CHANGE RECORD

<table>
<thead>
<tr>
<th>Issue</th>
<th>Date</th>
<th>Section / Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2020-10-01</td>
<td></td>
<td>Corrected names of accessory boards</td>
</tr>
</tbody>
</table>

TABLE OF CONTENTS

1 INTRODUCTION ... 4
1.1 Scope of the Document ... 4
1.2 Reference Documents ... 4

2 OVERVIEW .. 5
2.1 Board DIAGRAM and DESCRIPTION ... 6
2.1.1 Board Jumper description ... 7

3 BOARD CONFIGURATIONS .. 11
3.1 Overview .. 11
3.2 Default configuration ... 11
3.3 Plug-on configuration boards ... 12
3.4 Power Supply .. 13
3.4.1 CPCI power supply ... 14
3.5 Boot strap configurations .. 14
3.5.1 From external memory .. 17
3.5.2 Remote boot ... 18
3.6 Reset .. 19
3.6.1 External Reset and break switch ... 19
3.7 Clocking ... 20
3.8 Pin multiplexing .. 21
3.9 Pin properties ... 22
3.10 Debug UART FTDI ... 22
3.11 GR716-BOARD and Expansion Boards ... 23

© Cobham Gaisler AB
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>SOFTWARE DEVELOPMENT ENVIRONMENT</td>
<td>24</td>
</tr>
<tr>
<td>4.1</td>
<td>Overview</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>GRMON HARDWARE DEBUGGER</td>
<td>25</td>
</tr>
<tr>
<td>5.1</td>
<td>Overview</td>
<td>25</td>
</tr>
<tr>
<td>5.2</td>
<td>Debug-link alternatives</td>
<td>25</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Connecting via the FTDI USB/UART interface</td>
<td>25</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Connecting via SpaceWire RAMP interfaces</td>
<td>25</td>
</tr>
<tr>
<td>5.3</td>
<td>First steps</td>
<td>26</td>
</tr>
<tr>
<td>5.4</td>
<td>Connecting to the board</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>TSIM LEON SIMULATOR</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>TOOLCHARNS</td>
<td>29</td>
</tr>
<tr>
<td>8</td>
<td>SOFTWARE EXAMPLES</td>
<td>29</td>
</tr>
<tr>
<td>9</td>
<td>EXPANSION BOARDS</td>
<td>29</td>
</tr>
<tr>
<td>10</td>
<td>SUPPORT</td>
<td>29</td>
</tr>
<tr>
<td>11</td>
<td>APPENDIX A</td>
<td>30</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

1.1 Scope of the Document

This document is a Quick Start Guide for the GR-CPCI-GR716-DEV Development Board. The purpose of this document is to get users quickly started using the board.

For a complete description of the board please refer to the GR-CPCI-GR716-DEV Development Board User's Manual.

The GR716 system-on-chip is described in the GR716 Data sheet and User's Manual.

This quick start guide does not contain as many technical details and is instead how-to oriented. However, to make the most of the guide the user should have glanced through the aforementioned documents and should ideally also be familiar with the GRMON debug monitor.

This document establishes the Quick Start Guide for the GR-CPCI-GR716-DEV development board. This document provides example and guides for connecting external interface circuits to the GR716-BOARD using the GR-CPCI-GR716-DEV Development board for more see [RD2] or contact support@gasiler.com.

1.2 Reference Documents

The referenced documents can be downloaded from [http://www.gaisler.com]
2 OVERVIEW

The GR-CPCI-GR716-DEV Development board provides a comprehensive and rapid prototyping platform for the GR716 fault tolerant micro controller. The PC/104 style stackable headers (2 x 64 pin) allow for easy expansion, accessibility and integration. Along with the possibility to fit the microcontroller board GR716-BOARD, the subject board supports following options:

Baseline design for interface application board:

- GR716-BOARD engineering board in dedicated slot
 - Multiple slots for possibility to attach multiple GR716 engineering boards
- Expansion slot for memory or user defined functions (e.g. SRAM, ADC/DAC)
- Socketed oscillators for system, SpaceWire, Mil-Std-1553B and PWM clocks
- Configuration of front panel functions
- Front panel interfaces
 - MDM9S for fixed SpW (LVDS) interface
 - MDM9S for configurable SpW/PI4S (LVDS) interface
 - GPIO (64 pins on standard 0.1" connectors)
 - LED indicators (64) for GPIO pins
 - DIP switch for bootstrap options
 - Reset and DSU Break push-button switches
 - LEDs for power and reset status
 - FTDI USB interface
 - GRMON3 debug I/F via Debug UART
 - 2x UART interfaces, 1x I2C interface
- Power from external supply (range +5V to +12V) or via cPCI backplane connector (+5V)
- Expansion through accessory boards
 - 6x UARTs using GR-ACC-6U-6UART
 - CAN, Mil-Std-1553B, SPI using GR-ACC-GR740
 - PacketWire using GR-TMTC-PW
 - Analog frontpanel for 4 ADC connections + 4 DAC connections.

The board has the dimension of 233mm x 160mm, 6U cPCI format, 2 slot wide front panel
2.1 Board DIAGRAM and DESCRIPTION
2.1.1 Board Jumper description

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Setting</th>
<th>Description/Comment</th>
</tr>
</thead>
</table>
| JP1 | Connect Pin 1 to 2 → Reset
 | Connect Pin 3 to 4 → Break Enable
 | Connect Pin 5 to 6 → DSU Disable | Header Pin 1,2,3 and 4 allows an additional external reset switch to be connected. Pin 3 and 4 can be used to force ‘BREAK’ at startup i.e. halt processor execution after reset |
| JP2 | Connect Pin 1 to 2 → For I2C to FTDI
 | Connect Pin 3 to 4 → For I2C to FTDI | Enables I2C remote access to GR716 device via USB-FTDI connector |
| JP3 | Connect Pin 1 to 2 → For UART to FTDI
 | Connect Pin 3 to 4 → For UART to FTDI
 | Connect Pin 5 to 6 → For UART to FTDI | Enables UART remote access to GR716 device via USB-FTDI connector using IO configuration 0 |
| JP4 | Connect Pin 1 to 2 → For UART to FTDI
 | Connect Pin 3 to 4 → For UART to FTDI
<pre><code> | Connect Pin 5 to 6 → For UART to FTDI | Enables UART remote access to GR716 device via USB-FTDI connector using IO configuration 1 |
</code></pre>
<p>| JP5 | Connect Pin 1 to 2 → Enable SPI4S | Enables SPI4S interface. Remove connection/jumper and all signals from SPI4S driver will be put to HiZ |
| JP6 | Connect Pin 1 to 2 → Enable SpaceWire | Enables SpaceWire interface. Remove connection/jumper and all signals from SpaceWire driver will be put to HiZ |
| J2 | GPIO connector 0 to 15 | GR716 external pins #0 to #15. Pins are protected by a series resistor of 470ohm |
| J3 | GPIO connector 16 to 31 | GR716 external pins #16 to #31. Pins are protected by a series resistor of 470ohm |
| J4 | GPIO connector 32 to 47 | GR716 external pins #32 to #47. Pins are protected by a series resistor of 470ohm |
| J5 | GPIO connector 48 to 63 | GR716 external pins #48 to #63. Pins are protected by a series resistor of 470ohm |
| J6 | SpaceWire/SPI connector | |
| J7 | SpaceWire connector | |</p>
<table>
<thead>
<tr>
<th>Jumper</th>
<th>Setting</th>
<th>Description/Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>J8</td>
<td>SPI4S connector</td>
<td></td>
</tr>
<tr>
<td>J9</td>
<td>UART connector</td>
<td>Connector for connection to:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GR-ACC-6U-6UART</td>
</tr>
<tr>
<td>J10</td>
<td></td>
<td>• GR-ACC-GR740 (pins 9-20 only)</td>
</tr>
<tr>
<td>J11</td>
<td></td>
<td>• GR-CPCI-RS232 (pins 9-20 only)</td>
</tr>
<tr>
<td>J12</td>
<td>CAN connector</td>
<td>Connector for connection to:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GR-ACC-GR740</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GR-CPCI-CAN</td>
</tr>
<tr>
<td>J13</td>
<td>MIL-1553B connector</td>
<td>Connector for connection to:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GR-ACC-GR740</td>
</tr>
<tr>
<td>J14</td>
<td>SPI connector</td>
<td>Connector for connection to:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GR-ACC-GR740</td>
</tr>
<tr>
<td>J15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J16</td>
<td>Packet Wire connector</td>
<td>Connector for connecting with ribbon cable to GR-TMTC-PW accessory board.</td>
</tr>
<tr>
<td>J17</td>
<td>DAC SMA connectors</td>
<td></td>
</tr>
<tr>
<td>J18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J21</td>
<td>ADC SMA connectors</td>
<td></td>
</tr>
<tr>
<td>J22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Jumper Settings and Description

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Setting</th>
<th>Description/Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>J28</td>
<td>SMA connector for system clock</td>
<td>Either install X4, or inject required clock at SMA. If this SMA connector is used, make sure there is no conflict with GR716-BOARD clock settings</td>
</tr>
<tr>
<td>J30</td>
<td>SMA connector for SpaceWire clock</td>
<td>Either install X3, or inject required clock at SMA. If this SMA connector is used, make sure there is no conflict with GR716-BOARD clock settings</td>
</tr>
<tr>
<td>J31</td>
<td>SMA connector for PWM clock</td>
<td>Either install X4, or inject required clock at SMA. If this SMA connector is used, make sure there is no conflict with GR716-BOARD clock settings</td>
</tr>
<tr>
<td>J32</td>
<td>Power</td>
<td>Power (nominal +12V) connector for 2.1mm center +ve type connector.</td>
</tr>
<tr>
<td>J33</td>
<td>Mate-N-Lok 4pin power connector</td>
<td>4 pin IDE style connector as power alternative</td>
</tr>
<tr>
<td>J34</td>
<td>External power connector</td>
<td>2 pin header with Vin and GND connections (e.g. for FAN)</td>
</tr>
<tr>
<td>J35</td>
<td>Plug-on board connection</td>
<td></td>
</tr>
<tr>
<td>J36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>Boot configuration switch</td>
<td>See chapter 3.5</td>
</tr>
<tr>
<td>S2</td>
<td>DSU BREAK button</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>RESET button</td>
<td></td>
</tr>
<tr>
<td>X1</td>
<td>MIL-1553B crystal oscillator</td>
<td>Connects to the GR716 device via pin multiplexing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If this oscillator is installed, make sure there is no conflict with GR716-BOARD clock settings</td>
</tr>
<tr>
<td>X2</td>
<td>System crystal oscillator</td>
<td>Connects to the GR716 device via system</td>
</tr>
<tr>
<td>Jumper</td>
<td>Setting</td>
<td>Description/Comment</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>clock input.</td>
<td>If this oscillator is installed, make sure there is no conflict with GR716-BOARD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>clock settings</td>
</tr>
<tr>
<td>X3</td>
<td>System crystal oscillator</td>
<td>Connects to the GR716 device via system clock input.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If this oscillator is installed, make sure there is no conflict with GR716-BOARD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>clock settings</td>
</tr>
<tr>
<td>X4</td>
<td>PWM crystal oscillator</td>
<td>Connects to the GR716 device via pin multiplexing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If this oscillator is installed, make sure there is no conflict with GR716-BOARD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>clock settings</td>
</tr>
<tr>
<td>P1</td>
<td>GR716-BOARD connector</td>
<td>Expansion connector connected to board via plug-on configuration boards</td>
</tr>
<tr>
<td>P2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>GR716-BOARD connector</td>
<td>Expansion connector. This connector is a copy of P1-P2 connector but not configurable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>via plug-on configuration board.</td>
</tr>
<tr>
<td>P4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPCI-J1</td>
<td>CPCI power connector</td>
<td>CPCI Type A connector as power alternative</td>
</tr>
<tr>
<td>D33</td>
<td>RESET and POWER led</td>
<td></td>
</tr>
</tbody>
</table>
3 BOARD CONFIGURATIONS

3.1 Overview

The primary sources of information are the GR716 Development Board User's Manual [RD2] and the GR716 Data sheet and User's Manual Error: Reference source not found. Before start using the GR716, clock and reset sources have to be installed, bootstrap signals need to be set correctly and the desired interfaces have to be enabled. The GR716 interfaces shares some of the IO pins due to a limited number of pins. For that reason, the pin multiplexing has to be set up depending on the desired interfaces and memory configuration.

3.2 Default configuration

This guide provides one default and two alternative configurations. The default configuration provided assumes one mounted GR716-CONFIGx and one mounted GR716-BOARD board mounted in slot #1. The debug links is UART over FTDI via the front panel of the GR716-CPCI-GR716-DEV board.. General I/O, SPI flash Prom and Debug-UART are used. The complete default configuration can be found in Error: Reference source not found. If this is your first time using the GR716 Development Board, please use this configuration as a starting point.

Default configuration

To achieve the default configuration please follow the instructions on each box note like this one.
3.3 Plug-on configuration boards

To avoid misconfiguration and driver contamination the GR-CPCI-GR716-DEV development board implements a simple scheme where the user can create custom plug-on boards to select connections between the GR716 device and interface driver/source. The plug-on boards are referred to as GR716-CONFIGx boards. This document describes 3 variants of the GR716-CONFIGx boards:

- Configx – This is the configuration which enables connection all to interface drivers/receivers on the GR-CPCI-GR716-DEV Development board.
- Config0 – Enables GPIO, UART, MIL-1553, PacketWire, CAN, SPI Master and Slave, SpaceWire and SPI4S over CMOS. Configuration also supports on-chip ADC and DAC
- Config1 – Enables GPIO, MIL-1553, CAN, SPI Slave, external SRAM/FLASH/SPI memory, external ADC/DAC interface. Configuration also supports on-chip ADC and DAC.

Figure 1 GR-CPCI-GR716-DEV configuration board placements
Default configuration

Plugin a GR716-CONFIG1 board into connector P2

3.4 Power Supply

A single supply with a +5V (minimum) / +14V (maximum) is required to power the board. All other necessary voltages on the board are derived from this input using discrete Power circuits on the board (DC/DC or Linear Regulators as appropriate).

ATTENTION!!

Do not exceed +14.5V at power supply input, as this may damage the board.

Default configuration

Default power configuration for stand alone board is to use single with a +5V (minimum) / +14V (maximum) connected to the J32 connector.

Figure 2 GR-CPCI-GR716-DEV board power connector J32
3.4.1 CPCI power supply

The +12V and -12V can be supplied via the compact PCI style.

ATTENTION!!

You must not apply power to connector J32 when board is plugged into compact PCI rack.

3.5 Boot strap configurations

Bootstrap signals configure the chip on reset and are listed in section Bootstrap signals of GR716 Data sheet and User's Manual. All of these signals can be controlled via the front panel of the GR-CPCI-GR716-DEV board via the SPDT DIP switch S1 position 1 to 8.

Figure 3 GR-CPCI-GR716-DEV board front panel and boot strap dip switch

The bootstrap signals controlled via SPDT DIP switch S1 position 1 to 8 have the following impact on the system behaviour:
Remote boot access (S1-8) enables remote access to the GR716 microcontroller after initialization has been completed. Enable of remote access will force the processor to power down after initialization.

Disable use of internal boot ROM (S1-1) disables initialization of processor and internal memories. If internal boot PROM is disabled the processor will start execute software directly from selected source or power down after remote interface has been enabled.

Disable internal memory test (S1-3) will make the system boot much faster but will not check or initialize internal memories.

Select boot source (S1-6, S1-7) will together with the remote boot access (S1-8) and switch select boot source. Pin has dual functionality and is deepened upon boot strap configuration with higher precedence

Enable use of ASW (S1-5) enables CRC-16 checking of software from external SRAM, PROM, SPI memory or I2C memory

Enable use of redundant memory (S1-4). When ASW (S1-5) is enabled system can be configured to start from redundant memory when an error occurs during start-up.

EDAC for external memories (S1-2) enables error detection and correction for external SRAM, PROM and SPI memory. When this bit is enabled system expects correction codes to be stored together with application software.

Enable PLL (S1-2) enables internal SpaceWire frequency generation using the internal PLL. If disabled the internal PLL is bypassed is expected to be 50 MHz i.e. internal SpaceWire frequency divisor is set to 5 to generate a 10 Mbit SpaceWire link.

Select SpaceWire default frequency (S1-4, S1-5).
Default configuration

Default configuration is to start execute application software from the SPI memory after internal ROM has been executed.

The default configuration of the board uses:

S1-1 Closed
S1-2 Closed
S1-3 Closed
S1-4 Closed
S1-5 Closed
S1-6 Closed
S1-7 Closed
S1-8 Closed
3.5.1 From external memory

This section lists external memory boot configurations i.e. when S1-8 is closed. Note that list only includes valid configurations for the GR716 Development Board.

Table 1 Direct boot from external memory

<table>
<thead>
<tr>
<th>S1 1 (EDAC)</th>
<th>S1 2 (Bypass ROM)</th>
<th>S1 3 (Disable test)</th>
<th>S1 4 (Redundant)</th>
<th>S1 5 (Copy ASW)</th>
<th>S1 6 (Source)</th>
<th>S1 7 (Source)</th>
<th>S1 8 (Remote)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed</td>
<td>Open</td>
<td>Don't care</td>
<td>Closed**</td>
<td>Closed</td>
<td>Closed</td>
<td>Closed</td>
<td>Closed</td>
<td>Boot direct from external SPI memory</td>
</tr>
<tr>
<td>Closed</td>
<td>Closed</td>
<td>Closed</td>
<td>Closed**</td>
<td>Closed</td>
<td>Closed</td>
<td>Closed</td>
<td>Closed</td>
<td>Boot direct from external SPI memory after system initialization and memories has been checked.</td>
</tr>
<tr>
<td>Closed</td>
<td>Closed</td>
<td>Open</td>
<td>Closed**</td>
<td>Closed</td>
<td>Closed</td>
<td>Closed</td>
<td>Closed</td>
<td>Boot direct from external SPI memory after system initialization.</td>
</tr>
<tr>
<td>Open*</td>
<td>Closed</td>
<td>Closed</td>
<td>Closed**</td>
<td>Closed</td>
<td>Closed</td>
<td>Closed</td>
<td>Closed</td>
<td>Boot direct from external SPI memory with EDAC correction enabled after system initialization and memories has been checked. Initialization.</td>
</tr>
<tr>
<td>Open*</td>
<td>Closed</td>
<td>Closed</td>
<td>Closed**</td>
<td>Open***</td>
<td>Closed</td>
<td>Closed</td>
<td>Closed</td>
<td>Extract ASW container from external SPI memory with EDAC correction enabled after system initialization and memories has been checked. Initialization.</td>
</tr>
</tbody>
</table>

* Requires SPI PROM to be pre-programmed with correction codes

** Redundant SPI PROM requires additional board. Contact support@gaisler.com for more information.

*** Requires software to be stored using ASW format described in GR716 Datasheet
3.5.2 Remote boot

This section lists external memory boot configurations i.e. when S1-8 is Open. Note that list only includes valid configurations for the GR716 Development Board.

Table 2 Remote boot configurations for GR716 Development board

<table>
<thead>
<tr>
<th>S1 1 (PLL)</th>
<th>S1 2 (Bypass ROM)</th>
<th>S1 3 (Disable test)</th>
<th>S1 4 (SpW Freq)</th>
<th>S1 5 (SpW Freq)</th>
<th>S1 6 (Source)</th>
<th>S1 7 (Source)</th>
<th>S1 8 (Remote)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>Closed</td>
<td>Closed</td>
<td>Closed**</td>
<td>Closed**</td>
<td>Closed</td>
<td>Closed</td>
<td>Open</td>
<td>Remote boot via SpaceWire RMAP using a crystal oscillator of 25 MHz</td>
</tr>
<tr>
<td>Closed*</td>
<td>Closed</td>
<td>Closed</td>
<td>Don't care</td>
<td>Don't care</td>
<td>Closed</td>
<td>Closed</td>
<td>Open</td>
<td>Remote boot via SpaceWire RMAP using an external frequency of 50 MHz</td>
</tr>
<tr>
<td>Don't care</td>
<td>Closed</td>
<td>Closed</td>
<td>Don't care</td>
<td>Don't care</td>
<td>Open</td>
<td>Closed</td>
<td>Open</td>
<td>Remote boot via SPI</td>
</tr>
<tr>
<td>Don't care</td>
<td>Closed</td>
<td>Closed</td>
<td>Don't care</td>
<td>Don't care</td>
<td>Closed</td>
<td>Open</td>
<td>Open</td>
<td>Remote boot via I2C</td>
</tr>
<tr>
<td>Don't care</td>
<td>Closed</td>
<td>Closed</td>
<td>Don't care</td>
<td>Don't care</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Remote boot via UART</td>
</tr>
</tbody>
</table>

* Requires external SpaceWire clock at running 50 Mhz

** Possible to change crystal oscillator. See section 3.7
3.6 Reset

The default configuration is to use the internal Power-On-Reset functionality. The length of the reset is determined by the capacitor C19 on the GR716-BOARD.

Default configuration

The default configuration is to use the internal Power-On-Reset functionality.

3.6.1 External Reset and break switch

Reset switch, Break switch is provided on the front-panel.

Figure 4 Reset and Break switch on the GR-CPCI-GR716-DEV board front panel
3.7 Clocking

The default configuration of the GR-CPCI-GR716-DEV board is to use the external 25 MHz crystal oscillator Y1 (XTAL-DIL8_PCB) mounted on the GR716-BOARD as system and SpaceWire clock.

The GR716 device is designed to work with any crystal as long as the operating mode is of type "Fundamental tone" and the frequency is in the range 4 MHz to 25 MHz. If SpaceWire is selected as remote boot option design then external crystal oscillator frequency must be 5 MHz, 10 MHz, 20 MHz or 25 MHz.

The internal frequencies for ADC, DAC, MIL-1553, PackerWire, PWM, SPI4S, SpaceWire and system depend upon the crystal oscillator frequency and on the internal clock logic and PLL configuration. External system and SpaceWire clock source is selected with JP10 and JP11. If SpaceWire is selected as remote boot option PLL should be configured via SPDT DIP switch S1 position 4 and 5.

Table 3 GR-CPCI-GR716-DEV clock configuration

<table>
<thead>
<tr>
<th>Oscillator</th>
<th>Frequency</th>
<th>Mounted</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>X2</td>
<td>Upto 50 MHz</td>
<td>No</td>
<td>No need to mount if clock is no used on GR716-BOARD (Default configuration)</td>
</tr>
<tr>
<td>X3</td>
<td>Upto 100 MHz *</td>
<td>No</td>
<td>No need to mount if clock is no used on GR716-BOARD (Default configuration)</td>
</tr>
<tr>
<td>X4</td>
<td>Upto 200 MHz</td>
<td>No</td>
<td>No need to mount if clock is no used on GR716-BOARD (Default configuration)</td>
</tr>
</tbody>
</table>

* When SpaceWire is selected as remote boot option design then external crystal oscillator frequency must be 5 MHz, 10 MHz, 20 MHz or 25 MHz.

Default configuration

Default configuration is to clock distributed from the GR716-BOARD

© Cobham Gaisler AB
3.8 Pin multiplexing

The GR716 shares memory and communication interface due to limited number of pins. See section *signal overview* of the GR716 Data sheet and User’s manual.

There are a number things to take into consideration when configuring the pin multiplexing:

- Boot strap option might cause sub-sections of shared pins to be used for memories or remote access
- GR716 Development board might be connected to hardware not aware of the GR716 e.g. when user has mounted the GR716 Development board onto a *GR-CPCI-GR716-DEV* board
- GR716 configuration board used

Pin muxing configuration is set in the *System IO configuration registers* described in section *Configuration Registers* in the GR716 Data sheet and User’s manual.

The *System IO configuration registers* is updated after reset to reflect the system configuration. E.g. if the system is configured to use external SRAM memory a number of *System IO configuration registers* is set to the value 0x2 to select SRAM functionality for external pin.

It should be recommended to always read the *System IO configuration registers* before applying new IO configuration to avoid misconfiguration of pins.

For sanity check user can validate pin configuration using the validation script described in the section *I/O switch matrix pin validation script* in the GR716 Data sheet and User’s manual. It should be noted that the script can not verify every possible configuration.
3.9 Pin properties

There are TBD KΩ pullup and pulldown resistor built in to the GR716 microcontroller that can be accessed from software. These built-in resistors are accessed by setting pin mode to input-pullup or input-pulldown mode.

ATTENTION!!

Pullup and pulldown resistor should only be enabled in input mode
Do NOT enable pullup and pulldown resistor in analog mode.

3.10 Debug UART FTDI

The Debug UART interface is available via UART to USB conversion on the front-panel.

Figure 5 Reset and Break switch on the GR-CPCI-GR716-DEV board front panel

For information on the external FTDI debug interface see [RD2].

© Cobham Gaisler AB
3.11 **GR716-BOARD and Expansion Boards**

This section describes how to install and the GR716-BOARD [RD2] and expansion boards on the GR-CPCI-GR716-DEV board. The GR716-CPCI-DEV board provides two sites with two 2x32 pin headers to allow the board to function as a carrier board for GR716-BOARD and Expansion Boards.

<table>
<thead>
<tr>
<th>Header</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1, P2</td>
<td></td>
<td>Intended for the GR716-BOARD</td>
</tr>
<tr>
<td>P3, P4</td>
<td></td>
<td>Alternative set of headers providing a convenient way for User Defined interface boards to be developed and connected to the GR716-CPCI-DEV board.</td>
</tr>
</tbody>
</table>

For more information for mounting GR716-BOARD and Expansion Boards see [RD2]

© Cobham Gaisler AB
4 SOFTWARE DEVELOPMENT ENVIRONMENT

4.1 Overview

Cobham Gaisler provides a comprehensive set of software tools to run several different operating systems. The GR716 platform supports the following:

BCC Bare C Cross-Compiler System is a toolchain to compile bare C or C++ applications directly on top of the processor without the services provided by an operating system.

Cobham Gaisler also provides a set of debug tools. The GR716 platform is supported by the following:

GRMON Used to run and debug applications on GR716-BOARD hardware. See section 5.

TSIM Used to run and debug applications on a simulated GR716-BOARD. See section X.

TSIM is mainly used when no hardware is available. However, TSIM also provides faster than realtime simulation and can be integrated into larger simulation networks to simulate, for example, entire satellite systems. TSIM provides precise code coverage capture and large instruction/bus trace buffers.

Developer tools are generally provided for both Linux and Windows host operating systems. Cobham Gaisler also provides an integrated, easy-to-use solution to help programmers with the task of developing for the LEON. The LEON Integrated Development Environment for Eclipse (LIDE) is an Eclipse plug-in integrating compilers, software and hardware debuggers in a graphical user interface. The plugin makes it possible to cross-compile C and C++ application for LEON, and to debug them on either simulator and target hardware (TSIM or GRMON).

The recommended method to load software onto a LEON board is by connecting to a debug interface of the board through the GRMON hardware debugger in chapter 5.
5 GRMON HARDWARE DEBUGGER

5.1 Overview

GRMON3 is a debug monitor used to develop and debug GRLIB/LEON systems. The CPU and its peripherals are accessed on the AMBA bus through a debug-link connected to the PC. GRMON3 has GDB support which makes C/C++ level debugging possible by connecting GDB to the GRMON3's GDB socket. With GRMON3 one can for example:

- Inspect LEON and peripheral registers
- Upload applications to RAM with the `load` command
- Program the FLASH with the `flash` command
- Control execution flow by starting applications (`run`), continue execution (`cont`), single-stepping (`step`), inserting breakpoints/watchpoints (`bp`) etc.
- Inspect the current CPU state listing the back-trace, instruction trace and disassemble machine code.

The first step is to set up a debug link in order to connect to the board. The following section outlines which debug interfaces are available and how to use them on the GR716 Development Board, after that a basic first inspection of the board is exemplified.

Several of the SoC's peripherals may be clock gated off. GRMON will enable all clocks if started with the flag `-cginit`. Within GRMON, the command `grcg` enable all will have the same effect.

GRMON3 is described on the homepage [http://www.gaisler.com/index.php/products/debug-tools] and in detail in [RD4].

5.2 Debug-link alternatives

5.2.1 Connecting via the FTDI USB/UART interface

Please see Section 3.10 to configure FTDI interface. Please see GRMON User's Manual for how to set up the required FTDI driver software. Then connect the PC and the board using a standard USB cable into the FTDI USB connector and issue the following command:

```
grmon -uart /dev/ttyUSB0
```

It is recommended to use the GRMON command line option `-baud 230400` to increase the AHBUART debug link speed.

5.2.2 Connecting via SpaceWire RAMP interfaces

GRMON2 has support for connecting to boards with SpaceWire interfaces as long as the SpaceWire has RMAP and automatic link start. An Ethernet to SpaceWire bridge (GRESB) is required to tunnel SpaceWire packets from the Ethernet network over to SpaceWire.
Figure 6 Connecting via SpaceWire RAMP requires external hardware e.g. GRESB to convert Ethernet to SpaceWire RMAP packets

Please see the Error: Reference source not found for more information about connecting through a GRESB and optional parameters. Connect the GRESB SpW0 connector and the GR716 SpaceWire connector on the frontpanel, then issue the following command:

```
grmon -gresb
```

5.3 First steps

The previous sections have described which debug-links are available and how to start using them with GRMON3. The subsections below assume that GRMON3, the host computer and the GR-GR716 board have been set up so that GRMON3 can connect to the board.

When connecting to the board for the first time it is recommended to get to know the system by inspecting the current configuration and hardware present using GRMON3. With the `info sys` command more details about the system is printed and with `info reg` the register contents of the I/O registers can be inspected. Below is a list of items of particular interest:

- AMBA system frequency is printed out at connect, if the frequency is wrong then it might be due to noise in auto detection (small error). See `-freq` flag in [RD4].
- Memory location and size configuration is found from the `info sys` output.
- The GR716 has a clock-gating unit which is able to disable/enable clocking and control reset signals. Clocks must be enabled for all cores that LEON software or GRMON3 will be using. The `grcg` command is described in [RD4].

5.4 Connecting to the board

The transcript below shows an example session with GRMON3. GRMON3is started with the `-u` flag in order to redirect UART output to the GRMON2 terminal.
cg@hwlin0:~$ grmon3 -u -cginit 0x10000 -uart /dev/ttyUSB0

GRMON LEON debug monitor v3.0.12-89-ga1d42ef 64-bit internal version

Copyright (C) 2018 Cobham Gaisler - All rights reserved.
For latest updates, go to http://www.gaisler.com/
Comments or bug-reports to support@gaisler.com

This internal version will expire on 12/05/2019

Parsing -u
Parsing -uart /dev/ttyUSB0

using port /dev/ttyUSB0 @ 115200 baud

Device ID: 0x716
GRLIB build version: 4204
Detected system: GR716
Detected frequency: 25 MHz

Component Vendor
AHB-to-AHB Bridge Cobham Gaisler
MIL-STD-1553B Interface Cobham Gaisler
GRSPW2 SpaceWire Serial Link Cobham Gaisler
SPI to AHB Bridge Cobham Gaisler
IIC to AHB Bridge Cobham Gaisler
CAN Controller with DMA Cobham Gaisler
CAN Controller with DMA Cobham Gaisler
AHB Debug UART Cobham Gaisler
AHB-to-AHB Bridge Cobham Gaisler
PacketWire Receiver with DMA Cobham Gaisler
PacketWire Transmitter with DMA Cobham Gaisler
GRDMAC DMA Controller Cobham Gaisler
GRDMAC DMA Controller Cobham Gaisler
GRDMAC DMA Controller Cobham Gaisler
Dual-port SPI Slave Cobham Gaisler
LEON3FT SPARC V8 Processor Cobham Gaisler
AHB-to-AHB Bridge Cobham Gaisler
AHB Memory Scrubber Cobham Gaisler
AHB-to-AHB Bridge Cobham Gaisler
AHB Debug UART Cobham Gaisler
Dual-port AHB(/CPU) On-Chip RAM Cobham Gaisler
Dual-port AHB(/CPU) On-Chip RAM Cobham Gaisler
Generic AHB ROM Cobham Gaisler
Memory controller with EDAC Cobham Gaisler
SPI Memory Controller Cobham Gaisler
SPI Memory Controller Cobham Gaisler
AHB/APB Bridge Cobham Gaisler
AHB/APB Bridge Cobham Gaisler
AHB/APB Bridge Cobham Gaisler
AHB/APB Bridge Cobham Gaisler
Memory controller with EDAC Cobham Gaisler
LEON3 Debug Support Unit Cobham Gaisler
AHB/APB Bridge Cobham Gaisler
AMBA Trace Buffer Cobham Gaisler
Multi-processor Interrupt Ctrl. Cobham Gaisler
Modular Timer Unit Cobham Gaisler
Modular Timer Unit Cobham Gaisler
GR716 AMBA Protection unit Cobham Gaisler
Clock gating unit Cobham Gaisler
Clock gating unit Cobham Gaisler
General Purpose Register Cobham Gaisler
LEON3 Statistics Unit Cobham Gaisler
AHB Status Register Cobham Gaisler
CCSDS TDP / SpaceWire I/F Cobham Gaisler
General Purpose Register Bank Cobham Gaisler

© Cobham Gaisler AB
Use command 'info sys' to print a detailed report of attached cores

grmon3>
6 TSIM LEON SIMULATOR

Emulation and simulation is described in section 6 in [RD3]

7 TOOLCHAINS

The Bare C Cross-Compiler (BCC for short) is described in section 7 in [RD3]

8 SOFTWARE EXAMPLES

Software examples is provided with the GR716-CPCI-DEV board and is described in section 8 in [RD3]

9 EXPANSION BOARDS

List of compatible expansion and interface boards:

- GR-ACC-6U-6UART
- GR-ACC-GR740
- GR-CPCI-CAN
- GR-CPCI-RS422
- GR-CPCI-RS422
- GR-TMTC-PW
- GR716-TEST-MEM
- GR716-BOARD

For more information see [RD2] or visit www.gailser.com

10 SUPPORT

For support contact the Cobham Gaisler support team at support@gaisler.com.

When contacting support, please identify yourself in full, including company affiliation and site name and address. Please identify exactly what product that is used, specifying if it is an IP core (with full name of the library distribution archive file), component, software version, compiler version, operating system version, debug tool version, simulator tool version, board version, etc. The support service is only for paying customers with a support contract.
11 APPENDIX A

Figure 7 Board assembly drawing