonial Configuration Registers 0 to 2

121.4.3 Initialization Value Configuration Registers 0 to 2

Table 1817. 0x20 - ICRn - GEFFE LFSR Initialization Value Configuration Registers 0 to 2

121.5 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x086. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

31 13 12 8 7 6 5 4 3 2 1 0

RESERVED LENGTH-1 ON - RI MCC IDLE CRC EN RST

0 * 0 0 0 0 0 0 0

r r r rw rw rw rw rw rw

31: 13 RESERVED
12: 8 LFSR Length -1 (LENGTH-1) - the bit length of the implemented LFSR registers - 1 bit (read-only)
7 On-going (ON) - encryption of Transfer Frame is on-going when set, wait till cleared before chang-

ing ann configuration settings (read-only)
6 RESERVED
5 Re-initialize (RI) - when set, LFSRs are re-initialized in-between Transfer Frame (Reset value 0)
4 Master Channel Counter (MCC) - when set, LFSRs are initialized with the Transfer Frame Master

Channel Counter value being XOR-ed with the INIT field values (Reset value 0)
3 Skip idle (IDLE) - when set, if an Idle Transfer Frame is transmitted, skip encryption (Reset value 0)
2 CRC replace (CRC) - when set, if FECF is transmitted in Transfer Frame, recalculates CRC value

over encrypted data and replace FECF with the result (Reset value 0)
1 Enable (EN) - enable Geffe Generator when set (Reset value 0)
0 Reset (RST) - reset Geffe Generator when set. Does not reset configuration bits and polynomial and

initialization registers. (Reset value 0)

31 0

POLY

0

rw

31: 0 LFSR Polynomial - Each bit in POLY corresponds to a tap in the LFSR. The LFSR is always shifted
to the left. Feedback taps are always entered to the right, i.e. bit 0. The output bit corresponds to the
leftmost set bit in POLY. Should not be changed while encryption is enabled. (Reset value all zero)

31 0

INIT

0

rw

31: 0 LFSR Initialization Value - The LFSR is initialized with this value, or optionally combined with the
Transfer Frame Master Channel Counter value. Should not be changed while encryption is enabled.
(Reset value all zero)
GRIP, Sep 2018, Version 2018.3 1547 www.cobham.com/gaisler

GRLIB IP Core

121.6 Configuration options

Table 1818 shows the configuration options of the core (VHDL generics).

121.7 Signal descriptions

Table 1819 shows the interface signals of the core (VHDL ports).

121.8 Signal definitions and reset values

There are not external signals.

Table 1818.Configuration options

Generic name Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0
paddr ADDR field of the APB BAR 0 - 16#FFF# 0
pmask MASK field of the APB BAR 0 - 16#FFF# 16#FFF#
len LFSR length 1 - 32 32

Table 1819.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
CI CIPHER

ENABLE Input Encryption enabled from Telemetry Encoder High
DATA(0:7) Parallel data, octet -
SYNC ASM indicator High
FRAME Frame indicator High
FECF FECF/CRC indicator High
CHECK Reed-Solomon checksymbol indicator High
TIME Time strobe High
IDLE Idle Transfer Frame indicator High
MCCNTR(0:7) Transfer Frame Master Channel Counter -

CO CIPHER
ENABLE Output Unused -
DATA(0:7) Parallel data, octet -
SYNC ASM indicator High
FRAME Frame indicator High
FECF Unused -
CHECK Reed-Solomon checksymbol indicator High
TIME Time strobe High
IDLE Unused -
MCCNTR(0:7) Transfer Frame Master Channel Counter -

OCLK N/A Input Octet clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
* see GRLIB IP Library User’s Manual
GRIP, Sep 2018, Version 2018.3 1548 www.cobham.com/gaisler

GRLIB IP Core

121.9 Timing

The are no external timing waveforms and timing parameters.

121.10 Library dependencies

Table 1820 shows the libraries used when instantiating the core (VHDL libraries).

Table 1820.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
TMTC TMTC_TYPES Signals, component Component declaration
GRIP, Sep 2018, Version 2018.3 1549 www.cobham.com/gaisler

GRLIB IP Core

122 GRTMRX - CCSDS/ECSS Telemetry Receiver

122.1 Overview

The CCSDS/ECSS/PSS Telemetry Receiver implements part of the Data Link Layer, covering the
Protocol Sub-layer and the Frame Synchronization and Coding Sub-layer and part of the Physical
Layer of the packet telemetry protocol.
The operation of the Telemetry Receiver is highly programmable by means of control registers.
The Telemetry Receiver comprises several decoders and modulators implementing the Consultative
Committee for Space Data Systems (CCSDS) recommendations, European Cooperation on Space
Standardization (ECSS) and the European Space Agency (ESA) Procedures, Standards and Specifica-
tions (PSS) for telemetry and channel coding. The Telemetry Receiver comprises the following:
• Operation Control Field (OCF)
• Frame Error Control Field (FECF)
• Pseudo-De-Randomiser (PSR)
• Attached Sync Marker search (ASM)
• Non-Return-to-Zero Mark decoder (NRZ)
• Convolutional Quick-Look Decoder (CE)
• Split-Phase Level de-modulator (SP)
• Sub-Carrier de-modulator (SC)

Figure 302. Block diagram

GRTMRX

Attached Sync Mark

DMA

AMBA
APB
Slave

D
at

a
Li

nk
 P

ro
to

co
l S

ub
-L

ay
er

NRZ-M

Sub Carrier (BPSK)

SP-L

Convolutional

Pseudo-Randomiser

C
od

in
g

Su
b-

La
ye

r

All Frame Reception

Master Channel
FIFO Reception

AMBA
AHB

Master

System clock domain

Transponder
clock domain

Telemetry input

A
M

B
A

 A
H

B

A
M

B
A

 A
P

B

OCF

FECF

Ph
ys

ic
al

 L
ay

er
GRIP, Sep 2018, Version 2018.3 1550 www.cobham.com/gaisler

GRLIB IP Core

122.2 References

122.2.1 Documents

[C131] CCSDS 131.0-B-2 TM Synchronization and Channel Coding
[C132] CCSDS 132.0-B-1 TM Space Data Link Protocol
[C133] CCSDS 133.0-B-1 Space Packet Protocol
[C732] CCSDS 732.0-B-2 AOS Space Data Link Protocol
[ECSS01] ECSS-E-50-01C Space engineering - Space data links - Telemetry synchronization and

channel coding
[ECSS03] ECSS-E-50-03C Space engineering - Space data links - Telemetry transfer frame protocol
[ECSS05] ECSS-E-50-05C Space engineering - Radio frequency and modulation
[PPS103] ESA PSS-04-103 Telemetry channel coding standard
[PPS105] ESA PSS-04-105 Radio frequency and modulation standard
[PPS106] ESA PSS-04-106 Packet telemetry standard

122.2.2 Acronyms and abbreviations

AOSAdvanced Orbiting Systems
ASMAttached Synchronization Marker
CCSDSConsultative Committee for Space Data Systems
CLCWCommand Link Control Word
CRCCyclic Redundancy Code
DMADirect Memory Access
ECSSEuropean Cooperation for Space Standardization
ESAEuropean Space Agency
FECFFrame Error Control Field
GF Galois Field
NRZNon Return to Zero
OCFOperational Control Field
PSR Pseudo Randomiser
PSS Procedures, Standards and Specifications
RS Reed-Solomon
SP Split-Phase
TE Turbo Encoder
TM Telemetry

122.3 Layers

122.3.1 Introduction

The Packet Telemetry (or simply Telemetry or TM) and Advanced Orbiting System (AOS) standards
are similar in their format, with only some minor variations. The AOS part covered here is the down-
link or transmitter, not the uplink or receiver.
GRIP, Sep 2018, Version 2018.3 1551 www.cobham.com/gaisler

GRLIB IP Core

The relationship between these standards and the Open Systems Interconnection (OSI) reference
model is such that the OSI Data Link Layer corresponds to two separate layer, namely the Data Link
Protocol Sub-layer and Synchronization and Channel Coding Sub-Layer. The OSI Data Link Layer is
covered here.
The OSI Physical Layer is also covered here to some extended, as specified in [ECSS05] and
[PPS105].
The OSI Network Layer or higher layers are not covered here.

122.3.2 Data Link Protocol Sub-layer

The following functionality is implemented in the core:
• Master Channel Reception / Virtual Channel Reception

•Operation Control Field (OCF) extraction
• All Frame Reception:

•Frame Error Control Field (FECF) extraction and check
•Frame filtering on the four first received octets (of the Transfer Frame after ASM)

122.3.3 Synchronization and Channel Coding Sub-Layer

The following functionality is implemented in the core:
• Attached Synchronization Marker (ASM) search
• Pseudo de-randomiser
• Convolutional quick-look decoding

122.3.4 Physical Layer

The following functionality is implemented in the core:
• Non-Return-to-Zero de-modulation
• Split-Phase de-modulation
• Sub-Carrier de-modulation

122.4 Operation

122.4.1 Introduction

The DMA interface provides a means for the user to receive blocks of data of arbitrary length, nor-
mally this is Telemetry Transfer Frames, with ASM and optional Reed-Solomon checkbits.

122.4.2 Descriptor setup

The receiver DMA interface is used for receiving data on the downlink. The reception is done using
descriptors located in memory.
A single descriptor is shown in tables 1821 through 1824.
The number of bits to be received is set globally. The the address field of the descriptor should point
to the start of the transfer frame. The address must be word-aligned. If the interrupt enable (IE) bit is
set, an interrupt will be generated when the transfer frame has been received (this requires that the
interrupt enable bit in the control register is also set). The interrupt will be generated regardless of
whether the transfer frame was received successfully or not. The wrap (WR) bit is also a control bit
that should be set before reception and it will be explained later in this section.
GRIP, Sep 2018, Version 2018.3 1552 www.cobham.com/gaisler

GRLIB IP Core
To enable a descriptor the enable (EN) bit should be set and after this is done, the descriptor should
not be touched until the enable bit has been cleared by the core.

122.4.3 Starting reception

Enabling a descriptor is not enough to start reception. A pointer to the memory area holding the
descriptors must first be set in the core. This is done in the descriptor pointer register. The address
must be aligned to a 16 kByte boundary. Bits 31 to 14 hold the base address of descriptor area while

Table 1821.GRTMRX descriptor word 0 (address offset 0x0)
31 16 15 11 10 9 8 7 6 3 2 1 0

LEN RESERVED ALOCK INV CERR OV RESERVED WR IE EN

31: 16 (LEN) - received length in bytes (read only)
15: 11 RESERVED
10: ASM Lock (ALOCK) - (read only) Set to one when ASM search is in lock.
9: Inverted bit stream (INV) - (read only) Set to one when an inverted bit stream detected.
8: CRC Error (CERR) - (read only) Set to one when a CRC error was detected (speculative, only useful

if FECF present in frame)
7: Overrun (OV) - (read only) Set to one when an overrun has occurred during reception.
6: 3 RESERVED
2: Wrap (WR) - Set to one to make the descriptor pointer wrap to zero after this descriptor has been

used. If this bit is not set the pointer will increment by 16. The pointer automatically wraps to zero
when the 16 kB boundary of the descriptor table is reached.

1: Interrupt Enable (IE) - an interrupt will be generated when the frame from this descriptor has
been sent provided that the receiver interrupt enable bit in the control register is set. The interrupt
is generated regardless if the frame was received successfully or if it terminated with an error.

0: Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor
fields.

Table 1822.GRTMRX descriptor word 1 (address offset 0x4)
31 2 1 0

ADDRESS -

31: 2 Address (ADDRESS) - Pointer to the buffer area to where data will be stored.
1: 0 RESERVED

Table 1823.GRTMRX descriptor word 2 (address offset 0x8)
31 0

STATUS0

31: 0 (STATUS0) - External status information

Table 1824.GRTMRX descriptor word 3 (address offset 0xC)
31 0

STATUS1

31: 0 (STATUS1) - External status information
GRIP, Sep 2018, Version 2018.3 1553 www.cobham.com/gaisler

GRLIB IP Core

bits 13 to 4 form a pointer to an individual descriptor. The first descriptor should be located at the base
address and when it has been used by the core, the pointer field is incremented by 16 to point at the
next descriptor. The pointer will automatically wrap back to zero when the next 16 kByte boundary
has been reached. The WR bit in the descriptors can be set to make the pointer wrap back to zero
before the 16 kByte boundary.
The pointer field has also been made writable for maximum flexibility but care should be taken when
writing to the descriptor pointer register. It should never be touched when reception is active.
The final step to activate the reception is to set the enable bit in the DMA control register. This tells
the core that there are more active descriptors in the descriptor table. This bit should always be set
when new descriptors are enabled, even if reception is already active. The descriptors must always be
enabled before the reception enable bit is set.

122.4.4 Descriptor handling after reception

When the reception of a frame has finished, status is written to the first word in the corresponding
descriptor. The other bits in the first descriptor word are set to zero after reception. The enable bit
should be used as the indicator when a descriptor can be used again, which is when it has been cleared
by the core. Additionally, the last two words in the corresponding descriptor are written with external
status information.
There are multiple bits in the DMA status register that hold status information.
The Receiver Interrupt (RI) bit is set each time a DMA reception ended successfully. The Receiver
Error (RE) bit is set each time an DMA reception ended with an overrun error. For either event, an
interrupt is generated for descriptor for which the Interrupt Enable (IE) was set. The interrupt is mas-
kable with the Interrupt Enable (IE) bit in the control register.
The Receiver AMBA error (RA) bit is set when an AMBA AHB error was encountered either when
reading a descriptor or when writing data. Any active reception was aborted and the DMA channel
was disabled. It is recommended that the receiver is reset after an AMBA AHB error. The interrupt is
maskable with the Interrupt Enable (IE) bit in the control register.

122.4.5 Demodulator clock recovery

Demodulators are provided, that support Split-Phase Level (SP) demodulation (SP), and Binary Phase
Shift Key (BPSK) demodulation (or Phase Shift Key Square) as per [ECSS-E-ST-50-05C]. The
demodulators can operate separately or in combination.
The demodulators can operate either with a bit serial clock input signal, or with just the bit serial data
stream.
For the former, it is assumed that a bit serial clock input, which is synchronous with the bit serial data
input, is provided. The demodulator can decode symbol rates up the system clock frequency.
For the latter, a bit serial clock signal can be re-generated locally for a bit serial data input that is Split-
Phase-L (SP-L) and/or Sub-Carrier (SC) modulated. The clock recovery is enabled by setting the EN
bit in the GRTMRX Demodulator register. With clock recovery, the demodulator can decode a bit
serial data input where the symbol period has a duration of down to four times the system clock
period. Note that when Sub Carrier (SC) modulation is used, a symbol corresponds to a single phase
of the sub-carrier waveform, thus the sub-carrier frequency can be up to an eighth of the system clock
frequency.
GRIP, Sep 2018, Version 2018.3 1554 www.cobham.com/gaisler

GRLIB IP Core

122.5 Registers

The core is programmed through registers mapped into APB address space.

Table 1825.GRTMRX registers

APB address offset Register
0x00 GRTMRX DMA Control register
0x04 GRTMRX DMA Status register
0x08 GRTMRX DMA Descriptor Pointer register
0x80 GRTMRX Control register
0x84 GRTMRX Status register
0x88 GRTMRX Configuration register
0x8C GRTMRX Size register
0x90 GRTMRX Physical Layer register
0x94 GRTMRX Coding Sub-Layer register
0x98 GRTMRX Attached Synchronization Marker register
0x9C GRTMRX Attached Synchronization Marker Mask register
0xAC GRTMRX Data Rate register
0xB0 GRTMRX Filter register
0xB4 GRTMRX Filter Mask register
0xD0 GRTMRX Operational Control Field register
0xD4 GRTMRX Frame Error Control Field register
0xD8 GRTMRX Demodulator register
GRIP, Sep 2018, Version 2018.3 1555 www.cobham.com/gaisler

GRLIB IP Core

122.5.1

Table 1826.0x00 - DCR - DMA control register

GRTMRX DMA Control Register

122.5.2

Table 1827.0x04 - DSR - DMA status register

GRTMRX DMA Status Register

122.5.3

Table 1828. 0x08 - DPR - DMA descriptor pointer register

GRTMRX DMA Descriptor Pointer Register

122.5.4

Table 1829. 0x80 - CTRL - control register

GRTMRX Control Register

31 2 1 0

RESERVED IE EN

0 0 0

r rw rw

31: 2 RESERVED
1: Interrupt Enable (IE) - enable interrupts RA, RI, and RE
0: Enable (EN) - enable DMA transfers

31 4 3 2 1 0

RESERVED ACTIVE RA RI RE

0 NR 0 0 0

r r wc wc wc

31: 4 RESERVED
3: Active (ACTIVE) - DMA access ongoing
2: Receiver AMBA Error (RA) - DMA AMBA AHB error, cleared by writing a logical 1
1: Receiver Interrupt (RI) - DMA interrupt, cleared by writing a logical 1
0: Receiver Error (RE) - DMA receiver error (e.g.underrun), cleared by writing a logical 1

31 14 13 4 3 0

BASE INDEX RESERVED

NR NR 0

rw rw r

31: 14 Descriptor base (BASE) - base address of descriptor table
13: 4 Descriptor index (INDEX) - index of active descriptor in descriptor table
3: 0 Reserved - fixed to “0000”

31 4 3 2 1 0

RESERVED ScRST RST RxRST RxEN

0 0 0 1 0

r rw rw rw rw

31: 4 RESERVED
3: Sub Carrier Reset (ScRST) - resets sub carrier receiver
2: Reset (RST) - resets complete core
1: Receiver Reset (RxRST) - resets telemetry receiver
0: Receiver Enable (RxEN) - enables telemetry receiver (should be done after the complete configura-

tion of the telemetry receiver)
GRIP, Sep 2018, Version 2018.3 1556 www.cobham.com/gaisler

GRLIB IP Core

122.5.5

Table 1830. 0x84 - STAT - status register (read-only)

GRTMRX Status Register (read-only)

122.5.6

Table 1831. 0x88 - CONF - configuration register

GRTMRX Configuration Register

122.5.7

Table 1832. 0x8C - SIZE - size register

GRTMRX Size Register

31 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED DEBUG ASM
Cntr

R CRC
Error

Invert DLock Sync
Mark

Frame
Mark

Frame
Ready

ASM
Free

ASM
Lock

ASM
Sync

State

0 * 0 0 0 0 1 * * 0 0 0 0 0

r r r r r r r r r r r r r r

31: 15 RESERVED
14: (DEBUG) - Indicates when set that additional debug information is available in bit 31:15.
13: 12 (ASMCTNR) - ASM counter (diagnostics)
11: RESERVED
10: (CRCERR) - CRC error (speculative, only useful if FECF present in frame) 1

9: (INVERT) - Inverted bit stream (diagnostics)
8: (DLOCK) - Convolutional decoder in lock (diagnostics)
7: (SYNCMARK) - Sync Marker (external signal status, if available)
6: (FRAMEMARK) - Frame Marker (external signal status, if available)
5: (FRAMEREADY) - Frame ready (diagnostics)
4: (ASMFREE) - ASM free running (diagnostics) 1

3: (ASMLOCK) - ASM in lock (diagnostics) 1

2: (ASMSYNC) - ASM synchronized (diagnostics)1

1: 0 Receiver state (STATE) - 00=Idle, 01=Search, 10=Filter, 11=Receive (diagnostics)

31 24 23 8 7 3 2 1 0

REVISION FIFOSIZE RESERVED Free
Wheel

Raw Endian

1 25b 0 0 0 0

r r r rw rw rw

31: 24 (REVISION) - Revision number
23: 8 (FIFOSIZE) - FIFO size bytes
7: 3 RESERVED
2: (FREEWHEEL) - Free wheeling enabled when set (i.e. accepts missing ASM) (not to be used with

RAW set or MATCH and IGNORE usage)
1: (RAW) - Raw data capture when set (no ASM search)
0: (ENDIAN) - Little Endian when set, Big Endian when cleared

31 29 28 16 15 0

RESERVED OCFINDEX NOOFBITS

0 0xE3 0x718

r rw rw

31: 29 RESERVED
28: 16 (OCFINDEX) Defines the byte number of the last octet of OCF, counting from the ASM start 1

Defines the byte number of the octet preceding FECF, counting from the ASM start 1

15: 0 (NOOFBITS) - Number of bits for block to receive (e.g. including ASM, Reed-Solomon code, etc.)
GRIP, Sep 2018, Version 2018.3 1557 www.cobham.com/gaisler

GRLIB IP Core

122.5.8

Table 1833. 0x90 - PLR - physical layer register

GRTMRX Physical Layer Register

122.5.9

Table 1834. 0x94 - CSL - coding sub-layer register

GRTMRX Coding Sub-Layer Register

31 30 16 15 14 0

SF SYMBOLRATE SCF SUBRATE

0 0 0 0

rw r rw r

31 Symbol Fall (SF) - symbol clock has a falling edge at start of symbol bit
30: 16 Symbol Rate (SYMBOLRATE) - symbol rate division factor -1 (read-only) (diagnostics)

When Sub Carrier (SC) is disabled, this field corresponds to the lower 15 bits of the number of sys-
tem clock periods -1 counted per incoming symbol clock period duration.
When Sub Carrier (SC) is enabled, this field corresponds to the number of system clock periods -1
counted per incoming symbol clock period duration.

15 Sub Carrier Fall (SCF) -sub carrier output start with a falling edge for logical 1
14: 0 Sub Carrier Rate (SUBRATE) - sub carrier division factor - 1 (read only) (diagnostics)

When Sub Carrier (SC) is disabled, this field corresponds to the upper 15 bits of the number of sys-
tem clock periods -1 counted per incoming symbol clock period duration.
When Sub Carrier (SC) is enabled, this field corresponds to the number of sub-carrier clock phases -
1 counted per incoming symbol bit duration.

Telemetry Rate (TELEMTRY RATE) - is the bit rate after potential Sub Carrier (SC) demodulation, Split-Phase Level (S)
demodulation and Convolutional Encoding (CE) decoding, and corresponds to the telemetry bit rate.

The following variables are used in the tables hereafter: f = system clock frequency, n = SYMBOL-
RATE+1 (GRTMRX physical layer register field +1), and m = SUBRATE+1 (GRTMRX physical
layer register field +1).
When Sub Carrier (SC) is disabled, the telemetry rate equals
TELMETRY RATE = (SUBRATE * 2**15 + SYMBOLRATE+1) / (1+CE) / (1+SP) = m * n / (1+CE) / (1+SP)
When Sub Carrier (SC) is enabled, the telemetry rate equals
TELEMETRY RATE = (SUBRATE +1)* (SYMBOLRATE+1) / (1+CE) / (1+SP) = m * n / (1+CE) / (1+SP)

31 19 18 17 16 8 7 6 5 4 2 1 0

RESERVED SEL RESERVED P
S
R

N
R
Z

CE RESERVED SP SC

0 0 0 0 0 0 0 0 0

r rw r rw rw rw r rw rw

31: 19 RESERVED
18: 17 Selection (SEL) - selection of external telemetry clock and data source (application specific)
16: 8 RESERVED
7: Pseudo-Randomiser (PSR) - pseudo-de-randomiser enable 1

6: Non-Return-to-Zero (NRZ) - non-return-to-zero - mark decoding enable
5: Convolutional Encoding (CE) - convolutional decoding enable
4: 2 RESERVED
1: Split-Phase Level (SP) - split-phase level de-modulation enable
0: Sub Carrier (SC) - sub carrier de-modulation enable
GRIP, Sep 2018, Version 2018.3 1558 www.cobham.com/gaisler

GRLIB IP Core

122.5.10

Table 1835. 0x98 - ASM - attached synchronization marker register

GRTMRX Attached Synchronization Marker Register

122.5.11

Table 1836. 0x9C - AMM - attached synchronization mask register

GRTMRX Attached Synchronization Mask Register

122.5.12

Table 1837. 0xAC - DRR - data rate register (read-only)

GRTMRX Data Rate Register (read-only)

122.5.13

Table 1838. 0xB0 - FLT - Filter register

GRTMRX Filter Register

31 0

ASM

0xIACFFCID

rw

31: 0 Attached Synchronization Marker (ASM) - pattern for ASM, (bit 31 MSB sent first, bit 0 LSB sent
last), reset values 0x1ACFFC1D 1

31 0

ASMMASK

0xFFFFFFFF

r

31: 0 Attached Synchronization Marker Mask (ASMMASK) - mask for ASM pattern, bit used when set 1

31 30 29 0

R DATARATE

0 0

r r

31: 30 RESERVED
29: 0 (DATARATE) - data rate division factor -1 (read-only) (diagnostics)

This field corresponds to the number of system clock periods -1 counted per incoming telemetry bit
period duration.

31 16 15 0

MATCH IGNORE

0 0

rw rw

31: 16 (MATCH) - Matching pattern for the first two received octets after ASM (bit 31 MSB, bit 16 LSB) 1

15: 0 (IGNORE) - Non-matching pattern for the first two received octets after ASM (bit 15 MSB, bit 0
LSB) 1
GRIP, Sep 2018, Version 2018.3 1559 www.cobham.com/gaisler

GRLIB IP Core

122.5.14

Table 1839. 0B4 - FLTM - Filter Mask register

GRTMRX Filter Mask Register

122.5.15

Table 1840.0x00 - OCF - OCF register (read-only)

GRTMRX OCF Register (read-only)

122.5.16

Table 1841. 0x04 - FECF - FECF register (read-only)

GRTMRX FECF Register (read-only)

Note 1: This function does is not supported in raw capture mode, when the RAW register bit is set.

122.5.17

Table 1842.0x08 - DEM - Demodulator register

GRTMRX Demodulator Register

122.6 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x082. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

31 16 15 0

MATCHMASK IGNOREMASK

0 0

rw rw

31: 16 (MATCHMASK) - Mask for matching pattern (bit 31 MSB, bit 16 LSB), bit used when set 1

15: 0 (IGNOREMASK) - Mask for non-matching pattern (bit 15 MSB, bit 0 LSB), bit used when set 1

31 0

OCF

0xFFFFFFFF

r

31: 0 Operational Control Field (OCF) - OCF/CLCW data (bit 31 MSB, bit 0 LSB) 1

31 16 15 0

RESERVED FECF

0 0xFFFF

r r

31: 16 RESERVED
15: 0 Frame Error Control Field (FECF) - FECF/CRC data (bit 15 MSB, bit 0 LSB) 1

31 30 29 0

EN DM SYMBOLRATE

0 1 *

rw r r

31: Enable (EN) - Enable clock recovery demodulator when logical 1
30: Demodulator (DM) - Clock recovery demodulator implemented if logical 1(read-only)
29: 0 Symbol Rate (SYMBOLRATE) - Symbol rate division factor -1 (read-only) (diagnostics)

This field corresponds to the number of system clock periods -1 counted per incoming symbol dura-
tion (i.e. locally generated symbol clock period). Note that when Sub Carrier (SC) modulation is
used, a symbol corresponds to one phase of the sub-carrier clock.
GRIP, Sep 2018, Version 2018.3 1560 www.cobham.com/gaisler

GRLIB IP Core

122.7 Configuration options

Table 1843 shows the configuration options of the core (VHDL generics).

122.8 Signal descriptions

Table 1844 shows the interface signals of the core (VHDL ports).

Table 1843.Configuration options

Generic name Function Allowed range Default
hindex AHB master index 0 - NAHBMST-1 0
pindex APB slave index 0 - NAPBSLV-1 0
paddr ADDR field of the APB BAR 0 - 16#FFF# 0
pmask MASK field of the APB BAR 0 - 16#FFF# 16#FFF#
pirq Interrupt line used by core 0 - NAHBIRQ-1 0
memtech Memory technology 0 to NTECH 0
clktech Clock buffer technology 0 to NTECH 0
buftype Clock buffer type TBD 0
demod Demodulator for local clock recovery 0 - 1 0

Table 1844.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
TMI BITLOCK Output Bit Lock High

RFAVAIL RF Available High
OCF_SDU[0:31] OCF_SDU Bypass -
CIPHER Encryption/ Cipher Interface -
EXREQUEST External VC Request High
CONF External configuration -
GRIP, Sep 2018, Version 2018.3 1561 www.cobham.com/gaisler

GRLIB IP Core
122.9 Signal definitions and reset values

The signals and their reset values are described in table 1845.

122.10 Timing

The timing waveforms and timing parameters are shown in figure 303 and are defined in table 1846.

TMO TIME Input Time strobe High
SYNC ASM indicator High
FRAME Frame indicator High
SERIAL Serial bit data High
CLOCK Serial bit data clock High
DATA [0:7] Parallel data, octet High
STROBE Parallel data strobe High
C1 C1 bit from convolutional encoder -
C2 C2 bit from convolutional encoder -
CLKSEL[0:1] External clock selection -
FRAMELSB[0:1] MC Counter least significant bits -
CIPHER Encryption/ Cipher Interface -
SCID[0:9] SCID setting -
OCF OCF setting High
FECF FECF setting High
EXENABLE External VC enable High
EXGRANT External VC grant High
EXREADY External VC ready High
TIMESTAMP Time Stamp -

APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
AHBMI * Input AMB master input signals -
AHBMO * Output AHB master output signals -
* see GRLIB IP Library User’s Manual

Table 1845.Signal definitions and reset values

Signal name Type Function Active Reset value
sync Input ASM indicator High -
frame Input Frame indicator High -
serial Input Serial bit data - -
clock Input Serial bit data clock High -

Table 1844.Signal descriptions

Signal name Field Type Function Active
GRIP, Sep 2018, Version 2018.3 1562 www.cobham.com/gaisler

GRLIB IP Core
122.11 Library dependencies

Table 1847 shows the libraries used when instantiating the core (VHDL libraries).

Table 1846.Timing parameters

Name Parameter Reference edge Min Max Unit
tGRTMRX0 input to clock hold rising clock edge TBD TBD ns

tGRTMRX1 input to clock setup rising clock edge TBD TBD ns

Table 1847.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
TMTC TMTC_TYPES Signals, component Component declaration

Figure 303. Timing waveforms

tGRTMRX0sync, frame,

clock

tGRTMRX1
serial
GRIP, Sep 2018, Version 2018.3 1563 www.cobham.com/gaisler

GRLIB IP Core

123 GRCE/GRCD - CCSDS/ECSS Convolutional Encoder and Quicklook Decoder

The Basic Convolutional Encoder (GRCE) comprises a synchronous bit serial input and a synchro-
nous bit serial output. The output frequency is twice the input frequency.
The Basic Convolutional Quicklook Decoder (GRCD) comprises a synchronous bit serial input and a
synchronous bit serial output. The input frequency is twice the output frequency. The quicklook
decoder decodes the incoming bit stream without correcting for bit errors.
The GRCE / GRCD models are based on the Basic Convolutional Code specified by Consultative
Committee for Space Data Systems (CCSDS) and European Cooperation for Space Standardization
(ECSS).
[CCSDS] TM Synchronization and Channel Coding, CCSDS 131.0-B-2
[PSS] Telemetry Channel Coding Standard, ESA PSS-04-103, Issue 1, September 1989
[ECSS] Telemetry synchronization and channel coding, ECSS-E-ST-50-01C

123.1 Protocol

The basic convolutional code is a rate 1/2, constraint-length 7 transparent code which is well suited
for channels with predominantly Gaussian noise:
Nomenclature: Convolutional code
Code rate: 1/2 bit per symbol.
Constraint length: 7 bits.
Connection vectors: G1 = 1111001 (171 octal);

G2 = 1011011 (133 octal).
Symbol inversion: On output path of G2.
GRIP, Sep 2018, Version 2018.3 1564 www.cobham.com/gaisler

GRLIB IP Core

123.2 Configuration options

Table 1848 shows the configuration options of the cores (VHDL generics).

123.3 Signal descriptions

Table 1850 shows the interface signals of the Basic Convolutional Encoder (GRCE) core (VHDL
ports).

Table 1848.Configuration options

Generic name Function Allowed range Default
syncreset Synchronous reset when set, else asynchronous 0 - 1 0

Table 1849.Signal descriptions - GRCE

Signal name Field Type Function Active
Rst_N N/A Input This active low input port synchronously resets

the model. The port is assumed to be deasserted
synchronously with the Cout system clock.

Low

Cin N/A Input This input port is the bit clock for the data input
Din. The port is sampled on the rising Cout
edge. When Cin is sampled as asserted, a new bit
is present on the Din port.
Cin is assumed to have been generated from the
rising Cout edge, normally with a delay, and Din
is assumed to be stable after the falling Cin edge.

High

Din N/A Input This input port is the serial data input for the
interface. Data are sampled on the rising Cout
edge when the Cin input is asserted. Input data
Din is thus qualified by the input bit clock Cin.
For each input data bit on Din, two bits are out-
put on Dout.

-

Cout N/A Output This input port is the system clock for the model.
All registers are clocked on the rising Cout edge.
The port also acts as the bit clock for the data
output Dout.

Rising

Dout N/A Output This output port is the serial data output for the
interface. The output is clocked out on the rising
Cout edge.

-

GRIP, Sep 2018, Version 2018.3 1565 www.cobham.com/gaisler

GRLIB IP Core

Table 1850 shows the interface signals of the GRCD core (VHDL ports).

123.4 Signal definitions and reset values

The signals and their reset values for the Basic Convolutional Encoder (GRCE) are described in table
1851.

The signals and their reset values for the Basic Convolutional Quicklook Decoder (GRCD) are
described in table 1851.

Table 1850.Signal descriptions - GRCD

Signal name Field Type Function Active
Rst_N N/A Input This active low input port synchronously resets

the model. The port is assumed to be deasserted
synchronously with the Cin system clock.

Low

Cin N/A Input This input port is the system clock for the model.
All registers are clocked on the falling Cin edge.
The port also acts as the bit clock for the data
input Din.

Falling

Din N/A Input This input port is the serial data input for the
interface. Data are sampled on the falling Cin
edge. For two input data bits on Din, one bit is
output on Dout.

-

Cout N/A Output This output port is the output bit clock. The out-
put is clocked out on the falling Cin edge.

-

Dout N/A Output This output port is the serial data output for the
interface. The output is clocked out on the falling
Cin edge. Dout is assumed to be sampled exter-
nally on the falling Cout edge.

-

Dlock N/A Output This output port is asserted when the quick look
decoder is in lock and producing decoded data.
The output is clocked out on the falling Cin
edge.

High

Table 1851.Signal definitions and reset values - GRCE

Signal name Type Function Active Reset value
cin Input Input data qualifier High -
din Input Input data - -
cout Input Bit clock Rising -
dout Output Output data - Logical 0

Table 1852.Signal definitions and reset values - GRCD

Signal name Type Function Active Reset value
cin Input Bit clock Falling -
din Input Input data - -
cout Output Output bit clock High Logical 0
dout Output Output data - Logical 0
dlock Output Decoder in lock High Logical 0
GRIP, Sep 2018, Version 2018.3 1566 www.cobham.com/gaisler

GRLIB IP Core

123.5 Timing

The timing waveforms and timing parameters for the Basic Convolutional Encoder (GRCE) are
shown in figure 304 and are defined in table 1853.

The timing waveforms and timing parameters for the Basic Convolutional Quicklook Decoder
(GRCD) are shown in figure 304 and are defined in table 1853.

123.6 Library dependencies

Table 1855 shows the libraries used when instantiating the cores (VHDL libraries).

Table 1853.Timing parameters - GRCE

Name Parameter Reference edge Min Max Unit
tGRCE0 clock to output delay rising cout edge TBD TBD ns

tGRCE1 input to clock hold rising cout edge - - ns

tGRCE2 input to clock setup rising cout edge - - ns

Table 1854.Timing parameters - GRCD

Name Parameter Reference edge Min Max Unit
tGRCD0 clock to output delay rising cin edge TBD TBD ns

tGRCD1 input to clock hold rising cin edge - - ns

tGRCd2 input to clock setup rising cin edge - - ns

Table 1855.Library dependencies

Library Package Imported unit(s) Description
TMTC TMTC_Types Component Component declaration

Figure 304. Timing waveforms - GRCE

tGRCE0dout

cout

tGRCE0

tGRCE1cin, din tGRCE2

Figure 305. Timing waveforms - GRCD

tGRCD0dout, cout, dlock

cin

tGRCD0

tGRCD1din tGRCD2
GRIP, Sep 2018, Version 2018.3 1567 www.cobham.com/gaisler

GRLIB IP Core

123.7 Instantiation

The GRCE/ GRCD cores are fully synchronous designs based on a single clock strategy. All registers
in the cores are reset synchronously or asynchronously, controlled by the syncrst VHDL generic. The
reset input requires external synchronisation to avoid any setup and hold time violations.
This example shows how the cores can be instantiated.

 library IEEE;
 use IEEE.Std_Logic_1164.all;
 library TMTC;

...

 component GRCE
 port(
 Rst_n: in Std_ULogic; -- Synchronous reset
 Cin: in Std_ULogic; -- Input data clock
 Din: in Std_ULogic; -- Input data
 Cout: in Std_ULogic; -- Output data clock
 Dout: out Std_ULogic);-- Output data
 end component GRCE;

 component GRCD
 port(
 Rst_N: in Std_ULogic; -- Synchronous reset
 Cin: in Std_ULogic; -- Input data clock
 Din: in Std_ULogic; -- Input data
 Cout: out Std_ULogic; -- Output data clock
 Dout: out Std_ULogic; -- Output data
 Dlock: out Std_ULogic);-- Output locked
 end component GRCD;
GRIP, Sep 2018, Version 2018.3 1568 www.cobham.com/gaisler

GRLIB IP Core

124 GRTC - CCSDS/ECSS Telecommand Decoder

124.1 Overview

The Telecommand Decoder (GRTC) is compliant with the Packet Telecommand protocol and specifi-
cation defined by [ECSS-E-ST-50-04C]. The decoder is compatible with the [PSS-04-107] and [PSS-
04-151] standards. The decoder is compatible with the CCSDS recommendations [CCSDS-231.0-B-
2], [CCSDS-232.0-B-2] and [CCSDS-232.1-B-2]. The Telecommand Decoder (GRTC) only imple-
ments the Coding Layer (CL).
In the Coding Layer (CL), the telecommand decoder receives bit streams on multiple channel inputs.
The streams are assumed to have been generated in accordance with the Physical Layer specifications.
In the Coding Layer, the decoder searches all input streams simultaneously until a start sequence is
detected. Only one of the channel inputs is selected for further reception. The selected stream is bit-
error corrected and the resulting corrected information is passed to the user. The corrected information
received in the CL is transfer by means of Direct Memory Access (DMA) to the on-board processor.
The Command Link Control Word (CLCW) and the Frame Analysis Report (FAR) can be read and
written as registers via the AMBA AHB bus. Parts of the two registers are generated by the Coding
Layer (CL). The CLCW can be automatically transmitted to the Telemetry Encoder (TM) for trans-
mission to the ground. Note that most parts of the CLCW and FAR are not produced by the Telecom-
mand Decoder (GRTC) hardware portion. This is instead done by the software portion of the decoder.

124.1.1 Concept

A telecommand decoder in this concept is mainly implemented by software in the on-board processor.
The supporting hardware in the GRTC core implements the Coding Layer, which includes synchroni-
sation pattern detection, channel selection, codeblock decoding, Direct Memory Access (DMA) capa-
bility and buffering of corrected codeblocks. The hardware also provides a register via which the
Command Link Control Word (CLCW) is made available to a Telemetry Encoder. The CLCW is to be
generated by the software.
The GRTC has been split into several clock domains to facilitate higher bit rates and partitioning. The
two resulting sub-cores have been named Telecommand Channel Layer (TCC) and the Telecommand
Interface (TCI). Note that TCI is called AHB2TCI. A complete CCSDS packet telecommand decoder
can be realized at software level according to the latest available standards, staring from the Transfer
Layer.

Figure 306. Block diagram

GRTC

St
ar

t s
eq

ue
nc

e
se

ar
ch

DMA

AMBA
AHB
Slave

Data Link Protocol Sub-Layer

N
R

Z-
M

BC
H

 D
ec

od
er

Coding Sub-Layer

FIFO
AMBA
AHB

Master

Te
le

co
m

m
an

d
in

pu
t

A
M

B
A

 A
H

B

Ps
eu

do
-D

er
an

do
m

iz
er

UART

UART C
LC

W
 o

ut
pu

t

A
M

B
A

 A
H

B

Physical Layer
GRIP, Sep 2018, Version 2018.3 1569 www.cobham.com/gaisler

GRLIB IP Core
124.1.2 Functions and options

The Telecommand Decoder (GRTC) only implements the Coding Layer of the telecommand protocol
standard [ECSS-E-ST-50-04C]. All other layers are to be implemented in software, e.g. Authentica-
tion Unit (AU). The Command Pulse Distribution Unit (CPDU) is not implemented.
The following functions of the GRTC are programmable by means of registers:
• Pseudo-De-Randomisation
• Non-Return-to-Zero – Mark decoding
The following functions of the GRTC are pin configurable:
• Polarity of RF Available and Bit Lock inputs
• Edge selection for input channel clock

124.2 Data formats

124.2.1 Reference documents

[PSS-04-107] Packet Telecommand Standard, Issue 2
[PSS-04-151] Telecommand Decoder Standard, Issue 1
[CCSDS 231.0-B-2] TC Synchronization and Channel Coding
[CCSDS 232.0-B-2] TC Space Data Link Protocol
[CCSDS 232.1-B-2] Communications Operation Procedure-1
[ECSS-E-ST-50-04C] Space engineering - Space data links - Telecommand protocols,

synchronization and channel coding

Figure 307. Detailed block diagram showing the internal structure

GRTC

St
ar

t s
eq

ue
nc

e
se

ar
ch

TCI2DMA

N
R

Z-
M

BC
H

 D
ec

od
er

Coding Sub-Layer

Te
le

co
m

m
an

d
in

pu
t

Ps
eu

do
-D

er
an

do
m

iz
er

Rs232Tx

Rs232Tx C
LC

W
 o

ut
pu

t

A
M

B
A

 A
H

B

Physical Layer

RxPtr

RxFifo RxCLDMA2AHB

TCI (AHB2TCI) Data Link Protocol Sub-Layer

TCC
GRIP, Sep 2018, Version 2018.3 1570 www.cobham.com/gaisler

GRLIB IP Core

124.2.2 Waveforms

124.3 Coding Layer (CL)

The Coding Layer synchronises the incoming bit stream and provides an error correction capability
for the Command Link Transmission Unit (CLTU). The Coding Layer receives a dirty bit stream
together with control information on whether the physical channel is active or inactive for the multi-
ple input channels.
The bit stream is assumed to be NRZ-L encoded, as the standards specify for the Physical Layer. As
an option, it can also be NRZ-M encoded. There are no assumptions made regarding the periodicity or
continuity of the input clock signal while an input channel is inactive. The most significant bit (Bit 0
according to [ECSS-E-ST-50-04C]) is received first.
Searching for the Start Sequence, the Coding Layer finds the beginning of a CLTU and decodes the
subsequent codeblocks. As long as no errors are detected, or errors are detected and corrected, the
Coding Layer passes clean blocks of data to the Transfer Layer which is implemented in software.
When a codeblock with an uncorrectable error is encountered, it is considered as the Tail Sequence, its
contents are discarded and the Coding Layer returns to the Start Sequence search mode.
The Coding Layer also provides status information for the FAR, and it is possible to enable an
optional de-randomiser according to [ECSS-E-ST-50-04C].

124.3.1 Synchronisation and selection of input channel

Synchronisation is performed by means of bit-by-bit search for a Start Sequence on the channel
inputs. The detection of the Start Sequence is tolerant to a single bit error anywhere in the Start
Sequence pattern. The Coding Layer searches both for the specified pattern as well as the inverted
pattern. When an inverted Start Sequence pattern is detected, the subsequent bit-stream is inverted till
the detection of the Tail Sequence.
The detection is accomplished by a simultaneous search on all active channels. The first input channel
where the Start Sequence is found is selected for the CLTU decoding. The selection mechanism is
restarted on any of the following events:
• The input channel active signal is de-asserted, or
• a Tail Sequence is detected, or

Stop

Figure 308. Bit asynchronous protocol versions

LSB MSBStart

Data

StopLSBStart

StopLSB MSBStart

StopLSB MSBStart

Start

Parity

Parity Stop

Stop

StopBreak

MSB

Figure 309. Telecommand input protocol

Delimiter

Clock

Data 0 1 2 3 4 5 6 7 n-8n-7n-6n-5n-4n-3n-2n-1
MSB LSB
GRIP, Sep 2018, Version 2018.3 1571 www.cobham.com/gaisler

GRLIB IP Core

• a Codeblock rejection is detected, or
• an abandoned CLTU is detected, or the clock time-out expires.
As a protection mechanism in case of input failure, a clock time-out is provided for all selection
modes. The clock time-out expires when no edge on the bit clock input of the selected input channel
in decode mode has been detected for a specified period. When the clock time-out has expired, the
input channel in question is ignored (i.e. considered inactive) until its active signal is de-asserted
(configurable with gTimeoutMask=1).

124.3.2 Codeblock decoding

The received Codeblocks are decoded using the standard (63,56) modified BCH code. Any single bit
error in a received Codeblock is corrected. A Codeblock is rejected as a Tail Sequence if more than
one bit error is detected. Information regarding Count of Single Error Corrections and Count of
Accept Codeblocks is provided to the FAR. Information regarding Selected Channel Input is provided
via a register.

124.3.3 De-Randomiser

In order to maintain bit synchronisation with the received telecommand signal, the incoming signal
must have a minimum bit transition density. If a sufficient bit transition density is not ensured for the
channel by other methods, the randomiser is required. Its use is optional otherwise. The presence or
absence of randomisation is fixed for a physical channel and is managed (i.e., its presence or absence
is not signalled but must be known a priori by the spacecraft and ground system). A random sequence
is exclusively OR-ed with the input data to increase the frequency of bit transitions. On the receiving
end, the same random sequence is exclusively OR-ed with the decoded data, restoring the original
data form. At the receiving end, the de-randomisation is applied to the successfully decoded data. The
de-randomiser remains in the “all-ones” state until the Start Sequence has been detected. The pattern
is exclusively OR-ed, bit by bit, to the successfully decoded data (after the Error Control Bits have
been removed). The de-randomiser is reset to the “all-ones” state following a failure of the decoder to
successfully decode a codeblock or other loss of input channel.

124.3.4 Non-Return-to-Zero – Mark

An optional Non-Return-to-Zero – Mark decoder can be enabled by means of a register.

124.3.5 Design specifics

The coding layer is supporting 1 to 8 channel inputs ([PSS-04-151] requires at least 4).
A codeblock is fixed to 56 information bits (as per CCSDS/ECSS).
The CCSDS/ECSS (1024 octets) or [PSS-04-151] (256 octets) standard maximum frame lengths are
supported, being programmable via bit PSS in the GCR register. The former allows more than 37
codeblocks to be received.
The Frame Analysis Report (FAR) interface supports 8 bit CAC field, as well as the 6 bit CAC field
specified in [PSS-04-151]- When the PSS bit is cleared to '0', the two most significant bits of the CAC
will spill over into the "LEGAL/ILLEGAL" FRAME QUALIFIER field in the FAR. These bits will
however be all-zero when [PSS-04-151] compatible frame lengths are received or the PSS bit is set to
'1'. The saturation is done at 6 bits when PSS bit is set to '1' and at 8 bits when PSS bit is cleared to '0'.
The Pseudo-Randomiser decoder is included (as per CCSDS/ECSS), its usage being input signal pro-
grammable.
The Physical Layer input can be NRZ-L or NRZ-M modulated, allowing for polarity ambiguity. NRZ-
L/M selection is programmable. This is an extension to ECSS: Non-Return to Zero - Mark decoder
added, with its internal state reset to zero when channel is deactivated.
GRIP, Sep 2018, Version 2018.3 1572 www.cobham.com/gaisler

GRLIB IP Core

Note: If input clock disappears, it will also affect the codeblock acquired immediately before the
codeblock just being decoded (accepted by [PSS-04-151]).
In state S1, all active inputs are searched for start sequence, there is no priority search, only round
robin search. The search for the start sequence is sequential over all inputs: maximum input frequency
= system frequency /(gIn+2)
The [PSS-04-151] specified CASE-1 and CASE-2 actions are implemented according to aforemen-
tioned specification, not leading to aborted frames.
Extended E2 handling is implemented:
• E2b Channel Deactivation - selected input becomes inactive in S3
• E2c Channel Deactivation - too many codeblocks received in S3
• E2d Channel Deactivation - selected input is timed-out in S3

(design choice being: S3 => S1, abandoned frame)

124.3.6 Direct Memory Access (DMA)

This interface provides Direct Memory Access (DMA) capability between the AMBA bus and the
Coding Layer. The DMA operation is programmed via an AHB slave interface.
The DMA interface is an element in a communication concept that contains several levels of buffer-
ing. The first level is performed in the Coding Layer where a complete codeblock is received and kept
until it can be corrected and sent to the next level of the decoding chain. This is done by inserting each
correct information octet of the codeblock in an on-chip local First-In-First-Out (FIFO) memory
which is used for providing improved burst capabilities. The data is then transferred from the FIFO to
a system level ring buffer in the user memory (e.g. SRAM located in on-board processor board) which
is accessed by means of DMA.
The following storage elements can thus be found in this design:
The shift and hold registers in the Coding Layer
The local FIFO (parallel; 32-bit; 4 words deep)
The system ring buffer (for example external SRAM; 32-bit; 1 to 256 kByte deep).

124.4 Transmission

The transmission of data from the Coding Layer to the system buffer is described hereafter.
The serial data is received and shifted in a shift register in the Coding Layer when the reception is
enabled. After correction, the information content of the shift register is put into a hold register.
When space is available in the peripheral FIFO, the content of the hold register is transferred to the
FIFO. The FIFO is of 32-bit width and the byte must thus be placed on the next free byte location in
the word.
When the FIFO is filled for 50%, a request is done to transfer the available data towards the system
level buffer.
If the system level ring buffer isn’t full, the data is transported from the FIFO, via the AHB master
interface towards the main processor and stored in e.g. external SRAM. If no place is available in the
system level ring buffer, the data is held in the FIFO.
When the GRTC keeps receiving data, the FIFO will fill up and when it reaches 100% of data, and the
hold and shift registers are full, a receiver overrun interrupt will be generated (IRQ_RX_OVER-
RUN). All new incoming data is rejected until space is available in the peripheral FIFO.
When the receiving data stream is stopped (e.g. when a complete data block is received), and some
bytes are still in the peripheral FIFO, then these bytes will be transmitted to the system level ring buf-
GRIP, Sep 2018, Version 2018.3 1573 www.cobham.com/gaisler

GRLIB IP Core

fer automatically. Received bytes in the shift and hold register are always directly transferred to the
peripheral FIFO.
The FIFO is automatically emptied when a CLTU is either ready or has been abandoned. The reason
for the latter can be codeblock error, time out etc. as described in CLTU decoding state diagram.
The operational state machine is shown in figure 310.

124.4.1 Data formatting

When in the decode state, each candidate codeblock is decoded in single error correction mode as
described hereafter.

Figure 310. Direct Memory Access

START

INIT
init rx_w_ptr (lower bits)

fifo 50% full ?

CHECKOVERFLOW
temp1 = rx_w_ptr

temp2 = rx_w_ptr +

temp3 = rx_r_ptr

temp2 >=

WRITE
burst of writes @ temp1

temp1 >=

RESET
temp1 = start addr+x

INCREMENT
temp1 = temp1+x

UPDATE
rx_w_ptr = temp1

set overflow-flag

temp3-offset ?

end addr?

bytes received

N

Y

N

NY

Y

START

INIT
init rx_r_ptr & rx_w_ptr (ASR register)

CHECKWAIT
temp1 = rx_w_ptr
temp2 = rx_r_ptr

temp1 = temp2 ?

READ
read @ temp2

temp2 =

RESET
temp2 = start addr+y

INCREMENT
temp2 = temp2+y

TBD ms

end addr ?

N

NY

fifo 100% full ?

CHANNEL RESET

Y

all data read ?

N

Y

YN

HARDWARE WRITE SOFTWARE READ

Legend:
rx_w_ptr Write pointer
rx_r_ptr Read pointer
GRIP, Sep 2018, Version 2018.3 1574 www.cobham.com/gaisler

GRLIB IP Core

124.4.2 CLTU Decoder State Diagram

Note that the diagram has been improved with explicit handling of different E2 events listed below.

State Definition:
S1 Inactive
S2 Search
S3 Decode

Event Definition:
E1 Channel Activation
E2a Channel Deactivation - all inputs are inactive
E2b Channel Deactivation - selected becomes inactive (CB=0 -> frame abandoned)
E2c Channel Deactivation - too many codeblocks received (all -> frame abandoned)
E2d Channel Deactivation - selected is timed-out (all -> frame abandoned)
E3 Start Sequence Found
E4 Codeblock Rejection (CB=0 -> frame abandoned)

124.4.3 Nominal

A: When the first “Candidate Codeblock” (i.e. “Candidate Codeblock” 0, which follows Event 3
(E3):START SEQUENCE FOUND) is found to be error free, or if it contained an error which has
been corrected, its information octets are transferred to the remote ring buffer as shown in table 1856.
At the same time, a “Start of Candidate Frame” flag is written to bit 0 or 16, indicating the beginning
of a transfer of a block of octets that make up a “Candidate Frame”. There are two cases that are han-
dled differently as described in the next sections.

Legend: Bit [17:16] or [1:0]:

“00” = continuing octet

“01” = Start of Candidate Frame

“10” = End of Candidate Frame

“11” = Candidate Frame Abandoned

Table 1856.Data format

Bit[31…………24] Bit[23…………16] Bit[15….….……8] Bit[7……....……0]
0x40000000 information octet0 0x01 information octet1 0x00
0x40000004 information octet2 0x00 information octet3 0x00
0x40000008 information octet4 0x00 end of frame 0x02
… … …
0x400000xx information octet6 0x01 information octet7 0x00
0x400000xx information octet8 0x00 abandoned frame 0x03

Figure 311. Decoder state diagram

S1
INACTIVE

S2
ACTIVE

S3
DECODE

E1

E2A

E4

E3

E2c

E2b

E2d
GRIP, Sep 2018, Version 2018.3 1575 www.cobham.com/gaisler

GRLIB IP Core

124.4.4 CASE 1

When an Event 4 – (E4): CODEBLOCK REJECTION – occurs for any of the 37 possible “Candidate
Codeblocks” that can follow Codeblock 0 (possibly the tail sequence), the decoder returns to the
SEARCH state (S2), with the following actions:
• The codeblock is abandoned (erased)
• No information octets are transferred to the remote ring buffer
• An “End of Candidate Frame” flag is written, indicating the end of the transfer of a block of

octets that make up a “Candidate Frame”.

124.4.5 CASE 2

When an Event 2 – (E2): CHANNEL DEACTIVATION – occurs which affects any of the 37 possible
“Candidate Codeblocks” that can follow Codeblock 0, the decoder returns to the INACTIVE state
(S1), with the following actions:
• The codeblock is abandoned (erased)
• No information octets are transferred to the remote ring buffer
• An “End of Candidate Frame” flag is written, indicating the end of the transfer of a block of

octets that make up a “Candidate Frame”

124.4.6 Abandoned

• B: When an Event 4 (E4), or an Event 2 (E2), occurs which affects the first candidate codeblock
0, the CLTU shall be abandoned. No candidate frame octets have been transferred.

• C: If and when more than 37 Codeblocks have been accepted in one CLTU, the decoder returns
to the SEARCH state (S2). The CLTU is effectively aborted and this is will be reported to the
software by writing the “Candidate Frame Abandoned flag” to bit 1 or 17, indicating to the soft-
ware to erase the “Candidate frame”.

124.5 Relationship between buffers and FIFOs

The conversion from the peripheral data width (8 bit for the coding layer receiver), to 32 bit system
word width, is done in the peripheral FIFO.
All access towards the system ring buffer are 32-bit aligned. When the amount of received bytes is
odd or not 32-bit aligned, the FIFO will keep track of this and automatically solve this problem. For
the reception data path, the 32 bit aligned accesses could result in incomplete words being written to
the ring buffer. This means that some bytes aren’t correct (because not yet received), but this is no
problem due to the fact that the hardware write pointer (rx_w_ptr) always points to the last, correct,
data byte.
The local FIFO ensures that DMA transfer on the AMBA AHB bus can be made by means of 2-word
bursts. If the FIFO is not yet filled and no new data is being received this shall generate a combination
of single accesses to the AMBA AHB bus if the last access was indicating an end of frame or an aban-
doned frame.
If the last single access is not 32-bit aligned, this shall generate a 32-bit access anyhow, but the
receive-write-pointer shall only be incremented with the correct number of bytes. Also in case the pre-
vious access was not 32-bit aligned, then the start address to write to will also not be 32-bit aligned.
Here the previous 32-bit access will be repeated including the bytes that were previously missing, in
order to fill-up the 32-bit remote memory-controller without gaps between the bytes.
The receive-write-pointer shall be incremented according to the number of bytes being written to the
remote memory controller.
GRIP, Sep 2018, Version 2018.3 1576 www.cobham.com/gaisler

GRLIB IP Core

124.5.1 Buffer full

The receiving buffer is full when the hardware has filled the complete buffer space while the software
didn’t read it out. Due to hardware implementation and safety, the buffer can’t be filled completely
without interaction of the software side. A space (offset) between the software read pointer (rx_r_ptr)
and the hardware write pointer (rx_w_ptr) is used as safety buffer. When the write pointer (rx_w_ptr)
would enter this region (due to a write request from the receiver), a buffer full signal is generated and
all hardware writes to the buffer are suppressed. The offset is hard coded to 8 bytes.
Warning: If the software wants to receive a complete 1kbyte block (when RXLEN = 0), then it must
read out at least 8 bytes of data from the buffer. In this case, the hardware can write the 1024 bytes
without being stopped by the rx buffer full signal.

124.5.2 Buffer full interrupt

The buffer full interrupt is given when the difference between the hardware write pointer (rx_w_ptr)
and the software read pointer (rx_r_ptr) is less than 1/8 of the buffer size. The way it works is the
same as with the buffer full situation, only is the interrupt active when the security zone is entered.
The buffer full interrupt is active for 1 system clock cycle. When the software reads out data from the
buffer, the security zone shifts together with the read pointer (rx_r_ptr) pointer. Each time the hard-
ware write pointer (rx_w_ptr) enters the security zone, a single interrupt is given.

Figure 312. Buffer full situation

Offset = 8 bytes
rx_r_ptr (S/W)

 rx_w_ptr(H/W)

Figure 313. Buffer full interrupt (buffers size is 2kbyte in this example)

Offset = 256 bytes
rx_r_ptr (S/W)

 rx_w_ptr(H/W)

Receiver buffer full interrupt is given
when the hardware pointer enters
the security zone
GRIP, Sep 2018, Version 2018.3 1577 www.cobham.com/gaisler

GRLIB IP Core

124.6 Command Link Control Word interface (CLCW)

The Command Link Control Word (CLCW) is inserted in the Telemetry Transfer Frame by the Telem-
etry Encoder (TM) when the Operation Control Field (OPCF) is present. The CLCW is created by the
software part of the telecommand decoder. The telecommand decoder hardware provides two regis-
ters for this purpose which can be accessed via the AMBA AHB bus. Note that bit 16 (No RF Avail-
able) and 17 (No Bit Lock) of the CLCW are not possible to write by software. The information
carried in these bits is based on discrete inputs.
Two PacketAsynchronous interfaces (PA) are used for the transmission of the CLCW from the tele-
command decoder. The protocol is fixed to 115200 baud, 1 start bit, 8 data bits, 1 or 2 stop bits (con-
figured by generics), with a BREAK command for message delimiting (sending 13 bits of logical
zero).
The CLCWs are automatically transferred over the PA interface after reset, on each write access to the
CLCW register and on each change of the bit 16 (No RF Available) and 17 (No Bit Lock).

124.7 Configuration Interface (AMBA AHB slave)

The AMBA AHB slave interface supports 32 bit wide data input and output. Since each access is a
word access, the two least significant address bits are assumed always to be zero, address bits 23:0 are
decoded. Note that address bits 31:24 are not decoded and should thus be handled by the AHB arbiter/
decoder. The address input of the AHB slave interfaces is thus incompletely decoded. Misaligned
addressing is not supported. For read accesses, unmapped bits are always driven to zero.
The AMBA AHB slave interface has been reduced in function to support only what is required for the
TC. The following AMBA AHB features are constrained:
• Only supports HSIZE=WORD, HRESP_ERROR generated otherwise
• Only supports HMASTLOCK='0', HRESP_ERROR generated otherwise
• Only support HBURST=SINGLE or INCR, HRESP_ERROR generated otherwise
• No HPROT decoding
• No HSPLIT generated
• HRETRY is generated if a register is inaccessible due to an ongoing reset.
• HRESP_ERROR is generated for unmapped addresses, and for write accesses to register without

any writeable bits
• Only big-endianness is supported.
During a channel reset the RRP and RWP registers are temporary unavailable. The duration of this
reset-inactivity is 8 HCLK clock periods and the AHB-slave generates a HRETRY response during
this period if an access is made to these registers.

Table 1857.CLCW transmission protocol

Byte
Number

CLCWR
register bits CLCW contents

First [31:24] Control Word Type CLCW Version
Number

Status
Field

COP In Effect

Second [23:16] Virtual Channel Id Reserved Field
Third [15:8] No RF Available No Bit Lock Lock

Out
Wait Retransmit Farm B

Counter
Report
Type

Fourth [7:0] Report Value
Fifth N/A [RS232 Break Command]
GRIP, Sep 2018, Version 2018.3 1578 www.cobham.com/gaisler

GRLIB IP Core

If the channel reset is initiated by or during a burst-access the reset will execute correctly but a part of
the burst could be answered with a HRETRY response. It is therefore not recommended to initiate
write bursts to the register.
GRTC has interrupt outputs, that are asserted for at least two clock periods on the occurrence of one of
the following events:
• ‘CLTU stored’ (generated when CLTU has been stored towards the AMBA bus, also issued for

abandoned CLTUs)
• ‘Receive buffer full’ (generated when the buffer has less than 1/8 free) (note that this interrupt is

issued on a static state of the buffer, and can thus be re-issued immediately after the correspond-
ing register has been read out by software, it should be masked in the interrupt controller to avoid
an immediate second interrupt).

• ‘Receiver overrun’ (generated when received data is dropped due to a reception overrun)
• ‘CLTU ready’ (note that this interrupt is also issued for abandoned CLTUs)
• FAR interrupt ‘Status Survey Data’
• CLCW interrupt ‘Bit Lock’
• CLCW interrupt ‘RF Available’

124.7.1 Miscellaneous

The accuracy of the transmission or reception baud rate of the bit asynchronous serial interface is
dependent on the selected system frequency and baud rate. The number of system clock periods used
for sending or receiving a bit is directly proportional to the integer part of the division of the system
frequency with the baud rate.
The BREAK command received on the bit asynchronous serial interface is a sequence of logical zeros
that is at least one bit period longer than the normal byte frame, i.e. start bit, eight data bits, optional
parity, one or two stop bits. When transmitted, it is always 13 bits.

124.8 Interrupts

The core generates the interrupts defined in table 1858.

Table 1858.Interrupts

Interrupt offset Interrupt name Description
1:st RFA RF Available changed
2:nd BLO Bit Lock changed
3:rd FAR FAR available
4:th CR CLTU ready/aborted
5:th RBF Output buffer full
6:th OV Input data overrun
7:th CS CLTU stored
GRIP, Sep 2018, Version 2018.3 1579 www.cobham.com/gaisler

GRLIB IP Core

124.9 Miscellaneous

124.9.1 Numbering and naming conventions

Convention according to the CCSDS recommendations, applying to time structures:
• The most significant bit of an array is located to the left, carrying index number zero.
• An octet comprises eight bits.

Convention according to AMBA specification, applying to the APB/AHB interfaces:
• Signal names are in upper case, except for the following:
• A lower case 'n' in the name indicates that the signal is active low.
• Constant names are in upper case.
• The least significant bit of an array is located to the right, carrying index number zero.
• Big-endian support.

General convention, applying to all other signals and interfaces:
• Signal names are in mixed case.
• An upper case '_N' suffix in the name indicates that the signal is active low.

124.9.2 Performance

The uplink bit rate is supported in the range of 1 kbits/s to 1 Mbits/s.
The bit rate is set to 115200 bit/s for the PacketAsynchronous (PA) interfaces.

Table 1859.CCSDS n-bit field definition

CCSDS n-bit field
most significant least significant
0 1 to n-2 n-1

Table 1860.AMBA n-bit field definition

AMBA n-bit field
most significant least significant
n-1 n-2 down to 1 0
GRIP, Sep 2018, Version 2018.3 1580 www.cobham.com/gaisler

GRLIB IP Core

124.10 Registers

The core is programmed through registers mapped into AHB I/O address space. Only 32-bit single-
accesses to the registers are supported.

Table 1861.GRTC registers

AHB address offset Register
0x00 Global Reset Register (GRR)
0x04 Global Control Register (GCR)
0x08 Physical Interface Mask Register (PMR)
0x0C Spacecraft Identifier Register (SIR)
0x10 Frame Acceptance Report Register (FAR)
0x14 CLCW Register 1 (CLCWR1)
0x18 CLCW Register 2 (CLCWR2)
0x1C Physical Interface Register (PHIR)
0x20 Control Register (COR)
0x24 Status Register (STR)
0x28 Address Space Register (ASR)
0x2C Receive Read Pointer Register (RRP)
0x30 Receive Write Pointer Register (RWP)
0x60 Pending Interrupt Masked Status Register (PIMSR)
0x64 Pending Interrupt Masked Register (PIMR)
0x68 Pending Interrupt Status Register (PISR)
0x6C Pending Interrupt Register (PIR)
0x70 Interrupt Mask Register (IMR)
0x74 Pending Interrupt Clear Register (PICR)
GRIP, Sep 2018, Version 2018.3 1581 www.cobham.com/gaisler

GRLIB IP Core

124.10.1

Table 1862. 0x00 - GRR - Global Reset Register

Global Reset Register (GRR)

124.10.2

Table 1863. 0x04 - GCR - Global Control Register

Global Control Register (GCR)

31 24 23 1 0

SEB RESERVED SRST

0 0 0

w r rw

31: 24 SEB (Security Byte):
Write: ‘0x55’= the write will have effect (the register will be updated).

Any other value= the write will have no effect on the register.
Read: All zero.

23: 1 RESERVED
Write: Don’t care.
Read: All zero.

0 System reset (SRST): [1]
Write: ‘1’= initiate reset,‘0’= do nothing
Read: ‘1’= unsuccessful reset, ‘0’= successful reset

31 24 23 13 12 11 10 9 0

SEB RESERVED PSS NRZM PSR RESERVED

0 0 1 0 0 0

w r rw* rw* rw* r

31: 24 SEB (Security Byte):
Write: ‘0x55’= the write will have effect (the register will be updated).

Any other value= the write will have no effect on the register.
Read: All zero.

23: 13 RESERVED
Write: Don’t care.
Read: All zero.

12 PSS (ESA/PSS enable) [11]
Write/Read: ‘0’= disable, ‘1’= enable [Read-only when gHardware VHDL generic set.]

11 NRZM (Non-Return-to-Zero Mark Decoder enable)
Write/Read: ‘0’= disable, ‘1’= enable [Read-only when gHardware VHDL generic set.]

10 PSR (Pseudo-De-Randomiser enable)
Write/Read: ‘0’= disable, ‘1’= enable [Read-only when gHardware VHDL generic set.]

9: 0 RESERVED
Write: Don’t care.
Read: All zero.

Power-up default: 0x00001000, The default value depends on the TCC_PSS, TCC_Mark, TCC_Pseudo inputs.
GRIP, Sep 2018, Version 2018.3 1582 www.cobham.com/gaisler

GRLIB IP Core

124.10.3

Table 1864. 0x08 -PMR - Physical Interface Mask Register

Physical Interfice Mask Register (PMR)

124.10.4

Table 1865. 0x0C - SIR - Spacecraft Identifier Register [7]

Spacecraft Identifier Register (STR)

31 8 7 0

RESERVED MASK

0 0

r rw

31: 8 RESERVED
Write: Don’t care.
Read: All zero.

7: 0 MASK
Write: Mask TC input when set, bit 0 corresponds to TC input 0
Read: Current mask

31 10 9 0

RESERVED SCID

0 *

r r

31: 10 RESERVED
Write: Don’t care.
Read: All zero.

9: 0 SCID (Spacecraft Identifier)
Write: Don’t care.
Read: Bit[9]=MSB, Bit[0]=LSB

Power-up default: Depends on SCID input configuration.
GRIP, Sep 2018, Version 2018.3 1583 www.cobham.com/gaisler

GRLIB IP Core

124.10.5

Table 1866. 0x10 - FAR - Frame Acceptance Report Register [7]

Frame Acceptance Report Register (FAR)

31 30 25 24 19 18 16 15 14 13 11 10 0

SSD RESERVED CAC CSEC RESERVED SCI RESERVED

0 0 0 0 0 0b111 0

r r r r r r r

31 SSD (Status of Survey Data) (see [PSS-04-151])
Write: Don’t care.
Read: Automatically cleared to 0 when any other field is updated by the coding layer.

Automatically set to 1 upon a read.
30: 25 RESERVED

Write: Don’t care.
Read: All zero.

24: 19 CAC (Count of Accept Codeblocks) (see [PSS-04-151])
Write: Don’t care.
Read: Information obtained from coding layer. [2]

18: 16 CSEC (Count of Single Error Corrections) (see [PSS-04-151])
Write: Don’t care.
Read: Information obtained from coding layer.

15: 14 RESERVED
Write: Don’t care.
Read: All zero.

13: 11 SCI (Selected Channel Input) (see [PSS-04-151])
Write: Don’t care.
Read: Information obtained from coding layer.

10: 0 RESERVED
Write: Don’t care.
Read: All zero.
GRIP, Sep 2018, Version 2018.3 1584 www.cobham.com/gaisler

GRLIB IP Core

124.10.6

Table 1867.0x14 - CLCWRx - CLCW Register (see [PSS-04-107])

CLCW Register (CLCWRx)

124.10.7

Table 1868.0x1C - PHIR - Physical Interface Register [7]

Physical Interface Register (PHIR)

31 30 29 28 26 25 24 23 18 17 16 15 14 13 12 11 10 9 8 7 0

CWTY VNUM STAF CIE VCI RESERVED NRFA NBLO LOUT WAIT RTMI FBCO RTYPE RVAL

0 0 0 0 0 0 0 0 0 0 0 0 0 0

rw rw rw rw rw rw r r rw rw rw rw rw rw

31 CWTY (Control Word Type)
30: 29 VNUM (CLCW Version Number)
28: 26 STAF (Status Fields)
25: 24 CIE (COP In Effect)
23: 18 VCI (Virtual Channel Identifier)
17: 16 Reserved (PSS/ECSS requires “00”)
15 NRFA (No RF Available)

Write: Don’t care.
Read: Based on discrete inputs.

14 NBLO (No Bit Lock)
Write: Don’t care.
Read: Based on discrete inputs.

13 LOUT (Lock Out)
12 WAIT (Wait)
11 RTMI (Retransmit)
10: 9 FBCO (FARM-B Counter)
8 RTYPE (Report Type)
7: 0 RVAL (Report Value)

31 16 15 8 7 0

RESERVED RFA BLO

0 * *

r r r

31: 16 RESERVED
Write: Don’t care.
Read: All zero.

15: 8 RFA (RF Available) [3]

Only implemented inputs are taken into account. All other bits are zero.
Write: Don’t care.
Read: Bit[8] = input 0, Bit[15] = input 7

7: 0 BLO (Bit Lock) [3]

Only implemented inputs are taken into account. All other bits are zero.
Write: Don’t care.
Read: Bit[0] = input 0, Bit[7] = input 7
GRIP, Sep 2018, Version 2018.3 1585 www.cobham.com/gaisler

GRLIB IP Core

124.10.8

Table 1869.0x20 - COR - Control Register

Control Register (COR)

31 24 23 10 9 8 1 0

SEB RESERVED CRST RESERVED RE

0 0 0 0 *

w r rw r rw

31: 24 SEB (Security Byte):
Write: ‘0x55’= the write will have effect (the register will be updated).

Any other value= the write will have no effect on the register.
Read: All zero.

23: 10 RESERVED
Write: Don’t care.
Read: All zero.

9 CRST (Channel reset) [4]

Write: ‘1’= initiate channel reset,‘0’= do nothing
Read: ‘1’= unsuccessful reset, ‘0’= successful reset

8: 1 RESERVED
Write: Don’t care.
Read: All zero.

0 RE (Receiver Enable) [Always enabled when gHardware VHDL generic set.]
The TCActive input of the receiver are masked when the RE bit is disabled.

Read/Write: ‘0’= disabled, ‘1’= enabled
Power-up default: 0x00000000 [0x00000001 when gHardware VHDL generic set.]
GRIP, Sep 2018, Version 2018.3 1586 www.cobham.com/gaisler

GRLIB IP Core

124.10.9

Table 1870.0x24 - STR - Status Register [7]

Status Register (STR)

31 11 10 9 8 7 6 5 4 3 1 0

RESERVED RBF RESERVED RFF RESERVED OV RESERVED CR

0 0 0 0 0 0 0 0

r r r r r r r r

31: 11 RESERVED
Write: Don’t care.
Read: All zero.

10 RBF (RX BUFFER Full)
Write: Don’t care.
Read: ‘0’ = Buffer not full,

‘1’= Buffer full (this bit is set if the buffer has less then 1/8 of free space)
9: 8 RESERVED

Write: Don’t care.
Read: All zero.

7 RFF (RX FIFO Full)
Write: Don’t care.
Read: ‘0’ = FIFO not full, ‘1’ = FIFO full

6: 5 RESERVED
Write: Don’t care.
Read: All zero.

4 OV (Overrun) [5]

Write: Don’t care.
Read: ‘0’= nominal, ‘1’= data lost

3: 1 RESERVED
Write: Don’t care.
Read: All zero.

0 CR (CLTU Ready) [5]
There is a worst case delay from the CR bit being asserted, until the data has actually been trans-
ferred from the receiver FIFO to the ring buffer. This depends on the PCI load etc.

Write: Don’t care.
Read: ‘1’= new CLTU in ring buffer. ‘0’= no new CLTU in ring buffer.
GRIP, Sep 2018, Version 2018.3 1587 www.cobham.com/gaisler

GRLIB IP Core

124.10.10

Table 1871.0x28 - ASR - Address Space Register [8]

 Address Space Register (ASR)

124.10.11

Table 1872.0x2C - RRP - Receive Read Pointer Register [6] [9][10]

 Receive Read Pointer Register (RRP)

124.10.12

Table 1873.0x30 - RWP - Receive Write Pointer Register [6] [9]

 Receive Write Pointer Register (RWP)

Legend:
[1] The global system reset caused by the SRST-bit in the GRR-register results in the following actions:

- Initiated by writing a ‘1”, gives ‘0’ on read-back when the reset was successful.
- No need to write a ‘0’ to remove the reset.

31 10 9 8 7 0

BUFST RESERVED RXLEN

0 0 0

rw r rw

31: 10 BUFST (Buffer Start Address)
22-bit address pointer
This pointer contains the start address of the allocated buffer space for this channel.
Register has to be initialized by software before DMA capability can be enabled.

9: 8 RESERVED
Write: Don’t care.
Read: All zero.

7: 0 RXLEN (RX buffer length)

Number of 1kB-blocks reserved for the RX buffer.
(Min. 1kByte = 0x00, Max. 256kByte = 0xFF)

31 24 23 0

RxRd Ptr Upper RxRd Ptr Lower

0 0

r rw

31: 24 10-bit upper address pointer
Write: Don’t care.
Read: This pointer = ASR[31..24].

23: 0 24-bit lower address pointer.
This pointer contains the current RX read address. This register is to be incremented with the actual
amount of bytes read.

31 24 23 0

RxWr Ptr Upper RxWr Ptr Lower

0 0

r r

31: 24 10-bit upper address pointer
Write: Don’t care.
Read: This pointer = ASR[31..24].

23: 0 24-bit lower address pointer.
This pointer contains the current RX write address. This register is incremented with the actual
amount of bytes written.
GRIP, Sep 2018, Version 2018.3 1588 www.cobham.com/gaisler

GRLIB IP Core

- Unconditionally, means no need to check/disable something in order for this reset-function to correctly execute.
- Could of course lead to data-corruption coming/going from/to the reset core.
- Resets the complete core (all logic, buffers & register values)
- Behaviour is similar to a power-up.

[2] The FAR register supports the CCSDS/ECSS standard frame lengths (1024 octets), requiring an 8 bit CAC field
instead of the 6 bits specified for PSS. The two most significant bits of the CAC will thus spill over into
the "LEGAL/ILLEGAL" FRAME QUALIFIER field, Bit [26:25]. This is only the case when the PSS bit is set to '0'.

[3] The number of channels are controlled with the gRFAvailable and gBitLock VHDL generics, respectively.
[4] The channel reset caused by the CRST-bit in the COR-register results in the following actions:

- Initiated by writing a ‘1”, gives ‘0’ on read-back when the reset was successful.
- No need to write a ‘0’ to remove the reset.
- All other bit’s in the COR are neglected (not looked at) when the CRST-bit is set during a write, meaning that
 the value of these bits has no impact on the register-value after the reset.
- Unconditionally, means no need to check/disable something in order for this reset-function to correctly execute.
- Could of course lead to data-corruption coming/going from/to the reset channel.
- Resets the complete channel (all logic, buffers & register values)
- Except the ASR-register of that channel which remains it’s value.
- All read- and write-pointers are automatically re-initialized and point to the start of the ASR-address.
- All registers of the channel (except the ones described above) get their power-up value.
- This reset shall not cause any spurious interrupts.

[5] These bits are sticky bits which means that they remain present until the register is read and
 that they are cleared automatically by reading the register.

[6] The value of the pointers depends on the content of the corresponding Address Space Register (ASR).
During a system reset, a channel reset or a change of the ASR register, the pointers are recalculated
based on the values in the ASR register.
The software has to take care (when programming the ASR register) that the pointers never have to cross a
16MByte boundary (because this would cause an overflow of the 24-bit pointers).
It is not possible to write an out of range value to the RRP register. Such access will be ignored with an HERROR.

[7] An AMBA AHB ERROR response is generated if a write access is attempted to a register without any writeable bits.
[8] The channel reset caused by a write to the ASR-register results in the following actions:

- Initiated by writing an updated value into the ASR-register.
- Unconditionally, means no need to check/disable something in order for this reset-function to correctly execute.
- Could of course lead to data-corruption coming/going from/to the reset channel.
- Resets the complete channel (all logic & buffers) but not all register values, only the following:
- COR-register, TE & RE bits get their power-up value, other bits remain their value.
- STR-register, all bits get their power-up value
- Other registers remain their value
- Updates the ASR-register of that channel with the written value
- All read- and write-pointers are automatically re-initialized and point to the start of the ASR-address.
 - This reset shall not cause any spurious interrupts

[9] During a channel reset the register is temporarily unavailable and HRETRY response is generated if accessed.
[10] It is not possible to write an out of range value to the RRP register. Such access will be ignored without an error.
[11] The PSS bit usage is only supported if the gPSS generic is set on the TCC module.

124.10.13Interrupt registers

The interrupt registers give complete freedom to the software, by providing means to mask interrupts,
clear interrupts, force interrupts and read interrupt status.
GRIP, Sep 2018, Version 2018.3 1589 www.cobham.com/gaisler

GRLIB IP Core

When an interrupt occurs the corresponding bit in the Pending Interrupt Register is set. The normal
sequence to initialize and handle a module interrupt is:
• Set up the software interrupt-handler to accept an interrupt from the module.
• Read the Pending Interrupt Register to clear any spurious interrupts.
• Initialize the Interrupt Mask Register, unmasking each bit that should generate the module inter-

rupt.
• When an interrupt occurs, read the Pending Interrupt Status Register in the software interrupt-

handler to determine the causes of the interrupt.
• Handle the interrupt, taking into account all causes of the interrupt.
• Clear the handled interrupt using Pending Interrupt Clear Register.
Masking interrupts: After reset, all interrupt bits are masked, since the Interrupt Mask Register is zero.
To enable generation of a module interrupt for an interrupt bit, set the corresponding bit in the Inter-
rupt Mask Register.
Clearing interrupts: All bits of the Pending Interrupt Register are cleared when it is read or when the
Pending Interrupt Masked Register is read. Reading the Pending Interrupt Masked Register yields the
contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask Register.
Selected bits can be cleared by writing ones to the bits that shall be cleared to the Pending Interrupt
Clear Register.
Forcing interrupts: When the Pending Interrupt Register is written, the resulting value is the original
contents of the register logically OR-ed with the write data. This means that writing the register can
force (set) an interrupt bit, but never clear it.
Reading interrupt status: Reading the Pending Interrupt Status Register yields the same data as a read
of the Pending Interrupt Register, but without clearing the contents.
Reading interrupt status of unmasked bits: Reading the Pending Interrupt Masked Status Register
yields the contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask
Register, but without clearing the contents.
The interrupt registers comprise the following:

6: CS CLTU stored*
5: OV Input data overrun*
4: RBF Output buffer full*
3: CR CLTU ready/aborted*

Table 1874.Interrupt registers

Description Name Mode
Pending Interrupt Masked Status Register PIMSR r
Pending Interrupt Masked Register PIMR r
Pending Interrupt Status Register PISR r
Pending Interrupt Register PIR rw
Interrupt Mask Register IMR rw
Pending Interrupt Clear Register PICR w

Table 1875.Interrupt registers template

31 7 6 5 4 3 2 1 0
- CS OV RBF CR FAR BLO RFA

0 0 0 0 0 0 0
* * * * ‘ * ‘
GRIP, Sep 2018, Version 2018.3 1590 www.cobham.com/gaisler

GRLIB IP Core

2: FAR FAR available*
1: BLO Bit Lock changed*
0: RFA RF Available Changed*

*See table 1874.

124.11 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x031. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

124.12 Configuration options

Table 1876 shows the configuration options of the core (VHDL generics).

Table 1876.Configuration options

Generic Function Description Allowed range Default
GRLIB AMBA plug&play settings
hindex AHB slave index Integer 0
hirq AHB slave interrupt Integer 0
singleirq Single interrupt Enable interrupt registers Integer 0
inputmask Maskable input Integer 0
ioaddr IO area address 0 - 16#FFF# 0
iomask IO area mask 0 - 16#FFF# 16#FFF#
syncrst synchronous reset 0 - 1 0
gHardware Hardware commands Coding layer fixed configuration & enable 0 - 1 0
Features settings
gIn Number of channels Number of TC channels 1 - 8 3
gPSS PSS support enable Enables PSS support 0 - 1 1
gTimeoutMask Time out mask Enables masking of input on time out 0 - 1 0
gTimeout Time out period 2^n clock periods 24
gRFAvailable Number of RF inputs Minimum 1 1 - 8 3
gBitLock Number of TC inputs Minimum 1 1 - 8 3
gDepth FIFO depth words (2^x) 4
Asynchronous bit serial interface settings (CLCW interface)
gSystemClock System frequency [Hz] Integer 33333333
gBaud Baud rate [Baud] Integer 115200
gOddParity Odd parity Odd parity generated, but not checked 0 - 1 0
gTwoStopBits Number of stop bits 0=one stop bit, 1=two stop bits 0 - 1 0
GRIP, Sep 2018, Version 2018.3 1591 www.cobham.com/gaisler

GRLIB IP Core

124.13 Signal descriptions

Table 1877 shows the interface signals of the core (VHDL ports).

Table 1877.Signal descriptions

Signal name Field Type Function Description Active
HRESETn N/A Input Reset Low
HCLK N/A Input Clock -
TCIN TCC_SCID Input Spacecraft Identity 0 is MSB, 9 is LSB -

TCACTIVE Active Indicate that sub-carrier lock is
achieved (or bit lock). Enable for
the clock and data.

-

TCCLK Bit clock Serve as the serial data input bit
clocks.

-

TCDATA Data Serve as the serial data input. Data
are sampled on the TCCLK clock
edges when the corresponding
TCActive input is asserted.

-

TCC_HIGH Active high setting 1=active high delimiter, 0=active
low

-

TCC_RISE Rising clock edge 1=rising, 0=falling -
PSEUDO Pseudo-Derando-

miser
1=enabled, 0=disabled -

MARK NRZ-M decoder 1=NRZ-M, 0=NRZ-L -
PSS PSS/ECSS mode 1=ESA PSS, 256 octet, fill bit aug-

ment
0=ECSS, 1024 octet, no fill bit
augment

-

RFAVAILPOS RF Available
polarity

Active high=1 / low=0, used for
CLCW

-

BITLOCKPOS Bit Lock polarity Active high=1 / low=0,
used for CLCW

-

CLCWRFAVAIL-
ABLE

RF Available Used for CLCW -

CLCWBITLOCK Bit Lock Used for CLCW -
TCOUT CLCW1DATA Output CLCW Data Bit serial asynchronous data for

CLCW 1 interface.
-

CLCW2DATA CLCW Data Bit serial asynchronous data for
CLCW 2 interface.

-

AHBSIN * Input AMB slave input signals -
AHBSOUT * Output AHB slave output signals -

HIRQ(hirq+6) Interrupts
(If singleirq=1
only one common
interrupt will be
generate using
hirq.)

CLTU stored Location
on HIRQ
bus
depends on
hirq
generic. If
hirq=0, no
interrupt
will be
generated.

HIRQ(hirq+5) Input data overrun
HIRQ(hirq+4) Output buffer full
HIRQ(hirq+3) CLTU ready/aborted
HIRQ(hirq+2) FAR available
HIRQ(hirq+1) Bit Lock changed
HIRQ(hirq+0) RF Available changed

AHBMIN * Input AMB master input signals -
AHBMOUT * Output AHB master output signals -
* see GRLIB IP Library User’s Manual
GRIP, Sep 2018, Version 2018.3 1592 www.cobham.com/gaisler

GRLIB IP Core

124.14 Signal definitions and reset values

The signals and their reset values are described in table 1878.

124.15 Timing

The timing waveforms and timing parameters are shown in figure 314 and are defined in table 1879.

Note: The inputs are re-synchronized internally. The signals do not have to meet any setup or hold
requirements. Static signals should not change between resets.

124.16 Library dependencies

Table 1880 shows libraries used when instantiating the core (VHDL libraries).

Table 1878.Signal definitions and reset values

Signal name Type Function Active Reset value
tcc_scid Input, static Spacecraft Identity - -
tcc_high Input, static Active high setting - -
tcc_rise Input, static Rising clock edge - -
pseudo Input, static Pseudo-Derandomiser - -
mark Input, static NRZ-M decoder - -
pss Input, static PSS/ECSS mode - -
rfavailpos Input, static RF Available polarity - -
bitlockpos Input, static Bit Lock polarity - -
tcactive Input, async Active - -
tcclk Input, async Bit clock - -
tcdata Input, async Data - -
rfavailable Input, async RF Available for CLCW - -
bitlock Input, async Bit Lock for CLCW - -
clcw1data Output CLCW output data 1 - Logical 1
clcw2data Output CLCW output data 2 - Logical 1

Table 1879.Timing parameters

Name Parameter Reference edge Min Max Unit
tGRTC0 clock to output delay rising clk edge TBD TBD ns

Table 1880.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
TMTC TMTC_Types Signals, component Signals and component declaration

Figure 314. Timing waveforms

clk

tGRTC0clcw1data, clcw2data tGRTC0
GRIP, Sep 2018, Version 2018.3 1593 www.cobham.com/gaisler

GRLIB IP Core

124.17 Instantiation

This example shows how the core can be instantiated.
library IEEE;
 use IEEE.Std_Logic_1164.all;
 library GRLIB;
 use GRLIB.AMBA.all;
 library TMTC;
 use TMTC.TMTC_Types.all;

...

 component GRTC is
 generic(
 hmstndx: in Integer := 0;
 hslvndx: in Integer := 0;
 ioaddr: in Integer := 0;
 iomask: in Integer := 16#fff#;
 hirq: in Integer := 0;
 syncrst: in Integer := 0; -- synchronous reset
 gIn: in Integer range 1 to 8 := 3; -- number of inputs
 gPSS: in Integer range 0 to 1 := 0; -- enable PSS support
 gTimeoutMask: in Integer range 0 to 1 := 0; -- timeout mask
 gTimeout: in Integer := 24; -- timeout 2^n
 gSystemClock: in Natural := 333333333; -- Hz
 gBaud: in Natural := 115200; -- Baud rate setting
 gOddParity: in Natural := 0; -- Odd parity
 gTwoStopBits: in Natural := 0; -- Stop bit selection
 gRFAvailable: in Natural range 1 to 8 := 3; -- No. of RF inputs
 gBitLock: in Natural range 1 to 8 := 3; -- No. of BL inputs
 gDepth: in Natural := 4; -- words (2^x)
 gHardware: in Natural range 0 to 1 := 0); -- enable hardware cmd
 port(
 -- AMBA AHB system signals
 HCLK: in Std_ULogic; -- System clock
 HRESETn: in Std_ULogic; -- Synchronised reset

 -- AMBA AHB slave Interface
 AHBSIn: in AHB_Slv_In_Type; -- AHB slave input
 AHBSOut: out AHB_Slv_Out_Type; -- AHB slave output

 -- AMBA AHB master Interface
 AHBMIn: in AHB_Mst_In_Type; -- AHB master input
 AHBMOut: out AHB_Mst_Out_Type; -- AHB master output

 -- Telecommand interfaces
 TCIn: in GRTC_In_Type;
 TCOut: out GRTC_Out_Type);
 end component GRTC;
GRIP, Sep 2018, Version 2018.3 1594 www.cobham.com/gaisler

GRLIB IP Core

125 TCAU - Telecommand Decoder Authentication Unit

125.1 Overview

The TCAU is compatible with the Telecommand Decoder Specification defined by [PSS-04-151] and
implements authentication in accordance with [CCSDS-350.0] as defined by Option B, authentication
of segment. The TCAU is placed between the Transfer Sublayer and the Segmentation Sublayer.
The TCAU authentication method is a plain text with appended signature. It is based on a one-way
function called “hard knapsack”, which relies on a 40-bit digital signature generated by applying a
secret key on the segment. The same algorithm is used for generating the signature in the transmitting
end as in the receiving end.

125.2 Operation

The TCAU receives segments from the transfer sublayer octet by octet, starting with the segment
header. By comparing the 5 LSBs of the segment header, the MAP address, with the configuration
signal aumap, the TCAU determines if the segment is to be authenticated. If the auenable input signal
is high, all segments where the MAP address is less than or equal to aumap will be sent to the Authen-
tication Processor for authentication. Segments where the MAP address is higher than aumap, will be
sent to the segmentation sublayer without processing. A special case exists for segments where the
entire MAP ID equals 63. These are dedicated for the Control Command Processor of the TCAU and
are always authenticated, see further section 125.9. The control commands are used to change the
internal configuration of the TCAU and are always unsegmented, i.e. the segmentation flags are set to
11b.

The TCAU contains the following major functions:
• Front-end receiver
• Authentication Processor
• Final Authorisation
• Control Command Processor

Figure 315. Block diagram

RX
 b

uf
fe

r

Front-end receiver

H
as

hi
ng

 F
un

ct
io

n

H
ar

d
K

na
ps

ac
k

D
el

et
io

n
Bo

x

Si
gn

at
ur

e
Co

m
pa

ra
to

r

Authentication Processor

Fi
na

l A
ut

ho
ris

at
io

n

Programmable key memory

Back-end

Control Command
Processor

TCAU

transmitter

Transfer sublayer
Segmentation
sublayer
GRIP, Sep 2018, Version 2018.3 1595 www.cobham.com/gaisler

GRLIB IP Core

• Programmable key
• Back-end transmitter

125.3 References

[PSS-04-151] Telecommand Decoder Specification, ESA PSS-04-151, issue 1
[CCSDS-350.0] The Application of CCSDS Protocols to Secure Systems, CCSDS 350.0-G-2,

issue 2

125.4 Data structures

Table 1881 shows the structure of a telecommand segment with the optional authentication tail used
by the TCAU. The authentication tail is mandatory for all segments that are to be authenticated.

125.5 Front-end receiver

The front-end receiver handles reception of octets from the Transfer sublayer using a handshaking
protocol. Octets are placed in a 10 octet buffer, in order to accommodate the entire authentication tail.
The front-end receiver counts all octets received to determine the segment length. The octets are
passed on to the Authentication Processor and the Back-end transmitter.

125.6 Authentication Processor

The Authentication Processor receives the entire segment from the Front-end receiver and calculates
the 40-bit digital signature using one of two on-board keys: the fixed key or the programmable key.
The 40-bit digital signature is compared to the signature in the authentication tail appended to the seg-
ment. The Authentication Processor comprises the following functions:
• Hashing Function
• Hard Knapsack
• Deletion Box
• Signature Comparator

125.6.1 Hashing Function

The Hashing Function generates i 60-bit pre-signature by shifting the extended message, x, into a lin-
ear feedback shift register (LFSR). The extended message comprises the segment header, segment
data, received LAC from the authentication tail and finally filler bits, comprising 24 zeros, to ensure a
minimum length of the extended message. The coefficients of the LFSR are part of the keys.
When a new segment is received, the LFSR is initialized to 1000...000, i.e. bit 0 is set to 1 and all
other bits are set to zero. When the entire extended message has been shifted into the LFSR, it will
contain the pre-signature, P.

Table 1881.Telecommand segment with authentication tail

Telecommand segment with optional tail
Segment header

Segment data field

Authentication tail (optional)

Sequence
flags

MAP identifier Logical authentication channel
(LAC)

Signature
Control

flag MAP address LAC ID LAC count

2 bits 1 bit 5 bits 0 to 239 octets or
0 to 248 octets

2 bits 30 bits 40 bits
1 octet 0 or 9 octets

1 to 249 octets
GRIP, Sep 2018, Version 2018.3 1596 www.cobham.com/gaisler

GRLIB IP Core
125.6.2 Hard Knapsack

The purpose of the Hard Knapsack function is to make the overall system non-linear and to serve as a
true one-way function, so that it is not possible to calculate the pre-signature from the signature. The
Hard Knapsack consists of 60 weights, which are part of the two on-board keys, with each weight
being 48 bits long. It is defined by the following transformation:

Where P is the pre-signature calculated by the Hashing Function, i.e. each bit of the pre-signature
selects the corresponding weight for the Hard Knapsack function.
The result of the Hard Knapsack function is the 48-bit knapsack sum, S’.

125.6.3 Deletion Box

The Deletion Box removes the 8 least significant bits, i.e. bits 40 to 47, from the knapsack sum, S’, to
form the authentication signature, S. It has been shown that the least significant bits are too weak from
a cryptanalysis standpoint.

125.6.4 Signature Comparator

The Signature Comparator compares the received signature, s, with the calculated signature, S, and
presents the result to the Final Authorisation function of the Supervisor.

125.7 Final Authorisation

When the received signature (s) and the calculated signature (S) are found to be identical, the Final
Authorisation function checks that the received LAC count is identical to the LAC count of the
counter indicated by the received LAC ID. If these match, the used LAC counter is incremented by 1.
Note that the LAC counter is incremented even if the segment contains a control command which is
found to be incorrect.
If the telecommand segment was transferred on MAP 63, it is transferred to the Control Command
Processor.
The Final Authorisation also generates a report on the output auana, outputs the MAP on lastmap and
pulses auanavalid for one clock cycle.

Figure 316. Hashing Function

P0(i) P1(i) P2(i) P3(i) P59(i)

C0 C1 C2 C3 C59

x(i)

S P jW j
j 0=

59

 
 
 

mod 248=
GRIP, Sep 2018, Version 2018.3 1597 www.cobham.com/gaisler

GRLIB IP Core

125.8 Control Command Processor

The Control Command Processor executes the control commands used for changing the internal con-
figuration of the TCAU. Any commands not conforming to the specified formats are reported as non-
executable.

125.9 Control Commands

Before being executed, the following checks are performed on the control commands:
• The sequence flags of the segment header are verified to be 11b (unsegmented)
• The segment is verified to contain a valid control command
• The length of the segment is verified to comply with the expected length of the command
• The LAC ID for a “Set new LAC count value” command is verified to be 00b, 01b or 10b
• The start address of a “Change programmable key block B” command is verified to be less than

112
If a segment is transferred to the Control Command Processor and fails any of these checks, it is dis-
carded and reported in auana.
The control commands are listed in table 1882. Table 1883, 1884 and 1885 shows the layout of the
three groups of control commands.

Table 1882.Authentication Unit Control Commands

Group Control Command Identifier Command name
1 0000 0000 Dummy segment

0000 0101 Select fixed key
0000 0110 Select programmable key
0000 0111 Load fixed key in programmable key memory

2 0000 1001 Set new LAC count value
3 0000 1010 Change programmable key block A

0000 1011 Change programmable key block B

Table 1883.Group 1 control commands

Segment
header

Control com-
mand identifier

Authentication tail

0xFF 00000*** LAC + Signature
1 octet 1 octet 9 octets

Table 1884.Group 2 control commands

Segment
header

Control com-
mand identifier

LAC value to be set Authentication tail

0xFF 00001001 LAC ID LAC count LAC + Signature
1 octet 1 octet 2 bits 30 bits 9 octets
GRIP, Sep 2018, Version 2018.3 1598 www.cobham.com/gaisler

GRLIB IP Core
125.9.1 Dummy segment

This control command is provided for testing purposes. It has no side effects when executed, but since
it is authenticated, the LAC counters will be updated and a new report will be generated.
This command is authenticated with the currently selected key.

125.9.2 Select fixed key

If authentication is successful, the result of the command is that the fixed key will be used for subse-
quent segments.
This control command is always authenticated using the fixed key.

125.9.3 Select programmable key

If authentication is successful, the result of the command is that the programmable key will be used
for subsequent segments.
This control command is always authenticated using the programmable key.

125.9.4 Load fixed key in programmable key memory

This control command will copy the weights and the coefficients of the fixed key to the programma-
ble key.
This command is authenticated with the currently selected key.

125.9.5 Set new LAC count value

This command sets the value of either of the three LAC counters, as determined by the LAC ID iden-
tifier in the segment data field. If authentication is successful, the selected LAC will be loaded with
the value specified in the LAC count field in the segment data. The new LAC value is set after Final
Authorisation, which means that if the same LAC is used for authentication, it will get it’s new value
after being incremented.
This command is authenticated with the currently selected key.

125.9.6 Change programmable key block

There are two change programmable key commands:
• Command A is used to change blocks starting at the first 256 octets
• Command B is used to change blocks starting at the last 112 octets
These commands changes five octets of the programmable key, starting at the address defined by the
start address field in the segment data.
Generation of the five octets to be written to the programmable key is accomplished as follows:
Once the segment has been authorised by the Final Authorisation, the segment except the signature is
inverted and passed once more through the Authentication Processor. The 24 bits of virtual fill z are

Table 1885.Group 3 control commands

Segment
header

Control com-
mand identifier

Start address Key-specific pattern Authentication tail

0xFF 0000101* LAC + Signature
1 octet 1 octet 1 octet 7 octets 9 octets
GRIP, Sep 2018, Version 2018.3 1599 www.cobham.com/gaisler

GRLIB IP Core

inserted without being inverted. The resulting 40-bit pseudo-signature is then loaded into the pro-
grammable key memory as follows:
• Bits 32 through 39 of the “pseudo-signature” are loaded into the octet indicated by the start

address field in Bank A or Bank B.
• Bits 24 through 31 of the “pseudo-signature” are loaded into the octet at the next higher address

(i.e. at start address + 1)
• And so on, until bits 0 through 7 are loaded into the octet indicated by the (start address field + 4)
The organization of the programmable key for the purpose of this command is depicted in table 1886.

125.10 Programmable Key Memory

The weights of the programmable key is stored in an internal memory in the TCAU, while the coeffi-
cients are stored in registers. The memory is protected by TMR, to avoid errors in the weights. To
remove bit flips from the memories, the programmable key is scrubbed (cf. section 125.10.1)

125.10.1Scrubber

The TCAU contains a scrubber that scrubs the programmable key memory whenever the core is idle.
The scrubber reads each octet from the memory and writes them back unconditionally, thereby ensur-
ing that all three memories get the same value.

125.11 Fixed Key

The fixed key is provided to the TCAU by means of the input signal fixedkey.

Table 1886.Programmable key organization

Bank Address Authentication key
A 0 40 W0(40 to 47) 47

1 32 W0(32 to 39) 39
2 24 W0(24 to 31) 31
3 16 W0(16 to 23) 23
4 8 W0(8 to 15) 15
5 0 W0(0 to 7) 7
6 40 W1(40 to 47) 47
7 32 W1(32 to 39) 39

255 16 W42(16 to 23) 23
B 0 8 W42(8 to 15) 15

103 0 W59(0 to 7) 7
104 59 C(59 to 56) 56
105 55 C(55 to 48) 48
106 47 C(47 to 40) 40
107 39 C(39 to 32) 32
108 31 C(31 to 16) 24
109 23 C(23 to 16) 16
110 15 C(15 to 8) 8
111 7 C(7 to 0) 0
GRIP, Sep 2018, Version 2018.3 1600 www.cobham.com/gaisler

GRLIB IP Core

125.12 Back-end transmitter

The Back-end transmitter is a serial output that can be connected to a Segmentation sublayer. The
TCAU can function without connecting the Back-end transmitter, if the Segmentation sublayer
receives the segment independently from the TCAU, e.g. reads them from a memory. In this case, the
authentication result signals from the Final Authorisation is sufficient for the Segmentation sublayer
to determine if the segment is to be processed.
The Back-end transmitter receives octets directly from the Front-end receiver buffer.

125.12.1Non-authenticated segments

Segments transmitted on non-authenticated MAPs or while the AU is disabled, are output inde-
pendently of the Authentication Processor. In this case, the entire segment is transmitted on the serial
link.

125.12.2Authenticated data segments

For authenticated data segments, the Back-end transmitter transmits the segment in parallel with the
authentication process, to avoid having to buffer the entire segment. To be able to remove the authen-
tication tail from the segment, the Back-end transmitter always waits until the Front-end receiver buf-
fer contains at least 10 octets or the Front-end receiver has received the entire segment. When the
entire segment has been received and the buffer contains less than 10 octets, all of these belong to the
authentication tail.
When the entire segment has been received, the Back-end transmitter waits until the Final Authorisa-
tion function has completed before completing the transfer. If the authorisation fails, the transfer is
aborted and if the authorisation succeeds, the transfer is completed.

125.12.3Control Commands

If a segment containing a control command is received, the Back-end transmitter consumes all data
without transmitting any octets.

125.13 Cold start state

After reset, the TCAU is in the following state:
• Fixed key is in use
• Principal LAC and Auxiliary LAC are all ones
• Recovery LAC is rlac_rstval_c

• Programmable key is unknown

125.14 Registers

The core does not implement any memory mapped registers.

125.15 Implementation

125.15.1Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core implements a separate generic for selecting between
synchronous and asynchronous reset and resets all registers in both configurations.
GRIP, Sep 2018, Version 2018.3 1601 www.cobham.com/gaisler

GRLIB IP Core

125.16 Configuration options

Table 1887 shows the configuration options of the core (VHDL generics).

125.17 Signal descriptions

Table 1888 shows the interface signals of the core (VHDL ports).

Table 1887.Configuration options

Generic Function Allowed range Default
tech Selects technology for the programmable key memory. 0 - NTECH inferred
syncrst Enable synchronous reset. 0 - 1 0
ft Enable fault-tolerance against SEU errors. The core can option-

ally be implemented with fault-tolerance against SEU errors in
the programmable key memory. The fault-tolerance is enabled
through the ft VHDL generic to 1. If ft is set to 1, TMR memo-
ries will be implemented.

0-1 0

Table 1888.Signal descriptions

Signal name Field Type Function Description Active
RST_N N/A Input Synchronous reset Low
ARST_N N/A Input Asynchronous

reset
Low

CLK N/A Input Clock -
TLCRI BEGINS Input Data unit start Pulses when a new segment is to

be sent from the transfer sublayer.
High

PROGRESSES In progress High throughout the segment
transfer.

High

COMPLETES End of data Pulses to indicate the successful
completion of a segment transfer.

High

ABORTS Abort data unit Pulses to indicate the erroneous
completion of a segment transfer.

High

REQUEST Data valid strobe Pulses to transmit a new octet to
the TCAU from the transfer sub-
layer.

High

DATA 8-bit data Segment data -
TLCRO ACCEPTING Output Ready for segment Indicates that the TCAU is idle and

can accept a new segment. When
this output transits from low to
high, it indicates that a segment
has been fully processed, including
any control command processing.

High

BUSY Not ready for octet Indicates that the TCAU is ready to
receive a new octet in an ongoing
segment.

High
GRIP, Sep 2018, Version 2018.3 1602 www.cobham.com/gaisler

GRLIB IP Core
AUCRI BEGINS Output Data unit start Pulses when a new segment is to
be sent to the segmentation sub-
layer.

High

PROGRESSES In progress High throughout the segment
transfer.

High

COMPLETES End of data Pulses to indicate the successful
completion of a segment transfer.

High

ABORTS Abort data unit Pulses to indicate the erroneous
completion of a segment transfer,
i.e. either aborted from the transfer
sublayer or from an unsuccessful
authentication.

High

REQUEST Data valid strobe Pulses to transmit a new octet from
the TCAU to the segmentation
sublayer.

High

DATA 8-bit data Segment data -
AUCRO ACCEPTING Input Ready for segment Indicates that the segmentation

sublayer is idle and can accept a
new segment.

High

BUSY Not ready for octet Indicates that the segmentation
sublayer is ready to receive a new
octet in an ongoing segment.

High

TCAUI ENABLE Input Enable the TCAU If set to ‘0’, the TCAU will not
perform any authentication, but
will produce reports and forward
segments to the segmentation sub-
layer

High

FIXEDKEY Fixed key Contains the weights and coeffi-
cients of the fixed key

-

AUMAP MAP selection for
authentication

All segments where the 5 least sig-
nificant bits of the segment header
(the MAP address) are less than or
equal to this input will be authenti-
cated. All other segments (except
control commands) will be for-
warded to the segmentation sub-
layer unaltered.

-

RLAC_RSTVAL Reset value for
Recovery LAC

This value is read on the first clock
cycle after reset is released and
stored in the Recovery LAC as a
start value.

-

Table 1888.Signal descriptions

Signal name Field Type Function Description Active
GRIP, Sep 2018, Version 2018.3 1603 www.cobham.com/gaisler

GRLIB IP Core
125.18 Library dependencies

Table 1889 shows libraries used when instantiating the core (VHDL libraries).

125.19 Instantiation

This example shows how the core can be instantiated.
library ieee;
use ieee.std_logic_1164.all;

library grlib, techmap;
use grlib.stdlib.all;
use grlib.config.all;
use techmap.gencomp.all;

library tmtc;
use tmtc.tmtc_types.all;

entity authentication_example is
 generic (
 memtech : integer := CFG_MEMTECH
 ft : integer range 0 to 1 := 1);
 port (
 clk : in std_logic;
 rst_n : in std_logic;
 tlcri : in oci_request_type;

TCAUO AUANAVALID Output Analysis valid Pulses whenever the AUANA and
LASTMAP are updated with a new
report. This is done when the
TCAU has completed authentica-
tion or determined that a segment
isn’t to be authenticated.

High

AUANA Authentication
analysis

Holds the TCAU report for the cur-
rent segment when AUANAV-
ALID is high.

-

LASTMAP Last addressed
MAP

Holds the MAP ID of the current
segment when AUANAVALID is
high.

-

PLAC Principal LAC Holds the 30-bit counter value of
the Principal LAC.

-

ALAC Auxiliary LAC Holds the 30-bit counter value of
the Auxiliary LAC.

-

RLAC Recovery LAC Holds the 8-bit counter value of the
Recovery LAC.

-

RLACWR Recovery LAC
write

Pulses when RLAC is updated. High

KEYINUSE Currently selected
key

0: fixed key is selected
1: programmable key is selected

-

Table 1889.Library dependencies

Library Package Imported unit(s) Description
GRLIB STDLIB All Common VHDL functions
TMTC TMTC_TYPES All Signals and component declaration
TECHMAP GENCOMP All Memory components

Table 1888.Signal descriptions

Signal name Field Type Function Description Active
GRIP, Sep 2018, Version 2018.3 1604 www.cobham.com/gaisler

GRLIB IP Core

 tlcro : out oci_response_type;
 aucri : out oci_request_type;
 aucro : in oci_response_type;
 tcaui : in tcau_in_type;
 tcauo : out tcau_out_type);
end entity authentication_example;

architecture rtl of authentication_example is
 constant tcau_syncrst_c : integer := 1 - grlib_config_array_type.grlib_async_reset_enable;

 tcau0: tcau
 generic map (
 syncrst => tcau_syncrst_c,
 tech => memtech,
 ft => ft)
 port map (
 clk => clk,
 arst_n => '1',
 rst_n => rst_n,
 tlcri => tlcri,
 tlcro => tlcro,
 aucro => aucro,
 aucri => aucri,
 tcaui => tcaui,
 tcauo => tcauo);
end architecture rtl;
GRIP, Sep 2018, Version 2018.3 1605 www.cobham.com/gaisler

GRLIB IP Core

126 GRTC_HW - CCSDS/ECSS Telecommand Decoder - Hardware Commands

126.1 Overview

126.1.1 Concept

The Telecommand Decoder - Hardware Commands provides access to an output port via telecom-
mands.
The decoder implements the following layers:
• Application Layer:

• Hardware command decoding and execution
• Space Packet Protocol:

• Packet Extraction
• Path Recovery

• Data Link - Protocol Sub-Layer:
• Virtual Channel Packet Extraction
• Virtual Channel Reception:

• Support for Command Link Control Word (CLCW)
• Virtual Channel Demultiplexing
• Master Channel Demultiplexing
•All Frames Reception

• D ata Link - Synchronization and Channel Coding Sub-Layer:
•Pseudo-Derandomization
• BCH codeblock decoding
• Start Sequence Search

• Physical Layer:
• Non-Return-to-Zero Level/Mark de-modulation (NRZ-L/M)

The Channel Coding Sub-Layer and the Physical Layer are shared with the Telecommand Decoder
and are therefore not repeated here.

126.2 Operation

In the Application Layer and the Data Link - Protocol Sub-Layer, the information octets from the
Channel Coding Sub-Layer are decoded as follows.

126.2.1 All Frames Reception

The All Frames Reception function performs two procedures:
• Frame Delimiting and Fill Removal Procedure; and
• Frame Validation Check Procedure, in this order.

The Frame Delimiting and Fill Removal Procedure is used to reconstitute Transfer Frames from the
data stream provided by the Channel Coding Sub-Layer and to remove any Fill Data transferred from
the Channel Coding Sub-Layer. The Frame Length field is checked to correspond to a fixed value as
listed below. The number of information octets is checked to be a fixed number 21.
GRIP, Sep 2018, Version 2018.3 1606 www.cobham.com/gaisler

GRLIB IP Core

The Fill Data is checked to match the 0x55 pattern, or the corresponding pseudo-randomized pattern
when pseudo-derandomization is enabled (pin configurable). Note that it is assumed that the Fill Data
is not pseudo-randomized at the transmitting end.

The Frame Validation Checks procedure performs the following checks:
• Version Number is checked to be 0
• Bypass Flag is checked to be 1
• Control Command Flag is checked to be 0
• Reserved Spare bits are checked to be 0
• Spacecraft Identifier is compared with a pin configurable input value
• Virtual Channel identifier is compared with a pin configurable input value
• Frame Length field is checked to be a fixed value of 0000010011b (i.e. 20-1)
• Frame Sequence Number is checked to be a fixed value of 0
• The Frame Error Control Field is checked to match the recomputed CRC value

126.2.2 Master Channel Demultiplexing

The Master Channel Demultiplexing is performed implicitly during the All Frames Reception proce-
dure described above.

126.2.3 Virtual Channel Demultiplexing

The Virtual Channel Demultiplexing is performed implicitly during the All Frames Reception proce-
dure described above.

126.2.4 Virtual Channel Reception

The Virtual Channel Reception supports Command Link Control Word (CLCW) generation and trans-
fer to the Telemetry Encoder, according to the following field description.
• Control Word Type field is 0
• CLCW Version Number field is 0
• Status Field is 0
• COP in Effect field is 1
• Virtual Channel Identification is taken from pin configurable input value
• Reserved Spare field is 0
• No RF Available Flag is 0, but is overwritten by the Telemetry Encoder
• No Bit Lock Flag is 0, but is overwritten by the Telemetry Encoder
• Lockout Flag is 1
• Wait Flag is 0
• Retransmit Flag is 0
• FARM-B Counter is taken from the to least significant bits of a reception counter
• Reserved Spare field is 0
• Report Value field is 0
GRIP, Sep 2018, Version 2018.3 1607 www.cobham.com/gaisler

GRLIB IP Core

126.2.5 Virtual Channel Packet Extraction

The Virtual Channel Packet Extraction function extracts the Space Packet from the Frame Data Unit
on the Virtual Channel, received from the Virtual Channel Reception function.
No blocking of Space Packets is permitted.
The Packet Version Number is checked to be 000, before delivered to the next function, else the Space
Packet is discarded.

126.2.6 Path Recovery

The Path Recovery function receives and demultiplexes Space Packets received from the underlying
subnetwork. The Path Recovery function receives Space Packets from the underlying subnetwork and
demultiplex, if necessary, the received Space Packets on the basis of the Path Identifier of each Space
Packet.
The Path Identifier is derived directly from the Application Identifier (APID) of the Space Packet,
which is checked to be 00000000000, else the Space Packet is discarded.
Since the application layer uses the Octet String Service, the received Space Packets are delivered to
the user through the Packet Extraction function described hereafter.

126.2.7 Packet Extraction

The Packet Extraction function extracts service data units from Space Packets. The Packet Extraction
function extracts Octet Strings by stripping the Packet Primary Header, and the Packet Error Control
field.
The following checks are performed before the Octet Strings (i.e. User Data Field) is forwarded to the
Application Layer, else it is discarded:
• Packet Version field is 000b

• Packet Type is 1b

• Secondary Header Flagis 0b

• Application Process identifer is compared with a pin configurable input value
• Sequence Flagsare 11b

• Packet Data Length is 0000000000000110b

The Packet Extraction Function does not check the continuity of the Packet Sequence Count, since
Packet Name is used.
The Packet Extraction function verifies the correctness of the Packet Error Control field to match the
recomputed CRC value (calculated over the complete Space Packet), if incorrect the Space Packet is
not forwarded to the Application Layer, being discarded.
GRIP, Sep 2018, Version 2018.3 1608 www.cobham.com/gaisler

GRLIB IP Core

126.2.8 Application Layer

The Application Layer interprets only Transfer Frames that have successfully passed the Data Link
Layer and Space Packet Protocol checks as described above.
The Application Layer interprets the Octet Strings (i.e. User Data Field) of the Packet Data Field.
The User Data Field consists of 5 octets comprising the hardware command, as defined in the bit
order hereafter (MSB of first octet corresponds to OUTPUT(0), LSB of last octet corresponds to
PULSE(7):
• OUTPUT(0 to 31) (32 bits in total)
• PULSE(0 to 7) (8 bits in total)

Before a hardware command is executed, the following is checked that:
• no hardware command is ongoing

The OUTPUT bits 0 to 31 correspond to the tcgpio[] bits 0 to 31.

The PULSE field has three interpretations: 0 to clear bits, 255 to set bits, 1 to 254 to generate pulses
on bits:
• When PULSE field is 0, the corresponding bits that are not set in the OUTPUT field are cleared

on the tcgpio outputs (AND function).
• When PULSE field is 255, the corresponding bits that are set in the OUTPUT field are set on the

tcgpio outputs (OR function).
• When PULSE field is in the range 1 to 254, the corresponding bits that are set in the OUTPUT

field are set on the tcgpio outputs for a duration of PULSE * 8192 system clock cycles, after
which they are cleared again.

The tcgpio[0:31] outputs are cleared to logical 0 at reset.
GRIP, Sep 2018, Version 2018.3 1609 www.cobham.com/gaisler

GRLIB IP Core

126.3 Telecommand Transfer Frame format - Hardware Commands

The telecommand Transfer Frame for Hardware Commands has the following structures.

126.4 Registers

The core has not user accessible registers.

Transfer Frame
Transfer Frame
Primary Header

Transfer Frame Data Field Frame Error
Control Field

(FECF)
Space Packet

Packet Primary Header Packet Data Field
User Data Field Packet Error Control

Hardware Command
0:39 40:87 88:127 128:143 144:159

5 octets 6 octets 5 octets 2 octets 2 octets
20 octets

Table 1890.Telecommand Transfer Frame format

Transfer Frame Primary Header
Version Bypass

Flag
Control

Command
Flag

Reserved
Spare

S/C
Id

Virtual
Channel

Id

Frame
Length

Frame
Sequence
 Number

00b 1b 0b 00b PIN PIN 0000010011b 00000000b

0:1 2 3 4:5 6:15 16:21 22:31 32:39

2 bits 1 bit 1 bit 2 bits 10 bits 6 bits 10 bits 8 bits

2 octets 2 octets 1 octet

Table 1891.Telecommand Transfer Frame Primary Header format

Space Packet
Packet Primary Header Packet Data Field

Packet
Version
Number

Packet Identification Packet Sequence Control Packet
Data

Length

User
Data
Field

Packet
Error

Control
Type Secondary

Header Flag
Application
Process Id

Sequence
Flags

Packet
Name

000b 1b 0b PIN 11b Don’t care 000616 Hardware Command CRC

40:42 43 44 45:55 56:57 58:71 72:87 88:127 128:143
3 bits 1 bit 1 bit 11 bits 2 bits 14 bits 16 bits 40 bits 16 bits

6 octets 5 octets 2 octets

Table 1892.CCSDS Space Packet format

Hardware Command
OUTPUT (0:31) PULSE (0:7)

88:119 120:127

32 bits 8 bits

4 octets 1 octet

Table 1893.Hardware Command format
GRIP, Sep 2018, Version 2018.3 1610 www.cobham.com/gaisler

GRLIB IP Core

126.5 Vendor and device identifiers

The core has has neither a vendor identifier nor a device identifier.

126.6 Configuration options

The core has no configuration options.

126.7 Signal descriptions

Table 1894 shows the interface signals of the core (VHDL ports).

126.8 Signal definitions and reset values

The signals and their reset values are described in table 1895.

Table 1894.Signal descriptions

Signal name Field Type Function Description Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
TCI SCID Input Spacecraft Identity 0 is MSB, 9 is LSB -

PSEUDO Pseudo-Derando-
miser

1=enabled, 0=disabled -

RFAVAILPOS RF Available
polarity

Active high=1 / low=0, used for
CLCW

-

BITLOCKPOS Bit Lock polarity Active high=1 / low=0,
used for CLCW

-

CLCWRFAVAIL-
ABLE

RF Available Used for CLCW -

CLCWBITLOCK Bit Lock Used for CLCW -
TCO CL_* Input Coding Layer Coding Layer interface -
TCVCID N/A Input Virutal Channel Identifier -
TCAPID N/A Input Application Identifier -
TCGPIO N/A Output Hardware command -
CLCW-
DATA

N/A Output CLCW parallel data -

CLCWEV-
ENT

N/A Output CLCW changed High

Table 1895.Signal definitions and reset values

Signal name Type Function Active Reset value
tcgpio[0:31] Output Hardware command output Logical 1 Logical 0
GRIP, Sep 2018, Version 2018.3 1611 www.cobham.com/gaisler

GRLIB IP Core

126.9 Timing

The timing waveforms and timing parameters are shown in figure 317 and are defined in table 1896.

Note: The inputs are re-synchronized internally. The signals do not have to meet any setup or hold
requirements. Static signals should not change between resets.

126.10 Library dependencies

Table 1897 shows libraries used when instantiating the core (VHDL libraries).

Table 1896.Timing parameters

Name Parameter Reference edge Min Max Unit
tGRTCHW0 clock to output delay rising clk edge TBD TBD ns

Table 1897.Library dependencies

Library Package Imported unit(s) Description
GRLIB StdLib Functions Operators
TMTC TMTC_Types Signals, component Signals and component declaration

Figure 317. Timing waveforms

clk

tGRTCHW0tcgpio[] tGRTCHW0
GRIP, Sep 2018, Version 2018.3 1612 www.cobham.com/gaisler

GRLIB IP Core

127 GRTC_UART - CCSDS/ECSS Telecommand Decoder - UART

127.1 Overview

A UART is used for the transmission of the CLTU from the telecommand decoder to the suer. The
protocol has a fixed to baud rate, 1 star bit, 8 data bits, optional odd parity, 1 or 2 stop bits, with a
BREAK command for message delimiting (sending 13 bits of logical zero).
The output contains the corrected information octets, which comprises the Telecommand Transfer
Frame and any filler data octets. This is followed by the transmission of a BREAK command.
Note: The Telecommand Decoder Coding Layer does not inspect the contents of the corrected infor-
mation octets. All corrected information octets are output on the UART interface.

127.2 Asynchronous bit serial data format

The asynchronous bit serial interface complies to the data format defined in [EIA 232]. It also com-
plies to the data format and waveform shown in table 1898 and figure 318. The interface is indepen-
dent of the transmitted data contents. Positive logic is considered for the data bits. The number of stop
bits can optionally be either one or two. The parity bit can be optionally included.

127.3 Registers

The core has not user accessible registers.

127.4 Vendor and device identifiers

The core has has neither a vendor identifier nor a device identifier.

Asynchronous
bit serial format

start D0 D1 D2 D3 D4 D5 D6 D7 parity stop stop
first lsb msb last

General data format
i = {0, n}

8*i+7 8*i+6 8*i+5 8*i+4 8*i+3 8*i+2 8*i+1 8*i
last first

Table 1898.Asynchronous bit serial data format

Figure 318. Asynchronous bit serial protocol / waveform

StopLSB MSBStart

Data

StopLSBStart

StopLSB MSBStart

StopLSB MSBStart

Start

Parity

Parity Stop

Stop

StopBreak

MSB
GRIP, Sep 2018, Version 2018.3 1613 www.cobham.com/gaisler

GRLIB IP Core

127.5 Configuration options

Table 1899 shows the configuration options of the core (VHDL generics).

127.6 Signal descriptions

Table 1900 shows the interface signals of the core (VHDL ports).

127.7 Signal definitions and reset values

The signals and their reset values are described in table 1901.

127.8 Timing

The timing waveforms and timing parameters are shown in figure 319 and are defined in table 1902.

Note: The inputs are re-synchronized internally. The signals do not have to meet any setup or hold
requirements. Static signals should not change between resets.

Table 1899.Configuration options

Generic Function Description Allowed range Default
gSystemClock System frequency [Hz] Integer 33333333
gBaud Baud rate [Baud] Integer 115200
syncreset Sync reset Synchronous reset when 1 0 - 1 0

Table 1900.Signal descriptions

Signal name Field Type Function Description Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
ODDPARITY N/A Input Generate odd parity, else none High
TWOSTOPBITS N/A Input Generate two stop bits, else one High
TCO CL_* Input Coding Layer Coding Layer interface -
TCUART N/A Output Telecommad UART output -

Table 1901.Signal definitions and reset values

Signal name Type Function Active Reset value
tcuart Output CLTU UART output - Logical 1

Table 1902.Timing parameters

Name Parameter Reference edge Min Max Unit
tGRTCUART0 clock to output delay rising clk edge TBD TBD ns

Figure 319. Timing waveforms

clk

tGRTCUART0tcuart tGRTCUART0
GRIP, Sep 2018, Version 2018.3 1614 www.cobham.com/gaisler

GRLIB IP Core

127.9 Library dependencies

Table 1903 shows libraries used when instantiating the core (VHDL libraries).

Table 1903.Library dependencies

Library Package Imported unit(s) Description
GRLIB StdLib Functions Operators
TMTC TMTC_Types Signals, component Signals and component declaration
GRIP, Sep 2018, Version 2018.3 1615 www.cobham.com/gaisler

GRLIB IP Core

128 GRTCTX - CCSDS/ECSS Telecommand Transmitter

128.1 Overview

The CCSDS/ECSS/PSS Telecommand Transmitter implements part of the Data Link Layer, covering
the Protocol Sub-layer and the Frame Synchronization and Coding Sub-layer and part of the Physical
Layer of the packet telecommand protocol.
The operation of the Telecommand Transmitter is highly programmable by means of control registers.
The Telecommand Transmitter comprises several encoders and modulators implementing the Consul-
tative Committee for Space Data Systems (CCSDS) recommendations, European Cooperation on
Space Standardization (ECSS) and the European Space Agency (ESA) Procedures, Standards and
Specifications (PSS) for telecommand and channel coding. The Telecommand Transmitter comprises
the following:
• Frame Error Control Field (FECF)
• Pseudo-Randomiser (PSR) / Bit Transition Generator (BTG)
• Communications Link Transmission Unit (CLTU)

• Start Sequence insertion
• Bose-Chaudhuri-Hocquenghem (BCH)
• Tail Sequence insertion

• Physical Layer Operations Procedures (PLOP-1, PLOP-2)
• Non-Return-to-Zero Mark/Level (NRZ)

Figure 320. Block diagram

GRTCTX

BCH

DMA

AMBA
APB
Slave

D
at

a
Li

nk
 P

ro
to

co
l S

ub
-L

ay
er

Start Sequence

Pseudo-Randomiser

C
od

in
g

Su
b-

La
ye

r

All Frame GenerationFIFO
AMBA
AHB

Master

Telecommand output

A
M

B
A

 A
H

B

A
M

B
A

 A
P

B

FECF

Ph
ys

ic
al

 L
ay

er

NRZ-M

Tail Sequence

PLOP-1
/

PLOP-2
GRIP, Sep 2018, Version 2018.3 1616 www.cobham.com/gaisler

GRLIB IP Core

128.2 References

128.2.1 Documents

[C231] CCSDS 231.0-B-2 TC Synchronization and Channel Coding
[C232] CCSDS 232.0-B-2 TC Space Data Link Protocol
[ECSS04] ECSS-E-50-04C: Space engineering - Space data links - Telecommand protocols,

synchronization and channel coding
[ECSS05] ECSS-E-50-05C: Space engineering - Radio frequency and modulation
[PPS107] PSS-04-107: Packet telecommand standard
[PPS105] PSS-04-105 Radio frequency and modulation standard

128.2.2 Acronyms and abbreviations

BTG Bit Transition Generator
CCSDS Consultative Committee for Space Data Systems
CLCW Command Link Control Word
CLTU Communications Link Transmission Unit
CMM Carrier Modulation Mode
CRC Cyclic Redundancy Code
DMA Direct Memory Access
ECSS European Cooperation for Space Standardization
ESA European Space Agency
FECF Frame Error Control Field
MSB Most Significant Bit
NRZ Non Return to Zero
OCF Operational Control Field
PLOP Physical Layer Operations Procedure
PSR Pseudo Randomiser
PSS Procedures, Standards and Specifications
TC Telecommand -- BCH Bose-Chaudhuri-Hocquenghem

128.3 Layers

128.3.1 Introduction

The relationship between Packet Telecommand (or simply Telecommand or TC) standard and the
Open Systems Interconnection (OSI) reference model is such that the OSI Data Link Layer corre-
sponds to two separate layer, namely the Data Link Protocol Sub-layer and Synchronization and
Channel Coding Sub-Layer. The OSI Data Link Layer is covered here.
The OSI Physical Layer is also covered here to some extended, as specified in [ECSS04] and
[PPS107]. The OSI Network Layer or higher layers are not covered here.

128.3.2 Data Link Protocol Sub-layer

The following functionality is implemented in the core:
• All Frame Generation:
GRIP, Sep 2018, Version 2018.3 1617 www.cobham.com/gaisler

GRLIB IP Core

•Frame Error Control Field (FECF) calculation and insertion

128.3.3 Synchronization and Channel Coding Sub-Layer

The following functionality is implemented in the core:
• Pseudo-Randomiser (PSR) / Bit Transition Generator (BTG)
• Communications Link Transmission Unit (CLTU)

• Start Sequence insertion
• Bose-Chaudhuri-Hocquenghem (BCH)
• Tail Sequence insertion

128.3.4 Physical Layer

The following functionality is implemented in the core:
• Physical Layer Operations Procedures (PLOP-1, PLOP-2)
• Non-Return-to-Zero (NRZ) modulation

128.4 Operation

128.4.1 Introduction

The DMA interface provides a means for the user to send blocks of data of arbitrary length, normally
this is Communications Link Transmission Units (CLTU).

128.4.2 Descriptor setup

The DMA interface is used for sending data on the uplink. The transmission is done using descriptors
located in memory. A single descriptor is shown in tables 1904 through 1907. The address field of the
descriptor should point to the start of the data to be sent. The address need not be word-aligned. If the
interrupt enable (IE) bit is set, an interrupt will be generated when the transfer has completed (this
requires that the interrupt enable bit in the control register is also set). The interrupt will be generated
regardless of whether the transfer was successful or not. The wrap (WR) bit is also a control bit that
should be set before transmission and it will be explained later in this section.

Table 1904.GRTCTX descriptor word 0 (address offset 0x0)
31 16 15 8 7 6 4 3 2 1 0

LEN RESERVED UR SEL - WR IE EN

31: 16 (LEN) - Length in bytes (note that maxium length is limited to 2048 bytes, and minimum to 2 bytes)
15: 8 RESERVED
7: Underrun (UR) - Underrun detected during transmission.
6: 4 Select output (SEL) - Select output for bit clock, bit lock and bit data (0 to 7)
3: RESERVED
2: Wrap (WR) - Set to one to make the descriptor pointer wrap to zero after this descriptor has been

used. If this bit is not set the pointer will increment by 16. The pointer automatically wraps to zero
when the 16 kB boundary of the descriptor table is reached.

1: Interrupt Enable (IE) - an interrupt will be generated when the data for this descriptor has been
sent provided that the transmitter interrupt enable bit in the control register is set. The interrupt is
generated regardless if it was transferred successfully or if it terminated with an error.

0: Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor
fields.
GRIP, Sep 2018, Version 2018.3 1618 www.cobham.com/gaisler

GRLIB IP Core
To enable a descriptor the enable (EN) bit should be set and after this is done, the descriptor should
not be touched until the enable bit has been cleared by the core.

128.4.3 Starting transmission

Enabling a descriptor is not enough to start transmission. A pointer to the memory area holding the
descriptors must first be set in the core. This is done in the descriptor pointer register. The address
must be aligned to a 16 kByte boundary. Bits 31 to 14 hold the base address of descriptor area while
bits 13 to 4 form a pointer to an individual descriptor. The first descriptor should be located at the base
address and when it has been used by the core, the pointer field is incremented by 16 to point at the
next descriptor. The pointer will automatically wrap back to zero when the next 16 kByte boundary
has been reached. The WR bit in the descriptors can be set to make the pointer wrap back to zero
before the 16 kByte boundary.
The pointer field has also been made writable for maximum flexibility but care should be taken when
writing to the descriptor pointer register. It should never be touched when transmission is active.
The final step to activate the transmission is to set the enable bit in the DMA control register. This
tells the core that there are more active descriptors in the descriptor table. This bit should always be
set when new descriptors are enabled, even if transmission is already active. The descriptors must
always be enabled before the transmission enable bit is set.

128.4.4 Descriptor handling after transmission

When the transmission has finished, status is written to the first word in the corresponding descriptor.
The other bits in the first descriptor word are set to zero after transmission while the second word is
left untouched. The enable bit should be used as the indicator when a descriptor can be used again,
which is when it has been cleared by the core. Additionally, the last two words in the corresponding
descriptor are written with external status information.
There are multiple bits in the DMA status register that hold status information.
The Transmitter Interrupt (TI) bit is set each time a DMA transmission ended successfully. The Trans-
mitter Error (TE) bit is set each time an DMA transmission ended with an error. For either event, an
interrupt is generated for descriptor for which the Interrupt Enable (IE) was set. The interrupt is mas-
kable with the Interrupt Enable (IE) bit in the control register.

Table 1905.GRTCTX descriptor word 1 (address offset 0x4)
31 0

ADDRESS

31: 0 Address (ADDRESS) - Pointer to the buffer area to where data will be fetched.

Table 1906.GRTCTX descriptor word 2 (address offset 0x8)
31 0

STATUS0

31: 0 (STATUS0) - External status information

Table 1907.GRTCTX descriptor word 3 (address offset 0xC)
31 0

STATUS1

31: 0 (STATUS1) - External status information
GRIP, Sep 2018, Version 2018.3 1619 www.cobham.com/gaisler

GRLIB IP Core

The Transmitter AMBA error (TA) bit is set when an AMBA AHB error was encountered either when
reading a descriptor or when writing data. Any active transmission was aborted and the DMA channel
was disabled. It is recommended that the Telecommand Transmitter is reset after an AMBA AHB
error. The interrupt is maskable with the Interrupt Enable (IE) bit in the control register.

128.5 Registers

The core is programmed through registers mapped into APB address space.

Table 1908.GRTCTX registers

APB address offset Register
0x00 GRTCTX DMA Control register
0x04 GRTCTX DMA Status register
0x08 GRTCTX DMA Descriptor Pointer register
0x80 GRTCTX Control register
0x88 GRTCTX Configuration register
0x90 GRTCTX Physical Layer register
0x94 GRTCTX Coding Sub-Layer register
0x98 GRTCTX Start and Tail register
0x9C GRTCTX All Frames register
GRIP, Sep 2018, Version 2018.3 1620 www.cobham.com/gaisler

GRLIB IP Core

128.5.1

Table 1909.0x00 -DCR - DMA control register

GRTCTXDMA Control Register

128.5.2

Table 1910.0x04 - DSR - DMA status register

GRTCTX DMA Status Register

128.5.3

Table 1911. 0x08 - DDP - DMA descriptor pointer register

GRTCTXDMA Descriptor Pointer Register

128.5.4

Table 1912. 0x80 - CTRL - control register

GRTCTX Control Register

31 2 1 0

RESERVED IE EN

0 0 0

r rw rw

31: 2 RESERVED
1: Interrupt Enable (IE) - enable interrupts TA, TI, and TE
0: Enable (EN) - enable DMA transfers

31 4 3 2 1 0

RESERVED ACTIVE TA TI TE

0 NR 0 0 0

r r wc wc wc

31: 4 RESERVED
3: Active (ACTIVE) - DMA access ongoing
2: Transmitter AMBA Error (TA) - DMA AMBA AHB error, cleared by writing a logical 1
1: Transmitter Interrupt (TI) - DMA interrupt, cleared by writing a logical 1
0: Transmitter Error (TE) - DMA transmitter error, cleared by writing a logical 1

31 14 13 4 3 0

BASE INDEX RESERVED

NR NR 0

rw rw r

31: 14 Descriptor base (BASE) - base address of descriptor table
13: 4 Descriptor index (INDEX) - index of active descriptor in descriptor table
3: 0 Reserved - fixed to “0000”

31 3 2 1 0

RESERVED RST R TxEN

0 0 0 0

r rw r rw

31: 3 RESERVED
2: Reset (RST) - resets complete core
1: RESERVED
0: Transmitter Enable (TxEN) - enables Telecommand Transmitter (should be done after the complete

configuration of the Telecommand Transmitter)
GRIP, Sep 2018, Version 2018.3 1621 www.cobham.com/gaisler

GRLIB IP Core

128.5.5

Table 1913. 0x88 - CONF - configuration register

GRTCTX Configuration Register

128.5.6

Table 1914. 0x90 - PLR - physical layer register

GRTCTX Physical Layer Register

31 24 23 8 7 0

REVISION FIFOSIZE RESERVED

* * 0

r r r

31: 24 (REVISION) - Revision number
23: 8 (FIFOSIZE) - FIFO size in bytes
7: 0 RESERVED

31 20 19 16 15 11 10 9 8 7 6 5 4 3 2 1 0

DIVIDE UNMODU-
LATED

RESERVED IDLE
ALL

IDLE
PRE

IDLE
POST

RF
AVAIL

RF
POS

BIT
POS

CLK
RISE

CLK
MODE

PLOP NRZM

1 0 0 0 0 0 0 1 1 1 0b01 0 0

rw rw r rw rw rw rw rw rw rw rw rw rw

31: 20 (DIVIDE) - Clock divider (value 0 not used)
19: 16 (UNMODULATE) - Number of unmodulated octet counts (CMM-1)
15: 11 RESERVED
10: (IDLEALL) - Idle Sequence when unmodulate (CMM-1) or non-active, else all-zero output
9: (IDLEPRE) - Optional Idle Sequence before CLTU (CMM-4)
8: (IDLEPOST) - Optional Idle Sequence after CLTU (CMM-4)
7: (RFAVAIL) - RF available when unmodulate (CMM-1) or non-active
6: (RFPOS) - Positive polarity for RF available output signal
5: (BITPOS) - Positive polarity for bit lock output signal
4: Rising clock edge (CLKRISE) - Rising clock edge coinciding with serial data bit change
3: 2 Clock mode (MODE) - 00 = never generated,

01 = only generated when modulated,
10 = also generated when unmodulated (CMM-1),
11 = always generated

1: Physical Layer Operations Procedure (PLOP) - PLOP-1 (when cleared) or PLOP-2 (when set)
0: Non-Return-to-Zero-Mark (MARK) - non-return-to-zero - mark encoding enable
GRIP, Sep 2018, Version 2018.3 1622 www.cobham.com/gaisler

GRLIB IP Core

128.5.7

Table 1915. 0x94 - CSL - coding sub-layer register

GRTCTX Coding Sub-layer Register

128.5.8

Table 1916. 0x98 - STR - start and tail register

GRTCTX Start And Tail Register

128.5.9

Table 1917. 0x9C - AFR - all frames register

GRTCTX All Frames Register

128.6 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x082. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

31 24 23 16 15 8 7 6 5 4 3 2 1 0

RESERVED IDLE FILLDATA FILLER
BIT

R PSEUDO
ALL

PSEUDO BCH START
SEQ

TAIL
SEQ

0 0x55 0x55 0 0 0 0 0 0 0

r rw rw rw r rw rw rw rw rw

31: 24 RESERVED
23: 16 (IDLE) - Idle/Acquisition Sequence (reset 0x55)
15: 8 (FILLDATA) - Fill Data for BCH coding (reset 0x55)
7: (FILLERBIT) - Filler Bit for BCH coding (reset 0)
6: 5 RESERVED
4: (PSEUDOALL) - Pseudo-Randomize BCH fill data (only with BCH and PSEUDO)
3: (PSEUDO) - Pseudo-Randomize (only with BCH)
2: (BCH) - BCH encoding
1: (STARTSEQ) - Start Sequence Generation
0: (TAILSEQ) - Tail Sequence Generation

31 16 15 8 7 0

START TAIL TAILLAST

0xEB90 0xC5 0x79

rw rw rw

31: 16 (START) - Start Sequence value (reset 0xEB90)
15: 8 (TAIL) - Tail Sequence value (reset 0xC5) (applies to first 7 octets:)
7: 0 (TAILLAST) - Tail Sequence, last (reset 0x79) (applies to the last octet only):

31 26 25 16 15 2 1 0

RESERVED SCID RESERVED PSS FECF

0 0 0 0 0

r rw r rw rw

31: 26 RESERVED
25: 16 (SCID) - Spacecraft Identifier (unsed)
15: 2 RESERVED
1: (PSS) - ESA PSS compatible mode (unsed)
0: (FECF) - Insert CRC/FECF, overwriting the two last octets of a transfer frame (only with BCH)
GRIP, Sep 2018, Version 2018.3 1623 www.cobham.com/gaisler

GRLIB IP Core

128.7 Configuration options

Table 1918 shows the configuration options of the core (VHDL generics).

128.8 Signal descriptions

Table 1919 shows the interface signals of the core (VHDL ports).

128.9 Signal definitions and reset values

The signals and their reset values are described in table 1920.

Table 1918.Configuration options

Generic name Function Allowed range Default
hindex AHB master index 0 - NAHBMST-1 0
pindex APB slave index 0 - NAPBSLV-1 0
paddr ADDR field of the APB BAR 0 - 16#FFF# 0
pmask MASK field of the APB BAR 0 - 16#FFF# 16#FFF#
pirq Interrupt line used by core 0 - NAHBIRQ-1 0
memtech Memory technology 0 to NTECH 0
clktech Clock buffer technology 0 to NTECH 0
buftype Clock buffer type TBD 0

Table 1919.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
TCI TCACTIVE[] Output Bit Lock -

TCCLK[] Bit clock -
TCDATA[] Bit data -
CLCW-
RFAVAILABLE[]

RF Available -

CLCW-
BITLOCK[]

Bit Lock -

TMO TIMESTAMP Input Time Stamp -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
AHBMI * Input AMB master input signals -
AHBMO * Output AHB master output signals -
* see GRLIB IP Library User’s Manual

Table 1920.Signal definitions and reset values

Signal name Type Function Active Reset value
tcactive[] Output Bit lock - -
tcdata[] Output Serial bit data - -
tcclk[] Output Serial bit data clock - -
rfavailable[] Output RF available - -
GRIP, Sep 2018, Version 2018.3 1624 www.cobham.com/gaisler

GRLIB IP Core

128.10 Timing

The timing waveforms and timing parameters are shown in figure 321 and are defined in table 1921.

128.11 Library dependencies

Table 1922 shows the libraries used when instantiating the core (VHDL libraries).

Table 1921.Timing parameters

Name Parameter Reference edge Min Max Unit
tGRTCTX0 clock to output rising clock edge TBD TBD ns

Table 1922.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
TMTC TMTC_TYPES Signals, component Component declaration

Figure 321. Timing waveforms

tGRTCTX0

clk

tcactive, tcclk, tcdata, rfavailable
GRIP, Sep 2018, Version 2018.3 1625 www.cobham.com/gaisler

GRLIB IP Core

129 GRCTM - CCSDS Time Manager

129.1 Overview

The CCSDS Time Manager (GRCTM) provides basic time keeping functions such an Elapsed Time
(ET) counter according to the Consultative Committee for Space Data Systems (CCSDS) Unseg-
mented Code specification, [CCSDS]. It comprises a Frequency Synthesizer (FS) by which a binary
frequency is generated to drive the ET counter. The GRCTM provides support for setting the incre-
ment rate of the ET counter as well as of the FS counter.
The GRCTM provides datation services that sample the ET counter value on external events. It also
provides generation of periodic pulses with cycle periods of less than one second. All services in the
GRCTM core are accessible via an AMBA AHB slave interface.
The GRCTM provides a service for sampling the ET counter value on the occurrence of the time
strobe generated by for example the Packet Telemetry Encoder (PTME), generating a Standard Space-
craft Time Source Packet according to the ESA Packet Telemetry Standard, [PSS]. The Time Source
Packet can be read out via the AMBA AHB slave interface and is transmitted directly to a telemetry
encoder via a serial interface.
The GRCTM can act as a master and/or a slave in a time distribution system. As a master only, the
GRCTM distributes the ET to GRCTM slaves via a TimeWire (TW) interface. As a slave only, the
GRCTM receives the ET via the TimeWire interface. When acting as a master and slave, the GRCTM
receives the ET from a master GRCTM, but can also distribute the ET to other slaves.

129.1.1 Foreseen usage of the core

On-board time maintenance and distribution is to be handled through a master CCSDS Time Manager
(GRCTM) and one or more slave GRCTMs. Using a dedicated synchronisation line (TimeWire), the
slave time manager can be synchronised with the master GRCTM. The slave GRCTM can further dis-
tribute the time to the payload. The GRCTM slaves will thus be slaved to the master GRCTM, but
also act as masters for other modules. This isolates the master GRCTM from the payloads. The slave
GRCTM provides four datation register into which the Elapsed Time (ET) counter can be latched on
the occurrence of an external triggering event.
It is not possible to synchronise or set the ET counter in the master GRCTM. The ET counter can only
be cleared by means of hardware or software reset.

Figure 322. Block diagram

GRCTMAMBA Layer

ET & FS
AMBA
AHB
Slave

A
M

B
A

 A
H

B

Physical Layer

Datation

Pulses

TW Slave

TW Master

Time Pkt

RS232Rx

RS232Tx

RS232TxCTM

TimeWire

Time Packet
GRIP, Sep 2018, Version 2018.3 1626 www.cobham.com/gaisler

GRLIB IP Core

129.1.2 Description of a general system using the core

The general approach to accurately maintaining on-board time is to have a central time reference mea-
suring the elapsed time from an arbitrary epoch and to distribute regularly this time information to on-
board applications by means of messages and synchronisation pulses. Another approach would be to
have a centralised time system, where each application that needs to time stamp data could request the
unit maintaining the central time reference to provide the relevant time information. Such an approach
would have several inherent drawbacks, e.g. in systems with many users, the accuracy of a time stamp
could be jeopardised due to long service latency and excessive bus traffic could degrade the overall
performance of the data handling system.
The purpose of the GRCTM is to provide a building block for such time distribution services by pro-
viding the means for CCSDS compliant time keeping and a set of basic user time services. Most time
distribution implementations have required support from the application processor to maintain syn-
chronisation between the central and the local time references. Protocols and formats for distributing
time information have differed between spacecraft and have sometimes only provided low resolution
or poor accuracy. The purpose of the GRCTM is to provide an accurate time coherence throughout the
spacecraft.
The correlation between the central time reference and ground has already been foreseen by providing
a time strobe from the Packet Telemetry encoder. The time strobe has a deterministic relationship to
the bit structure of the telemetry frame. This makes it possible to establish the time relation between
the assertion of this time strobe on-board and the reception of the relevant frame on ground, taking
into account the down link propagation delay. Each GRCTM instance maintains its own copy of the
central elapsed time reference with which on-board applications can time stamp their data. This
unbroken chain of time relationships on-board, and between the spacecraft and ground, provides a
solution to the problem of knowing when an event took place on-board in any given space-time frame.
The GRCTM is foreseen to be used both as a central elapsed time reference in the spacecraft data
management system, as well as the local elapsed time reference in an instrument or other subsystem.
By using standardised AMBA interfaces, the integration of the GRCTM should be simple for most
systems.

129.1.3 Functions not included

The GRCTM does not support alarm services.
The GRCTM does not support setting of an arbitrary epoch time.

129.2 Data formats

All Elapsed Time (ET) information handled by GRCTM is compliant with the CCSDS Unsegmented
Code defined in [CCSDS] and repeated hereafter.

129.2.1 Reference documents

[CCSDS] Time Code Formats, CCSDS 301.0-B-4, www.ccsds.org
[PSS] Packet Telemetry Standard, ESA PSS-04-106, Issue 1, January 1988

129.2.2 CCSDS Unsegmented Code: Preamble Field (P-Field)

The time code preamble field (P-Field) may be either explicitly or implicitly conveyed. If it is implic-
itly conveyed (not present with T-Field), the code is not self-identified, and identification must be
GRIP, Sep 2018, Version 2018.3 1627 www.cobham.com/gaisler

GRLIB IP Core

obtained by other means. As presently defined, the explicit representation of the P-Field is limited to
one octet whose format is described hereafter.

1 For the Standard Spacecraft Time Source Packet defined in the ESA Packet Telemetry Standard, bits 1 to 3
must are set to 010b.

129.2.3 CCSDS Unsegmented Code: Time Field (T-Field)

For the unsegmented binary time codes described herein, the T-Field consists of a selected number of
contiguous time elements, each element being one octet in length. An element represents the state of 8
consecutive bits of a binary counter, cascaded with the adjacent counters, which rolls over at a modulo
of 256.

The basic time unit is the second. The T-Field consists of 32 bits of coarse time (seconds) and 24 bits
of fine time (sub seconds). The coarse time code elements are a count of the number of seconds
elapsed from the epoch. The 32 bits of coarse time results in a maximum ambiguity period of approx-
imately 136 years. Arbitrary epochs may be accommodated as a Level 2 code. The 24 bits of fine code
elements result in a resolution of 2-24 second (about 60 nanoseconds). This code is not UTC-based
and leap second corrections do not apply according to CCSDS.

129.2.4 Waveforms

Table 1923.CCSDS Unsegmented Code P-Field definition

Bit Value Interpretation
0 0 Extension flag
1 - 3 “001” 1958 January 1 epoch (Level 1) 1 Time code identification

“010” Agency-defined epoch (Level 2) 1

4 - 5 (number of octets of coarse time) - 1 Detail bits for information on the code
6 - 7 (number of octets of fine time)

Table 1924.CCSDS Unsegmented Code T-Field definition

CCSDS Unsegmented Code
Preamble
Field

 Time Field
 Coarse time Fine time

- 231 224 223 216 215 28 27 20 2-1 2-8 2-9 2-15 2-16 2-24

Figure 323. Bit asynchronous protocol

StopLSB MSBStart

Data

StopLSBStart

StopLSB MSBStart

StopLSB MSBStart

Start

Parity

Parity Stop

Stop

StopBreak

MSB
GRIP, Sep 2018, Version 2018.3 1628 www.cobham.com/gaisler

GRLIB IP Core
129.3 Operation

The CCSDS Time Manager (GRCTM) synthesizable core can be configured for various purposes.
The different functions presented hereafter can be used to from a GRCTM to act as a master, slave, or
master and slave.

129.3.1 Elapsed Time (ET)

The local Elapsed Time (ET) counter is based on a default 32 bit coarse time field and a 24 bit fine
time field, complying to the CCSDS Unsegmented Code (CUC) T-Field. The width of the two time
fields is fixed. The counter implementing the ET is incremented on the system clock only when
enabled by the frequency synthesizer described below. The ET is incremented with a pre-calculated
increment value, which matches the synthesised frequency. The local ET is output in the CUC format,
P-Field and T-Field, to be used by an application embedding the GRCTM. The P-Field is static with
the Time Code Identifier is set to 010b.

129.3.2 Frequency Synthesizer (FS)

The binary frequency required to determine the ET counter increment is derived from the system
clock using a frequency synthesizer. The frequency synthesizer is incremented with a pre-calculated
increment value, which matches the available system clock frequency. The FS simply generates a tick
every time it wraps around, which makes the ET to step forward with the pre-calculated increment
value. The output of the frequency synthesizer is used for enabling the increment of the local ET as
described above. A 24 to 32 bit wide FS causes a systematic drift of less than 1 second/day.

129.3.3 TimeWire Interface (TW)

The GRCTM provides two TimeWire (TW) interfaces, one for the master function and one for the
slave function. The TimeWire interface is used for distributing the Elapsed Time (ET) of a GRCTM
master to one or more GRCTM slaves. The information carried in the synchronisation message com-
prises the Elapsed Time Field, which is 4 bytes, and a synchronisation pulse which is sent as a
BREAK command. The synchronisation pulse is used for synchronising both the ET and the phase of
the Frequency Synthesiser (FS) and is done once every second.
The GRCTM slave automatically synchronizes its ET with that of the GRCTM master without requir-
ing any user support. A GRCTM that acts both as a master and a slave will be slaved to another master
via a slave TimeWire interface, and will simultaneously distribute its own ET to other GRCTM
slaves. The GRCTM slave will continue to work undisturbed in case a GRCTM master has failed. It is
also possible to disable the synchronisation by means of a register further to avoid failure propagation.
The TimeWire interface provides means for synchronising a GRCTM slave from a GRCTM that acts
both as a master and a slave, which being synchronised in turn from another GRCTM master.
The message is sent just before the synchronisation instance. A BREAK command is sent just after
the message to indicate the synchronisation pulse. The instance of the synchronisation actually
depends on the reception of the BREAK command and the time it takes to generate an internal pulse

Figure 324. Pulse generation waveform

Active

Inactive

Width

Period
GRIP, Sep 2018, Version 2018.3 1629 www.cobham.com/gaisler

GRLIB IP Core

in the receiver on which the previously sent message is latched into the ET counter of the slave. The
baseline is to send the synchronisation message and pulse to coincide with the wrap around of the sub-
second bits in the ET. However, the time at which the message is sent out from the master is configu-
rable by means of a generic (based on the fine part of the ET). An additional generic is provided for
the fine tuning of the message start. On the slave side, a generic is provided to set the fine part of the
ET at which the synchronisation pulse will occur. It is thus possible to synchronise the two units at
any arbitrary point in time, provided it is done once a second.
To tolerate large skew and drift differences between the clocks driving the master and the slave
GRCTM, a staged approach has been taken for the distribution of the synchronisation message and
the synchronisation pulse. The first GRCTM master in a time chain synchronises its GRCTM slaves
before it is time for these to act as masters and in turn send their synchronisation messages and pulses
to their slaves. This is done to avoid that the first GRCTM master will synchronise the GRCTM slaves
in such a way that no synchronisation messages are being sent out from these GRCTM due to clock
drift. Since the synchronisation only occurs once a second, the first GRCTM master in a time chain
has one second of time available to synchronise its GRCTM slaves before they synchronise their
slaves in turn.
The TimeWire interface is based on a bit asynchronous interface (RS232/422) with the following pro-
grammable specification:
• 115200 baud (configured by generics/register bits)
• 1 start bit, 8 bit data, 1 or 2 stop bits (configured by generics/register bit)
• odd parity is generated in transmitter, but ignored in the receiver (configured by generics/register

bit)
• no handshake
• message delimiting via BREAK command (13 bits when sent)
• synchronisation via BREAK command (13 bits when sent)

Note that it is not possible for the TimeWire to carry sub-second phase information due to the usage of
the above RS232/422 type of interface.

129.3.4 Datation

The GRCTM comprises three datation registers for the purpose of datation of user events relative the
ET counter. The datation is triggered by three external edge sensitive inputs (programmable rising or
falling edge).
A fourth datation register is provided for sampling the ET counter when generating a Standard Space-
craft Time Source Packet as described below.
Each of the three general datation services is automatically disabled after an occurrence and is not re-
enabled until the corresponding fine time register is read. The format of all four datation registers is
compliant to the CUC T-Field.

Table 1925.TimeWire transmission protocol

Byte Number
Elapsed Time Coarse
Register (ETCR)

CCSDS Unsegmented Code
Time Field
Coarse Part Comment

First [31:24] 231 224

Second [23:16] 223 216

Third [15:8] 215 28

Fourth [7:0] 27 20

Fifth N/A [RS232 Break Command] Used as synchronisation pattern
GRIP, Sep 2018, Version 2018.3 1630 www.cobham.com/gaisler

GRLIB IP Core

The ET counter can be accessed directly via the AMBA AHB interface. This can be used for direct
datation from software.

129.3.5 Interrupts

The GRCTM provides individual interrupt lines for the incoming datation inputs, the time strobe
input and the occurrence of the individual pulse outputs. The interrupt lines are asserted for at least
two system clock cycles and can be connected to an external interrupt controller. The interrupts indi-
cate that a new datation value can be read. The interrupts defined in table 1926 are generated.

129.3.6 Pulses

The GRCTM provides eight external outputs used for clock pulse distribution. The timing of each
pulse output is individually derived from the Elapsed Time counter. It is possible to program for each
pulse output individually the following parameters:
• periodicity pulse
• width of pulse
• polarity of pulse
• enable/disable pulse generation (reset status is disabled)
The pulse has two parts, the active and the inactive part. The active part always starts the pulse, fol-
lowed by the inactive part. The polarity or logical level of the active part is programmable. The inac-
tive part takes the logical inversion of the active pulse, and is the default output from the generator
when the pulse is not issued or the overall generation is disabled. The leading edge of the active pulse
part is aligned with the 1 second transition of the Elapsed Time counter.
The periodicity of the pulse corresponds to one of the ET bits that can be selected in the range 27 to 2-
8 seconds, providing a range from 128 seconds to 3,91 ms, i.e. 0,0078 to 256 Hz frequency. See regis-
ter definition for details.
The width of the active part of the pulse corresponds to one of the ET bits that can be selected in the
range 26 to 2-9 seconds, providing a range from 64 seconds to 1,95 ms. See register definition for
details.
It is possible to generate a pulse that has a duty cycle of 50%. It is also possible to generate a pulse for
which the active part is as short as 2-9 seconds, and its period is as high as 27 seconds. The effective
duty cycle can be as low as 2-9/27 for the longest period, up to 50% for the shortest period of 2-8 sec-

Table 1926.Interrupts

Interrupt offset Interrupt name Description
1:st DRL0 Datation Register 0 Latched
2:nd DRL1 Datation Register 1 Latched
3:rd DRL2 Datation Register 2 Latched
4:th STL Spacecraft Time Register Latched
5:th PULSE0 Pulse 0 interrupt
6:th PULSE1 Pulse 1 interrupt
7:th PULSE2 Pulse 2 interrupt
8:th PULSE3 Pulse 3 interrupt
9:th PULSE4 Pulse 4 interrupt
10:th PULSE5 Pulse 5 interrupt
11:th PULSE6 Pulse 6 interrupt
12:th PULSE7 Pulse 7 interrupt
13:th ETSET ET set (only when VHDL generic gSetET is 1)
GRIP, Sep 2018, Version 2018.3 1631 www.cobham.com/gaisler

GRLIB IP Core

onds = 256 Hz. The duty cycle choice becomes more restricted as the frequency increases. Note that it
is only possible to reduce the duty cycle in one direction: 50%/50%, 25%/75% ... 1%/99%. The active
part of the pulse can thus never be more than 50% of the cycle. It should be noted that the active pulse
width must be at most 50% of the pulse period. This is a requirement on the software usage.
The pulse outputs are guaranteed to be spike free. If the re-synchronisation of the GRCTM in slave
mode occurs within 0,5 ms of the expected synchronisation instance, the ongoing pulse output width
will be accurate to within 0,5 ms. Else, the pulse output will remain unchanged corresponding to up to
four times the expected output width.
If a pulse output is disabled by means of writing to the corresponding register (PDRx) (i.e. writing a
zero to the Pulse Enable bit (PE)), the pulse output will be immediately driven to the inversion of the
Pulse Level bit (PL), which corresponds to the level of the inactive part of the pulse. It is thus possible
to modify immediately the pulse output by disabling it using the PE bit and then changing the PL bit,
since the output will always drive the inversion of the PL bit while disabled.

129.3.7 Standard Spacecraft Time Source Packet

As mentioned above, the GRCTM comprises one datation register for sampling the ET counter when
generating a Standard Spacecraft Time Source Packet according to the ESA Packet Telemetry Stan-
dard, AD2, according to the following programmable bit asynchronous protocol specification:
• 115200 baud (configured by generics/register bit)
• 1 start bit, 8 bit data, 1 or 2 stop bits (configured by generics/register bit)
• odd parity is generated (configured by generics/register bit)
• no handshake (note that there is a BUSY signal for internal handshake, that can block the gener-

ation of additional packets)
• message delimiting via BREAK command (13 zero bits when sent)
The Spacecraft Time Coarse Register (STCR) and the Spacecraft Time Fine Register (STFR) are
available for readout of the datation time from the software. The software cannot block or initiate a
datation on these registers, since controlled from an external input pin. If multiple datation have
GRIP, Sep 2018, Version 2018.3 1632 www.cobham.com/gaisler

GRLIB IP Core

occurred since the registers were previously read, only the time at the first datation can be read from
the registers.

129.3.8 AMBA AHB slave interface

All time services, including the Elapsed Time counter in the embedded GRCTM core, are clocked by
the AMBA AHB clock HCLK. All input signals are assumed to be synchronous with the AMBA
AHB interface clock HCLK. No input signal synchronisation is performed in the core. All outputs are
synchronous with the AMBA AHB interface clock.
The AMBA AHB slave interface supports 32 bit wide data input and output. Since each access is a
word access, the two least significant address bits are assumed always to be zero. Only address bits
23:0 are decoded. Note that address bits 31:24 are not decoded and should thus be handled by the
AHB arbiter/decoder. The address input of the AHB slave interfaces is thus incompletely decoded.
Misaligned addressing is not supported. One wait state is introduced for read and write accesses.
When the CCSDS field is narrower than the AMBA data width, zeros are padded to the right. Re-
mapping between the opposing numbering conventions in the CCSDS and AMBA documentation is
performed automatically. For read accesses, unmapped bits are always driven to zero.
The interface provides direct access to the T-Field of the ET counter.
The AMBA AHB interface has been reduced in function to support only what is required for the
GRCTM. The following AMBA AHB features are constrained:

Table 1927.Standard Spacecraft Time Source Packet

Octet number Name Value
0 Packet Header Octet 0 0x00
1 Packet Header Octet 1 0x00
2 Segment Flags & Sequence Count (0 to 5) 11b & 14 bit counter
3 Sequence Count (6 to 13)
4 Packet Length (0 to 7) 0x00
5 Packet Length (8 to 15) 0x00
6 Data Field & Sample Rate (0 to 3) 0000b & sampling rate
7 P-Field 0x2F
8 T-Field (231 to 224)
9 T-Field (223 to 216)
10 T-Field (215 to 28)
11 T-Field (27 to 20)
12 T-Field (2-1 to 2-8)
13 T-Field (2-9 to 2-16)
14 T-Field (2-17 to 2-24)

Table 1928.Time sample rate

Bit Rate (in frames) Bit Rate (in frames)
0000b 1 0101b 32

0001b 2 0110b 64

0010b 4 0111b 128

0011b 8 1000b 256

0100b 16 others undefined
GRIP, Sep 2018, Version 2018.3 1633 www.cobham.com/gaisler

GRLIB IP Core

• Only supports HSIZE=WORD, HRESP_ERROR generated otherwise
• Only supports HMASTLOCK='0', HRESP_ERROR generated otherwise
• Only supports HBURST=SINGLE and INCR, HRESP_ERROR generated otherwise
• No HPROT decoding
• No HSPLIT generated
• No HRETRY generated
• HRESP_ERROR generated for unmapped addresses, and for write accesses to register without

any writeable bits
• Only big-endianness is supported.
• Frequency synthesis and time increment configuration
The increment values for the ET and FS counters depend on the implemented width of each counter
and the frequency of the available on the system clock.

129.3.9 Miscellaneous

The accuracy of the transmission or reception baud rate of the bit asynchronous serial interface is
dependent on the selected system frequency and baud rate. The number of system clock periods used
for sending or receiving a bit is directly proportional to the integer part of the division of the system
frequency with the baud rate.
The BREAK command received on the bit asynchronous serial interface is a sequence of logical zeros
that is at least one bit period longer than the normal byte frame, i.e. start bit, eight data bits, optional
parity, one or two stop bits. When transmitted, it is always 13 bits.

129.3.10Numbering and naming conventions

Convention according to the CCSDS recommendations, applying to time structures:
• The most significant bit of an array is located to the left, carrying index number zero.
• An octet comprises eight bits.

Convention according to AMBA specification, applying to the APB/AHB interfaces:
• Signal names are in upper case, except for the following:
• A lower case 'n' in the name indicates that the signal is active low.
• Constant names are in upper case.
• The least significant bit of an array is located to the right, carrying index number zero.
• Big-endian support.

General convention, applying to all other signals and interfaces:

Table 1929.CCSDS n-bit field definition

CCSDS n-bit field
most significant least significant
0 1 to n-2 n-1

Table 1930.AMBA n-bit field definition

AMBA n-bit field
most significant least significant
n-1 n-2 down to 1 0
GRIP, Sep 2018, Version 2018.3 1634 www.cobham.com/gaisler

GRLIB IP Core

• Signal names are in mixed case.
• An upper case '_N' suffix in the name indicates that the signal is active low.

129.4 Registers

The core is programmed through registers mapped into AHB I/O address space. Only 32-bit single-
accesses to the registers are supported.

Table 1931.GRCTM registers

AHB address offset Register
0x00 Global Reset Register (GRR)
0x04 Global Control Register (GCR)
0x08 Global Status Register (GSR)
0x0C N/A
0x10 N/A
0x14 Preamble Field Register (PFR)
0x18 Elapsed Time Coarse Register (ETCR)
0x1C Elapsed Time Fine Register (ETFR)
0x20 Datation Coarse Register 0 (DCR0)
0x24 Datation Fine Register 0 (DFR0)
0x28 Datation Coarse Register 1 (DCR1)
0x2C Datation Fine Register 1 (DFR1)
GRIP, Sep 2018, Version 2018.3 1635 www.cobham.com/gaisler

GRLIB IP Core
0x30 Datation Coarse Register 2 (DCR2)
0x34 Datation Fine Register 2 (DFR2)
0x38 Spacecraft Time Datation Coarse Register (STCR)
0x3C Spacecraft Time Datation Fine Register (STFR)
0x40 Pulse Definition Register 0
0x44 Pulse Definition Register 1
0x48 Pulse Definition Register 2
0x4C Pulse Definition Register 3
0x50 Pulse Definition Register 4
0x54 Pulse Definition Register 5
0x58 Pulse Definition Register 6
0x5C Pulse Definition Register 7
0x60 Pending Interrupt Masked Status Register
0x64 Pending Interrupt Masked Register
0x68 Pending Interrupt Status Register
0x6C Pending Interrupt Register
0x70 Interrupt Mask Register
0x74 Pending Interrupt Clear Register
0x78 N/A
0x7C N/A
0x80 Elapsed Time Increment Register (ETIR)
0x84 Frequency Synthesizer Increment Register (FSIR)
0x88 Serial Configuration Register
0x8C N/A
0x90 TimeWire Start Configuration Register
0x94 TimeWire Adjust Configuration Register
0x98 TimeWire Transmit Configuration Register
0x9C TimeWire Receive Configuration Register
0xA0 Set Elapsed Time Coarse Register (SetETCR)
0xA4 Set Elapsed Time Fine Register (SetETFR)

Table 1931.GRCTM registers

AHB address offset Register
GRIP, Sep 2018, Version 2018.3 1636 www.cobham.com/gaisler

GRLIB IP Core

129.4.1

Table 1932. 0x00 - GRR - Global Reset Register

Global Reset Register

129.4.2 Global Control Register

Table 1933. 0x04 - GCR - Global Control Register

31 24 23 1 0

SEB RESERVED SRST

0 0 0

w r rw

31: 24 SEB (Security Byte):
Write: ‘0x55’= the write will have effect (the register will be updated).

Any other value= the write will have no effect on the register.
Read: All zero.

23: 1 RESERVED
Write: Don’t care.
Read: All zero.

0 System reset (SRST): [1]
Write: ‘1’= initiate reset,‘0’= do nothing
Read: ‘1’= unsuccessful reset, ‘0’= successful reset

31 24 23 13 12 11 10 9 8 7 6 0

SEB RESERVED DRE2 DRE1 DRE0 EXT SYNC FREQDIS RESERVED

0 0 0 0 0 0 0 0 0

w r rw rw rw rw rw rw r

31: 24 SEB (Security Byte):
Write: ‘0x55’= the write will have effect (the register will be updated).

Any other value= the write will have no effect on the register.
Read: All zero.

23: 13 RESERVED
Write: Don’t care.
Read: All zero.

12 Datation Register2 Edge (DRE2)
Write/Read: ‘0’= falling, ‘1’= rising

11 Datation Register1 Edge (DRE1)
Write/Read: ‘0’= falling, ‘1’= rising

10 Datation Register0 Edge (DRE0)
Write/Read: ‘0’= falling, ‘1’= rising

9 External synchronisation (EXT) (through external synchronisation interface)
Write/Read: ‘0’= disabled, ‘1’= enable.

8 Synchronise slave (SYNC) (through TimeWire)
Write/Read: ‘0’= disabled, ‘1’= enabled

7 Disable frequency synthesizer from driving Elapsed Time counter (FREQDIS)
Write/Read: ‘1’= disabled, ‘0’= enabled

6: 0 RESERVED
Write: Don’t care.
Read: All zero.
GRIP, Sep 2018, Version 2018.3 1637 www.cobham.com/gaisler

GRLIB IP Core

129.4.3

Table 1934. 0x08 - GSR - Global Status Register [8]

Global Status Register

129.4.4

Table 1935. 0x14 - PFR - Preamble Field Register [8]

Preamble Field Register

129.4.5

Table 1936.0x18 - ETCR - Elapsed Time Coarse Register [8]

Elapsed Time Coarse Register

31 5 4 3 2 1 0

RESERVED SARM STL DRL2 DRL1 DRL0

0 0 0 0 0 0

r r r r r r

31: 5 RESERVED
Write: Don’t care.
Read: All zero.

4 Set Elapsed Time counter Arm (SARM): [9]
Write: Don’t care.
Read: ‘1’ = Ready to set ET, ‘0’ = reset value, or already ET has been set

3 Spacecraft Time Register Latched (STL): [3]
Write: Don’t care.
Read: ‘1’ = Latched with new value, ‘0’ = old value

2 Datation Register 2 Latched (DRL2): [4]
Write: Don’t care.
Read: ‘1’ = Latched with new value, ‘0’ = old value

1 Datation Register 1 Latched (DRL1): [4]
Write: Don’t care.
Read: ‘1’ = Latched with new value, ‘0’ = old value

0 Datation Register 0 Latched (DRL0): [4]
Write: Don’t care.
Read: ‘1’ = Latched with new value, ‘0’ = old value

31 8 7 0

RESERVED P-FIELD

0 0x2E

r r

31: 8 RESERVED
Write: Don’t care.
Read: All zero.

7: 0 Preamble Field (P-Field):
Write: Don’t care.
Read: Static P-Field

31 0

T-FIELD, COARSE

0

r

31: 0 T-Field, coarse part [5]
Write: Don’t care.
Read: T-Field, coarse part
GRIP, Sep 2018, Version 2018.3 1638 www.cobham.com/gaisler

GRLIB IP Core

129.4.6 Elapsed Time Fine Register

Table 1937.0x1C - ETFR - Elapsed Time Fine Register [8]

129.4.7

Table 1938.0x20 - DCR0 - Datation Time Coarse Register 0 [8]

Datation Time Coarse Register 0

129.4.8

Table 1939.0x24 - DFR0 - Datation Time Fine Register 0 [8]

Datation Time Fine Register 0

129.4.9

Table 1940.0x28 - DCR1 - Datation Time Coarse Register 1 [8]

Datation Time Coarse Register 1

31 8 7 0

T-FIELD, FINE RESERVED

0 0

r r

31: 8 T-Field, fine part [5]
Write: Don’t care.
Read: T-Field, fine part

7: 0 RESERVED
Write: Don’t care.
Read: All zero.

31 0

T-FIELD, COARSE

0

r

31: 0 T-Field, coarse part [6]
Write: Don’t care.
Read: T-Field, coarse part

31 8 7 0

T-FIELD, FINE RESERVED

0 0

r r

31: 8 T-Field, fine part [6]
Write: Don’t care.
Read: T-Field, fine part

7: 0 RESERVED
Write: Don’t care.
Read: All zero.

31 0

T-FIELD, COARSE

0

r

31: 0 T-Field, coarse part [6]
Write: Don’t care.
Read: T-Field, coarse part
GRIP, Sep 2018, Version 2018.3 1639 www.cobham.com/gaisler

GRLIB IP Core

129.4.10

Table 1941.0x2C - DFR1 - Datation Time Fine Register 1 [8]

Datation Time Fine Register 1

129.4.11

Table 1942.0x30 - DCR2 - Datation Time Coarse Register 2 [8]

Datation Time Coarse Register 2

129.4.12

Table 1943.0x34 - DFR2 - Datation Time Fine Register 2 [8]

Datation Time Fine Register 2

129.4.13

Table 1944.0x38 - STCR - Spacecraft Time Datation Coarse Register [8]

Spacecraft Time Datation Coarse Register

31 8 7 0

T-FIELD, FINE RESERVED

0 0

r r

31: 8 T-Field, fine part [6]
Write: Don’t care.
Read: T-Field, fine part

7: 0 RESERVED
Write: Don’t care.
Read: All zero.

31 0

T-FIELD, COARSE

0

r

31: 0 T-Field, coarse part [6]
Write: Don’t care.
Read: T-Field, coarse part

31 8 7 0

T-FIELD, FINE RESERVED

0 0

r r

31: 8 T-Field, fine part [6]
Write: Don’t care.
Read: T-Field, fine part

7: 0 RESERVED
Write: Don’t care.
Read: All zero.

31 0

T-FIELD, COARSE

0

r

31: 0 T-Field, coarse part [7]
Write: Don’t care.
Read: T-Field, coarse part
GRIP, Sep 2018, Version 2018.3 1640 www.cobham.com/gaisler

GRLIB IP Core

129.4.14

Table 1945.0x3C - STFR - Spacecraft Time Datation Fine Register [8]

Spacecraft Time Datation Fine Register

129.4.15Pulse Definition Register 0 to 7

31 8 7 0

T-FIELD, FINE RESERVED

0 0

r r

31: 8 T-Field, fine part [7]
Write: Don’t care.
Read: T-Field, fine part

7: 0 RESERVED
Write: Don’t care.
Read: All zero.

Table 1946.0x40 - 0x5C - PDR0 to PDR7 - Pulse Definition Register 0 to 7
31 24 23 20 19 16 15 11 10 9 2 1 0

RESERVED PP PW RESERVED PL RESERVED PE R

0 0 0 0 1 0 0 0

r rw rw r rw r rw r

31: 24 RESERVED
Write: Don’t care.
Read: All zero.

23: 20 Pulse Period (PP):
Write/Read: '0000' = 2 7 seconds

'0001' = 2 6 seconds

'0010' = 2 5 seconds
...

'1110' = 2 -7 seconds

'1111’ = 2 -8 seconds

Period = 2 (7-PP)

Frequency = 2 -(7-PP)

19: 16 Pulse Width (PW):
Write/Read: '0000' = 2 6 seconds

'0001' = 2 5 seconds

'0010' = 2 4 seconds
...
GRIP, Sep 2018, Version 2018.3 1641 www.cobham.com/gaisler

GRLIB IP Core
'1110' = 2 -8 seconds

'1111’ = 2 -9 seconds

Width = 2 (6-PW)

15: 11 RESERVED
Write: Don’t care.
Read: All zero.

10 Pulse Level (PL): Defines logical level of active part of pulse output.
Write/Read: ‘0’= Low, ‘1’= High

9: 2 RESERVED
Write: Don’t care.
Read: All zero.

1 Pulse Enable (PE):
Write/Read: ‘0’= disabled, ‘1’= enabled

0 RESERVED
Write: Don’t care.
Read: All zero.

Table 1946.0x40 - 0x5C - PDR0 to PDR7 - Pulse Definition Register 0 to 7
GRIP, Sep 2018, Version 2018.3 1642 www.cobham.com/gaisler

GRLIB IP Core

129.4.16

Table 1947.0x80 - ETIR - Elapsed Time Increment Register

Elapsed Time Increment Register

129.4.17

Table 1948.0x84 - FSIR - Frequency Synthesizer Increment Register

Frequency Synthesizer Increment Register

129.4.18

Table 1949.0x88 - SCR - Serial Configuration Register

Serial Configuration Register

129.4.19

Table 1950.0x90 - TWSC - TimeWire Start Configuration Register

TimeWire Start Configuration Register

31 7 0

RESERVED ETINC

0 *

r rw*

7: 0 ETINC
Write/Read: Increment, in number ET Fine Time LSB.

(Presence of ETIR can be discovered by read/write access, resulting in an error if
not implemented.)

31 0

FSINC

*

rw*

31: 0 FSINC
Write/Read: Increment

(The number of implemented bits can be discovered by writing all ones and the
reading them back.)
(Presence of ETIR can be discovered by read/write access, resulting in an error if
not implemented.)

31 30 29 28 27 16 15 0

R ODD TWO RESERVED BAUDTHRESHOLD

0 * * 0 *

r rw rw r rw

31: 30 RESERVED
28 ODD: Send odd parity and ignore received parity when set.
28 TWO: Send and receive two stop bits when set.
27: 16 RESERVED
15: 0 BAUDTHRESHOLD: Set baud rate: system frequency / baud rate

31 8 7 0

START RESERVED

* 0

rw r

31: 8 START: Defines T-Field fine part value when to start sending TimeWire message.
7: 0 RESERVED
GRIP, Sep 2018, Version 2018.3 1643 www.cobham.com/gaisler

GRLIB IP Core

129.4.20

Table 1951.0x94 - TWAC - TimeWire Adjust Configuration Register

TimeWire Adjust Configuration Register

129.4.21

Table 1952.0x98 - TWTC - TimeWire Transmit Configuration Register

TimeWire Transmit Configuration Register

129.4.22

Table 1953.0x9C - TWRC - TimeWire Receive Configuration Register

TimeWire Receive Configuration Register

129.4.23

Table 1954.0xA0 - SETCR - Set Elapsed Time Coarse Register [9]

Set Elapsed Time Coarse Register

31 8 7 0

RESERVED ADJUST

0 *

r rw

31: 1 RESERVED
7: 0 ADJUST: Delay in number of systems clock when to start sending TimeWire message.

31 1 0

RESERVED TRANSMIT

0 *

r rw

31: 1 RESERVED
0 TRANSMIT: T-Field fine part value other than 0 assumed for sent TimeWire message.

31 8 7 0

RECEIVE RESERVED

* 0

rw w

31: 8 RECEIVE: Defines T-Field fine part value corresponding to received TimeWire message time point.
7: 0 RESERVED

31 0

T-FIELD, COARSE

0

rw

31: 0 T-Field, coarse part [9]
Write: T-Field, coarse part
Read: T-Field, coarse part
GRIP, Sep 2018, Version 2018.3 1644 www.cobham.com/gaisler

GRLIB IP Core

129.4.24

Table 1955.0xA4 - SETFR - Set Elapsed Time Fine Register [9]

Set Elapsed Time Fine Register

Legend:
[1] The global system reset caused by the SRST-bit in the GRR-register results in the following actions:

- Initiated by writing a ‘1”, gives ‘0’ on read-back when the reset was successful.
- No need to write a ‘0’ to remove the reset.
- Unconditionally, means no need to check/disable something in order for this reset-function to correctly execute.
- Could of course lead to data-corruption coming/going from/to the reset core.
Behaviour:
- Resets the complete core (all logic, buffers & register values)

 (except for the ET and FS counters which continue running undisturbed)
- Behaviour is similar to a power-up.
- This reset shall not cause any spurious interrupts
{Note that the above actions require that the HRESET signal is fed back inverted to HRESETn}

[2] The channel reset results in the following actions:
Not implemented in Global Configuration Register.

[3] This bit is sticky which means that it remains asserted until the corresponding STFR register is read at which time the
bit is cleared. The corresponding registers should be read in the STCR – STFR order.

[4] This bit is sticky which means that it remains asserted until the corresponding Defraud register is read at which point
the bit is cleared. The corresponding registers should be read in the DCRx – DFRx order.

[5] When ETCR is read, the ETFR register is latched and are not released until ETFR has been read. The registers should
be read in the ETCR – ETFR order.

[6] The coarse and fine time part of the register pair is latched on an external event and is released on reading the corre-
sponding fine time register. No new event is accepted until the corresponding fine time register has been read.

[7] The coarse and fine time part of the register pair is latched on an external event. No new event is accepted until the cor-
responding fine time register has been read. This does not prevent datations to occur and Standard Spacecraft Time
Source Packet to be generated.

[8] An AMBA AHB ERROR response is generated if a write access is attempted to a register which does not have any
writeable bits.

[9] The GSR.SARM bit is set when the SetETFR register is written to. It is cleared when an active high signal is detected
on the CTMIN.SETET input, at which point the SetETCR and SetETFR contents are written to the ET counter (ETCR
and ETFR) and the frequency synthesizer is reset. Only available when gSetET VHDL generic is set to 1.

129.4.25Interrupt registers

The interrupt registers give complete freedom to the software, by providing means to mask interrupts,
clear interrupts, force interrupts and read interrupt status.
When an interrupt occurs the corresponding bit in the Pending Interrupt Register is set. The normal
sequence to initialize and handle a module interrupt is:

31 8 7 0

T-FIELD, FINE RESERVED

0 0

rw r

31: 8 T-Field, fine part [9]
Write: T-Field, fine part
Read: T-Field, fine part

7: 0 RESERVED
Write: Don’t care.
Read: All zero.
GRIP, Sep 2018, Version 2018.3 1645 www.cobham.com/gaisler

GRLIB IP Core

• Set up the software interrupt-handler to accept an interrupt from the module.
• Read the Pending Interrupt Register to clear any spurious interrupts.
• Initialize the Interrupt Mask Register, unmasking each bit that should generate the module inter-

rupt.
• When an interrupt occurs, read the Pending Interrupt Status Register in the software interrupt-

handler to determine the causes of the interrupt.
• Handle the interrupt, taking into account all causes of the interrupt.
• Clear the handled interrupt using Pending Interrupt Clear Register.
Masking interrupts: After reset, all interrupt bits are masked, since the Interrupt Mask Register is zero.
To enable generation of a module interrupt for an interrupt bit, set the corresponding bit in the Inter-
rupt Mask Register.
Clearing interrupts: All bits of the Pending Interrupt Register are cleared when it is read or when the
Pending Interrupt Masked Register is read. Reading the Pending Interrupt Masked Register yields the
contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask Register.
Selected bits can be cleared by writing ones to the bits that shall be cleared to the Pending Interrupt
Clear Register.
Forcing interrupts: When the Pending Interrupt Register is written, the resulting value is the original
contents of the register logically OR-ed with the write data. This means that writing the register can
force (set) an interrupt bit, but never clear it.
Reading interrupt status: Reading the Pending Interrupt Status Register yields the same data as a read
of the Pending Interrupt Register, but without clearing the contents.
Reading interrupt status of unmasked bits: Reading the Pending Interrupt Masked Status Register
yields the contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask
Register, but without clearing the contents.
The interrupt registers comprise the following:
• Pending Interrupt Masked Status Register[PIMSR]R
• Pending Interrupt Masked Register[PIMR]R
• Pending Interrupt Status Register[PISR]R
• Pending Interrupt Register[PIR]R/W
• Interrupt Mask Register[IMR]R/W
• Pending Interrupt Clear Register[PICR]W

12: ETSET ET has been set from SetETCR and SetETFR registers (only when VHDL generic gSetET is 1)
11: PULSE7 Pulse 7 interrupt
10: PULSE6 Pulse 6 interrupt
9: PULSE5 Pulse 5 interrupt
8: PULSE4 Pulse 4 interrupt
7: PULSE3 Pulse 3 interrupt
6: PULSE2 Pulse 2 interrupt
5: PULSE1 Pulse 1 interrupt
4: PULSE0 Pulse 0 interrupt
3: STL Spacecraft Time Register Latched

Table 1956.0x60 - 0x74 - IR - Interrupt registers

31 13 12 11 4 3 2 1 0
R ETSET PULSE7 ... PULSE0 STL DRL2 DRL1 DRL0
0 0 0 0 0 0 0 0 0
r rw rw rw rw rw rw rw rw
GRIP, Sep 2018, Version 2018.3 1646 www.cobham.com/gaisler

GRLIB IP Core

2: DRL2 Datation Register 2 Latched
1: DRL1 Datation Register 1 Latched
0: DRL0 Datation Register 0 Latched

All bits in all interrupt registers are reset to 0b after reset.

129.5 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x033. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.
GRIP, Sep 2018, Version 2018.3 1647 www.cobham.com/gaisler

GRLIB IP Core

129.6 Configuration options

Table 1957 shows the configuration options of the core (VHDL generics).

Legend:

Table 1957.Configuration options

Generic Function Description Allowed range Default
GRLIB AMBA plug&play settings
hindex AHB slave index Integer 0
hirq AHB slave interrupt Integer 0
singleirq Single interrupt Enable interrupt registers Integer 0
ioaddr IO area address 0 - 16#FFF# 0
iomask IO area mask 0 - 16#FFF# 16#FFF#
syncrst synchronous reset 0 - 1 0
Features settings
gProgrammable Programmable ET and FS increment, and TimeWire 0 - 1 0
gExternal External support Support for external synchronization input 0 - 1 0
gMaster Master CTM support 0 - 1 0
gSlave Slave CTM support 0 - 1 0
gDatation Datation support 0 - 1 0
gPulse Pulse support 0 - 1 0
gTimePacket Time Packet support 0 - 1 0
gSetET Set ET support Register from which ET is set on next.

input
0 - 1 0

Frequency synthesizer and Elapsed Time counter settings
gFrequency Frequency

Synthesizer
Defines the accuracy of the synthesized
reference time, the wider the synthesizer
the less drift is induced.

2 - 32 30

gETIncrement Increment of
ET counter

Defines with what value the Elapsed Time
counter is to be incremented each time
when the Frequency Synthesizer wraps
around. The ET increment needs to match
the synthesized frequency.

Integer 4

gFSIncrement Increment of
FS counter

Defines increment value of the Frequency
Synthesizer which is added to the counter
every system clock cycle. It defines the
frequency of the synthesized reference
time. Should match ET increment.

Integer 135107990

TimeWire settings
gTWStart ETF at msg start ET Fine at start of message [1] Integer 16#FFE330#
gTWAdjust Adjust phase of msg System clock based tuning of message start Integer 5
gTWTransmit ETF at transmission ET Fine at synchronisation (master) [1] Integer 16#000000#
gTWRecieve ETF at reception ET Fine at synchronisation (slave) [1] [2] Integer 16#FFE000#
gDebug Debug when set Only used for TW settings adjustments. 0 - 1 0
Asynchronous bit serial interface settings (TimeWire and Time Packet)
gSystemClock System frequency System clock frequency [Hz] Integer 33333333
gBaud Baud rate [Baud] Integer 115200
gOddParity Odd parity Odd parity generated, but not checked 0 - 1 0
gTwoStopBits Number of stop bits 0=one stop bit, 1=two stop bits 0 - 1 0
GRIP, Sep 2018, Version 2018.3 1648 www.cobham.com/gaisler

GRLIB IP Core

[1] These generics are defined as 32 bit ET fine time values, thus 16#FFE000# corresponds to all the 24 implemented bits

being all-ones.
[2] For proper mitigation of spikes on the Pulses[0:7] outputs, only the leftmost bits should be set.
GRIP, Sep 2018, Version 2018.3 1649 www.cobham.com/gaisler

GRLIB IP Core

129.7 Signal descriptions

Table 1958 shows the interface signals of the core (VHDL ports).

Table 1958.Signal descriptions

Signal name Field Type Function Description Active
HRESETn N/A Input Reset Resets the ET & FS in the

VHDL core. The signal is
assumed synchronous with
rising HCLK edge.

Low

CRESETn N/A Input Reset Resets all logic but the ET
& FS in the VHDL core.
The signal is assumed syn-
chronous with rising
HCLK edge.

Low

HCLK N/A Input Clock -
GRIP, Sep 2018, Version 2018.3 1650 www.cobham.com/gaisler

GRLIB IP Core
CTMIN TWSLAVE Input TimeWire slave TimeWire input -
DATATION Datation input The inputs are sampled on

rising HCLK edge.
-

TIMEMODE Time rate select Selects the rate of the time
strobe periodicity

-

TIMESTROBE Time strobe input -
TIMEBUSY_N Time packet busy Low
EXTERNALTIME Elapsed Time ET coarse [31:0] & ET fine

[-1:-24]
-

EXTERNALSYNC Synchronization High
SETET Set ET Pulse to set ET from reg. High

CTMOUT TWMASTER Output TimeWire master TimeWire output
PULSES Pulse outputs The outputs are driven on

rising HCLK edge.
-

TIMEPKT Time packet data -
ELAPSEDTIME Elapsed Time ET coarse [31:0] & ET fine

[-1:-24]
-

ELAPSEDNEXT Next Elapsed Time ET coarse [31:0] & ET fine
[-1:-24]

-

ELAPSEDEVENT ET increment High
ELAPSEDSYNC Synchronisation High

AHBIN * Input AMB slave input signals -
AHBOUT * Output AHB slave output signals -

HIRQ(hirq+12) Interrupts ETSET output Location on
HIRQ bus
depends on
hirq generic.
If hirq=0, no
interrupt will
be generated.
If sin-
gleirq=1
only one
common
interrupt will
be generate
using hirq.

HIRQ(hirq+11) PULSES(7) output
HIRQ(hirq+10) PULSES(6) output
HIRQ(hirq+9) PULSES(5) output
HIRQ(hirq+8) PULSES(4) output
HIRQ(hirq+7) PULSES(3) output
HIRQ(hirq+6) PULSES(2) output
HIRQ(hirq+5) PULSES(1) output
HIRQ(hirq+4) PULSES(0) output
HIRQ(hirq+3) STL
HIRQ(hirq+2) DRL2
HIRQ(hirq+1) DRL1
HIRQ(hirq+0) DRL0

* see GRLIB IP Library User’s Manual

Table 1958.Signal descriptions

Signal name Field Type Function Description Active
GRIP, Sep 2018, Version 2018.3 1651 www.cobham.com/gaisler

GRLIB IP Core

129.8 Signal definitions and reset values

The signals and their reset values are described in table 1959.

129.9 Timing

The timing waveforms and timing parameters are shown in figure 325 and are defined in table 1960.

Note: The inputs are re-synchronized internally. The signals do not have to meet any setup or hold
requirements.

129.10 Library dependencies

Table 1961 shows libraries used when instantiating the core (VHDL libraries).

129.11 Instantiation

This example shows how the core can be instantiated.

Table 1959.Signal definitions and reset values

Signal name Type Function Active Reset value
twmaster Output UART transmit data line - Logical 1
twslave Input UART receive data line - -
pulses Output Pulse output - Logical 0
datation Input Datation input - -
timemode Input Time rate select - -
timestrobe Input Time strobe input - -
timepkt Output Time packet data - Logical 0
timebusy_n Input Time packet busy - Low

Table 1960.Timing parameters

Name Parameter Reference edge Min Max Unit
tGRCTM0 clock to output delay rising clk edge TBD TBD ns

tGRCTM1 input to clock hold rising clk edge - - ns

tGRCTM2 input to clock setup rising clk edge - - ns

Table 1961.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
TMTC TMTC_Types Signals, component Signals and component declaration

Figure 325. Timing waveforms

tGRCTM0pulses

clk

tGRCTM0

tGRCTM1datation tGRCTM2

twmaster

twslave
timemode, timestrobe, timebusy_n
GRIP, Sep 2018, Version 2018.3 1652 www.cobham.com/gaisler

GRLIB IP Core
 library IEEE;
 use IEEE.Std_Logic_1164.all;
 library GRLIB;
 use GRLIB.AMBA.all;
 library TMTC;
 use TMTC.TMTC_Types.all;

...

 component GRCTM is
 generic(
 hindex: in Integer := 0;
 hirq: in Integer := 0;
 ioaddr: in Integer := 0;
 iomask: in Integer := 16#fff#;
 syncrst: in Integer := 0;
 gProgrammable: in Integer := 0;
 gExternal: in Natural range 0 to 1 := 0; -- External sync
 gMaster: in Natural range 0 to 1 := 1; -- Master CTM support
 gSlave: in Natural range 0 to 1 := 1; -- Slave CTM support
 gDatation: in Natural range 0 to 1 := 1; -- Datation support
 gPulse: in Natural range 0 to 1 := 1; -- Pulse support
 gTimePacket: in Natural range 0 to 1 := 1; -- Time Packet support

 gFrequency: in Positive := 30; -- Frequency Synthesize
 gETIncrement: in Natural := 4; -- ET increment
 gFSIncrement: in Natural := 135107990; -- FS increment

 gTWStart: in Natural := 16#FFE330#; -- ETF at start of msg
 gTWAdjust: in Natural := 5; -- Adjust phase of msg
 gTWTransmit: in Natural := 16#000000#; -- ETF at transmision
 gTWRecieve: in Natural := 16#FFE000#; -- ETF at reception

 gSystemClock: in Natural := 33333333; -- System frequency[Hz]
 gBaud: in Natural := 115200; -- Baud rate
 gOddParity: in Natural range 0 to 1 := 0; -- Odd parity
 gTwoStopBits: in Natural range 0 to 1 := 0; -- Two stop bits
 gDebug: in Natural range 0 to 1 := 0); -- Debug mode when set
 port(
 -- AMBA AHB system signals
 HCLK: in Std_ULogic; -- System clock
 HRESETn: in Std_ULogic; -- Synchronised reset
 CRESETn: in Std_ULogic; -- Synchronised reset

 -- AMBA AHB slave interface
 AHBIn: in AHB_Slv_In_Type; -- AHB slave input
 AHBOut: out AHB_Slv_Out_Type; -- AHB slave output

 -- Time interfaces
 CTMIn: in GRCTM_In_Type;
 CTMOut: out GRCTM_Out_Type);
 end component GRCTM;

129.12 Configuration tuning

The gFrequency generic defines the width of the Frequency Synthesiser (FS). The greater the width,
the smaller the drift induced. The gFSIncrement generic defines with what value the FS counter
should be incremented to obtain a synthesized frequency that matches the least significant bit of the
Elapsed Time (ET) counter, normally being 2**24 Hz. It is also possible to synthesize a frequency
less than 2**24 Hz, which will require the gETIncrement generic to have a higher value than the
default 1.
The gETIncrement generic defines with what value the ET counter should be incremented. The speci-
fied value is added to the current ET counter value. The addition is done to the least significant bit in
the fine part of the ET counter, i.e. gETIncrement is multiplied with 2**-24 before the addition. The
gETIncrement is normally set to 1, since the obtained synthesised frequency is normally 2**24 Hz.
GRIP, Sep 2018, Version 2018.3 1653 www.cobham.com/gaisler

GRLIB IP Core

For lower frequencies, the gETIncrement generic must be larger than 1. Note that the synthesized fre-
quency must always be a power of two.
The following paragraphs define synchronization via the optional TimeWire master and slave inter-
faces.
The gTWStart generic defines at what time the transmission of the TimeWire message should start on
the TWMaster output. The gTWStart value corresponds to the ET counter fine part assuming 24 bit
resolution. E.g. 16#FFE330# corresponds to bit 2**-1 to 2**-24. The gTWAdjust generic defines the
number of HCLK periods that should pass between the gTWStart time has occurred and the TimeWire
message should be sent. This allows for fine grained adjustment of the starting point for the TimeWire
message.
The gTWTransmit generic defines the ET fine part value that is transmitted virtually to the slave. Its
only consequence is to decide whether the ET coarse part to be sent in the TimeWire message should
be the same as the current ET in the master or be incremented by one second. The gTWRecieve
generic defines the ET fine part value that should be loaded into the ET at synchronisation. Normally
this will be 0 for slave only applications of the GRCTM.
When the gDebug generic is 1, the ET counter reset will be 0x000000 for the coarse part and
0xFF0000 for the fine part (assuming CUC 32 & 24 bit resolution). This achieves an ET synchronisa-
tion early in a simulation without the need to wait for a second of simulation time.

129.12.1Master configuration

The master configuration is used for the source of the time chain and supports the following features:
• Frequency Synthesizer (FS) and Elapsed Time (ET) counters
• Master TimeWire interface
• Datation by means of direct read out of the ET counter via AMBA AHB interface
The following register are available in this configuration: GRR, GCR, GSR, ETCR, ETFR.
GRIP, Sep 2018, Version 2018.3 1654 www.cobham.com/gaisler

GRLIB IP Core

Table 1957 shows the master configuration.

Table 1962.Master configuration

Generic Function Default
Features settings
gMaster Master CTM support 1
gSlave Slave CTM support 0
gDatation Datation support 0
gPulse Pulse support 0
gTimePacket Time Packet support 0
Frequency synthesizer and Elapsed Time counter settings
gFrequency Frequency Synthesizer 30
gETIncrement Increment of ET counter

(In this example a resolution is 2**-22 due to the slow system frequency.)
4

gFSIncrement Increment of FS counter 135107990
TimeWire settings
gTWStart ETF at msg start 16#FFC3300#
gTWAdjust Adjust phase of msg 5
gTWTransmit ETF at transmission 16#FFE000#
gTWRecieve ETF at reception 16#000000#
gDebug Debug when set 0
Asynchronous bit serial interface settings (TimeWire and Time Packet)
gSystemClock System frequency 33333333
gBaud Baud rate 115200
gOddParity Odd parity 0
gTwoStopBits Number of stop bits 0
GRIP, Sep 2018, Version 2018.3 1655 www.cobham.com/gaisler

GRLIB IP Core

129.12.2Master/Slave configuration

The master/slave configuration is used for an intermediate unit in the time chain, and supports all fea-
tures.
All registers are available in this configuration.
Table 1957 shows the master/slave configuration.

Table 1963.Master/Slave configuration

Generic Function Default
Features settings
gMaster Master CTM support 1
gSlave Slave CTM support 1
gDatation Datation support 1
gPulse Pulse support 1
gTimePacket Time Packet support 1
Frequency synthesizer and Elapsed Time counter settings
gFrequency Frequency Synthesizer 30
gETIncrement Increment of ET counter

(In this example a resolution is 2**-22 due to the slow system frequency.)
4

gFSIncrement Increment of FS counter 135107990
TimeWire settings
gTWStart ETF at msg start 16#FFE330#
gTWAdjust Adjust phase of msg 5
gTWTransmit ETF at transmission 16#0000000#
gTWRecieve ETF at reception 16#FFE000#
gDebug Debug when set 0
Asynchronous bit serial interface settings (TimeWire and Time Packet)
gSystemClock System frequency 33333333
gBaud Baud rate 115200
gOddParity Odd parity 0
gTwoStopBits Number of stop bits 0
GRIP, Sep 2018, Version 2018.3 1656 www.cobham.com/gaisler

GRLIB IP Core

129.12.3Slave configuration

The slave configuration is used for a sink at the end of the time chain, e.g. in the payload, and supports
the following features:
• Frequency Synthesizer (FS) and Elapsed Time (ET) counters
• Slave TimeWire interface
• Datation by means of direct read out of the ET counter via AMBA AHB interface
Note that the slave configuration can also support other features as required. Only those necessary for
proper operation have been listed above.
The following register are available in this configuration: GRR, GCR, GSR, ETCR, ETFR.
Table 1957 shows the slave configuration.

Table 1964.Slave configuration

Generic Function Default
Features settings
gMaster Master CTM support 0
gSlave Slave CTM support 1
gDatation Datation support 0
gPulse Pulse support 0
gTimePacket Time Packet support 0
Frequency synthesizer and Elapsed Time counter settings
gFrequency Frequency Synthesizer 30
gETIncrement Increment of ET counter

(In this example a resolution is 2**-22 due to the slow system frequency.)
4

gFSIncrement Increment of FS counter 135107990
TimeWire settings
gTWStart ETF at msg start 16#000000#
gTWAdjust Adjust phase of msg 0
gTWTransmit ETF at transmission 16#000000#
gTWRecieve ETF at reception 16#000000#
gDebug Debug when set 0
Asynchronous bit serial interface settings (TimeWire and Time Packet)
gSystemClock System frequency 33333333
gBaud Baud rate 115200
gOddParity Odd parity 0
gTwoStopBits Number of stop bits 0
GRIP, Sep 2018, Version 2018.3 1657 www.cobham.com/gaisler

GRLIB IP Core

130 SPWCUC - SpaceWire - CCSDS Unsegmented Code Transfer Protocol

130.1 Overview

This interface implements the SpaceWire - CCSDS Unsegmented Code Transfer Protocol (CUCTP),
providing automatic SpaceWire Time-Code transmission and reception, and automatic CUCTP
packet reception. It also provides support for CUCTP packet transmission.
The SpaceWire - CCSDS Unsegmented Code Transfer Protocol interface (SPWCUC) is assumed to
operate in an AMBA bus system where AMBA APB bus is present. The AMBA APB bus is used for
configuration, control and status handling. The interface is tightly coupled with the CCSDS Time
Manager (GRCTM) and the SpaceWire codec with AHB host Interface and RMAP target (GRSPW2).

130.2 Protocol

The SpaceWire - CCSDS Unsegmented Code Transfer Protocol (CUCTP) provides synchronization
between Elapsed Time (ET) counters in the local node and remote nodes, by means of SpaceWire
Time-Codes and SpaceWire packets. The time format conforms to the CCSDS Unsegmented Code
format.

SpaceWire Time-Codes are continuously transmitted from a master node to all slave nodes. The trans-
mission of the Time-Codes is synchronized with the local ET counter in the master node. The six bits
of the Time-Code time information correspond to six bits of the local ET counter (its exact mapping
being programmable by means of register access). The ET bits with lower weights than the size bits
mapped to the Time-Code time information bits are all zero at time of Time-Code transmission.
When a Time-Code is received in a slave node, the Time-Code time information is first verified to be
an increment of the previously received time-information. The event of the Time-Code reception is
assumed to occur synchronously with the local ET counter in the slave node. It is possible to allow a
window of tolerance surrounding the exact time at which the reception event was expected. If the
event was outside the window of tolerance a tolerance error has occurred and the no further synchro-
nization is performed. Note that the check means that the ET counter bits with weights lower than the
six ET bits mapped to the Time-Code time information are checked to have an expected value. This
expected value is programmable by means of register access and should be seen as an offset from the
all zero value (c.f. Time-Code transmission timing above). The check of the ET counter bits with the
lower weights is done with respect to the expected value and the expected value -1 (see further down
for the definition of -1). Thus, the ideal point at which a Time-Code can be received is just at the tran-
sition to the expected value. The window of tolerance means that a programmable number of ET bits
with the lowest weights are ignored in the above comparisons. Note also that the window of tolerance
is symmetrical around the expected value and that the -1 subtraction corresponds to the ET bit with
the lowest weight that is not ignored due to the window of tolerance.
If the Time-Code reception event was within the window of tolerance, the time information is com-
pared with the corresponding bits in the local ET counter. If there is a match then the two ET counters
are considered to be synchronized. If there is a mismatch, then a synchronization error has occurred.
Note that during synchronization only the six bits of the ET mapped to the Time-Code time informa-
tion bits are considered for synchronization. If no Time-Code is received within the window, then the
local ET is considered to still be in synchronization but it is freewheeling on Time-Code level.

Table 1965.SpaceWire - CCSDS Unsegmented Code Transfer Protocol
Destination

Logical
Address

Protocol
Identifier

CCSDS Unsegmented Code CRC EOP

P-Field T-Field

1st 2nd Coarse Time Fine Time

231 224 223 216 215 28 27 20 2-1 2-8 2-9 2-16 2-17 2-24 weight

0 7 8 15 0 7 8 15 16 23 24 31 32 39 40 47 48 55 index

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits no. of bits
GRIP, Sep 2018, Version 2018.3 1658 www.cobham.com/gaisler

GRLIB IP Core

Additionally, whenever the Time-Code time information wraps from 0x3F to 0x00 it is possible to
synchronize the ET bits that have a higher weight than the bits mapped to the Time-Code time infor-
mation bits. This is performed whenever a new CUCTP packet has been received preceding the recep-
tion of the Time-Code with the wrapping time information. If no such packet has been received, then
the synchronization will be as described above, but with an increment of the ET bits with the higher
weight. If a new and valid CUCTP packet has been received, then in addition to checking the six ET
bits, the ET bits with a higher weight are compared with the corresponding ET bits received in the
CUCTP packet. If there is a mismatch, then a wrapping error has occurred. If no packet has been
received, then the local ET is considered to still be in synchronization but it is freewheeling on packet
level.
To summarize, ET bits mapped to the Time-Code time information bits and ET bits with lower weight
are checked for every Time-Code received; whilst ET bits with higher weight are checked when ever
time information is wrapping. ET bits with lower weight can be offset from the all zero value. ET bits
with the lowest weight can be ignored to form a window of tolerance.

Table 1966.Example of synchronization
CCSDS index Elapsed Time counter bits (T-Field)

AMBA index
Weight Ideal synchronization point (OFFSET=0x00000000)

Time-Code mapping
Tolerance Window of tolerance

T-
Fi

el
d

C
oa

rs
e

Ti
m

e

0 31 231

C
he

ck
ed

 b
its

 d
ur

in
g

w
ra

p,

co
m

pa
re

d
w

ith
 C

U
C

TP
 p

ac
ke

t

0 0
...
17 14 214 0
18 13 213 0
19 12 212 0
20 11 211 0
21 10 210 0
22 9 29 0
23 8 28 0
24 7 27 31 0
25 6 26 30 31 0
26 5 25 29 30 0
27 4 24 28 29 0
28 3 23 27 28 0
29 2 22 26 27 0
30 1 21 25 26 0
31 0 20 24 25 0 1

T-
Fi

el
d

Fi
ne

 T
im

e

32 31 2-1 23 24

Ti
m

e-
C

od
e,

 c
he

ck
ed

du
rin

g
sy

nc
hr

on
iz

at
io

n
(M

A
P

P
IN

G
=1

8)

1 0 0
33 30 2-2 22 23 1 0
34 29 2-3 21 22 1 0
35 28 2-4 20 21 0 0
36 27 2-5 19 20 1 0
37 26 2-6 18 19 1 0
38 25 2-7 17 18

C
he

ck
ed

 b
its

du
rin

g
sy

nc
hr

on
iz

at
io

n

1 0 0
39 24 2-8 16 17 1 0
40 23 2-9 15 16 1 0
41 22 2-10 14 15 1 0
42 21 2-11 13 14 1 0
43 20 2-12 12 13 1 0
44 19 2-13 11 12 1 0
45 18 2-14 10 11 0 0
46 17 2-15 9 10 1 0
47 16 2-16 8 9 1 0
48 15 2-17 7 8 1 0
49 14 2-18 6 7 1 0
50 13 2-19 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
51 12 2-20 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 11 2-21 3 4

Ig
no

re
d

bi
ts

(T
O

L=
4)

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
53 10 2-22 2 3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
54 9 2-23 1 2 0 0 1 1
55 8 2-24 0 1
GRIP, Sep 2018, Version 2018.3 1659 www.cobham.com/gaisler

GRLIB IP Core

130.3 Functionality

The interface implements the following functions:
• transmission of SpaceWire Time-Codes
• reception of SpaceWire Time-Codes
• reception of SpaceWire - CCSDS Unsegmented Code Transfer Protocol (CUCTP) packets
• verification of SpaceWire Time-Codes to be received within window of tolerance
• synchronization of SpaceWire Time-Codes time information with local Elapsed Time counter in

CCSDS Time Manager (GRCTM) using its external synchronization interface
• synchronization of SpaceWire - CCSDS Unsegmented Code Transfer Protocol (CUCTP) packets

with local Elapsed Time counter in CCSDS Time Manager (GRCTM) using its external synchro-
nization interface, occurring on the wrapping of SpaceWire Time-Codes time information

• support for transmission of SpaceWire - CCSDS Unsegmented Code Transfer Protocol (CUCTP)
packets

130.3.1 SpaceWire Time-Code transmission

SpaceWire Time-Code transmission is normally performed by a single master node in a system.
SpaceWire Time-Code transmission can be enabled by means of register access. SpaceWire Time-
Codes can be transmitted simultaneously on one to four possible outputs, selectable by means of reg-
ister access.
The six bits of the Time-Code time information are mapped to six bits of the local ET counter, by
means of register access. The least significant time information bit [index 0] can be mapped to one of
the 32 ET counter bits with the lowest weights.
When Time-Code time information is transmitted, an interrupt is generated (TickTx). If the Time-
Code time information is wrapping from 0x3F to 0x00, an interrupt is generated (TickTxWrap).

130.3.2 SpaceWire Time-Code reception

SpaceWire Time-Code reception can be enabled by means of register access. SpaceWire Time-Codes
can be received from one of four possible inputs, selectable by means of register access.
When SpaceWire Time-Code reception is enabled, the received Time-Code time information is
checked to be an increment of the previously received Time-Code time information. If not, a Time-
Code reception error interrupt is generated (TickRxError). If the received Time-Code time informa-
tion is not an increment, then the received Time-Code time information is stored for the next compar-
ison but is not used for further processing as described hereafter. If the received Time-Code time
information is equal to the previously received Time-Code time information, then no action is taken
and no interrupts are generated.
The Time-Code control flag can be checked to be “00”, selectable by means of register access. If
checking is enabled, control flag differing from “00” will generate a Time-Code reception error inter-
rupt (TickRxError).
If the expected Time-Code time information (and optionally control flags) is received, an interrupt is
generated (TickRx). If the Time-Code time information is wrapping from 0x3F to 0x00, an interrupt is
generated (TickRxWrap). Both events qualify the Time-Code time information for further processing
as described hereafter.

130.3.3 CCSDS Unsegmented Code Transfer Protocol (CUCTP) packet reception

SpaceWire - CCSDS Unsegmented Code Transfer Protocol packets can be automatically received
when enabled by means of register access. General SpaceWire communication is performed by the
GRIP, Sep 2018, Version 2018.3 1660 www.cobham.com/gaisler

GRLIB IP Core

GRSPW2 SpaceWire codec, which outputs received characters unfiltered to the SPWCUC interface.
The SPWCUC interface implements the reception and checking of the CUCTP packet format.
Destination Logical Address (DLA) as per ECSS-E-ST-50-51C. Packets with non-matching DLA are
discarded. The DLA is programmable in the range 0x00 to 0xFF by means of register access. The
DLA can also be masked with a programmable mask pattern, by means of register access.
The Protocol Identifier as per ECSS-E-ST-50-51C. Packets with non-matching Protocol Identifier are
discarded. The Protocol Identifier is programmable in the range 0x00 to 0xFF, as per ECSS-E-ST-50-
51C, by means of register access.
Fixed and programmable bits of the P-Field are checked with expected values. The Detail bits for
information on the code are fixed to “1111”. The Time code identification is optionally compared to a
programmable value, accessible through register access. Reserved bits for future use are checked to
be fixed to “000000”. If any of the bits of the received P-Field are incorrect, the packet is discarded
and an error interrupt is generated (PktError).
The packet CRC is the same as for RMAP as per ECSS-E-ST-50-52C.
Packets with incorrect CRC are discarded and an error interrupt is generated (PktError).
Packet without an End-Of-Packet (EOP) or an Error-End-of-Packet (EEP) are discarded and an error
interrupt is generated (PktError). Too long or too short packets are discarded and an error interrupt is
generated (PktError).
A correctly received packet is considered for synchronization, and an interrupt is generated (PktRx).
Note that the fully, partially or incorrectly received packet is accessible through register access.

130.3.4 Verification of Time-Codes to be received within tolerance

SpaceWire Time-Code reception can be enabled by means of register access.
The reception time offset is programmable by means of register access. The offset is always counted
from the all zero value corresponding to the time at which the Time-Code transmission started. The
programmable offset is 32 bit wide and corresponds to the ET bits with the lowest weight.
The window of tolerance is programmable by means of register access. Up to 31 least significant bits
can be ignored during Time-Code event comparison with the local ET counter. Note that the window
of tolerance is a binary coded window.
If a received Time-Code event is outside the window of tolerance an error interrupt is generated (Tol-
eranceError) and no further synchronization check are attempted for this specific Time-Code. The sta-
tus will indicate that the local ET is out of synchronization (InSync, FreeSync and FreePkt are
cleared).
The window of tolerance should not have a larger width than half the offset. Note that bits in the offset
can be masked and ignored by the window of tolerance and will then not be used in the comparison.
If no Time-Code is received within the window of tolerance, then the local ET is considered to still be
in synchronization (InSync set) but it is freewheeling on Time-Code level (FreeSync set).

130.3.5 Synchronization via Time-Codes

Synchronization by means of Time-Code reception can be enabled by means of register access, and
occurs on reception Time-Codes the window of tolerance as described above.
If the check passes, the status indicates that the local ET is in synchronization (InSync set) and an
interrupt is generated (Sync).
If the check fails, an error interrupt is generated (SyncError). The status indicates that the local ET is
out of synchronization (InSync, FreeSync and FreePkt are cleared).
If the received Time-Code time information was wrapping and no new CUCTP packet was previously
received, then the status indicates that the local ET is freewheeling on packet level (FreePkt set).
GRIP, Sep 2018, Version 2018.3 1661 www.cobham.com/gaisler

GRLIB IP Core

130.3.6 Synchronization via CUCTP packets

Synchronization by means of CUCTP packets can be enabled by means of register access, and occurs
on reception Time-Codes the window of tolerance as described above when the time information is
wrapping. Only correctly received and checked CUCTP packet are considered for synchronization,
which have bit 15 in the P-Field cleared (meaning synchronization).
If the check passes, the status indicates that the local ET is in synchronization (InSync set) and an
interrupt is generated (Wrap).
If the check fails, an error interrupt is generated (WrapError). The status indicates that the local ET is
out of synchronization (InSync, FreeSync and FreePkt are cleared).

130.3.7 Initialization via CUCTP packets

Initialization by means of CUCTP packets can be enabled by means of register access, and occurs on
reception Time-Codes the window of tolerance as described above when the time information is
wrapping. Only correctly received and checked CUCTP packet are considered for synchronization,
which have bit 15 in the P-Field set (meaning initialization).
No other checks are performed. The status indicates that the local ET is in synchronization (InSync
set) and an interrupt is generated (Init).

130.3.8 CCSDS Unsegmented Code Transfer Protocol (CUCTP) packet transmission support

CUCTP packet transmission is normally performed by a single master node in a system.
When a Time-Code has been transmitted with time information that is wrapping from 0x3F to 0x00,
an interrupt is generated (TickTxWrap) which can be used as a starting point for software controlled
generation and transmission of CUCTP packets. The next T-Field to be sent in the CUCTP packet can
be read out by means of register access.

130.4 Data formats

All Elapsed Time (ET) information is compliant with the CCSDS Unsegmented Code defined in
[CCSDS] and repeated hereafter.

130.4.1 Numbering and naming conventions

Convention according to the CCSDS recommendations, applying to time structures:
• The most significant bit of an array is located to the left, carrying index number zero.
• An octet comprises eight bits.

Convention according to AMBA specification:
• The least significant bit of an array is located to the right, carrying index number zero.
• Big-endian support.

Table 1967.CCSDS n-bit field definition

CCSDS n-bit field
most significant least significant
0 1 to n-2 n-1

Table 1968.AMBA n-bit field definition

AMBA n-bit field
most significant least significant
n-1 n-2 down to 1 0
GRIP, Sep 2018, Version 2018.3 1662 www.cobham.com/gaisler

GRLIB IP Core

130.4.2 Reference documents

[CCSDS] Time Code Formats, CCSDS 301.0-B-4, www.ccsds.org
[SPW] Space engineering: SpaceWire - Links, nodes, routers and networks, ECSS-E-ST-50-12C
[PID] Space engineering: SpaceWire protocol identification, ECSS-E-ST-50-51C
[RMAP] Space engineering: SpaceWire - Remote memory access protocol, ECSS-E-ST-50-52C

130.4.3 CCSDS Unsegmented Code: Preamble Field (P-Field)

The time code preamble field (P-Field) may be either explicitly or implicitly conveyed. If it is implic-
itly conveyed (not present with T-Field), the code is not self-identified, and identification must be
obtained by other means. As presently defined, the explicit representation of the P-Field is limited to
one octet whose format is described hereafter.

Note: Revision 0 of the core used bit 8 for Initialize/Synchronize selection. Bit 15 is used from Revi-
sion 1 and forward, since bit 8 has the meaning of an extension flag for a third octet.

130.4.4 CCSDS Unsegmented Code: Time Field (T-Field)

For the unsegmented binary time codes described herein, the T-Field consists of a selected number of
contiguous time elements, each element being one octet in length. An element represents the state of 8
consecutive bits of a binary counter, cascaded with the adjacent counters, which rolls over at a modulo
of 256.

The basic time unit is the second. The T-Field consists of 32 bits of coarse time (seconds) and 24 bits
of fine time (sub seconds). The coarse time code elements are a count of the number of seconds
elapsed from the epoch. The 32 bits of coarse time results in a maximum ambiguity period of approx-
imately 136 years. Arbitrary epochs may be accommodated as a Level 2 code. The 24 bits of fine code
elements result in a resolution of 2-24 second (about 60 nanoseconds). This code is not UTC-based
and leap second corrections do not apply according to CCSDS.

Table 1969.CCSDS Unsegmented Code P-Field definition

Bit Value Interpretation
0 “1” Extension flag, P-Field extended with 2nd octet
1 - 3 “001” 1958 January 1 epoch (Level 1) Time code identification

“010” Agency-defined epoch (Level 2)
4 - 5 “11” (number of octets of coarse time) - 1 Detail bits for information on the code
6 - 7 “11” (number of octets of fine time)
8 “0” Extension flag, P-Field not extended with 3rd octet
9-14 “000000” Don’t care Reserved for future use
15 “1”=Initialize,”0”=Synchronize Initialization

Table 1970.CCSDS Unsegmented Code T-Field definition

CCSDS Unsegmented Code
Preamble
Field

 Time Field
 Coarse time Fine time

- 231 224 223 216 215 28 27 20 2-1 2-8 2-9 2-15 2-16 2-24

0:15 0 31 32 55
GRIP, Sep 2018, Version 2018.3 1663 www.cobham.com/gaisler

GRLIB IP Core

130.5 Registers

The core is programmed through registers mapped into APB address space.

Table 1971.Registers

APB address offset Register
0x00 Configuration Register
0x04 Status Register
0x08 Control Register
0x10 Destination Logical Address and Mask Register
0x14 Protocol Identifier Register
0x18 Offset Register
0x20 T-Field Coarse Time Packet Register
0x24 T-Field Fine Time Packet Register
0x28 P-Field Packet and CRC Packet Register
0x30 Elapsed Time Coarse Register
0x34 Elapsed Time Fine Register
0x38 Next Elapsed Time Coarse Register
0x3C Next Elapsed Time Fine Register
0x60 Pending Interrupt Masked Status Register
0x64 Pending Interrupt Masked Register
0x68 Pending Interrupt Status Register
0x6C Pending Interrupt Register
0x70 Interrupt Mask Register
0x74 Pending Interrupt Clear Register
GRIP, Sep 2018, Version 2018.3 1664 www.cobham.com/gaisler

GRLIB IP Core

130.5.1

Table 1972.Various T-Field mappings

Various T-Field Mappings

130.5.2

Table 1973.Various T-Field mappings - example (Time-Codes at 64 Hz, CUCTP packets at 1 Hz)

Various T-Field Mappings - Example (Time-Codes at 64 Hz, CUCTP Packets at 1 Hz)

T-Field Coarse Time Registers (AMBA index numbering) T-Field Fine Time Registers (AMBA index numbering)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

Binary Weights (2**n)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24

Integer seconds Fractions of seconds
CCSDS T-Field Index (CCSDS index numbering)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
Time-Code Mapping (position of bit [0], with bits [5:1] positioned left-of)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Tolerance Mapping (index of left-most ignored bit)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Offset Mapping

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T-Field Coarse Time Registers (AMBA index numbering) T-Field Fine Time Registers (AMBA index numbering)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

Binary Weights (2**n)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24

Integer seconds Fractions of seconds
CCSDS T-Field Index (CCSDS index numbering)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
Time-Code Mapping (position of bit [0], with bits [5:1] positioned left-of)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MAPPING = 18 Time-Code: 5 4 3 2 1 0

Tolerance Mapping (index of left-most ignored bit)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

TOL = 8 Ignored bits: - - - - - - - -
Offset Mapping

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OFFSET = 0x00000000 Late match: 0 0 0 0 0 0 0 0 0 0 - - - - - - - -

Early match: 1 1 1 1 1 1 1 1 1 1 - - - - - - - -

OFFSET = 0x00000123 Late match: 0 0 0 0 0 0 0 0 0 1 - - - - - - - -
Early match: 0 0 0 0 0 0 0 0 0 0 - - - - - - - -
GRIP, Sep 2018, Version 2018.3 1665 www.cobham.com/gaisler

GRLIB IP Core

130.5.3

Table 1974.0x00 - CONF - Configuration Register

Configuration Register

31 28 27 26 25 24 23 21 20 16 15 13 12 8 7 6 4 3 2 1 0

SELOUT R SELIN R MAPPING R TOL R TID R CTF CP

0 0 0 0 * 0 * 0 0b001 0 0 0

rw r rw r rw r rw r rw r rw rw

31: 28 SELOUT Select output(s) for SpaceWire time-code transmission, index 3 downto 0.
27: 26 RESERVED
25: 24 SELIN Select input for SpaceWire time-code and packet reception, one of 0 through 3.
23: 21 RESERVED
20: 16 MAPPING Defines mapping of Time-Code time information versus T-Field:

T-Field definition [0 to 55], where 0 is MSB and 55 is LSB, 0 corresponds to
2**31 seconds, and 55 corresponds to 2**-24 seconds.
MAPPING= 0 corresponds to
Time-Code[5] mapped to T-Field[50] and Time-Code[0] mapped to T-Field[55],
MAPPING= 1 corresponds to
Time-Code[5] mapped to T-Field[49] and Time-Code[0] mapped to T-Field[54],
...
MAPPING=30 corresponds to
Time-Code[5] mapped to T-Field[20] and Time-Code[0] mapped to T-Field[25].
MAPPING=31 corresponds to
Time-Code[5] mapped to T-Field[19] and Time-Code[0] mapped to T-Field[24].

15: 13 RESERVED
12: 8 TOL Defines SpaceWire Time-Code reception tolerance:

T-Field definition [0 to 55], where 0 is MSB and 55 is LSB, 0 corresponds to
2**31 seconds, and 55 corresponds to 2**-24 seconds.
TOL= 0 corresponds to zero tolerance,
TOL= 1 corresponds to T-Field[55] being ignored,
TOL= 2 corresponds to T-Field[54:55] being ignored,
...
TOL=30 corresponds to T-Field[26:55] being ignored,
TOL=31 corresponds to T-Field[25:55] being ignored.

7 RESERVED
6: 4 TID Defines CUC P-Field Time Code Identification:

“001” 1958 January 1 epoch (Level 1)
“010” Agency-defined epoch (Level 2)

3: 2 RESERVED
1 CTF Check SpaceWire Time-Code control flags to be all zero when set.
0 CP Check CUC P-Field Time Code Identification to match TID field when set.

Power-up default: depends on configuration
GRIP, Sep 2018, Version 2018.3 1666 www.cobham.com/gaisler

GRLIB IP Core

130.5.4

Table 1975.0x04 - STAT - Status Register

Status Register

130.5.5

Table 1976.0x08 - CTRL - Control Register

Control Register

130.5.6

Table 1977.0x10 - DLA - Destination Logical Address and Mask Register

Destination Logical Address and Mask Register

31 11 10 9 8 7 6 5 0

RESERVED FREEPKT FREESYNC INSYNC TIMEFLAG TIMEINFO

0 0 0 0 0 0

r r r r r r

31: 11 RESERVED
10 FREEPKT Time freewheeling on packet level
9 FREESYNC Time freewheeling on time-code level
8 INSYNC Synchronous time reception of packets and time-codes
7: 6 TIMEFLAG Received SpaceWire Time-Code Control Flags
5: 0 TIMEINFO Received SpaceWire Time-Code Time Information

31 6 5 4 3 2 1 0

RESERVED PKTRXEN PKTINITEN PKTSYNCEN RXEN TXEN RESET

0 0 0 0 0 0 0

r rw rw rw rw rw rw

31: 6 RESERVED
5 PKTRXEN Enable SpaceWire CUC packet reception
4 PKTINITEN Enable SpaceWire CUC packet initialization
3 PKTSYNCEN Enable SpaceWire CUC packet synchronization
2 RXEN Enable SpaceWire Time-Code reception
1 TXEN Enable SpaceWire Time-Code transmission
0 RESET Reset core
Power-up default: 0x00000000

31 16 15 8 7 0

RESERVED MASK DLA

0 0 *

r rw rw

31: 16 RESERVED
15: 8 MASK Destination Logical Address Mask, ignore bit when set. Zero at reset.
7: 0 DLA Destination Logical Address
Power-up default: configuration dependent
GRIP, Sep 2018, Version 2018.3 1667 www.cobham.com/gaisler

GRLIB IP Core

130.5.7

Table 1978.0x14 - PIR - Protocol Identifier Register

Protocol Identifier Register

130.5.8

Table 1979.0x18 - OFFS - Offset Register

Offset Register

130.5.9

Table 1980.0x20 - TCTP - T-Field Coarse Time Packet Register

T-Field Coarse Time Packet Register

130.5.10

Table 1981.0x24 - TFTP - T-Field Fine Time Packet Register

T-Field Fine Time Packet Register

31 8 7 0

RESERVED PID

0 *

r rw

31: 8 RESERVED
7: 0 PID Protocol Identifier
Power-up default: configuration dependent

31 24 23 0

OFFSET

0

rw

27 20 2-1 2-24

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

31: 0 OFFSET Packet reception offset: 0 corresponds to LSB of T-Field.
Power-up default: 0x00000000

31 0

T-Field, Coarse Time

0

rw

231 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

31: 0 COARSE T-Field of received packet

31 8 7 0

T-Field, Fine Time RESERVED

0 0

rw r

2-1 2-24

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

31: 8 FINE T-Field of received packet
7: 0 RESERVED
GRIP, Sep 2018, Version 2018.3 1668 www.cobham.com/gaisler

GRLIB IP Core

130.5.11

Table 1982.0x28 - PPCP - P-Field Packet and CRC Packet Register

P-Field Packet and CRC Packet Register

130.5.12

Table 1983.0x30 - ECT - Elapsed Coarse Time Register

Elapsed Coarse Time Register

130.5.13

Table 1984.0x34 - EFT - Elapsed Fine Time Register

Elapsed Fine Time Register

130.5.14

Table 1985.0x38 - NECT - Next Elapsed Coarse Time Packet Register

Next Elapsed Coarse Time Packet Register

31 30 29 28 24 23 16 15 0

NEW INIT FORCE R CRC P-Field

0 0 0 0 0 0

rw rw rw r rw rw

b7 b6 b5 b4 b3 b2 b1 b0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

31 NEW New packet received
30 INIT Initialization bit set in received packet
29 FORCE Force packet initialization at once, one shot (mostly for debug)
28: 24 RESERVED
23: 16 CRC CRC of received packet
15: 0 P-Field P-Field of received packet

31 0

T-Field, Coarse Time

*

r

231 20

31: 0 COARSE T-Field of current time (latches Fine Time when read)

31 8 7 0

T-Field, Fine Time RESERVED

0 0

r r

2-1 2-24

31: 8 FINE T-Field of current time
7: 0 RESERVED

31 0

T-Field, Coarse Time

*

r

231 20

31: 0 COARSE T-Field of next packet to be sent
GRIP, Sep 2018, Version 2018.3 1669 www.cobham.com/gaisler

GRLIB IP Core

130.5.15

Table 1986.0x3C - NEFT - Next Elapsed Fine Time Packet Register

Next Elapsed Fine Time Packet Register

130.5.16

Interrupt registers
The interrupt registers give complete freedom to the software, by providing means to mask interrupts,
clear interrupts, force interrupts and read interrupt status.
When an interrupt occurs the corresponding bit in the Pending Interrupt Register is set. The normal
sequence to initialize and handle a module interrupt is:
• Set up the software interrupt-handler to accept an interrupt from the module.
• Read the Pending Interrupt Register to clear any spurious interrupts.
• Initialize the Interrupt Mask Register, unmasking each bit that should generate the interrupt.
• When an interrupt occurs, read the Pending Interrupt Status Register in the software interrupt-

handler to determine the causes of the interrupt.
• Handle the interrupt, taking into account all causes of the interrupt.
• Clear the handled interrupt using Pending Interrupt Clear Register.
Masking interrupts: After reset, all interrupt bits are masked, since the Interrupt Mask Register is zero.
To enable generation of a module interrupt for an interrupt bit, set the corresponding bit in the Inter-
rupt Mask Register.
Clearing interrupts: All bits of the Pending Interrupt Register are cleared when it is read or when the
Pending Interrupt Masked Register is read. Reading the Pending Interrupt Masked Register yields the
contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask Register.
Selected bits can be cleared by writing ones to the bits that shall be cleared to the Pending Interrupt
Clear Register.
Forcing interrupts: When the Pending Interrupt Register is written, the resulting value is the original
contents of the register logically OR-ed with the write data. This means that writing the register can
force (set) an interrupt bit, but never clear it.
Reading interrupt status: Reading the Pending Interrupt Status Register yields the same data as a read
of the Pending Interrupt Register, but without clearing the contents.
Reading interrupt status of unmasked bits: Reading the Pending Interrupt Masked Status Register
yields the contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask
Register, but without clearing the contents.

31 8 7 0

T-Field, Fine Time RESERVED

* 0

r r

2-1 2-24

31: 8 FINE T-Field of next packet to be sent
7: 0 RESERVED
GRIP, Sep 2018, Version 2018.3 1670 www.cobham.com/gaisler

GRLIB IP Core

The interrupt registers comprise the following:

*See table 1987.

130.6 Vendor and device identifiers

The module has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x089. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

130.7 Implementation

130.7.1 Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

Table 1987.Interrupt registers

Description Name Mode
Pending Interrupt Masked Status Register SPWCUCPIMSR r

Pending Interrupt Masked Register SPWCUCPIMR r

Pending Interrupt Status Register SPWCUCPISR r

Pending Interrupt Register SPWCUCPIR w

Interrupt Mask Register SPWCUCIMR w

Pending Interrupt Clear Register SPWCUCPICR w

Table 1988.Interrupt registers template
31 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- TickTX TickTx
Wrap

TickRx TickRx
Wrap

TickRx
Error

Toler-
ance
Error

Sync Sync
Error

Wrap Wrap
Error

Pkt
Rx

Pkt
Error

Pkt
Init

0 0 0 0 0 0 0 0 0 0 0 0 0

* * * * * * * * * * * * *

31: 13 RESERVED
12 TickTx Time-code transmission, incrementing time information*
11 TickTxWrap Time-code transmission, wrapping time information*
10 TickRx Time-code reception, incrementing time information*
9 TickRxWrap Time-code reception, wrapping time information*
8 TickRxError Error in received time-code time information*
7 ToleranceError Time-code reception timing outside tolerance with respect to local Elapsed

Time*
6 Sync Time-information synchronized correctly with respect to local Elapsed Time*
5 SyncError Error in time-information synchronization with respect to local Elapsed Time*
4 Wrap Packet synchronized correctly with respect to local Elapsed Time*
3 WrapError Error in packet synchronization with respect to local Elapsed Time*
2 PktRx Packet received correctly*
1 PktError Error in received packet (e.g. CRC, P-Field, EEP, etc.)*
0 PktInit Initialization of local Elapsed Time through received packet or forced access*

All bits in all interrupt registers are reset to 0b after reset
GRIP, Sep 2018, Version 2018.3 1671 www.cobham.com/gaisler

GRLIB IP Core

130.8 Configuration options

Table 1989 shows the configuration options of the core (VHDL generics).

130.9 Signal descriptions

Table 1990 shows the interface signals of the core (VHDL ports).

130.10 Signal definitions and reset values

The core has no external signals.

130.11 Timing

The core has no external timing.

Table 1989.Configuration options

Generic name Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0
paddr Addr field of the APB bar. 0 - 16#FFF# 0
pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#
pirq Interrupt line used by the core. 0 - NAHBIRQ-1 0
dlareset Destination Logical Address reset value 0-255 254
pidreset Protocol Identifier reset value 0-255 254
mapreset Index of least significant bit for mapping in SpaceWire

Time-Code Time information. LSB is marked as 0.
0-31 18

tolreset Number of least significant bits that tolerate errors. LSB
is marked as 1, whereas 0 allows no tolerance.

0-31 8

Table 1990.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
CUCI TickInDone Input SpaceWire Time-Code input processed High

TickOutRaw SpaceWire Time-Code output event High
TimeOut[7:0] SpaceWire Time-Code output -
RxDAv SpaceWire character event High
RxDataOut[8:0] SpaceWire character -
ElapsedTime[0:55] Elapsed Time
ElapsedNext[0:55] Next Elapsed Time
ElapsedEvent Elapsed Time counter event High
ElapsedSync Elapsed Time counter synchronization event High

CUCO TickInRaw Output SpaceWire Time-Code input request High
TimeIn[7:0] SpaceWire Time-Code input -
ExternalTime[0:55] External Elapsed Time input -
ExternalSync External Elapsed Time input synchronization High

* see GRLIB IP Library User’s Manual
GRIP, Sep 2018, Version 2018.3 1672 www.cobham.com/gaisler

GRLIB IP Core

130.12 Library dependencies

Table 1991 shows the libraries used when instantiating the core (VHDL libraries).

Table 1991.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
TMTC SPACEWIRECUC Signals, component Component declarations, signals.
GRIP, Sep 2018, Version 2018.3 1673 www.cobham.com/gaisler

GRLIB IP Core

131 GRPW - PacketWire Interface

The PacketWire to AMBA AHB Interface (GRPW) comprises a bi-directional PacketWire link and an
AMBA AHB master interface. The purpose of the interface is to allow read and write accesses on an
AMBA AHB bus to be initiated from the PacketWire interface. The protocol allows single or multiple
reads per command, each command specifying a read or write access, the number of word transfers
and the starting address. For a write access, word oriented data is transmitted to the interface, and for
read accesses word oriented data is received from the interface.

Figure 326. Block diagram

In a typical application, the PacketWire interface would be used as a remote control interface of a Sys-
tem-On-a-Chip device based around the AMBA AHB bus. An example could be a Packet Telemetry
and Telecommand device which can be controlled remotely from a processor board via a PacketWire
link. The link would provide both the capability to read and write registers, and to make block trans-
fers to and from the target device and its memories.
This interface is based on the de facto standard PacketWire interface used by the European Space
Agency (ESA). At the time of writing there were no relevant documents available from the European
Cooperation for Space Standardization (ECSS).

131.1 Operation

131.1.1 Protocol

The communication protocol is based on the protocol used in the LEON processor. Commands are
sent to the interface as messages over the bi-directional PacketWire interface. The protocol allows
read and write accesses, as shown in table 1992. For each command, the number of 32-bit words to be
transferred are specified, ranging from 1 to 64 words. For each command access, a 32-bit starting byte
address is specified.
All transfers are assumed to be word aligned, effectively ignoring the two least significant bits of the
address, assuming them to be both zero. There are no restrictions on the address, allowing a wrap
around at the end of the address space during a transfer. The start address can thus be set to any posi-
tion in the address space. The address is automatically incremented by 4 after each word access during

AMBA AHB
Bi-Directional

GRPW

RxPW

TxPW

Protocol
AMBA
AHB

Master Master Interface
PacketWire

Interface
GRIP, Sep 2018, Version 2018.3 1674 www.cobham.com/gaisler

GRLIB IP Core

a transfer. The address and data bit numbering in table 1992 correspond to the AMBA AHB bit num-
bering conventions.

131.1.2 Bi-directional PacketWire interface

The bi-directional PacketWire interface comprises two PacketWire links, one in each direction, the
PacketWire input link and the PacketWire output link. Each link comprises three ports for transmit-
ting the message delimiter, the bit clock and the serial bit data. Each link also comprises an additional
port for busy signalling, indicating when the receiver is ready to receive the next octet.
The interface accepts and generates the waveform format shown in figure 327.

Figure 327. Synchronous bit serial waveform

The PacketWire protocol follows the CCSDS transmission convention, the most significant bit being
sent first, both for octet transfers (control), and for word transfer (address or data). Transmitted data
should consist of multiples of eight bits otherwise the last bits will be lost. The input message delim-
iter port is used to delimit messages (commands). It should be asserted while a message is being input,
and deasserted in between. In addition, the message delimiter port should define the octet boundaries
in the data stream, the first octet explicitly and the following octets each subsequent eight bit clock
cycles.
The maximum receiving input baud rate is defined as twice the frequency of the system clock input
(fHCLK). The maximum receiving throughput is limited by the AMBA AHB system into which this
core is integrated. There is no lower limit for the input baud rate in the receiver. Note however that
there are constraints on the input baud rate related to the automatic baud rate detection, as described
hereafter.
The output baud rate is automatically adjusted to the incoming baud rate, provided that the incoming
baud rate is less than half the frequency of the system clock input (fHCLK). The lower limit for the
input baud rate detection is fHCLK/512. If the input baud rate is less than this limit, the output baud
rate will equal fHCLK/512. The input baud rate is determined by measuring the width of the logical
one phase of the input bit clock.

Table 1992.Protocol on PacketWire side

Control Address Data

first word second word ... last word

Cmd Write

Octet 0 1 2 3 4 5 6 7 8 9 10 11 12 ... n-4 n-3 n-2 n-1

Send 11b Length-1 31:24 23:16 15:8 7:0 31:24 23:16 15:8 7:0 31:24 23:16 15:8 7:0 ... 31:24 23:16 15:8 7:0

Byte 0 1 2 3 4 5 6 7 ... n-4 n-3 n-2 n-1

Receive

Cmd Read

Octet 0 1 2 3 4 5 6 7 8 9 10 11 12 ... n-4 n-3 n-2 n-1

Send 10b Length-1 31:24 23:16 15:8 7:0

Byte 0 1 2 3 4 5 6 7 ... n-4 n-3 n-2 n-1

Receive 31:24 23:16 15:8 7:0 31:24 23:16 15:8 7:0 ... 31:24 23:16 15:8 7:0

Delimiter

Clock

Data 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 70 1 2 376
GRIP, Sep 2018, Version 2018.3 1675 www.cobham.com/gaisler

GRLIB IP Core

The handshaking between the PacketWire links and the interface is implemented with busy ports, one
in each direction. When a message is sent, the busy signal on the PacketWire input link will be
asserted as soon as the first data bit is detected, it will then be deasserted as soon as the interface is
ready to receive the next octet. This gives the transmitter ample time to stop transmitting after the
completion of the first octet and wait for the busy signal deassertion before starting the transmission
of the next octet. The handshaking is continued through out the message. At the end of message, the
busy signal will be asserted until the completion of the message. For a write command, the busy sig-
nal will be deasserted after the completion of the AMBA AHB write access of the last word. For a
read command, the busy signal will be deasserted after the completion of the AMBA AHB read
access of the last word and its transmission on the PacketWire output link. It is therefore not possible
for the external transmitter to send a new command until the previous has been completed.
Illegal commands are prevented from being executed. An illegal command is defined as a control
octet for which the two most significant bits are neither 11b nor 10b. No accesses to the AMBA AHB
bus will be performed and no response will be generated on the PacketWire link for a read command.
A new command will be accepted as soon as the input message delimiter has been deasserted and a
new command is transmitted.
A command can be aborted by prematurely deasserting the message delimiter on the PacketWire input
link. This can be done at any point of the message, e.g. during the control octet, during the address or
during the data transfer for write accesses. An aborted message will immediately terminate the access
on the AMBA AHB bus. Note that it is not possible to predict whether or not the last word write
access to the AMBA AHB bus has been completed or not in the case the message is aborted.
It is not possible to determine whether or not an access has been successfully completed on the
AMBA AHB bus. For read accesses, a data response will be generated on the PacketWire output link
independently of whether the AMBA AHB access was terminated with an OKAY or ERROR.
In the case an AMBA AHB access is not terminated because of indefinite RETRY or SPLIT responses,
the command will not be completed and the busy port on the PacketWire input link will not be deas-
serted. This locked state can be observed by monitoring the response on the PacketWire input link, for
which the busy signal will not be deasserted. For read accesses, this locked state can also determine if
no data is received on the PacketWire output link. To overcome this locked stated, the message delim-
iter should be firstly deasserted on the PacketWire input linked. The message delimiter should then be
asserted and a new control octet should then be transmitted, even though the busy port is asserted on
the PacketWire input link. This action will abort any AMBA AHB accesses and restore the state of the
interface. The newly started message should then be completed using the handshake method previ-
ously described. Note that it is not possible to determine at what time instant the abort will occur, pos-
sibly ruining the on going access. This is however acceptable considering being a recovery from a
locked state.

131.1.3 AMBA AHB master interface

The AMBA AHB master interface has been reduced in functionality to support only what is required
for the core. The following AMBA AHB features are constrained:
• only generates HSIZE = HSIZE_WORD

• only generates HLOCK = 0b

• only generates HPROT = 0000b

• only generates HBURST = HBURST_SINGLE

• never generates HTRANS = HTRANS_BUSY

• both HRESP = HRESP_OKAY and HRESP = HRESP_ERROR are treated as a successfully
completed access

• both HRESP = HRESP_RETRY and HRESP = HRESP_SPLIT will result in a rescheduling the
previous access until terminated with HRESP_OKAY or HRESP_ERROR
GRIP, Sep 2018, Version 2018.3 1676 www.cobham.com/gaisler

GRLIB IP Core

• only big-endianness is supported
The interface can act as a default AHB master generating idle accesses when required. It only imple-
ments a single word access at a time, without bursts, to reduce complexity for retry and split handling,
and not requiring the 1024 byte boundary imposed by the AMBA specification on burst transfers to be
taken into account.

131.1.4 Advanced Microcontroller Bus Architecture

Convention according to the Advanced Microcontroller Bus Architecture (AMBA) Specification,
applying to the AHB and APB interfaces:
• Signal and port names are in upper case, except for the following:
• A lower case 'n' in the name indicates that the signal or port is active low.
• Constant names are in upper case.
• The least significant bit of an array is located to the right, carrying index number zero.

131.1.5 Consultative Committee for Space Data Systems

Convention according to the Consultative Committee for Space Data Systems (CCSDS) recommen-
dations, applying to all relevant structures:
• The most significant bit of an array is located to the left, carrying index number zero, and is trans-

mitted first.
• An octet comprises eight bits.
General convention, applying to signals, ports and interfaces:
• Signal or port names are in mixed case.
• An upper case '_N' suffix in the name indicates that the signal or port is active low.

131.2 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x032. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

131.3 Configuration options

Table 1995 shows the configuration options of the core (VHDL generics).

Table 1993.AMBA n-bit field definition

AMBA n-bit field
most significant least significant
n-1 n-2 down to 1 0

Table 1994.CCSDS n-bit field definition

CCSDS n-bit field
most significant least significant
0 1 to n-2 n-1

Table 1995.Configuration options

Generic name Function Allowed range Default
hindex AHB master index 0 - NAHBMST-1 0
syncreset Synchronous reset when set, else asynchronous 0 - 1 0
GRIP, Sep 2018, Version 2018.3 1677 www.cobham.com/gaisler

GRLIB IP Core

131.4 Signal descriptions

Table 1996 shows the interface signals of the core (VHDL ports).

Table 1996.Signal descriptions

Signal name Field Type Function Comment Active
HRESETn N/A Input Reset Low
HCLK N/A Input Clock -
PWI VALID Input Delimiter This input port is the message

delimiter for the input interface. It
should be deasserted between mes-
sages

High

CLOCK Bit clock This input port is the PacketWire
bit clock. The receiver registers are
clocked on the rising PWI.Clk
edge.

Rising

DATA Data This input port is the serial data
input for the interface. Data are
sampled on the rising PWI.Clk
edge when PWI.Valid is asserted.

-

BUSY_N Not ready
for octet

This input port indicates whether
the receiver is ready to receive one
octet. The input is considered as
asynchronous.

Low

PWO VALID Output Delimiter This output port is the packet
delimiter for the output interface. It
is deasserted between packets. The
output is clocked out on the rising
HCLK edge.

High

CLOCK Bit clock This output port is the PackeWire
output bit clock. The output is
clocked out on the rising HCLK
edge.

Rising

DATA Data This output port is the serial data
output for the interface. The output
is clocked out on the rising HCLK
edge.

-

BUSY_N Not ready
for octet

This port indicates whether the
receiver is ready to receive one
octet. The output is clocked out on
the rising HCLK edge.

Low

AHBI * Input AMB master input signals -
AHBO * Output AHB master output signals -
* see GRLIB IP Library User’s Manual
GRIP, Sep 2018, Version 2018.3 1678 www.cobham.com/gaisler

GRLIB IP Core

131.5 Signal definitions and reset values

The signals and their reset values are described in table 1997.

131.6 Timing

The timing waveforms and timing parameters are shown in figure 328 and are defined in table 1998.

Note: The pwi_busy_n input is re-synchronized inside the core. The signal does not have to meet any
setup or hold requirements.

Table 1997.Signal definitions and reset values

Signal name Type Function Active Reset value
pwi_valid Input Delimiter High -
pwi_clock Input Bit clock Rising -
pwi_data Input Data - -
pwo_busy_n Output Not ready for octet Low Logical 0
pwo_valid Output Delimiter High Logical 0
pwo_clock Output Bit clock Rising Logical 0
pwo_data Output Data - Logical 0
pwi_busy_n Input Not ready for octet Low -

Table 1998.Timing parameters

Name Parameter Reference edge Min Max Unit
tGRPW0 clock to output delay rising clk edge TBD TBD ns

tGRPW1 input to clock hold rising pwi_clock
edge

TBD - ns

tGRPW2 input to clock setup rising pwi_clock
edge

TBD - ns

tGRPW3 pwi_valid to pwi_clock edge rising pwi_clock
edge

TBD - ns

tGRPW3 pwi_valid de-asserted period - TBD*tCL
K

periods

Figure 328. Timing waveforms

tGRPW0outputs

clk

tGRPW0

pwi_clock
tGRPW1

pwi_data
tGRPW2
GRIP, Sep 2018, Version 2018.3 1679 www.cobham.com/gaisler

GRLIB IP Core

131.7 Library dependencies

Table 1999 shows the libraries used when instantiating the core (VHDL libraries).

131.8 Instantiation

The core is an almost fully synchronous design based on a single system clock strategy. The asynchro-
nous part is related to the PacketWire (PW) input interface, for which the receiving shift register is
implemented as a separate clock domain. All signals going between clock domains are clocked twice
before being used to reduce the risk for metastability.
All registers in the core are reset asynchronously. The reset input can be asserted asynchronously, but
requires synchronous deassertion to avoid any recovery time violations.
The PWI.Valid input should be deasserted for at least 4 HCLK clock periods between messages. The
PWI.Data input is clocked into a receiving shift register on the rising PWI.Clk edge. The PWI.Clk
input should have a 50% duty cycle.
The PWI.Busy_N should be asserted as soon as possible by the receiver, allowing the transmitter to
halt the transmission between octets. The input is synchronised using two registers clocked on the ris-
ing HCLK edge.
This example shows how the core can be instantiated.

library IEEE;
use IEEE.Std_Logic_1164.all;
library GRLIB;
use GRLIB.AMBA.all;
library TMTC;
use TMTC.TMTC_Types.all;
..
 component GRPW is
 generic(
 hindex: in Integer := 0);
 port(
 -- AMBA AHB System Signals
 HCLK: in Std_ULogic; -- system clock
 HRESETn: in Std_ULogic; -- synchronised reset
 -- AMBA AHB Master Interface
 AHBOut: out AHB_Mst_Out_Type;
 AHBIn: in AHB_Mst_In_Type;
 -- PacketWire interface
 PWI: in GRPW_In_Type;
 PWO: out GRPW_Out_Type);
 end component GRPW;

Table 1999.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
TMTC TMTC_Types Signals, component Component declaration
GRIP, Sep 2018, Version 2018.3 1680 www.cobham.com/gaisler

GRLIB IP Core

132 GRPWRX - PacketWire Receiver

132.1 Overview

The PacketWire Receiver implements a receiver function with Direct Memory Access (DMA) supp-
port. Packets (or blocks of data, normally CCSDS Space Packets) are automatically stored to memory,
for which the user configures a descriptor table with descriptors that point to each individual packet or
one or more packets stored in a fixed length fields (framing mode).
The core provides the following external and internal interfaces:
• Packet Wire interface (serial bit data, bit clock, packet delimiter, abort, ready, busy)
• AMBA AHB master interface, with sideband signals as per [GRLIB]
• AMBA APB slave interface, with sideband signals as per [GRLIB]
The operation of the receiver is highly programmable by means of control registers.

132.2 PacketWire interface

A PacketWire link comprises four ports for transmitting the message delimiter, the bit clock, the serial
bit data and an abort signal. A link also comprises additional ports for busy signalling, indicating
when the receiver is ready to receive the next octet, and for ready signalling, indicating that the
receiver is ready to receive a complete packet. The waveform format shown in figure 330.

Figure 330. Synchronous bit serial waveform

The PacketWire protocol follows the CCSDS transmission convention, the most significant bit being
sent first, both for octet transfers (control), and for word transfer (address or data). Transmitted data

Figure 329. Block diagram

GRPWRX

DMA

AMBA
APB
Slave

PacketWire
FIFO

AMBA
AHB

Master

PacketWire input

A
M

B
A

 A
H

B

A
M

B
A

 A
P

B

CRC

FHP

Delimiter

Clock

Data 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 70 1 2 376
GRIP, Sep 2018, Version 2018.3 1681 www.cobham.com/gaisler

GRLIB IP Core

should consist of multiples of eight bits otherwise the last bits will be lost. The message delimiter port
is used to delimit messages (commands). It should be asserted while a message is being input, and
deasserted in between. In addition, the message delimiter should define the octet boundaries in the
data stream, the first octet explicitly and the following octets each subsequent eight bit clock cycles.
The delimiter should be de-asserted for at least eight bit periods between messages.
The handshaking between the PacketWire link and the interface is implemented with a busy port.
When a message is sent, the busy signal on the PacketWire link will be asserted as soon as the first
data bit is detected, it will then be deasserted as soon as the interface is ready to receive the next octet.
This gives the transmitter ample time to stop transmitting after the completion of the first octet and
wait for the busy signal deassertion before starting the transmission of the next octet. The handshak-
ing is continued through out the message. At the end of message, the busy signal will be asserted until
the completion of the message.

132.3 Operation

132.3.1 Introduction

The DMA interface provides a means for the user to receive blocks of data of arbitrary length (maxi-
mum 65535 bytes), normally these are packet structures such as CCSDS Space Packets. It also sup-
ports reception of one or more blocks of data into a fixed length field such as a CCSDS Telemetry
Transfer Frame Data Field (framing mode).

132.3.2 Descriptor setup

The DMA interface is used for receiving data. The reception is done using descriptors located in
memory. A single descriptor is shown in tables 2000 through 2001. The address field of the descriptor
should point to the start of where the received data is to be stored. The address need not be word-
aligned. If the interrupt enable (IE) bit is set, an interrupt will be generated when the transfer has com-
pleted (this requires that the interrupt enable bit in the control register is also set). The interrupt will be
generated regardless of whether the transfer was successful or not. The wrap (WR) bit is also a control
bit that should be set before reception and it will be explained later in this section.

Table 2000.GRPWRX descriptor word 0 (address offset 0x0)
31 16 15 9 8 7 6 4 3 2 1 0

LEN RESERVED CERR OV RESERVED FHP WR IE EN

31: 16 (LEN) - Length in bytes (note that length is limited to 2048 bytes for framing mode)
In packet mode, the LEN field is written by the hardware after the reception.
In framing mode, the LEN field is written by the software before reception.

15: 9 RESERVED
8: Cyclic Redundancy Code Error (CERR) - (read only) Set to one when a CRC error was detected in a

packet (speculative, only useful if CRC is present in received packet)
7: Overrun (OV) - (read only) Overrun detected during transmission.
6: 3 RESERVED
3: First Header Pointer (FHP) - First Header Pointer to be stored (2 bytes)
2: Wrap (WR) - Set to one to make the descriptor pointer wrap to zero after this descriptor has been

used. If this bit is not set the pointer will increment by 16. The pointer automatically wraps to zero
when the 16 kB boundary of the descriptor table is reached.

1: Interrupt Enable (IE) - an interrupt will be generated when data for this descriptor has been
received provided that the receive interrupt enable bit in the control register is set. The interrupt
is generated regardless if the data was transferred successfully or if it terminated with an error.

0: Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor
fields.
GRIP, Sep 2018, Version 2018.3 1682 www.cobham.com/gaisler

GRLIB IP Core
To enable a descriptor the enable (EN) bit should be set and after this is done, the descriptor should
not be touched until the enable bit has been cleared by the core.

132.3.3 Packet mode

In packet mode, each descriptor corresponds to one received packet. The maximum length of a packet
can be 65535 bytes. There is no check for too long packets. Reception of any too long packet will
result in indeterministic behavior. The length of the received packet is automatically written into
descriptor word 0.

132.3.4 Framing mode

In framing mode, each pair of descriptors correspond to one fixed length field as the CCSDS Teleme-
try Transfer Frame Data Field. The first descriptor defines the length (fixed for a field) and position in
memory where the data is to be stored. The second descriptor in a pair defines the fixed length (2
bytes) and position of the memory where the First Header Pointer (FHP) calculated for the data
received in a field belonging to the previous descriptor is to be stored. The First Header Pointer is cal-
culated according to CCSDS: if the first packet starts at the beginning of the field then it is all zeros, if
no packet starts in the field then it is all ones, any other location of the start of the first packet in a field
is its count from the start of the field minus one. The First Header Pointer write-back is enabled by
setting the FHP bit in the descriptor word 0. Normally the start location of First Header Pointer is two
bytes in front of the field when CCSDS Telemetry Transfer Frames are used.

132.3.5 Starting transmission

Enabling a descriptor is not enough to start transmission. A pointer to the memory area holding the
descriptors must first be set in the core. This is done in the descriptor pointer register. The address
must be aligned to a 16 kByte boundary. Bits 31 to 14 hold the base address of descriptor area while
bits 13 to 4 form a pointer to an individual descriptor. The first descriptor should be located at the base
address and when it has been used by the core, the pointer field is incremented by 16 to point at the
next descriptor. The pointer will automatically wrap back to zero when the next 16 kByte boundary
has been reached. The WR bit in the descriptors can be set to make the pointer wrap back to zero
before the 16 kByte boundary.
The pointer field has also been made writable for maximum flexibility but care should be taken when
writing to the descriptor pointer register. It should never be touched when reception is active.
The final step to activate the reception is to set the enable bit in the DMA control register. This tells
the core that there are more active descriptors in the descriptor table. This bit should always be set
when new descriptors are enabled, even if transmission is already active. The descriptors must always
be enabled before the transmission enable bit is set.

132.3.6 Descriptor handling after transmission

When the reception of a packet (or field in framing mode) has finished, status is written to the first
word in the corresponding descriptor, while the second word is left untouched. The other bits in the
first descriptor word are set to zero after reception. The enable bit should be used as the indicator
when a descriptor can be used again, which is when it has been cleared by the core.
If the Cyclic Redundancy Code (CRC) bit is set, a CRC calculated over all but the two last octets, will
be checked and the results stored in the descriptor. The CRC is defined in CCSDS 132.0-B-1. This is
not supported in framing mode.

Table 2001.GRPWRX descriptor word 1 (address offset 0x4)
31 0

ADDRESS

31: 0 Address (ADDRESS) - Pointer to the buffer area to where data will be stored.
GRIP, Sep 2018, Version 2018.3 1683 www.cobham.com/gaisler

GRLIB IP Core

There are multiple bits in the DMA status register that hold status information.
The Receiver Interrupt (RI) bit is set each time a DMA reception ended successfully. The Receiver
Error (RE) bit is set each time an DMA reception ended with an error. For either event, an interrupt is
generated for transfers for which the Interrupt Enable (IE) was set in the descriptor. The interrupt is
maskable with the Interrupt Enable (IE) bit in the control register.
The Receiver AMBA error (RA) bit is set when an AMBA AHB error was encountered either when
reading a descriptor or when writing data. Any active reception was aborted and the DMA channel
was disabled. It is recommended that the receiver is reset after an AMBA AHB error. The interrupt is
maskable with the Interrupt Enable (IE) bit in the control register.

132.4 Registers

The core is programmed through registers mapped into APB address space.

Table 2002.GRPWRX registers

APB address offset Register
0x00 GRPWRX DMA Control register
0x04 GRPWRX DMA Status register
0x08 GRPWRX DMA Descriptor Pointer register
0x80 GRPWRX Control register
0x84 GRPWRX Status register
0x88 GRPWRX Configuration register
0x8C GRPWRX Physical Layer register
GRIP, Sep 2018, Version 2018.3 1684 www.cobham.com/gaisler

GRLIB IP Core

132.4.1

Table 2003.0x00 - DCR - DMA control register

DMA Control Register

132.4.2

Table 2004.0x04 - DSR - DMA status register

DMA Status Register

132.4.3

Table 2005. 0x08 - DDP - DMA descriptor pointer register

DMA Descriptor Pointer Register

132.4.4

Table 2006. 0x80 - CTRL - control register

Control Register

31 2 1 0

RESERVED IE EN

0 0 0

r rw rw

31: 2 RESERVED
1: Interrupt Enable (IE) - enable interrupts RA, RI, and RE
0: Enable (EN) - enable DMA transfers

31 4 3 2 1 0

RESERVED ACTIVE RA RI RE

0 NR 0 0 0

r r wc wc wc

31: 4 RESERVED
3: Active (ACTIVE) - DMA access ongoing
2: Receiver AMBA Error (RA) - DMA AMBA AHB error, cleared by writing a logical 1
1: Receiver Interrupt (RI) - DMA interrupt, cleared by writing a logical 1
0: Receiver Error (RE) - DMA receiver error, cleared by writing a logical 1

31 14 13 4 3 0

BASE INDEX RESERVED

NR NR 0

rw rw r

31: 14 Descriptor base (BASE) - base address of descriptor table
13: 4 Descriptor index (INDEX) - index of active descriptor in descriptor table
3: 0 Reserved - fixed to “0000”

31 3 2 1 0

RESERVED RST RES RxEN

0 0 1 0

r r r r

31: 3 RESERVED
2: Reset (RST) - resets complete core
1: RESERVED
0: Receiver Enable (RxEN) - enables receiver (should be done after the complete configuration of the

receiver)
GRIP, Sep 2018, Version 2018.3 1685 www.cobham.com/gaisler

GRLIB IP Core

132.4.5

Table 2007. 0x84 - STAT - Status register

Status Register

132.4.6

Table 2008. 0x88 - CONF - configuration register

Configuration Register

132.4.7

Table 2009. 0x8C - PLR - physical layer register

Physical Layer Register

132.5 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x08E. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

31 3 2 1 0

RESERVED VALID BUSY READY

0 0 1 0

r r r r

31: 3 RESERVED
2: Packet valid delimiter (VALID) - External valid signal
1: Busy with octet (BUSY) - External busy signal
0: Ready for packet (READY) - External ready signal

31 24 23 8 7 1 0

REVISION FIFOSIZE RESERVED MODE

* * 0 0

r r r rw

31: 24 (REVISION) - Revision number (read-only)
23: 8 (FIFOSIZE) - FIFO size in bytes (read-only)
23: 1 RESERVED
0: (MODE) - Enable framing mode when set, else packet mode when cleared

31 20 19 8 7 6 5 4 3 0

HALFBAUD RESERVED BUSY
POS

READY
POS

VALID
POS

CLK
RISE

RESERVED

0 0 0 1 1 1 0

r r rw rw rw rw r

31: 20 (HALFBAUD) - Received clock rate division factor with respect to the system clock - 1. Corre-
sponds to the high phase of the incoming PacketWire bit clock. (read only)

19: 8 RESERVED
7: (BUSYPOS) - Positive polarity of busy input signal
6: (READYPOS) - Positive polarity of ready input signal
5: (VALIDPOS) - Positive polarity of valid output signal
4: (CLKRISE) - Rising clock edge in the middle of the serial data bit
3: 0 RESERVED
GRIP, Sep 2018, Version 2018.3 1686 www.cobham.com/gaisler

GRLIB IP Core

132.6 Configuration options

Table 2010 shows the configuration options of the core (VHDL generics).

Table 2010.Configuration options

Generic name Function Allowed range Default
hindex AHB master index 0 - NAHBMST-1 0
pindex APB slave index 0 - NAPBSLV-1 0
paddr ADDR field of the APB BAR 0 - 16#FFF# 0
pmask MASK field of the APB BAR 0 - 16#FFF# 16#FFF#
pirq Interrupt line used by core 0 - NAHBIRQ-1 0
memtech Memory technology 0 to NTECH 0
clktech Clock buffer technology 0 to NTECH 0
buftype Clock buffer type TBD 0
burstlength Sets the AHB burst length used by the core - 16
GRIP, Sep 2018, Version 2018.3 1687 www.cobham.com/gaisler

GRLIB IP Core

132.7 Signal descriptions

Table 2011 shows the interface signals of the core (VHDL ports).

132.8 Signal definitions and reset values

The signals and their reset values are described in table 2012.

Table 2011.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
AHBI * Input AMB master input signals -
AHBO * Output AHB master output signals -
PWO BUSY_N Output Not ready for octet Port indicates whether the

receiver is ready to receive
one octet. The port is con-
sidered asynchronous.

Programma-
ble

READY Ready for packet Port indicates whether the
receiver is ready to receive
one packet. The port is
considered asynchronous.

Programma-
ble

PWI VALID Input Delimiter Port is the packet delimiter
for the output interface. It
is deasserted between
packets. The output is
clocked out on the rising
CLK edge.

Programma-
ble

CLK Bit clock Port is the PacketWire out-
put bit clock. The output is
clocked out on the rising
CLK edge.

Programma-
ble

DATA Data Port is the serial data out-
put for the interface. The
output is clocked out on
the rising CLK edge.

-

ABORT Abort Port is clocked out on the
rising CLK edge.

High

* see GRLIB IP Library User’s Manual

Table 2012.Signal definitions and reset values

Signal name Type Function Active Reset value
pwi_valid Input Delimiter High -
pwi_clock Input Bit clock Rising -
pwi_data Input Data - -
pwi_aboart Input Abort (fixed output) High -
pwo_busy_n Output Not ready for octet Low Logical 1
pwo_ready Output Ready for packet High Logical 0
GRIP, Sep 2018, Version 2018.3 1688 www.cobham.com/gaisler

GRLIB IP Core

132.9 Timing

The timing waveforms and timing parameters are shown in figure 331 and are defined in table 2013.

Note: The inputs are re-synchronized inside the core. The signals do not have to meet any setup or
hold requirements.

132.10 Library dependencies

Table 2014 shows the libraries used when instantiating the core (VHDL libraries).

Table 2013.Timing parameters

Name Parameter Reference edge Min Max Unit
tGRPWRX0 clock to output delay rising clk edge TBD TBD ns

Table 2014.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
TMTC TMTC_TYPES Signals, component Component declaration

Figure 331. Timing waveforms

tGRPWRX0outputs

clk

tGRPWRX0
GRIP, Sep 2018, Version 2018.3 1689 www.cobham.com/gaisler

GRLIB IP Core

133 GRPWTX - PacketWire Transmitter

133.1 Overview

The PacketWire Transmitter implements a transmit function with Direct Memory Access (DMA)
suppport. Packets (or blocks of data, normally CCSDS Space Packets) are automatically fetched from
memory, for which the user configures a descriptor table with descriptors that point to each individual
packet.
The core provides the following external and internal interfaces:
• Packet Wire interface (serial bit data, bit clock, packet delimiter, abort, ready, busy)
• AMBA AHB master interface, with sideband signals as per [GRLIB]
• AMBA APB slave interface, with sideband signals as per [GRLIB]
The operation of the transmitter is highly programmable by means of control registers.

133.2 PacketWire interface

A PacketWire link comprises four ports for transmitting the message delimiter, the bit clock, the serial
bit data and an abort signal. A link also comprises additional ports for busy signalling, indicating
when the receiver is ready to receive the next octet, and for ready signalling, indicating that the
receiver is ready to receive a complete packet. The waveform format shown in figure 333.

Figure 333. Synchronous bit serial waveform

The PacketWire protocol follows the CCSDS transmission convention, the most significant bit being
sent first, both for octet transfers (control), and for word transfer (address or data). Transmitted data

Figure 332. Block diagram

GRPWTX

DMA

AMBA
APB
Slave

PacketWire FIFO
AMBA
AHB

Master

PacketWire output

A
M

B
A

 A
H

B

A
M

B
A

 A
P

B

CRC

Delimiter

Clock

Data 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 70 1 2 376
GRIP, Sep 2018, Version 2018.3 1690 www.cobham.com/gaisler

GRLIB IP Core

should consist of multiples of eight bits otherwise the last bits will be lost. The message delimiter port
is used to delimit messages (commands). It should be asserted while a message is being input, and
deasserted in between. In addition, the message delimiter port should define the octet boundaries in
the data stream, the first octet explicitly and the following octets each subsequent eight bit clock
cycles.
The handshaking between the PacketWire link and the interface is implemented with a busy port.
When a message is sent, the busy signal on the PacketWire link will be asserted as soon as the first
data bit is detected, it will then be deasserted as soon as the interface is ready to receive the next octet.
This gives the transmitter ample time to stop transmitting after the completion of the first octet and
wait for the busy signal deassertion before starting the transmission of the next octet. The handshak-
ing is continued through out the message. At the end of message, the busy signal will be asserted until
the completion of the message.

133.3 Operation

133.3.1 Introduction

The DMA interface provides a means for the user to send blocks of data of arbitrary length, normally
these are packet structures such as CCSDS Space Packets.

133.3.2 Descriptor setup

The DMA interface is used for sending data on the uplink. The transmission is done using descriptors
located in memory. A single descriptor is shown in tables 2015 through 2016. The address field of the
descriptor should point to the start of the data to be sent. The address need not be word-aligned. If the
interrupt enable (IE) bit is set, an interrupt will be generated when the transfer has completed (this
requires that the interrupt enable bit in the control register is also set). The interrupt will be generated
regardless of whether the transfer was successful or not. The wrap (WR) bit is also a control bit that
should be set before transmission and it will be explained later in this section.

Table 2015.GRPWTX descriptor word 0 (address offset 0x0)
31 16 15 8 7 6 4 3 2 1 0

LEN RESERVED UR RESERVED CRC WR IE EN

31: 16 (LEN) - length in bytes
15: 8 RESERVED
7: Underrun (UR) - Underrun detected during transmission.
6: 4 RESERVED
3: Cyclic Redundancy Code (CRC) - Insert CRC, overwriting the two last octets of a data block
2: Wrap (WR) - Set to one to make the descriptor pointer wrap to zero after this descriptor has been

used. If this bit is not set the pointer will increment by 16. The pointer automatically wraps to zero
when the 16 kB boundary of the descriptor table is reached.

1: Interrupt Enable (IE) - an interrupt will be generated when the data from this descriptor has been
sent provided that the transmitter interrupt enable bit in the control register is set. The interrupt is
generated regardless if the data was transferred successfully or if it terminated with an error.

0: Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor
fields.

Table 2016.GRPWTX descriptor word 1 (address offset 0x4)
31 0

ADDRESS

31: 0 Address (ADDRESS) - Pointer to the buffer area to where data will be fetched.
GRIP, Sep 2018, Version 2018.3 1691 www.cobham.com/gaisler

GRLIB IP Core

To enable a descriptor the enable (EN) bit should be set and after this is done, the descriptor should
not be touched until the enable bit has been cleared by the core.

133.3.3 Starting transmission

Enabling a descriptor is not enough to start transmission. A pointer to the memory area holding the
descriptors must first be set in the core. This is done in the descriptor pointer register. The address
must be aligned to a 16 kByte boundary. Bits 31 to 14 hold the base address of descriptor area while
bits 13 to 4 form a pointer to an individual descriptor. The first descriptor should be located at the base
address and when it has been used by the core, the pointer field is incremented by 16 to point at the
next descriptor. The pointer will automatically wrap back to zero when the next 16 kByte boundary
has been reached. The WR bit in the descriptors can be set to make the pointer wrap back to zero
before the 16 kByte boundary.
The pointer field has also been made writable for maximum flexibility but care should be taken when
writing to the descriptor pointer register. It should never be touched when transmission is active.
If the Cyclic Redundancy Code (CRC) bit is set, a CRC calculated over all but the two last octets, will
be inserted overwriting the two last octets of a data block. The CRC is defined in CCSDS 132.0-B-1.
The final step to activate the transmission is to set the enable bit in the DMA control register. This
tells the core that there are more active descriptors in the descriptor table. This bit should always be
set when new descriptors are enabled, even if transmission is already active. The descriptors must
always be enabled before the transmission enable bit is set.

133.3.4 Descriptor handling after transmission

When the transmission has finished, status is written to the first word in the corresponding descriptor.
The other bits in the first descriptor word are set to zero after transmission, while the second word is
left untouched. The enable bit should be used as the indicator when a descriptor can be used again,
which is when it has been cleared by the core.
There are multiple bits in the DMA status register that hold status information.
The Transmitter Interrupt (TI) bit is set each time a DMA transmission ended successfully. The Trans-
mitter Error (TE) bit is set each time an DMA transmission ended with an error. For either event, an
interrupt is generated for which the Interrupt Enable (IE) was set in the descriptor. The interrupt is
maskable with the Interrupt Enable (IE) bit in the control register.
The Transmitter AMBA error (TA) bit is set when an AMBA AHB error was encountered either when
reading a descriptor or data. Any active transmission was aborted and the DMA channel was disabled.
It is recommended that the transmitter is reset after an AMBA AHB error. The interrupt is maskable
with the Interrupt Enable (IE) bit in the control register.

133.4 Registers

The core is programmed through registers mapped into APB address space.

Table 2017.GRPWTX registers

APB address offset Register
0x00 GRPWTX DMA Control register
0x04 GRPWTX DMA Status register
0x08 GRPWTX DMA Descriptor Pointer register
0x80 GRPWTX Control register
0x84 GRPWTX Status register
0x88 GRPWTX Configuration register
0x8C GRPWTX Physical Layer register
GRIP, Sep 2018, Version 2018.3 1692 www.cobham.com/gaisler

GRLIB IP Core

133.4.1

Table 2018.0x00 - DCR - DMA control register

DMA Control Register

133.4.2

Table 2019.0x04 - DSR - DMA status register

DMA Status Register

133.4.3

Table 2020. 0x08 - DDP - DMA descriptor pointer register

DMA Descriptor Pointer Register

133.4.4

Table 2021. 0x80 - CTRL - control register

Control Register

31 2 1 0

RESERVED IE EN

0 0 0

r rw rw

31: 2 RESERVED
1: Interrupt Enable (IE) - enable interrupts TA, TI, and TE
0: Enable (EN) - enable DMA transfers

31 4 3 2 1 0

RESERVED ACTIVE TA TI TE

31: 4 RESERVED
3: Active (ACTIVE) - DMA access ongoing
2: Transmitter AMBA Error (TA) - DMA AMBA AHB error, cleared by writing a logical 1
1: Transmitter Interrupt (TI) - DMA interrupt, cleared by writing a logical 1
0: Transmitter Error (TE) - DMA transmitter error, cleared by writing a logical 1

31 14 13 4 3 0

BASE INDEX RESERVED

NR NR 0

rw rw r

31: 14 Descriptor base (BASE) - base address of descriptor table
13: 4 Descriptor index (INDEX) - index of active descriptor in descriptor table
3: 0 Reserved - fixed to “0000”

31 3 2 1 0

RESERVED RST R TxEN

0 0 0 0

r rw r rw

31: 3 RESERVED
2: Reset (RST) - resets complete core
1: RESERVED
0: Transmitter Enable (TxEN) - enables transmitter (should be done after the complete configuration of

the transmitter)
GRIP, Sep 2018, Version 2018.3 1693 www.cobham.com/gaisler

GRLIB IP Core

133.4.5

Table 2022. 0x84 - STAT - Status register (read-only)

Status Register

133.4.6

Table 2023. 0x88 - CONF - configuration register (read-only)

Configuration Register

133.4.7

Table 2024. 0x8C - PLR - physical layer register

Physical Layer Register

133.5 Vendor and device identifier

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x08D. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

31 2 1 0

RESERVED BUSY READY

0 1 0

r r r

31: 2 RESERVED
1: Busy with octet (BUSY) - External busy signal
0: Ready for packet (READY) - External ready signal

31 24 23 8 7 0

REVISION FIFOSIZE RESERVED

* * 0

r r r

31: 24 (REVISION) - Revision number (read-only)
23: 8 (FIFOSIZE) - FIFO size in bytes (read-only)
7: 0 RESERVED

31 20 19 8 7 6 5 4 3 2 0

HALFBAUD RESERVED BUSY
POS

READY
POS

VALID
POS

CLK
RISE

CLK
MODE

RESERVED

1 0 0 1 1 1 0 0

rw r rw rw rw rw rw r

31: 20 (HALFBAUD) - System clock division factor (indicates the width of the high and low phases of the
outgoing PacketWire bit clock in number of system clock periods -1)

19: 8 RESERVED
7: (BUSYPOS) - Positive polarity of busy input signal
6: (READYPOS) - Positive polarity of ready input signal
5: (VALIDPOS) - Positive polarity of valid output signal
4: (CLKRISE) - Rising clock edge in the middle of the serial data bit
3: (CLKMODE) - 0=when valid (default), 1=always (experimental)
2: 0 RESERVED
GRIP, Sep 2018, Version 2018.3 1694 www.cobham.com/gaisler

GRLIB IP Core

133.6 Configuration options

Table 2025 shows the configuration options of the core (VHDL generics).

133.7 Signal descriptions

Table 2026 shows the interface signals of the core (VHDL ports).

Table 2025.Configuration options

Generic name Function Allowed range Default
hindex AHB master index 0 - NAHBMST-1 0
pindex APB slave index 0 - NAPBSLV-1 0
paddr ADDR field of the APB BAR 0 - 16#FFF# 0
pmask MASK field of the APB BAR 0 - 16#FFF# 16#FFF#
pirq Interrupt line used by core 0 - NAHBIRQ-1 0
memtech Memory technology 0 to NTECH 0
burstlength Sets the AHB burst length used by the core - 16

Table 2026.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
AHBI * Input AMB master input signals -
AHBO * Output AHB master output signals -
PWI BUSY_N Input Not ready for octet Port indicates whether the

receiver is ready to receive
one octet. The port is con-
sidered asynchronous.

Programma-
ble

READY Ready for packet Port indicates whether the
receiver is ready to receive
one packet. The port is
considered asynchronous.

Programma-
ble

PWO VALID Output Delimiter Port is the packet delimiter
for the output interface. It
is deasserted between
packets. The output is
clocked out on the rising
CLK edge.

Programma-
ble

CLK Bit clock Port is the PacketWire out-
put bit clock. The output is
clocked out on the rising
CLK edge.

Programma-
ble

DATA Data Port is the serial data out-
put for the interface. The
output is clocked out on
the rising CLK edge.

-

ABORT Abort Port is clocked out on the
rising CLK edge.

High

* see GRLIB IP Library User’s Manual
GRIP, Sep 2018, Version 2018.3 1695 www.cobham.com/gaisler

GRLIB IP Core

133.8 Signal definitions and reset values

The signals and their reset values are described in table 2027.

133.9 Timing

The timing waveforms and timing parameters are shown in figure 334 and are defined in table 2028.

Note: The inputs are re-synchronized inside the core. The signals do not have to meet any setup or
hold requirements.

133.10 Library dependencies

Table 2029 shows the libraries used when instantiating the core (VHDL libraries).

Table 2027.Signal definitions and reset values

Signal name Type Function Active Reset value
pwo_valid Output Delimiter High Logical 0
pwo_clock Output Bit clock Rising Logical 0
pwo_data Output Data - Logical 0
pwo_abort Output Abort (fixed output) High Logical 0
pwi_busy_n Input Not ready for octet Low -
pwi_ready Input Ready for packet High -

Table 2028.Timing parameters

Name Parameter Reference edge Min Max Unit
tGRPWTX0 clock to output delay rising clk edge TBD TBD ns

Table 2029.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
TMTC TMTC_TYPES Signals, component Component declaration

Figure 334. Timing waveforms

tGRPWTX0outputs

clk

tGRPWTX0
GRIP, Sep 2018, Version 2018.3 1696 www.cobham.com/gaisler

GRLIB IP Core

134 PW2APB - PacketWire receiver to AMBA APB Interface

134.1 Overview

The PacketWire to AMBA APB Interface implements the PacketWire protocol used by the Packet
Telemetry Encoder (PTME) IP core and the Virtual Channel Assembler (VCA) device.
The core provides the following external and internal interfaces:
• Packet Wire interface (serial bit data, bit clock, packet delimiter, abort, ready, busy)
• AMBA APB slave interface, with sideband signals as per [GRLIB]
The core incorporates status and monitoring functions accessible via the AMBA APB slave interface.
This includes:
• Valid and abort signalling from PacketWire interface
• Data overrun
Data is received on the PacketWire interface and read via the AMBA APB slave interface. It is possi-
ble to receive and read out one octet at a time.The packet delimiter and abort signals are observable
via the control register, together with busy, ready and overrun signals. The baud rate is detected auto-
matically and read via a configuration register.

134.2 PacketWire interface

A PacketWire link comprises four ports for transmitting the message delimiter, the bit clock, the serial
bit data and an abort signal. A link also comprises additional ports for busy signalling, indicating
when the receiver is ready to receive the next octet, and for ready signalling, indicating that the
receiver is ready to receive a complete packet. The waveform format shown in figure 335.

Figure 335. Synchronous bit serial waveform

The PacketWire protocol follows the CCSDS transmission convention, the most significant bit being
sent first, both for octet transfers (control), and for word transfer (address or data). Transmitted data
should consist of multiples of eight bits otherwise the last bits will be lost. The message delimiter port
is used to delimit messages (commands). It should be asserted while a message is being input, and
deasserted in between. In addition, the message delimiter port should define the octet boundaries in
the data stream, the first octet explicitly and the following octets each subsequent eight bit clock
cycles.
The maximum receiving input baud rate is defined as twice the frequency of the system clock input
(fCLK). The maximum receiving throughput is limited by the AMBA system into which this core is
integrated. There is no lower limit for the input baud rate in the receiver.
The handshaking between the PacketWire link and the interface is implemented with a busy port.
When a message is sent, the busy signal on the PacketWire link will be asserted as soon as the first
data bit is detected, it will then be deasserted as soon as the interface is ready to receive the next octet.
This gives the transmitter ample time to stop transmitting after the completion of the first octet and
wait for the busy signal deassertion before starting the transmission of the next octet. The handshak-
ing is continued through out the message.

Delimiter

Clock

Data 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 70 1 2 376
GRIP, Sep 2018, Version 2018.3 1697 www.cobham.com/gaisler

GRLIB IP Core

To ensure that the receiver recognizes that the delimiter has been de-asserted, an application specific
minimum time for the de-assertions should be imposed. Alternatively, ready signalling can be imple-
mented in software, where the ready signal is asserted when the receiver software is ready to receive a
packet, and is then immediately de-asserted when the first octet of a packet has been received. The
transmitter software should thus only check the ready signal before starting to send a packet. This is
illustrated in figure 336.

Figure 336. Handshake with ready signalling

To ensure that an abort is properly signalled, the abort signal should be de-asserted at the time the
delimiter is asserted in the beginning of a packet, else the abort will be ignored. The abort signal
should then be asserted while the delimiter is still asserted, to signal an abort to the receiver.

134.3 Registers

The core is programmed through registers mapped into APB address space.

Table 2030.PW2APB registers

APB address offset Register
0x00 Control Register
0x04 Configuration Register
0x08 Data Reception Register

Delimiter

Data/Clock

Busy

Ready
GRIP, Sep 2018, Version 2018.3 1698 www.cobham.com/gaisler

GRLIB IP Core

134.3.1

Table 2031.0x00 - CTRL - Control Register

Control Register

134.3.2

Table 2032.0x04 - CONF -Configuration Register

Configuration Register

31 8 7 6 5 4 3 2 1 0

RESERVED RESET OV READY NEW VALID ABORT SIZE

0 0 0 0 0 0 0 0

r r r r r r r r

31: 8 RESERVED
Write: Don’t care.
Read: All zero.

7 RESET
Write: Write logical one to reset core
Read: All zero

6 OV
Write: Don’t care.
Read: Data input overrun, cleared on read.

(Note that a received octet that results in an overrun does not overwrite the
OCTET field.)
(If there is a new octet available, as indicated by the NEW bit, it should be read
out to free the receiver data reception register.)

5 READY
Read/Write: Interface ready to receive a packet (only affects output signal)

4 NEW
Write: Don’t care.
Read: Interface has received a new octet, ready for read-out (cleared when receiver data

reception register has been read)
3 VALID

Write: Don’t care.
Read: Packet delimiter when asserted (reflects input signal value)

2 ABORT
Write: Don’t care.
Read: Abort current packet when asserted (only set when a valid abort takes place)

(If there is a new octet available, as indicated by the NEW bit, it should be read to
free the receiver data reception register.)

1: 0 SIZE Reception size and order (left to right):
Read/: 00 = 8 bit: 7:0

31 8 7 0

RESERVED HALFBAUD

0 0

r r

31: 8 RESERVED
Write: Don’t care.
Read: All zero.

7: 0 HALFBAUD System clock division factor (indicates the width of the high phase of the incom-
ing PacketWire bit clock in number of system clock periods -1)

Read: 0x00 = divide by 1

0xFF = divide by 256
GRIP, Sep 2018, Version 2018.3 1699 www.cobham.com/gaisler

GRLIB IP Core

134.3.3

Table 2033.0x08 - DRR - Data Reception Register

Data Reception Register

134.4 Vendor and device identifiers

The module has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x03C. For descrip-
tion of vendor and device identifiers see GRLIB IP Library User’s Manual.

134.5 Configuration options

Table 2034 shows the configuration options of the core (VHDL generics).

31 8 7 0

RESERVED OCTET

0 0

r rw

31: 8 RESERVED
Write: Don’t care.
Read: All zero.

7: 0 OCTET
Write: Last octet correctly received. Note that a received octet that results in an overrun

does not overwrite the OCTET field.
Read: All zero.

Table 2034.Configuration options

Generic name Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0
paddr Addr field of the APB bar. 0 - 16#FFF# 0
pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFC#
syncrst Only synchronous reset 0, 1 1
GRIP, Sep 2018, Version 2018.3 1700 www.cobham.com/gaisler

GRLIB IP Core

134.6 Signal descriptions

Table 2035 shows the interface signals of the core (VHDL ports).

134.7 Signal definitions and reset values

The signals and their reset values are described in table 2036.

Table 2035.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
PWO BUSY_N Input Not ready for octet This input port indicates

whether the receiver is
ready to receive one octet.
The input is considered as
asynchronous.

Low

READY Ready for packet This input port indicates
whether the receiver is
ready to receive one
packet. The input is con-
sidered as asynchronous.

High

PWI VALID Output Delimiter This output port is the
packet delimiter for the
output interface. It is deas-
serted between packets.
The output is clocked out
on the rising CLK edge.

High

CLK Bit clock This output port is the Pac-
ketWire output bit clock.
The output is clocked out
on the rising CLK edge.

Rising

DATA Data This output port is the
serial data output for the
interface. The output is
clocked out on the rising
CLK edge.

-

ABORT Abort The output is clocked out
on the rising CLK edge.

High

* see GRLIB IP Library User’s Manual

Table 2036.Signal definitions and reset values

Signal name Type Function Active Reset value
pwo_valid Output Delimiter High Logical 0
pwo_clock Output Bit clock Rising Logical 0
pwo_data Output Data - Logical 0
pwo_aboart Output Abort High Logical 0
pwi_busy_n Input Not ready for octet Low -
pwi_ready Input Ready for packet High -
GRIP, Sep 2018, Version 2018.3 1701 www.cobham.com/gaisler

GRLIB IP Core

134.8 Timing

The timing waveforms and timing parameters are shown in figure 337 and are defined in table 2037.

Note: The inputs are re-synchronized inside the core. The signals do not have to meet any setup or
hold requirements.

134.9 Library dependencies

Table 2038 shows the libraries used when instantiating the core (VHDL libraries).

Table 2037.Timing parameters

Name Parameter Reference edge Min Max Unit
tPW2APB0 clock to output delay rising clk edge TBD TBD ns

Table 2038.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
TMTC TMTC_Types Signals, component Component declarations, signals.

Figure 337. Timing waveforms

tPW2APB0outputs

clk

tPW2APB0
GRIP, Sep 2018, Version 2018.3 1702 www.cobham.com/gaisler

GRLIB IP Core

135 APB2PW - AMBA APB to PacketWire Transmitter Interface

135.1 Overview

The AMBA APB to PacketWire Interface implements the PacketWire protocol used by the Packet
Telemetry Encoder (PTME) IP core and the Virtual Channel Assembler (VCA) device.
The core provides the following external and internal interfaces:
• Packet Wire interface (serial bit data, bit clock, packet delimiter, abort, ready, busy)
• AMBA APB slave interface, with sideband signals as per [GRLIB]
The core incorporates status and monitoring functions accessible via the AMBA APB slave interface.
This includes:
• Busy and ready signalling from PacketWire interface
Data are transferred to the PacketWire interface by writing to the AMBA APB slave interface. It is
possible to transfer one, two or four bytes at a time, following the AMBA big-endian convention
regarding send order. Data are output serially on the PacketWire interface.The packet delimiter and
abort signals are controlled, together with the data size, through the control register. The progress of
the interface can be monitored via the AMBA APB slave interface, through the control register. The
baud rate is set via a configuration register.

135.2 PacketWire interface

A PacketWire link comprises four ports for transmitting the message delimiter, the bit clock, the serial
bit data and an abort signal. A link also comprises additional ports for busy signalling, indicating
when the receiver is ready to receive the next octet, and for ready signalling, indicating that the
receiver is ready to receive a complete packet. The waveform format shown in figure 338.

Figure 338. Synchronous bit serial waveform

The PacketWire protocol follows the CCSDS transmission convention, the most significant bit being
sent first, both for octet transfers (control), and for word transfer (address or data). Transmitted data
should consist of multiples of eight bits otherwise the last bits will be lost. The message delimiter port
is used to delimit messages (commands). It should be asserted while a message is being input, and
deasserted in between. In addition, the message delimiter port should define the octet boundaries in
the data stream, the first octet explicitly and the following octets each subsequent eight bit clock
cycles.
The handshaking between the PacketWire link and the interface is implemented with a busy port.
When a message is sent, the busy signal on the PacketWire link will be asserted as soon as the first
data bit is detected, it will then be deasserted as soon as the interface is ready to receive the next octet.
This gives the transmitter ample time to stop transmitting after the completion of the first octet and
wait for the busy signal deassertion before starting the transmission of the next octet. The handshak-
ing is continued through out the message.
To ensure that the receiver recognizes that the delimiter has been de-asserted, an application specific
minimum time for the de-assertions should be imposed. Alternatively, ready signalling can be imple-
mented in software, where the ready signal is asserted when the receiver software is ready to receive a

Delimiter

Clock

Data 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 70 1 2 376
GRIP, Sep 2018, Version 2018.3 1703 www.cobham.com/gaisler

GRLIB IP Core

packet, and is then immediately de-asserted when the first octet of a packet has been received. The
transmitter software should thus only check the ready signal before starting to send a packet. This is
illustrated in figure 339.

Figure 339. Handshake with ready signalling

To ensure that an abort is properly signalled, the abort signal should be de-asserted at the time the
delimiter is asserted in the beginning of a packet, else the abort will be ignored. The abort signal
should then be asserted while the delimiter is still asserted, to signal an abort to the receiver.

135.3 Registers

The core is programmed through registers mapped into APB address space.

Table 2039.APB2PW registers

APB address offset Register
0x000 Control Register
0x004 Configuration Register
0x008 Data Transmission Register

Delimiter

Data/Clock

Busy

Ready
GRIP, Sep 2018, Version 2018.3 1704 www.cobham.com/gaisler

GRLIB IP Core

135.3.1

Table 2040.0x000 - CTRL - Control Register

Control Register

135.3.2

Table 2041.0x004 - CONF - Configuration Register

Configuration Register

31 8 7 6 5 4 3 2 1 0

RESERVED RESET R READY BUSY VALID ABORT SIZE

31: 8 RESERVED
Write: Don’t care.
Read: All zero.

7 RESET
Write: Write logical one to reset core
Read: All zero

6 RESERVED
Write: Don’t care.
Read: All zero.

5 READY
Write: Don’t care.
Read: Interface ready to receive a packet

4 BUSY
Write: Don’t care.
Read: Interface busy with octet(s) when set, else ready for data input

3 VALID
Read/Write: Packet delimiter when asserted (only affects output signal)

2 ABORT
Read/Write: Abort current packet when asserted (only affects output signal)

1: 0 SIZE Transfer size and order (left to right):
Read/write: 00 = 8 bit: 7:0

01 = 16 bit: 15:8, 7:0
10 = 24 bit: 23:16, 15:8, 7:0
11 = 32 bit: 31:24, 23:16, 15:8, 7:0

Power-up default: 0x00000000

31 8 7 0

RESERVED HALFBAUD

31: 8 RESERVED
Write: Don’t care.
Read: All zero.

7: 0 HALFBAUD System clock division factor (indicates the width of the high and low phases of
the outgoing PacketWire bit clock in number of system clock periods -1)

Read/write: 0x00 = divide by 1
0xFF = divide by 256

Power-up default: 0x00000000
GRIP, Sep 2018, Version 2018.3 1705 www.cobham.com/gaisler

GRLIB IP Core

135.3.3

Table 2042.0x008 - TX - Data Transmission Register

Data Transmission Register

135.4 Vendor and device identifiers

The module has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x03B. For descrip-
tion of vendor and device identifiers see GRLIB IP Library User’s Manual.

135.5 Configuration options

Table 2043 shows the configuration options of the core (VHDL generics).

31 24 23 16 15 8 7 0

FIRST OCTET SECOND OCTET THIRD OCTET LAST OCTET

31: 24 FIRST OCTET
Write: First octet to be transmitted, if SIZE=11
Read: All zero.

23: 16 SECOND OCTET
Write: Second octet to be transmitted
Read: All zero.

15: 8 THIRD OCTET
Write: First octet to be transmitted
Read: All zero.

7: 0 LAST OCTET
Write: Last octet to be transmitted, any SIZE value
Read: All zero.

Power-up default: 0x00000000

Table 2043.Configuration options

Generic name Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0
paddr Addr field of the APB bar. 0 - 16#FFF# 0
pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFC#
syncrst Only synchronous reset 0, 1 1
GRIP, Sep 2018, Version 2018.3 1706 www.cobham.com/gaisler

GRLIB IP Core

135.6 Signal descriptions

Table 2044 shows the interface signals of the core (VHDL ports).

135.7 Signal definitions and reset values

The signals and their reset values are described in table 2045.

Table 2044.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
PWI BUSY_N Input Not ready for octet This input port indicates

whether the receiver is
ready to receive one octet.
The input is considered as
asynchronous.

Low

READY Ready for packet This input port indicates
whether the receiver is
ready to receive one
packet. The input is con-
sidered as asynchronous.

High

PWO VALID Output Delimiter This output port is the
packet delimiter for the
output interface. It is deas-
serted between packets.
The output is clocked out
on the rising CLK edge.

High

CLK Bit clock This output port is the Pac-
ketWire output bit clock.
The output is clocked out
on the rising CLK edge.

Rising

DATA Data This output port is the
serial data output for the
interface. The output is
clocked out on the rising
CLK edge.

-

ABORT Abort The output is clocked out
on the rising CLK edge.

High

* see GRLIB IP Library User’s Manual

Table 2045.Signal definitions and reset values

Signal name Type Function Active Reset value
pwi_valid Input Delimiter High -
pwi_clock Input Bit clock Rising -
pwi_data Input Data - -
pwi_aboart Input Abort High -
pwo_busy_n Output Not ready for octet Low Logical 0
pwo_ready Output Ready for packet High Logical 0
GRIP, Sep 2018, Version 2018.3 1707 www.cobham.com/gaisler

GRLIB IP Core

135.8 Timing

The timing waveforms and timing parameters are shown in figure 340 and are defined in table 2046.

Note: The inputs are re-synchronized inside the core. The signals do not have to meet any setup or
hold requirements.

135.9 Library dependencies

Table 2047 shows the libraries used when instantiating the core (VHDL libraries).

Table 2046.Timing parameters

Name Parameter Reference edge Min Max Unit
tAPB2PW0 clock to output delay rising clk edge TBD TBD ns

tAPB2PW1 input to clock hold rising pwo_clock edge TBD - ns

tAPB2PW2 input to clock setup rising pwo_clock edge TBD - ns

tAPB2PW3 pwo_valid to pwo_clock edge rising pwo_clock edge TBD - ns

tAPB2PW4 pwo_valid de-asserted period - TBD*tCL
K

periods

Table 2047.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
TMTC TMTC_Types Signals, component Component declarations, signals.

Figure 340. Timing waveforms

tAPB2PW0outputs

clk

tAPB2PW0

pwo_clock
tAPB2PW1

pwo_data
tAPB2PW2
GRIP, Sep 2018, Version 2018.3 1708 www.cobham.com/gaisler

GRLIB IP Core

136 AHB2PP - AMBA AHB to Packet Parallel Interface

136.1 Overview

The AMBA AHB to Packet Parallel Interface implements the PacketParallel protocol used by the
Packet Telemetry Encoder (PTME) IP core and the Virtual Channel Assembler (VCA) device.
The core implements the following functions:
• Packet Parallel protocol
• General Purpose Input Output port
The core provides the following external and internal interfaces:
• Packet Parallel interface (octet data, packet delimiter, write strobe, abort, ready, busy)
• AMBA AHB slave interface, with sideband signals as per [GRLIB]
• AMBA APB slave interface, with sideband signals as per [GRLIB]
The core incorporates status and monitoring functions accessible via the AMBA APB slave interface.
This includes:
• Busy and ready signalling from Packet Parallel interface
• Read back of output data
• Interrupts on ready for new word, or ready for new packet
Data is transferred to the Packet Parallel interface by writing to the AMBA AHB slave interface,
located in the AHB I/O area. Writing is only possible when the Packet Parallel packet valid delimiter
is asserted, else the access results in an AMBA access error. It is possible to transfer one, two or four
bytes at a time, following the AMBA big-endian convention regarding send order. The last written
data can be read back via the AMBA AHB slave interface. Data are output as octets on the Packet Par-
allel interface.
In the case the data from a previous write access has not been fully transferred over the Packet Parallel
interface, a new write access will result in an AMBA retry response. The progress of the interface can
be monitored via the AMBA APB slave interface. An interrupt is generated when the data from the
last write access has been transferred. An interrupt is also generated when the Packet Parallel ready
indicator is asserted.

136.2 Interrupts

Two interrupts are implemented by the Packet Parallel interface:
Index:Name:Description:
0 NOT BUSYReady for a new data (word, half-word or byte)
1 READYReady for new packet

The interrupts are configured by means of the pirq VHDL generic.
GRIP, Sep 2018, Version 2018.3 1709 www.cobham.com/gaisler

GRLIB IP Core

136.3 Registers

The core is programmed through registers mapped into APB address space.

136.3.1 Configuration Register (R/W

Table 2049.0x000 - CONF - Configuration Register

)

3-0: WS Number of additional Wait States

All bits are cleared to 0 at reset.
The width of the write strobe can be extended by mean of the WS field. The nominal asserted width is
one system clock period (corresponding to WS=0). The asserted period can be extended up to a total
asserted width of 16 system clock periods.
The minimum gap between octet write accesses when the strobe is de-asserted is one system clock
period when WS={0, 3}, two when WS={4, 7}, three when WS={8, 11}, and four when WS={12,
15}.

136.3.2 Status Register

Table 2050.0x004 - STAT - Status register

)

2: BUSY AHB2PP interface busy with data transfer
1: PP Busy Packet Parallel busy input
0: PP Ready Packet Parallel ready input

All bits are cleared to 0 at reset.

Table 2048.AHB2PP registers

APB address offset Register
0x000 Configuration Register
0x004 Status Register
0x008 Control Register
0x010 Data Input Register
0x014 Data Output Register
0x018 Data Direction Register

31 3 0
RESERVED WS

0 0
r rw

31 3 2 1 0
RESERVED BUSY PP Busy PP Ready

0 0 0 0
r r r r
GRIP, Sep 2018, Version 2018.3 1710 www.cobham.com/gaisler

GRLIB IP Core

136.3.3 Control

Table 2051.0x008 - CTRL - Control Register

3: PP Abort Packet Parallel abort output
2: PP Valid Packet Parallel valid output
1: RESET Reset complete core when 1
0: ENABLE Enable Packet Parallel interface when 1, else enable GPIO function

All bits are cleared to 0 at reset. Note that RESET is read back as 0b.

136.3.4 Data Input

Table 2052.0x010 - DIN - Data Input Register

7-0: DIN Input data ppi.data[7:0]

All bits are cleared to 0 at reset.

136.3.5 Data Output

Table 2053.0x014 - DOUT - Data Output Register

7-0: DOUT Output data ppo.data[7:0]

All bits are cleared to 0 at reset.
Note that the GPIO functionality can only be used when the Packet Parallel interface is disabled via
the Control Register above.

136.3.6 Data

Table 2054.0x018 - DIR - Data Direction Register

Direction

7-0: DDIR Direction: ppo.enable[7:0]
0b = input = high impedance,

31 4 3 2 1 0
RESERVED PP Abort PP Valid RST EN

0 0 0 0 0
r rw rw rw* rw

31 8 7 0
RESERVED DIN

0 0
r r

31 8 7 0
RESERVED DOUT

0 0
r rw

31 8 7 0
RESERVED DDIR

0 0
r r
GRIP, Sep 2018, Version 2018.3 1711 www.cobham.com/gaisler

GRLIB IP Core

1b = output = driven

All bits are cleared to 0 at reset.
Note that the GPIO functionality can only be used when the Packet Parallel interface is disabled via
the Control Register above.

136.4 AHB I/O area

Data to be transferred to the Packet Parallel interface is written to the AMBA AHB slave interface
which implements a AHB I/O area. See [GRLIB] for details.
Note that the address is not decoded by the core. Address decoding is only done by the AMBA AHB
controller, for which the I/O area location and size is configured by means of the ioaddr and iomask
VHDL generics.
It is possible to transfer one, two or four bytes at a time, following the AMBA big-endian convention
regarding send order. The last written data can be read back via the AMBA AHB slave interface. Data
are output as octets on the Packet Parallel interface.

136.5 Vendor and device identifiers

The module has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x039. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

Table 2055.AHB I/O area - data word definition

31 24 23 16 15 8 7 0
DATA [31:24] DATA [23:16] DATA [15:8] DATA [7:0]

Table 2056.AHB I/O area - send order

Transfer size Address
offset

DATA [31:24] DATA [23:16] DATA [15:8] DATA [7:0] Comment

Word 0 first second third last Four bytes sent
Halfword 0 first last - - Two bytes sent

2 - - first last Two bytes sent
Byte 0 first - - - One byte sent

1 - first - - One byte sent
2 - - first - One byte sent
3 - - - first One byte sent
GRIP, Sep 2018, Version 2018.3 1712 www.cobham.com/gaisler

GRLIB IP Core

136.6 Configuration options

Table 2057 shows the configuration options of the core (VHDL generics).

136.7 Signal descriptions

Table 2058 shows the interface signals of the core (VHDL ports).

136.8 Library dependencies

Table 2059 shows the libraries used when instantiating the core (VHDL libraries).

Table 2057.Configuration options

Generic name Function Allowed range Default
hindex AHB master index. 1 - NAHBSLV-1 0
ioaddr Addr field of the AHB IO bar. 0 - 16#FFF# 0
iomask Mask field of the AHB IO bar. 0 - 16#FFF# 16#F00#
pindex APB slave index 0 - NAPBSLV-1 0
paddr Addr field of the APB bar. 0 - 16#FFF# 0
pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFC#
pirq Interrupt line used by the AHB2PP. 0 - NAHBIRQ-1 0
syncrst Only synchronous reset 0, 1 1
oepol Output enable polarity 0, 1 1

Table 2058.Signal descriptions

Signal name Field Type Function Active
RSTN N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
AHBI * Input AMB slave input signals -
AHBO * Output AHB slave output signals -
PPI busy_n Input Packet Parallel busy signal -

ready Packet Parallel ready signal
data[7:0] Packet Parallel data (GPIO only)

PPO abort Output Packet Parallel abort signal -
valid_n Packet Parallel packet delimiter signal -
wr_n Packet Parallel octet write strobe
data[7:0] Packet Parallel octet data
enable[7:0] Enable/drive octet data output

* see GRLIB IP Library User’s Manual

Table 2059.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals AMBA signal definitions
TMTC TMTC_Types Signals, component Component declarations, signals.
GRIP, Sep 2018, Version 2018.3 1713 www.cobham.com/gaisler

GRLIB IP Core

137 GRRM - Reconfiguration Module

137.1 Overview

The core processes different alarms and provides reconfiguration commands as outputs. When alarm
conditions are matched the reconfiguration sequences are fetched from the external memory, these
sequences are processed and output commands are provided specific to an alarm. The core operates in
an AMBA bus system where both the AMBA AHB bus and the APB bus are present. The AMBA
APB bus is used for configuration, control and status handling and the AMBA AHB Master is used to
generate read and write access on the AMBA AHB bus.

137.2 Operation

According to the alarm activated and the current state of the core an alarm pattern is formed, the alarm
pattern provides the address from which the reconfiguration sequences should be fetched. The AMBA
AHB bus is used for retrieving the reconfiguration sequences in memory external to the core. The
reconfiguration sequences consist of internal commands and external commands. The internal com-
mands are processed by internal command processor which performs actions like masking the alarm
that got activated and changing the state according to the internal commands. The external commands
are formed into packets and sent to the command pulse distribution unit using PacketWire interface.
The alarms can be logged to external memory along with the time instance at which the alarm is trig-
gered. During initialization the core can configure itself or other systems available in the AHB bus.

137.3 Alarms

External alarms (external discrete signal inputs), watchdog timeout and software alarms (alarm trig-
gered by processors or any other unit capable of writing the APB register space) are the alarm inputs.
Using watchdog and software alarms the core can monitor the processor module and using external

Figure 341. Block diagram

Health CheckAM
BA

 A
H

B

W.Dog
SW

Alarm
Alarm Processor State

Alarm Pattern

and Monitor
Internal

Command
Processor

CPDU
Packet

Generator

FIFODMAAHB
Master

External Alarms

APB
Slave

AM
BA

 A
PB

Tx

PW6
GRIP, Sep 2018, Version 2018.3 1714 www.cobham.com/gaisler

GRLIB IP Core

alarms the core can monitor high-level system alarms for example low battery indicator. All alarms
are individually maskable using the alarm mask AM register.

137.3.1 External alarms

The external alarm inputs are processed and an alarm event is generated when the input matches the
conditions specified in the alarm monitoring unit. For external alarms the monitoring unit consist of
mask AM, polarity AP and delay AD registers, these registers must be configured according to the
requirement for a particular external alarm. An external input should pass the above mentioned condi-
tion and produces the alarm event which is registered as a pending event in the alarm pending AP reg-
ister.

137.3.2 Watchdog timeout

Watchdog timeout: it is a down-counter that must be cyclically reloaded upon by the processor. If it is
not reloaded an alarm event is triggered which is registered as a pending event in the alarm pending
AP register. The corresponding mask AM register must be enabled.

137.3.3 Software alarms

The processor can trigger a software alarm event by configuring the register SWNP. The
SWNP.SWPM0 register bits can be configured with a value corresponds to a particular software
alarm. The value 0b000 is reserved and all other values trigger an alarm respectively (seven software
alarm). The SWNP.EN bit must also be set to trigger the alarm.
The software alarms can also be used to check the functionality of the core by allocating one of the
alarms to be self check alarm, the processor can trigger that alarm and expect the reconfiguration
sequences to clear that alarm pending event. The reconfiguration sequence must also be configured
according to the need.
The software alarm 0b001 has the highest priority and 0b111 has the lowest priority.

137.4 Alarm Pattern

Alarm pending AP register memorizes any alarm that has triggered an alarm event. Each alarm
becomes a pending event. The reconfiguration sequences are selected according to the highest priority
pending alarm event and the current state of the state machine. The highest priority is given to exter-
nal alarms, followed by watchdog alarms and finally software alarms.
Alarm pattern is formed by concatenation of the priority vector (LSB) and the state machine output
(MSB). This vector is used as a pointer to the first address of the reconfiguration sequence to be exe-
cuted. On this basis, the reconfiguration sequences are read from the external memory and stored in
the internal buffers for processing.
The core includes a state machine STAT.STATE register of which the state can be modified by the
reconfiguration sequences. The updates to the state machine by reconfiguration sequence allows
another reconfiguration sequence to be executed for the same alarm if a previous reconfiguration
attempt did not remedy the alarm situation.

137.5 Reconfiguration Log

After occurrence of every alarm event, the alarm pattern is stored in a circular buffer (available in the
external memory area) allocated for reconfiguration log. Only previous 16 patterns (alarm events) can
be stored. The alarm log address ALA register specify the location where the log must be stored. Each
GRIP, Sep 2018, Version 2018.3 1715 www.cobham.com/gaisler

GRLIB IP Core

log consist of 2 words. The log consist of time instance at which the alarm event occurred and the
alarm pattern (state+alarm). The content of the log is shown in the table below.

137.6 Reconfiguration Sequences

The reconfiguration sequences are fetched and stored into the internal buffers for an alarm event. The
commands are processed one by one. Each reconfiguration sequence is made up of 64 Commands
sent to Command Pulse Distribution Unit (CPDU) separated by delay and 64 commands for RM
internal configuration (split into two - internal1 and internal2 of each containing 32 commands). The
order of execution is internal1 commands, external commands followed by internal2 commands. The
starting address of the initial (highest priority alarm) reconfiguration sequence location is provided by
the RSA.SA register and for the other alarms the address from which the sequences are fetched is
computed by the core itself using the particular alarm event and state of the alarm. A spreadsheet is
provided along with this document to facilitate the configuration of these reconfiguration sequences,
the output file from the spreadsheet can be used to load the reconfiguration sequences into an external
memory.

Table 2060. Alarm Log Content
Word 1 Coarse Time (32 bits)

Word 2 Fine Time (23 bits) ALARM PATTERN (9 bits)
GRIP, Sep 2018, Version 2018.3 1716 www.cobham.com/gaisler

GRLIB IP Core

137.6.1 Internal commands

The internal 64 commands are split into 2 blocks each containing 32 commands. The internal com-
mands will perform internal control of the RM like masking the alarm currently in process, changing
the state machine value (to try different pattern or reconfigure). The table below list the commands.

137.6.2 External commands

The External commands are sent as CPDU packets using PacketWire interface.
The format of each external command is shown below and the format of the final packet generated is
explained in the next section. If all the external commands are not needed for processing the external
command execution can be stopped by setting the delay section (see below table) of the reconfigura-
tion sequence to be 0xFFFE.

Table 2061. Internal Commands

Command
Parameter
(maximum 24 bits) Code Purpose

Clear all pending No 0x00 Clear all pending alarms
Clear current pending No 0x01 Clear current pending alarm
Mask all No 0x02 Mask all alarms
Mask current No 0x03 Mask current pending alarms
Unmask all No 0x04 Unmask all alarms
Unmask current No 0x05 Unmask current alarm
Rearm Watchdog
Nominal

Yes
(24 bit value)

0x06 Rearm watchdog with the value in the parameter

Rearm Watchdog
Redundant

Yes
(24 bit value)

0x07 Rearm watchdog with the value in the parameter

Delay Yes
(16 bit value)

0x08 Perform delay of processing according to the parameter
value. The prescaler for this delay is taken from the CP regis-
ter

Set state Yes
(4 bit value)

0x09 Set state according to parameter

Set active SGM Yes
(3 bit value)

0x0A Set which safe guard memory (SGM) contains the active
content. According to this the GSC.CONT registers are
updated

Check alarm Yes
(4 bit value)

0x0B Check that the alarm is not triggered again after a reconfigu-
ration, if triggered again increment the state and perform
another reconfiguration sequence. This must be used in com-
bination with other internal commands (delay, pending
mask). For example: clear the corresponding pending alarm,
unmask the processed alarm, provide a delay (if needed to
check that the alarm happens again) and finally provide the
Check alarm command, the state will be incremented only
when the alarm is still pending.

Processor Write protect Yes
(4 bit value)

0x0C According to this value the PSC.PMWP registers are
updated. The registers are driven as output signals and con-
nected to the write protection unit

End internal command No 0xFE After this the internal command execution moves to the next
stage (to external command if internal command 1 was pro-
cessed or end of command processing if internal 2 was pro-
cessed)

Do nothing No 0xFF Skip a command execution
GRIP, Sep 2018, Version 2018.3 1717 www.cobham.com/gaisler

GRLIB IP Core
137.7 CPDU Packet Generator

The external commands (PULSE and LEN in the above table) in the reconfiguration sequences are
formed into CPDU Packets that contain one Command Instruction. These are sent as output on a Pac-
ketWire interface as TeleCommand segments.
The block that generates the CPDU packets uses the flowing input data: 11-bit Application Process ID
(programmable through CC.APID register), 12-bit pulse output number and 3-bit pulse length
(PULSE and LEN in the above table). The Segment is illustrated in the table below.

137.8 Initial Core Configuration

During initialization the core can configure itself or other systems available in the AHB bus. The Ini-
tial configuration address ICA.CA register specify the initial configuration base address. Each config-
uration consist of four word of information described in the table below.

Table 2062. External command format
31 16 15 4 3 2 0

Delay PULSE - LEN

-

31: 16 Delay - Delay needed in between different external commands (resolution of 1 ms and configurable
using the CP register)

15: 4 PULSE - Pulse output number
3 Reserved
2: 0 LEN - Pulse Length

Table 2063.CPDU Segment.
Telecommand Segment

Segment Header Packet Header Packet Data Field

Seq.
Flags

MAP
Id.

Packet ID Packet Seq
Control

Packet
Length

Command Instruction Packet
Error

Control

Version
Number

Type Data
Filed

Header
Flag

Applica-
tion Pro-
cess ID

Seq.
Flags

Seq.
Count

Output
No. LSB

Output
No. MSB

Reserv-
ed

Pulse
Length

3 0 0 1 0 Configu-
rable

3 Auto
Incr.

3 Configu-
rable

Configu-
rable

0 Configu-
rable

Enabled

2 6 3 1 1 11 2 14 16 8 4 1 3

8 16 16 16 16 16

The sequence counter is automatically incremented after each packet

Table 2064.Initial Configuration

Commands Purpose
Address Source Source from where the data must be fetched
Address Destina-
tion

Destination to where the data must be stored

Length in words (4
bytes)

number of words to be transferred. Always one more than the number specified here. (Zero means
1 and 31 means 32, maximum 512 bytes i.e. 128 words)

Pointer Next command base address. Least significant bit specify next command is available or not. If
more configurations need to be performed set the least significant bit must be set to’1’ other wise
’0’
GRIP, Sep 2018, Version 2018.3 1718 www.cobham.com/gaisler

GRLIB IP Core
The configuration must be performed before the initial delay before start of alarm monitoring
ID.DELAY register pass out. This delay is provided for the external units and processor to set the
alarm inputs at their right nominal state and thus ensure that untimely reconfiguration are not exe-
cuted because the system is still booting.

137.9 Health Communication

The RM can send its role and health informations to another RM if an health link is available in
between them. By default one of the RM is set to be the master and the other Slave. The
CTRL.ACTMST register specify whether the RM is active or inactive.
The active master will set itself to be in execute state (after the initial delay timeout) and the inactive
slave set itself to be in the monitor state. The health state is available in the health status
HSTAT.HSTATE register. The master RM can send active message to the slave RM using the commu-
nication link. The HCTRL.COMM, HCTRL.TXEN and HCTRL.RXEN must be set in both RM to
properly send and receive. The interval of the message transfer is configurable using HMSG register,
similarly the timeout to receive the message for slave is configurable using HMTO register. If the
health send and health message timeout is enabled then when the message is not received by the slave
after the timeout the slave set itself to be master. The previous master RM set itself to be in inactive
state and mask all the alarms. The redundant RM will set itself to be master and process any pending
alarm. The redundant RM move from monitor to execute state.
Similar to this the health alarm timeout HATO register can be configured, in this case when an alarm
is not processed for a long time the active RM set itself to be inactive and send a message to the
redundant RM to go active. If the health alarm timeout is enabled in the slave then redundant RM set
itself to be active and set the other to be inactive.
By using the HCTRL.FORCE register the state of active and inactive RM can be changed. The force
can move an RM from execute to inactive state and inactive to execute state. Using the
HCTRL.FORCE the RM can also move from monitor to execute state.

137.10 RM Error

The following errors can occur in the RM unit which are updated in the RME register, Init error IER
- the initial delay (before start of alarm monitoring) timed out before the configurations are com-
pleted, Log write error LOGER - error writing the alarm log, Initial configuration read error CRER,
Initial configuration write error CWER and Sequence Read Error SEQER - Error in reading the
reconfiguration sequences after an alarm event. RM Error (RMER) - This field will go high when any
of the above error occurs. The errors can be cleared by writing ’1’ to the corresponding register. The
errors must be rectified before it can be cleared otherwise the same errors will occur. For example the
init error can be rectified by properly configuring the device before timeout (CTRL.CONFDONE is
high before timeout) and clear the init error. Similarly the configuration read and write error can be
cleared by configuring the RM unit using external unit and clear the corresponding error bits. The
configuration read and write error can also be corrected by fixing the memory fetch in which the error
occurs and making a core reset by activationg CTRLRESET.
It is possible to reconfigure (switch other RM to be active) because of an error, if the CTRL.EREC is
enabled. The switchover can be based on any of the following critical error - Initial configuration read
error CRER, Initial configuration write error CWER and Sequence Read Error SEQER. The Switcho-
ver can happen only when the health communication is available between the two RM. If no health
communication is available it is possible to provide reset using the HCTRL.RESET register. By pro-
viding the HCTRL.RESET the RM will set itself to be in default init state and the RM registers must
be configured properly by an external unit to start functioning again.
GRIP, Sep 2018, Version 2018.3 1719 www.cobham.com/gaisler

GRLIB IP Core

137.11 Registers

The core is programmed through registers mapped into APB address space.

Table 2065.Reconfiguration Module registers

APB address offset Register
0x00 Control
0x04 Initial Configuration Address
0x08 Reconfiguration Sequence Address
0x0C Alarm Log Address
0x10 Watchdog Prescaler
0x14 Common Prescaler
0x18 Initial Delay Before Start Of Alarm Monitoring
0x1C CPDU Control
0x20 Health Control
0x24 Health Message Time-Out
0x28 Health Alarm Time-Out
0x2C Health Send Message
0x40 Alarm Mask
0x44 Alarm Level
0x48 Alarm Edge
0x4C Prescaler For Alarm Delay
0x50 - 0x8C Alarm 0-15 Delay
0xB0 Status
0xB4 Alarm Status
0xB8 Alarm Pending
0xBC Health Status
0xC0 RMerror
0xD0 Watchdog Counter Nominal PM
0xD4 Software Alarm Nominal PM
0xE0 Watchdog Counter Redundant PM
0xE4 Software Alarm Redundant PM
0xF0 PM-SGM Control
0xF4 Ground-SGM Control

Table 2066. 0x00 - CTRL - Control
31 24 23 18 17 16 15 14 13 12 11 6 5 4 3 2 1 0

KEY1 RESERVED CXWDSW CXEALARM RESERVED RE
SE
T

EREC R ACTMS
T

CONF-
DONE

CON-
FEN

0 0 0 0 0 0 0 - 0 1

w r rw rw r rw rw r rw rw rw
GRIP, Sep 2018, Version 2018.3 1720 www.cobham.com/gaisler

GRLIB IP Core
31: 24 KEY1 = 0x55
23: 16 RESERVED
15: 14 Cross strapped watch dog and SW alarms (CXWDSW)

 0b00 = None Available
 0b01 = Only Nominal
 0b10 = Only External
 0b11 = Both Available

13: 12 Cross strapped External alarms (CXEALARM)
 0b00 = None Available
 0b01 = Only Nominal
 0b10 = Only External
 0b11 = Both Available

11: 6 RESERVED
5 reset (RESET) - Resets all the registers in the core.
4 Error reconfigure (EREC) -- If this field is one then for every error mentioned in the RME register

switch over to redundant reconfiguration module will occur.
3 RESERVED
2 ACTIVE - If this field is set to one then active master. By default an external input is provided to this

field which specify the system is active or not,
Connected to the signal master

1 Configuration done (CONFDONE) - If the CONFEN is set to one then if the initial configuration is
successfully performed this field will go high. It is not mandatory to use the RM DMA for initial
configuration, the initial configuration can be performed by some other unit and this field can be
enabled by the external unit performing the initial configuration. This field must be enabled by any
of the above specified option and also this must be enabled before the initial time out is configured in
the ID register otherwise RM error is triggered (RME.IE register).
Connected to the signal confdone

0 Configuration enable (CONFEN) - External units can write 1 to this field and start the initial config-
uration. This field is also controller by how the core is implemented, the reset value for this field is
provided by an external input signal. If the initial configuration should be performed by the RM
DMA after the system reset is disabled the external input should be 1, other option is by keeping the
input zero and writing this field with 1 by some other unit to start the initialization process.
Connected to the signal initconf

Table 2067. 0x04 - ICA - Initial Configuration Address
31 24 23 0

KEY1 CA

0

w rw

31: 24 KEY1= 0x55
23: 0 Configuration address CA - The initial configuration performed by the Reconfiguration module

DMA fetches the starting configuration commands from this Address.

Table 2068. 0x08 - RSA - Reconfiguration Sequence Address
31 24 23 12 11 0

KEY1 RESERVED SA

0x001

w rw

Table 2066. 0x00 - CTRL - Control
GRIP, Sep 2018, Version 2018.3 1721 www.cobham.com/gaisler

GRLIB IP Core
31: 24 KEY1= 0x55
23: 12 RESERVED
11: 0 Sequence Start Address - SA - The starting address of the first reconfiguration sequence.

Table 2069. 0x0C - ALA - Alarm Log Address
31 24 23 0

KEY1 ALA

0X400000

w rw

31: 24 KEY1= 0x55
23: 0 Alarm Log Address - ALA - The MSB address bits point to Alarm Log Area

Table 2070. 0x10 - WDP - Watchdog Prescaler
31 24 15 0

KEY1 WP

0x00C350

w rw

31: 24 KEY1= 0x55
23: 16 RESERVED
15: 0 Watchdog Prescaler - WP - Prescaler for the Watchdog counters.

Table 2071. 0x14 - CP - Common Prescaler
31 24 23 0

KEY1 CP

0x00C350

w rw

31: 24 KEY1= 0x55

23: 0 Common Prescaler - CP - Prescaler for the delay between external commands, initial delay before
start of alarm monitoring, health message time-out and health alarm time-out

Table 2072. 0x18 - ID - Initial Delay Before Start Of Alarm Monitoring
31 24 23 17 16 0

KEY1 RESERVED DELAY

0 0xFA00

w r rw

31: 24 KEY1= 0x55
23: 16 RESERVED
15: 0 Initial Delay

Table 2073. 0x1C - CC - CPDU Control
31 24 23 18 8 7 0

KEY1 RESERVED APID DIVCTRL

0 0x123 0x10

w 0 rw rw

Table 2068. 0x08 - RSA - Reconfiguration Sequence Address
GRIP, Sep 2018, Version 2018.3 1722 www.cobham.com/gaisler

GRLIB IP Core
31: 24 KEY1= 0x55
23: 19 RESERVED
18: 8 Application Identifier - (APID) - Sets the Application Identified in transmitted CPDU packets.
7: 0 Transmitter clock divider control - (DIVCTRL)- Contains the System clock division factor (indi-

cates the width of the high and low phases of the outgoing PacketWire bit clock in number of system
clock periods -1)

Table 2074. 0x20 - HCTRL - Health Control
31 24 23 8 7 5 4 3 2 1 0

KEY1 BAUD RESERVED RE
SE
T

FO
RC
E

- RXEN TXEN COME
N

0X1B2 0
r

0 0 r 0 0 0

w rw rw 0 rw rw rw

31: 24 KEY1= 0x55
23: 8 Baud required (BAUD) - This field must provide the value corresponding to the Baud rate required

which can be calculated using the system clock and the baud rate required (SYSTEMCLK/BAUD
rate) Default baud value if 50 MHz and 115200 baud rate.

5: 7 RESERVED
4 Reset (RESET) - RESET - This will cause all the health registers to be in reset state and set the RM

inactive.
4 Force (FORCE) Forced Switchover
3 RESERVED
2 Receive Enable - RXEN - Enable message reception when 1
1 Transmit Enable - TXEN - Enable message transmission when 1
0 Communication Enable - COMEN - Enable Communication between Master and Slave when 1

Table 2075. 0x24 - HMTO - Health Message Time-Out
31 24 23 22 16 15 0

KEY1 EN RESERVED HMTO

0 0 0x1F4

w rw r rw

31: 24 KEY1= 0x55
23 Enable (EN)
22: 16 RESERVED
15: 0 Health Message Time-Out - HMTO - When message transmission is enabled between the two RM a

message should be received before this time-out.

Table 2076. 0x28 - HATO - Health Alarm Time-Out
31 24 23 22 16 15 0

KEY1 EN RESERVED HATO

0 0 0xFFF0

w rw r rw

31: 24 KEY1= 0x55
23 Enable (EN)
23: 16 RESERVED
15: 0 Health Alarm Time-Out - HATO - An active Alarm should be processed before this time-out.

Table 2073. 0x1C - CC - CPDU Control
GRIP, Sep 2018, Version 2018.3 1723 www.cobham.com/gaisler

GRLIB IP Core

Table 2077. 0x2C - HSMS - Health Send Message

31 24 23 22 15 0

KEY1 EN RESERVED MSG

0 0 0xFA

w rw r rw

31: 24 KEY1= 0x55
23 Enable (EN)
23: 16 RESERVED
15: 0 Health Send Message (HSMS) - Send Health message at this time interval

Table 2078. 0x40 - AM - Alarm Mask
31 24 23 20 19 0

KEY2 RESERVED Mask

0 0

w r rw

31: 24 KEY2= 0xB6
23: 20 RESERVED
19: 0 Alarm Mask (Mask) - Each alarm is masked by writing 1 to respective bits.

Fields 15 to 0 are External alarms
Fields 16 Watchdog nominal
Fields 17 Watchdog redundant
Fields 18 Software alarm nominal
Fields 19 Software alarm redundant

Table 2079. 0x44 - AP - Alarm Polarity
31 24 23 15 0

KEY2 RESERVED POL

0 0

w r rw

31: 24 KEY2= 0xB6
23: 16 RESERVED
15: 0 Alarm Polarity - POL - When 1b corresponding alarm is active when rising edge or high level else

falling edge or low level. (only for External Alarm)

Table 2080. 0x48 - AE - Alarm Edge
31 24 23 x 0

KEY2 RESERVED EDGE

0 0

w r rw

31: 24 KEY2= 0xB6
23: 16 RESERVED
15: 0 Alarm Edge (EDGE) - When 1 corresponding alarm is Edge triggered else Level. (only for External

Alarm)

Table 2081. 0x4C - PFAD - Prescaler For Alarm Delay
31 24 23 16 15 0

KEY2 RESERVED PFAD

0 0xC350

w r rw
GRIP, Sep 2018, Version 2018.3 1724 www.cobham.com/gaisler

GRLIB IP Core
31: 24 KEY2= 0xB6
23: 16 RESERVED
15: 0 Prescaler (PFAD) - Prescaler for external alarm delay

Table 2082. 0x50-0x8C - AD - Alarm 0-15 Delay
31 24 23 22 16 15 0

KEY2 PRE-
SEL

RESERVED DELAY

0 0 0

w rw r rw

31: 24 KEY2= 0xB6
23 Prescaler Select - (PRESEL) - If this field is one then the external alarm delay includes the prescaler

(PFAD).
22: 16 RESERVED
15: 0 DELAY

Table 2083. 0xB0 - STAT - Status
31 12 11 8 7 4 3 2 1 0

RESERVED LOGCOUNT STATE R IDD Master CD

0 0 0 -

r r r r r r r

31: 8 RESERVED
11: 8 LOGCOUNT - All the alarm events are logged into an external memory, this register provides the

location of the pointer at which the next alarm will be written.
7: 4 STATE - Current state of the an alarm.
3 RESERVED
2 Init delay done (IDD) - Initial delay before start of alarm monitoring timeout.
1 Master - initial configuration of the core after reset.
0 Configuration Done - CD - When initial configuration is completed.

Table 2084. 0xB4 - ASTAT - Alarm Status
31 16 15 0

RESERVED EAIN

0

r r

31: 16 RESERVED
15: 0 External Alarm Input (EAIN) - Direct external alarm inputs

Table 2085. 0xB8 - AP - Alarm Pending
31 0

AP

0

r

Table 2081. 0x4C - PFAD - Prescaler For Alarm Delay
GRIP, Sep 2018, Version 2018.3 1725 www.cobham.com/gaisler

GRLIB IP Core
31: x RESERVED
31: 0 Alarm Pending - (AP)

Fields 15 to 0 are External alarms
Fields 16 Watchdog nominal
Fields 17 Watchdog redundant
Fields 24 to 18 Software alarm nominal
Fields 31 to 25 Software alarm redundant

Table 2086. 0xBC - HSTAT - Health Status
31 17 16 15 8 7 0

RESERVED HSTAT
E

RX TX

0 0 0

r r r r

31: 18 RESERVED
17: 16 HSTATE - Current health monitor state

 RESET = "00"
 EXECUTE = "01"
 MONITOR = "10"
 INACTIVE = "11"

15: 8 RX - Received health message
7: 0 TX - Transmitted health message

Messages
MACTIVE: = 0x94
MGOACTIVE: = 0xa2
MGOINACTIVE = 0xb1

Table 2087. 0x00 - RME - RM Error
31 24 23 6 5 4 3 2 1 0

KEY3 RESERVED IER LOGER CRER CWER SEQER RMER

w r wc wc wc wc wc wc

31: 24 KEY3=0x3E
23: 18 RESERVED
4 Init error (IER) - The initial delay before start of alarm monitoring timed out before the configura-

tions are completed.
4 Log write error (LOGER) - Error writing the alarm log
3 Initial configuration read error (CRER)
2 Initial configuration read error (CWER)
1 Sequence Read Error (SEQER) - Error in reading the reconfiguration sequences after an alarm event.
0 RM Error (RMER) - This field will go high when any of the above error occurs.

Table 2088. 0xD0 - WDNP - Watchdog Counter Nominal PM
31 24 23 7 0

KEY4 RESERVED WDPM0

0 0xFA

w r rw

Table 2085. 0xB8 - AP - Alarm Pending
GRIP, Sep 2018, Version 2018.3 1726 www.cobham.com/gaisler

GRLIB IP Core
31: 24 KEY4=0xC7
23: x RESERVED
x: 0 Watchdog Time-out PM 0 - WDPM0 -

Table 2089. 0xD4 - SWNP - Software Alarm Nominal PM
31 24 23 5 4 3 2 0

KEY5 RESERVED R EN SWPM0

0 0 0 0

w r r rw rw

31: 24 KEY5=0x2A
23: 5 RESERVED
4 RESERVED
3 Enable (EN) - Should be written with 1 when a software alarm needed to be triggered, (cleared inter-

nally)
2: 0 Software Alarm PM 0 (SWPM0) - Software alarm from the nominal processor module. (any value

other than 0b000 trigger corresponding software alarm)

Table 2090. 0xE0 - WDRP - Watchdog Counter Redundant PM
31 24 23 7 0

KEY6 RESERVED WDPM1

0 0xFA

w r rw

31: 24 KEY6=0xD4
23: x RESERVED
x: 0 Watchdog Time-out PM 1 - WDPM1 -

Table 2091. 0xE4 - SWRP - Software Alarm Redundant PM
31 24 23 5 4 3 2 0

KEY7 RESERVED R EN SWPM1

0 0 0 0

w r r rw rw

31: 24 KEY7=0xEB
23: 5 RESERVED
4 RESERVED
3 Enable (EN) - Should be written with 1 when a software alarm needed to be triggered, (cleared inter-

nally)
2: 0 Software Alarm PM 1 (SWPM1) - Software alarm from the redundant processor module. (any value

other than 0b000 trigger corresponding software alarm)

Table 2092. 0xF0 - GSC - Ground-SGM Control
31 24 23 6 4 3 2 1 0

KEY8 RESERVED GNDP2 GNDP1 CONT3 CONT2 CONT1

0 0 0 0 0

w r rw rw rw rw rw

Table 2088. 0xD0 - WDNP - Watchdog Counter Nominal PM
GRIP, Sep 2018, Version 2018.3 1727 www.cobham.com/gaisler

GRLIB IP Core
137.12 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x09A. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

137.13 Implementation

137.13.1Reset

The core does not change reset behaviour depending on settings in the GRLIB configuration package
(see GRLIB User’s Manual). The core makes use of synchronous reset and resets a subset of its inter-
nal registers.

31: 24 KEY8=0x83
23: 5 RESERVED
4 Writeprotect Area 2 from Ground access (GNDP2) - Active when set 1
3 Writeprotect Area 1 from Ground access (GNDP1) - Active when set 1
2 Active Context 3 (Cont3) - When set SGM area #3 currently contains the active context
1 Active Context 2 (Cont2) - When set SGM area #2 currently contains the active context
0 Active Context 1 (Cont1) - When set SGM area #1 currently contains the active context

Table 2093. 0xF4 - PSC - PM-SGM Control
31 24 23 4 3 2 1 0

KEY9 RESERVED PMwP4 PMWP3 PMWP2 PMWP1

0 0 0 0

w r rw rw rw rw

31: 24 KEY9=0x92
23: 2 RESERVED
3 Writeprotect Area 4 from PM access (PMP4) - Active when set 1
2 Writeprotect Area 3 from PM access (PMP3) - Active when set 1
1 Writeprotect Area 2 from PM access (PMP2) - Active when set 1
0 Writeprotect Area 1 from PM access (PMP1) - Active when set 1

Table 2092. 0xF0 - GSC - Ground-SGM Control
GRIP, Sep 2018, Version 2018.3 1728 www.cobham.com/gaisler

GRLIB IP Core

137.14 Configuration options

Table 2094 shows the configuration options of the core (VHDL generics).

Table 2094.Configuration options

Generic Function Allowed range Default
gCONFADDR Starting address location for the initial configuration

commands
0 - 16#FFFFFF# 16#100000#

0
gSEQADDR Starting address location for the reconfiguration

sequence
0 - 16#FFF# 16#300#

gLOGADDR Starting address location for the alarm logs 0 - 16#FFFFFF# 16#400000#
0

gNOEXT Number of external alarms 2 - 16 16
gALARMPRE Alarm delay preamble bits 1 - 24 16
gALARMDLY Alarm delay timeout bits 1 - 23 8
gWATCHDOG Watchdog availability (0- No watchdog alarm, 1- only

nominal, 2- both nominal and redundant)
0 - 2 2

gWDOGPRE Watchdog preamble bits 1 - 24 16
gWDOGDLY Watchdog timeout bits 1 - 24 8
gSWALARM Software alarm available (0- No software alarm, 1- only

nominal, 2- both nominal and redundant)
0 - 2 2

gNOSW Number of software alarms 1 - 7 7
gCOMPRE Common preamble bits 1 - 24 24
gINITDLY Initial timeout bits 1 - 16 16
gSYSTEMCLK System clock frequency [Hz] Integer 50000000
gBAUD UART baud rate Integer 115200
gPROG Programmable baud rate when 1 0 - 1 1
gHEALTH Health communication availability 0 - 1 1
gHTHBITS Health timeout bits 1 - 23 16
gBUFTYPE Type of RAM used (0 - Generic RAM interface selected,

1 - Gaisler RAM interface selected)
0 0

gPINDEX APB slave index 0 - NAPBSLV-1 0
gHINDEX AHB master index 0 - NAHBMST-1 0
gPADDR ADDR field of the APB BAR 0 - 16#FFF# 0
gPMASK MASK field of the APB BAR 0 - 16#FFF# 16#FFF#
gPIRQ Not implemented 0 - NAPBIRQ 1
GRIP, Sep 2018, Version 2018.3 1729 www.cobham.com/gaisler

GRLIB IP Core

137.15 Signal descriptions

Table 2095 shows the interface signals of the core (VHDL ports).

Table 2095.Signal descriptions

Signal name Field Type Function Active
RST N/A Input Reset Low
CLK N/A Input Clock -
APBI * Input APB slave input signals -
APBO * Output APB slave output signals -
AHBMI * Input AHB master input signals -
AHBMO * Output AHB master output signals -
EXTALARM N/A Input External alarm input signals -
EXTTIME N/A Input External time input signals -
PKTWREADY N/A Input Ready for packet High
PKTWBUSY_N N/A Input Not ready for octet Low
PKTWCLK N/A Output Bit clock -
PKTWDATA N/A Output Data -
PKTWVALID N/A Output Delimiter High
PKTWABORT N/A Output Abort High
HEALTHRX N/A Input UART receiver data -
HEALTHTX N/A Output UART transmit data -
MASTER N/A Input Select RM master or slave High
INITCONF N/A Input To enable initial configuration externally High
CONFDONE N/A Input If initial configuration not required tie this signal

to active High
High

ALARM_EVT N/A Output AHB master output signals -
ALARMLOG N/A Output AHB master input signals High
RMERROR N/A Output AHB master output signals High
GNDWPRT2 N/A Output This signal reflects the contents of the

GSC.GNDP2 register
High

GNDWPRT1 N/A Output This signal reflects the contents of the
GSC.GNDP1 register

High

PMWPRT4 N/A Output This signal reflects the contents of the
PSC.PMWP4 register

High

PMWPRT3 N/A Output This signal reflects the contents of the
PSC.PMWP3 register

High

PMWPRT2 N/A Output This signal reflects the contents of the
PSC.PMWP2 register

High

PMWPRT1 N/A Output This signal reflects the contents of the
PSC.PMWP1 register

High

* see GRLIB IP Library User’s Manual
GRIP, Sep 2018, Version 2018.3 1730 www.cobham.com/gaisler

GRLIB IP Core

137.16 Signal definitions and reset values

The signals and their reset values are described in table 2096.

137.17 Timing

The timing waveforms and timing parameters are shown in figure 342 and are defined in table 2097.

Note: The ctsn[] and rxd[] inputs are re-synchronized internally. These signals do not have to meet
any setup or hold requirements.

137.18 Library dependencies

Table 2098 shows libraries that should be used when instantiating the core.

137.19 Instantiation

This example shows how the core can be instantiated.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;

Table 2096.Signal definitions and reset values

Signal name Type Function Active Reset value
txd[] Output UART transmit data line - Logical 1
rtsn[] Output Ready To Send Low Logical 1
rxd[] Input UART receive data line - -
ctsn[] Input Clear To Send Low -

Table 2097.Timing parameters

Name Parameter Reference edge Min Max Unit
tAPBUART0 clock to output delay rising clk edge TBD TBD ns

tAPBUART1 input to clock hold rising clk edge - - ns

tAPBUART2 input to clock setup rising clk edge - - ns

Table 2098.Library dependencies

Library Package Imported unit(s) Description
GRLIB AMBA Signals APB signal definitions
TMTC GRRM Signals, component Signal and component declaration

Figure 342. Timing waveforms

tAPBUART0txd[], rtsn[]

clk

tAPBUART0

tAPBUART1rxd[], ctsn[] tAPBUART2
GRIP, Sep 2018, Version 2018.3 1731 www.cobham.com/gaisler

GRLIB IP Core

library gaisler;
use gaisler.grreconfigmodule.all;
entity grrm_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- external alarms
 extalarm: in std_logic_vector(gNOEXT-1 downto 0);
 -- external time
 exttime: in std_logic_vector(54 downto 0);

 -- packetwire interface
 pktwready: in std_logic;
 pktwbusy_n: in std_logic;
 pktwclk: out std_logic;
 pktwdata: out std_logic;
 pktwvalid: out std_logic;
 pktwabort: out std_logic;
 -- health communication
 healthrx: in std_logic;
 healthtx: out std_logic;
);
end;

architecture rtl of apbuart_ex is

 -- APB signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);

begin

 -- AMBA Components are instantiated here
 ...
rm0: grrm
 generic map (
 gCONFADDR => 16#000400#,
 gSEQADDR => 16#000#,
 gLOGADDR => 16#400001#,
 gNOEXT => 16,
 gALARMPRE => 16,
 gALARMDLY => 16,
 gWATCHDOG => 2,
 gWDOGPRE => 16,
 gWDOGDLY => 8,
 gSWALARM => 2,
 gNOSW => 7,
 gCOMPRE => 24,
 gINITDLY => 16,
 gSYSTEMCLK => 50000000,
 gBAUD => 115200,
 gPROG => 1,
 gHEALTH => 1,
 gHTHBITS => 16,
 gBUFTYPE => 0,
 gPINDEX => 10,
 gHINDEX => 5,
 gPADDR => 10,
 gPMASK => 16#FFF#,
 gPIRQ => 10)
 port map (
 rstn => rstn,
 clk => clk,
 apbi => apbi,
 apbo => apbo(10),
 ahbmi => ahbmi,
 ahbmo => ahbmo(5),
 extalarm => extalarm,
 exttime => exttime,
 pktwclk => pktwclk,
GRIP, Sep 2018, Version 2018.3 1732 www.cobham.com/gaisler

GRLIB IP Core

 pktwdata => pktwdata,
 pktwvalid => pktwvalid,
 pktwabort => pktwabort,
 pktwready => pktwready,
 pktwbusy_n => pktwbusy_n,
 healthrx => healthrx,
 healthtx => healthtx,
 master => dipsw(6),
 initconf => dipsw(7),
 confdone => ’0’,
 alarm_evt => open,
 alarmlog => alarmlog,
 rmerror => rmerror,
 gndwprt2 => gndwprt2,
 gndwprt1 => gndwprt1,
 pmwprt4 => pmwprt4,
 pmwprt3 => pmwprt3,
 pmwprt2 => pmwprt2,
 pmwprt1 => pmwprt1);
GRIP, Sep 2018, Version 2018.3 1733 www.cobham.com/gaisler

Cobham Gaisler AB
Kungsgatan 12
411 19 Göteborg
Sweden
www.cobham.com/gaisler
sales@gaisler.com
T: +46 31 7758650
F: +46 31 421407

Cobham Gaisler AB, reserves the right to make changes to any products and services described herein at any
time without notice. Consult Cobham or an authorized sales representative to verify that the information in
this document is current before using this product. Cobham does not assume any responsibility or liability
arising out of the application or use of any product or service described herein, except as expressly agreed to
in writing by Cobham; nor does the purchase, lease, or use of a product or service from Cobham convey a
license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of Cobham
or of third parties. All information is provided as is. There is no warranty that it is correct or suitable for any
purpose, neither implicit nor explicit.

Copyright © 2018 Cobham Gaisler AB

GRIP, Sep 2018, Version 2018.3 1734 of 1734 www.cobham.com/gaisler

GRLIB IP Core

	1 Introduction
	1.1 Scope
	1.2 Other resources
	1.3 Reference documents
	1.4 IP core overview
	1.5 Spacecraft data handling IP cores
	1.6 Supported technologies
	1.7 Implementation characteristics
	1.8 Definitions
	1.8.1 Bit numbering
	1.8.2 Radix
	1.8.3 Data types

	1.9 Register descriptions

	2 AHB2AHB - Uni-directional AHB/AHB bridge
	2.1 Overview
	2.2 Operation
	2.2.1 General
	2.2.2 AHB read transfers
	2.2.3 AHB write transfers
	2.2.4 Deadlock conditions
	2.2.5 Locked transfers
	2.2.6 Read and write combining
	2.2.7 Burst operation
	2.2.8 Transaction ordering, starvation and AMBA arbitration schemes
	2.2.9 First-come, first-served ordering
	2.2.10 Bus arbiter ordering
	2.2.11 AMBA SPLIT support
	2.2.12 Core latency
	2.2.13 Endianness

	2.3 Registers
	2.4 Vendor and device identifiers
	2.5 Implementation
	2.5.1 Technology mapping
	2.5.2 Reset
	2.5.3 RAM usage

	2.6 Configuration options
	2.7 Signal descriptions
	2.8 Library dependencies
	2.9 Instantiation

	3 AHBM2AXI - AHB Master to AXI Adapter
	3.1 Overview
	3.1.1 AHB support

	3.2 Special Considerations
	3.3 Operation
	3.3.1 Read Prefetching and Write Buffering
	3.3.2 Read Prefetching
	3.3.3 Write Buffering
	3.3.4 Endianness

	3.4 AXI AxPROT and AxCACHE Translations
	3.5 Configuration Options
	3.6 Signal descriptions
	3.7 Library dependencies
	3.8 Instantiation

	4 AHB2AXIB - AHB to AXI Bridge
	4.1 Overview
	4.1.1 AHB support

	4.2 Operation
	4.2.1 Read Prefetching and Write Buffering and Postponed Writes
	4.2.2 Read Prefetching
	4.2.3 Write Buffering
	4.2.4 Narrow Sized Transactions
	4.2.5 Postponed Writes
	4.2.6 Endianness

	4.3 AXI AxPROT and AxCACHE Translations
	4.4 Configuration Options
	4.5 Signal descriptions
	4.6 Library dependencies
	4.7 Instantiation
	4.7.1 AHB2AXIB bridge is used to connect an AXI slave to an AHB bus
	4.7.2 AHB2AXIB bridge is used to connect a standalone AHB master to an AXI slave.

	5 AHBBRIDGE - Bi-directional AHB/AHB bridge
	5.1 Overview
	5.2 Operation
	5.2.1 General
	5.2.2 Deadlock conditions
	5.2.3 Read and write combining
	5.2.4 Endianness

	5.3 Registers
	5.4 Vendor and device identifiers
	5.5 Implementation
	5.6 Configuration options
	5.7 Signal descriptions
	5.8 Library dependencies

	6 AHBCTRL - AMBA AHB controller with plug&play support
	6.1 Overview
	6.2 Operation
	6.2.1 Arbitration
	6.2.2 Decoding
	6.2.3 Plug&play information

	6.3 AHB split support
	6.4 Locked accesses
	6.5 AHB bus monitor
	6.6 Registers
	6.7 Implementation
	6.7.1 Reset

	6.8 Configuration options
	6.9 Signal descriptions
	6.10 Library dependencies
	6.11 Component declaration
	6.12 Instantiation
	6.13 Debug print-out

	7 AHBJTAG - JTAG Debug Link with AHB Master Interface
	7.1 Overview
	7.2 Operation
	7.2.1 Transmission protocol
	7.2.2 Endianness

	7.3 Implementation
	7.3.1 Clocking
	7.3.2 Reset

	7.4 Registers
	7.5 Vendor and device identifiers
	7.6 Implementation
	7.6.1 Reset

	7.7 Configuration options
	7.8 Signal descriptions
	7.9 Signal definitions and reset values
	7.10 Timing
	7.11 Library dependencies
	7.12 Instantiation
	7.13 Simulation

	8 AHBRAM - Single-port RAM with AHB interface
	8.1 Overview
	8.1.1 Endianness

	8.2 Vendor and device identifiers
	8.3 Implementation
	8.3.1 Reset

	8.4 Configuration options
	8.5 Signal descriptions
	8.6 Library dependencies
	8.7 Component declaration
	8.8 Instantiation

	9 AHBDPRAM - Dual-port RAM with AHB interface
	9.1 Overview
	9.1.1 Endianness

	9.2 Vendor and device identifiers
	9.3 Implementation
	9.3.1 Reset

	9.4 Configuration options
	9.5 Signal descriptions
	9.6 Library dependencies
	9.7 Component declaration

	10 AHBROM - Single-port ROM with AHB interface
	10.1 Overview
	10.2 PROM generation
	10.2.1 Endianness

	10.3 Vendor and device identifiers
	10.4 Implementation
	10.4.1 Reset

	10.5 Configuration options
	10.6 Signal descriptions
	10.7 Library dependencies
	10.8 Component declaration
	10.9 Instantiation

	11 AHBSTAT - AHB Status Registers
	11.1 Overview
	11.2 Operation
	11.2.1 Errors
	11.2.2 Correctable errors
	11.2.3 Interrupts
	11.2.4 Filtering and multiple error detection

	11.3 Registers
	11.3.1 AHB Status register
	11.3.2 AHB Failing address register

	11.4 Vendor and device identifiers
	11.5 Implementation
	11.5.1 Reset

	11.6 Configuration options
	11.7 Signal descriptions
	11.8 Library dependencies
	11.9 Instantiation

	12 AHBTRACE - AHB Trace buffer
	12.1 Overview
	12.2 Operation
	12.2.1 Overview
	12.2.2 AHB statistics

	12.3 Registers
	12.3.1 Register address map
	12.3.2 Trace buffer control register
	12.3.3 Trace buffer index register
	12.3.4 Trace buffer time tag register
	12.3.5 Trace buffer master/slave filter register
	12.3.6 Trace buffer breakpoint registers

	12.4 Vendor and device identifiers
	12.5 Implementation
	12.5.1 Reset

	12.6 Configuration options
	12.7 Signal descriptions
	12.8 Library dependencies
	12.9 Component declaration

	13 AHBUART- AMBA AHB Serial Debug Interface
	13.1 Overview
	13.2 Operation
	13.2.1 Transmission protocol
	13.2.2 Baud rate generation

	13.3 Registers
	13.3.1 AHB UART control register
	13.3.2 AHB UART status register
	13.3.3 AHB UART scaler register

	13.4 Vendor and device identifiers
	13.5 Implementation
	13.5.1 Reset

	13.6 Configuration options
	13.7 Signal descriptions
	13.8 Signal definitions and reset values
	13.9 Timing
	13.10 Library dependencies
	13.11 Instantiation

	14 AMBAMON - AMBA Bus Monitor
	14.1 Overview
	14.2 Rules
	14.3 Configuration options
	14.4 Signal descriptions
	14.5 Library dependencies
	14.6 Instantiation

	15 APBCTRL - AMBA AHB/APB bridge with plug&play support
	15.1 Overview
	15.2 Operation
	15.2.1 Decoding
	15.2.2 Plug&play information

	15.3 APB bus monitor
	15.4 Vendor and device identifiers
	15.5 Implementation
	15.5.1 Reset

	15.6 Configuration options
	15.7 Signal descriptions
	15.8 Library dependencies
	15.9 Component declaration
	15.10 Instantiation
	15.11 Debug print-out

	16 APBPS2 - PS/2 host controller with APB interface
	16.1 Introduction
	16.2 Receiver operation
	16.3 Transmitter operations
	16.4 Clock generation
	16.5 Registers
	16.5.1 PS/2 Data Register
	16.5.2 PS/2 Status Register
	16.5.3 PS/2 Control Register
	16.5.4 PS/2 Timer Reload Register

	16.6 Vendor and device identifiers
	16.7 Implementation
	16.7.1 Reset

	16.8 Configuration options
	16.9 Signal descriptions
	16.10 Library dependencies
	16.11 Instantiation
	16.12 Keboard scan codes
	16.13 Keyboard commands

	17 APBUART - AMBA APB UART Serial Interface
	17.1 Overview
	17.2 Operation
	17.2.1 Transmitter operation
	17.2.2 Receiver operation

	17.3 Baud-rate generation
	17.4 Loop back mode
	17.5 FIFO debug mode
	17.6 Interrupt generation
	17.7 Registers
	17.7.1 UART Data Register
	17.7.2 UART Status Register
	17.7.3 UART Control Register
	17.7.4 UART Scaler Register
	17.7.5 UART FIFO Debug Register

	17.8 Vendor and device identifiers
	17.9 Implementation
	17.9.1 Reset

	17.10 Configuration options
	17.11 Signal descriptions
	17.12 Signal definitions and reset values
	17.13 Timing
	17.14 Library dependencies
	17.15 Instantiation

	18 APBVGA - VGA controller with APB interface
	18.1 Introduction
	18.2 Operation
	18.3 Registers
	18.3.1 VGA Data Register
	18.3.2 VGA Background Color
	18.3.3 VGA Foreground Color

	18.4 Vendor and device identifiers
	18.5 Implementation
	18.5.1 Reset

	18.6 Configuration options
	18.7 Signal descriptions
	18.8 Library dependencies
	18.9 Instantiation

	19 CAN_OC - GRLIB wrapper for OpenCores CAN Interface core
	19.1 Overview
	19.2 Opencores CAN controller overview
	19.3 AHB interface
	19.4 BasicCAN mode
	19.4.1 BasicCAN register map
	19.4.2 Control register
	19.4.3 Command register
	19.4.4 Status register
	19.4.5 Interrupt register
	19.4.6 Transmit buffer
	19.4.7 Receive buffer
	19.4.8 Acceptance filter

	19.5 PeliCAN mode
	19.5.1 PeliCAN register map
	19.5.2 Mode register
	19.5.3 Command register
	19.5.4 Status register
	19.5.5 Interrupt register
	19.5.6 Interrupt enable register
	19.5.7 Arbitration lost capture register
	19.5.8 Error code capture register
	19.5.9 Error warning limit register
	19.5.10 RX error counter register (address 14)
	19.5.11 TX error counter register (address 15)
	19.5.12 Transmit buffer
	19.5.13 Receive buffer
	19.5.14 Acceptance filter
	19.5.15 RX message counter

	19.6 Common registers
	19.6.1 Clock divider register
	19.6.2 Bus timing 0
	19.6.3 Bus timing 1

	19.7 Design considerations
	19.8 Vendor and device identifiers
	19.9 Implementation
	19.9.1 Reset

	19.10 Configuration options
	19.11 Signal descriptions
	19.12 Signal definitions and reset values
	19.13 Timing
	19.14 Library dependencies
	19.15 Component declaration

	20 CLKGEN - Clock generation
	20.1 Overview
	20.2 Technology specific clock generators
	20.2.1 Overview
	20.2.2 Generic technology
	20.2.3 ProASIC
	20.2.4 Actel Axcelerator
	20.2.5 Actel ProASIC3
	20.2.6 Altera Cyclone III
	20.2.7 Altera Stratix 1/2
	20.2.8 Altera Stratix 3
	20.2.9 RHLIB18t
	20.2.10 RHUMC
	20.2.11 Xilinx Spartan 3/3e/6
	20.2.12 Xilinx Virtex
	20.2.13 Xilinx Virtex 2/4
	20.2.14 Xilinx Virtex 5/6
	20.2.15 eASIC90 (Nextreme)
	20.2.16 eASIC45 (Nextreme2)
	20.2.17 Actel Fusion
	20.2.18 Altera Stratix 4

	20.3 Configuration options
	20.4 Signal descriptions
	20.5 Signal definitions and reset values
	20.6 Timing
	20.7 Library dependencies
	20.8 Instantiation

	21 DDRSPA - 16-, 32- and 64-bit DDR266 Controller
	21.1 Overview
	21.2 Operation
	21.2.1 General
	21.2.2 Read cycles
	21.2.3 Write cycles
	21.2.4 Initialization
	21.2.5 Configurable DDR SDRAM timing parameters
	21.2.6 Extended timing fields
	21.2.7 Refresh
	21.2.8 Self Refresh
	21.2.9 Clock Stop
	21.2.10 Power-Down
	21.2.11 Deep Power-Down
	21.2.12 Status Read Register
	21.2.13 Temperature-Compensated Self Refresh
	21.2.14 Drive Strength
	21.2.15 SDRAM commands
	21.2.16 Clocking
	21.2.17 Pads
	21.2.18 Endianness

	21.3 Registers
	21.3.1 Control Register
	21.3.2 Configuration Register
	21.3.3 Power-Saving Configuration Register
	21.3.4 Status Read Register
	21.3.5 PHY Configuration Register 0
	21.3.6 PHY Configuration Register 1

	21.4 Vendor and device identifiers
	21.5 Configuration options
	21.6 Implementation
	21.6.1 Technology mapping
	21.6.2 FPGA support
	21.6.3 RAM usage

	21.7 Signal descriptions
	21.8 Library dependencies
	21.9 Component declaration
	21.10 Instantiation

	22 DDR2SPA - 16-, 32- and 64-bit Single-Port Asynchronous DDR2 Controller
	22.1 Overview
	22.2 Operation
	22.2.1 General
	22.2.2 Data transfers
	22.2.3 Initialization
	22.2.4 Big memory support
	22.2.5 Configurable DDR2 SDRAM timing parameters
	22.2.6 Refresh
	22.2.7 DDR2 SDRAM commands
	22.2.8 Registered SDRAM
	22.2.9 Clocking
	22.2.10 Read data clock calibration on Xilinx Virtex
	22.2.11 Read data clock calibration on Altera Stratix
	22.2.12 Read data clock calibration on Xilinx Spartan-3
	22.2.13 Pads
	22.2.14 Endianness

	22.3 Fault-tolerant operation (preliminary)
	22.3.1 Overview
	22.3.2 Memory setup
	22.3.3 Error-correction properties
	22.3.4 Data transfers
	22.3.5 DDR2 behavior
	22.3.6 Configuration
	22.3.7 Diagnostic checkbit access
	22.3.8 Code boundary
	22.3.9 Data muxing
	22.3.10 Memory fault recovery

	22.4 Registers
	22.4.1 DDR2 SDRAM Configuration Register 1
	22.4.2 DDR2 SDRAM Configuration Register 2
	22.4.3 DDR2 SDRAM Configuration Register 3
	22.4.4 DDR2 SDRAM Configuration Register 4
	22.4.5 DDR2 SDRAM Configuration Register 5
	22.4.6 DDR2 FT Configuration Register
	22.4.7 DDR2 FT Diagnostic Address
	22.4.8 DDR2 FT Diagnostic Checkbits
	22.4.9 DDR2 FT Diagnostic Data
	22.4.10 DDR2 FT Boundary Address Register

	22.5 Vendor and device identifiers
	22.6 Configuration options
	22.7 Implementation
	22.7.1 Technology mapping
	22.7.2 FPGA support
	22.7.3 RAM usage
	22.7.4 Xilinx Virtex-specific issues
	22.7.5 Design tools

	22.8 Signal descriptions
	22.9 Library dependencies
	22.10 Component declaration
	22.11 Instantiation

	23 DIV32 - Signed/unsigned 64/32 divider module
	23.1 Overview
	23.2 Operation
	23.3 Implementation
	23.3.1 Reset

	23.4 Configurations options
	23.5 Signal descriptions
	23.6 Library dependencies
	23.7 Component declaration
	23.8 Instantiation

	24 DSU3 - LEON3 Hardware Debug Support Unit
	24.1 Overview
	24.2 Operation
	24.3 AHB trace buffer
	24.3.1 AHB trace buffer filters
	24.3.2 AHB statistics

	24.4 Instruction trace buffer
	24.5 DSU memory map
	24.6 DSU registers
	24.6.1 DSU control register
	24.6.2 DSU Break and Single Step register
	24.6.3 DSU Debug Mode Mask Register
	24.6.4 DSU trap register
	24.6.5 DSU time tag counter
	24.6.6 DSU ASI register
	24.6.7 AHB Trace buffer control register
	24.6.8 AHB trace buffer index register
	24.6.9 AHB trace buffer filter control register
	24.6.10 AHB trace buffer filter mask register
	24.6.11 AHB trace buffer breakpoint registers
	24.6.12 Instruction trace control register 0
	24.6.13 Instruction trace control register 1

	24.7 Vendor and device identifiers
	24.8 Implementation
	24.8.1 Reset
	24.8.2 Technology mapping

	24.9 Configuration options
	24.10 Signal descriptions
	24.11 Signal definitions and reset values
	24.12 Timing
	24.13 Library dependencies
	24.14 Component declaration
	24.15 Instantiation

	25 DSU4 - LEON4 Hardware Debug Support Unit
	25.1 Overview
	25.2 Operation
	25.3 AHB trace buffer
	25.3.1 AHB trace buffer filters
	25.3.2 AHB statistics

	25.4 Instruction trace buffer
	25.5 DSU memory map
	25.6 DSU registers
	25.6.1 DSU control register
	25.6.2 DSU Break and Single Step register
	25.6.3 DSU Debug Mode Mask Register
	25.6.4 DSU trap register
	25.6.5 DSU time tag counter
	25.6.6 DSU ASI register
	25.6.7 AHB Trace buffer control register
	25.6.8 AHB trace buffer index register
	25.6.9 AHB trace buffer filter control register
	25.6.10 AHB trace buffer filter mask register
	25.6.11 AHB trace buffer breakpoint registers
	25.6.12 Instruction trace control register 0
	25.6.13 Instruction trace control register 1
	25.6.14 Instruction count register
	25.6.15 AHB watchpoint control register
	25.6.16 AHB watchpoint data and mask registers

	25.7 Vendor and device identifiers
	25.8 Implementation
	25.8.1 Reset
	25.8.2 Technology mapping

	25.9 Configuration options
	25.10 Signal descriptions
	25.11 Signal definitions and reset values
	25.12 Timing
	25.13 Library dependencies
	25.14 Component declaration
	25.15 Instantiation

	26 FTAHBRAM - On-chip SRAM with EDAC and AHB interface
	26.1 Overview
	26.2 Operation
	26.2.1 Overview
	26.2.2 Read and write behaviour
	26.2.3 Read and write diagnostics
	26.2.4 Error counter
	26.2.5 Endianness

	26.3 Registers
	26.4 Vendor and device identifiers
	26.5 Implementation
	26.5.1 Reset

	26.6 Configuration options
	26.7 Signal descriptions
	26.8 Library dependencies
	26.9 Instantiation

	27 FTMCTRL - 8/16/32-bit Memory Controller with EDAC
	27.1 Overview
	27.2 PROM access
	27.3 Memory mapped IO
	27.4 SRAM access
	27.5 8-bit and 16-bit PROM and SRAM access
	27.6 8- and 16-bit I/O access
	27.7 Burst cycles
	27.8 SDRAM access
	27.8.1 General
	27.8.2 Address mapping
	27.8.3 Initialisation
	27.8.4 Configurable SDRAM timing parameters
	27.8.5 Refresh
	27.8.6 SDRAM commands
	27.8.7 Read cycles
	27.8.8 Write cycles
	27.8.9 Read-modify-write cycles
	27.8.10 Address bus
	27.8.11 Data bus
	27.8.12 Clocking
	27.8.13 Initialisation

	27.9 Memory EDAC
	27.9.1 BCH EDAC
	27.9.2 Reed-Solomon EDAC
	27.9.3 EDAC Error reporting

	27.10 Bus Ready signalling
	27.11 Access errors
	27.12 Attaching an external DRAM controller
	27.13 Output enable timing
	27.14 Read strobe
	27.15 Endianness
	27.16 Registers
	27.16.1 Memory configuration register 1 (MCFG1)
	27.16.2 Memory configuration register 2 (MCFG2)
	27.16.3 Memory configuration register 3 (MCFG3)
	27.16.4 Memory configuration register 4 (MCFG4)
	27.16.5 Memory configuration register 5 (MCFG5)
	27.16.6 Memory configuration register 6 (MCFG6)
	27.16.7 Memory configuration register 7 (MCFG7)

	27.17 Vendor and device identifiers
	27.18 Implementation
	27.18.1 Reset

	27.19 Configuration options
	27.20 Scan support
	27.21 Signal descriptions
	27.22 Signal definitions and reset values
	27.23 Timing
	27.24 Library dependencies
	27.25 Instantiation

	28 FTSDCTRL - 32/64-bit PC133 SDRAM Controller with EDAC
	28.1 Overview
	28.2 Operation
	28.2.1 General
	28.2.2 Initialization
	28.2.3 Configurable SDRAM timing parameters
	28.2.4 Refresh
	28.2.5 Self Refresh
	28.2.6 Power-Down
	28.2.7 Deep Power-Down
	28.2.8 Temperature-Compensated Self Refresh
	28.2.9 Drive Strength
	28.2.10 SDRAM commands
	28.2.11 Read cycles
	28.2.12 Write cycles
	28.2.13 Address bus connection
	28.2.14 Data bus
	28.2.15 EDAC
	28.2.16 Clocking
	28.2.17 Endianness

	28.3 Registers
	28.3.1 SDRAM configuration register (SDCFG)
	28.3.2 EDAC configuration register (ECFG)
	28.3.3 SDRAM Power-Saving configuration register (SDCFG2)

	28.4 Vendor and device identifiers
	28.5 Implementation
	28.5.1 Reset

	28.6 Configuration options
	28.7 Signal descriptions
	28.8 Signal definitions and reset values
	28.9 Timing
	28.10 Library dependencies
	28.11 Instantiation
	28.12 Constraints

	29 FTSRCTRL - Fault Tolerant 32-bit PROM/SRAM/IO Controller
	29.1 Overview
	29.2 Operation
	29.2.1 8-bit PROM access
	29.2.2 Access errors
	29.2.3 Using bus ready signalling

	29.3 PROM/SRAM/IO waveforms
	29.4 Endianness
	29.5 Registers
	29.5.1 Memory Configuration Register 1
	29.5.2 Memory Configuration Register 2
	29.5.3 Memory Configuration Register 3

	29.6 Vendor and device identifiers
	29.7 Implementation
	29.7.1 Reset

	29.8 Configuration options
	29.9 Signal descriptions
	29.10 Signal definitions and reset values
	29.11 Timing
	29.12 Library dependencies
	29.13 Component declaration
	29.14 Instantiation

	30 FTSRCTRL8 - 8-bit SRAM/16-bit IO Memory Controller with EDAC
	30.1 Overview
	30.2 Operation
	30.2.1 Memory access
	30.2.2 I/O access
	30.2.3 Using Bus Exception
	30.2.4 Using Bus Ready

	30.3 SRAM/IO waveforms
	30.4 Endianness
	30.5 Registers
	30.5.1 Memory Configuration Register 1
	30.5.2 Memory Configuration Register 2
	30.5.3 Memory Configuration 3

	30.6 Vendor and device identifiers
	30.7 Implementation
	30.7.1 Reset

	30.8 Configuration options
	30.9 Signal descriptions
	30.10 Signal definitions and reset values
	30.11 Timing
	30.12 Library dependencies
	30.13 Component declaration
	30.14 Instantiation

	31 GPTIMER - General Purpose Timer Unit
	31.1 Overview
	31.2 Operation
	31.3 Registers
	31.3.1 Scaler Value Register
	31.3.2 Scaler Reload Value Register
	31.3.3 Configuration Register
	31.3.4 Timer Latch Configuration Register
	31.3.5 Timer N Counter Value Register
	31.3.6 Timer N Reload Value Register
	31.3.7 Timer N Control Register
	31.3.8 Timer N Latch Register

	31.4 Vendor and device identifiers
	31.5 Implementation
	31.5.1 Reset

	31.6 Configuration options
	31.7 Signal descriptions
	31.8 Signal definitions and reset values
	31.9 Timing
	31.10 Library dependencies
	31.11 Instantiation

	32 GR1553B - MIL-STD-1553B / AS15531 Interface
	32.1 Overview
	32.2 Electrical interface
	32.3 Operation
	32.3.1 Operating modes
	32.3.2 Register interface
	32.3.3 Interrupting
	32.3.4 MIL-STD-1553 Codec

	32.4 Bus Controller Operation
	32.4.1 Overview
	32.4.2 Timing control
	32.4.3 Bus selection
	32.4.4 Secondary transfer list
	32.4.5 Interrupt generation
	32.4.6 Transfer list format

	32.5 Remote Terminal Operation
	32.5.1 Overview
	32.5.2 Data transfer handling
	32.5.3 Mode Codes
	32.5.4 Event Log
	32.5.5 Subaddress table format

	32.6 Bus Monitor Operation
	32.6.1 Overview
	32.6.2 Filtering
	32.6.3 No-response handling
	32.6.4 Log entry format

	32.7 Clocking
	32.8 AXI support
	32.9 Registers
	32.9.1 IRQ Register
	32.9.2 IRQ Enable Register
	32.9.3 Hardware Configuration Register
	32.9.4 BC Status and Config Register
	32.9.5 BC Action Register
	32.9.6 BC Tranfer List Next Pointer Register
	32.9.7 BC Asynchronous List Next Pointer Register
	32.9.8 BC Timer Register
	32.9.9 BC Timer Wake-up Register
	32.9.10 BC Transfer-triggered IRQ Ring Position Register
	32.9.11 BC per-RT Bus Swap Register
	32.9.12 BC Transfer List Current Slot Pointer
	32.9.13 BC Asynchronous List Current Slot Pointer
	32.9.14 RT Status Register
	32.9.15 RT Config Register
	32.9.16 RT Bus Status Register
	32.9.17 RT Status Words Register
	32.9.18 RT Sync Register
	32.9.19 Sub Address Table Base Address Register
	32.9.20 RT Mode Code Control Register
	32.9.21 RT Time Tag Control Register
	32.9.22 RT Event Log Mask Register
	32.9.23 RT Event Log Position Register
	32.9.24 RT Event Log Interrupt Position Register
	32.9.25 BM Status Register
	32.9.26 BM Control Register
	32.9.27 BMRT Address Filter Register
	32.9.28 BMRT Sub address Filter Register
	32.9.29 BMRT Mode Code Filter Register
	32.9.30 BMLog Buffer Start
	32.9.31 BMLog Buffer End
	32.9.32 BMLog Buffer Position
	32.9.33 BM Time Tag Control Register

	32.10 Vendor and device identifiers
	32.11 Implementation
	32.11.1 Reset
	32.11.2 External control

	32.12 Configuration options
	32.13 Signal descriptions
	32.14 Signal definitions and reset values
	32.15 Timing
	32.16 Library dependencies
	32.17 Instantiation
	32.18 Constraints
	32.19 Note: AHB Interface Compatibility
	32.19.1 Introduction
	32.19.2 Generic access patterns
	32.19.3 Endianness

	32.20 Note: AHB Latency and throughput requirements
	32.20.1 Introduction
	32.20.2 BC Descriptor processing
	32.20.3 BC Asynchronous scheduling
	32.20.4 BC Data Buffer processing
	32.20.5 BC Requirements
	32.20.6 RT Transfer Processing
	32.20.7 RT Requirements
	32.20.8 Bus Monitor

	32.21 Note: BC transfer timing
	32.21.1 Introduction
	32.21.2 Overview
	32.21.3 Transceiver delay
	32.21.4 BC Transfer Steps: Parts
	32.21.5 BC transfer steps: Composition
	32.21.6 Timing calculation
	32.21.7 Example

	32.22 Note: Time synchronization
	32.22.1 Introduction
	32.22.2 Hardware features: BC features
	32.22.3 Hardware features: RT features
	32.22.4 Hardware features: Internal timers
	32.22.5 Synchronization schemes
	32.22.6 Synchronization schemes: Overview
	32.22.7 Synchronization schemes: BC without external time base
	32.22.8 Synchronization schemes: BC with external time base
	32.22.9 Synchronization schemes: RT without external time base
	32.22.10 Synchronization schemes: RT with external time base(s)
	32.22.11 Accuracy
	32.22.12 Accuracy: Propagation delays
	32.22.13 Accuracy: Clock drift

	33 GRTIMER - General Purpose Timer Unit
	33.1 Overview

	34 GRACECTRL - AMBA System ACE Interface Controller
	34.1 Overview
	34.2 Operation
	34.2.1 Operational model
	34.2.2 Bus widths
	34.2.3 Clocking and synchronization
	34.2.4 Endianness

	34.3 Registers
	34.4 Vendor and device identifier
	34.5 Implementation
	34.5.1 Reset
	34.5.2 Technology mapping
	34.5.3 RAM usage

	34.6 Configuration options
	34.7 Signal descriptions
	34.8 Signal definitions and reset values
	34.9 Library dependencies
	34.10 Instantiation

	35 GRAES - Advanced Encryption Standard
	35.1 Overview
	35.2 Operation
	35.3 Background
	35.4 AES-128 parameters
	35.5 Throughput
	35.6 Characteristics
	35.7 Registers
	35.7.1 Control Register
	35.7.2 Debug Register (R)
	35.7.3 Data Input Registers (W)
	35.7.4 Data Output Registers (R)

	35.8 Vendor and device identifiers
	35.9 Configuration options
	35.10 Signal descriptions
	35.11 Library dependencies
	35.12 Instantiation

	36 GRAES_DMA - Advanced Encryption Standard with DMA
	36.1 Overview
	36.2 Operation
	36.3 Background
	36.4 Characteristics
	36.5 Endianness
	36.6 Registers
	36.6.1 Control Register
	36.6.2 Status Register
	36.6.3 Descriptor Address

	36.7 Descriptor Processing
	36.8 Error Handling
	36.9 Aborting Operation
	36.10 Vendor and device identifiers
	36.11 Implementation
	36.11.1 Reset

	36.12 Configuration options
	36.13 Signal descriptions
	36.14 Library dependencies
	36.15 Instantiation

	37 GRCAN - CAN 2.0 Controller with DMA
	37.1 Overview
	37.1.1 Function
	37.1.2 Interfaces
	37.1.3 Hierarchy

	37.2 Interface
	37.3 Protocol
	37.4 Status and monitoring
	37.5 Transmission
	37.5.1 Circular buffer
	37.5.2 Write and read pointers
	37.5.3 Location
	37.5.4 Transmission procedure
	37.5.5 Straight buffer
	37.5.6 AMBA AHB error
	37.5.7 Enable and disable
	37.5.8 Interrupts

	37.6 Reception
	37.6.1 Circular buffer
	37.6.2 Write and read pointers
	37.6.3 Location
	37.6.4 Reception procedure
	37.6.5 Straight buffer
	37.6.6 AMBA AHB error
	37.6.7 Enable and disable
	37.6.8 Interrupts

	37.7 Global reset and enable
	37.8 Interrupt
	37.9 Endianness
	37.10 AXI support
	37.11 Registers
	37.11.1 Configuration Register
	37.11.2 Status Register
	37.11.3 Control Register
	37.11.4 SYNC Code Filter Register
	37.11.5 SYNC Mask Filter Register
	37.11.6 Transmit Channel Control Register
	37.11.7 Transmit Channel Address Register
	37.11.8 Transmit Channel Size Register
	37.11.9 Transmit Channel Write Register
	37.11.10 Transmit Channel Read Register
	37.11.11 Transmit Channel Interrupt Register
	37.11.12 Receive Channel Control Register
	37.11.13 Receive Channel Address Register
	37.11.14 Receive Channel Size Register
	37.11.15 Receive Channel Write Register
	37.11.16 Receive Channel Read Register
	37.11.17 Receive Channel Interrupt Register
	37.11.18 Receive Channel Mask Register
	37.11.19 Receive Channel Code Register
	37.11.20 Interrupt registers

	37.12 Memory mapping
	37.13 Vendor and device identifiers
	37.14 Implementation
	37.14.1 Reset

	37.15 Configuration options
	37.16 Signal descriptions
	37.17 Signal definitions and reset values
	37.18 Timing
	37.19 Library dependencies
	37.20 Instantiation

	38 GRCANFD - CAN Flexible Data-Rate Controller
	38.1 Overview
	38.1.1 Function
	38.1.2 Interfaces
	38.1.3 Hierarchy

	38.2 CAN Interface
	38.3 Protocol compliance
	38.4 Status and monitoring
	38.5 Frame memory mapping
	38.6 Transmission
	38.6.1 Circular buffer
	38.6.2 Write and read pointers
	38.6.3 Location
	38.6.4 Transmission procedure
	38.6.5 Straight buffer
	38.6.6 AMBA AHB error
	38.6.7 Enable and disable
	38.6.8 Interrupts

	38.7 Reception
	38.7.1 Circular buffer
	38.7.2 Write and read pointers
	38.7.3 Location
	38.7.4 Reception procedure
	38.7.5 Straight buffer
	38.7.6 AMBA AHB error
	38.7.7 Enable and disable
	38.7.8 Interrupts

	38.8 Global reset and enable
	38.9 Interrupt outputs
	38.10 Endianness
	38.11 Bus master interface
	38.11.1 Protocol support
	38.11.2 Bus access

	38.12 Registers
	38.12.1 Configuration Register
	38.12.2 Status Register
	38.12.3 Control Register
	38.12.4 SYNC Code Filter Register
	38.12.5 SYNC Mask Filter Register
	38.12.6 Nominal Bit-Rate Configuration Register
	38.12.7 Data Bit-Rate Configuration Register
	38.12.8 Transmitter Delay Compensation Register
	38.12.9 Transmit Channel Control Register
	38.12.10 Transmit Channel Address Register
	38.12.11 Transmit Channel Size Register
	38.12.12 Transmit Channel Write Register
	38.12.13 Transmit Channel Read Register
	38.12.14 Transmit Channel Interrupt Register
	38.12.15 Receive Channel Control Register
	38.12.16 Receive Channel Address Register
	38.12.17 Receive Channel Size Register
	38.12.18 Receive Channel Write Register
	38.12.19 Receive Channel Read Register
	38.12.20 Receive Channel Interrupt Register
	38.12.21 Receive Channel Acceptance Mask Register
	38.12.22 Receive Channel Acceptance Code Register
	38.12.23 Interrupt registers

	38.13 Vendor and device identifiers
	38.14 Implementation
	38.14.1 Reset

	38.15 Configuration options
	38.16 Signal descriptions
	38.17 Signal definitions and reset values
	38.18 Library dependencies
	38.19 Instantiation

	39 GRCLKGATE / GRCLKGATE2X - Clock gating unit
	39.1 Overview
	39.2 Operation
	39.2.1 Shared FPU

	39.3 Registers
	39.3.1 Unlock register
	39.3.2 Clock enable register
	39.3.3 Core reset register
	39.3.4 CPU/FPU override register

	39.4 Vendor and device identifiers
	39.5 Implementation
	39.5.1 Reset
	39.5.2 Clock gate implementation
	39.5.3 Scan test support
	39.5.4 Simulation

	39.6 Configuration options
	39.7 Signal descriptions
	39.8 Library dependencies
	39.9 Instantiation

	40 GRDMAC - DMA Controller with internal AHB/APB bridge
	40.1 Overview
	40.2 Configuration
	40.2.1 Core setup
	40.2.2 Descriptor types
	40.2.3 Data descriptors
	40.2.4 Conditional descriptors
	40.2.5 Register setup

	40.3 Operation
	40.3.1 Normal mode of operation
	40.3.2 Operation with conditional descriptors
	40.3.3 Simplified mode of operation

	40.4 AHB transfers
	40.5 Data realignment buffer
	40.6 Interrupts
	40.7 Wide Data Bus support
	40.8 Errors
	40.9 Internal Buffer Readout Interface
	40.10 Endianness
	40.11 Registers
	40.11.1 Control Register
	40.11.2 Status Register
	40.11.3 Interrupt Mask
	40.11.4 Error Register
	40.11.5 Channel Vector Pointer
	40.11.6 Timer Reset Value Register
	40.11.7 Capability Register
	40.11.8 Interrupt Flag Register
	40.11.9 M2B Descriptor Address Register*
	40.11.10 M2B Descriptor Control Register*
	40.11.11 M2B Descriptor Status Register*
	40.11.12 B2M Descriptor Address Register*
	40.11.13 B2M Descriptor Control Register*
	40.11.14 B2M Descriptor Status Register*
	40.11.15 Internal Buffer Pointers Register

	40.12 Example DMA channel set-up
	40.13 Vendor and device identifier
	40.14 Implementation
	40.14.1 Reset

	40.15 Configuration options
	40.16 Signal descriptions
	40.17 Library dependencies
	40.18 Instantiation

	41 GRECC - Elliptic Curve Cryptography
	41.1 Overview
	41.2 Operation
	41.3 Advantages
	41.4 Background
	41.5 233-bit elliptic curve domain parameters
	41.6 Throughput
	41.7 Characteristics
	41.8 Registers
	41.8.1 Key 0 to 7 Registers
	41.8.2 Point X Input 0 to 7 Registers
	41.8.3 Point Y Input 0 to 7 Registers (W)
	41.8.4 Point X Output 0 to 7 Registers (R)
	41.8.5 Point Y Output 0 to 7 Registers (R)
	41.8.6 Status Register (R)

	41.9 Vendor and device identifiers
	41.10 Configuration options
	41.11 Signal descriptions
	41.12 Library dependencies
	41.13 Instantiation

	42 GRETH - Ethernet Media Access Controller (MAC) with EDCL support
	42.1 Overview
	42.2 Operation
	42.2.1 System overview
	42.2.2 Protocol support
	42.2.3 Clocking
	42.2.4 RAM debug support
	42.2.5 Multibus version
	42.2.6 Endianness

	42.3 Tx DMA interface
	42.3.1 Setting up a descriptor.
	42.3.2 Starting transmissions
	42.3.3 Descriptor handling after transmission
	42.3.4 Setting up the data for transmission

	42.4 Rx DMA interface
	42.4.1 Setting up descriptors
	42.4.2 Starting reception
	42.4.3 Descriptor handling after reception
	42.4.4 Reception with AHB errors
	42.4.5 Accepted MAC addresses

	42.5 MDIO Interface
	42.5.1 PHY interrupts

	42.6 Ethernet Debug Communication Link (EDCL)
	42.6.1 Operation
	42.6.2 EDCL protocols
	42.6.3 EDCL IP and Ethernet address settings
	42.6.4 EDCL buffer size

	42.7 Media Independent Interfaces
	42.8 AXI support
	42.9 Registers
	42.9.1 Control Register
	42.9.2 Status Register
	42.9.3 MAC Address MSB
	42.9.4 MAC Address LSB
	42.9.5 MDIO ctrl/status Register
	42.9.6 Transmitter Descriptor Table Base Address Register
	42.9.7 Receiver Descriptor Table Base Address Register
	42.9.8 EDCL IP Register
	42.9.9 Hash Table Msb Register
	42.9.10 Hash Table Lsb Register
	42.9.11 EDCL MAC Address MSB
	42.9.12 EDCL MAC Address LSB

	42.10 Vendor and device identifiers
	42.11 Implementation
	42.11.1 Reset

	42.12 Configuration options
	42.13 Signal descriptions
	42.14 Library dependencies
	42.15 Instantiation
	42.15.1 Non-MB version
	42.15.2 MB version

	43 GRETH_GBIT - Gigabit Ethernet Media Access Controller (MAC) w. EDCL
	43.1 Overview
	43.2 Operation
	43.2.1 System overview
	43.2.2 Protocol support
	43.2.3 Hardware requirements
	43.2.4 RAM debug support
	43.2.5 Multibus version
	43.2.6 Endianness

	43.3 Tx DMA interface
	43.3.1 Setting up a descriptor.
	43.3.2 Starting transmissions
	43.3.3 Descriptor handling after transmission
	43.3.4 Setting up the data for transmission
	43.3.5 Scatter Gather I/O
	43.3.6 Checksum offloading

	43.4 Rx DMA interface
	43.4.1 Setting up descriptors
	43.4.2 Starting reception
	43.4.3 Descriptor handling after reception
	43.4.4 Reception with AHB errors
	43.4.5 Accepted MAC addresses
	43.4.6 Checksum offload

	43.5 MDIO Interface
	43.5.1 PHY interrupts

	43.6 Ethernet Debug Communication Link (EDCL)
	43.6.1 Operation
	43.6.2 EDCL protocols
	43.6.3 EDCL IP and Ethernet address settings
	43.6.4 EDCL buffer size

	43.7 Media Independent Interfaces
	43.8 AXI support
	43.9 Registers
	43.9.1 Control register
	43.9.2 Status Register
	43.9.3 Mac Address MSB
	43.9.4 Mac Address LSB
	43.9.5 MDIO control/status Register
	43.9.6 Transmitter Descripter Table Base Address Register
	43.9.7 Receiver Descriptor Table Base Address Register
	43.9.8 IP Register
	43.9.9 Hash Table MSB Register
	43.9.10 Hash Table LSB Register
	43.9.11 MAC Address MSB
	43.9.12 Mac Address LSB

	43.10 Vendor and device identifier
	43.11 Implementation
	43.11.1 Reset
	43.11.2 Internal reset and reset via EDCL link

	43.12 Configuration options
	43.13 Signal descriptions
	43.14 Library dependencies
	43.15 Instantiation
	43.15.1 Non-MB version
	43.15.2 MB version

	44 GRFIFO - FIFO Interface
	44.1 Overview
	44.1.1 Function
	44.1.2 Transmission
	44.1.3 Reception
	44.1.4 General purpose input output
	44.1.5 Interfaces

	44.2 Interface
	44.3 Waveforms
	44.4 Transmission
	44.4.1 Circular buffer
	44.4.2 Write and read pointers
	44.4.3 Location
	44.4.4 Transmission procedure
	44.4.5 Straight buffer
	44.4.6 AMBA AHB error
	44.4.7 Enable and disable
	44.4.8 Interrupts

	44.5 Reception
	44.5.1 Circular buffer
	44.5.2 Write and read pointers
	44.5.3 Location
	44.5.4 Reception procedure
	44.5.5 Straight buffer
	44.5.6 AMBA AHB error
	44.5.7 Enable and disable
	44.5.8 Interrupts

	44.6 Operation
	44.6.1 Global reset and enable
	44.6.2 Interrupt
	44.6.3 Reset
	44.6.4 Asynchronous interfaces

	44.7 Registers
	44.7.1 Configuration Register [FifoCONF]
	44.7.2 Status Register [FifoSTAT]
	44.7.3 Control Register [FifoCTRL]
	44.7.4 Transmit Channel Control Register [FifoTxCTRL]
	44.7.5 Transmit Channel Status Register [FifoTxSTAT]
	44.7.6 Transmit Channel Address Register [FifoTxADDR]
	44.7.7 Transmit Channel Size Register [FifoTxSIZE]
	44.7.8 Transmit Channel Write Register [FifoTxWR]
	44.7.9 Transmit Channel Read Register [FifoTxRD]
	44.7.10 Transmit Channel Interrupt Register [FifoTxIRQ]
	44.7.11 Receive Channel Control Register [FifoRxCTRL]
	44.7.12 Receive Channel Status Register [FifoRxSTAT]
	44.7.13 Receive Channel Address Register [FifoRxADDR]
	44.7.14 Receive Channel Size Register [FifoRxSIZE]
	44.7.15 Receive Channel Write Register [FifoRxWR]
	44.7.16 Receive Channel Read Register [FifoRxRD]
	44.7.17 Receive Channel Interrupt Register [FifoRxIRQ]
	44.7.18 Data Input Register [FifoDIN]
	44.7.19 Data Output Register [FifoDOUT]
	44.7.20 Data Register [FifoDDIR]
	44.7.21 Interrupt registers

	44.8 Vendor and device identifiers
	44.9 Implementation
	44.9.1 Reset

	44.10 Configuration options
	44.11 Signal descriptions
	44.12 Signal definitions and reset values
	44.13 Timing
	44.14 Library dependencies
	44.15 Instantiation

	45 GRADCDAC - ADC / DAC Interface
	45.1 Overview
	45.1.1 Function
	45.1.2 Interfaces

	45.2 Operation
	45.2.1 Interfaces
	45.2.2 Analogue to digital conversion
	45.2.3 Digital to analogue conversion

	45.3 Operation
	45.3.1 Interrupt
	45.3.2 Reset
	45.3.3 Asynchronous interfaces

	45.4 Registers
	45.4.1 Configuration Register [ADCONF]
	45.4.2 Status Register [ADSTAT]
	45.4.3 ADC Data Input Register [ADIN]
	45.4.4 DAC Data Output Register [ADOUT]
	45.4.5 Address Input Register [ADAIN]
	45.4.6 Address Output Register [ADAOUT]
	45.4.7 Address Direction Register [ADADIR]
	45.4.8 Data Input Register [ADDIN]
	45.4.9 1Data Output Register [AD DOUT]
	45.4.10 Data Register [ADDDIR]

	45.5 Vendor and device identifiers
	45.6 Implementation
	45.6.1 Reset

	45.7 Configuration options
	45.8 Signal descriptions
	45.9 Signal definitions and reset values
	45.10 Timing
	45.11 Library dependencies
	45.12 Instantiation

	46 GRFPU - High-performance IEEE-754 Floating-point unit
	46.1 Overview
	46.2 Functional description
	46.2.1 Floating-point number formats
	46.2.2 FP operations
	46.2.3 Exceptions
	46.2.4 Rounding
	46.2.5 Denormalized numbers
	46.2.6 Non-standard Mode
	46.2.7 NaNs

	46.3 Signal descriptions
	46.4 Timing
	46.5 Shared FPU
	46.5.1 Overview
	46.5.2 Shared FPU and clock gating

	46.6 Implementation
	46.6.1 Reset

	47 GRFPC - GRFPU Control Unit
	47.1 Floating-Point register file
	47.2 Floating-Point State Register (FSR)
	47.3 Floating-Point Exceptions and Floating-Point Deferred-Queue
	47.4 Implementation
	47.4.1 Reset

	48 GRFPU Lite - IEEE-754 Floating-Point Unit
	48.1 Overview
	48.2 Functional Description
	48.2.1 Floating-point number formats
	48.2.2 FP operations
	48.2.3 Exceptions
	48.2.4 Rounding

	48.3 Implementation
	48.3.1 Reset

	49 GRLFPC - GRFPU Lite Floating-point unit Controller
	49.1 Overview
	49.2 Floating-Point register file
	49.3 Floating-Point State Register (FSR)
	49.4 Floating-Point Exceptions and Floating-Point Deferred-Queue
	49.5 Implementation
	49.5.1 Reset

	50 GRGPIO - General Purpose I/O Port
	50.1 Overview
	50.2 Operation
	50.3 Registers
	50.3.1 I/O Port Data Register
	50.3.2 I/O Port Output Register
	50.3.3 I/O Port Direction Register
	50.3.4 Interrupt Mask Register
	50.3.5 Interrupt Polarity Register
	50.3.6 Interrupt Edge Register
	50.3.7 Bypass Register
	50.3.8 Capability Register
	50.3.9 Interrupt Map Register n
	50.3.10 Interrupt Available Register
	50.3.11 Interrupt Flag Register
	50.3.12 Input Enable Register
	50.3.13 Pulse Register
	50.3.14 Logical-OR/AND/XOR Register

	50.4 Vendor and device identifiers
	50.5 Implementation
	50.5.1 Reset

	50.6 Configuration options
	50.7 Signal descriptions
	50.8 Signal definitions and reset values
	50.9 Timing
	50.10 Library dependencies
	50.11 Component declaration
	50.12 Instantiation

	51 GRGPREG - General Purpose Register
	51.1 Overview
	51.2 Operation
	51.3 Registers
	51.3.1 General Purpose Register
	51.3.2 General Purpose Register (extended)

	51.4 Vendor and device identifier
	51.5 Implementation
	51.5.1 Reset

	51.6 Configuration options
	51.7 Signal descriptions
	51.8 Library dependencies
	51.9 Instantiation

	52 GRIOMMU - AHB/AHB bridge with access protection and address translation
	52.1 Overview
	52.2 Bridge operation
	52.2.1 General
	52.2.2 AHB read transfers
	52.2.3 AHB write transfers
	52.2.4 Deadlock conditions
	52.2.5 Locked transfers
	52.2.6 Read and write combining
	52.2.7 Burst operation
	52.2.8 Transaction ordering, starvation and AMBA arbitration schemes
	52.2.9 First-come, first-served ordering
	52.2.10 Bus arbiter ordering
	52.2.11 AMBA SPLIT support
	52.2.12 Core latency
	52.2.13 Endianness

	52.3 General access protection and address translation
	52.3.1 Overview
	52.3.2 Delays incurred from access protection

	52.4 Access Protection Vector
	52.4.1 Access Protection Vector cache
	52.4.2 Constraining the memory area covered by the APV cache
	52.4.3 Access Protection Vector cache flush operation

	52.5 IO Memory Management Unit (IOMMU) functionality
	52.5.1 IO Page Table Entry
	52.5.2 Prefetch operations and IOMMU protection
	52.5.3 Translation Lookaside Buffer operation
	52.5.4 TLB flush operation

	52.6 Fault-tolerance
	52.7 Statistics
	52.8 Multi-bus bridge
	52.9 ASMP support
	52.10 Registers
	52.10.1 Capability Register 0
	52.10.2 Capability Register 1
	52.10.3 Capability Register 2
	52.10.4 Control Register
	52.10.5 TLB/cache Flush Register
	52.10.6 Status Register
	52.10.7 Interrupt Mask Register
	52.10.8 Failing Access Register
	52.10.9 Master Configuration Register(s)
	52.10.10 Group Control Register(s)
	52.10.11 Diagnostic Cache Access Register
	52.10.12 Diagnostic Cache Access Data Register 0 - 7
	52.10.13 Diagnostic Cache Access Tag Register
	52.10.14 Data RAM Error Injection Register
	52.10.15 Tag RAM Error Injection Register
	52.10.16 ASMP Access Control Register

	52.11 Vendor and device identifiers
	52.12 Implementation
	52.12.1 Reset
	52.12.2 Technology mapping
	52.12.3 RAM usage

	52.13 Configuration options
	52.14 Signal descriptions
	52.15 Library dependencies
	52.16 Instantiation

	53 GRPCI2 - 32-bit PCI(Initiator/Target) / AHB(Master/Slave) bridge
	53.1 Overview
	53.2 Configuration
	53.2.1 Configuration & Capabilities
	53.2.2 PCI Configuration Space
	53.2.3 Extended PCI Configuration Space
	53.2.4 Multi-Function

	53.3 Operation
	53.3.1 Access support
	53.3.2 FIFOs
	53.3.3 Byte enables and byte twisting (endianess)
	53.3.4 PCI configuration cycles
	53.3.5 Memory and I/O accesses
	53.3.6 Bursts
	53.3.7 Host operation

	53.4 PCI Initiator interface
	53.4.1 Memory cycles
	53.4.2 I/O cycles
	53.4.3 Configuration cycles
	53.4.4 Error handling
	53.4.5 Bus parking

	53.5 PCI Target interface
	53.5.1 Supported PCI commands
	53.5.2 Implemented PCI responses
	53.5.3 Supported byte-enables (CBE)
	53.5.4 PCI to AHB translation
	53.5.5 PCI system host signal
	53.5.6 Error handling

	53.6 DMA Controller
	53.6.1 DMA channel
	53.6.2 Data descriptor
	53.6.3 Data transfer
	53.6.4 Interrupt

	53.7 PCI trace buffer
	53.7.1 Trace data
	53.7.2 Triggering function
	53.7.3 Trace Buffer APB interface

	53.8 Interrupts
	53.9 Registers
	53.9.1 Control Register
	53.9.2 Status and Capability Register
	53.9.3 Master Prefetch Burst Limit
	53.9.4 AHB to PCI Mapping for PCI IO
	53.9.5 DMA Control and Status Register
	53.9.6 DMA Descriptor Base Address (/ Active Descriptor) Register
	53.9.7 DMA Channel Active Register
	53.9.8 PCI BAR to AHB Address Mapping Register
	53.9.9 AHB Master to PCI Memory Address Mapping Register
	53.9.10 PCI Trace Control and Status Register
	53.9.11 PCI Trace Counter and Mode Register
	53.9.12 PCI Trace AD Pattern Register
	53.9.13 PCI Trace AD Mask Register
	53.9.14 PCI Trace Ctrl Signal Pattern Register
	53.9.15 PCI Trace Ctrl Signal Mask Register
	53.9.16 PCI Trace PCI AD State Register
	53.9.17 PCI Trace PCI Ctrl Signal State Register

	53.10 Vendor and device identifiers
	53.11 Implementation
	53.11.1 Reset
	53.11.2 Technology mapping
	53.11.3 RAM usage
	53.11.4 Pull-ups
	53.11.5 PHY

	53.12 Configuration options
	53.13 Signal descriptions
	53.14 Library dependencies
	53.15 Instantiation

	54 GRPULSE - General Purpose Input Output
	54.1 Overview
	54.1.1 Function
	54.1.2 Interfaces

	54.2 Registers
	54.2.1 Input Register
	54.2.2 Output Register
	54.2.3 Direction Register
	54.2.4 Pulse Register
	54.2.5 Pulse Counter Register
	54.2.6 Interrupt Mask Register
	54.2.7 Interrupt Polarity Register
	54.2.8 Interrupt Edge Register

	54.3 Operation
	54.3.1 Interrupt
	54.3.2 Reset
	54.3.3 Asynchronous interfaces

	54.4 Vendor and device identifiers
	54.5 Implementation
	54.5.1 Reset

	54.6 Configuration options
	54.7 Signal descriptions
	54.8 Signal definitions and reset values
	54.9 Timing
	54.10 Library dependencies
	54.11 Instantiation

	55 GRPWM - Pulse Width Modulation Generator
	55.1 Overview
	55.2 Operation
	55.2.1 System clock scaling
	55.2.2 Asymmetric and symmetric PWM generation
	55.2.3 Waveform PWM generation
	55.2.4 Dead band time
	55.2.5 Interrupts

	55.3 Registers
	55.3.1 Core Control Register
	55.3.2 Scaler Reload Register
	55.3.3 Interrupt Pending Register
	55.3.4 Capability Register 1
	55.3.5 Capability Register 2
	55.3.6 Waveform Configuration Register
	55.3.7 PWM Period Register
	55.3.8 PWM Compare Register
	55.3.9 PWM Dead Band Compare Register
	55.3.10 PWM Control Register
	55.3.11 Waveform RAM, Word X

	55.4 Vendor and device identifier
	55.5 Implementation
	55.5.1 Reset
	55.5.2 RAM usage

	55.6 Configuration options
	55.7 Signal descriptions
	55.8 Signal definitions and reset values
	55.9 Library dependencies
	55.10 Timing
	55.11 Instantiation

	56 GRRT - MIL-STD-1553B / AS15531 Remote Terminal Back-End
	56.1 Overview
	56.2 Electrical interface
	56.3 Operation
	56.3.1 Address configuration
	56.3.2 Transfer handling
	56.3.3 Data transfers
	56.3.4 Error handling
	56.3.5 Response-time requirements
	56.3.6 Mode commands
	56.3.7 Mode commands with external data
	56.3.8 Timestamping

	56.4 Implementation
	56.4.1 Clocking
	56.4.2 Reset

	56.5 Configuration options
	56.6 Signal descriptions
	56.7 Library dependencies

	57 GRSPW - SpaceWire codec with AHB host Interface and RMAP target
	57.1 Overview
	57.2 Operation
	57.2.1 Overview
	57.2.2 Protocol support

	57.3 Link interface
	57.3.1 Link interface FSM
	57.3.2 Transmitter
	57.3.3 Receiver
	57.3.4 Dual port support
	57.3.5 Time interface

	57.4 Receiver DMA engine
	57.4.1 Basic functionality
	57.4.2 Setting up the core for reception
	57.4.3 Setting up the descriptor table address
	57.4.4 Enabling descriptors
	57.4.5 Setting up the DMA control register
	57.4.6 The effect to the control bits during reception
	57.4.7 Address recognition and packet handling
	57.4.8 Status bits
	57.4.9 Error handling
	57.4.10 Promiscuous mode

	57.5 Transmitter DMA engine
	57.5.1 Basic functionality
	57.5.2 Setting up the core for transmission
	57.5.3 Enabling descriptors
	57.5.4 Starting transmissions
	57.5.5 The transmission process
	57.5.6 The descriptor table address register
	57.5.7 Error handling

	57.6 RMAP
	57.6.1 Fundamentals of the protocol
	57.6.2 Implementation
	57.6.3 Write commands
	57.6.4 Read commands
	57.6.5 RMW commands
	57.6.6 Control

	57.7 AMBA interface
	57.7.1 APB slave interface
	57.7.2 AHB master interface

	57.8 Implementation
	57.8.1 Reset
	57.8.2 Clock-generation
	57.8.3 Timers
	57.8.4 Synchronization
	57.8.5 Fault-tolerance
	57.8.6 Synthesis
	57.8.7 Technology mapping
	57.8.8 RAM usage

	57.9 AXI support
	57.10 Registers
	57.10.1 Control Register
	57.10.2 Status Register
	57.10.3 Node Address Register
	57.10.4 Clock Divisor Register
	57.10.5 Destination Key
	57.10.6 Time Register
	57.10.7 Timer and Disconnect Register
	57.10.8 DMA Control Register
	57.10.9 RX Maximum Length Register
	57.10.10 Transmitter Descriptor Table Address Register
	57.10.11 Receiver Descriptor Table Address Register

	57.11 Vendor and device identifiers
	57.12 Configuration options
	57.13 Signal descriptions
	57.14 Signal definitions and reset values
	57.15 Timing
	57.16 Library dependencies
	57.17 Instantiation
	57.18 API
	57.18.1 GRSPW Basic API
	57.18.2 GRSPW RMAP API

	57.19 Appendix A Clarifications of the GRSPW implementation of the standard

	58 GRSPW2 - SpaceWire codec with AHB host Interface and RMAP target
	58.1 Overview
	58.2 Operation
	58.2.1 Overview
	58.2.2 Protocol support
	58.2.3 Endianness

	58.3 Link interface
	58.3.1 Link interface FSM
	58.3.2 Transmitter
	58.3.3 Receiver
	58.3.4 Dual port support
	58.3.5 Receiver PHY
	58.3.6 Setting link-rate

	58.4 Time-code distribution
	58.4.1 Receiving time-codes
	58.4.2 Transmitting time-codes

	58.5 Interrupt distribution
	58.5.1 Interrupt distribution timers
	58.5.2 Receiving interrupt- / interrupt-acknowledge-codes
	58.5.3 Transmitting interrupt- / interrupt-acknowledge-codes
	58.5.4 Interrupt-code generation

	58.6 Receiver DMA channels
	58.6.1 Address comparison and channel selection
	58.6.2 Basic functionality of a channel
	58.6.3 Setting up the core for reception
	58.6.4 Setting up the descriptor table address
	58.6.5 Enabling descriptors
	58.6.6 Setting up the DMA control register
	58.6.7 The effect to the control bits during reception
	58.6.8 Status bits
	58.6.9 Error handling
	58.6.10 Promiscuous mode

	58.7 Transmitter DMA channels
	58.7.1 Basic functionality of a channel
	58.7.2 Setting up the core for transmission
	58.7.3 Enabling descriptors
	58.7.4 Starting transmissions
	58.7.5 The transmission process
	58.7.6 The descriptor table address register
	58.7.7 Error handling

	58.8 RMAP
	58.8.1 Fundamentals of the protocol
	58.8.2 Implementation
	58.8.3 Write commands
	58.8.4 Read commands
	58.8.5 RMW commands
	58.8.6 Control

	58.9 AMBA interface
	58.9.1 APB slave interface
	58.9.2 AHB master interface

	58.10 SpaceWire Plug-and-Play
	58.11 Implementation
	58.11.1 Reset
	58.11.2 Clock-generation
	58.11.3 Timers
	58.11.4 Synchronization
	58.11.5 Fault-tolerance
	58.11.6 Synthesis
	58.11.7 Technology mapping
	58.11.8 RAM usage

	58.12 AXI support
	58.13 Registers
	58.13.1 Control Register
	58.13.2 Status Register
	58.13.3 Default Address Register
	58.13.4 Clock Divisor Register
	58.13.5 Destination Key Register
	58.13.6 Time-code Register
	58.13.7 DMA Control/Status
	58.13.8 DMA RX Maximum Length
	58.13.9 DMA Transmit Descriptor Table Address
	58.13.10 DMA Receive Descriptor Table Address
	58.13.11 DMA Address
	58.13.12 Interrupt Distribution Control
	58.13.13 Interrupt Receive
	58.13.14 Interrupt-acknowledge-code Receive
	58.13.15 Interrupt Timeout
	58.13.16 Interrupt Timeout Extended
	58.13.17 Interrupt Tick-out Mask
	58.13.18 Interrupt-code Auto Acknowledge Mask
	58.13.19 Interrupt Distribution Configuration
	58.13.20 Interrupt Distribution ISR
	58.13.21 Interrupt Distribution ISR Extended
	58.13.22 Interrupt Distribution Prescaler Reload
	58.13.23 Interrupt Distribution ISR Timer Reload
	58.13.24 Interrupt Distribution INT/ACK Timer Reload
	58.13.25 Interrupt Distribution Change Timer Reload
	58.13.26 SpaceWire Plug-and-Play - Device Vendor and Product ID
	58.13.27 SpaceWire Plug-and-Play - Link Information
	58.13.28 SpaceWire Plug-and-Play - Owner Address 0
	58.13.29 SpaceWire Plug-and-Play - Owner Address 1
	58.13.30 SpaceWire Plug-and-Play - Owner Address 2
	58.13.31 SpaceWire Plug-and-Play - Device ID
	58.13.32 SpaceWire Plug-and-Play - Unit Vendor and Product ID
	58.13.33 SpaceWire Plug-and-Play - Unit Serial Number

	58.14 Vendor and device identifiers
	58.15 Configuration options
	58.16 Signal descriptions
	58.17 Signal definitions and reset values
	58.18 Timing
	58.19 Library dependencies
	58.20 Instantiation
	58.21 Constraints
	58.22 API
	58.22.1 GRSPW2 Basic API
	58.22.2 GRSPW2 RMAP API

	59 GRSPW2_GEN - GRSPW2 wrapper with Std_Logic interface
	59.1 Overview
	59.2 Signal descriptions
	59.3 Instantiation

	60 GRSPW2_PHY - GRSPW2 Receiver Physical Interface
	60.1 Overview
	60.2 Operation
	60.2.1 Self-clocking (input_type = 0)
	60.2.2 Cobham transceiver (input_type = 1)
	60.2.3 SDR sampling (input_type = 2)
	60.2.4 DDR sampling (input_type = 3)
	60.2.5 DDR sampling with internal pad (input_type = 4)
	60.2.6 Self-clocking with external clock recovery (input_type = 5)
	60.2.7 Self-clocking with external clock recovery and DDR register (input_type = 6)

	60.3 Configuration options
	60.4 Scan support
	60.5 Signal descriptions
	60.6 Library dependencies
	60.7 Instantiation

	61 GRSPW_CODEC - SpaceWire encoder-decoder
	61.1 Overview
	61.2 Operation
	61.2.1 Overview
	61.2.2 Link-interface FSM
	61.2.3 Transmitter
	61.2.4 Receiver
	61.2.5 Dual port support
	61.2.6 Receiver PHY
	61.2.7 Setting link-rate
	61.2.8 Time interface

	61.3 Receiver interface
	61.3.1 Link errors

	61.4 Transmitter interface
	61.4.1 Link errors

	61.5 Implementation
	61.5.1 Reset
	61.5.2 Clock-generation
	61.5.3 Timers
	61.5.4 Synchronization
	61.5.5 Fault-tolerance
	61.5.6 Synthesis
	61.5.7 Technology mapping
	61.5.8 RAM usage

	61.6 Registers
	61.7 Vendor and device identifiers
	61.8 Configuration options
	61.9 Signal descriptions
	61.10 Signal definitions and reset values
	61.11 Timing
	61.12 Library dependencies
	61.13 Instantiation

	62 GRSPW_CODEC_GEN - GRSPW_CODEC wrapper with Std_Logic interface
	62.1 Overview
	62.2 Signal descriptions
	62.3 Instantiation

	63 GRSPWROUTER - SpaceWire router
	63.1 Overview
	63.2 Operation
	63.2.1 Endianness
	63.2.2 Port numbering
	63.2.3 Routing table
	63.2.4 Output port arbitration
	63.2.5 Group adaptive routing
	63.2.6 Packet distribution
	63.2.7 Port disable
	63.2.8 Timers
	63.2.9 On-chip memories
	63.2.10 Plug and play support
	63.2.11 System time-distribution
	63.2.12 Invalid address error
	63.2.13 Packet counters
	63.2.14 Global configuration features

	63.3 SpaceWire ports
	63.3.1 Redundant ports
	63.3.2 Setting link-rate

	63.4 FIFO ports
	63.4.1 Transmitter
	63.4.2 Receiver
	63.4.3 Time-code transmit
	63.4.4 Time-code receive
	63.4.5 Bridge mode

	63.5 AMBA ports
	63.5.1 Overview
	63.5.2 Operation
	63.5.3 Receiver DMA channels
	63.5.4 Transmitter DMA channels
	63.5.5 RMAP target
	63.5.6 AMBA interface
	63.5.7 Synthesis and hardware
	63.5.8 Registers
	63.5.9 Vendor and device identifiers

	63.6 Configuration port
	63.6.1 AMBA AHB slave interface
	63.6.2 Write commands
	63.6.3 Read commands
	63.6.4 RMW commands

	63.7 Configuration options
	63.8 Registers
	63.8.1 Reset value definitions
	63.8.2 Register type definitions

	63.9 Vendor and device identifiers
	63.10 Signal descriptions
	63.11 Signal definitions and reset values
	63.12 Timing
	63.13 Instantiation

	64 SPWTDP - SpaceWire - Time Distribution Protocol
	64.1 Overview
	64.2 Protocol
	64.3 Functionality
	64.3.1 CCSDS Unsegmented Code: Preamble Field (P-Field)
	64.3.2 CCSDS Unsegmented Code: Time Field (T-Field)
	64.3.3 Time generation
	64.3.4 Initiator
	64.3.5 Target
	64.3.6 Configuring initiator and target
	64.3.7 SpaceWire Time-Code
	64.3.8 Initialization and synchronisation of target through RMAP
	64.3.9 Latency measurement using Time-Stamps
	64.3.10 Mitigation of jitter and drift
	64.3.11 External Datation
	64.3.12 Pulses
	64.3.13 Set Elapsed Time using external input
	64.3.14 Multiple Port
	64.3.15 Synchronisation of target using SpaceWire Time-Codes

	64.4 Data formats
	64.4.1 Numbering and naming conventions

	64.5 Reference documents
	64.6 Registers
	64.6.1 Configuration 0
	64.6.2 Configuration 1
	64.6.3 Configuration 2
	64.6.4 Configuration 3
	64.6.5 Status Register 0
	64.6.6 Status Register 1
	64.6.7 Control
	64.6.8 Command Elapsed Time 0
	64.6.9 Command Elapsed Time 1
	64.6.10 Command Elapsed Time 2
	64.6.11 Command Elapsed Time 3
	64.6.12 Command Elapsed Time 4
	64.6.13 Datation Preamble Field
	64.6.14 Datation Elapsed Time 0
	64.6.15 Datation Elapsed Time 1
	64.6.16 Datation Elapsed Time 2
	64.6.17 Datation Elapsed Time 3
	64.6.18 Datation Elapsed Time 4
	64.6.19 Time-Stamp Preamble Field Rx
	64.6.20 Time Stamp Elapsed Time 0 Rx
	64.6.21 Time Stamp Elapsed Time 1 Rx
	64.6.22 Time Stamp Elapsed Time 2 Rx
	64.6.23 Time Stamp Elapsed Time 3 Rx
	64.6.24 Time Stamp Elapsed Time 4 Rx
	64.6.25 Time-Stamp SpaceWire Time-Code and Preamble Field Tx
	64.6.26 Time Stamp Elapsed Time 0 Tx
	64.6.27 Time Stamp Elapsed Time 1 Tx
	64.6.28 Time Stamp Elapsed Time 2 Tx
	64.6.29 Time Stamp Elapsed Time 3 Tx
	64.6.30 Time Stamp Elapsed Time 4 Tx
	64.6.31 Latency Preamble Field
	64.6.32 Latency Elapsed Time 0
	64.6.33 Latency Elapsed Time 1
	64.6.34 Latency Elapsed Time 2
	64.6.35 Latency Elapsed Time 3
	64.6.36 Latency Elapsed Time 4
	64.6.37 Interrupt Enable
	64.6.38 Interrupt Status
	64.6.39 Delay Count
	64.6.40 Disable Sync
	64.6.41 External Datation 0 Mask
	64.6.42 External Datation 0 Preamble Field
	64.6.43 External Datation 0 Elapsed Time 0
	64.6.44 External Datation 0 Elapsed Time 1
	64.6.45 External Datation 0 Elapsed Time 2
	64.6.46 External Datation 0 Elapsed Time 3
	64.6.47 External Datation 0 Elapsed Time 4
	64.6.48 Pulse Definition Register 0 to 7

	64.7 Vendor and device identifiers
	64.8 Implementation
	64.8.1 Reset

	64.9 Configuration options
	64.10 Signal descriptions
	64.11 Signal definitions and reset values
	64.12 Timing
	64.13 Library dependencies
	64.14 Instantiation

	65 GRSPFI_CODEC - SpaceFibre encoder/decoder
	65.1 Overview
	65.2 Operation
	65.2.1 Configuration
	65.2.2 Status signaling
	65.2.3 Virtual channel interface
	65.2.4 Broadcast interface
	65.2.5 Serdes interface

	65.3 Registers
	65.4 Vendor and device identifier
	65.5 Implementation
	65.5.1 Reset

	65.6 Configuration options
	65.7 Signal Descriptions
	65.8 Library dependencies
	65.9 Instantiation

	66 GRSRIO - Serial RapidIO endpoint with AHB or AXI4 bus master interface
	66.1 Overview
	66.2 Operation
	66.2.1 Receiving Data messages
	66.2.2 Transmitting Data Messages
	66.2.3 Receiving Doorbell Messages
	66.2.4 Transmitting doorbell messages
	66.2.5 Inbound I/O operations
	66.2.6 Transmitting Memory I/O operations

	66.3 MECS Time Synchronization Protocol
	66.4 Bus Master interface
	66.4.1 Overview
	66.4.2 Configuration Options
	66.4.3 Access Alignment
	66.4.4 Endianness
	66.4.5 Software Considerations

	66.5 Registers
	66.5.1 General registers
	66.5.2 Transmission Queues Registers
	66.5.3 Message Reception Queues Register
	66.5.4 Doorbell Message Reception Buffer Register
	66.5.5 I/O Operation Reception Unit Registers
	66.5.6 MECS registers

	66.6 External doorbell interface
	66.6.1 Outbound doorbell messages
	66.6.2 Inbound doorbell messages

	66.7 Configuration options
	66.8 Signal Descriptions
	66.9 Clocks
	66.10 Resets
	66.11 Library dependencies
	66.12 Component declaration
	66.13 Instantiation

	67 GRSYSMON - AMBA Wrapper for Xilinx System Monitor
	67.1 Overview
	67.2 Operation
	67.2.1 Operational model
	67.2.2 Configuration area
	67.2.3 System Monitor register area

	67.3 Registers
	67.3.1 Configuration Register
	67.3.2 Status Register

	67.4 Vendor and device identifier
	67.5 Implementation
	67.5.1 Reset
	67.5.2 Technology mapping
	67.5.3 RAM usage

	67.6 Configuration options
	67.7 Signal descriptions
	67.8 Signal definitions and reset values
	67.9 Library dependencies
	67.10 Instantiation

	68 GRUSBDC - USB Device controller
	68.1 Overview
	68.2 Operation
	68.2.1 System overview
	68.2.2 PHY interface
	68.2.3 Speed Negotiation Engine (SNE)
	68.2.4 Serial Interface Engine (SIE)
	68.2.5 Endpoint buffers
	68.2.6 AMBA Interface Engine (AIE)
	68.2.7 Synchronization
	68.2.8 Reset generation
	68.2.9 Synthesis
	68.2.10 Functional test-mode
	68.2.11 Scan test support

	68.3 DMA operation
	68.3.1 OUT endpoints
	68.3.2 IN endpoints

	68.4 Slave data transfer interface operation
	68.4.1 OUT slave endpoint
	68.4.2 IN slave endpoint

	68.5 Endpoints
	68.5.1 Control endpoints
	68.5.2 Bulk endpoints
	68.5.3 Interrupt endpoints
	68.5.4 Isochronous endpoints

	68.6 Device implementation example in master mode
	68.7 Device implementation example in slave mode
	68.8 Registers
	68.8.1 OUT Endpoint Control Register
	68.8.2 OUT Slave Control Register
	68.8.3 OUT Slave Buffer Read Register
	68.8.4 OUT DMA Control Register
	68.8.5 OUT Descriptor Address Register
	68.8.6 OUT Endpoint Status Register
	68.8.7 IN Endpoint Control Register
	68.8.8 IN Slave Control Register
	68.8.9 IN Slave Buffer read/write Register
	68.8.10 IN DMA Control Register
	68.8.11 IN Descriptor Address Register
	68.8.12 IN Endpoint Status Register
	68.8.13 CTRL Register
	68.8.14 Status Register

	68.9 Vendor and device identifier
	68.10 Implementation
	68.10.1 Reset

	68.11 Configuration options
	68.12 Signal descriptions
	68.13 Library dependencies
	68.14 Instantiation

	69 GRUSB_DCL - USB Debug Communication Link
	69.1 Overview
	69.2 Operation
	69.2.1 System overview
	69.2.2 Protocol
	69.2.3 AHB operations

	69.3 Registers
	69.4 Vendor and device identifier
	69.5 Implementation
	69.5.1 Reset
	69.5.2 Scan test support

	69.6 Configuration options
	69.7 Signal descriptions
	69.8 Library dependencies
	69.9 Instantiation

	70 GRUSBHC - USB 2.0 Host Controller
	70.1 Overview
	70.2 Operation
	70.2.1 System overview
	70.2.2 Protocol support
	70.2.3 Descriptor and data buffering
	70.2.4 Endianness
	70.2.5 RAM test facilities

	70.3 Port routing
	70.4 DMA operations
	70.5 Endianness
	70.6 Transceiver support
	70.7 PCI configuration registers and legacy support
	70.8 Registers
	70.8.1 Enhanced host controller
	70.8.2 Universal host controller

	70.9 Vendor and device identifiers
	70.10 Implementation
	70.10.1 Clocking and reset
	70.10.2 RAM usage
	70.10.3 ASIC implementation details
	70.10.4 Scan test support

	70.11 Configuration options
	70.12 Signal descriptions
	70.13 Signal definitions and reset values
	70.14 Library dependencies
	70.15 Instantiation

	71 GRVERSION - Version and Revision information register
	71.1 Overview
	71.2 Registers
	71.2.1 Configuration Register

	71.3 Vendor and device identifiers
	71.4 Implementation
	71.4.1 Reset

	71.5 Configuration options
	71.6 Signal descriptions
	71.7 Library dependencies

	72 I2C2AHB - I2C to AHB bridge
	72.1 Overview
	72.2 Operation
	72.2.1 Transmission protocol
	72.2.2 Slave addressing
	72.2.3 System clock requirements and sampling
	72.2.4 Configuration register access
	72.2.5 AHB accesses
	72.2.6 Clock stretching or NACK mode
	72.2.7 Memory protection

	72.3 Registers
	72.3.1 Control Register
	72.3.2 Status Register
	72.3.3 Protection Address Register
	72.3.4 Protection Mask Register
	72.3.5 I2C Slave Memory Address Register
	72.3.6 I2C Slave Configuration Address Register

	72.4 Vendor and device identifier
	72.5 Implementation
	72.5.1 Reset

	72.6 Configuration options
	72.7 Signal descriptions
	72.8 Signal definitions and reset values
	72.9 Library dependencies
	72.10 Instantiation

	73 I2CMST - I2C-master
	73.1 Overview
	73.2 Operation
	73.2.1 Transmission protocol
	73.2.2 Clock generation
	73.2.3 Software operational model
	73.2.4 Signal filters

	73.3 Registers
	73.3.1 I2C-Master Clock Prescale Register
	73.3.2 I2C-Master Control Register
	73.3.3 I2C-Master Transmit Register
	73.3.4 I2C-Master Receive Register
	73.3.5 I2C-Master Command Register
	73.3.6 I2C-Master Status Register
	73.3.7 I2C-Master Dynamic Filter Register

	73.4 Vendor and device identifier
	73.5 Implementation
	73.5.1 Reset

	73.6 Configuration options
	73.7 Signal descriptions
	73.8 Signal definitions and reset values
	73.9 Timing
	73.10 Library dependencies
	73.11 Instantiation

	74 I2CSLV - I2C slave
	74.1 Overview
	74.2 Operation
	74.2.1 Transmission protocol
	74.2.2 Slave addressing
	74.2.3 System clock requirements and sampling
	74.2.4 Operational model

	74.3 Registers
	74.3.1 Slave Address Register
	74.3.2 Control Register
	74.3.3 Status Register
	74.3.4 Mask Register
	74.3.5 Receive Register
	74.3.6 Transmit Register

	74.4 Vendor and device identifier
	74.5 Implementation
	74.5.1 Reset

	74.6 Configuration options
	74.7 Signal descriptions
	74.8 Signal definitions and reset values
	74.9 Library dependencies
	74.10 Instantiation

	75 IRQMP - Multiprocessor Interrupt Controller
	75.1 Overview
	75.2 Operation
	75.2.1 Interrupt prioritization
	75.2.2 Extended interrupts
	75.2.3 Processor status monitoring
	75.2.4 Extended boot support
	75.2.5 Interrupt broadcasting
	75.2.6 Interrupt (re)map functionality

	75.3 Registers
	75.3.1 Interrupt Level Register
	75.3.2 Interrupt Pending Register
	75.3.3 Interrupt Force Register (NCPU = 0)
	75.3.4 Interrupt Clear Register
	75.3.5 Multiprocessor Status Register
	75.3.6 Broadcast Register (NCPU > 0)
	75.3.7 Error Mode Status Register
	75.3.8 Processor Interrupt Mask Register
	75.3.9 Processor Interrupt Force Register (NCPU > 0)
	75.3.10 Extended Interrupt Acknowledge Register
	75.3.11 Processor N Boot Address Register
	75.3.12 Interrupt Map Register N

	75.4 Vendor and device identifiers
	75.5 Implementation
	75.5.1 Reset

	75.6 Configuration options
	75.7 Signal descriptions
	75.8 Library dependencies
	75.9 Instantiation

	76 IRQ(A)MP - Multiprocessor Interrupt Controller with extended ASMP support
	76.1 Overview
	76.2 Operation
	76.2.1 Support for Asymmetric Multiprocessing
	76.2.2 Interrupt prioritization
	76.2.3 Extended interrupts
	76.2.4 Processor status monitoring
	76.2.5 Interrupt broadcasting
	76.2.6 Interrupt timestamping description
	76.2.7 Interrupt timestamping usage guidelines
	76.2.8 Watchdog
	76.2.9 Interrupt (re)map functionality
	76.2.10 Dynamic processor reset start address

	76.3 Registers
	76.3.1 Interrupt Level Register
	76.3.2 Interrupt Pending Register
	76.3.3 Interrupt Force Register (NCPU = 0)
	76.3.4 Interrupt Clear Register
	76.3.5 Multiprocessor Status Register
	76.3.6 Broadcast Register (NCPU > 0)
	76.3.7 Error Mode Status Register
	76.3.8 Watchdog Control Register (NCPU > 0)
	76.3.9 Asymmetric Multiprocessing Control Register
	76.3.10 Interrupt Controller Select Register for Processors 0 - 7 (NCTRL > 0)
	76.3.11 Interrupt Controller Select Register for Processors 8 - 15 (NCTRL > 0)
	76.3.12 Processor Interrupt Mask Register
	76.3.13 Processor Interrupt Force Register (NCPU > 0)
	76.3.14 Extended Interrupt Acknowledge Register
	76.3.15 Interrupt Timestamp Counter Register
	76.3.16 Timestamp N Control Register
	76.3.17 Interrupt Assertion Timestamp Register
	76.3.18 Interrupt Acknowledge Timestamp Register
	76.3.19 Processor N Boot Address Register
	76.3.20 Interrupt Map Register N

	76.4 Vendor and device identifiers
	76.5 Implementation
	76.5.1 Reset

	76.6 Configuration options
	76.7 Signal descriptions
	76.8 Library dependencies
	76.9 Instantiation

	77 L2C - Level 2 Cache controller
	77.1 Overview
	77.2 Configuration
	77.2.1 Replacement policy
	77.2.2 Write policy
	77.2.3 Memory type range registers
	77.2.4 Cachability
	77.2.5 Cache tag entry
	77.2.6 AHB address mapping
	77.2.7 Memory protection and Error handling
	77.2.8 Scrubber
	77.2.9 Locked way
	77.2.10 Data priming

	77.3 Operation
	77.3.1 Read
	77.3.2 Write
	77.3.3 Cache flushing
	77.3.4 Disabling Cache
	77.3.5 Diagnostic cache access
	77.3.6 Error injection
	77.3.7 AHB slave interface
	77.3.8 AHB master interface
	77.3.9 AXI master interface
	77.3.10 Cache status
	77.3.11 Endianness

	77.4 Registers
	77.4.1 Control Register
	77.4.2 Status Register
	77.4.3 Flush (Memory Address) Register
	77.4.4 Flush (Set, Index) Register
	77.4.5 Access Counter Register
	77.4.6 Hit Counter Register
	77.4.7 Front-side Bus Cycle Counter Register
	77.4.8 Front-side Bus Usage Counter Register
	77.4.9 Error Status/Control
	77.4.10 Error Address Register
	77.4.11 Tag-check-bit Register
	77.4.12 Data-check-bit Register
	77.4.13 Scrub Control/Status Register
	77.4.14 Scrub Delay Register
	77.4.15 Error Injection Register
	77.4.16 Access control register
	77.4.17 Priming start register 0
	77.4.18 Priming stop register 0
	77.4.19 Priming start register 1
	77.4.20 Priming stop register 1
	77.4.21 Error Handling / Injection configuration
	77.4.22 Memory Type Range Register

	77.5 Core versions
	77.6 Vendor and device identifiers
	77.7 Implementation
	77.7.1 Reset
	77.7.2 RAM usage

	77.8 Configuration options
	77.9 Signal descriptions
	77.10 Library dependencies
	77.11 Instantiation

	78 L3STAT - LEON3 Statistics Unit
	78.1 Overview
	78.2 Multiple APB interfaces
	78.3 Registers
	78.3.1 Counter Value Register
	78.3.2 Counter Control Register
	78.3.3 Counter max/latch Register
	78.3.4 Timestamp Register

	78.4 Vendor and device identifiers
	78.5 Implementation
	78.5.1 Reset

	78.6 Configuration options
	78.7 Signal descriptions
	78.8 Library dependencies
	78.9 Component declaration

	79 L4STAT - LEON4 Statistics Unit
	79.1 Overview
	79.2 Multiple APB interfaces
	79.3 Registers
	79.3.1 Counter Value Register
	79.3.2 Counter Control Register
	79.3.3 Counter Max/Latch Register
	79.3.4 Timestamp Register

	79.4 Vendor and device identifiers
	79.5 Implementation
	79.5.1 Reset

	79.6 Configuration options
	79.7 Signal descriptions
	79.8 Library dependencies
	79.9 Component declaration

	80 LEON_DSU_STAT_BASE - LEON3/4 SUBSYSTEM
	80.1 Overview
	80.2 Operation
	80.2.1 Operational model
	80.2.2 Bus widths

	80.3 Implementation
	80.4 Configuration options
	80.5 Signal descriptions
	80.6 Library dependencies
	80.7 Instantiation

	81 LEON3/FT - High-performance SPARC V8 32-bit Processor
	81.1 Overview
	81.1.1 Integer unit
	81.1.2 Cache sub-system
	81.1.3 Floating-point unit and co-processor
	81.1.4 Memory management unit
	81.1.5 On-chip debug support
	81.1.6 Interrupt interface
	81.1.7 AMBA interface
	81.1.8 Power-down mode
	81.1.9 Multi-processor support

	81.2 LEON3 integer unit
	81.2.1 Overview
	81.2.2 Instruction pipeline
	81.2.3 SPARC Implementor’s ID
	81.2.4 Divide instructions
	81.2.5 Multiply instructions
	81.2.6 Multiply and accumulate instructions
	81.2.7 Compare and Swap instruction (CASA)
	81.2.8 Branch prediction
	81.2.9 Register file data protection
	81.2.10 Hardware breakpoints
	81.2.11 Instruction trace buffer
	81.2.12 Processor configuration register
	81.2.13 Exceptions
	81.2.14 Single vector trapping (SVT)
	81.2.15 Address space identifiers (ASI)
	81.2.16 Partial WRPSR
	81.2.17 Alternative window pointer
	81.2.18 Register file partitioning
	81.2.19 Power-down
	81.2.20 Processor reset operation
	81.2.21 Multi-processor systems
	81.2.22 LEON-REX extension

	81.3 Cache system
	81.3.1 Overview
	81.3.2 Cache operation
	81.3.3 Cache configuration options
	81.3.4 Address mapping
	81.3.5 Data cache policy
	81.3.6 Write buffer
	81.3.7 Operating with MMU
	81.3.8 Snooping
	81.3.9 Enabling and disabling cache
	81.3.10 Cache freeze
	81.3.11 Flushing
	81.3.12 Locking
	81.3.13 Diagnostic access
	81.3.14 Local scratch pad RAM
	81.3.15 Fault tolerance support

	81.4 Memory management unit
	81.4.1 Overview
	81.4.2 MMU/Cache operation
	81.4.3 Translation look-aside buffer (TLB)
	81.4.4 Variable minimum page sizes

	81.5 Floating-point unit
	81.5.1 Cobham Gaisler’s floating-point unit (GRFPU)
	81.5.2 GRFPU-Lite

	81.6 Co-processor interface
	81.7 AMBA interface
	81.7.1 Overview
	81.7.2 Cachability control
	81.7.3 Error handling
	81.7.4 Snoop port

	81.8 Multi-processor system support
	81.8.1 Start-up
	81.8.2 Shared memory model
	81.8.3 Memory-mapped hardware

	81.9 Fault tolerance
	81.9.1 Overview
	81.9.2 Integer register file protection
	81.9.3 Floating-point register file protection
	81.9.4 Register file EDAC/parity bits diagnostic read-out and error injection
	81.9.5 Cache protection

	81.10 ASI assignments
	81.10.1 Summary
	81.10.2 ASI 0x1, Forced cache miss
	81.10.3 ASI 0x2, System control registers
	81.10.4 ASI 0x8-0xB, Data/Instruction
	81.10.5 ASI 0xC-0xF, ICache tags/data, DCache tags/data
	81.10.6 ASI 0xF (alternate), FT register file parity read-out
	81.10.7 ASI 0x10, 0x11, 0x13, 0x18 - Flush
	81.10.8 ASI 0x19 and 0x04 - MMU registers
	81.10.9 ASI 0x1C - MMU and cache bypass
	81.10.10 ASI 0x1E - MMU snoop/physical tags diagnostic access

	81.11 Configuration registers
	81.11.1 PSR, WIM, TBR registers
	81.11.2 ASR17, LEON3 configuration register
	81.11.3 ASR20, Alternative window register
	81.11.4 ASR22-23 - Up-counter
	81.11.5 ASR24-31, Hardware watchpoint/breakpoint registers
	81.11.6 Cache control register
	81.11.7 I-cache and D-cache configuration registers
	81.11.8 ASR16, Register protection control register (FT only)
	81.11.9 MMU control register
	81.11.10 MMU context pointer and context registers
	81.11.11 MMU fault status register
	81.11.12 MMU fault address register

	81.12 Software considerations
	81.12.1 Register file initialization on power up (for LEON3FT)
	81.12.2 Start-up
	81.12.3 MMU & TLB
	81.12.4 Data scrubbing (LEON3FT)

	81.13 LEON3 versions
	81.13.1 Overview
	81.13.2 Data cache and AMBA behavior changes
	81.13.3 ASI 0x1 side effects
	81.13.4 ASR writes from user mode
	81.13.5 MMU alias handling
	81.13.6 CASA and load delay 2

	81.14 Vendor and device identifiers
	81.15 Implementation
	81.15.1 Reset
	81.15.2 Technology mapping
	81.15.3 RAM usage
	81.15.4 Double clocking
	81.15.5 Clock gating
	81.15.6 Scan support

	81.16 Configuration options
	81.17 Signal descriptions
	81.18 Signal definitions and reset values
	81.19 Timing
	81.20 Library dependencies
	81.21 Component declaration

	82 LEON4 - High-performance SPARC V8 32-bit Processor
	82.1 Overview
	82.1.1 Integer unit
	82.1.2 Cache sub-system
	82.1.3 Floating-point unit and co-processor
	82.1.4 Memory management unit
	82.1.5 On-chip debug support
	82.1.6 Interrupt interface
	82.1.7 AMBA interface
	82.1.8 Power-down mode
	82.1.9 Multi-processor support

	82.2 LEON4 integer unit
	82.2.1 Overview
	82.2.2 Instruction pipeline
	82.2.3 SPARC Implementor’s ID
	82.2.4 Divide instructions
	82.2.5 Multiply instructions
	82.2.6 Multiply and accumulate instructions
	82.2.7 Compare and Swap instruction (CASA)
	82.2.8 Branch prediction
	82.2.9 Register file data protection
	82.2.10 Hardware breakpoints
	82.2.11 Instruction trace buffer
	82.2.12 Processor configuration register
	82.2.13 Exceptions
	82.2.14 Single vector trapping (SVT)
	82.2.15 Address space identifiers (ASI)
	82.2.16 Partial WRPSR
	82.2.17 Power-down
	82.2.18 Processor reset operation
	82.2.19 Multi-processor systems
	82.2.20 LEON-REX extension

	82.3 Cache system
	82.3.1 Overview
	82.3.2 Cache operation
	82.3.3 Cache configuration options
	82.3.4 Address mapping
	82.3.5 Data cache policy
	82.3.6 Write buffer
	82.3.7 Operating with MMU
	82.3.8 Snooping
	82.3.9 Enabling and disabling cache
	82.3.10 Cache freeze
	82.3.11 Flushing
	82.3.12 Locking
	82.3.13 Diagnostic access
	82.3.14 Local scratch pad RAM
	82.3.15 Fault tolerance support

	82.4 Memory management unit
	82.4.1 Overview
	82.4.2 MMU/Cache operation
	82.4.3 Translation look-aside buffer (TLB)
	82.4.4 Variable minimum page sizes

	82.5 Floating-point unit
	82.5.1 Cobham Gaisler’s floating-point unit (GRFPU)
	82.5.2 GRFPU-Lite

	82.6 Co-processor interface
	82.7 AMBA interface
	82.7.1 Overview
	82.7.2 Cachability
	82.7.3 AMBA access size
	82.7.4 Error handling
	82.7.5 Snoop port

	82.8 Multi-processor system support
	82.8.1 Start-up
	82.8.2 Shared memory model
	82.8.3 Memory-mapped hardware

	82.9 Fault tolerance
	82.9.1 Overview
	82.9.2 Integer register file protection
	82.9.3 Floating-point register file protection
	82.9.4 Cache protection

	82.10 ASI assignments
	82.10.1 Summary
	82.10.2 ASI 0x1, Forced cache miss
	82.10.3 ASI 0x2, System control registers
	82.10.4 ASI 0x8-0xB, Data/Instruction
	82.10.5 ASI 0xC-0xF, ICache tags/data, DCache tags/data
	82.10.6 ASI 0x10, 0x11, 0x13, 0x18 - Flush
	82.10.7 ASI 0x19 and 0x04 - MMU registers
	82.10.8 ASI 0x1C - MMU and cache bypass
	82.10.9 ASI 0x1E - MMU physical/snoop tags diagnostic access

	82.11 Configuration registers
	82.11.1 PSR, WIM, TBR registers
	82.11.2 ASR17, LEON4 configuration register
	82.11.3 ASR22-23 - Up-counter
	82.11.4 ASR24-31, Hardware watchpoint/breakpoint registers
	82.11.5 Cache control register
	82.11.6 I-cache and D-cache configuration registers
	82.11.7 MMU control register
	82.11.8 MMU context pointer and context registers
	82.11.9 MMU fault status register
	82.11.10 MMU fault address register

	82.12 Software considerations
	82.12.1 Register file initialization on power up
	82.12.2 Start-up
	82.12.3 MMU & TLB
	82.12.4 Data scrubbing (for fault-tolerant implementations)

	82.13 Vendor and device identifiers
	82.14 Implementation
	82.14.1 Reset
	82.14.2 Technology mapping
	82.14.3 RAM usage
	82.14.4 Double clocking
	82.14.5 Clock gating
	82.14.6 Scan support

	82.15 Configuration options
	82.16 Signal descriptions
	82.17 Signal definitions and reset values
	82.18 Timing
	82.19 Library dependencies
	82.20 Component declaration

	83 LOGAN - On-chip Logic Analyzer
	83.1 Introduction
	83.2 Operation
	83.2.1 Trace buffer
	83.2.2 Clocking
	83.2.3 Triggering
	83.2.4 Arming

	83.3 Registers
	83.3.1 Status register
	83.3.2 Trace buffer index
	83.3.3 Page register
	83.3.4 Trig counter
	83.3.5 Sample frequency divider
	83.3.6 Storage qualifier
	83.3.7 Trig control registers
	83.3.8 Pattern/mask configuration
	83.3.9 Trace data

	83.4 Graphical interface
	83.5 Vendor and device identifiers
	83.6 Implementation
	83.6.1 Reset

	83.7 Configuration options
	83.8 Signal descriptions
	83.9 Library dependencies
	83.10 Instantiation

	84 MCTRL - Combined PROM/IO/SRAM/SDRAM Memory Controller
	84.1 Overview
	84.2 PROM access
	84.3 Memory mapped I/O
	84.4 SRAM access
	84.5 8-bit and 16-bit PROM and SRAM access
	84.6 Burst cycles
	84.7 8- and 16-bit I/O access
	84.8 SDRAM access
	84.8.1 General
	84.8.2 Address mapping
	84.8.3 Initialisation
	84.8.4 Configurable SDRAM timing parameters

	84.9 Refresh
	84.9.1 Self Refresh
	84.9.2 Power-Down
	84.9.3 Deep Power-Down
	84.9.4 Temperature-Compensated Self Refresh
	84.9.5 Drive Strength
	84.9.6 SDRAM commands
	84.9.7 Read cycles
	84.9.8 Write cycles
	84.9.9 Address bus connection
	84.9.10 Data bus
	84.9.11 Clocking

	84.10 Using bus ready signaling
	84.11 Access errors
	84.12 Attaching an external DRAM controller
	84.13 Endianness
	84.14 Registers
	84.14.1 Memory configuration register 1 (MCFG1)
	84.14.2 Memory configuration register 2 (MCFG2)
	84.14.3 Memory configuration register 3 (MCFG3)
	84.14.4 Power-Saving Configuration Register

	84.15 Vendor and device identifiers
	84.16 Implementation
	84.16.1 Reset

	84.17 Configuration options
	84.18 Signal descriptions
	84.19 Library dependencies
	84.20 Instantiation

	85 MEMSCRUB - AHB Memory Scrubber and Status Register
	85.1 Overview
	85.2 Operation
	85.2.1 Errors
	85.2.2 Correctable errors
	85.2.3 Scrubbing
	85.2.4 Scrubber error counters
	85.2.5 External start and clear
	85.2.6 Memory regeneration
	85.2.7 Initialization
	85.2.8 Interrupts
	85.2.9 Mode switching
	85.2.10 Dual range support

	85.3 Registers
	85.3.1 AHB Status Register
	85.3.2 AHB Failing Address Register
	85.3.3 AHB Error Configuration Register
	85.3.4 Scrubber Status Register
	85.3.5 Scrubber Configuration Register
	85.3.6 Scrubber Range Low Address Register
	85.3.7 Scrubber Range High Address Register
	85.3.8 Scrubber Position Register
	85.3.9 Scrubber Error Threshold Register
	85.3.10 Scrubber Initialization Data Register
	85.3.11 Scrubber Second Range Low Address Register
	85.3.12 Scrubber Second Range High Address Register

	85.4 Vendor and device identifiers
	85.5 Implementation
	85.5.1 Reset

	85.6 Configuration options
	85.7 Signal descriptions
	85.8 Library dependencies
	85.9 Instantiation

	86 MMA - Memory Mapped AMBA bridge
	86.1 Overview
	86.2 Operation
	86.2.1 Read
	86.2.2 Write

	86.3 Default configuration
	86.4 Vendor and device identifiers
	86.5 Implementation
	86.5.1 Reset

	86.6 Configuration options
	86.7 Signal descriptions
	86.8 Library dependencies
	86.9 Instantiation

	87 MUL32 - Signed/unsigned 32x32 multiplier module
	87.1 Overview
	87.2 Operation
	87.3 Implementation
	87.3.1 Reset
	87.3.2 Complexity

	87.4 Configuration options
	87.5 Signal descriptions
	87.6 Library dependencies
	87.7 Component declaration
	87.8 Instantiation

	88 MULTLIB - High-performance multipliers
	88.1 Overview
	88.2 Configuration options
	88.3 Signal descriptions
	88.4 Library dependencies
	88.5 Component declaration
	88.6 Implementation
	88.6.1 Reset

	88.7 Instantiation

	89 NANDFCTRL - NAND Flash Memory Controller
	89.1 Overview
	89.2 Operation
	89.2.1 System overview
	89.2.2 Internal buffer structure
	89.2.3 Data interface timing
	89.2.4 Accessing the NAND flash memory devices
	89.2.5 Endianness

	89.3 EDAC
	89.3.1 EDAC operation
	89.3.2 Code
	89.3.3 Encoding
	89.3.4 Decoding

	89.4 Registers
	89.5 Timing Modes
	89.5.1 Timing Register Values when Programmable Timing is Disabled
	89.5.2 Reset
	89.5.3 Core instantiation
	89.5.4 Scan test support

	89.6 Configuration options
	89.7 Signal descriptions
	89.8 Signal definitions and reset values
	89.9 Library dependencies
	89.10 Timing
	89.11 Instantiation

	90 PHY - Ethernet PHY simulation model
	90.1 Overview
	90.2 Operation
	90.3 Configuration options
	90.4 Signal descriptions
	90.5 Library dependencies
	90.6 Instantiation

	91 RGMII - Reduced Ethernet Media Access Controller
	91.1 Overview
	91.2 Operation
	91.2.1 Protocol support
	91.2.2 Transmit clock
	91.2.3 Transmitter Operation
	91.2.4 Side-band information
	91.2.5 MDIO Management
	91.2.6 RAM debug support
	91.2.7 External debug support

	91.3 Media Independent Interfaces
	91.4 Registers
	91.4.1 Status / Interrupt / Mask Register
	91.4.2 25 MHz Clock Warp Register
	91.4.3 25 MHz First Edge Register
	91.4.4 25 MHz Second Edge Register
	91.4.5 Bit Pattern Register
	91.4.6 Positive / Negative Clocked Data Receiver Delay Register
	91.4.7 Receiver Data Swap Register

	91.5 Vendor and device identifier
	91.6 Implementation
	91.6.1 Reset

	91.7 Configuration options
	91.8 Signal descriptions
	91.9 Library dependencies
	91.10 Instantiation

	92 REGFILE_3P 3-port RAM generator (2 read, 1 write)
	92.1 Overview
	92.2 Configuration options
	92.3 Signal descriptions
	92.4 Library dependencies
	92.5 Component declaration

	93 RSTGEN - Reset generation
	93.1 Overview
	93.2 Operation
	93.3 Configuration options
	93.4 Signal descriptions
	93.5 Signal definitions and reset values
	93.6 Timing
	93.7 Library dependencies
	93.8 Instantiation

	94 GR(2^4)(68, 60, 8, T=1) - QEC/QED error correction code encoder/decoder
	94.1 Overview
	94.2 Code
	94.3 Encoding
	94.4 Decoding
	94.5 Capability
	94.6 Operation
	94.6.1 Encoder
	94.6.2 Decoder

	94.7 Type descriptions
	94.8 Library dependencies
	94.9 Instantiation

	95 RS(24, 16, 8, E=1) - Reed-Solomon encoder/decoder
	95.1 Overview
	95.2 Capability
	95.3 Operation
	95.3.1 Encoder
	95.3.2 Decoder

	95.4 Type descriptions
	95.5 Library dependencies
	95.6 Instantiation

	96 RS(48, 32, 16, E=1+1) - Reed-Solomon encoder/decoder - interleaved
	96.1 Overview
	96.2 Capability
	96.3 Operation
	96.3.1 Encoder
	96.3.2 Decoder

	96.4 Type descriptions
	96.5 Library dependencies

	97 RS(40, 32, 8, E=1) - Reed-Solomon encoder/decoder
	97.1 Overview
	97.2 Operation
	97.2.1 Encoder
	97.2.2 Decoder

	97.3 Type descriptions
	97.4 Library dependencies
	97.5 Instantiation

	98 RS(48, 32, 16, E=2) - Reed-Solomon encoder/decoder
	98.1 Overview
	98.2 Operation
	98.2.1 Encoder
	98.2.2 Decoder

	98.3 Type descriptions
	98.4 Library dependencies
	98.5 Instantiation

	99 SDCTRL - 32/64-bit PC133 SDRAM Controller
	99.1 Overview
	99.2 Operation
	99.2.1 General
	99.2.2 Initialization
	99.2.3 Configurable SDRAM timing parameters
	99.2.4 Refresh
	99.2.5 Self Refresh
	99.2.6 Power-Down
	99.2.7 Deep Power-Down
	99.2.8 Temperature-Compensated Self Refresh
	99.2.9 Drive Strength
	99.2.10 SDRAM commands
	99.2.11 Read cycles
	99.2.12 Write cycles
	99.2.13 Address bus connection
	99.2.14 Data bus
	99.2.15 Clocking
	99.2.16 Endianness

	99.3 Registers
	99.4 Vendor and device identifiers
	99.5 Implementation
	99.5.1 Reset

	99.6 Configuration options
	99.7 Signal descriptions
	99.8 Library dependencies
	99.9 Instantiation

	100 SPI2AHB - SPI to AHB bridge
	100.1 Overview
	100.2 Transmission protocol
	100.3 System clock requirements and sampling
	100.4 SPI instructions
	100.4.1 Overview
	100.4.2 SPI status/control register accesses (RDSR/WRSR)
	100.4.3 Read and write instructions (WRITE and READ/READD)
	100.4.4 Memory protection

	100.5 Registers
	100.5.1 Control Register
	100.5.2 Status Register
	100.5.3 Protection Address Register
	100.5.4 Protection Mask Register

	100.6 Vendor and device identifier
	100.7 Implementation
	100.7.1 Reset

	100.8 Configuration options
	100.9 Signal descriptions
	100.10 Signal definitions and reset values
	100.11 Library dependencies
	100.12 Instantiation

	101 SPICTRL - SPI Controller
	101.1 Overview
	101.2 Operation
	101.2.1 SPI transmission protocol
	101.2.2 3-wire transmission protocol
	101.2.3 Dual and quad transmission protocols
	101.2.4 Receive and transmit queues
	101.2.5 Clock generation
	101.2.6 Slave operation
	101.2.7 Master operation
	101.2.8 Automated periodic transfers

	101.3 Registers
	101.3.1 SPI Controller Capability Register 0
	101.3.2 SPI Controller Capability Register 1
	101.3.3 SPI Controller Mode Register
	101.3.4 SPI Controller Event Register
	101.3.5 SPI Controller Mask Register
	101.3.6 SPI Controller Command Register
	101.3.7 SPI Controller Transmit Register
	101.3.8 SPI Controller Receive Register
	101.3.9 SPI Slave Select Register (optional)
	101.3.10 SPI Controller Automatic Slave Select Register
	101.3.11 SPI Controller AM Configuration Register
	101.3.12 SPI Controller AM Period Register
	101.3.13 SPI Controller AM Mask Register(s)
	101.3.14 SPI Controller AM Transmit Register(s)
	101.3.15 SPI Controller AM Receive Register

	101.4 Vendor and device identifier
	101.5 Implementation
	101.5.1 Reset

	101.6 Configuration options
	101.7 Signal descriptions
	101.8 Signal definitions and reset values
	101.9 Timing
	101.10 Library dependencies
	101.11 Instantiation

	102 SPIMCTRL - SPI Memory Controller
	102.1 Overview
	102.2 Operation
	102.2.1 Operational model
	102.2.2 I/O area
	102.2.3 ROM area
	102.2.4 SPI memory device address offset
	102.2.5 Supported memory devices
	102.2.6 Clock generation and power-up timing

	102.3 Registers
	102.3.1 Configuration Register
	102.3.2 Control Register
	102.3.3 Status Register
	102.3.4 Receive Register
	102.3.5 Transmit Register

	102.4 Vendor and device identifier
	102.5 Implementation
	102.5.1 Reset
	102.5.2 Technology mapping
	102.5.3 RAM usage

	102.6 Configuration options
	102.7 Signal descriptions
	102.8 Signal definitions and reset values
	102.9 Library dependencies
	102.10 Instantiation

	103 SPIMASTER - SPI Master Device
	103.1 Overview
	103.2 Transmission
	103.3 Operation
	103.4 Registers
	103.4.1 Control Register
	103.4.2 Status Register
	103.4.3 Clock Divide Register
	103.4.4 Chip Select Polarity Register
	103.4.5 Chip Select Register
	103.4.6 Transmit Register
	103.4.7 Transmit Enable Register
	103.4.8 Receive Register
	103.4.9 Interrupt Enable Register
	103.4.10 Interrupt Register

	103.5 Vendor and device identifier
	103.6 Implementation
	103.6.1 Reset

	103.7 Configuration options
	103.8 Signal descriptions
	103.9 Library dependencies
	103.10 Instantiation

	104 SPISLAVE - Dual Port SPI Slave
	104.1 Overview
	104.2 Implementation of SPI protocols
	104.3 Transmission
	104.4 Operation
	104.5 SPI 2 Protocol Handler
	104.5.1 Message Header - Command Token
	104.5.2 Command Code
	104.5.3 Message Header -Response Token

	104.6 Redundancy
	104.7 Registers
	104.7.1 Control Register
	104.7.2 Status Register
	104.7.3 Transmit Register
	104.7.4 Nominal Receive Register
	104.7.5 Redundant Receive Register
	104.7.6 Interrupt Enable Register
	104.7.7 Interrupt Register
	104.7.8 SPI2 Control Register
	104.7.9 SPI2 Time1 Register
	104.7.10 SPI2 Time2 Register
	104.7.11 SPI2 Config Address Write Register
	104.7.12 SPI2 Config Address Read Register

	104.8 Vendor and device identifier
	104.9 Implementation
	104.9.1 Reset

	104.10 Configuration options
	104.11 Signal descriptions
	104.12 Library dependencies
	104.13 Instantiation

	105 SRCTRL- 8/32-bit PROM/SRAM Controller
	105.1 Overview
	105.1.1 Endianness

	105.2 8-bit PROM access
	105.3 PROM/SRAM waveform
	105.4 Burst cycles
	105.5 Registers
	105.6 Vendor and device identifier
	105.7 Implementation
	105.7.1 Reset

	105.8 Configuration options
	105.9 Signal description
	105.10 Library dependencies
	105.11 Component declaration
	105.12 Instantiation

	106 SSRCTRL- 32-bit SSRAM/PROM Controller
	106.1 Overview
	106.1.1 Endianness

	106.2 SSRAM/PROM waveform
	106.2.1 PROM and IO access

	106.3 Registers
	106.4 Vendor and device identifier
	106.5 Configuration options
	106.6 Signal descriptions
	106.7 Library dependencies
	106.8 Component declaration
	106.9 Instantiation

	107 SVGACTRL - VGA Controller Core
	107.1 Overview
	107.2 Operation
	107.3 DVI support
	107.4 Registers
	107.4.1 Status Register
	107.4.2 Video Length Register
	107.4.3 Front Porch Register
	107.4.4 Sync Length Register
	107.4.5 Line Length Register
	107.4.6 Framebutter Memory Position Register
	107.4.7 Dynamic Clock 0 Register
	107.4.8 Dynamic Clock 1 Register
	107.4.9 Dynamic Clock 2 Register
	107.4.10 Dynamic Clock 3 Register
	107.4.11 CLUTA Access Register

	107.5 Vendor and device identifiers
	107.6 Implementation
	107.6.1 Reset

	107.7 Configuration options
	107.8 Signal descriptions
	107.9 Library dependencies
	107.10 Instantiation
	107.11 Linux 2.6 driver

	108 SYNCIOTEST - Test block for synchronous I/O interfaces
	108.1 Overview
	108.2 Operation
	108.3 Implementation
	108.3.1 Reset

	108.4 Configuration options
	108.5 Signal descriptions
	108.6 Library dependencies

	109 SYNCRAM - Single-port RAM generator
	109.1 Overview
	109.2 Configuration options
	109.3 Scan test support
	109.4 Signal descriptions
	109.5 Library dependencies
	109.6 Component declaration
	109.7 Instantiation

	110 SYNCRAMBW - Single-port RAM generator with byte enables
	110.1 Overview
	110.2 Configuration options
	110.3 Scan test support
	110.4 Technology support
	110.5 Signal descriptions
	110.6 Library dependencies
	110.7 Component declaration
	110.8 Instantiation

	111 SYNCRAM_2P - Two-port RAM generator
	111.1 Overview
	111.2 Write-through operation
	111.3 Conflicts
	111.4 Scan test support
	111.5 Configuration options
	111.6 Signal descriptions
	111.7 Library dependencies
	111.8 Component declaration
	111.9 Instantiation

	112 SYNCRAM_DP - Dual-port RAM generator
	112.1 Overview
	112.2 Configuration options
	112.3 Signal descriptions
	112.4 Library dependencies
	112.5 Component declaration
	112.6 Instantiation

	113 SYNCRAMFT - Single-port RAM generator with EDAC
	113.1 Overview
	113.2 Configuration options
	113.3 Scan test support
	113.4 Signal descriptions
	113.5 Library dependencies

	114 TAP - JTAG TAP Controller
	114.1 Overview
	114.2 Operation
	114.2.1 Generic TAP Controller

	114.3 Technology specific TAP controllers
	114.4 Registers
	114.5 Vendor and device identifiers
	114.6 Implementation
	114.6.1 Reset

	114.7 Configuration options
	114.8 Signal descriptions
	114.9 Library dependencies
	114.10 Instantiation

	115 GRTM - CCSDS/ECSS Telemetry Encoder
	115.1 Overview
	115.2 References
	115.2.1 Documents
	115.2.2 Acronyms and abbreviations

	115.3 Layers
	115.3.1 Introduction
	115.3.2 Data Link Protocol Sub-layer
	115.3.3 Synchronization and Channel Coding Sub-Layer
	115.3.4 Physical Layer

	115.4 Data Link Protocol Sub-Layer
	115.4.1 Physical Channel
	115.4.2 Virtual Channel Frame Service
	115.4.3 Virtual Channel Generation
	115.4.4 Virtual Channel Multiplexing
	115.4.5 Master Channel Generation
	115.4.6 Master Channel Frame Service
	115.4.7 Master Channel Multiplexing
	115.4.8 All Frame Generation

	115.5 Synchronization and Channel Coding Sub-Layer
	115.5.1 Attached Synchronization Marker
	115.5.2 Reed-Solomon Encoder
	115.5.3 Pseudo-Randomiser
	115.5.4 Convolutional Encoder

	115.6 Physical Layer
	115.6.1 Non-Return-to-Zero Mark encoder
	115.6.2 Split-Phase Level modulator
	115.6.3 Sub-Carrier modulator
	115.6.4 Clock Divider

	115.7 Connectivity
	115.8 Operation
	115.8.1 Introduction
	115.8.2 Descriptor setup
	115.8.3 Starting transmissions
	115.8.4 Descriptor handling after transmission
	115.8.5 Interrupts

	115.9 Registers
	115.9.1 GRTM DMA Control Register
	115.9.2 GRTM DMA Status Register
	115.9.3 GRTM DMA Length Register
	115.9.4 GRTM DMA Descriptor Pointer Register
	115.9.5 GRTM DMA Configuration Register (read-only)
	115.9.6 GRTM DMA Revision Register (read-only)
	115.9.7 GRTM DMA External VC Control & Status Register
	115.9.8 GRTM DMA External VC Descriptor Pointer Register
	115.9.9 GRTM Control Register
	115.9.10 GRTM Configuration Register (read-only)
	115.9.11 GRTM Physical Layer Register
	115.9.12 GRTM Coding Sub-Layer Register
	115.9.13 GRTM Attached Synchronization Marker Register
	115.9.14 GRTM All Frames Generation Register
	115.9.15 GRTM Master Frame Generation Register
	115.9.16 GRTM Idle Frame Generation Register
	115.9.17 GRTM FSH / IZ Register 0, MSB
	115.9.18 GRTM FSH / IZ Register 1
	115.9.19 GRTM FSH / IZ Register 2
	115.9.20 GRTM FSH / IZ Register 3, LSB
	115.9.21 GRTM OCF Register

	115.10 Vendor and device identifier
	115.11 Configuration options
	115.12 Signal descriptions
	115.13 Signal definitions and reset values
	115.14 Timing
	115.15 Library dependencies

	116 GRTM_DESC - CCSDS/ECSS Telemetry Encoder - Descriptor
	116.1 Overview
	116.2 Operation
	116.2.1 Introduction
	116.2.2 Descriptor definition

	116.3 Registers
	116.4 Vendor and device identifier
	116.5 Configuration options
	116.6 Signal descriptions
	116.7 Signal definitions and reset values
	116.8 Timing
	116.9 Library dependencies

	117 GRTM_VC - CCSDS/ECSS Telemetry Encoder - Virtual Channel Generation
	117.1 Overview
	117.2 Registers
	117.3 Vendor and device identifier
	117.4 Configuration options
	117.5 Signal descriptions
	117.6 Signal definitions and reset values
	117.7 Timing
	117.8 Library dependencies

	118 GRTM_PAHB - CCSDS/ECSS Telemetry Encoder - Virtual Channel Generation Input - AMBA
	118.1 Overview
	118.2 Interrupts
	118.3 Registers
	118.3.1 Status Register (R)
	118.3.2 Control Register (R/W)

	118.4 AHB I/O area
	118.5 Vendor and device identifiers
	118.6 Configuration options
	118.7 Signal descriptions
	118.8 Library dependencies

	119 GRTM_PW - CCSDS/ECSS Telemetry Encoder - Virtual Channel Generation Input - PacketWire
	119.1 Operation
	119.2 Signal definitions and reset values
	119.3 Timing

	120 GRTM_UART - CCSDS/ECSS Telemetry Encoder - Virtual Channel Generation Input - UART
	120.1 Asynchronous bit serial data format
	120.2 Registers
	120.3 Vendor and device identifiers
	120.4 Configuration options
	120.5 Signal descriptions
	120.6 Signal definitions and reset values
	120.7 Timing

	121 GEFFE - CCSDS/ECSS Telemetry Encoder - Geffe Generator
	121.1 Overview
	121.2 Linear Feed-back Shift Registers
	121.3 Connectivity
	121.4 Registers
	121.4.1 Control Register
	121.4.2 LFSR Polymonial Configuration Registers 0 to 2
	121.4.3 Initialization Value Configuration Registers 0 to 2

	121.5 Vendor and device identifier
	121.6 Configuration options
	121.7 Signal descriptions
	121.8 Signal definitions and reset values
	121.9 Timing
	121.10 Library dependencies

	122 GRTMRX - CCSDS/ECSS Telemetry Receiver
	122.1 Overview
	122.2 References
	122.2.1 Documents
	122.2.2 Acronyms and abbreviations

	122.3 Layers
	122.3.1 Introduction
	122.3.2 Data Link Protocol Sub-layer
	122.3.3 Synchronization and Channel Coding Sub-Layer
	122.3.4 Physical Layer

	122.4 Operation
	122.4.1 Introduction
	122.4.2 Descriptor setup
	122.4.3 Starting reception
	122.4.4 Descriptor handling after reception
	122.4.5 Demodulator clock recovery

	122.5 Registers
	122.5.1 GRTMRX DMA Control Register
	122.5.2 GRTMRX DMA Status Register
	122.5.3 GRTMRX DMA Descriptor Pointer Register
	122.5.4 GRTMRX Control Register
	122.5.5 GRTMRX Status Register (read-only)
	122.5.6 GRTMRX Configuration Register
	122.5.7 GRTMRX Size Register
	122.5.8 GRTMRX Physical Layer Register
	122.5.9 GRTMRX Coding Sub-Layer Register
	122.5.10 GRTMRX Attached Synchronization Marker Register
	122.5.11 GRTMRX Attached Synchronization Mask Register
	122.5.12 GRTMRX Data Rate Register (read-only)
	122.5.13 GRTMRX Filter Register
	122.5.14 GRTMRX Filter Mask Register
	122.5.15 GRTMRX OCF Register (read-only)
	122.5.16 GRTMRX FECF Register (read-only)
	122.5.17 GRTMRX Demodulator Register

	122.6 Vendor and device identifier
	122.7 Configuration options
	122.8 Signal descriptions
	122.9 Signal definitions and reset values
	122.10 Timing
	122.11 Library dependencies

	123 GRCE/GRCD - CCSDS/ECSS Convolutional Encoder and Quicklook Decoder
	123.1 Protocol
	123.2 Configuration options
	123.3 Signal descriptions
	123.4 Signal definitions and reset values
	123.5 Timing
	123.6 Library dependencies
	123.7 Instantiation

	124 GRTC - CCSDS/ECSS Telecommand Decoder
	124.1 Overview
	124.1.1 Concept
	124.1.2 Functions and options

	124.2 Data formats
	124.2.1 Reference documents
	124.2.2 Waveforms

	124.3 Coding Layer (CL)
	124.3.1 Synchronisation and selection of input channel
	124.3.2 Codeblock decoding
	124.3.3 De-Randomiser
	124.3.4 Non-Return-to-Zero – Mark
	124.3.5 Design specifics
	124.3.6 Direct Memory Access (DMA)

	124.4 Transmission
	124.4.1 Data formatting
	124.4.2 CLTU Decoder State Diagram
	124.4.3 Nominal
	124.4.4 CASE 1
	124.4.5 CASE 2
	124.4.6 Abandoned

	124.5 Relationship between buffers and FIFOs
	124.5.1 Buffer full
	124.5.2 Buffer full interrupt

	124.6 Command Link Control Word interface (CLCW)
	124.7 Configuration Interface (AMBA AHB slave)
	124.7.1 Miscellaneous

	124.8 Interrupts
	124.9 Miscellaneous
	124.9.1 Numbering and naming conventions
	124.9.2 Performance

	124.10 Registers
	124.10.1 Global Reset Register (GRR)
	124.10.2 Global Control Register (GCR)
	124.10.3 Physical Interfice Mask Register (PMR)
	124.10.4 Spacecraft Identifier Register (STR)
	124.10.5 Frame Acceptance Report Register (FAR)
	124.10.6 CLCW Register (CLCWRx)
	124.10.7 Physical Interface Register (PHIR)
	124.10.8 Control Register (COR)
	124.10.9 Status Register (STR)
	124.10.10 Address Space Register (ASR)
	124.10.11 Receive Read Pointer Register (RRP)
	124.10.12 Receive Write Pointer Register (RWP)
	124.10.13 Interrupt registers

	124.11 Vendor and device identifiers
	124.12 Configuration options
	124.13 Signal descriptions
	124.14 Signal definitions and reset values
	124.15 Timing
	124.16 Library dependencies
	124.17 Instantiation

	125 TCAU - Telecommand Decoder Authentication Unit
	125.1 Overview
	125.2 Operation
	125.3 References
	125.4 Data structures
	125.5 Front-end receiver
	125.6 Authentication Processor
	125.6.1 Hashing Function
	125.6.2 Hard Knapsack
	125.6.3 Deletion Box
	125.6.4 Signature Comparator

	125.7 Final Authorisation
	125.8 Control Command Processor
	125.9 Control Commands
	125.9.1 Dummy segment
	125.9.2 Select fixed key
	125.9.3 Select programmable key
	125.9.4 Load fixed key in programmable key memory
	125.9.5 Set new LAC count value
	125.9.6 Change programmable key block

	125.10 Programmable Key Memory
	125.10.1 Scrubber

	125.11 Fixed Key
	125.12 Back-end transmitter
	125.12.1 Non-authenticated segments
	125.12.2 Authenticated data segments
	125.12.3 Control Commands

	125.13 Cold start state
	125.14 Registers
	125.15 Implementation
	125.15.1 Reset

	125.16 Configuration options
	125.17 Signal descriptions
	125.18 Library dependencies
	125.19 Instantiation

	126 GRTC_HW - CCSDS/ECSS Telecommand Decoder - Hardware Commands
	126.1 Overview
	126.1.1 Concept

	126.2 Operation
	126.2.1 All Frames Reception
	126.2.2 Master Channel Demultiplexing
	126.2.3 Virtual Channel Demultiplexing
	126.2.4 Virtual Channel Reception
	126.2.5 Virtual Channel Packet Extraction
	126.2.6 Path Recovery
	126.2.7 Packet Extraction
	126.2.8 Application Layer

	126.3 Telecommand Transfer Frame format - Hardware Commands
	126.4 Registers
	126.5 Vendor and device identifiers
	126.6 Configuration options
	126.7 Signal descriptions
	126.8 Signal definitions and reset values
	126.9 Timing
	126.10 Library dependencies

	127 GRTC_UART - CCSDS/ECSS Telecommand Decoder - UART
	127.1 Overview
	127.2 Asynchronous bit serial data format
	127.3 Registers
	127.4 Vendor and device identifiers
	127.5 Configuration options
	127.6 Signal descriptions
	127.7 Signal definitions and reset values
	127.8 Timing
	127.9 Library dependencies

	128 GRTCTX - CCSDS/ECSS Telecommand Transmitter
	128.1 Overview
	128.2 References
	128.2.1 Documents
	128.2.2 Acronyms and abbreviations

	128.3 Layers
	128.3.1 Introduction
	128.3.2 Data Link Protocol Sub-layer
	128.3.3 Synchronization and Channel Coding Sub-Layer
	128.3.4 Physical Layer

	128.4 Operation
	128.4.1 Introduction
	128.4.2 Descriptor setup
	128.4.3 Starting transmission
	128.4.4 Descriptor handling after transmission

	128.5 Registers
	128.5.1 GRTCTXDMA Control Register
	128.5.2 GRTCTX DMA Status Register
	128.5.3 GRTCTXDMA Descriptor Pointer Register
	128.5.4 GRTCTX Control Register
	128.5.5 GRTCTX Configuration Register
	128.5.6 GRTCTX Physical Layer Register
	128.5.7 GRTCTX Coding Sub-layer Register
	128.5.8 GRTCTX Start And Tail Register
	128.5.9 GRTCTX All Frames Register

	128.6 Vendor and device identifier
	128.7 Configuration options
	128.8 Signal descriptions
	128.9 Signal definitions and reset values
	128.10 Timing
	128.11 Library dependencies

	129 GRCTM - CCSDS Time Manager
	129.1 Overview
	129.1.1 Foreseen usage of the core
	129.1.2 Description of a general system using the core
	129.1.3 Functions not included

	129.2 Data formats
	129.2.1 Reference documents
	129.2.2 CCSDS Unsegmented Code: Preamble Field (P-Field)
	129.2.3 CCSDS Unsegmented Code: Time Field (T-Field)
	129.2.4 Waveforms

	129.3 Operation
	129.3.1 Elapsed Time (ET)
	129.3.2 Frequency Synthesizer (FS)
	129.3.3 TimeWire Interface (TW)
	129.3.4 Datation
	129.3.5 Interrupts
	129.3.6 Pulses
	129.3.7 Standard Spacecraft Time Source Packet
	129.3.8 AMBA AHB slave interface
	129.3.9 Miscellaneous
	129.3.10 Numbering and naming conventions

	129.4 Registers
	129.4.1 Global Reset Register
	129.4.2 Global Control Register
	129.4.3 Global Status Register
	129.4.4 Preamble Field Register
	129.4.5 Elapsed Time Coarse Register
	129.4.6 Elapsed Time Fine Register
	129.4.7 Datation Time Coarse Register 0
	129.4.8 Datation Time Fine Register 0
	129.4.9 Datation Time Coarse Register 1
	129.4.10 Datation Time Fine Register 1
	129.4.11 Datation Time Coarse Register 2
	129.4.12 Datation Time Fine Register 2
	129.4.13 Spacecraft Time Datation Coarse Register
	129.4.14 Spacecraft Time Datation Fine Register
	129.4.15 Pulse Definition Register 0 to 7
	129.4.16 Elapsed Time Increment Register
	129.4.17 Frequency Synthesizer Increment Register
	129.4.18 Serial Configuration Register
	129.4.19 TimeWire Start Configuration Register
	129.4.20 TimeWire Adjust Configuration Register
	129.4.21 TimeWire Transmit Configuration Register
	129.4.22 TimeWire Receive Configuration Register
	129.4.23 Set Elapsed Time Coarse Register
	129.4.24 Set Elapsed Time Fine Register
	129.4.25 Interrupt registers

	129.5 Vendor and device identifiers
	129.6 Configuration options
	129.7 Signal descriptions
	129.8 Signal definitions and reset values
	129.9 Timing
	129.10 Library dependencies
	129.11 Instantiation
	129.12 Configuration tuning
	129.12.1 Master configuration
	129.12.2 Master/Slave configuration
	129.12.3 Slave configuration

	130 SPWCUC - SpaceWire - CCSDS Unsegmented Code Transfer Protocol
	130.1 Overview
	130.2 Protocol
	130.3 Functionality
	130.3.1 SpaceWire Time-Code transmission
	130.3.2 SpaceWire Time-Code reception
	130.3.3 CCSDS Unsegmented Code Transfer Protocol (CUCTP) packet reception
	130.3.4 Verification of Time-Codes to be received within tolerance
	130.3.5 Synchronization via Time-Codes
	130.3.6 Synchronization via CUCTP packets
	130.3.7 Initialization via CUCTP packets
	130.3.8 CCSDS Unsegmented Code Transfer Protocol (CUCTP) packet transmission support

	130.4 Data formats
	130.4.1 Numbering and naming conventions
	130.4.2 Reference documents
	130.4.3 CCSDS Unsegmented Code: Preamble Field (P-Field)
	130.4.4 CCSDS Unsegmented Code: Time Field (T-Field)

	130.5 Registers
	130.5.1 Various T-Field Mappings
	130.5.2 Various T-Field Mappings - Example (Time-Codes at 64 Hz, CUCTP Packets at 1 Hz)
	130.5.3 Configuration Register
	130.5.4 Status Register
	130.5.5 Control Register
	130.5.6 Destination Logical Address and Mask Register
	130.5.7 Protocol Identifier Register
	130.5.8 Offset Register
	130.5.9 T-Field Coarse Time Packet Register
	130.5.10 T-Field Fine Time Packet Register
	130.5.11 P-Field Packet and CRC Packet Register
	130.5.12 Elapsed Coarse Time Register
	130.5.13 Elapsed Fine Time Register
	130.5.14 Next Elapsed Coarse Time Packet Register
	130.5.15 Next Elapsed Fine Time Packet Register
	130.5.16

	130.6 Vendor and device identifiers
	130.7 Implementation
	130.7.1 Reset

	130.8 Configuration options
	130.9 Signal descriptions
	130.10 Signal definitions and reset values
	130.11 Timing
	130.12 Library dependencies

	131 GRPW - PacketWire Interface
	131.1 Operation
	131.1.1 Protocol
	131.1.2 Bi-directional PacketWire interface
	131.1.3 AMBA AHB master interface
	131.1.4 Advanced Microcontroller Bus Architecture
	131.1.5 Consultative Committee for Space Data Systems

	131.2 Vendor and device identifiers
	131.3 Configuration options
	131.4 Signal descriptions
	131.5 Signal definitions and reset values
	131.6 Timing
	131.7 Library dependencies
	131.8 Instantiation

	132 GRPWRX - PacketWire Receiver
	132.1 Overview
	132.2 PacketWire interface
	132.3 Operation
	132.3.1 Introduction
	132.3.2 Descriptor setup
	132.3.3 Packet mode
	132.3.4 Framing mode
	132.3.5 Starting transmission
	132.3.6 Descriptor handling after transmission

	132.4 Registers
	132.4.1 DMA Control Register
	132.4.2 DMA Status Register
	132.4.3 DMA Descriptor Pointer Register
	132.4.4 Control Register
	132.4.5 Status Register
	132.4.6 Configuration Register
	132.4.7 Physical Layer Register

	132.5 Vendor and device identifier
	132.6 Configuration options
	132.7 Signal descriptions
	132.8 Signal definitions and reset values
	132.9 Timing
	132.10 Library dependencies

	133 GRPWTX - PacketWire Transmitter
	133.1 Overview
	133.2 PacketWire interface
	133.3 Operation
	133.3.1 Introduction
	133.3.2 Descriptor setup
	133.3.3 Starting transmission
	133.3.4 Descriptor handling after transmission

	133.4 Registers
	133.4.1 DMA Control Register
	133.4.2 DMA Status Register
	133.4.3 DMA Descriptor Pointer Register
	133.4.4 Control Register
	133.4.5 Status Register
	133.4.6 Configuration Register
	133.4.7 Physical Layer Register

	133.5 Vendor and device identifier
	133.6 Configuration options
	133.7 Signal descriptions
	133.8 Signal definitions and reset values
	133.9 Timing
	133.10 Library dependencies

	134 PW2APB - PacketWire receiver to AMBA APB Interface
	134.1 Overview
	134.2 PacketWire interface
	134.3 Registers
	134.3.1 Control Register
	134.3.2 Configuration Register
	134.3.3 Data Reception Register

	134.4 Vendor and device identifiers
	134.5 Configuration options
	134.6 Signal descriptions
	134.7 Signal definitions and reset values
	134.8 Timing
	134.9 Library dependencies

	135 APB2PW - AMBA APB to PacketWire Transmitter Interface
	135.1 Overview
	135.2 PacketWire interface
	135.3 Registers
	135.3.1 Control Register
	135.3.2 Configuration Register
	135.3.3 Data Transmission Register

	135.4 Vendor and device identifiers
	135.5 Configuration options
	135.6 Signal descriptions
	135.7 Signal definitions and reset values
	135.8 Timing
	135.9 Library dependencies

	136 AHB2PP - AMBA AHB to Packet Parallel Interface
	136.1 Overview
	136.2 Interrupts
	136.3 Registers
	136.3.1 Configuration Register (R/W)
	136.3.2 Status Register)
	136.3.3 Control
	136.3.4 Data Input
	136.3.5 Data Output
	136.3.6 Data Direction

	136.4 AHB I/O area
	136.5 Vendor and device identifiers
	136.6 Configuration options
	136.7 Signal descriptions
	136.8 Library dependencies

	137 GRRM - Reconfiguration Module
	137.1 Overview
	137.2 Operation
	137.3 Alarms
	137.3.1 External alarms
	137.3.2 Watchdog timeout
	137.3.3 Software alarms

	137.4 Alarm Pattern
	137.5 Reconfiguration Log
	137.6 Reconfiguration Sequences
	137.6.1 Internal commands
	137.6.2 External commands

	137.7 CPDU Packet Generator
	137.8 Initial Core Configuration
	137.9 Health Communication
	137.10 RM Error
	137.11 Registers
	137.12 Vendor and device identifiers
	137.13 Implementation
	137.13.1 Reset

	137.14 Configuration options
	137.15 Signal descriptions
	137.16 Signal definitions and reset values
	137.17 Timing
	137.18 Library dependencies
	137.19 Instantiation

