BCC

Bare-C Cross-Compiler

2017 User's Manual

The most important thing we build is trust

BCC User's Manual

BCC-UM 1 www.cobham.com/gaisler

December 2017, Version 2.0.2

Table of Contents

O [gL oo [0 1o o R PPTTRPPPPTR 4
S o o PPN 4

1 0= =] = (o PRSPPI 4
1.2.0. HOSE FEQUITEMENTS ...ttt ettt e ettt e ettt e e ettt n e e e enb e e e eenaaeeees 4

0 1 11U PSP PPPPTRR 4

L.2.3 WINOOWS .ottt ettt ettt e et e e et et e e et et e e et e be e e et et e e e enbaaaeeenn 5

1.3, Contents Of /OPL/DCC-2.0.2-0CC ...uueeiiti ettt et e et e e et e e e eene e aees 5

O =1 O O (o - T PP PT TP 5

1.5, DOCUMENTBLION ...ieiiteeieit ettt ettt e ettt e ettt e et et r e et e b e et e ab e e e e bb e e e erba s 6

1.6. Toolchain source code diStribULIONcoouuiiiiiiie e 6
1.6.1. BCC source code iNStallalioncoouuuiiiiiiiiieiii e 6

L1.6.2. BUITAING .eeiiiiiiiiii ettt 6

S ¥ o] o o ¢ A TP 7

2. USING BCC oottt ettt a s 8
2.1. General development TIOW ... 8

2.2, COMPILES OPLIONS vt iette ettt ettt e e et e ettt e e e et a e et et e e e eett e e e eent e e e eentaeaeen 8
2.2.1. sparc-gaisler-elf-geC OPtIONScoevuiieiiiiiieeei et et e e e 8

2.2.2. sparc-gaisler-elf-clang OptioNSieiiiiiieii e 9

2.3. Compiling BCC @pPliCaliONSuuuieiiitiee ettt ettt e et e e 9

2.4. Floating-point CONSIAEIALIONSccuuuuieiiiiiieteii ettt ettt ettt e e e e e e ene e eennes 9

2.5. LEON SPARC V8 INSLIUCLIONS ... ceiittiieiieiiieeeeit e e ettt e ettt s e ettt e ettt e e et et e e e eeba e e e eeneaaeees 9

2.6. Multiply and accumulate INSIIUCHIONSuuiiiiiiiie e 10

2.7. Single register window model (FIat)ooeeiiiiiiii e 10

2.8, REJISIEN USBOE ...iettueiiiit ettt ettt ettt et e ettt e e et e ettt e et e et e e et e e 10

2.9. SINGIE VECION traPPING . eeeveueteeti ettt ettt ettt e ettt e e et e et et e et et e e e et e e e ebe s 10

2.10. MEMONY OFQANIZAIION ...utueeiiti e ee ettt e et e et e et e ettt e e e e e e e ettt e e e e bt e e e e ab e e e eraa s 10

2.11. BCC Board SUPPOIt PACKBOEScceviiieiiiiiieeii et 11

2.12. MUITIPIOCESSING -+ eeeettueeeetti e e ettt e e ettt e e et et e ettt bt e e et e bt e e et e bt e e e estn s e e eesbnteeeenbnneeeestnaaaeen 11
2.13. DebUGING WIth GDB ...ttt ettt e et e et e e e e er e e 11

204, EXBMPIES ettt et 12
2.14.1. Target SPECITiC EXAMPIES . .oiiii e 12

2.15. Creating a bootable ROM IMAOESoiiieiiieiiiiie ettt 12

3. LLVM based t00IChEAINeeieeie e 13
130 W [L oo (8o 1o o KPP SPPPTTR 13

3.2. BCC LLVM/CIANG tO0IS .. .ceiiiieiiii ettt ettt et e et e e e et e e e et e eees 13

R O = 0o = o I o) =Y SO UPPPPTRUPPPTTRPPPPIN: 15
T T = L OO PP PPPPPTI 15

4.2, TIME FUNCHIONS ...eiiiitt ettt et ettt e et et e e et e e et e e e et ena e e eenans 15

4.3. Dynamic Memory allOCHONuuuiiiiiiiieiii et e e e e e e 15

4.4. AtOMIC tyPeS and OPEIALHIONScceeuurieiiiiieee ittt e e e et e et e e et e e e e et e e e eata e eeenes 15

A5, NEWID NBNO ..ot 15

I =T O O 11 o] - Y SO PPT R UPPPTTRUPPPPIN 16
T L UL o PP 16

5.2, CONS0IE APl e e 16

R A N 107 g o PP P TP 16
5.3.1. Interrupt based timMer SEIVICEcoouuiiiiiii et 16

5.4, CaChe CONMTOl AL . ettt ettt e e e e 17

5.5, BUS BCCESS APl o 17

5.6. U control/status register @CCESS AP it 18
5.6.1. ProCeSSOr State REJISIENuiiiiiiiii et ettt 18

5.6.2. Trap Base REJISIEN ...ooiiii ittt 19

5.6.3. PrOCESSOI POWEN=0OWINiiitieeiiti e ee ettt e ettt e ettt e et et s e et et e e e e ebb e e e eebeaeeeeneaeaees 20

5.7. FPU CONEXE APL .ot 20

B8, THAD APl e e e ettt e e e eee 20
5.8.1. Single vector trapping (SVT) ooeeuuiiiiii e e et et 21

BCC-UM 2 www.cobham.com/gaisler

December 2017, Version 2.0.2

D0 IO TUPDE A Pl e e 23
5.9.1. Interrupt disable and enablec.iiiiiiiiiii 23

5.9.2. INterrupt SOUrCE MASKINGouiiivniiiiiiie e e e e e e e e e e e eaa e eees 24

5.9.3. Clear and fOrCe iNtEITUPLoovuiiiiei e e e e e e e e e e e e anaeees 24

R I L 01 (0 = 0 0= o T PPN 25

5.9.5. INtEITUPL SEIVICE FOULINESiiviiiiiiieii e i e e e e e e e e e e e e e e e e et e e e e aneees 26

e T 101 0= 1 0 o) == 1] o P 29

5.9.7. Low-level interrupt handlerscooiiiiiiiii e 31

5.10. Asymmetric MUtiproceSSING APloenii e 31
5.10.1. Processor identifiCationcoooiiuiiieeiiiiiiee e 31

5.10.2. INtEr-proCESSOr COMIIOl ..uuiiuiiiiieeii et e et e e e e e e e e e e et e e st e e et e e st e e eta s e e aaeeanaeeen 32

5.11. Default trap handIErScc..iiiiiiii e 33

B.12. API TEFEIBINCE ...en ittt e et et aa e anes 33

6. AMBA PlUG& Play [IDraryccoouiiiiiii et e e e e e e e e e r e 35
30 I [oo [0 1o o PP 35
6.1.1. AMBA Plug&Play terms and NAMESccevuiiiiiieiiii e e e e e e e e 35

B.1.2. AVAIlEDIITY oovuniiiiiii e 35

S =Y o = o= 0 1 oo P 35

B.3. USEr CallDACK ... e 37
LT B @ 1) (= ¢ = W 0= 11 o RN 37

6.3.2. DEVICE INFOMMELIONiiiiiii e e e et e e aa e e e eannns 37

L e o 1 o 38

8.5, APl T O EINICE ..t e e 39

7. Board SUPPOIt PaCKAOESuuiiiiiiiii e et e e e e e e e e e e et e e e e et e e e a e aaas 40
8 T @ = 4= PP 40

47 I @ | S UPPRSPI 40

4 T 1 4121 (PP 40

4 T T 41 PRSP 40
4 =T o R 2 (1Y PP 41

ST O N PSPPSR 42

LS T €1 A S 42

LS @01 o 4 41 oo [= PPN 43
S35 I [oo [0 1o o PP 43

S e 0= o L= o[Y= PP 43
B.2.L. INILIAIZALON ...t 43

8.2.2. Input and OULPUL TUNCLIONScoviiiiii i e e e 43

8.2.3. CUSIOMIZBLION eevuieeiiii ettt e et e et e e e ettt e e et s e e e ettt e e e et a e e e et s e e eeatnaeeeeranaaeee 44

S O [T =Y A 1 L PP 44

S A T 41 o)Y/ SRR 44
SR 1 011 1= =] o ST 44

8.3.2. TIME ACCESS FUNCLIONSiiiiiiiieeiiii et e e e e e e e ra e 45

8.3.3. CUSIOMIZALION .evuuieiiit ettt e ettt e ettt e e e et e e e et s e e e ettt e e e et reeeett s e e eeatnaeeeesanaaeees 45

8.4. Interrupt CONLIOIIEr ArIVEr ..oeiiie e e e e e e e e e eees 45

S I 1 011 1= =] o PSP 45

8.4.2. ACCESS TUNCLIONS ..utieiiiii ettt e et e et e e et s e e e et e e e e eeanas 45

8.4.3. CUSLOMIZBIION .ovuiieiiii ettt ettt e ettt e e ettt s e e et s e e e ettt e e e et r e e e et aeeeeatn s eeeesenaaeee 46

8.5. Initialization override EXampPleccoouiiiiiiiii e 46

8.6. INILIAliZAtioN NOOKSiiiii i e 46

8.7. Disable . bss SeCtion iNItIAliZAtIONccoevuiiiiiii e 47
S0 B T 0 o) PN 48

8.8. Heap mMemory CONFIQUIAIONuiiiiiieii e e e e e e e e e et e e e e aan s 48

e A o I (= 1= 1 0ol PP PP PP PP 48

LS TS U oo g S TP 50
A. Recommended GCC options for LEON SYStEMSccvuiiiiiiiiiiciiie e e e e e e e e e e e e 51
B. Recommended Clang options for LEON SYStEMSccuuiiiiiiiiiiieiii e e e e e e 53
BCC-UM 3 www.cobham.com/gaisler

December 2017, Version 2.0.2

COBHAM

1. Introduction

1.1. Scope

BCC isacross-compiler for LEON2, LEON3 and LEON4 processors. It is based on the GNU compiler tools, the
newlib C library and a support library for programming LEON systems. The cross-compiler allows compilation
of C and C++ applications.

There is aso an experimental LLVM/Clang version of BCC based on the LLVM compiler framework. More
information about the LLVM based toolchain can be found in Chapter 3. The GCC and LLVM/Clang versions
of BCC are distributed in separate packages. The libraries in the two provided packages are compiled using the
selected compiler, with the exception of libgcc which is always compiled with GCC.

BCC consists of the following packages:
* GNU GCC 7.2.0 C11/C11++ compiler with support for atomic operations
GNU binutils 2.25.51
Newlib Clibrary 2.5.0
I i bbcc - A user library for programming LEON systems
GNU GDB 6.8 source-level debugger

In the LLVM/Clang version, the GCC package is replaced by:
¢ Clang 4.0.0 C12/C11++ compiler with support for atomic operations (LLVM version)

1.2. Installation

1.2.1. Host requirements

BCC is provided for two host platforms: GNU Linux/x86_64 and Microsoft Windows. The following are the
platform system requirements:

GCC Version:

Linux: Linux-2.6.x, glibc-2.11 (or higher)

Windows: -

LLVM Version:

Linux: Linux-3.10.x, glibc-2.19, libstdc++.50.6.0.19 (or higher)

Windows: -

In order to recompile BCC from sources, automake-1.11.1 and autoconf-2.68 is required. MSYS-DTK-1.0.1 is
needed on Microsoft Windows platformsto build autoconf and automake. Sources for automake and autoconf can
be found on the GNU ftp server:

* ftp://ftp.gnu.org/gnu/autoconf/

* ftp://ftp.gnu.org/gnu/automake/

MSY S and MSYS-DTK can be found at http://www.mingw.org.
1.2.2. Linux

After obtaining the compressed tar file for the binary distribution, uncompress and untar it to a suitable location.
The Linux version of BCC has been prepared to reside in the / opt / bcc- 2. 0. 2- gcc/ directory, but can be
installed in any location. The distribution can be installed with the following commands:

$ cd /opt
$ tar -C/opt -xf /opt/bcc-2.0.2-gcc-1inux64.tar.xz

After the compiler isinstalled, add / opt / bcc- 2. 0. 2- gcc/ bi n to the executables search path (PATH) and /
opt/ bcc- 2. 0. 2- gcc/ man to the manual page path (MANPATH).

BCC-UM 4 www.cobham.com/gaisler
December 2017, Version 2.0.2

ftp://ftp.gnu.org/gnu/autoconf/
ftp://ftp.gnu.org/gnu/automake/
http://www.mingw.org

COBHAM

1.2.3. Windows

BCC for Windows does not require any additional packages and can be run from astandard command prompt. The
toolchaininstallation zipfile,/ opt / bcc- 2. 0. 2- gcc- mi ngwe4. zi p, shall beextractedto C. \ opt creating
the directory C: \ opt \ bcc- 2. 0. 2. The toolchain executables can be invoked from the command prompt by
adding the executable directory to the PATH environment variable. The directory C: \ opt \ bcc-2. 0. 2\ bi n
can be added to the PATH variable by selecting "My Computer->Properties->Advanced->Environment Vari-
ables'.

Development often requires some basic utilities such as make, but is not required to compile. On Windows plat-
forms the MSY S Base system can be installed to get a basic UNIX like development environment (including
make).

See http://www.mingw.org for more information on MinGW and the optional MSY S environment.

1.3. Contents of /opt/bcc-2.0.2-gcc

The binary installation of BCC contains the following sub-directories:

bi n/ Executables
doc/ GNU, newlib and BCC documentation
man/ Manual pages for GNU tools

sparc-gaisler-elf/ SPARC target libraries, include filesand LEON BSP

sparc-gai sl er-el f/ bsp/ Board Support Packagesfor LEON systems
src/ Various sources, examples and make scripts
src/ exampl es/ BCC example applications

src/libbcc/ I i bbcc source code and make scripts

1.4. BCC tools

The following tools are installed with BCC:

sparc-gai sl er-el f-addr2line Convertaddressto C/C++ line number

sparc-gaisler-elf-ar
sparc-gaisler-elf-as
sparc-gai sler-elf-c++
sparc-gaisler-el f-c++filt
sparc-gaisler-elf-cpp
sparc-gai sler-el f-g++
sparc-gai sler-elf-gcc
sparc-gai sl er-el f-gcov
sparc-gai sler-el f-gdb
sparc-gai sl er-el f-gprof
sparc-gaisler-elf-1d
sparc-gai sler-el f-nm

spar c-gai sl er-el f-obj copy
sparc-gai sl er-el f-obj dunp
sparc-gaisler-elf-ranlib
sparc-gai sler-elf-readel f
sparc-gaisler-elf-size

Library archiver

Cross-assembler

C++ cross-compiler

Utility to demangle C++ symbols
The C preprocessor

Same as sparc-gaider-elf-c++
C/C++ cross-compiler

Coverage testing tool

GNU GDB C/C++ level Debugger
Profiling utility

GNU linker

Utility to print symbol table

Utility to convert between binary formats
Utility to dump various parts of executables

Library sorter
ELF file information utility
Utility to display segment sizes

sparc-gai sler-elf-strings Utility to dump strings from executables

BCC-UM 5
December 2017, Version 2.0.2

www.cobham.com/gaisler

http://www.mingw.org

COBHAM

sparc-gaisler-elf-strip Utility to remove symbol table

1.5. Documentation

The GNU and newlib documentation is distributed together with the toolchain, located in the doc/ directory of
theinstallation.

GNU toals:
as. pdf Using as - the GNU assembler
bi nutils. pdf The GNU binary utilities
cpp. pdf The C Preprocessor
gdb. pdf Debugging with GDB
| d. pdf The GNU linker
gcc/ gece. pdf Using and porting GCC
Newlib C library:
I'i bc. pdf Newlib C Library
I'i bm pdf Newlib C Math Library
BCC:
bcc. pdf BCC User's Manua (this document)

All documents are all provided in PDF format, with searchable indexes.

1.6. Toolchain source code distribution

The BCC tool chain source code distribution can be used to rebuild the tool chain host binaries (compiler, Binutils)
and thetarget C library.

NOTE: Installing the toolchain source code is not required for creating a new BSP or to modify an existing one.
The BSP source code (I i bbcc) isinstalled together with the binary distribution under src/ | i bbcc/ .

1.6.1. BCC source code installation

The source code for the BCC 2.0.2 toolchain is distributed in an archive named bcc- 2. 0. 2-src. tar. bz2,
available on the Cobham Gaisler website. It contains source code for the target C library and the host compiler
tools (binutils, GCC, GDB).

Installing the source code is optional but recommended when debugging applications using the C standard library.
The target libraries have been built with debug information making it possible for GDB to find the sources files.
It allows for example to step through the target C standard library code.

The BCC source code files are assumed to be located in / opt / bcc- 2. 0. 2-gcc/ src/ bce-2. 0. 2. The
sources can be installed by extraction the source distribution archive bcc- 2. 0. 2-src.tar. bz2 to/ opt/
bcc- 2. 0. 2-gcc/ src. It can be done as follows for the Linux/GCC version of BCC.

$ cd /opt/bcc-2.0.2-gcc/src
$ tar xf bcc-2.0.2-src.tar.bz2

1.6.2. Building
A script named ubui | d. sh isincluded in the source distribution.

Tobuildand install the BCC compiler tools, GDB andtheClibraryin/ t np/ bcc- 2. 0. 2- | ocal , thefollowing
steps shall be performed:

$ cd /opt/bcc-2.0.2-gcc/src/bece-2.0.2
$./ubuild.sh --destination /tnp/bcc-2.0.2-1ocal --toolchain --gdb

BCC-UM 6 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

Either of the paramters - - t ool chai n or - - gdb can be omitted. Execute ubui | d. sh - - hel p for more
information on how to use the script.

1.7. Support

BCC is provided freely without any warranties. Technical support can be obtained from Cobham Gaisler through
the purchase of technical support contract. Please contact sales@gaiser.com for more details.

BCC-UM 7 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

2. Using BCC
This chapter gives an overview on how to develop applications using BCC 2.0.2

2.1. General development flow

Compilation and debugging of applicationsistypically done in the following steps:
1. Compile and link the program with GCC
2. Debug program using a simulator (GDB connected to TSIM)
3. Debug program on remote target (GDB connected to GRMON)
4. Create boot-prom for a standalone application with mkprom2

2.2. Compiler options

The GCC front-end, spar c-gaiser -elf-gcc, and the Clang front-end, spar c-gaisler -elf-clang, has been modified
to support the following options specific to BCC and LEON systems:

- qbsp=bspname Usetarget libraries, startup files and linker scripts for a specific LEON system. The
parameter bspname corresponds to a Board Support Package (BSP). A description
of the BSPs distributed with BCC is given in Chapter 7. The BSP| eon3 isused as
default if the - gbsp= option is not given.

- gnano Use aversion of the newlib C library compiled for reduced foot print. The nano
version implementations of thef pri nt f () f scanf () family of functions are
not fully C standard compliant. Code size can decrease with up to 30 KiB when
printf() isused.

- qsvt Use the single-vector trap model described in SPARC-V8 Supplement, SPARC-V8
Embedded (V8E) Architecture Specification.

Useful (standard) options are:

-g Generate debugging information - should be used when debugging with GDB.
-nsoft-fl oat Emulate floating-point - must be used if no FPU exists in the system.
-QRor-Cs Optimize for maximum performance or minimal code size.

-Qg Optimize for maximum debugging experience.

-ncpu=l eon3 Generate SPARC V8 code. Includes support for the casa instruction.

2.2.1. sparc-gaisler-elf-gcc options

The following are options only available in the GCC version of BCC.

-nf | at Enable single register window model (flat). See Section 2.7.

- ntpu=l eon Generate SPARC V8 code.

-ntpu=l eon3v7 Generate SPARC V7 code (no nul /di v instructions). Includes support for casa
instruction.

-nfix-b2bst Enable workarounds for GRLIB technical note GRLIB-TN-0009.

-nfix-tn0013 Enable workarounds for GRLIB technical note GRLIB-TN-0013.
-nfix-gr712rc Enableworkarounds applicable to GR712RC. - nf i x- gr 712r ¢ enables
workarounds for the following technical notes:
e GRLIB-TN-0009
¢ GRLIB-TN-0011
¢ GRLIB-TN-0012
¢ GRLIB-TN-0013

-nfix-ut 700 Enable workarounds applicable to UT700 and UT699E. - nf i x- ut 700 enables
workarounds for the following technical notes:

BCC-UM 8 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

* GRLIB-TN-0009
* GRLIB-TN-0010
¢ GRLIB-TN-0013

-nfix-ut 699 Enable the documented workarounds for the floating-point errata and the data cache
nullify errata of the UT699 processor. This option a so enables workarounds for
GRLIB-TN-0009 and GRLIB-TN-0013.

Other GNU GCC options are explained in the gcc manual (doc/ gcc. pdf), see Section 1.5.
2.2.2. sparc-gaisler-elf-clang options

The following are options only availblein the LLVM/Clang version of BCC.

-Oz Aggressively optimize for minimal code size
- nT ex Enables generation of the LEON-REX SPARC instruction set extension.

-no-integrated-as Usethe GNU assembler instead of the LLVM integrated assembler. Note the
GNU assembler does not have support for the LEON-REX extension.

Clang generates SPARC V8 code by defaullt.
2.3. Compiling BCC applications

To compile and link a BCC application with GCC, use spar c-gaisler -elf-gcc:

$ sparc-gaisler-elf-gcc -2 -g hello.c -0 hello

To compile and link a BCC application with Clang, use spar c-gaisler-elf-clang:

$ sparc-gaisler-elf-clang -2 -g hello.c -0 hello

BCC creates executables suitable for most LEON3 systems by default. The default load addressiis start of RAM,
i.e. 0x40000000. Other load addresses can be specified through the use of the - Tt ext linker option (see Sec-
tion 7.1).

To generate executables customized for specific components and systems, - gbsp=narme and ncpu=nan®e op-
tions should be used during both compile and link stages. A table with recommended compiler options for LEON
systems can be found in Appendix A (GCC), and Appendix B (Clang).

2.4. Floating-point considerations

If the target LEON processor has no floating-point hardware, then all applications must be compiled and linked
withthe- nmsof t - f | oat option to enable floating-point emulation. When running an application compiled and
linked with - msof t - f | oat inthe TSIM simulator, the simulator should be started with the - nf p option (no
floating-point) to disable the FPU.

Floating-point hardware state is not automatically saved and restored when BCC dispatches an interrupt service
routine (ISR). Any ISR code making use of the floating-point hardware should save and restore the context as
described in Section 5.7.

2.5. LEON SPARC V8 instructions

LEONS processors can be configured to implement the SPARC V8 multiply and divide instructions. The GCC
version of BCC does by default not issue those instructions, but emulates them trough alibrary. To enable gen-
eration of mul /di v instruction, use the - nrcpu=Il eon or - ncpu=I eon3 option during both compilation and
linking. Thisimproves performance on compute-intensive applications and floating-point emul ation.

The LLVM/Clang version of BCC generates SPARC V8 by default and can therefore not be used with LEON3
processors that do not implement the SPARC V8 multiply and divide instructions.

BCC-UM 9 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

2.6. Multiply and accumulate instructions

LEONZ2, LEON3 and LEON4 can support multiply and accumulate (urmac/s nac) instructions. The compiler will
never issue those instructions but can be coded in assembly. The BCC provided assembler and utilities support
thisfeature.

2.7. Single register window model (flat)

The BCC compilers and run-time uses the standard SPARC V8 ABI by default. GCC provides an optional ABI,
enabled with the - nf | at option, which does not generate any save and r est or e instructions. Thisis known
asthe single register window model, or flat model. Instead of switching register windows at function borders, the
flat model storesregisters on the stack. - nf | at setsthe preprocessor symbol _FLAT.

An application compiled and linked with the flat model will never generate wi ndow overfl ow and
wi ndow_under f | owtraps.

Compiling with - nf | at affects code size. As an example, the Newlib Clibrary (1 i bc. a) t ext segment is8%
larger inthe- ncpu=l eon3 - nf | at multilib compared to the - ntpu=Il eon3 version.

BCC run-time is compatible with the single register window model when linked with - nf | at . The example
below compiles and links an application with the flat model.
$ sparc-gaisler-elf-gcc -nflat -O2 -c nain.c -o nain.o

$ sparc-gaisler-elf-gcc -nflat -O2 -c sonecode.c -0 sonecode. 0
$ sparc-gaisler-elf-gcc -nflat main.o sonecode.o -o nyapplication.elf

NOTE: Thecurrent GCC 7.2.0- nf | at implementationwasintroduced with GCC 4.6. It isnot binary compatible
with theold GCC - nf | at implementation which was deprecated in GCC 3.4.6.

2.8. Register usage

The compiler and run-time uses the SPARC input, local and output registers as specified by the SPARC V8 ABI.
For global registers, the following applies:

%9l ... %4 Used by compiler and BCC run-time.

%95 Not used by compiler. Used by BCC run-time only when - nf | at isused. Can be
used freely by the application if - nf | at isnot used.

%96 ... %97 Not used by compiler. Not used by BCC run-time. Can be used by the application

for any purpose.

2.9. Single vector trapping

When the target hardware is configured to support single vector trapping (SVT), the - gsvt switch can be used
with the linker to build an image which uses a two-level trap dispatch table rather than the standard one-level
trap table. The code saving amounts to ~4KiB for the trap table and trap handling is slightly slower with single
vector trapping. The number of extra instructions needed for single vector trapping dispatching is constant. The
application image will try to enable SVT on boot using %asr 17.

2.10. Memory organization
The resulting executables are in ELF format and have three main segments; t ext , dat a and bss. Thet ext

segment is by default at address 0x40000000 for LEON2/3/4, followed immediately by the dat a and bss
segments.

BCC-UM 10 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

Standalone App

Top-Of-RAM

Startup Stack

Heap

Data

Text

0X40000000

Figure 2.1. BCC RAM application memory map

NGMP based LEON4 designs such as GR740 and LEON4-N2X have RAM at 0x00000000. Thisis supported
by the GR740 BSP.

The SPARC trap table is always located at the start of the t ext segment. If single vector trapping is not used,
then the trap table is exactly 4 KiB. For single vector trapping, the allocated space is 380 bytes by default. The
exact size depends on the user configuration.

Program stack starts at top-of-ram and extends downwards. The area between the end of bss and the bottom of
the stack is by default used for the heap. BCC auto-detects end-of-ram by inspecting the stack pointer provided
by the boot loader or GRMON at early boot. Hence the heap is sized by the boot loader by default.

Section 8.8 describes how the heap can be configured by the application.

2.11. BCC Board Support Packages
BCC uses a Board Support Package (BSP) mechanism to provide support for LEON system variations.

A BCC BSP includes the following:
e Target linker scripts.
« BCC device mapping and initialization.
e Customization of thel i bbcc user library.
* C header files with register definitions.
» Custom drivers available to the user.

BSP is selected with the - gbsp=bspname compiler option. This option does however not explicitly specify
what code the compiler outputs. It means that the appropriate - nrcpu=cpunare option has to be given to GCC
even when aBSP is selected.

A description of the BSPs distributed with BCC is given in Chapter 7. - gbsp=l eon3 isused by default.

2.12. Multiprocessing

BCC includes support for building Asymmetric Multiprocessing (AMP) applications: The GCC C11 compiler can
generate atomic CPU instructions and the BCC AMP API described in Section 5.10 operates on LEON mulltipro-
cessor support hardware.

Symmetric Multiprocessing (SMP) is not supported by BCC.

2.13. Debugging with GDB

GDB 6.8 isdistributed with BCC in the host executable file spar c-gaisler -elf-gdb. To generate debug information
when compiling object files, the compiler (or assembler) option - g isused. Target libraries distributed with BCC
are built with debug information and the related source code can be installed as described in Section 1.6.

BCC-UM 11 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

For information on how to connect with GDB to TSIM simulator or the GRMON hardware monitor, see their
respective documentation.

2.14. Examples

A collection of benchmarks and examples on how to use the BCC user library can be found in the sr ¢/ exam
pl es/ directory of the BCC binary distribution. The directory also contains aMakef i | e which can be used to
build the examples for different configurations (BSP:s).

To build all examplesfor al BSP:s, issue:

$ cd src/exanples

$ make

sparc-gai sler-elf-gcc -
sparc-gai sler-elf-gcc -
sparc-gai sler-elf-gcc -
sparc-gaisler-elf-gcc -

- gbsp=agga4 - ntpu=l eon hello/hello.c -o bin/agga4/./hello.elf

- gbsp=agga4 - ntpu=l eon stanford/stanford.c -o bin/agga4/./stanford.elf

- gbsp=agga4 - ntpu=l eon whet st one/ whetstone.c -0 bin/agga4/./whetstone.elf -Im
- gbsp=agga4 - ntpu=l eon paranoi a/ paranoi a.c -o bin/agga4/./parancia.elf -Im

8888

To build examples for a specific BSP, set the BSPS make variable. For example:
$ make BSPS="gr712rc gr716"
Output filesare generated under sr ¢/ exanpl es/ bi n/ <BSP>. Thedifferent subdirectoriesreflect the compiler
options used.
It isalso possible to build a single example by calling make <exanpl e>, for example:

$ make CFLAGS="-0s -g" anbapp.elf
sparc-gaisler-elf-gcc -Gs -g -std=c99 anbapp/ anbapp.c -o anbapp. el f

The executables will be stored in the examples root directory in thie scase. When building individual examplesit
is possible to control the behaviour by setting the following variables.

CFLAGS
Override common compilation flags

For more information on the examples and how to build them, seethefile sr ¢/ exanpl es/ READVE.
2.14.1. Target specific examples

Some of the examplesin sr c/ exanpl es/ are adapted for specific target systems or may need customization.
These shall be built from inside the respective example directory, asindicated in sr ¢/ exanpl es/ README.

2.15. Creating a bootable ROM images

The MKPROM2 PROM image generator can be used to create boot-images for applications compiled with BCC
2.0.2. An example is provided in the BCC binary distribution directory sr c/ exanpl es/ nkpr ont hel | o.
MKPROM 2 is distributed with source code and is available from the Cobham Gaisler website. For more informa-
tion on how to use MKPROM2, see the MKPROM2 User's Manual.

BCC-UM 12 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

3. LLVM based toolchain

3.1. Introduction

With BCC 2 an LLVM based version of the toolchain is provided along side the regular GCC based toolchain.
The LLVM based toolchain is currently experimental.

The LLVM compiler framework is a relatively new and modern compiler framework. It has support for a wide
variety of programming languages and architectures, including SPARC. The C-family front-end of LLVM, is
called Clang. Clang isthe main interface to the compiler, and the binary spar c- gai sl er - el f - cl ang isused
to compile C and C++ programs.

The Clang interface is similar to the GCC interface, and in many cases changing the build system to use LLVM/
Clang is a matter of changing the CC variable in a Makef i | e script from spar c- gai sl er-el f-gcc into
spar c-gai sl er-el f-cl ang.

The LLVM toolchain has its own assembler which is used by default. It is aso possible to switch to the GNU
assembler by using a command line option. The Clang front-end has been setup to automatically use the GNU
linker in asimilar way to the GCC version of BCC.

All the correct libraries and header fileswill be used by the Clang front-end. These are selected based on the flags
set by the compiler. The librariesinclude newlib, libbcc and libgec. A list of recommended command line option
for Clang can be found in Appendix B.

Installation, host requirements and contents of the LLVM based toolchain follows the information presented in
Chapter 1. Usage instructions follows the information presented in Chapter 2.

3.2. BCC LLVM/Clang tools

The following tools are included in the LLVM version of BCC. The tools are a combination of tools from the
LLVM compiler framework, the Clang C-family LLVM compiler, and GNU binutils. The toolsfrom binutils have
names prefixed with spar c- gai sl er - el f, except spar c- gai sl er-el f-cl ang, spar c-gai sl er-
el f - cl ang++ and spar c- gai sl er - el f - cpp which comes from Clang.

cl ang- f or mat A tool to format C/C++/JavalJavaScript/Objective-C/Protobuf
code

git-clang-format cl ang- f or mat for git patches

I'1 vm obj dunp LLVM object file dumper (similar to GNU objdump). Should be
used instead of the binutils provided objdump if using REX

scan-build scan-build is a command line utility that enables a user to run the
Clang static analyzer over their code base as part of performing a
regular build

scan-vi ew The clang static analyzer results viewer

sparc-gai sl er-el f-addr2line Convertaddressto C/C++ line number

sparc-gai sler-elf-ar Library archiver

sparc-gaisler-elf-as GNU Cross-assembler

sparc-gaisler-elf-c++filt GNU utility to demangle C++ symbols

sparc-gai sler-elf-clang LLVM C language family cross compiler for SPARC

sparc-gaisler-el f-clang++ LLVM C++ language family cross compiler for SPARC

sparc-gaisler-elf-cpp LLVM C preprocessor

sparc-gai sler-el f-gdb GNU GDB C/C++ level Debugger

sparc-gai sl er-el f-gprof GNU profiling utility

sparc-gaisler-elf-1d GNU linker

sparc-gaisler-el f-nm GNU utility to print symbol table

BCC-UM 13 www.cobham.com/gaisler

December 2017, Version 2.0.2

COBHAM

spar c- gai sl er-el f-obj copy GNU utility to convert between binary formats
sparc-gai sl er-el f-obj dunp GNU utility to dump various parts of executables

sparc-gaisler-elf-ranlib GNU library sorter
sparc-gai sler-elf-readel f GNU ELF fileinformation utility
sparc-gaisler-el f-size GNU utility to display segment sizes
sparc-gai sler-elf-strings GNU utility to dump strings from executables
sparc-gaisler-elf-strip GNU utility to remove symbol table
BCC-UM 14 www.cobham.com/gaisler

December 2017, Version 2.0.2

COBHAM

4. C standard library

BCC includes newlib 2.5.0 which is an implementation of the C standard library with full math support. Low-
level functionality required by newlib isimplemented in the SPARC LEON specific layer (I i bbcc).

Documentation for the newlib C library and math library is available as described in Section 1.5 Source code for
newlib can be obtained as described in Section 1.6.

Most of the functionality defined by the C standard library is supported by BCC. This chapter will describe devi-
ations and specific properties of the C library when executing on LEON systems.

4.1. File 1/O

BCC newlib supports file 1/0 on the standard input, standard output and standard error files (st di n/st dout /
st der r). Thesefiles are always open and are typically associated with the BCC console device driver (see Sec-
tion 5.2).

NOTE: Thereisno support in BCC for operating on disk files. There is no file system support.

4.2. Time functions

LEON timers are used to generate the system time. The C standard library functions ti ne() and cl ock()
return the time elapsed in seconds and microseconds respectively. t i nes() and get ti meof day(), defined
by POSIX, are also available. The user can control how the time functions use the hardware timers as described
in Section 5.3.

4.3. Dynamic memory allocation

Dynamic memory can be alocated/deallocated using for example mal | oc(), cal | oc() andfree() . For
information on customizing the memory heap, see Section 8.8.

4.4. Atomic types and operations

BCC is based on GCC version 7.2.0 which includes C11 atomic types and operations. This allows for synchro-
nization between applicationsin AMP environments. Synchronization instructionssuch asl dst ub, swap casa,
etc. are generated by the compiler.

The C11 atomic interface is defined by stdatomi c. h. Some of the atomic operations defined by
st dat om c. h require hardware support not available on all LEON systems. Thel dst ub and swap instruc-
tionsareavailablein all LEON processors, whilecasa isoptional. All multi-core LEON based components from
Cobham Gaisler have casa. The GCC option - ntpu=l eon3 isrequired for full st dat om c. h support.

See ISO/IEC 9899:2011 for more information on the C11 standard.

NOTE: While atomic instructions are useful for sharing memory between processors and tasks, the atomic in-
structions shall never be used for manipulating peripheral control registers.

4 5. Newlib nano

The nano version of newlib, selected with - gnano, isacompiled with optionsto reduce code foot print. - gnano
has the following limitations:
« Formatted /O lacks floating-point support. It can however be enabled as described in newl i b/ newl i b/
README.
« Formatted /O lacks support for | ong | ong.
» Formatted 1/O does not support features from the outside of C89 standard.

NOTE: The option - gnano shall be specified both when compiling and linking.

BCC-UM 15 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

5. BCC library

BCC isddivered with alibrary, | i bbcc, containing functions for programming LEON systems. This chapter is
the user documentation for the API. Later chapters will describe how the BCC run-time can be configured and
customized at link time.

The library is available in the target library file | i bbcc. a. There are multiple versions of | i bbcc. a, cus-
tomized for specific BSPs and compiler options (GCC multilibs). The exact versions of the library is selected
based on compiler command line parameters. This aso reflects that different low-level drivers are implemented
for different hardware.

5.1. Usage

Functionsdescribed in this chapter have prototypesinthe header filebcc/ bece. h. Thefunctionsareimplemented
inl i bbcc. a and are available per default when linking with the GCC front-end. The same user APl isavailable
independent of target LEON hardware.

5.2. Console API

The console API does not have any user functions. It can be accessed with the C standard library 1/0 functions
(Section 4.1).

5.3. Timer API
Thefunctionbcc_ti mer _get us() can be used to determine system time in microseconds.

Table5.1. bcc_ti nmer _get _us function declaration

Proto |uint32_t bcc_tinmer_get us(void)

About | Get processor time

Return |uint32_t. Number of microseconds since system start.

Other time related functions which depend on the BCC run time, but are not part of the BCC user library, are
available. Thisincludescl ock(),time(),ti mes() andgetti meof day() .

5.3.1. Interrupt based timer service

By default BCC does not install any timer tick and can result in limited services provided by the C library time
functionsand bcc_ti ner_get _us() . Thetypical limitation is that time will seem to restart or stop at some
point in time, due to hardware timer expiration. Exact limitations are target hardware dependent, but is typically
manifested as atime wrap 232 microseconds after system reset.

To overcome this limitation, a timer tick service can be enabled by calling bcc_tinmer _tick init(). It
will install atick interrupt handler which is triggered periodically to maintain time integrity, ensuring that time
increments. Tick period is 10 milliseconds by default.

bcc_tinmer_tick_init() shouldbecalledonly onceand at the beginning of the program. It isrecommended
tocall itfromthe _bcc_init70() initialization hook, described in described in Section 8.6.

Table5.2.bcc_timer _tick_init functiondeclaration

Proto int bcc_timer _tick_ init(void)

About | Enableinterrupt based timer service.

The function installs atick interrupt handler which maintains local time using timer hardware. This
makes C library / POSIX time functions not limited to hardware constraints anymore.

Return |int.

Value Description

BCC-UM 16 www.cobham.com/gaisler
December 2017, Version 2.0.2

BCC_OK Success

COBHAM

BCC FAIL Failed to enable interrupt based timer service, or already enabled

BCC_NOT_AVAILABLE |Hardware or resource not available

Notes

Epoch changes to the point intimewhen bcc_tinmer _tick_init() iscaled.

5.4. Cache control API

The cache control API isused to flush the local LEON processor instruction and data caches.

Functions are aso provided for operating directly on the LEON cache control register (CCR). Bit definitions for
CCRareavailableinbcc/ | eon. h.

Table5.3. bcc_f I ush_cache function declaration

Proto |void bcc_flush_cache(voi d)
About |Flush L1 instruction and data cache.
Return |None.

Table5.4.bcc_f 1l ush_i cache function declaration

Proto |void bcc_flush_icache(void)
About |Flush L1 instruction cache.
Return |None.

Table5.5. bcc_f | ush_dcache function declaration

Proto |void bcc_flush_dcache(void)
About |Flush L1 datacache.
Return |None.

Table5.6. bcc_set _ccr function declaration

Proto

void bcc_set ccr(uint32_t data)

About

Set Cache Control Register (CCR).

Param

dat a [IN] Integer
New CCR value to set.

Return

None.

Table5.7. bcc_get _ccr function declaration

Proto |uint32_t bcc_get _ccr(void)
About | Get value of Cache Control Register (CCR).
Return |uint32_t. CCR.

5.5. Bus access API

Functions are provided for |oading data from memory with forced L1 cache miss.

Table 5.8. bcc_| oadnocache function declaration

Proto

uint32_t bcc_| oadnocache(ui nt 32_t

About

Load 32-bit word from addr with forced cache miss.

Param

addr [IN] Pointer

BCC-UM 17
December 2017, Version 2.0.2

www.cobham.com/gaisler

COBHAM

Addressto load from.
Return |uint32_t. Dataloaded from addr .

Table 5.9. bcc_| oadnocachel6 function declaration

Proto |uint16_t bcc_|l oadnocachel6(uint16_t *addr)
About |Load 16-bit word from addr with forced cache miss.

Param |addr [IN] Pointer

Address to load from.

Return |uint16 t. Dataloaded from addr .

Table 5.10. bcc_| oadnocache8 function declaration

Proto |uint8_ t bcc_| oadnocache8(ui nt8 t *addr)
About |Load 8-bit word from addr with forced cache miss.
Param |addr [IN] Pointer

Address to load from.

Return [uint8_t. Dataloaded from addr .

Thefunctionbcc_dwzer o() canbeused to clear amemory region using 64-bit writeswith thest d instruction.

Table5.11. bcc_dwzer o function declaration

Proto |void bcc_dwzero(uint64_t *dst, size_t n)
About | Set 64-bit wordsto zero

This function sets n 64-bit words to zero, starting at address dst . All writes are performed with the
SPARC V8 st d instruction.

Param |dst [IN] Pointer

Start address of area to set to zero. Must be aligned to a 64-bit word.
Param |n [IN] Integer

Number of 64-bit words to set to zero.

Return |None.

5.6. IU control/status register access API

This API provides accessto low-level SPARC control/status registers and controls power-down mode.

5.6.1. Processor State Register

The Processor State Register (PSR) can be read with bcc_get _psr () and written with bcc_set _psr () .

Processor Interrupt Level (PSR PIL) is read using bcc_get _pil (). PSR PIL can be set with
bcc_set _pil () whichisimplemented as a software trap and guarantees atomic update.

NOTE: Care must be taken when manipulating PSR using read-modify-write sequences, since the operations are
interruptible. See The SPARC Architecture Manual Version 8, section B.29.

NOTE: It isrecommended to use the safe functions described in Section 5.9.1 for manipulating PSR. PI L.

Table5.12. bcc_get _psr function declaration

‘Proto ‘ui nt32_t bcc_get _psr(void)

BCC-UM 18 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

About |Get value of Processor State Register (PSR).
Return |uint32_t. PSR.

Table5.13. bcc_set _psr function declaration

Proto |void bcc_set _psr(uint32_t psr)
About | Set Processor State Register (PSR).

Param |psr [IN] Integer

New PSRvalue to set.

Return |None.

Table5.14. bcc_get pi | function declaration

Proto |int bcc_get pil (void)
About |Get Processor Interrupt Level (PSR. PI L).
Return |int. Value of PSR. PI L (0..15) in bits 3..0.

Table5.15. bcc_set _pi | function declaration

Proto |int bcc_set_pil (int newpil)

About | Set Processor Interrupt Level atomically.

This function isimplemented as a software trap and guarantees atomic update of PSR. PI L.

Param |newpi | [IN] Integer
New valuefor PSR. PI L (0..15) in bits 3..0.
Return |int. Old value of PSR. PI L (0..15) in bits 3..0.

5.6.2. Trap Base Register
The Trap Base Register (TBR) can beread withbcc_get _t br () and written withbcc_set _tbr ().

Table5.16. bcc_get _t br function declaration

Proto |uint32_t bcc_get thbr(void)
About |Get value of Trap Base Register (TBR).
Return |uint32_t. TBR.

Table5.17. bcc_set _t br function declaration

Proto |void bcc_set _tbr(uint32_t thr)
About |Set Trap Base Register (TBR).

Param |t br [IN] Integer

New TBRvaueto set.

Return |None.

To retrieve only the Trap Base Address (TBR. TBA) of TBR, thefunctionbcc_get _t r apbase() canbeused.

Table5.18. bcc_get _t r apbase function declaration

Proto |uint32_t bcc_get trapbase(void)
About |Get Trap Base Address (TBR. TBA).
Return |uint32_t. TBR. TBAin bits (31..12).

BCC-UM 19 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

5.6.3. Processor power-down
The current processor is powered down by calling bcc_power _down() .

Table 5.19. bcc_power _down function declaration

Proto i nt bcc_power _down(voi d)

About | Power down current processor.
Return |int. BCC_OK

5.7. FPU context API

bcc_fpu_save() isusedto save the current state of the floating-point registers %6 0 to % 31 and the % sr

register to a user-specified location. bcc_f pu_rest or e() restores an FPU context previously saved by the
user. Storagefor the FPU context struct bee_fpu_state shall beallocated by the user and provided to thesefunctions.
The floating-point deferred-trap queue (% q) is emptied before saving and restoring the FPU context.

These functions can be used in an interrupt service routine which performs floating-point operations.

Table 5.20. bcc_f pu_save function declaration

Proto |int bcc_fpu_save(struct bcc _fpu state *state)

About | Save floating-point context

The context shall berestored withbcc_fpu_restore().

Param |st at e [IN] Pointer

L ocation to save FPU context. This shall be a pointer to a preallocated struct bce_fpu_state, aligned to
8 byte.

Return |int. BCC_OK on success

Table5.21. bce_f pu_r est or e function declaration

Proto |int bcc _fpu restore(struct bcc_fpu state *state)

About |Restore floating-point context

The context st at e is FPU state previously saved withbcc_f pu_save().

Param |st at e [IN] Pointer

L ocation to restore FPU context from. This shall be a pointer to a preallocated struct bec_fpu_state,
aligned to 8 byte.

Return |int. BCC_OK on success

5.8. Trap API

Modifying the SPARC trap table is done using the BCC trap API. An entry can be inserted in the current trap
table with bcc_set _trap() described in Table 5.22. The function supports both the standard SPARC trap
mechanism and SPARC-V 8E single vector trapping (SVT as enabled with the - gsvt linker option).

NOTE: After manipulating atrap table, the instruction cache may need a flush (see Section 5.4).

Below isan example on how thewi ndow_over f | ow(0x05) trap handler can be replaced with the user provided
trap handler called mynewhandl er :

#i ncl ude <bcc/ bcc. h>

extern voi d mynewhandl er (void);
const int TT_W NDOW OVERFLOW = 0xO05;

int set_trap_exanpl e(void)

BCC-UM 20 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

int ret

ret = bcc_set_trap(TT_W NDOW OVERFLOW nynewhandl er);
return ret;

}

Table5.22. bcc_set _t r ap function declaration

Proto |int bcc_set trap(int tt, void (*handler)(void))
About |Install trap table entry.

When this function returns successfully, the current trap table has been updated such that when the
trap occurs:

« Execution jumpsto handl er .

* 9% O contains %psr .

* 9% 1 contains trapped %pc.

* 9 2 containstrapped %mpc.

e 9 6 (0..255) containssamevalueast t tobcc_set trap().

The trap handler istypically written in assembly and must preserve any state it changes. It shall end
with ther et t instruction.

This function operates on the current table. It supports multi vector trapping (MVT) and single vector
trapping (SVT).

Param |tt [IN] Integer

Trap type (0..255)

Param |handl er [IN] Pointer

Trap handler

Return |int.

Value Description

BCC_OK |Success

BCC_FAIL |Trap table entry installation failed

Notes |bcc_set _trap() doesnot flush the CPU instruction cache.

5.8.1. Single vector trapping (SVT)

This section describes steps which may be required when installing custom trap handlers under the SVT trap
mechanism available in some LEON systems. For the specification of SV T, see SPARC-V8 Supplement, SPARC-
V8 Embedded (V8E) Architecture Specification. SVT istypically used in systems with small memory footprint.

The BCC approach to SVT isto look up the target trap handler routine in two levels of tables. The level O table
contains 16 entries, each pointing to alevel 1 table. A level 1 table consists of 16 entries with the location of the
target trap handler routine. At trap time, TBR. TT[7: 4] indexesinto tablelevel 0 and TBR. TT[3: 0] indexes
into table level 1. Most of the level 1 tables entries are bad trap handlers so level 1 tables can be reused to save
storage.

NOTE: The BCC SVT table lookup routine executes a fixed number of instructions, independent of target trap
number and independent of installed handlers.

BCC run time defines 4 of the maximum 16 level 1 tables per default when the application islinked with - gsvt ,
asillustrated in Table 5.23.

Table 5.23. Default SVT level 1 tables

Symbol name Default trap number assignments
__bcc_trap_table svt O 0x00. . OxOF (system trap handlers and some bad trap handlers)
BCC-UM 21 www.cobham.com/gaisler

December 2017, Version 2.0.2

COBHAM

Symbol name Default trap number assignments
__bcc_trap_table_svt_1 0x10. . Ox1F (interrupt traps 1..15)
__bcc_trap_table svt_8 0x80. . Ox8F (softwaretrap 0..15)

__bcc_trap_tabl e svt_all bad |al other. Thistable contains 16 pointers to the symbol
__becc_trap_tabl e _svt_bad whichisadefault handler for

unexpected traps.
The single default level 0 table has symbol name _ bcc trap_table svt _level O
and contains 16 pointers to __bcc_trap_table svt _[0..f]. Symbols

__bcc_trap_table svt {2,3,4,5,6,7,9,a,b,c,d,e,f} adl have the same vaue as
__bcc_trap_table_svt_all bad per default. Thelevel 1 tableswith index 0, 1 and 8 have default values
according to Table 5.23.

bcc_set _trap() canbeused directly on trap numbersin the ranges 0x00. . Ox1F and 0x80. . Ox8F. All
other trap numbers are redirected to the common __bcc_trap_t abl e_svt _al | bad table which is never
manipulated by bcc_set _trap().

It is however possible for the user to construct custom level 1 lookup tables by defining symbols with the
names __bcc_trap_tabl e_svt_x, where x is an integer value between 0 and f . The linker will pick up
any the level 1 table named like this and use it instead of the all bad table. This is possible because all of
__becc_trap_tabl e_svt_x aredefined asweak symbols.

The following example defines a level 1 table containing one trap handler, my_t rap_handl er 92 for
tt =0x92, a link time. At run time, mai n() installsny_t rap_handl er 93 as handler for t t =0x93 using
bcc_set _trap().Asecondcaltobcc_set trap() triestoinstal ahandler fort t =0xa3 which will fail
because the corresponding level 1 tableisthedefault __bcc_trap_t abl e_svt _al | bad.

/

Exanpl e for defining a customlevel 1 SVT table and two trap handlers in the
[0x90: OX9F] range.

* Ok %k

NOTE: This exanple nust linked with the -qgsvt option.
*/

#i ncl ude <stdio. h>

#i ncl ude <bcc/ bcc. h>

/* User trap handlers inplenented el sewhere */
extern uint32_t ny_trap_handl er92;
extern uint32_t nmy_trap_handl er93;

/* Default handler for unexpected traps */
extern uint32_t _ bcc_trap_tabl e_svt_bad;

/* Override weak synmbol _ bcc_trap_table_svt_9 */
uint32_t *_ bcc_trap_table_svt_9[16] = {

& bcc_trap_tabl e_svt_bad,

& bcc_trap_tabl e_svt_bad,

&my_trap_handl er 92,

& _bcc_trap_tabl e_svt_bad,

& bcc_trap_tabl e_svt_bad,

& bcc_trap_tabl e_svt_bad,

& bcc_trap_tabl e_svt_bad,

& _bcc_trap_tabl e_svt_bad,

& bcc_trap_tabl e_svt_bad,

& bcc_trap_tabl e_svt_bad,

& bcc_trap_tabl e_svt_bad,

& bcc_trap_tabl e_svt_bad,

& _bcc_trap_tabl e_svt_bad,

& _bcc_trap_tabl e_svt_bad,

& bcc_trap_tabl e_svt_bad,

& bcc_trap_tabl e_svt_bad

IE
int mai n(void)
{

int ret;

ret = bcc_set_trap(0x93, &ny_trap_handl er93);
printf("ret=% (expecting 0)\n", ret);

ret = bcc_set_trap(0xa3, &ny_trap_handl er93);

BCC-UM 22 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

printf("ret=% (expecting non-zero)\n", ret);

return O;

}

5.9. Interrupt API

The interrupt APl alows for enabling and disabling interrupt sources, interrupt remapping, attaching interrupt
service routines and control of interrupt nesting.

5.9.1. Interrupt disable and enable

All maskable interrupts are disabled with bcc_int _disabl e() and enabled agan with
bcc_i nt_enabl e() . A nesting mechanism allows multiple disable operations to be performed in sequence
without the corresponding enable operation inbetween. These functions provide safe manipulation of the SPARC
V8 PSR. PI L registers. Theinterrupt controller is unmodified by these functions.

An integer variable is associated with every disable/enable pair which records state of the interrupt state to return
to. Thestateisreturnedby bcc_i nt _di sabl e andtaken asparameter by bcc_i nt _enabl e. Inorder for the
system to properly restore interrupt enable/disabl e state, the usage of state variables at interrupt enable operations
must be in opposite order of the disable operation.

Interrupts are in the enabled state when mai n() iscalled.

The example below illustrates how interrupt disable operations can nest.

#i ncl ude <bcc/ becc. h>
int int_nest_exanpl e(void)
{

int lev0, levl;

/* Enter critical region 0. */
I ev0 = bcc_int_disable();

/* Enter critical region 1A. */
levl = bcc_int_disable();

/* Leave critical region 1A
bcc_int _enabl e(l evl);

/* Enter critical region 1B. */
levl = bcc_int_disable();

/* Leave critical region 1B.
bcc_int _enabl e(l evl);

/* Leave critical region 0. */
bcc_i nt _enabl e(1 ev0);

return 0; /* success */

}

Table5.24. bcc_i nt _di sabl e function declaration

Proto |int bcc_int_disabl e(void)
About |Disable all maskable interrupts and return the previousinterrupt enable/disable state

A matching bcc_i nt _enabl e() with the return value as parameter must be called to exit the in-
terrupt disabled state. It is allowed to do nested callsto bcc_i nt _di sabl e() , and if so the same
number of bcc_i nt _enabl e() must be called.

This function modifies the SPARC V8 PSR.PIL field. Interrupt controller is not touched.

Return |int. Previousinterrupt level (used when calling bee_int_enable().

Table 5.25. bcc_i nt _enabl e function declaration

Proto |void bcc_int_enabl e(int plevel)

About |Returnto aprevious interrupt enable/disable state

BCC-UM 23 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

Thepl evel parameter isthereturn value from apreviouscal tobcc_i nt _di sabl e() . Atre
turn, interrupts may be enabled or disabled depending on pl evel .

This function modifies the SPARC V8 PSR.PIL field. Interrupt controller is not touched.

Param |(pl evel [IN] Integer

Theinterrupt protection level to set. Must be the return value from the most recent call to
bcc_int _disabl e().

Return |None.

5.9.2. Interrupt source masking

An interrupt source can be masked (disabled) with bcc_int _nmask() and unmasked (enabled) with
bcc_int_unmask() . Interrupt source masking islocal to the issuing processor.

Table5.26. bcc_i nt _mask function declaration

Proto int bcc_int_mask(int source)

About |Mask (disable) an interrupt source on the current CPU.
Param |sour ce [IN] Integer

SPARC interrupt number 1-15 or extended interrupt number 16-31.

Return |int.
Vaue Description
BCC _OK Success

BCC_NOT_AVAILABLE |Device not available

Table5.27. bcc_i nt _unmask function declaration

Proto int bcc_int_unmask(int source)

About |Unmask (enable) an interrupt source on the current CPU.
Param |sour ce [IN] Integer

SPARC interrupt number 1-15 or extended interrupt number 16-31.

Return |int.
Value Description
BCC _OK Success

BCC_NOT_AVAILABLE |Devicenot available

5.9.3. Clear and force interrupt

Clearing an interrupt source is done with bcc_i nt _cl ear () . A SPARC interrupt level can be forced on the
local processor with bcc_int _force(). Aninterrupt source (including extended interrupt) can be globally
pended with bcc_i nt _pend() .

Table5.28. bcc_i nt _cl ear function declaration

Proto int bcc_int_clear(int source)

About |Clear an interrupt source.

Param |sour ce [IN] Integer
SPARC interrupt number 1-15 or extended interrupt number 16-31.

Return |int.
Vaue Description
BCC_OK Success
BCC-UM 24 www.cobham.com/gaisler

December 2017, Version 2.0.2

\ BCC_NOT_AVAILABLE \ Device not available

COBHAM

Table5.29. bcc_i nt _f or ce function declaration

Proto int bcc_int_force(int |evel)
About |Forceaninterrupt| evel on the current processor.
Param |l evel [IN] Integer
SPARC interrupt request level 1..15.
Return |int.
Value Description
BCC _OK Success.
BCC_NOT_AVAILABLE |Device not available.
Notes |Extended interrupts can not be forced with this function.
Table 5.30. bcc_i nt _pend function declaration
Proto int bcc_int_pend(int source)
About |Make an interrupt source pending.
Param |sour ce [IN] Integer
SPARC interrupt number 1-15 or extended interrupt number 16-31.
Return |int.
Value Description
BCC _OK Success

BCC NOT_AVAILABLE |Devicenot available

5.9.4. Interrupt remap

TheIRQ(A)MPinterrupt controller can optionally beimplemented with functionality to allow dynamic remapping
between AMBA bus interrupt lines (0..63) and interrupt controller interrupt lines (1..31). This functionality can
be programmed withbcc_i nt _rmap_set () andbcc_i nt _nmap_get ().

NOTE: Interrupt remapping functionality requires hardware support availablein for example GR740 and GR716.

Table5.31. bcc_i nt _map_set function declaration

Proto int bcc_int_map_set(int busintline, int irgnpintline)
About | Set mapping from businterrupt line to an interrupt controller interrupt line.
Param |busi nt | i ne [IN] Integer

Bus interrupt line number
Param |i r qnpi nt | i ne [IN] Integer

Interrupt controller interrupt line
Return |int.

Value Description

BCC_OK Success

BCC_NOT_AVAILABLE |Device or functionality not available

Table5.32. bcc_i nt _nmap_get function declaration

Proto |int bcc_int_nmap_get(int busintline)
About | Get mapping from businterrupt line to an interrupt controller interrupt line.
BCC-UM 25

December 2017, Version 2.0.2

www.cobham.com/gaisler

COBHAM

Param [busi nt i ne [IN] Integer
Bus interrupt line number

Return |int.
Value Description
1.31 Interrupt controller interrupt line (1..31)
-1 Device or functionality not available

5.9.5. Interrupt service routines

BCC interrupt service routines (I1SR) are convenient because they allow the user to specify C functions which are
called in response to an interrupt. The APl handles extended interrupts transparently.

This part of the interrupt API is ahigher level mechanism compared to the trap API. Section 5.9.7 describes how
the BCC trap API can be used to install low-level interrupt handlers.

Functions are provided for the user to install custom interrupt service routines. SPARC interrupts 1-15 and ex-
tended interrupts 16-31 are supported. It is possible to install multiple interrupt handlers for the same interrupt:
thisisreferred to asinterrupt sharing. All ISR handler dispatching is hidden from the user.

NOTE: Itisnot allowed to call the interrupt service routine register/unregister functions from inside an interrupt
handler.

Two sets of functions are available for registering and unregistering interrupt service routines. They differ in
memory allocation responsibility. Some memory is always needed when installing an | SR with the API described
in this section.

5.9.5.1. Automatic memory management

bcc_isr_register() andbcc_i sr_unregi st er () manage memory alocation automatically by using
mal | oc() andfree() internaly.

Table5.33. bcc_i sr_regi st er function declaration

Proto |void *bcc_isr_register(int source, void (*handler)(void *arg, int
source), void *arg)

About |Register interrupt handler

The function in parameter handl er isregistered as an interrupt handler for the given interrupt
source. The handler is called with arg and source as arguments.

Interrupt sour ce isnot enabled by thisfunction. bcc_i nt _unmask() can be used to enableit.

Multiple interrupt handlers can be registered for the same interrupt number. They are dispatched at in-
terrupt in the same order as registered.

A handler registered with this function should be unregistered withbcc_i sr_unregi ster ().

Param |sour ce [IN] Integer

SPARC interrupt number 1-15 or extended interrupt number 16-31.
Param |handl er [IN] Pointer

Pointer to software routine to execute when the interrupt triggers.
Param |ar g [IN] Pointer

Passed as first argument to handl er .

Return |Pointer. Status and ISR handler context

Value ’ Description

BCC-UM 26 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

NULL Indicates failed to install handler.
Pointer Pointer to ISR handler context. Should not be dereferenced by user. Used as input to
bcc_isr_unregister().
Notes |Thisfunction may call mal | oc() .
Table5.34. bcc_i sr_unr egi st er function declaration
Proto |int bcc_isr_unregister(void *isr_ctx)
About |Unregister interrupt handler
It isonly allowed to unregister an interrupt handler which has previously been registered with
bcc_isr_register().
Interrupt sour ce is not disabled by thisfunction. The functionbcc_i nt _mask() can be used to
disableit.
Param |i sr_ct x [IN] Pointer
ISR handler context returned bcc_i sr_regi ster().
Return |int.
Value Description
BCC_OK |Handler successfully unregistered.
BCC_FAIL |Failed to unregister handler.
Notes |Thisfunctionmay call f r ee()

Following is an example on how bcc_i sr_regi ster() and bcc_i sr_unregi ster () can be used to
install two interrupt handlers on different interrupt numbers sharing the same function but with different ISR

unique data. mal | oc() andfree() arecaled by the BCC library.

#i ncl ude <bcc/ bcc. h>

/* User

interrupt handler */

extern void nyhandl er(void *arg, int source);
/* 1SR uniuge data */
extern int arg0, argl;

static const int |INTNUMA = 2;
static const int INTNUMB = 3;

int isr_

{

reg_exanpl e(voi d)

int ret;
/* 1 SR handl er contexts for using the bcc_isr_ API. */
void *ictx0, *ictxl;

ictx0 = bcc_isr_register(I NTNUMA, nyhandl er, &arg0);
if (NULL == ictx0) {
return BCC _FAIL;

}
ictxl = bcec_isr_register(INTNUMB, nyhandl er, &argl);
if (NULL == ictxl) {
bcc_i sr_unregi ster(ictx0);
return BCC FAIL;
}
bece_i nt _unmask(| NTNUMA) ;
bece_i nt _unmask(| NTNUMB) ;

bece_i nt _mask(1 NTNUMVB) ;
bece_i nt _mask(1 NTNUMA) ;
ret = bcc_isr_unregister(ictx0);
if (BCC.OK !=ret) {
return ret; /* Failure */

ret = bcc_isr_unregister(ictxl);
if (BCC.OK !=ret) {
return ret; /* Failure */

}

BCC-UM 27
December 2017, Version 2.0.2

www.cobham.com/gaisler

COBHAM

return ret;

}

5.9.5.2. User memory management

bcc_isr_regi ster_node() andbcc_i sr_unregi st er_node() areavailablefor caseswherethe us-
er want to control all memory allocations in the application. Associated with these two functionsis a type named
struct bee_isr_node. An instance of such type (ISR node) should be allocated and initialized by the user and pro-
vided to bcc_i sr_regi st er _node() . Node structure data provided to bcc_i sr_regi st er _node()

must not be touched or deallocated by the user until bcc_i sr_unr egi st er _node() hasbeen called with the
same node. After that, the user isfreeto reuse or deallocat the node. The | SR node must residein writable memory.

struct bcc_isr_node {
void *__private;
int source;
voi d (*handler)(
void *arg,
int source
)
void *arg;

s

Table 5.35. bee_isr_node data structure declaration

source I nterrupt source number
handler User ISR handler
arg Passed as parameter to handler

Table5.36. bcc_i sr_regi st er _node function declaration

Proto |int bcc_isr_register_node(struct bcc_isr_node *isr_node)

About |Register interrupt handler, non-allocating

Thisfunctionissimilartobcc_i sr_regi st er () with the difference that the user isresponsible
for memory management. It will never call mal | oc() . Instead the caller hasto provide a pointer to a
preallocated and initialized ISR node of type struct bce_isr_node.

The memory pointedto by i sr_node shall be considered owned exclusively by

the run-time between the call tobcc_i sr_regi st er _node() and afuture

bcc_i sr_unregi ster_node() . It means that the memory must be available for this time and
must not be modified by the application. The memory pointedto by i st _node must be writable.

This function should be used to install interrupt handlers in applications which want full control over
memory allocation.
Param |i sr_node [IN] Pointer

Pointer to User initialized ISR node. Thefieldssour ce, handl er and optionally the ar g shall be
initialized by the caller.

Return |int.

Value Description

BCC _OK [Handler installed successfully.
BCC_FAIL |Failed to install handler.

Table5.37. bcc_i sr_unr egi st er _node function declaration

Proto |int bcc_isr_unregi ster_node(const struct bcc_isr_node *isr_node)

About |Unregister interrupt handler, non-allocating

Thisfunctionissimilartobcc_i sr_unr egi st er () with the difference that the user is responsi-
ble for memory management. It is only allowed to unregister an interrupt handler which has previous-
ly been registered withbcc_i sr_regi ster _node().

BCC-UM 28 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

Param |i sr_node [IN] Pointer

Same asinput parameter tobcc_i sr_regi ster _node().
Return |int.

Value Description

BCC_OK |Handler successfully unregistered.

BCC_FAIL |Failed to unregister handler.

Followingisanexampleonhowbcc_i sr_regi ster_node() andbcc_i sr_unregi st er_node() can
be used to install an interrupt handler on interrupt 3. No callstomal | oc() orfree() areperformed.

#i ncl ude

<bcc/ bcc. h>

/* User interrupt handler */
extern void nyhandl er(void *arg, int source);

/* 1SR uniuge data */

extern int argo;

/* 1SR node all ocated by user */
struct bcc_isr_node inode0;

int isr_reg_exanple(void)

{

nt ret;

i node0. source = 3;
i node0. handl er = nyhandl er;
i node0. arg = &ar go0;

ret = bcc_isr_register_node(& node0);
if (BCC.OK !=ret) {
return ret;

}

bcec_i nt _unmask(3);

bcec_i nt _mask(3);
ret = bcc_isr_unregister_node(& node0);

r

}

eturn ret;

5.9.6. Interrupt nesting

Interrupt nesting can be enabled, disabled or set to a user custom config with the interrupt nesting API. This API
maintains the SPARC PSR. PI L field. More fine-grained masking can be done by programming the interrupt
controller as described in Section 5.9.2.

Interrupt nesting is disabled by default in BCC, meaning that an interrupt service routine can not be preempted
by any other interrupt. The function bcc_i nt _enabl e_nesti ng() enables nesting such that an ISR can
be preempted by higher level processor interrupts. bcc_i nt _di sabl e_nesti ng() can be used to disable
nesting again.

Thefunctionbcc_i nt _nest count () returnsthe interrupt nest level, starting at O when the functionis called
outside of interrupt context.

NOTE: SPARC interrupt level 15 is non-maskable.

Table5.38. bcc_i nt _nest count function declaration

Proto |int bcc_int_nestcount (void)
About | Get current interrupt nest count
Return |int.
Value Description
0 Caller isnot in interrupt context
BCC-UM 29 www.cobham.com/gaisler

December 2017, Version 2.0.2

COBHAM

1 Caller isinfirst interrupt context level

n Caller isin n:th interrupt context level

Table5.39. bcc_i nt _di sabl e_nest i ng function declaration

Proto |int bcc_int_disable nesting(void)
About |Disableinterrupt nesting

After calling this function, PSR. PI L will be raised to Oxf (highest) when an interrupt occurs on any
level.

Return |int. BCC_OK

Table5.40. bcc_i nt _enabl e_nest i ng function declaration

Proto |int bcc_int_enabl e_nesting(void)

About |Enable interrupt nesting

After calling thisfunction, PSR. PI L will be raised to the current interrupt level when an interrupt oc-
curs.

Return |int. BCC_OK

5.9.6.1. Advanced configuration

This subsection describes custom interrupt nesting configuration. It contains advanced information which is prob-
ably not needed for most application. Standard interrupt nesting control as described in Section 5.9.6 is assumed
to cover most use cases.

When a user 1SR which has been registered with bcc_i sr_regi st er () istriggered by hardware, the BCC
interrupt dispatecher routine is executed as part oft he interrupt trap handling. The dispatcher sets (raises) the
SPARC register PSR. Pl L toanew interrupt request level beforereenabling trapsand calling the user ISR handler.
The new PSR. PI L level is determined by the BCC interrupt dispatcher executed as part of the interrupt trap
handling. BCC maintains a private table which maps for each interrupt level, a future (raised) interrupt level to
set while the ISR executes.

bcc_int _di sabl e_nesting() setsthe mapping from each interrupt level (1..15) to the highest interrupt
level (15). bcc_i nt _enabl e_nesti ng() sets the mapping from each interrupt level (1..15) to the same
interrupt level (1..15).

A custom interrupt nesting mapping can be set with thefunctionbcc_i nt _set _nesti ng() . Itisfor example
possible to program either of interrupt levels 1..7 to always raise Pl L to 7, making the corresponding service
routines mutually exclusive, while still allowing interrupts on level 8 and above. For the purpose of the example,
interrupt levels 8..15 could be mapped linearly to enable normal nesting on level 8 and above. This could be
utilized to setup hardware supported task switching, where each task isrelated to a unique interrupt request level.
The following example illustrates this setup.

#i ncl ude <bcc/ bcc. h>
/*
* Processor interrupts 1..7 set PIL=7 to |ock out interrupt 1..7.
* Processor interrupts 8..15 nest as nornal.
*/
voi d custom nesting(void)
{
bcc_enabl e_nesting();
for (int i =1; i <=7; i++) {
bcc_set _nesting(1, 7);
}

}

Table5.41. bcc_i nt _set _nest i ng function declaration

‘Proto ‘i nt bcc_int_set_nesting(int pil, int newpil)

BCC-UM 30 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

About |Configure interrupt nesting

Configuresin detail how the SPARC processor interrupt level is set when an interrupt occurs. After
calling thisfunction, PSR. PI L will beraised to newpi | when an interrupt occurson level pi | .

Param |pi | [IN] Integer
PSR. PI L (0..15) level to configure.
Param |newpi | [IN] Integer

New value for PSR. PI L (0..15) during interrupt at level pi | . newpi | must be equal to or greater
than pi | parameter.

Return |int.

Value Description
BCC_OK |Success

BCC _FAIL |lllegal parameters

5.9.7. Low-level interrupt handlers

Thetrap API can be used to install low-level interrupt handlers for SPARC interrupts 1-15. It is done by calling
bcc_set _trap() withthett parameter set to interrupt number plus0x10. Thiswill disable the norma BCC
ISR management for this interrupt request level. Support for interrupt sharing on the CPU interrupt level is also
on the responsihility of the user when using Low-level interrupt handlers.

NOTE: It is the implementers responsibility to ensure that volatile registers are saved and restored by the trap
handler. The handler should set PSR. Pl L=0xf toavoidinterrupt nestingif traps are being enabled by the handler.

The following example illustrates how alow-level interrupt handler can beinstalled.
#i ncl ude <bcc/ bcc. h>

/* Function for installing lowlevel interrupt (trap) handler */
int set_|low evel _int_handler(int source, void (*handler)(void))

{

if (source <1]| 15 < source) {
return BCC_FAIL;
}

return bcc_set_trap(0x10 + source, handler);

}

extern void trap_handl er_for_int1(void);
int isr_|low evel _exanpl e(void)
{

int ret;

ret = set_low evel _int_handler(1, trap_handler_for_intl);
printf("ret=%\n", ret);

return ret;

}
5.10. Asymmetric Multiprocessing API

This APl provides basic functionality for programming AMP systems. The communication primitive isinter-pro-
cessor interrupts, which can be used as a basis for shared memories and higher level services. Functionsin this
API typically operate using a LEON interrupt controller such as| RQVP or | RQ(A) MP.

NOTE: Thefunctionsin the AMP API are available even when running on a single-processor system. AMP ser-
vices are not served in this case, but the function return values are guaranteed to be consistent (typically returning
with status BCC_NOT_AVAI LABLE).

5.10.1. Processor identification

The number of processors in the system can be retrieved with the function bcc_get _cpu_count () and the
ID of the current processor isretrieved withbcc_get _cpui d()

BCC-UM 31 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

Table5.42. bcc_get _cpu_count function declaration

Proto |int bcc_get cpu_count (void)

About |Get number of processor in the system.
Return |int.

Number of processorsin the system or -1 if unknown.

1 isreturned on single-processor systems.

Notes |Thisfunction will return -1 if the run-timeis not aware of the interrupt controller.

Table 5.43. bcc_get _cpui d function declaration

Proto |int bcc_get cpui d(void)

About |Get ID of the current processor.

The first processor in the system has ID 0.
Return |int.

ID of the current processor.

0 isreturned on single-processor systems.

5.10.2. Inter-processor control

Another processor in a multiprocessor LEON system can be started by calling bcc_start_processor ().
Inter-processor interrupts (1PI) are sent to other processorswithbcc_send_i nterrupt ().

Table5.44.bcc_start _processor function declaration

Proto int bcc_start _processor(int cpuid)

About |Start a processor.

Param |cpui d [IN] Integer
The processor to start.

cpui d must bein theinterval from0Otoget _cpu_count () -1.

Return |int.
Value Description
BCC _OK Success.

BCC NOT_AVAILABLE |Processor or device not available.

Table5.45. bcc_send_i nt er rupt function declaration

Proto int bcc_send_interrupt(int level, int cpuid)

About |Forcean interrupt level on a processor.

Param |l evel [IN] Integer
Interrupt request level (1..15).
Param |cpui d [IN] Integer

The processor to interrupt.

cpui d must beintheinterval from0Otoget cpu_count () -1.
Return |int.
Value Description

BCC-UM 32 www.cobham.com/gaisler
December 2017, Version 2.0.2

BCC_OK Success.

COBHAM

BCC _NOT_AVAILABLE |Processor or device not available.

5.11. Default trap handlers

Table 5.46 liststhe trap handlerslinked into the SPARC trap table by default in aBCC application. Individual trap

handlers can be added or replaced with the trap API described in Section 5.8.

See the SPARC V8 specification for trap definitions.

Table 5.46. Default trap handlers for BCC 2.0.2

tt Description

0x00 Reset. Handledby __bcc_trap_reset _nvt or __bcc_trap_reset _svt.
0x05 Window overflow. Handled by __bcc_trap_wi ndow_over f | ow.

0x06 Window underflow. Handledby __bcc_trap_w ndow _under f | ow.

Ox11..0x1f |Interrupt. Handledby bcc trap_interrupt.

0x83 Flush windows. Handledby _ bcc_trap_fl ush_wi ndows.
0x89 Set PSR. Pl L. Handledby __bcc_trap_sw set _pil.
others Force processor into error mode.

5.12. APl reference

This section lists al BCC library user API functions with references to the related section(s). The APl is aso

documented in the source header files of the library, see Section 5.1.

Table 5.47. BCC library user API structure reference

Type Section
struct bee_isr_node 5952
Table 5.48. BCC library user API function reference

Prototype Section
uint32_t bcc_tiner_get_us(void) 53
int bcc_tiner_tick_ init(void) 531
void bcc_flush_cache(void) 54
voi d bcc_flush_i cache(void) 54
voi d bcc_flush_dcache(voi d) 54
void bcc_set _ccr(uint32_t data) 5.4
uint32_t bcc_get ccr(void) 54

ui nt 32_t bcc_I| oadnocache(ui nt32_t *addr) 55
uint16_t bcc_Il oadnocachel6(uint16_t *addr) 55
uint8 t bcc_| oadnocache8(uint8 t *addr) 55
void bcc_dwzero(uint64_t *dst, size_ t n) 55
uint32_t bcc_get _psr(void) 56.1
void bcc_set _psr(uint32_t psr) 56.1
int bcc_get pil(void) 56.1
int bcc_set_pil (int newpil) 56.1
uint32_t bcc_get _tbr(void) 56.2

BCC-UM 33
December 2017, Version 2.0.2

www.cobham.com/gaisler

COBHAM

Prototype Section
void bcc_set _tbr(uint32_t tbr) 5.6.2
uint32_ t bcc_get trapbase(void) 5.6.2
i nt bcc_power_down(voi d) 5.6.3
int bcc_fpu_save(struct bcc_fpu_ state *state) 5.7
int bcc_fpu_restore(struct bcc_fpu_state *state) 5.7
int bcc_set trap(int tt, void (*handler)(void)) 5.8,
5.9.7
int bcc_int_disabl e(void) 591
voi d bcc_int_enabl e(int plevel) 591
int bcc_int_mask(int source) 592
int bcc_int_unmask(int source) 5.9.2
int bcc_int_clear(int source) 593
int bcc_int_force(int |evel) 593
int bcc_int_pend(int source) 593
int bcc_int_map_set(int busintline, int irgnpintline) 5.9.4
int bcc_int_map_get(int busintline) 594
voi d *bcc_isr_register(int source, void (*handler)(void *arg, int 5951
source), void *arg)
int bcc_isr_unregister(void *isr_ctx) 5951
int bcc_isr_register_node(struct bcc_isr_node *isr_node) 5.95.2
int bcc_isr_unregi ster_node(const struct bcc_isr_node *isr_node) 5.95.2
i nt bcc_int_nestcount (voi d) 5.9.6
int bcc_int_disabl e_nesting(void) 5.9.6
int bcc_int_enabl e _nesting(void) 5.9.6
int bcc_int_set_nesting(int pil, int newil) 5.96.1
i nt bcc_get _cpu_count (voi d) 5.10.1
i nt bcc_get_cpuid(void) 5.10.1
int bcc_start _processor(int cpuid) 5.10.2
int bcc_send_interrupt(int level, int cpuid) 5.10.2
BCC-UM 34 www.cobham.com/gaisler

December 2017, Version 2.0.2

COBHAM

6. AMBA Plug&Play library

6.1. Introduction

This chapter describes a user library used to probe devices on systems with an on-chip GRLIB AMBA Plug& Play
bus. AMBA Plug&Play is generaly available on LEON3 and LEON4 systems. For more information on the
AMBA Plug& Play concept, seethe GRLIB IP Library User's Manual.

The library is used by the BCC run-time to find the console device, timer devices and the interrupt controller.
Application programmers can a so use the library to probe for hardware devicesto pair with device drivers.

6.1.1. AMBA Plug&Play terms and names

Throughout this chapter some software terms and names are frequently used. Below is a table which summarizes
some of them.

Table 6.1. AMBA Layer terms and names

Term Description

AMBAPP, AMBA PnP |AMBA Plugé&Play bus. See AHBCTRL and APBCTRL in GRLIB GRIP docu-
mentation.

device AMBA AHB Master, AHB Slave or APB Slaveinterface. Theanba_ahb_i nf o
and anba_apb_i nf o structures describe any of the interfaces.

core A AMBA P core often consists of multiple AMBA interfaces but not more than
one interface of the same type.

bus An AMBA AHB or APB bus.

Vendor ID A unique number assigned to adevice vendor. Seei ncl ude/ bcc/
anbapp_ids. h

DevicelD A unique number assigned to a device by a device vendor. Seei ncl ude/ bcc/
anmbapp_ids. h

10 area Address to aread-only table containing Plug& Play information for all attached de-
viceson the bus. It istypically located at address Ox FFFFFO00 on LEON sys-
tems.

scanning Process where the AMBA PnP bus is searched for al or some AMBA interfaces.

depth Number of levels of AHB-AHB bridges from topmost AHB bus.

6.1.2. Availability

Functionsdescribed in this chapter have structure definitions and prototypesinthe C header filebcc/ anbapp. h.
The functionsare compiledin| i bbcc. a and are available per default when linking with the GCC front-end.

6.2. Device scanning

BCC AMBA Plug& Play API is based around a device scanning routine in the function anbapp_vi sit (). It
performs recursive, depth first, scanning for devices.

The anbapp_vi si t () routine can visit devices during the scanning, based on a user defined device match
criteria. A visit is performed by the routine calling a user supplied function with information on the current device
asfunction parameters. After the user function hasinspected the device information, it can decide to terminate the
scanning process altogether or let the scanning routine continue with the next match. The anmbapp_vi sit ()
function does not allocate dynamic or static memory and does not build a device tree. It stores temporary infor-
mation on the stack as needed.

Example use cases for the scanning routine include:
e Count number of AMBA Plug& Play devices/buses in the system.

BCC-UM 35 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

» Build adevicetreein memory.
 Find a specific device on a user criteria

The main scanning function ambapp_visit() is defined in Table 6.2 and the callback interface is described in
Table 6.3.

Table 6.2. anbapp_vi si t function declaration

Proto

uint32_ t anbapp_visit(uint32 t ioarea, uint32_t vendor, uint32_t
device, uint32_t flags, uint32_t depth, uint32_t (*fn)(void *in-
fo, uint32_t vendor, uint32_t device, uint32_t type, uint32_t depth,
void *arg), void *arg)

About

Visit AMBA Plug& Play devices

A recursive AMBA Plug& Play device scanning is performed, depth first. Information records are
filled in and supplied to a user function on a user match criteria. The user match criteriais defined by
the parametersvendor , devi ce and f | ags.

When the user function (f n) returns non-zero, the device scanning is terminated and
anbapp_vi si t () returnsthe return value of the user function.

Theanbapp_vi sit () function does not allocate dynamic or static memory, it uses the stack.

Param

i oar ea [IN] Address
|O area of busto start device scanning.

Param

vendor [IN] Integer
Vendor ID to visit, or O for all vendor IDs.

Param

devi ce [IN] Integer
Device ID to visit, or O for all device IDs.

Param

f 1 ags [IN] Integer

Mask of device typesto visit AMBAPP_VISIT_AHBMASTER, AMBAPP_VISIT_AHBSLAVE,
AMBAPP_VISIT_APBSLAVE).

Param

dept h [IN] Integer
Maximum bridge depth to visit.

Param

f n [IN] Pointer
User function called when a device is matched. See separate description on how the function is called.

Param

f n_ar g [IN] Pointer
User argument provided with each call to fn(). ambapp_vi si t () never dereferencesf n_ar g.

Return

uint32_t.
Value Description

0 fn() did never return non-zero.

non-zero |f n() returned thisvalue.

Table 6.3. anmbapp_vi sit _user _f n function declaration

Proto

uint32 t fn(void *info, uint32_t vendor, uint32 t device, uint32_t
type, uint32 t depth, void *arg)

About

User callback called by ambapp_vi si t () when adeviceis matched.

Param

i nf o [IN] Pointer
Pointer to struct amba_apb_info or struct amba_ahb_info as determined by the parameter t ype.

Param

vendor [IN] Integer
Vendor ID for matched device

BCC-UM 36 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

Param |devi ce [IN] Integer
Device ID for matched device

Param |t ype [IN] Integer

Type of matched device (AMBAPP_VISIT_AHBMASTER, AMBAPP VISIT AHBSLAVE,
AMBAPP _VISIT_APBSLAVE).

Param |dept h [IN] Integer

Bridge depth of matched device. First depth is the same asthe dept h parameter to
anbapp_vi si t () . The depth decrements with one for each recursed bridge.

Param |ar g [IN] Pointer

User argument which was given to anbapp_vi si t () asparameter f n_ar g.
Return |uint32_t.

Value Description

0 Continue scanning

non-zero | Abort scanning and propagate return valueto anbapp_vi si t () for return.

6.3. User callback

6.3.1. Criteria matching

User criteriafor calling the user callback function for a device is defined by theanbapp_vi si t () function pa
rametersvendor ,devi ce andf | ags. Toscanfor aspecific devicetype (AHB master, AHB slave, APB dave),
the bitmasks AMBAPP_VI SI T_AHBMASTER, AMBAPP_VI SI T_AHBSLAVE, AMBAPP_VI SI T_APBSLAVE
shall be used. A value of O for vendor or devi ce matchesall vendor IDs and device | Ds respectively.

Visiting all devices can thus be accomplished by the following parameter values:

#i ncl ude <bcc/ anbapp. h>

vendor 0;

devi ce 0;

flags = AVBAPP_VI SI T_AHBVASTER | AMBAPP_VI SI T_AHBSLAVE | AMBA_VI S| T_APBSLAVE;

6.3.2. Device information

Parametersto the user callback (Table 6.3) provides information to the user about the current device. To derefer-
ence the i nf o parameter, it must first be cast to the appropriate type, based on thet ype parameter as of table
Table 6.4.

Table 6.4. Data structures for device information

Valueof t ype Typeofinfo

AVBAPP_VI SI T_AHBMASTER |struct anba_ahb_info *
AMBAPP_VI SI T_AHBSLAVE |struct anba_ahb_info *
AVBAPP_VI SI T_APBSLAVE |struct amba apb _info *

The device information structures contain data decoded from the AMBA AHB and APB Plug& Play records and
defined asin Table 6.5, Table 6.6 and Table 6.7. See the GRLIB IP Library User's Manual for more details on
the record fields.

struct anba_apb_info {
uint8_t ver;
uint8_t irgq;
uint32_t start;
uint32_t mask;

s

Table 6.5. amba_apb_info data structure declaration

ver Device version

BCC-UM 37 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

irg Device interrupt number
start Device address space start
mask Device address space mask

struct anba_ahb_bar {
uint32_t start;
uint32_t mask;
uint8_t type;
s

Table 6.6. amba_ahb_bar data structure declaration

start Device address space start

mask Device address space mask

type Bank type
2 AHB memory space
3 AHB I/O space

struct anba_ahb_info {

uint8_t ver;

uint8_t irgq;

struct anba_ahb_bar bar [AVBA_AHB_ NBARS] ;
s

Table 6.7. amba_ahb_info data structure declaration

ver Deviceversion

irg Device interrupt number
bar Bank Address Register
6.4. Example

The following example extracts the base address and interrupt number of thefirst APBUART devicein the system

and then aborts the scanning by returning non-zero.
#i ncl ude <stdio. h>

#i ncl ude <bcc/ anbapp. h>

#i ncl ude <bcc/ anbapp_i ds. h>

uint32_t nyarg = 0;

/* User callback which is called on devices matched with anbapp_visit().
uint32_t nmyfn(void *info, uint32_t vendor, uint32_t device,

arg=%\n",

{
struct anmba_apb_info *apbi = info;
if (type !'= AMBAPP_VI SI T_APBSLAVE) {
printf("Unexpected type=%u\n", type);
return O;
}
printf("vendor=%, device=%, type=%, depth=%,
vendor, device, type, depth, arg);
printf("ver=%, irqg=%), start=%08x, mask=%08x\n",
info->ver, info->irq, info->start, info->nmask);
return apbi->start;
}

/* This function returns address of first APBUART, or O.

uint32_t ex0(void) {
const uint32_t ioarea = OxFFFFFOOO;
const uint32_t depth = 4;
uint32_t ret;

ret = anbapp_visit(
i oarea,
VENDOR_GAl SLER,
GAl SLER_APBUART,
AVBAPP_VI SI T_APBSLAVE,
dept h,
nyfn,

*/

uint32_t type,

uint32_t depth, void *arg)

BCC-UM
December 2017, Version 2.0.2

38

www.cobham.com/gaisler

COBHAM

&nyarg
)
return ret;

}

More examples are provided with the BCC distribution.
6.5. APl reference

This section lists all AMBA Plug&Play API functions with references to the related section(s). The APl is aso
documented in the source header files of thelibrary, bcc/ anbapp. h.

Table 6.8. AMBA Plug& Play library data structure reference

Type Section
struct ambapp_apb_info 6.3.2
struct ambapp_ahb_bar 6.3.2
struct ambapp_ahb_info 6.3.2

Table 6.9. AMBA Plug& Play library function reference

Prototype Section

uint32_t anbapp_visit(uint32_t ioarea, uint32_t vendor, uint32_t 6.2
device, uint32_t flags, uint32_t depth, uint32_t (*fn)(void *info,
uint32_t vendor, uint32_t device, uint32_t type, uint32_t depth,
void *arg), void *arg)

uint32_t anbapp_visit_user_fn(void *info, uint32_t vendor, uint32_t (6.2,6.3
device, uint32_t type, uint32_t depth, void *arg)

BCC-UM 39

www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

7. Board Support Packages

This chapter describes the Board Support Packages (BSP) distributed with BCC. It aso describes how custom
BSPs can be created and used.

7.1. Overview

BSPsprovidean interface between BCC and target hardware through initialization code specific to target processor
and a number of device drivers. Console, timer and interrupt controller drivers are supported in all BSPs.

A BSPisselected with the GCC option - gbsp=bspnane, wherebspnane specifiesany of the BSPs described
in this chapter. The option is typically combined with - ncpu=cpunarne and optionally - msof t - f | oat and
- gnano. It isimportant that the - gbsp=, - ntcpu=, - nfi x and - nsof t - f| oat options are given to GCC
both at the compile and link steps. If option - gbsp= is not given explicitly, then - gbsp=I eon3 isimplied. -
gsvt isonly applicableto linking.

NOTE: Selecting aBSP with - gbsp=, does not automatically infer any of the- ncpu=, - nfi x- or-nsoft-
f | oat options.

Applications are by default linked to RAM address 0x40000000 by most BSPs. This can be changed with the
GCC option - W, - Tt ext , addr to link anywhere in the range 0x40000000 to Ox7f f f f f f 0. Some BSPs
have other default link addresses which is noted in the corresponding section in this chapter.

Each BSP providesmemory definitionsfor thelinker scriptsto use, suitablefor thetarget device. In somesituations
there is a need to link applications to non-standard locations. A special linker script named | i nkcnds- any is
provided for thispurpose. | i nkcnds- any isavailablefor all BSPs. The following example links an application
to address 0x ABCDEOOO:

$ sparc-gaisler-elf-gcc -T linkcnds-any -W, - Tt ext, OXABCDEOOO hello.c -0 hello.elf

All BSPsexcept the LEON3 BSP havelink time configuration of device base addresses needed by the BCC drivers.
The LEON3 BSP uses AMBA Plug& Play to probe devices. A BCC console driver is attached to APBUARTO by
default, timer driver isattached to GPTI MERO and theinterrupt controller driver isattachedto | RQVP/I RQ(A) VP.
Chapter 8 describes how device base addresses can be customized by the user.

7.2. LEON3

The LEON3 BSP isageneral BSP compatible with most LEON3 based systems. Thisisthe only BSP which uses
AMBA Plug& Play to discover peripheral devices at startup.

Linking with - gsvt ispossibleif SVT is supported by the target system.
7.3. GR712RC
The GR712RC BSP is customized for the GR712RC component.

The following linker scripts are available, selectable with the GCC - T option.

I i nkcnds (default) Application islinked to RAM address 0x40000000.
[i nkcmds-ahbram Application islinked to on-chip RAM with BCH error-correction at address
0xa0000000.

Memory map descriptions and a linker script template for creating custom linker scripts are available in bsp/
gr712rc/1inkcnds. menory and bsp/ gr 712r ¢/ |1 i nkcnds. base.

Linking with - qsvt is supported.
7.4. GR716

The GR716 BSP is customized for the GR716 component.

BCC-UM 40 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

Partial WRPSR as described in SPARC-V8 Supplement, SPARC-V8 Embedded (VBE) Architecture Specification
is used by BCC when possible. The interrupt remap functions described in Section 5.9.4 are available. Linking
with - qsvt and - gnano isrecommended for reduced code size.

Memory map descriptions and a linker script template for creating custom linker scripts are available in bsp/
gr716/1i nkcnds. menory and bsp/ gr 716/ | i nkcnds. base.

7.4.1. Boot ROM

A BCC 2 application is ready to be used with the GR716 embedded boot loader (BOOTROM). There are two
main cases:
» Application is copied from persistent memory or network to RAM by the BOOTPROM. Executes from
volatile RAM.
< Application executes from persistent memory (external ROM or SPI). Thisis also called direct boot.

It is also possible to disable the GR716 embedded boot loader by configuring GR716 strap signals. In this case,
the application should contain its own boot loader. See Section 2.15.

The following subsections describe how to link a BCC application for use with the GR716 BOOTPROM. Infor-
mation on how to load the application and configure the GR716 for image boot from persistent memory, network
boot or direct boot from persistent memory is available in the GR716 Data Sheet and Users's Manual.

7.4.1.1. Executing from volatile RAM

To link an application for executing from local instruction RAM, the default linker script shall be used:
I i nkends (default) Applicationislinked to CPU local RAM: instruction RAM at address
0x31000000 and data RAM at address 0x30000000.
The following example links an application for storage and execution in internal RAM:
$ sparc-gaisler-elf-gcc -gqbsp=gr716 -nctpu=leon3 -qsvt -gnano main.o -o nain.elf

Thelinker option- T | i nkcnds isnot required since the linker script is selected by default.
7.4.1.2. Executing from persistent memory

To link an application for executing from persistent memory such as an external ROM or SPI, use one of the
following linker scripts:

I i nkcnds- ext prom Application islinked to external ROM starting at address 0x01000000.
. dat a is copied from PROM to on-chip data RAM at BCC run-time initial-
ization. . bss isalso put in on-chip data RAM.

i nkends-spi 0 Sameas! i nkcnds- ext pr om but for first SPI controller memory mapped
at address 0x02000000.

i nkends-spi 1 Sameas| i nkcnds- ext pr om but for second SPI controller memory
mapped at address 0x04000000.

The following example links an application for storage and execution in external ROM:
$ sparc-gaisler-elf-gcc -qbsp=gr716 -ntpu=leon3 -qsvt -qnano -T |inkcnds-extpromnmain.o -o nain.elf

Investigation of the link output showsthat . dat a isin ROM space at |oad time, but referenced in local dataRAM
at execution time. Copying of . dat a from ROM to RAM is done automatically by the BCC initialization.

$ sparc-gaisler-elf-objdump -h main.elf

main. el f: file format el f32-sparc
Secti ons:
I dx Nane Si ze VVA LMVA File off Al gn
0 .text 000021d0 01000000 01000000 00010000 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .rodata 00000090 010021d0 010021d0 000121d0 2**3

CONTENTS, ALLOCC, LOAD, READONLY, DATA

BCC-UM 41 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

2 .ext.data 00000000 40000000 40000000 000201e8 2**0
CONTENTS

3 .data 000001e8 30000000 01002260 00020000 2**3
CONTENTS, ALLCC, LOAD, DATA

4 .bss 000001c8 300001e8 01002448 000201e8 2**2
ALLCC

An example on how to build an application as described in this subsection is included with the BCC distribution
in the directory exanpl es/ gr 716_r onr es.

7.4.1.3. System clock

The GR716 BSP supports the full frequency operating range of GR716. A time base has to be set by the user
for the BCC time functions to operate correctly when the application is started from the GR716 embedded boot
loader. The supported way to do thisisto define aglobal constant variablenamed __bsp_sysfr eq initialized
with the system clock frequency in MHz. This ensures a known time base for the BCC timer driver and sets the
BCC console driver baud to 19200.

On aGR716 clocked at 20 MHz, the following example configures the system clock.

/* GR716 clocked at 20 MHz */
const unsigned int __bsp_sysfreq = 20*1000*1000;

The definition can be put in any C file which is linked with the application. Notethat __bsp_sysfreq must
not be declared st at i c.

BSP initializations related to the system clock are implemented by the custom timer and console initialization
functions and can be overridden. For more details, see Section 8.2.1 and Section 8.3.1.

7.5. LEON2
The LEON2 BSP is compatible with LEONZ2 systems such as AT697, AT697E and AT697F.

AMBA Plug&Play configuration records are not implemented in most LEON2 systems, so the BCC AMBA
Plug& Play library described in Chapter 6 may not be used. But since the hardware information is resolved by the
BSP, and can be overridden as described in Chapter 8, this does not affect normal operation of BCC on LEON2
systems

- gsvt isnot supported on LEON2.
7.6. AGGA4

The AGGA4 BSPissimilar to the LEON2 BSP. It has a different console driver which is transparent to the user.
Recommended compiler options for AGGA4 can be found in Appendix A.

BCC-UM 42 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

8. Customizing BCC

The BCC run time environment is designed to fit a wide range systems and to require little user intervention to
get an application up and running. In some situations however, the default behavior may need customization to
fulfill specific application requirements on device discovery, console drivers, size optimization, etc. This chapter
describes how the BCC run time environment can be customized.

8.1. Introduction

Three types of hardware devices are managed by the BCC run time: console, timer and interrupt controller. The
management consists of software drivers which are embedded in the application when needed. Some of the C
library functionality and the BCC user library depend on these drivers.

For most BSPs, the run time relies on hardware devices residing in predefined address spaces. For the general
LEON3 BSP, the device hardware address space | ocations are probed with help of the AMBA Plug& Play scanning
routines described in Section 6.2. Device initialization and possible probing takes place before entry to mai n()

and can be overridden by the application as described later in this chapter.

Functionsand variables used for user run time customization are declared in the header filebcc/ bcc_par am h.
This header file should be included in any application which overrides the default BCC behavior.

To override the default implementation of a BCC function or variable, an object file containing the same symbol
name as the overridden function or variabl e should be linked with the application. The prototypesinbcc/ bcc. h
and bcc/ bcc_par am h can be used for type checking. An exampleis provided in Section 8.5.

8.2. Console driver
The BCC console driver isused for C library input and output on st di n, st dout andst derr.
8.2.1. Initialization

A variablenamed __bcc_con_handl e isreserved for the console driver to use. The content of thisvariableis
consoledriver specific, and will typically contain an addressto some hardware register space. A BSPisresponsible
for initializing this variable, which can be done either at compile time or run time. The function (hook) named
__bcc_con_init() iscalled beforemai n() as part of the BCC run time initialization. A BSP can use the
hook functiontoinitialize__bcc_con_handl e, for example by usingthe AMBA Plug& Play library. Table 8.2
describes how BSPsinitialize the handle.

Table8.1. bcc_con_init function declaration

Proto |int _ bcc_con_init(void)

About |Probe and initialize the console

A default implementation of this function is provided by the BSP. It can be overridden by the user.
Return |int. BCC_OK on success

Table 8.2. Implementationof __bcc_con_init()

BSP Descriptionof __bcc_con_init()

| eon3 The AMBA Plugé& Play library (Chapter 6) is used to scan for APBUART devices.
__bcc_con_handl e isassigned with the address of the register area of the first AP-
BUART device.

others __bcc_con_init() isempty.
__bcc_con_handl e isaninitialized variable with value determined at link time.

8.2.2. Input and output functions

Character input ishandled by thefunction __bcc_con_i nbyt e() andoutputby _bcc_con_out byte().

BCC-UM 43 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

Table8.3. __bcc_con_i nbyt e function declaration

Proto |char _ bcc_con_i nbyte(void)

About |Read the next character from console

Return |char. Theread character

Table8.4. bcc_con_out byt e function declaration

Proto |int _ bcc_con_outbyte(char c)

About |Write acharacter on the console
Param |c [IN] Character
Character to output

Return |int. 0 on success

8.2.3. Customization

e Console redirection is performed by redefining __bcc_con_handl e, for example in a custom,
__bcc_con_init() hook. See Section 8.5.

e Thel/Ofunctions__bcc_con_inbyte() and__bcc_con_out byt e() canalso beoverridden. They
shall typically makeuseof __bcc_con_handl e.

8.2.4. C library I/O

All console input fed to the C library goes viar ead() and the output goes out withwr i t e() . An application
can override these functions to get even more control on the console 1/0O (for example to implement terminal
specific handling). Seethe newlib C library documentation for moreinformation onhow r ead() andwri t e()
are defined. The function call flow isillustrated below.

e [terminal] -> __bcc_con_inbyte() ->read() ->[Clibrary stdio]

e [Clibrary stdio] -> wite() -> __bcc_con_outbyte() -> [term nal]

NOTE: Both st dout and st derr areoutput viawrite() and __bcc_con_out byte().

8.3. Timer driver

The BCC timer driver is used for C library time related functionssuch ascl ock() andti ne() (ti nme. h). It
isalsousedforgetti nmeof day() andti mes().

8.3.1. Initialization

Initializationissimilar to the consoledriver (Section 8.2.1). Thetimer handleisnamed __bcc_ti mer _handl e
and theinitialization hook isnamed __bcc_ti ner _i nit (). Table 8.6 describes how BSPsinitialize the han-
de.

Table85. bcc_tinmer _init functiondeclaration

Proto |int _ bcc_tinmer_init(void)

About |Probe timer hardware and initialize timer driver

A default implementation of this function is provided by the BSP. It can be overridden by the user.

Return |int. BCC_OK on success

Table 8.6. Implementationof __bcc_timer _init()

BSP Description of __bcc_tinmer_init()
| eon3 The AMBA Plug& Play library (Chapter 6) is used to scan for GPTI MER devices.
__bec_ti mer _handl e isassigned with the address of the register area of the first

BCC-UM 44 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

BSP Descriptionof __bcc_tinmer _init()
GPTI MERdeviceand __bcc_ti mer i nterrupt isassigned to the timersinterrupt
number.

others __becc_tinmer_init() isempty.

__bec_tinmer_handl eand__bcc_tinmer_interrupt areinitialized variables
with values determined at link time.

8.3.2. Time access functions

Current time in microseconds is returned by the function bcc_t i mer _get _us() asdescribed in Section 5.3.
Thisfunction is used by the C library for time related functions (t i ne. h).

8.3.3. Customization

The BCC timer driver initialization can be overridden by redefining the functions__bcc_tiner _init() and
bcc_timer_get _us().

8.4. Interrupt controller driver

The BCC interrupt controller driver is managing the BCC interrupt and AMP user API described in Section 5.9
and Section 5.10.

8.4.1. Initialization

Initialization is similar to the console driver (Section 8.2.1). The interrupt controller driver handle is named
__bcc_i nt_handl e and theinitialization hookis__bcc_int i nit (). Table8.8 describeshow BSPsini-
tialize the handle.

Table8.7. __bcc_int _init function declaration

Proto |int _ bcc_int_init(void)
About |Probe interrupt controller hardware and initialize interrupt controller driver

A default implementation of this function is provided by the BSP. It can be overridden by the user.

Return |int. BCC_OK on success

Table 8.8. Implementation of __bcc_int _init()

BSP Descriptionof __bcc_int _init()

| eon3 The AMBA Plugé& Play library (Chapter 6) is used to scan for | RQVP/I RQ(A) MP de-
vices. __bcc_i nt _handl e isassigned with the address of the register area of the first
interrupt controller device.

If the interrupt controller has support for multiple internal interrupt controllers
(I RQ(A) MP), then__bcc_i nt _handl e will be adjusted to match the | RQ A) MP In-
terrupt Controller Select Registers for the executing CPU.

Extended interrupt number is probed and assigned to the global variable
__bcc_int _irgnp_eirq.

others __becc_int_init() isempty.

__bcc_int_handl e isaninitialized variable with value determined at link time.

__becc_int_irqgnp_eirqdependsonif the target system supports extended interrupt.

8.4.2. Access functions

Most of the functionality of the BCC interrupt and AMP API is implemented by the interrupt controller driver
in the corresponding BSP.

BCC-UM 45 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

8.4.3. Customization

The BCC interrupt controller driver initialization can be overridden by redefining the __bcc_int _init()
hook or __bcc_int_handl e.

On systems which support extended interrupts (most LEON3 and LEON4 systems) the variable
__bec_int_i rqnp_ei r g canalso beredefined. (Itsvalue can be determined by reading an interrupt controller
register.)

BCC interrupt and AMP services are tightly connected with the interrupt controller driver. There is no interface
specified for overriding these services. Customization would typically require a re-implementation of all BCC
interrupt and AMP API routines. (For details, seethe sourcecodein| i bbcc/ shared/ i nt errupt/ directory
of the BCC source distribution).

8.5. Initialization override example

The following example illustrates how the console, timer and interrupt controller initialization can be overridden
on a GR740 system.

#i ncl ude <stdio. h>
#i ncl ude <bcc/ bcc. h>
#i ncl ude <bcc/ bcc_param h>

/* Forced initialization for GR740. */

int _ bcc_con_init(void) {
__bcc_con_handl e = 0xff900000;
return O;

}

int __bcc_timer_init(void) {
__bcc_timer_handl e = 0xff908000;
__bcc_timer_interrupt = 1;
return O;

}

int __bcc_int_init(void) {
__bcc_int_handl e = 0xff904000;
__bcec_int_irgnmp_eirq = 10;
return O;

}

int main(void) {
puts("hello world");
return O;
}
The example can be compiled and linked by issuing the following command.

$ sparc-gaisler-elf-gcc -gbsp=gr740 -ntpu=l eon3 exanple.c -o exanple
8.6. Initialization hooks

An additional set of user hooks are called during BCC initialization. They are named with numbers corresponding
with execution order. A higher number means closer to mai n() . Default implementations of these hooks are
empty and they can be overridden by the user.

Table8.9. bcc_i ni t 40 function declaration

Proto |void __bcc_init40(void)

About |Called at start of reset trap before CPU initializations
» Trap handling is not available.

e ¥sp and % p are not valid (do not save/restore)

* save andr est or e instructions are not allowed
» svt/mvtisnot configured.

e . bss sectionisnot initialized.

» Thisuser hook should be written in assembly.

Return |None.

BCC-UM 46 www.cobham.com/gaisler
December 2017, Version 2.0.2

Table8.10. __bcc_i ni t 50 function declaration

COBHAM

Proto |void _ bcc_init50(void)

» Trap handling is not available.

e . bss sectionisnot initialized.
* BCCdriversare not initialized.

About |Called at start of C runtimeinitialization (crt 0)

e Ysp and % p are not valid (do not savelrestore)
e save andr est or e instructions are not allowed

 Thisuser hook should be written in assembly.

Return |None.

Table8.11. _bcc_i ni t 60 function declaration

Proto |void _ bcc_init60(void)

About |Called prior to BCC driver initialization
e Cruntimeisavailable.

* BCCdriversare not initialized.

* Thisuser hook can be writtenin C.

» Console API, timer API and interrupt API are not available.

Return |None.

Table8.12. _ bcc_i ni t 70 function declaration

Proto |void _ bcc_init70(void)

¢ Cruntimeisavailable.
¢ Full BCC API isavailable.

About |Called asthelast step before mai n() iscalled.

Return |None.

The following example illustrates how the interrupt based timer service is activated by calling
bce_timer_tick _init() in__bcc_init70() beforeentry to mai n() . See Section 5.3.1 for more in-

formationonbcc_timer _tick_init().

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <tine. h>

#i ncl ude <bcc/ bcc. h>

#i ncl ude <bcc/ bcc_param h>

void __bcc_init70(void) {
int ret;

ret = bcec_init_ticks();
if (BCCOK!=ret) {
exi t (EXI T_FAI LURE) ;
}
}

int main(void) {
clock_t now
while(l) {
now = clock();
printf("clock() => %99u\n", now);
}
return EX T_SUCCESS;

}
8.7. Disable . bss section initialization

As part of its startup code, the BCC C run time initializes the . bss segment with zeroes. This initia-
ization is disabled by defining a global variable named _ bcc_cfg _ski p_cl ear _bss. The vaue of
__bcc_cfg_skip_cl ear_bss doesnot matter aslong as the symbol addressis not 0.

BCC-UM
December 2017, Version 2.0.2

www.cobham.com/gaisler

COBHAM

Disabling . bss initialization can be useful when executing an application on asimulated system where execution
isslow and memory is already cleared.

NOTE: If the. bss section is not preinitialized, then disabling the initialization will result in a non-functional
program.

8.7.1. Example

The following example illustrates how initialization of the . bss section can be disabled.
#i ncl ude <bcc/ bcc_param h>
int _ bcc_cfg_skip_clear_bss;

int main(void)
{
return O;

}
8.8. Heap memory configuration

By default, the application heap starts at theend of bs's, and ends at the stack pointer. The heap can berel ocated by
the user by assigning initialization valuestothevariables_bcc_heap _m nand__bcc_heap_ max, declared
in the header filebcc/ bcc_param h.

The following example configures a heap of 16 MiB starting at address 0x60000000:

#include <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <bcc/bcc_param h>

#defi ne MYHEAPSI ZE (16 * 1024 * 1024)
uint8_t *__bcc_heap_min = (uint8_t *) 0x60000000;
uint8_t *__bcc_heap_max = (uint8_t *) 0x60000000 + MYHEAPSI ZE;

int main(void)

void *p;

p = mal | oc(MYHEAPSI ZE / 2);

printf("“malloc(% KiB) => %\n", MYHEAPSIZE / 1024, p);
free(p);

return O;

}

__bcc_heap_mi nand__bcc_heap_nax can optionally be assigned by the application at run-time, but only
before any dynamic memory functions have been called. Theinitializationhook __bcc_i ni t 70() isasuitable
location.

To gain full control over heap alocation, the function sbr k() can be redefined by the user: see the Newlib C
library documentation, chapter System Calls for more information.

8.9. APl reference

This section lists API functions related to BCC customization with references to the related section(s). The API
is also documented in the source header filebcc/ bcc_param h.

Table 8.13. BCC customization functions reference

Prototype Section
int _ bcc_con_init(void) 821
char __bcc_con_i nbyte(voi d) 8.2.2

int __bcc_con_outbyte(char c¢) 8.2.2

int __bcc_tiner_init(void) 831
uint32_t bcc_tiner_get _us(void) 8.3.2,

5.3

BCC-UM 48 www.cobham.com/gaisler

December 2017, Version 2.0.2

COBHAM

Prototype Section
int __bcc_int_init(void) 84.1
void __ bcc_init40(void) 8.6

void _ bcc_init50(void) 8.6

void __bcc_init60(void) 8.6

void __bcc_init70(void) 8.6
BCC-UM 49 www.cobham.com/gaisler

December 2017, Version 2.0.2

COBHAM

9. Support
For support contact the Cobham Gaisler support team at support@gaisler.com.

When contacting support, pleaseidentify yourself in full, including company affiliation and site name and address.
Please identify exactly what product that is used, specifying if it is an IP core (with full name of the library
distribution archive file), component, software version, compiler version, operating system version, debug tool
version, simulator tool version, board version, etc.

The support service is only for paying customers with a support contract.

BCC-UM 50 www.cobham.com/gaisler
December 2017, Version 2.0.2

COBHAM

Appendix A. Recommended GCC
options for LEON systems

This appendix contains recommended GCC options for LEON systems related to code generation and linking.

NOTE: The recommendations apply to BCC version 2.0.2. Other LEON toolchains and other versions of BCC
may have other recommendations.

Table A.1. Recommended GCC options for BCC 2.0.2

System Recommended GCC options

GR740 - qbsp=gr 740 - ntpu=l eon3

GR712RC -gbsp=gr712rc -ntpu=leon3 -nfix-gr712rc
GR716 - qbsp=gr 716 -nctpu=l eon3 -qgnano -gsvt
UT699E, UT700 -nmcpu=l eon3 -nfi x-ut 700
UT699/EPICA-NEXT, SCOC3 -ntpu=l eon -nfix-ut699

LEONS3FT and LEON3FT-RTAX systemswith |- ntpu=l eon3 -nfi x-b2bst -nfix-tn0013
SPARC V8 ul /di v based on GRLIB versions
up to and including build 4174.

LEON3FT and LEON3FT-RTAX systems -ntpu=l eon3v7 -nfix-b2bst -nfix-tn0013

without SPARC V8 mul /di v based on GRLIB
versions up to and including build 4174.

LEON3FT and LEON3FT-RTAX systemswith |- ncpu=I eon3

SPARC V8 mul /di v based on GRLIB versions
|ater than build 4174. For GRLIB version up to and including 4206, also add

e -nfix-tn0013

LEON3 systems with SPARC V8 nrul /di v im-
plemented without cache parity protection.

LEONS3FT and LEON3FT-RTAX systems - ncpu=l eon3v7
without SPARC V8 rrul /di v based on GRLIB
versions later than build 4174. For GRLIB version up to and including 4206, also add

e -nfix-tn0013
LEON3 systems without SPARC V8 nul /di v

implemented without cache parity protection.

AGGA4 - gqbsp=agga4 -ntpu=l eon -nfix-at 697f
AT697 - qbsp=l eon2 -ntpu=l eon -nfix-at 697f
Other LEON2 systems - gbsp=l eon2 - ntpu=l eon

Inadditionto Table A.1:

e - gnano can aways be used.

e -nmsoft-fl oat canaways be used.

¢ Systems which support SVT (single vector trapping) can use- qsvt .

 If no- ncpu= optionisgiven explicitly, then SPARC V7 code will be generated.
The BCC 2.0.2 run-time supports the GCC option - nf | at .

Table A.2 describes the GCC - ntpu= options applicable to BCC 2.0.2. If no - ncpu= option is used, then -
ncpu=v7 isimplied.

BCC-UM 51 www.cobham.com/gaisler
December 2017, Version 2.0.2

Table A.2. GCC - ntpu= options for BCC 2.0.2

COBHAM

Option

Description

- cpu=v7 (or no - Nncpu= option)

nomul /di v, nocasa

-ntpu=l eon

mul /di v, nocasa

- ntpu=l eon3

mul /di v, casa

- ncpu=l eon3v7

nomul /di v, casa

BCC-UM
December 2017, Version 2.0.2

52

www.cobham.com/gaisler

COBHAM

Appendix B. Recommended Clang
options for LEON systems

This appendix contains recommended Clang options for LEON systems related to code generation and linking.

NOTE: The recommendations apply to BCC version 2.0.2. Other LEON toolchains and other versions of BCC
may have other recommendations.

Table B.1. Recommended Clang options for BCC 2.0.2

System Recommended Clang options

GR740 - qbsp=gr 740 - ncpu=gr 740

GR712RC ! -qbsp=gr 712rc - ncpu=gr712rc

GR716 -qbsp=gr 716 -nctpu=l eon3 -qgnano -qgsvt
UT699E, UT700 ! - gbsp=l eon3 - ntpu=l eon3
UT699/EPICA-NEXT, SCOC3 Unsupport ed

LEON3FT and LEON3FT-RTAX systemswith |- gbsp=I eon3 - ncpu=l eon3
SPARC V8 nul /di v based on GRLIB versions
up to and including build 4206.

LEON3FT and LEON3FT-RTAX systemswith |- gbsp=I eon3 - ncpu=l eon3
SPARC V8 nul /di v based on GRLIB versions
later than build 4206.

LEON3/LEONSFT systems without SPARC V8|Unsupport ed

mul /di v.

AGGA4 Unsupport ed
AT697 Unsupport ed
Other LEON2 systems Unsupport ed

! The LLVM/Clang toolchain does not implement workarounds for the errata described in GRLIB-TN-0009, GRLIB-TN-0010, GR-
LIB-TN-0011, GRLIB-TN-0012 and GRLIB-TN-0013. It is recommended to use the GCC based toolchain on devices affected by one or
more of these errata.

In additionto Table B.1:
e - gnano can aways be used.
e -nmsoft-fl oat canaways be used.
« Systemswhich support SVT (single vector trapping) can use - qsvt .
« If no- ncpu= option is given explicitly, then SPARC V8 code will be generated.
« Systems supporting the LEON-REX extension can use - Nt ex.

Table B.2 describes the Clang - ntpu= options applicable to BCC 2.0.2. If no - ntpu= option is used, then
SPARC V8 with rrul /di v is generated.

Table B.2. Clang - ncpu= options for BCC 2.0.2

Option Description

no - ntpu= option specified nmul /di v, nocasa

-ntpu=l eon3, -ntpu=gr712rc, - nmul /di v, casa

ncpu=gr 740

BCC-UM 53 www.cobham.com/gaisler

December 2017, Version 2.0.2

COBHAM

Cobham Gaisler AB
Kungsgatan 12

411 19 Gothenburg
Sweden
www.cobham.com/gaisler
sales@gaisler.com

T: +46 31 7758650

F: +46 31 421407

Cobham Gaisler AB, reserves the right to make changes to any products and services described
herein at any time without notice. Consult Cobham or an authorized sales representative to verify that
the information in this document is current before using this product. Cobham does not assume any
responsibility or liability arising out of the application or use of any product or service described herein,
except as expressly agreed to in writing by Cobham; nor does the purchase, lease, or use of a product
or service from Cobham convey a license under any patent rights, copyrights, trademark rights, or any
other of the intellectual rights of Cobham or of third parties. All information is provided as is. There is no
warranty that it is correct or suitable for any purpose, neither implicit nor explicit.

Copyright © 2017 Cobham Gaisler AB

BCC-UM 54 www.cobham.com/gaisler
December 2017, Version 2.0.2

	
	Table of Contents
	1. Introduction
	1.1. Scope
	1.2. Installation
	1.2.1. Host requirements
	1.2.2. Linux
	1.2.3. Windows

	1.3. Contents of /opt/bcc-2.0.2-gcc
	1.4. BCC tools
	1.5. Documentation
	1.6. Toolchain source code distribution
	1.6.1. BCC source code installation
	1.6.2. Building

	1.7. Support

	2. Using BCC
	2.1. General development flow
	2.2. Compiler options
	2.2.1. sparc-gaisler-elf-gcc options
	2.2.2. sparc-gaisler-elf-clang options

	2.3. Compiling BCC applications
	2.4. Floating-point considerations
	2.5. LEON SPARC V8 instructions
	2.6. Multiply and accumulate instructions
	2.7. Single register window model (flat)
	2.8. Register usage
	2.9. Single vector trapping
	2.10. Memory organization
	2.11. BCC Board Support Packages
	2.12. Multiprocessing
	2.13. Debugging with GDB
	2.14. Examples
	2.14.1. Target specific examples

	2.15. Creating a bootable ROM images

	3. LLVM based toolchain
	3.1. Introduction
	3.2. BCC LLVM/Clang tools

	4. C standard library
	4.1. File I/O
	4.2. Time functions
	4.3. Dynamic memory allocation
	4.4. Atomic types and operations
	4.5. Newlib nano

	5. BCC library
	5.1. Usage
	5.2. Console API
	5.3. Timer API
	5.3.1. Interrupt based timer service

	5.4. Cache control API
	5.5. Bus access API
	5.6. IU control/status register access API
	5.6.1. Processor State Register
	5.6.2. Trap Base Register
	5.6.3. Processor power-down

	5.7. FPU context API
	5.8. Trap API
	5.8.1. Single vector trapping (SVT)

	5.9. Interrupt API
	5.9.1. Interrupt disable and enable
	5.9.2. Interrupt source masking
	5.9.3. Clear and force interrupt
	5.9.4. Interrupt remap
	5.9.5. Interrupt service routines
	5.9.5.1. Automatic memory management
	5.9.5.2. User memory management

	5.9.6. Interrupt nesting
	5.9.6.1. Advanced configuration

	5.9.7. Low-level interrupt handlers

	5.10. Asymmetric Multiprocessing API
	5.10.1. Processor identification
	5.10.2. Inter-processor control

	5.11. Default trap handlers
	5.12. API reference

	6. AMBA Plug&Play library
	6.1. Introduction
	6.1.1. AMBA Plug&Play terms and names
	6.1.2. Availability

	6.2. Device scanning
	6.3. User callback
	6.3.1. Criteria matching
	6.3.2. Device information

	6.4. Example
	6.5. API reference

	7. Board Support Packages
	7.1. Overview
	7.2. LEON3
	7.3. GR712RC
	7.4. GR716
	7.4.1. Boot ROM
	7.4.1.1. Executing from volatile RAM
	7.4.1.2. Executing from persistent memory
	7.4.1.3. System clock

	7.5. LEON2
	7.6. AGGA4

	8. Customizing BCC
	8.1. Introduction
	8.2. Console driver
	8.2.1. Initialization
	8.2.2. Input and output functions
	8.2.3. Customization
	8.2.4. C library I/O

	8.3. Timer driver
	8.3.1. Initialization
	8.3.2. Time access functions
	8.3.3. Customization

	8.4. Interrupt controller driver
	8.4.1. Initialization
	8.4.2. Access functions
	8.4.3. Customization

	8.5. Initialization override example
	8.6. Initialization hooks
	8.7. Disable .bss section initialization
	8.7.1. Example

	8.8. Heap memory configuration
	8.9. API reference

	9. Support
	Appendix A. Recommended GCC options for LEON systems
	Appendix B. Recommended Clang options for LEON systems

