
.

BCC

Bare-C Cross-Compiler

2017 User's Manual

The most important thing we build is trust

BCC User's Manual

BCC-UM 1 www.cobham.com/gaisler
December 2017, Version 2.0.2

BCC-UM
December 2017, Version 2.0.2

2 www.cobham.com/gaisler

Table of Contents
1. Introduction ... 4

1.1. Scope ... 4
1.2. Installation .. 4

1.2.1. Host requirements .. 4
1.2.2. Linux ... 4
1.2.3. Windows .. 5

1.3. Contents of /opt/bcc-2.0.2-gcc ... 5
1.4. BCC tools ... 5
1.5. Documentation ... 6
1.6. Toolchain source code distribution .. 6

1.6.1. BCC source code installation ... 6
1.6.2. Building ... 6

1.7. Support ... 7
2. Using BCC .. 8

2.1. General development flow ... 8
2.2. Compiler options .. 8

2.2.1. sparc-gaisler-elf-gcc options ... 8
2.2.2. sparc-gaisler-elf-clang options .. 9

2.3. Compiling BCC applications .. 9
2.4. Floating-point considerations .. 9
2.5. LEON SPARC V8 instructions ... 9
2.6. Multiply and accumulate instructions ... 10
2.7. Single register window model (flat) ... 10
2.8. Register usage .. 10
2.9. Single vector trapping ... 10
2.10. Memory organization ... 10
2.11. BCC Board Support Packages ... 11
2.12. Multiprocessing .. 11
2.13. Debugging with GDB .. 11
2.14. Examples ... 12

2.14.1. Target specific examples .. 12
2.15. Creating a bootable ROM images .. 12

3. LLVM based toolchain .. 13
3.1. Introduction ... 13
3.2. BCC LLVM/Clang tools .. 13

4. C standard library ... 15
4.1. File I/O ... 15
4.2. Time functions ... 15
4.3. Dynamic memory allocation ... 15
4.4. Atomic types and operations ... 15
4.5. Newlib nano .. 15

5. BCC library ... 16
5.1. Usage ... 16
5.2. Console API .. 16
5.3. Timer API ... 16

5.3.1. Interrupt based timer service .. 16
5.4. Cache control API .. 17
5.5. Bus access API .. 17
5.6. IU control/status register access API .. 18

5.6.1. Processor State Register .. 18
5.6.2. Trap Base Register ... 19
5.6.3. Processor power-down .. 20

5.7. FPU context API .. 20
5.8. Trap API ... 20

5.8.1. Single vector trapping (SVT) ... 21

BCC-UM
December 2017, Version 2.0.2

3 www.cobham.com/gaisler

5.9. Interrupt API ... 23
5.9.1. Interrupt disable and enable ... 23
5.9.2. Interrupt source masking ... 24
5.9.3. Clear and force interrupt .. 24
5.9.4. Interrupt remap .. 25
5.9.5. Interrupt service routines ... 26
5.9.6. Interrupt nesting ... 29
5.9.7. Low-level interrupt handlers ... 31

5.10. Asymmetric Multiprocessing API .. 31
5.10.1. Processor identification .. 31
5.10.2. Inter-processor control ... 32

5.11. Default trap handlers ... 33
5.12. API reference ... 33

6. AMBA Plug&Play library .. 35
6.1. Introduction ... 35

6.1.1. AMBA Plug&Play terms and names .. 35
6.1.2. Availability ... 35

6.2. Device scanning ... 35
6.3. User callback ... 37

6.3.1. Criteria matching ... 37
6.3.2. Device information ... 37

6.4. Example .. 38
6.5. API reference ... 39

7. Board Support Packages ... 40
7.1. Overview .. 40
7.2. LEON3 ... 40
7.3. GR712RC ... 40
7.4. GR716 .. 40

7.4.1. Boot ROM .. 41
7.5. LEON2 ... 42
7.6. AGGA4 .. 42

8. Customizing BCC ... 43
8.1. Introduction ... 43
8.2. Console driver .. 43

8.2.1. Initialization .. 43
8.2.2. Input and output functions ... 43
8.2.3. Customization .. 44
8.2.4. C library I/O ... 44

8.3. Timer driver .. 44
8.3.1. Initialization .. 44
8.3.2. Time access functions ... 45
8.3.3. Customization .. 45

8.4. Interrupt controller driver ... 45
8.4.1. Initialization .. 45
8.4.2. Access functions .. 45
8.4.3. Customization .. 46

8.5. Initialization override example .. 46
8.6. Initialization hooks ... 46
8.7. Disable .bss section initialization .. 47

8.7.1. Example ... 48
8.8. Heap memory configuration ... 48
8.9. API reference ... 48

9. Support ... 50
A. Recommended GCC options for LEON systems .. 51
B. Recommended Clang options for LEON systems ... 53

BCC-UM
December 2017, Version 2.0.2

4 www.cobham.com/gaisler

1. Introduction

1.1. Scope

BCC is a cross-compiler for LEON2, LEON3 and LEON4 processors. It is based on the GNU compiler tools, the
newlib C library and a support library for programming LEON systems. The cross-compiler allows compilation
of C and C++ applications.

There is also an experimental LLVM/Clang version of BCC based on the LLVM compiler framework. More
information about the LLVM based toolchain can be found in Chapter 3. The GCC and LLVM/Clang versions
of BCC are distributed in separate packages. The libraries in the two provided packages are compiled using the
selected compiler, with the exception of libgcc which is always compiled with GCC.

BCC consists of the following packages:

• GNU GCC 7.2.0 C11/C11++ compiler with support for atomic operations
• GNU binutils 2.25.51
• Newlib C library 2.5.0
• libbcc - A user library for programming LEON systems
• GNU GDB 6.8 source-level debugger

In the LLVM/Clang version, the GCC package is replaced by:

• Clang 4.0.0 C11/C11++ compiler with support for atomic operations (LLVM version)

1.2. Installation

1.2.1. Host requirements

BCC is provided for two host platforms: GNU Linux/x86_64 and Microsoft Windows. The following are the
platform system requirements:

 GCC Version:

 Linux: Linux-2.6.x, glibc-2.11 (or higher)

 Windows: -

 LLVM Version:

 Linux: Linux-3.10.x, glibc-2.19, libstdc++.so.6.0.19 (or higher)

 Windows: -

In order to recompile BCC from sources, automake-1.11.1 and autoconf-2.68 is required. MSYS-DTK-1.0.1 is
needed on Microsoft Windows platforms to build autoconf and automake. Sources for automake and autoconf can
be found on the GNU ftp server:

• ftp://ftp.gnu.org/gnu/autoconf/
• ftp://ftp.gnu.org/gnu/automake/

MSYS and MSYS-DTK can be found at http://www.mingw.org.

1.2.2. Linux

After obtaining the compressed tar file for the binary distribution, uncompress and untar it to a suitable location.
The Linux version of BCC has been prepared to reside in the /opt/bcc-2.0.2-gcc/ directory, but can be
installed in any location. The distribution can be installed with the following commands:

 $ cd /opt
 $ tar -C /opt -xf /opt/bcc-2.0.2-gcc-linux64.tar.xz

After the compiler is installed, add /opt/bcc-2.0.2-gcc/bin to the executables search path (PATH) and /
opt/bcc-2.0.2-gcc/man to the manual page path (MANPATH).

ftp://ftp.gnu.org/gnu/autoconf/
ftp://ftp.gnu.org/gnu/automake/
http://www.mingw.org

BCC-UM
December 2017, Version 2.0.2

5 www.cobham.com/gaisler

1.2.3. Windows

BCC for Windows does not require any additional packages and can be run from a standard command prompt. The
toolchain installation zip file, /opt/bcc-2.0.2-gcc-mingw64.zip, shall be extracted to C:\opt creating
the directory C:\opt\bcc-2.0.2. The toolchain executables can be invoked from the command prompt by
adding the executable directory to the PATH environment variable. The directory C:\opt\bcc-2.0.2\bin
can be added to the PATH variable by selecting "My Computer->Properties->Advanced->Environment Vari-
ables".

Development often requires some basic utilities such as make, but is not required to compile. On Windows plat-
forms the MSYS Base system can be installed to get a basic UNIX like development environment (including
make).

See http://www.mingw.org for more information on MinGW and the optional MSYS environment.

1.3. Contents of /opt/bcc-2.0.2-gcc

The binary installation of BCC contains the following sub-directories:

 bin/ Executables

 doc/ GNU, newlib and BCC documentation

 man/ Manual pages for GNU tools

 sparc-gaisler-elf/ SPARC target libraries, include files and LEON BSP

 sparc-gaisler-elf/bsp/ Board Support Packages for LEON systems

 src/ Various sources, examples and make scripts

 src/examples/ BCC example applications

 src/libbcc/ libbcc source code and make scripts

1.4. BCC tools

The following tools are installed with BCC:

 sparc-gaisler-elf-addr2line Convert address to C/C++ line number

 sparc-gaisler-elf-ar Library archiver

 sparc-gaisler-elf-as Cross-assembler

 sparc-gaisler-elf-c++ C++ cross-compiler

 sparc-gaisler-elf-c++filt Utility to demangle C++ symbols

 sparc-gaisler-elf-cpp The C preprocessor

 sparc-gaisler-elf-g++ Same as sparc-gaisler-elf-c++

 sparc-gaisler-elf-gcc C/C++ cross-compiler

 sparc-gaisler-elf-gcov Coverage testing tool

 sparc-gaisler-elf-gdb GNU GDB C/C++ level Debugger

 sparc-gaisler-elf-gprof Profiling utility

 sparc-gaisler-elf-ld GNU linker

 sparc-gaisler-elf-nm Utility to print symbol table

 sparc-gaisler-elf-objcopy Utility to convert between binary formats

 sparc-gaisler-elf-objdump Utility to dump various parts of executables

 sparc-gaisler-elf-ranlib Library sorter

 sparc-gaisler-elf-readelf ELF file information utility

 sparc-gaisler-elf-size Utility to display segment sizes

 sparc-gaisler-elf-strings Utility to dump strings from executables

http://www.mingw.org

BCC-UM
December 2017, Version 2.0.2

6 www.cobham.com/gaisler

 sparc-gaisler-elf-strip Utility to remove symbol table

1.5. Documentation

The GNU and newlib documentation is distributed together with the toolchain, located in the doc/ directory of
the installation.

GNU tools:

 as.pdf Using as - the GNU assembler

 binutils.pdf The GNU binary utilities

 cpp.pdf The C Preprocessor

 gdb.pdf Debugging with GDB

 ld.pdf The GNU linker

 gcc/gcc.pdf Using and porting GCC

Newlib C library:

 libc.pdf Newlib C Library

 libm.pdf Newlib C Math Library

BCC:

 bcc.pdf BCC User's Manual (this document)

All documents are all provided in PDF format, with searchable indexes.

1.6. Toolchain source code distribution

The BCC toolchain source code distribution can be used to rebuild the toolchain host binaries (compiler, Binutils)
and the target C library.

NOTE: Installing the toolchain source code is not required for creating a new BSP or to modify an existing one.
The BSP source code (libbcc) is installed together with the binary distribution under src/libbcc/.

1.6.1. BCC source code installation

The source code for the BCC 2.0.2 toolchain is distributed in an archive named bcc-2.0.2-src.tar.bz2,
available on the Cobham Gaisler website. It contains source code for the target C library and the host compiler
tools (binutils, GCC, GDB).

Installing the source code is optional but recommended when debugging applications using the C standard library.
The target libraries have been built with debug information making it possible for GDB to find the sources files.
It allows for example to step through the target C standard library code.

The BCC source code files are assumed to be located in /opt/bcc-2.0.2-gcc/src/bcc-2.0.2. The
sources can be installed by extraction the source distribution archive bcc-2.0.2-src.tar.bz2 to /opt/
bcc-2.0.2-gcc/src. It can be done as follows for the Linux/GCC version of BCC.

 $ cd /opt/bcc-2.0.2-gcc/src
 $ tar xf bcc-2.0.2-src.tar.bz2

1.6.2. Building

A script named ubuild.sh is included in the source distribution.

To build and install the BCC compiler tools, GDB and the C library in /tmp/bcc-2.0.2-local, the following
steps shall be performed:

 $ cd /opt/bcc-2.0.2-gcc/src/bcc-2.0.2
 $./ubuild.sh --destination /tmp/bcc-2.0.2-local --toolchain --gdb

BCC-UM
December 2017, Version 2.0.2

7 www.cobham.com/gaisler

Either of the paramters --toolchain or --gdb can be omitted. Execute ubuild.sh --help for more
information on how to use the script.

1.7. Support

BCC is provided freely without any warranties. Technical support can be obtained from Cobham Gaisler through
the purchase of technical support contract. Please contact sales@gaisler.com for more details.

BCC-UM
December 2017, Version 2.0.2

8 www.cobham.com/gaisler

2. Using BCC

This chapter gives an overview on how to develop applications using BCC 2.0.2

2.1. General development flow

Compilation and debugging of applications is typically done in the following steps:

1. Compile and link the program with GCC
2. Debug program using a simulator (GDB connected to TSIM)
3. Debug program on remote target (GDB connected to GRMON)
4. Create boot-prom for a standalone application with mkprom2

2.2. Compiler options

The GCC front-end, sparc-gaisler-elf-gcc, and the Clang front-end, sparc-gaisler-elf-clang, has been modified
to support the following options specific to BCC and LEON systems:

 -qbsp=bspname Use target libraries, startup files and linker scripts for a specific LEON system. The
parameter bspname corresponds to a Board Support Package (BSP). A description
of the BSPs distributed with BCC is given in Chapter 7. The BSP leon3 is used as
default if the -qbsp= option is not given.

 -qnano Use a version of the newlib C library compiled for reduced foot print. The nano
version implementations of the fprintf()fscanf() family of functions are
not fully C standard compliant. Code size can decrease with up to 30 KiB when
printf() is used.

 -qsvt Use the single-vector trap model described in SPARC-V8 Supplement, SPARC-V8
Embedded (V8E) Architecture Specification.

Useful (standard) options are:

 -g Generate debugging information - should be used when debugging with GDB.

 -msoft-float Emulate floating-point - must be used if no FPU exists in the system.

 -O2 or -Os Optimize for maximum performance or minimal code size.

 -Og Optimize for maximum debugging experience.

 -mcpu=leon3 Generate SPARC V8 code. Includes support for the casa instruction.

2.2.1. sparc-gaisler-elf-gcc options

The following are options only available in the GCC version of BCC.

 -mflat Enable single register window model (flat). See Section 2.7.

 -mcpu=leon Generate SPARC V8 code.

 -mcpu=leon3v7 Generate SPARC V7 code (no mul/div instructions). Includes support for casa
instruction.

 -mfix-b2bst Enable workarounds for GRLIB technical note GRLIB-TN-0009.

 -mfix-tn0013 Enable workarounds for GRLIB technical note GRLIB-TN-0013.

 -mfix-gr712rc Enable workarounds applicable to GR712RC. -mfix-gr712rc enables
workarounds for the following technical notes:

• GRLIB-TN-0009
• GRLIB-TN-0011
• GRLIB-TN-0012
• GRLIB-TN-0013

 -mfix-ut700 Enable workarounds applicable to UT700 and UT699E. -mfix-ut700 enables
workarounds for the following technical notes:

BCC-UM
December 2017, Version 2.0.2

9 www.cobham.com/gaisler

• GRLIB-TN-0009
• GRLIB-TN-0010
• GRLIB-TN-0013

 -mfix-ut699 Enable the documented workarounds for the floating-point errata and the data cache
nullify errata of the UT699 processor. This option also enables workarounds for
GRLIB-TN-0009 and GRLIB-TN-0013.

Other GNU GCC options are explained in the gcc manual (doc/gcc.pdf), see Section 1.5.

2.2.2. sparc-gaisler-elf-clang options

The following are options only availble in the LLVM/Clang version of BCC.

 -Oz Aggressively optimize for minimal code size

 -mrex Enables generation of the LEON-REX SPARC instruction set extension.

 -no-integrated-as Use the GNU assembler instead of the LLVM integrated assembler. Note the
GNU assembler does not have support for the LEON-REX extension.

Clang generates SPARC V8 code by default.

2.3. Compiling BCC applications

To compile and link a BCC application with GCC, use sparc-gaisler-elf-gcc:

 $ sparc-gaisler-elf-gcc -O2 -g hello.c -o hello

To compile and link a BCC application with Clang, use sparc-gaisler-elf-clang:

 $ sparc-gaisler-elf-clang -O2 -g hello.c -o hello

BCC creates executables suitable for most LEON3 systems by default. The default load address is start of RAM,
i.e. 0x40000000. Other load addresses can be specified through the use of the -Ttext linker option (see Sec-
tion 7.1).

To generate executables customized for specific components and systems, -qbsp=name and mcpu=name op-
tions should be used during both compile and link stages. A table with recommended compiler options for LEON
systems can be found in Appendix A (GCC), and Appendix B (Clang).

2.4. Floating-point considerations

If the target LEON processor has no floating-point hardware, then all applications must be compiled and linked
with the -msoft-float option to enable floating-point emulation. When running an application compiled and
linked with -msoft-float in the TSIM simulator, the simulator should be started with the -nfp option (no
floating-point) to disable the FPU.

Floating-point hardware state is not automatically saved and restored when BCC dispatches an interrupt service
routine (ISR). Any ISR code making use of the floating-point hardware should save and restore the context as
described in Section 5.7.

2.5. LEON SPARC V8 instructions

LEON3 processors can be configured to implement the SPARC V8 multiply and divide instructions. The GCC
version of BCC does by default not issue those instructions, but emulates them trough a library. To enable gen-
eration of mul/div instruction, use the -mcpu=leon or -mcpu=leon3 option during both compilation and
linking. This improves performance on compute-intensive applications and floating-point emulation.

The LLVM/Clang version of BCC generates SPARC V8 by default and can therefore not be used with LEON3
processors that do not implement the SPARC V8 multiply and divide instructions.

BCC-UM
December 2017, Version 2.0.2

10 www.cobham.com/gaisler

2.6. Multiply and accumulate instructions

LEON2, LEON3 and LEON4 can support multiply and accumulate (umac/smac) instructions. The compiler will
never issue those instructions but can be coded in assembly. The BCC provided assembler and utilities support
this feature.

2.7. Single register window model (flat)

The BCC compilers and run-time uses the standard SPARC V8 ABI by default. GCC provides an optional ABI,
enabled with the -mflat option, which does not generate any save and restore instructions. This is known
as the single register window model, or flat model. Instead of switching register windows at function borders, the
flat model stores registers on the stack. -mflat sets the preprocessor symbol _FLAT.

An application compiled and linked with the flat model will never generate window_overflow and
window_underflow traps.

Compiling with -mflat affects code size. As an example, the Newlib C library (libc.a) text segment is 8%
larger in the -mcpu=leon3 -mflat multilib compared to the -mcpu=leon3 version.

BCC run-time is compatible with the single register window model when linked with -mflat. The example
below compiles and links an application with the flat model.

 $ sparc-gaisler-elf-gcc -mflat -O2 -c main.c -o main.o
 $ sparc-gaisler-elf-gcc -mflat -O2 -c somecode.c -o somecode.o
 $ sparc-gaisler-elf-gcc -mflat main.o somecode.o -o myapplication.elf

NOTE: The current GCC 7.2.0 -mflat implementation was introduced with GCC 4.6. It is not binary compatible
with the old GCC -mflat implementation which was deprecated in GCC 3.4.6.

2.8. Register usage

The compiler and run-time uses the SPARC input, local and output registers as specified by the SPARC V8 ABI.
For global registers, the following applies:

 %g1 ... %g4 Used by compiler and BCC run-time.

 %g5 Not used by compiler. Used by BCC run-time only when -mflat is used. Can be
used freely by the application if -mflat is not used.

 %g6 ... %g7 Not used by compiler. Not used by BCC run-time. Can be used by the application
for any purpose.

2.9. Single vector trapping

When the target hardware is configured to support single vector trapping (SVT), the -qsvt switch can be used
with the linker to build an image which uses a two-level trap dispatch table rather than the standard one-level
trap table. The code saving amounts to ~4KiB for the trap table and trap handling is slightly slower with single
vector trapping. The number of extra instructions needed for single vector trapping dispatching is constant. The
application image will try to enable SVT on boot using %asr17.

2.10. Memory organization

The resulting executables are in ELF format and have three main segments; text, data and bss. The text
segment is by default at address 0x40000000 for LEON2/3/4, followed immediately by the data and bss
segments.

BCC-UM
December 2017, Version 2.0.2

11 www.cobham.com/gaisler

Figure 2.1. BCC RAM application memory map

NGMP based LEON4 designs such as GR740 and LEON4-N2X have RAM at 0x00000000. This is supported
by the GR740 BSP.

The SPARC trap table is always located at the start of the text segment. If single vector trapping is not used,
then the trap table is exactly 4 KiB. For single vector trapping, the allocated space is 380 bytes by default. The
exact size depends on the user configuration.

Program stack starts at top-of-ram and extends downwards. The area between the end of bss and the bottom of
the stack is by default used for the heap. BCC auto-detects end-of-ram by inspecting the stack pointer provided
by the boot loader or GRMON at early boot. Hence the heap is sized by the boot loader by default.

Section 8.8 describes how the heap can be configured by the application.

2.11. BCC Board Support Packages

BCC uses a Board Support Package (BSP) mechanism to provide support for LEON system variations.

A BCC BSP includes the following:

• Target linker scripts.
• BCC device mapping and initialization.
• Customization of the libbcc user library.
• C header files with register definitions.
• Custom drivers available to the user.

BSP is selected with the -qbsp=bspname compiler option. This option does however not explicitly specify
what code the compiler outputs. It means that the appropriate -mcpu=cpuname option has to be given to GCC
even when a BSP is selected.

A description of the BSPs distributed with BCC is given in Chapter 7. -qbsp=leon3 is used by default.

2.12. Multiprocessing

BCC includes support for building Asymmetric Multiprocessing (AMP) applications: The GCC C11 compiler can
generate atomic CPU instructions and the BCC AMP API described in Section 5.10 operates on LEON multipro-
cessor support hardware.

Symmetric Multiprocessing (SMP) is not supported by BCC.

2.13. Debugging with GDB

GDB 6.8 is distributed with BCC in the host executable file sparc-gaisler-elf-gdb. To generate debug information
when compiling object files, the compiler (or assembler) option -g is used. Target libraries distributed with BCC
are built with debug information and the related source code can be installed as described in Section 1.6.

BCC-UM
December 2017, Version 2.0.2

12 www.cobham.com/gaisler

For information on how to connect with GDB to TSIM simulator or the GRMON hardware monitor, see their
respective documentation.

2.14. Examples

A collection of benchmarks and examples on how to use the BCC user library can be found in the src/exam-
ples/ directory of the BCC binary distribution. The directory also contains a Makefile which can be used to
build the examples for different configurations (BSP:s).

To build all examples for all BSP:s, issue:

 $ cd src/examples
 $ make
 sparc-gaisler-elf-gcc -g -O3 -qbsp=agga4 -mcpu=leon hello/hello.c -o bin/agga4/./hello.elf
 sparc-gaisler-elf-gcc -g -O3 -qbsp=agga4 -mcpu=leon stanford/stanford.c -o bin/agga4/./stanford.elf
 sparc-gaisler-elf-gcc -g -O3 -qbsp=agga4 -mcpu=leon whetstone/whetstone.c -o bin/agga4/./whetstone.elf -lm
 sparc-gaisler-elf-gcc -g -O3 -qbsp=agga4 -mcpu=leon paranoia/paranoia.c -o bin/agga4/./paranoia.elf -lm
 ...

To build examples for a specific BSP, set the BSPS make variable. For example:

 $ make BSPS="gr712rc gr716"

Output files are generated under src/examples/bin/<BSP>. The different subdirectories reflect the compiler
options used.

It is also possible to build a single example by calling make <example>, for example:

 $ make CFLAGS="-Os -g" ambapp.elf
 sparc-gaisler-elf-gcc -Os -g -std=c99 ambapp/ambapp.c -o ambapp.elf

The executables will be stored in the examples root directory in thie scase. When building individual examples it
is possible to control the behaviour by setting the following variables.

CFLAGS
Override common compilation flags

For more information on the examples and how to build them, see the file src/examples/README.

2.14.1. Target specific examples

Some of the examples in src/examples/ are adapted for specific target systems or may need customization.
These shall be built from inside the respective example directory, as indicated in src/examples/README.

2.15. Creating a bootable ROM images

The MKPROM2 PROM image generator can be used to create boot-images for applications compiled with BCC
2.0.2. An example is provided in the BCC binary distribution directory src/examples/mkprom-hello.
MKPROM2 is distributed with source code and is available from the Cobham Gaisler website. For more informa-
tion on how to use MKPROM2, see the MKPROM2 User's Manual.

BCC-UM
December 2017, Version 2.0.2

13 www.cobham.com/gaisler

3. LLVM based toolchain

3.1. Introduction

With BCC 2 an LLVM based version of the toolchain is provided along side the regular GCC based toolchain.
The LLVM based toolchain is currently experimental.

The LLVM compiler framework is a relatively new and modern compiler framework. It has support for a wide
variety of programming languages and architectures, including SPARC. The C-family front-end of LLVM, is
called Clang. Clang is the main interface to the compiler, and the binary sparc-gaisler-elf-clang is used
to compile C and C++ programs.

The Clang interface is similar to the GCC interface, and in many cases changing the build system to use LLVM/
Clang is a matter of changing the CC variable in a Makefile script from sparc-gaisler-elf-gcc into
sparc-gaisler-elf-clang.

The LLVM toolchain has its own assembler which is used by default. It is also possible to switch to the GNU
assembler by using a command line option. The Clang front-end has been setup to automatically use the GNU
linker in a similar way to the GCC version of BCC.

All the correct libraries and header files will be used by the Clang front-end. These are selected based on the flags
set by the compiler. The libraries include newlib, libbcc and libgcc. A list of recommended command line option
for Clang can be found in Appendix B.

Installation, host requirements and contents of the LLVM based toolchain follows the information presented in
Chapter 1. Usage instructions follows the information presented in Chapter 2.

3.2. BCC LLVM/Clang tools

The following tools are included in the LLVM version of BCC. The tools are a combination of tools from the
LLVM compiler framework, the Clang C-family LLVM compiler, and GNU binutils. The tools from binutils have
names prefixed with sparc-gaisler-elf, except sparc-gaisler-elf-clang, sparc-gaisler-
elf-clang++ and sparc-gaisler-elf-cpp which comes from Clang.

 clang-format A tool to format C/C++/Java/JavaScript/Objective-C/Protobuf
code

 git-clang-format clang-format for git patches

 llvm-objdump LLVM object file dumper (similar to GNU objdump). Should be
used instead of the binutils provided objdump if using REX

 scan-build scan-build is a command line utility that enables a user to run the
Clang static analyzer over their code base as part of performing a
regular build

 scan-view The clang static analyzer results viewer

 sparc-gaisler-elf-addr2line Convert address to C/C++ line number

 sparc-gaisler-elf-ar Library archiver

 sparc-gaisler-elf-as GNU Cross-assembler

 sparc-gaisler-elf-c++filt GNU utility to demangle C++ symbols

 sparc-gaisler-elf-clang LLVM C language family cross compiler for SPARC

 sparc-gaisler-elf-clang++ LLVM C++ language family cross compiler for SPARC

 sparc-gaisler-elf-cpp LLVM C preprocessor

 sparc-gaisler-elf-gdb GNU GDB C/C++ level Debugger

 sparc-gaisler-elf-gprof GNU profiling utility

 sparc-gaisler-elf-ld GNU linker

 sparc-gaisler-elf-nm GNU utility to print symbol table

BCC-UM
December 2017, Version 2.0.2

14 www.cobham.com/gaisler

 sparc-gaisler-elf-objcopy GNU utility to convert between binary formats

 sparc-gaisler-elf-objdump GNU utility to dump various parts of executables

 sparc-gaisler-elf-ranlib GNU library sorter

 sparc-gaisler-elf-readelf GNU ELF file information utility

 sparc-gaisler-elf-size GNU utility to display segment sizes

 sparc-gaisler-elf-strings GNU utility to dump strings from executables

 sparc-gaisler-elf-strip GNU utility to remove symbol table

BCC-UM
December 2017, Version 2.0.2

15 www.cobham.com/gaisler

4. C standard library

BCC includes newlib 2.5.0 which is an implementation of the C standard library with full math support. Low-
level functionality required by newlib is implemented in the SPARC LEON specific layer (libbcc).

Documentation for the newlib C library and math library is available as described in Section 1.5 Source code for
newlib can be obtained as described in Section 1.6.

Most of the functionality defined by the C standard library is supported by BCC. This chapter will describe devi-
ations and specific properties of the C library when executing on LEON systems.

4.1. File I/O

BCC newlib supports file I/O on the standard input, standard output and standard error files (stdin/stdout/
stderr). These files are always open and are typically associated with the BCC console device driver (see Sec-
tion 5.2).

NOTE: There is no support in BCC for operating on disk files. There is no file system support.

4.2. Time functions

LEON timers are used to generate the system time. The C standard library functions time() and clock()
return the time elapsed in seconds and microseconds respectively. times() and gettimeofday(), defined
by POSIX, are also available. The user can control how the time functions use the hardware timers as described
in Section 5.3.

4.3. Dynamic memory allocation

Dynamic memory can be allocated/deallocated using for example malloc(), calloc() and free(). For
information on customizing the memory heap, see Section 8.8.

4.4. Atomic types and operations

BCC is based on GCC version 7.2.0 which includes C11 atomic types and operations. This allows for synchro-
nization between applications in AMP environments. Synchronization instructions such as ldstub, swap casa,
etc. are generated by the compiler.

The C11 atomic interface is defined by stdatomic.h. Some of the atomic operations defined by
stdatomic.h require hardware support not available on all LEON systems. The ldstub and swap instruc-
tions are available in all LEON processors, while casa is optional. All multi-core LEON based components from
Cobham Gaisler have casa. The GCC option -mcpu=leon3 is required for full stdatomic.h support.

See ISO/IEC 9899:2011 for more information on the C11 standard.

NOTE: While atomic instructions are useful for sharing memory between processors and tasks, the atomic in-
structions shall never be used for manipulating peripheral control registers.

4.5. Newlib nano

The nano version of newlib, selected with -qnano, is a compiled with options to reduce code foot print. -qnano
has the following limitations:

• Formatted I/O lacks floating-point support. It can however be enabled as described in newlib/newlib/
README.

• Formatted I/O lacks support for long long.
• Formatted I/O does not support features from the outside of C89 standard.

NOTE: The option -qnano shall be specified both when compiling and linking.

BCC-UM
December 2017, Version 2.0.2

16 www.cobham.com/gaisler

5. BCC library

BCC is delivered with a library, libbcc, containing functions for programming LEON systems. This chapter is
the user documentation for the API. Later chapters will describe how the BCC run-time can be configured and
customized at link time.

The library is available in the target library file libbcc.a. There are multiple versions of libbcc.a, cus-
tomized for specific BSPs and compiler options (GCC multilibs). The exact versions of the library is selected
based on compiler command line parameters. This also reflects that different low-level drivers are implemented
for different hardware.

5.1. Usage

Functions described in this chapter have prototypes in the header file bcc/bcc.h. The functions are implemented
in libbcc.a and are available per default when linking with the GCC front-end. The same user API is available
independent of target LEON hardware.

5.2. Console API

The console API does not have any user functions. It can be accessed with the C standard library I/O functions
(Section 4.1).

5.3. Timer API

The function bcc_timer_get_us() can be used to determine system time in microseconds.

Table 5.1. bcc_timer_get_us function declaration

Proto uint32_t bcc_timer_get_us(void)

About Get processor time

Return uint32_t. Number of microseconds since system start.

Other time related functions which depend on the BCC run time, but are not part of the BCC user library, are
available. This includes clock(), time(), times() and gettimeofday().

5.3.1. Interrupt based timer service

By default BCC does not install any timer tick and can result in limited services provided by the C library time
functions and bcc_timer_get_us(). The typical limitation is that time will seem to restart or stop at some
point in time, due to hardware timer expiration. Exact limitations are target hardware dependent, but is typically
manifested as a time wrap 232 microseconds after system reset.

To overcome this limitation, a timer tick service can be enabled by calling bcc_timer_tick_init(). It
will install a tick interrupt handler which is triggered periodically to maintain time integrity, ensuring that time
increments. Tick period is 10 milliseconds by default.

bcc_timer_tick_init() should be called only once and at the beginning of the program. It is recommended
to call it from the __bcc_init70() initialization hook, described in described in Section 8.6.

Table 5.2. bcc_timer_tick_init function declaration

Proto int bcc_timer_tick_init(void)

About Enable interrupt based timer service.

The function installs a tick interrupt handler which maintains local time using timer hardware. This
makes C library / POSIX time functions not limited to hardware constraints anymore.

int.Return

Value Description

BCC-UM
December 2017, Version 2.0.2

17 www.cobham.com/gaisler

BCC_OK Success

BCC_FAIL Failed to enable interrupt based timer service, or already enabled

BCC_NOT_AVAILABLE Hardware or resource not available

Notes Epoch changes to the point in time when bcc_timer_tick_init() is called.

5.4. Cache control API

The cache control API is used to flush the local LEON processor instruction and data caches.

Functions are also provided for operating directly on the LEON cache control register (CCR). Bit definitions for
CCR are available in bcc/leon.h.

Table 5.3. bcc_flush_cache function declaration

Proto void bcc_flush_cache(void)

About Flush L1 instruction and data cache.

Return None.

Table 5.4. bcc_flush_icache function declaration

Proto void bcc_flush_icache(void)

About Flush L1 instruction cache.

Return None.

Table 5.5. bcc_flush_dcache function declaration

Proto void bcc_flush_dcache(void)

About Flush L1 data cache.

Return None.

Table 5.6. bcc_set_ccr function declaration

Proto void bcc_set_ccr(uint32_t data)

About Set Cache Control Register (CCR).

data [IN] IntegerParam

New CCR value to set.

Return None.

Table 5.7. bcc_get_ccr function declaration

Proto uint32_t bcc_get_ccr(void)

About Get value of Cache Control Register (CCR).

Return uint32_t. CCR.

5.5. Bus access API

Functions are provided for loading data from memory with forced L1 cache miss.

Table 5.8. bcc_loadnocache function declaration

Proto uint32_t bcc_loadnocache(uint32_t *addr)

About Load 32-bit word from addr with forced cache miss.

Param addr [IN] Pointer

BCC-UM
December 2017, Version 2.0.2

18 www.cobham.com/gaisler

Address to load from.

Return uint32_t. Data loaded from addr.

Table 5.9. bcc_loadnocache16 function declaration

Proto uint16_t bcc_loadnocache16(uint16_t *addr)

About Load 16-bit word from addr with forced cache miss.

addr [IN] PointerParam

Address to load from.

Return uint16_t. Data loaded from addr.

Table 5.10. bcc_loadnocache8 function declaration

Proto uint8_t bcc_loadnocache8(uint8_t *addr)

About Load 8-bit word from addr with forced cache miss.

addr [IN] PointerParam

Address to load from.

Return uint8_t. Data loaded from addr.

The function bcc_dwzero() can be used to clear a memory region using 64-bit writes with the std instruction.

Table 5.11. bcc_dwzero function declaration

Proto void bcc_dwzero(uint64_t *dst, size_t n)

About Set 64-bit words to zero

This function sets n 64-bit words to zero, starting at address dst. All writes are performed with the
SPARC V8 std instruction.

dst [IN] PointerParam

Start address of area to set to zero. Must be aligned to a 64-bit word.

n [IN] IntegerParam

Number of 64-bit words to set to zero.

Return None.

5.6. IU control/status register access API

This API provides access to low-level SPARC control/status registers and controls power-down mode.

5.6.1. Processor State Register

The Processor State Register (PSR) can be read with bcc_get_psr() and written with bcc_set_psr().
Processor Interrupt Level (PSR.PIL) is read using bcc_get_pil(). PSR.PIL can be set with
bcc_set_pil() which is implemented as a software trap and guarantees atomic update.

NOTE: Care must be taken when manipulating PSR using read-modify-write sequences, since the operations are
interruptible. See The SPARC Architecture Manual Version 8, section B.29.

NOTE: It is recommended to use the safe functions described in Section 5.9.1 for manipulating PSR.PIL.

Table 5.12. bcc_get_psr function declaration

Proto uint32_t bcc_get_psr(void)

BCC-UM
December 2017, Version 2.0.2

19 www.cobham.com/gaisler

About Get value of Processor State Register (PSR).

Return uint32_t. PSR.

Table 5.13. bcc_set_psr function declaration

Proto void bcc_set_psr(uint32_t psr)

About Set Processor State Register (PSR).

psr [IN] IntegerParam

New PSR value to set.

Return None.

Table 5.14. bcc_get_pil function declaration

Proto int bcc_get_pil(void)

About Get Processor Interrupt Level (PSR.PIL).

Return int. Value of PSR.PIL (0..15) in bits 3..0.

Table 5.15. bcc_set_pil function declaration

Proto int bcc_set_pil(int newpil)

About Set Processor Interrupt Level atomically.

This function is implemented as a software trap and guarantees atomic update of PSR.PIL.

newpil [IN] IntegerParam

New value for PSR.PIL (0..15) in bits 3..0.

Return int. Old value of PSR.PIL (0..15) in bits 3..0.

5.6.2. Trap Base Register

The Trap Base Register (TBR) can be read with bcc_get_tbr() and written with bcc_set_tbr().

Table 5.16. bcc_get_tbr function declaration

Proto uint32_t bcc_get_tbr(void)

About Get value of Trap Base Register (TBR).

Return uint32_t. TBR.

Table 5.17. bcc_set_tbr function declaration

Proto void bcc_set_tbr(uint32_t tbr)

About Set Trap Base Register (TBR).

tbr [IN] IntegerParam

New TBR value to set.

Return None.

To retrieve only the Trap Base Address (TBR.TBA) of TBR, the function bcc_get_trapbase() can be used.

Table 5.18. bcc_get_trapbase function declaration

Proto uint32_t bcc_get_trapbase(void)

About Get Trap Base Address (TBR.TBA).

Return uint32_t. TBR.TBA in bits (31..12).

BCC-UM
December 2017, Version 2.0.2

20 www.cobham.com/gaisler

5.6.3. Processor power-down

The current processor is powered down by calling bcc_power_down().

Table 5.19. bcc_power_down function declaration

Proto int bcc_power_down(void)

About Power down current processor.

Return int. BCC_OK

5.7. FPU context API

bcc_fpu_save() is used to save the current state of the floating-point registers %f0 to %f31 and the %fsr
register to a user-specified location. bcc_fpu_restore() restores an FPU context previously saved by the
user. Storage for the FPU context struct bcc_fpu_state shall be allocated by the user and provided to these functions.
The floating-point deferred-trap queue (%fq) is emptied before saving and restoring the FPU context.

These functions can be used in an interrupt service routine which performs floating-point operations.

Table 5.20. bcc_fpu_save function declaration

Proto int bcc_fpu_save(struct bcc_fpu_state *state)

About Save floating-point context

The context shall be restored with bcc_fpu_restore().

state [IN] PointerParam

Location to save FPU context. This shall be a pointer to a preallocated struct bcc_fpu_state, aligned to
8 byte.

Return int. BCC_OK on success

Table 5.21. bcc_fpu_restore function declaration

Proto int bcc_fpu_restore(struct bcc_fpu_state *state)

About Restore floating-point context

The context state is FPU state previously saved with bcc_fpu_save().

state [IN] PointerParam

Location to restore FPU context from. This shall be a pointer to a preallocated struct bcc_fpu_state,
aligned to 8 byte.

Return int. BCC_OK on success

5.8. Trap API

Modifying the SPARC trap table is done using the BCC trap API. An entry can be inserted in the current trap
table with bcc_set_trap() described in Table 5.22. The function supports both the standard SPARC trap
mechanism and SPARC-V8E single vector trapping (SVT as enabled with the -qsvt linker option).

NOTE: After manipulating a trap table, the instruction cache may need a flush (see Section 5.4).

Below is an example on how the window_overflow (0x05) trap handler can be replaced with the user provided
trap handler called mynewhandler:

#include <bcc/bcc.h>

extern void mynewhandler(void);
const int TT_WINDOW_OVERFLOW = 0x05;

int set_trap_example(void)

BCC-UM
December 2017, Version 2.0.2

21 www.cobham.com/gaisler

{
 int ret

 ret = bcc_set_trap(TT_WINDOW_OVERFLOW, mynewhandler);
 return ret;
}

Table 5.22. bcc_set_trap function declaration

Proto int bcc_set_trap(int tt, void (*handler)(void))

About Install trap table entry.

When this function returns successfully, the current trap table has been updated such that when the
trap occurs:

• Execution jumps to handler.
• %l0 contains %psr.
• %l1 contains trapped %pc.
• %l2 contains trapped %npc.
• %l6 (0..255) contains same value as tt to bcc_set_trap().

The trap handler is typically written in assembly and must preserve any state it changes. It shall end
with the rett instruction.

This function operates on the current table. It supports multi vector trapping (MVT) and single vector
trapping (SVT).

tt [IN] IntegerParam

Trap type (0..255)

handler [IN] PointerParam

Trap handler

int.

Value Description

BCC_OK Success

Return

BCC_FAIL Trap table entry installation failed

Notes bcc_set_trap() does not flush the CPU instruction cache.

5.8.1. Single vector trapping (SVT)

This section describes steps which may be required when installing custom trap handlers under the SVT trap
mechanism available in some LEON systems. For the specification of SVT, see SPARC-V8 Supplement, SPARC-
V8 Embedded (V8E) Architecture Specification. SVT is typically used in systems with small memory footprint.

The BCC approach to SVT is to look up the target trap handler routine in two levels of tables. The level 0 table
contains 16 entries, each pointing to a level 1 table. A level 1 table consists of 16 entries with the location of the
target trap handler routine. At trap time, TBR.TT[7:4] indexes into table level 0 and TBR.TT[3:0] indexes
into table level 1. Most of the level 1 tables entries are bad trap handlers so level 1 tables can be reused to save
storage.

NOTE: The BCC SVT table lookup routine executes a fixed number of instructions, independent of target trap
number and independent of installed handlers.

BCC run time defines 4 of the maximum 16 level 1 tables per default when the application is linked with -qsvt,
as illustrated in Table 5.23.

Table 5.23. Default SVT level 1 tables

Symbol name Default trap number assignments

__bcc_trap_table_svt_0 0x00..0x0F (system trap handlers and some bad trap handlers)

BCC-UM
December 2017, Version 2.0.2

22 www.cobham.com/gaisler

Symbol name Default trap number assignments

__bcc_trap_table_svt_1 0x10..0x1F (interrupt traps 1..15)

__bcc_trap_table_svt_8 0x80..0x8F (software trap 0..15)

__bcc_trap_table_svt_allbad all other. This table contains 16 pointers to the symbol
__bcc_trap_table_svt_bad which is a default handler for
unexpected traps.

The single default level 0 table has symbol name __bcc_trap_table_svt_level0
and contains 16 pointers to __bcc_trap_table_svt_[0..f]. Symbols
__bcc_trap_table_svt_{2,3,4,5,6,7,9,a,b,c,d,e,f} all have the same value as
__bcc_trap_table_svt_allbad per default. The level 1 tables with index 0, 1 and 8 have default values
according to Table 5.23.

bcc_set_trap() can be used directly on trap numbers in the ranges 0x00..0x1F and 0x80..0x8F. All
other trap numbers are redirected to the common __bcc_trap_table_svt_allbad table which is never
manipulated by bcc_set_trap().

It is however possible for the user to construct custom level 1 lookup tables by defining symbols with the
names __bcc_trap_table_svt_x, where x is an integer value between 0 and f. The linker will pick up
any the level 1 table named like this and use it instead of the all bad table. This is possible because all of
__bcc_trap_table_svt_x are defined as weak symbols.

The following example defines a level 1 table containing one trap handler, my_trap_handler92 for
tt=0x92, at link time. At run time, main() installs my_trap_handler93 as handler for tt=0x93 using
bcc_set_trap(). A second call to bcc_set_trap() tries to install a handler for tt=0xa3 which will fail
because the corresponding level 1 table is the default __bcc_trap_table_svt_allbad.

/*
 * Example for defining a custom level 1 SVT table and two trap handlers in the
 * [0x90:0x9F] range.
 *
 * NOTE: This example must linked with the -qsvt option.
 */
#include <stdio.h>
#include <bcc/bcc.h>

/* User trap handlers implemented elsewhere */
extern uint32_t my_trap_handler92;
extern uint32_t my_trap_handler93;

/* Default handler for unexpected traps */
extern uint32_t __bcc_trap_table_svt_bad;

/* Override weak symbol __bcc_trap_table_svt_9 */
uint32_t *__bcc_trap_table_svt_9[16] = {
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad,
 &my_trap_handler92,
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad,
 &__bcc_trap_table_svt_bad
};

int main(void)
{
 int ret;

 ret = bcc_set_trap(0x93, &my_trap_handler93);
 printf("ret=%d (expecting 0)\n", ret);

 ret = bcc_set_trap(0xa3, &my_trap_handler93);

BCC-UM
December 2017, Version 2.0.2

23 www.cobham.com/gaisler

 printf("ret=%d (expecting non-zero)\n", ret);

 return 0;
}

5.9. Interrupt API

The interrupt API allows for enabling and disabling interrupt sources, interrupt remapping, attaching interrupt
service routines and control of interrupt nesting.

5.9.1. Interrupt disable and enable

All maskable interrupts are disabled with bcc_int_disable() and enabled again with
bcc_int_enable(). A nesting mechanism allows multiple disable operations to be performed in sequence
without the corresponding enable operation inbetween. These functions provide safe manipulation of the SPARC
V8 PSR.PIL registers. The interrupt controller is unmodified by these functions.

An integer variable is associated with every disable/enable pair which records state of the interrupt state to return
to. The state is returned by bcc_int_disable and taken as parameter by bcc_int_enable. In order for the
system to properly restore interrupt enable/disable state, the usage of state variables at interrupt enable operations
must be in opposite order of the disable operation.

Interrupts are in the enabled state when main() is called.

The example below illustrates how interrupt disable operations can nest.

#include <bcc/bcc.h>
int int_nest_example(void)
{
 int lev0, lev1;

 /* Enter critical region 0. */
 lev0 = bcc_int_disable();
 ...
 /* Enter critical region 1A. */
 lev1 = bcc_int_disable();
 ...
 /* Leave critical region 1A.
 bcc_int_enable(lev1);
 ...
 /* Enter critical region 1B. */
 lev1 = bcc_int_disable();
 ...
 /* Leave critical region 1B.
 bcc_int_enable(lev1);
 ...
 /* Leave critical region 0. */
 bcc_int_enable(lev0);

 return 0; /* success */
}

Table 5.24. bcc_int_disable function declaration

Proto int bcc_int_disable(void)

About Disable all maskable interrupts and return the previous interrupt enable/disable state

A matching bcc_int_enable() with the return value as parameter must be called to exit the in-
terrupt disabled state. It is allowed to do nested calls to bcc_int_disable(), and if so the same
number of bcc_int_enable() must be called.

This function modifies the SPARC V8 PSR.PIL field. Interrupt controller is not touched.

Return int. Previous interrupt level (used when calling bcc_int_enable().

Table 5.25. bcc_int_enable function declaration

Proto void bcc_int_enable(int plevel)

About Return to a previous interrupt enable/disable state

BCC-UM
December 2017, Version 2.0.2

24 www.cobham.com/gaisler

The plevel parameter is the return value from a previous call to bcc_int_disable(). At re-
turn, interrupts may be enabled or disabled depending on plevel.

This function modifies the SPARC V8 PSR.PIL field. Interrupt controller is not touched.

plevel [IN] IntegerParam

The interrupt protection level to set. Must be the return value from the most recent call to
bcc_int_disable().

Return None.

5.9.2. Interrupt source masking

An interrupt source can be masked (disabled) with bcc_int_mask() and unmasked (enabled) with
bcc_int_unmask(). Interrupt source masking is local to the issuing processor.

Table 5.26. bcc_int_mask function declaration

Proto int bcc_int_mask(int source)

About Mask (disable) an interrupt source on the current CPU.

source [IN] IntegerParam

SPARC interrupt number 1-15 or extended interrupt number 16-31.

int.

Value Description

BCC_OK Success

Return

BCC_NOT_AVAILABLE Device not available

Table 5.27. bcc_int_unmask function declaration

Proto int bcc_int_unmask(int source)

About Unmask (enable) an interrupt source on the current CPU.

source [IN] IntegerParam

SPARC interrupt number 1-15 or extended interrupt number 16-31.

int.

Value Description

BCC_OK Success

Return

BCC_NOT_AVAILABLE Device not available

5.9.3. Clear and force interrupt

Clearing an interrupt source is done with bcc_int_clear(). A SPARC interrupt level can be forced on the
local processor with bcc_int_force(). An interrupt source (including extended interrupt) can be globally
pended with bcc_int_pend().

Table 5.28. bcc_int_clear function declaration

Proto int bcc_int_clear(int source)

About Clear an interrupt source.

source [IN] IntegerParam

SPARC interrupt number 1-15 or extended interrupt number 16-31.

int.

Value Description

Return

BCC_OK Success

BCC-UM
December 2017, Version 2.0.2

25 www.cobham.com/gaisler

BCC_NOT_AVAILABLE Device not available

Table 5.29. bcc_int_force function declaration

Proto int bcc_int_force(int level)

About Force an interrupt level on the current processor.

level [IN] IntegerParam

SPARC interrupt request level 1..15.

int.

Value Description

BCC_OK Success.

Return

BCC_NOT_AVAILABLE Device not available.

Notes Extended interrupts can not be forced with this function.

Table 5.30. bcc_int_pend function declaration

Proto int bcc_int_pend(int source)

About Make an interrupt source pending.

source [IN] IntegerParam

SPARC interrupt number 1-15 or extended interrupt number 16-31.

int.

Value Description

BCC_OK Success

Return

BCC_NOT_AVAILABLE Device not available

5.9.4. Interrupt remap

The IRQ(A)MP interrupt controller can optionally be implemented with functionality to allow dynamic remapping
between AMBA bus interrupt lines (0..63) and interrupt controller interrupt lines (1..31). This functionality can
be programmed with bcc_int_map_set() and bcc_int_map_get().

NOTE: Interrupt remapping functionality requires hardware support available in for example GR740 and GR716.

Table 5.31. bcc_int_map_set function declaration

Proto int bcc_int_map_set(int busintline, int irqmpintline)

About Set mapping from bus interrupt line to an interrupt controller interrupt line.

busintline [IN] IntegerParam

Bus interrupt line number

irqmpintline [IN] IntegerParam

Interrupt controller interrupt line

int.

Value Description

BCC_OK Success

Return

BCC_NOT_AVAILABLE Device or functionality not available

Table 5.32. bcc_int_map_get function declaration

Proto int bcc_int_map_get(int busintline)

About Get mapping from bus interrupt line to an interrupt controller interrupt line.

BCC-UM
December 2017, Version 2.0.2

26 www.cobham.com/gaisler

busintline [IN] IntegerParam

Bus interrupt line number

int.

Value Description

1..31 Interrupt controller interrupt line (1..31)

Return

-1 Device or functionality not available

5.9.5. Interrupt service routines

BCC interrupt service routines (ISR) are convenient because they allow the user to specify C functions which are
called in response to an interrupt. The API handles extended interrupts transparently.

This part of the interrupt API is a higher level mechanism compared to the trap API. Section 5.9.7 describes how
the BCC trap API can be used to install low-level interrupt handlers.

Functions are provided for the user to install custom interrupt service routines. SPARC interrupts 1-15 and ex-
tended interrupts 16-31 are supported. It is possible to install multiple interrupt handlers for the same interrupt:
this is referred to as interrupt sharing. All ISR handler dispatching is hidden from the user.

NOTE: It is not allowed to call the interrupt service routine register/unregister functions from inside an interrupt
handler.

Two sets of functions are available for registering and unregistering interrupt service routines. They differ in
memory allocation responsibility. Some memory is always needed when installing an ISR with the API described
in this section.

5.9.5.1. Automatic memory management

bcc_isr_register() and bcc_isr_unregister() manage memory allocation automatically by using
malloc() and free() internally.

Table 5.33. bcc_isr_register function declaration

Proto void *bcc_isr_register(int source, void (*handler)(void *arg, int
source), void *arg)

About Register interrupt handler

The function in parameter handler is registered as an interrupt handler for the given interrupt
source. The handler is called with arg and source as arguments.

Interrupt source is not enabled by this function. bcc_int_unmask() can be used to enable it.

Multiple interrupt handlers can be registered for the same interrupt number. They are dispatched at in-
terrupt in the same order as registered.

A handler registered with this function should be unregistered with bcc_isr_unregister().

source [IN] IntegerParam

SPARC interrupt number 1-15 or extended interrupt number 16-31.

handler [IN] PointerParam

Pointer to software routine to execute when the interrupt triggers.

arg [IN] PointerParam

Passed as first argument to handler.

Pointer. Status and ISR handler contextReturn

Value Description

BCC-UM
December 2017, Version 2.0.2

27 www.cobham.com/gaisler

NULL Indicates failed to install handler.

Pointer Pointer to ISR handler context. Should not be dereferenced by user. Used as input to
bcc_isr_unregister().

Notes This function may call malloc().

Table 5.34. bcc_isr_unregister function declaration

Proto int bcc_isr_unregister(void *isr_ctx)

About Unregister interrupt handler

It is only allowed to unregister an interrupt handler which has previously been registered with
bcc_isr_register().

Interrupt source is not disabled by this function. The function bcc_int_mask() can be used to
disable it.

isr_ctx [IN] PointerParam

ISR handler context returned bcc_isr_register().

int.

Value Description

BCC_OK Handler successfully unregistered.

Return

BCC_FAIL Failed to unregister handler.

Notes This function may call free()

Following is an example on how bcc_isr_register() and bcc_isr_unregister() can be used to
install two interrupt handlers on different interrupt numbers sharing the same function but with different ISR
unique data. malloc() and free() are called by the BCC library.

#include <bcc/bcc.h>

/* User interrupt handler */
extern void myhandler(void *arg, int source);
/* ISR uniuqe data */
extern int arg0, arg1;

static const int INTNUMA = 2;
static const int INTNUMB = 3;

int isr_reg_example(void)
{
 int ret;
 /* ISR handler contexts for using the bcc_isr_ API. */
 void *ictx0, *ictx1;

 ictx0 = bcc_isr_register(INTNUMA, myhandler, &arg0);
 if (NULL == ictx0) {
 return BCC_FAIL;
 }
 ictx1 = bcc_isr_register(INTNUMB, myhandler, &arg1);
 if (NULL == ictx1) {
 bcc_isr_unregister(ictx0);
 return BCC_FAIL;
 }
 bcc_int_unmask(INTNUMA);
 bcc_int_unmask(INTNUMB);

 ...

 bcc_int_mask(INTNUMB);
 bcc_int_mask(INTNUMA);
 ret = bcc_isr_unregister(ictx0);
 if (BCC_OK != ret) {
 return ret; /* Failure */
 }
 ret = bcc_isr_unregister(ictx1);
 if (BCC_OK != ret) {
 return ret; /* Failure */
 }

BCC-UM
December 2017, Version 2.0.2

28 www.cobham.com/gaisler

 return ret;
}

5.9.5.2. User memory management

bcc_isr_register_node() and bcc_isr_unregister_node() are available for cases where the us-
er want to control all memory allocations in the application. Associated with these two functions is a type named
struct bcc_isr_node. An instance of such type (ISR node) should be allocated and initialized by the user and pro-
vided to bcc_isr_register_node(). Node structure data provided to bcc_isr_register_node()
must not be touched or deallocated by the user until bcc_isr_unregister_node() has been called with the
same node. After that, the user is free to reuse or deallocat the node. The ISR node must reside in writable memory.

struct bcc_isr_node {
 void *__private;
 int source;
 void (*handler)(
 void *arg,
 int source
);
 void *arg;
};

Table 5.35. bcc_isr_node data structure declaration

source Interrupt source number

handler User ISR handler

arg Passed as parameter to handler

Table 5.36. bcc_isr_register_node function declaration

Proto int bcc_isr_register_node(struct bcc_isr_node *isr_node)

About Register interrupt handler, non-allocating

This function is similar to bcc_isr_register() with the difference that the user is responsible
for memory management. It will never call malloc(). Instead the caller has to provide a pointer to a
preallocated and initialized ISR node of type struct bcc_isr_node.

The memory pointed to by isr_node shall be considered owned exclusively by
the run-time between the call to bcc_isr_register_node() and a future
bcc_isr_unregister_node(). It means that the memory must be available for this time and
must not be modified by the application. The memory pointed to by isr_node must be writable.

This function should be used to install interrupt handlers in applications which want full control over
memory allocation.

isr_node [IN] PointerParam

Pointer to User initialized ISR node. The fields source, handler and optionally the arg shall be
initialized by the caller.

int.

Value Description

BCC_OK Handler installed successfully.

Return

BCC_FAIL Failed to install handler.

Table 5.37. bcc_isr_unregister_node function declaration

Proto int bcc_isr_unregister_node(const struct bcc_isr_node *isr_node)

About Unregister interrupt handler, non-allocating

This function is similar to bcc_isr_unregister() with the difference that the user is responsi-
ble for memory management. It is only allowed to unregister an interrupt handler which has previous-
ly been registered with bcc_isr_register_node().

BCC-UM
December 2017, Version 2.0.2

29 www.cobham.com/gaisler

isr_node [IN] PointerParam

Same as input parameter to bcc_isr_register_node().

int.

Value Description

BCC_OK Handler successfully unregistered.

Return

BCC_FAIL Failed to unregister handler.

Following is an example on how bcc_isr_register_node() and bcc_isr_unregister_node() can
be used to install an interrupt handler on interrupt 3. No calls to malloc() or free() are performed.

#include <bcc/bcc.h>

/* User interrupt handler */
extern void myhandler(void *arg, int source);
/* ISR uniuqe data */
extern int arg0;

/* ISR node allocated by user */
struct bcc_isr_node inode0;

int isr_reg_example(void)
{
 int ret;
 inode0.source = 3;
 inode0.handler = myhandler;
 inode0.arg = &arg0;

 ret = bcc_isr_register_node(&inode0);
 if (BCC_OK != ret) {
 return ret;
 }
 bcc_int_unmask(3);

 ...

 bcc_int_mask(3);
 ret = bcc_isr_unregister_node(&inode0);

 return ret;
}

5.9.6. Interrupt nesting

Interrupt nesting can be enabled, disabled or set to a user custom config with the interrupt nesting API. This API
maintains the SPARC PSR.PIL field. More fine-grained masking can be done by programming the interrupt
controller as described in Section 5.9.2.

Interrupt nesting is disabled by default in BCC, meaning that an interrupt service routine can not be preempted
by any other interrupt. The function bcc_int_enable_nesting() enables nesting such that an ISR can
be preempted by higher level processor interrupts. bcc_int_disable_nesting() can be used to disable
nesting again.

The function bcc_int_nestcount() returns the interrupt nest level, starting at 0 when the function is called
outside of interrupt context.

NOTE: SPARC interrupt level 15 is non-maskable.

Table 5.38. bcc_int_nestcount function declaration

Proto int bcc_int_nestcount(void)

About Get current interrupt nest count

int.

Value Description

Return

0 Caller is not in interrupt context

BCC-UM
December 2017, Version 2.0.2

30 www.cobham.com/gaisler

1 Caller is in first interrupt context level

n Caller is in n:th interrupt context level

Table 5.39. bcc_int_disable_nesting function declaration

Proto int bcc_int_disable_nesting(void)

About Disable interrupt nesting

After calling this function, PSR.PIL will be raised to 0xf (highest) when an interrupt occurs on any
level.

Return int. BCC_OK

Table 5.40. bcc_int_enable_nesting function declaration

Proto int bcc_int_enable_nesting(void)

About Enable interrupt nesting

After calling this function, PSR.PIL will be raised to the current interrupt level when an interrupt oc-
curs.

Return int. BCC_OK

5.9.6.1. Advanced configuration

This subsection describes custom interrupt nesting configuration. It contains advanced information which is prob-
ably not needed for most application. Standard interrupt nesting control as described in Section 5.9.6 is assumed
to cover most use cases.

When a user ISR which has been registered with bcc_isr_register() is triggered by hardware, the BCC
interrupt dispatecher routine is executed as part oft he interrupt trap handling. The dispatcher sets (raises) the
SPARC register PSR.PIL to a new interrupt request level before reenabling traps and calling the user ISR handler.
The new PSR.PIL level is determined by the BCC interrupt dispatcher executed as part of the interrupt trap
handling. BCC maintains a private table which maps for each interrupt level, a future (raised) interrupt level to
set while the ISR executes.

bcc_int_disable_nesting() sets the mapping from each interrupt level (1..15) to the highest interrupt
level (15). bcc_int_enable_nesting() sets the mapping from each interrupt level (1..15) to the same
interrupt level (1..15).

A custom interrupt nesting mapping can be set with the function bcc_int_set_nesting(). It is for example
possible to program either of interrupt levels 1..7 to always raise PIL to 7, making the corresponding service
routines mutually exclusive, while still allowing interrupts on level 8 and above. For the purpose of the example,
interrupt levels 8..15 could be mapped linearly to enable normal nesting on level 8 and above. This could be
utilized to setup hardware supported task switching, where each task is related to a unique interrupt request level.
The following example illustrates this setup.

#include <bcc/bcc.h>
/*
 * Processor interrupts 1..7 set PIL=7 to lock out interrupt 1..7.
 * Processor interrupts 8..15 nest as normal.
 */
void custom_nesting(void)
{
 bcc_enable_nesting();
 for (int i = 1; i <= 7; i++) {
 bcc_set_nesting(1, 7);
 }
}

Table 5.41. bcc_int_set_nesting function declaration

Proto int bcc_int_set_nesting(int pil, int newpil)

BCC-UM
December 2017, Version 2.0.2

31 www.cobham.com/gaisler

About Configure interrupt nesting

Configures in detail how the SPARC processor interrupt level is set when an interrupt occurs. After
calling this function, PSR.PIL will be raised to newpil when an interrupt occurs on level pil.

pil [IN] IntegerParam

PSR.PIL (0..15) level to configure.

newpil [IN] IntegerParam

New value for PSR.PIL (0..15) during interrupt at level pil. newpil must be equal to or greater
than pil parameter.

int.

Value Description

BCC_OK Success

Return

BCC_FAIL Illegal parameters

5.9.7. Low-level interrupt handlers

The trap API can be used to install low-level interrupt handlers for SPARC interrupts 1-15. It is done by calling
bcc_set_trap() with the tt parameter set to interrupt number plus 0x10. This will disable the normal BCC
ISR management for this interrupt request level. Support for interrupt sharing on the CPU interrupt level is also
on the responsibility of the user when using Low-level interrupt handlers.

NOTE: It is the implementers responsibility to ensure that volatile registers are saved and restored by the trap
handler. The handler should set PSR.PIL=0xf to avoid interrupt nesting if traps are being enabled by the handler.

The following example illustrates how a low-level interrupt handler can be installed.

#include <bcc/bcc.h>

/* Function for installing low-level interrupt (trap) handler */
int set_lowlevel_int_handler(int source, void (*handler)(void))
{
 if (source < 1 || 15 < source) {
 return BCC_FAIL;
 }
 return bcc_set_trap(0x10 + source, handler);
}

extern void trap_handler_for_int1(void);
int isr_lowlevel_example(void)
{
 int ret;

 ret = set_lowlevel_int_handler(1, trap_handler_for_int1);
 printf("ret=%d\n", ret);

 return ret;
}

5.10. Asymmetric Multiprocessing API

This API provides basic functionality for programming AMP systems. The communication primitive is inter-pro-
cessor interrupts, which can be used as a basis for shared memories and higher level services. Functions in this
API typically operate using a LEON interrupt controller such as IRQMP or IRQ(A)MP.

NOTE: The functions in the AMP API are available even when running on a single-processor system. AMP ser-
vices are not served in this case, but the function return values are guaranteed to be consistent (typically returning
with status BCC_NOT_AVAILABLE).

5.10.1. Processor identification

The number of processors in the system can be retrieved with the function bcc_get_cpu_count() and the
ID of the current processor is retrieved with bcc_get_cpuid()

BCC-UM
December 2017, Version 2.0.2

32 www.cobham.com/gaisler

Table 5.42. bcc_get_cpu_count function declaration

Proto int bcc_get_cpu_count(void)

About Get number of processor in the system.

Return int.

Number of processors in the system or -1 if unknown.

1 is returned on single-processor systems.

Notes This function will return -1 if the run-time is not aware of the interrupt controller.

Table 5.43. bcc_get_cpuid function declaration

Proto int bcc_get_cpuid(void)

About Get ID of the current processor.

The first processor in the system has ID 0.

Return int.

ID of the current processor.

0 is returned on single-processor systems.

5.10.2. Inter-processor control

Another processor in a multiprocessor LEON system can be started by calling bcc_start_processor().
Inter-processor interrupts (IPI) are sent to other processors with bcc_send_interrupt().

Table 5.44. bcc_start_processor function declaration

Proto int bcc_start_processor(int cpuid)

About Start a processor.

cpuid [IN] IntegerParam

The processor to start.

cpuid must be in the interval from 0 to get_cpu_count()-1.

int.

Value Description

BCC_OK Success.

Return

BCC_NOT_AVAILABLE Processor or device not available.

Table 5.45. bcc_send_interrupt function declaration

Proto int bcc_send_interrupt(int level, int cpuid)

About Force an interrupt level on a processor.

level [IN] IntegerParam

Interrupt request level (1..15).

cpuid [IN] IntegerParam

The processor to interrupt.

cpuid must be in the interval from 0 to get_cpu_count()-1.

int.Return

Value Description

BCC-UM
December 2017, Version 2.0.2

33 www.cobham.com/gaisler

BCC_OK Success.

BCC_NOT_AVAILABLE Processor or device not available.

5.11. Default trap handlers

Table 5.46 lists the trap handlers linked into the SPARC trap table by default in a BCC application. Individual trap
handlers can be added or replaced with the trap API described in Section 5.8.

See the SPARC V8 specification for trap definitions.

Table 5.46. Default trap handlers for BCC 2.0.2

tt Description

0x00 Reset. Handled by __bcc_trap_reset_mvt or __bcc_trap_reset_svt.

0x05 Window overflow. Handled by __bcc_trap_window_overflow.

0x06 Window underflow. Handled by __bcc_trap_window_underflow.

0x11..0x1f Interrupt. Handled by __bcc_trap_interrupt.

0x83 Flush windows. Handled by __bcc_trap_flush_windows.

0x89 Set PSR.PIL. Handled by __bcc_trap_sw_set_pil.

others Force processor into error mode.

5.12. API reference

This section lists all BCC library user API functions with references to the related section(s). The API is also
documented in the source header files of the library, see Section 5.1.

Table 5.47. BCC library user API structure reference

Type Section

struct bcc_isr_node 5.9.5.2

Table 5.48. BCC library user API function reference

Prototype Section

uint32_t bcc_timer_get_us(void) 5.3

int bcc_timer_tick_init(void) 5.3.1

void bcc_flush_cache(void) 5.4

void bcc_flush_icache(void) 5.4

void bcc_flush_dcache(void) 5.4

void bcc_set_ccr(uint32_t data) 5.4

uint32_t bcc_get_ccr(void) 5.4

uint32_t bcc_loadnocache(uint32_t *addr) 5.5

uint16_t bcc_loadnocache16(uint16_t *addr) 5.5

uint8_t bcc_loadnocache8(uint8_t *addr) 5.5

void bcc_dwzero(uint64_t *dst, size_t n) 5.5

uint32_t bcc_get_psr(void) 5.6.1

void bcc_set_psr(uint32_t psr) 5.6.1

int bcc_get_pil(void) 5.6.1

int bcc_set_pil(int newpil) 5.6.1

uint32_t bcc_get_tbr(void) 5.6.2

BCC-UM
December 2017, Version 2.0.2

34 www.cobham.com/gaisler

Prototype Section

void bcc_set_tbr(uint32_t tbr) 5.6.2

uint32_t bcc_get_trapbase(void) 5.6.2

int bcc_power_down(void) 5.6.3

int bcc_fpu_save(struct bcc_fpu_state *state) 5.7

int bcc_fpu_restore(struct bcc_fpu_state *state) 5.7

int bcc_set_trap(int tt, void (*handler)(void)) 5.8,
5.9.7

int bcc_int_disable(void) 5.9.1

void bcc_int_enable(int plevel) 5.9.1

int bcc_int_mask(int source) 5.9.2

int bcc_int_unmask(int source) 5.9.2

int bcc_int_clear(int source) 5.9.3

int bcc_int_force(int level) 5.9.3

int bcc_int_pend(int source) 5.9.3

int bcc_int_map_set(int busintline, int irqmpintline) 5.9.4

int bcc_int_map_get(int busintline) 5.9.4

void *bcc_isr_register(int source, void (*handler)(void *arg, int
source), void *arg)

5.9.5.1

int bcc_isr_unregister(void *isr_ctx) 5.9.5.1

int bcc_isr_register_node(struct bcc_isr_node *isr_node) 5.9.5.2

int bcc_isr_unregister_node(const struct bcc_isr_node *isr_node) 5.9.5.2

int bcc_int_nestcount(void) 5.9.6

int bcc_int_disable_nesting(void) 5.9.6

int bcc_int_enable_nesting(void) 5.9.6

int bcc_int_set_nesting(int pil, int newpil) 5.9.6.1

int bcc_get_cpu_count(void) 5.10.1

int bcc_get_cpuid(void) 5.10.1

int bcc_start_processor(int cpuid) 5.10.2

int bcc_send_interrupt(int level, int cpuid) 5.10.2

BCC-UM
December 2017, Version 2.0.2

35 www.cobham.com/gaisler

6. AMBA Plug&Play library

6.1. Introduction

This chapter describes a user library used to probe devices on systems with an on-chip GRLIB AMBA Plug&Play
bus. AMBA Plug&Play is generally available on LEON3 and LEON4 systems. For more information on the
AMBA Plug&Play concept, see the GRLIB IP Library User's Manual.

The library is used by the BCC run-time to find the console device, timer devices and the interrupt controller.
Application programmers can also use the library to probe for hardware devices to pair with device drivers.

6.1.1. AMBA Plug&Play terms and names

Throughout this chapter some software terms and names are frequently used. Below is a table which summarizes
some of them.

Table 6.1. AMBA Layer terms and names

Term Description

AMBAPP, AMBA PnP AMBA Plug&Play bus. See AHBCTRL and APBCTRL in GRLIB GRIP docu-
mentation.

device AMBA AHB Master, AHB Slave or APB Slave interface. The amba_ahb_info
and amba_apb_info structures describe any of the interfaces.

core A AMBA IP core often consists of multiple AMBA interfaces but not more than
one interface of the same type.

bus An AMBA AHB or APB bus.

Vendor ID A unique number assigned to a device vendor. See include/bcc/
ambapp_ids.h

Device ID A unique number assigned to a device by a device vendor. See include/bcc/
ambapp_ids.h

IO area Address to a read-only table containing Plug&Play information for all attached de-
vices on the bus. It is typically located at address 0xFFFFF000 on LEON sys-
tems.

scanning Process where the AMBA PnP bus is searched for all or some AMBA interfaces.

depth Number of levels of AHB-AHB bridges from topmost AHB bus.

6.1.2. Availability

Functions described in this chapter have structure definitions and prototypes in the C header file bcc/ambapp.h.
The functions are compiled in libbcc.a and are available per default when linking with the GCC front-end.

6.2. Device scanning

BCC AMBA Plug&Play API is based around a device scanning routine in the function ambapp_visit(). It
performs recursive, depth first, scanning for devices.

The ambapp_visit() routine can visit devices during the scanning, based on a user defined device match
criteria. A visit is performed by the routine calling a user supplied function with information on the current device
as function parameters. After the user function has inspected the device information, it can decide to terminate the
scanning process altogether or let the scanning routine continue with the next match. The ambapp_visit()
function does not allocate dynamic or static memory and does not build a device tree. It stores temporary infor-
mation on the stack as needed.

Example use cases for the scanning routine include:

• Count number of AMBA Plug&Play devices/buses in the system.

BCC-UM
December 2017, Version 2.0.2

36 www.cobham.com/gaisler

• Build a device tree in memory.
• Find a specific device on a user criteria.

The main scanning function ambapp_visit() is defined in Table 6.2 and the callback interface is described in
Table 6.3.

Table 6.2. ambapp_visit function declaration

Proto uint32_t ambapp_visit(uint32_t ioarea, uint32_t vendor, uint32_t
device, uint32_t flags, uint32_t depth, uint32_t (*fn)(void *in-
fo, uint32_t vendor, uint32_t device, uint32_t type, uint32_t depth,
void *arg), void *arg)

About Visit AMBA Plug&Play devices

A recursive AMBA Plug&Play device scanning is performed, depth first. Information records are
filled in and supplied to a user function on a user match criteria. The user match criteria is defined by
the parameters vendor, device and flags.

When the user function (fn) returns non-zero, the device scanning is terminated and
ambapp_visit() returns the return value of the user function.

The ambapp_visit() function does not allocate dynamic or static memory, it uses the stack.

ioarea [IN] AddressParam

IO area of bus to start device scanning.

vendor [IN] IntegerParam

Vendor ID to visit, or 0 for all vendor IDs.

device [IN] IntegerParam

Device ID to visit, or 0 for all device IDs.

flags [IN] IntegerParam

Mask of device types to visit (AMBAPP_VISIT_AHBMASTER, AMBAPP_VISIT_AHBSLAVE,
AMBAPP_VISIT_APBSLAVE).

depth [IN] IntegerParam

Maximum bridge depth to visit.

fn [IN] PointerParam

User function called when a device is matched. See separate description on how the function is called.

fn_arg [IN] PointerParam

User argument provided with each call to fn(). ambapp_visit() never dereferences fn_arg.

uint32_t.

Value Description

0 fn() did never return non-zero.

Return

non-zero fn() returned this value.

Table 6.3. ambapp_visit_user_fn function declaration

Proto uint32_t fn(void *info, uint32_t vendor, uint32_t device, uint32_t
type, uint32_t depth, void *arg)

About User callback called by ambapp_visit() when a device is matched.

info [IN] PointerParam

Pointer to struct amba_apb_info or struct amba_ahb_info as determined by the parameter type.

vendor [IN] IntegerParam

Vendor ID for matched device

BCC-UM
December 2017, Version 2.0.2

37 www.cobham.com/gaisler

device [IN] IntegerParam

Device ID for matched device

type [IN] IntegerParam

Type of matched device (AMBAPP_VISIT_AHBMASTER, AMBAPP_VISIT_AHBSLAVE,
AMBAPP_VISIT_APBSLAVE).

depth [IN] IntegerParam

Bridge depth of matched device. First depth is the same as the depth parameter to
ambapp_visit(). The depth decrements with one for each recursed bridge.

arg [IN] PointerParam

User argument which was given to ambapp_visit() as parameter fn_arg.

uint32_t.

Value Description

0 Continue scanning

Return

non-zero Abort scanning and propagate return value to ambapp_visit() for return.

6.3. User callback

6.3.1. Criteria matching

User criteria for calling the user callback function for a device is defined by the ambapp_visit() function pa-
rameters vendor, device and flags. To scan for a specific device type (AHB master, AHB slave, APB slave),
the bitmasks AMBAPP_VISIT_AHBMASTER, AMBAPP_VISIT_AHBSLAVE, AMBAPP_VISIT_APBSLAVE
shall be used. A value of 0 for vendor or device matches all vendor IDs and device IDs respectively.

Visiting all devices can thus be accomplished by the following parameter values:

#include <bcc/ambapp.h>
vendor = 0;
device = 0;
flags = AMBAPP_VISIT_AHBMASTER | AMBAPP_VISIT_AHBSLAVE | AMBA_VISIT_APBSLAVE;

6.3.2. Device information

Parameters to the user callback (Table 6.3) provides information to the user about the current device. To derefer-
ence the info parameter, it must first be cast to the appropriate type, based on the type parameter as of table
Table 6.4.

Table 6.4. Data structures for device information

Value of type Type of info

AMBAPP_VISIT_AHBMASTER struct amba_ahb_info *

AMBAPP_VISIT_AHBSLAVE struct amba_ahb_info *

AMBAPP_VISIT_APBSLAVE struct amba_apb_info *

The device information structures contain data decoded from the AMBA AHB and APB Plug&Play records and
defined as in Table 6.5, Table 6.6 and Table 6.7. See the GRLIB IP Library User's Manual for more details on
the record fields.

struct amba_apb_info {
 uint8_t ver;
 uint8_t irq;
 uint32_t start;
 uint32_t mask;
};

Table 6.5. amba_apb_info data structure declaration

ver Device version

BCC-UM
December 2017, Version 2.0.2

38 www.cobham.com/gaisler

irq Device interrupt number

start Device address space start

mask Device address space mask

struct amba_ahb_bar {
 uint32_t start;
 uint32_t mask;
 uint8_t type;
};

Table 6.6. amba_ahb_bar data structure declaration

start Device address space start

mask Device address space mask

Bank type

2 AHB memory space

type

3 AHB I/O space

struct amba_ahb_info {
 uint8_t ver;
 uint8_t irq;
 struct amba_ahb_bar bar[AMBA_AHB_NBARS];
};

Table 6.7. amba_ahb_info data structure declaration

ver Device version

irq Device interrupt number

bar Bank Address Register

6.4. Example

The following example extracts the base address and interrupt number of the first APBUART device in the system
and then aborts the scanning by returning non-zero.

#include <stdio.h>
#include <bcc/ambapp.h>
#include <bcc/ambapp_ids.h>

uint32_t myarg = 0;

/* User callback which is called on devices matched with ambapp_visit(). */
uint32_t myfn(void *info, uint32_t vendor, uint32_t device, uint32_t type, uint32_t depth, void *arg)
{
 struct amba_apb_info *apbi = info;
 if (type != AMBAPP_VISIT_APBSLAVE) {
 printf("Unexpected type=%u\n", type);
 return 0;
 }

 printf("vendor=%x, device=%x, type=%x, depth=%u, arg=%p\n",
 vendor, device, type, depth, arg);
 printf("ver=%u, irq=%u, start=%08x, mask=%08x\n",
 info->ver, info->irq, info->start, info->mask);
 return apbi->start;
}

/* This function returns address of first APBUART, or 0. */
uint32_t ex0(void) {
 const uint32_t ioarea = 0xFFFFF000;
 const uint32_t depth = 4;
 uint32_t ret;

 ret = ambapp_visit(
 ioarea,
 VENDOR_GAISLER,
 GAISLER_APBUART,
 AMBAPP_VISIT_APBSLAVE,
 depth,
 myfn,

BCC-UM
December 2017, Version 2.0.2

39 www.cobham.com/gaisler

 &myarg
);
 return ret;
}

More examples are provided with the BCC distribution.

6.5. API reference

This section lists all AMBA Plug&Play API functions with references to the related section(s). The API is also
documented in the source header files of the library, bcc/ambapp.h.

Table 6.8. AMBA Plug&Play library data structure reference

Type Section

struct ambapp_apb_info 6.3.2

struct ambapp_ahb_bar 6.3.2

struct ambapp_ahb_info 6.3.2

Table 6.9. AMBA Plug&Play library function reference

Prototype Section

uint32_t ambapp_visit(uint32_t ioarea, uint32_t vendor, uint32_t
device, uint32_t flags, uint32_t depth, uint32_t (*fn)(void *info,
uint32_t vendor, uint32_t device, uint32_t type, uint32_t depth,
void *arg), void *arg)

6.2

uint32_t ambapp_visit_user_fn(void *info, uint32_t vendor, uint32_t
device, uint32_t type, uint32_t depth, void *arg)

6.2, 6.3

BCC-UM
December 2017, Version 2.0.2

40 www.cobham.com/gaisler

7. Board Support Packages

This chapter describes the Board Support Packages (BSP) distributed with BCC. It also describes how custom
BSPs can be created and used.

7.1. Overview

BSPs provide an interface between BCC and target hardware through initialization code specific to target processor
and a number of device drivers. Console, timer and interrupt controller drivers are supported in all BSPs.

A BSP is selected with the GCC option -qbsp=bspname, where bspname specifies any of the BSPs described
in this chapter. The option is typically combined with -mcpu=cpuname and optionally -msoft-float and
-qnano. It is important that the -qbsp=, -mcpu=, -mfix and -msoft-float options are given to GCC
both at the compile and link steps. If option -qbsp= is not given explicitly, then -qbsp=leon3 is implied. -
qsvt is only applicable to linking.

NOTE: Selecting a BSP with -qbsp=, does not automatically infer any of the -mcpu=, -mfix- or -msoft-
float options.

Applications are by default linked to RAM address 0x40000000 by most BSPs. This can be changed with the
GCC option -Wl,-Ttext,addr to link anywhere in the range 0x40000000 to 0x7ffffff0. Some BSPs
have other default link addresses which is noted in the corresponding section in this chapter.

Each BSP provides memory definitions for the linker scripts to use, suitable for the target device. In some situations
there is a need to link applications to non-standard locations. A special linker script named linkcmds-any is
provided for this purpose. linkcmds-any is available for all BSPs. The following example links an application
to address 0xABCDE000:

 $ sparc-gaisler-elf-gcc -T linkcmds-any -Wl,-Ttext,0xABCDE000 hello.c -o hello.elf

All BSPs except the LEON3 BSP have link time configuration of device base addresses needed by the BCC drivers.
The LEON3 BSP uses AMBA Plug&Play to probe devices. A BCC console driver is attached to APBUART0 by
default, timer driver is attached to GPTIMER0 and the interrupt controller driver is attached to IRQMP/IRQ(A)MP.
Chapter 8 describes how device base addresses can be customized by the user.

7.2. LEON3

The LEON3 BSP is a general BSP compatible with most LEON3 based systems. This is the only BSP which uses
AMBA Plug&Play to discover peripheral devices at startup.

Linking with -qsvt is possible if SVT is supported by the target system.

7.3. GR712RC

The GR712RC BSP is customized for the GR712RC component.

The following linker scripts are available, selectable with the GCC -T option.

 linkcmds (default) Application is linked to RAM address 0x40000000.

 linkcmds-ahbram Application is linked to on-chip RAM with BCH error-correction at address
0xa0000000.

Memory map descriptions and a linker script template for creating custom linker scripts are available in bsp/
gr712rc/linkcmds.memory and bsp/gr712rc/linkcmds.base.

Linking with -qsvt is supported.

7.4. GR716

The GR716 BSP is customized for the GR716 component.

BCC-UM
December 2017, Version 2.0.2

41 www.cobham.com/gaisler

Partial WRPSR as described in SPARC-V8 Supplement, SPARC-V8 Embedded (V8E) Architecture Specification
is used by BCC when possible. The interrupt remap functions described in Section 5.9.4 are available. Linking
with -qsvt and -qnano is recommended for reduced code size.

Memory map descriptions and a linker script template for creating custom linker scripts are available in bsp/
gr716/linkcmds.memory and bsp/gr716/linkcmds.base.

7.4.1. Boot ROM

A BCC 2 application is ready to be used with the GR716 embedded boot loader (BOOTROM). There are two
main cases:

• Application is copied from persistent memory or network to RAM by the BOOTPROM. Executes from
volatile RAM.

• Application executes from persistent memory (external ROM or SPI). This is also called direct boot.

It is also possible to disable the GR716 embedded boot loader by configuring GR716 strap signals. In this case,
the application should contain its own boot loader. See Section 2.15.

The following subsections describe how to link a BCC application for use with the GR716 BOOTPROM. Infor-
mation on how to load the application and configure the GR716 for image boot from persistent memory, network
boot or direct boot from persistent memory is available in the GR716 Data Sheet and Users's Manual.

7.4.1.1. Executing from volatile RAM

To link an application for executing from local instruction RAM, the default linker script shall be used:

 linkcmds (default) Application is linked to CPU local RAM: instruction RAM at address
0x31000000 and data RAM at address 0x30000000.

The following example links an application for storage and execution in internal RAM:

 $ sparc-gaisler-elf-gcc -qbsp=gr716 -mcpu=leon3 -qsvt -qnano main.o -o main.elf

The linker option -T linkcmds is not required since the linker script is selected by default.

7.4.1.2. Executing from persistent memory

To link an application for executing from persistent memory such as an external ROM or SPI, use one of the
following linker scripts:

 linkcmds-extprom Application is linked to external ROM starting at address 0x01000000.
.data is copied from PROM to on-chip data RAM at BCC run-time initial-
ization. .bss is also put in on-chip data RAM.

 linkcmds-spi0 Same as linkcmds-extprom, but for first SPI controller memory mapped
at address 0x02000000.

 linkcmds-spi1 Same as linkcmds-extprom, but for second SPI controller memory
mapped at address 0x04000000.

The following example links an application for storage and execution in external ROM:

 $ sparc-gaisler-elf-gcc -qbsp=gr716 -mcpu=leon3 -qsvt -qnano -T linkcmds-extprom main.o -o main.elf

Investigation of the link output shows that .data is in ROM space at load time, but referenced in local data RAM
at execution time. Copying of .data from ROM to RAM is done automatically by the BCC initialization.

 $ sparc-gaisler-elf-objdump -h main.elf

main.elf: file format elf32-sparc

Sections:
Idx Name Size VMA LMA File off Algn
 0 .text 000021d0 01000000 01000000 00010000 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 1 .rodata 00000090 010021d0 010021d0 000121d0 2**3
 CONTENTS, ALLOC, LOAD, READONLY, DATA

BCC-UM
December 2017, Version 2.0.2

42 www.cobham.com/gaisler

 2 .ext.data 00000000 40000000 40000000 000201e8 2**0
 CONTENTS
 3 .data 000001e8 30000000 01002260 00020000 2**3
 CONTENTS, ALLOC, LOAD, DATA
 4 .bss 000001c8 300001e8 01002448 000201e8 2**2
 ALLOC
...

An example on how to build an application as described in this subsection is included with the BCC distribution
in the directory examples/gr716_romres.

7.4.1.3. System clock

The GR716 BSP supports the full frequency operating range of GR716. A time base has to be set by the user
for the BCC time functions to operate correctly when the application is started from the GR716 embedded boot
loader. The supported way to do this is to define a global constant variable named __bsp_sysfreq initialized
with the system clock frequency in MHz. This ensures a known time base for the BCC timer driver and sets the
BCC console driver baud to 19200.

On a GR716 clocked at 20 MHz, the following example configures the system clock.

/* GR716 clocked at 20 MHz */
 const unsigned int __bsp_sysfreq = 20*1000*1000;

The definition can be put in any C file which is linked with the application. Note that __bsp_sysfreq must
not be declared static.

BSP initializations related to the system clock are implemented by the custom timer and console initialization
functions and can be overridden. For more details, see Section 8.2.1 and Section 8.3.1.

7.5. LEON2

The LEON2 BSP is compatible with LEON2 systems such as AT697, AT697E and AT697F.

AMBA Plug&Play configuration records are not implemented in most LEON2 systems, so the BCC AMBA
Plug&Play library described in Chapter 6 may not be used. But since the hardware information is resolved by the
BSP, and can be overridden as described in Chapter 8, this does not affect normal operation of BCC on LEON2
systems

-qsvt is not supported on LEON2.

7.6. AGGA4

The AGGA4 BSP is similar to the LEON2 BSP. It has a different console driver which is transparent to the user.
Recommended compiler options for AGGA4 can be found in Appendix A.

BCC-UM
December 2017, Version 2.0.2

43 www.cobham.com/gaisler

8. Customizing BCC

The BCC run time environment is designed to fit a wide range systems and to require little user intervention to
get an application up and running. In some situations however, the default behavior may need customization to
fulfill specific application requirements on device discovery, console drivers, size optimization, etc. This chapter
describes how the BCC run time environment can be customized.

8.1. Introduction

Three types of hardware devices are managed by the BCC run time: console, timer and interrupt controller. The
management consists of software drivers which are embedded in the application when needed. Some of the C
library functionality and the BCC user library depend on these drivers.

For most BSPs, the run time relies on hardware devices residing in predefined address spaces. For the general
LEON3 BSP, the device hardware address space locations are probed with help of the AMBA Plug&Play scanning
routines described in Section 6.2. Device initialization and possible probing takes place before entry to main()
and can be overridden by the application as described later in this chapter.

Functions and variables used for user run time customization are declared in the header file bcc/bcc_param.h.
This header file should be included in any application which overrides the default BCC behavior.

To override the default implementation of a BCC function or variable, an object file containing the same symbol
name as the overridden function or variable should be linked with the application. The prototypes in bcc/bcc.h
and bcc/bcc_param.h can be used for type checking. An example is provided in Section 8.5.

8.2. Console driver

The BCC console driver is used for C library input and output on stdin, stdout and stderr.

8.2.1. Initialization

A variable named __bcc_con_handle is reserved for the console driver to use. The content of this variable is
console driver specific, and will typically contain an address to some hardware register space. A BSP is responsible
for initializing this variable, which can be done either at compile time or run time. The function (hook) named
__bcc_con_init() is called before main() as part of the BCC run time initialization. A BSP can use the
hook function to initialize __bcc_con_handle, for example by using the AMBA Plug&Play library. Table 8.2
describes how BSPs initialize the handle.

Table 8.1. __bcc_con_init function declaration

Proto int __bcc_con_init(void)

About Probe and initialize the console

A default implementation of this function is provided by the BSP. It can be overridden by the user.

Return int. BCC_OK on success

Table 8.2. Implementation of __bcc_con_init()

BSP Description of __bcc_con_init()

leon3 The AMBA Plug&Play library (Chapter 6) is used to scan for APBUART devices.
__bcc_con_handle is assigned with the address of the register area of the first AP-
BUART device.

others __bcc_con_init() is empty.

__bcc_con_handle is an initialized variable with value determined at link time.

8.2.2. Input and output functions

Character input is handled by the function __bcc_con_inbyte() and output by __bcc_con_outbyte().

BCC-UM
December 2017, Version 2.0.2

44 www.cobham.com/gaisler

Table 8.3. __bcc_con_inbyte function declaration

Proto char __bcc_con_inbyte(void)

About Read the next character from console

Return char. The read character

Table 8.4. __bcc_con_outbyte function declaration

Proto int __bcc_con_outbyte(char c)

About Write a character on the console

c [IN] CharacterParam

Character to output

Return int. 0 on success

8.2.3. Customization

• Console redirection is performed by redefining __bcc_con_handle, for example in a custom,
__bcc_con_init() hook. See Section 8.5.

• The I/O functions __bcc_con_inbyte() and __bcc_con_outbyte() can also be overridden. They
shall typically make use of __bcc_con_handle.

8.2.4. C library I/O

All console input fed to the C library goes via read() and the output goes out with write(). An application
can override these functions to get even more control on the console I/O (for example to implement terminal
specific handling). See the newlib C library documentation for more information on how read() and write()
are defined. The function call flow is illustrated below.

• [terminal] -> __bcc_con_inbyte() -> read() -> [C library stdio]
• [C library stdio] -> write() -> __bcc_con_outbyte() -> [terminal]

NOTE: Both stdout and stderr are output via write() and __bcc_con_outbyte().

8.3. Timer driver

The BCC timer driver is used for C library time related functions such as clock() and time() (time.h). It
is also used for gettimeofday() and times().

8.3.1. Initialization

Initialization is similar to the console driver (Section 8.2.1). The timer handle is named __bcc_timer_handle
and the initialization hook is named __bcc_timer_init(). Table 8.6 describes how BSPs initialize the han-
dle.

Table 8.5. __bcc_timer_init function declaration

Proto int __bcc_timer_init(void)

About Probe timer hardware and initialize timer driver

A default implementation of this function is provided by the BSP. It can be overridden by the user.

Return int. BCC_OK on success

Table 8.6. Implementation of __bcc_timer_init()

BSP Description of __bcc_timer_init()

leon3 The AMBA Plug&Play library (Chapter 6) is used to scan for GPTIMER devices.
__bcc_timer_handle is assigned with the address of the register area of the first

BCC-UM
December 2017, Version 2.0.2

45 www.cobham.com/gaisler

BSP Description of __bcc_timer_init()

GPTIMER device and __bcc_timer_interrupt is assigned to the timers interrupt
number.

others __bcc_timer_init() is empty.

__bcc_timer_handle and __bcc_timer_interrupt are initialized variables
with values determined at link time.

8.3.2. Time access functions

Current time in microseconds is returned by the function bcc_timer_get_us() as described in Section 5.3.
This function is used by the C library for time related functions (time.h).

8.3.3. Customization

The BCC timer driver initialization can be overridden by redefining the functions __bcc_timer_init() and
bcc_timer_get_us().

8.4. Interrupt controller driver

The BCC interrupt controller driver is managing the BCC interrupt and AMP user API described in Section 5.9
and Section 5.10.

8.4.1. Initialization

Initialization is similar to the console driver (Section 8.2.1). The interrupt controller driver handle is named
__bcc_int_handle and the initialization hook is __bcc_int_init(). Table 8.8 describes how BSPs ini-
tialize the handle.

Table 8.7. __bcc_int_init function declaration

Proto int __bcc_int_init(void)

About Probe interrupt controller hardware and initialize interrupt controller driver

A default implementation of this function is provided by the BSP. It can be overridden by the user.

Return int. BCC_OK on success

Table 8.8. Implementation of __bcc_int_init()

BSP Description of __bcc_int_init()

leon3 The AMBA Plug&Play library (Chapter 6) is used to scan for IRQMP/IRQ(A)MP de-
vices. __bcc_int_handle is assigned with the address of the register area of the first
interrupt controller device.

If the interrupt controller has support for multiple internal interrupt controllers
(IRQ(A)MP), then __bcc_int_handle will be adjusted to match the IRQ(A)MP In-
terrupt Controller Select Registers for the executing CPU.

Extended interrupt number is probed and assigned to the global variable
__bcc_int_irqmp_eirq.

others __bcc_int_init() is empty.

__bcc_int_handle is an initialized variable with value determined at link time.

__bcc_int_irqmp_eirq depends on if the target system supports extended interrupt.

8.4.2. Access functions

Most of the functionality of the BCC interrupt and AMP API is implemented by the interrupt controller driver
in the corresponding BSP.

BCC-UM
December 2017, Version 2.0.2

46 www.cobham.com/gaisler

8.4.3. Customization

The BCC interrupt controller driver initialization can be overridden by redefining the __bcc_int_init()
hook or __bcc_int_handle.

On systems which support extended interrupts (most LEON3 and LEON4 systems) the variable
__bcc_int_irqmp_eirq can also be redefined. (Its value can be determined by reading an interrupt controller
register.)

BCC interrupt and AMP services are tightly connected with the interrupt controller driver. There is no interface
specified for overriding these services. Customization would typically require a re-implementation of all BCC
interrupt and AMP API routines. (For details, see the source code in libbcc/shared/interrupt/ directory
of the BCC source distribution).

8.5. Initialization override example

The following example illustrates how the console, timer and interrupt controller initialization can be overridden
on a GR740 system.

#include <stdio.h>
#include <bcc/bcc.h>
#include <bcc/bcc_param.h>

/* Forced initialization for GR740. */
int __bcc_con_init(void) {
 __bcc_con_handle = 0xff900000;
 return 0;
}

int __bcc_timer_init(void) {
 __bcc_timer_handle = 0xff908000;
 __bcc_timer_interrupt = 1;
 return 0;
}

int __bcc_int_init(void) {
 __bcc_int_handle = 0xff904000;
 __bcc_int_irqmp_eirq = 10;
 return 0;
}

int main(void) {
 puts("hello world");
 return 0;
}

The example can be compiled and linked by issuing the following command.

 $ sparc-gaisler-elf-gcc -qbsp=gr740 -mcpu=leon3 example.c -o example

8.6. Initialization hooks

An additional set of user hooks are called during BCC initialization. They are named with numbers corresponding
with execution order. A higher number means closer to main(). Default implementations of these hooks are
empty and they can be overridden by the user.

Table 8.9. __bcc_init40 function declaration

Proto void __bcc_init40(void)

About Called at start of reset trap before CPU initializations

• Trap handling is not available.
• %sp and %fp are not valid (do not save/restore)
• save and restore instructions are not allowed
• svt/mvt is not configured.
• .bss section is not initialized.
• This user hook should be written in assembly.

Return None.

BCC-UM
December 2017, Version 2.0.2

47 www.cobham.com/gaisler

Table 8.10. __bcc_init50 function declaration

Proto void __bcc_init50(void)

About Called at start of C run time initialization (crt0)

• Trap handling is not available.
• %sp and %fp are not valid (do not save/restore)
• save and restore instructions are not allowed
• .bss section is not initialized.
• BCC drivers are not initialized.
• This user hook should be written in assembly.

Return None.

Table 8.11. __bcc_init60 function declaration

Proto void __bcc_init60(void)

About Called prior to BCC driver initialization

• C runtime is available.
• BCC drivers are not initialized.
• This user hook can be written in C.
• Console API, timer API and interrupt API are not available.

Return None.

Table 8.12. __bcc_init70 function declaration

Proto void __bcc_init70(void)

About Called as the last step before main() is called.

• C runtime is available.
• Full BCC API is available.

Return None.

The following example illustrates how the interrupt based timer service is activated by calling
bcc_timer_tick_init() in __bcc_init70() before entry to main(). See Section 5.3.1 for more in-
formation on bcc_timer_tick_init().

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <bcc/bcc.h>
#include <bcc/bcc_param.h>

void __bcc_init70(void) {
 int ret;

 ret = bcc_init_ticks();
 if (BCC_OK != ret) {
 exit(EXIT_FAILURE);
 }
}

int main(void) {
 clock_t now;
 while(1) {
 now = clock();
 printf("clock() => %09u\n", now);
 }
 return EXIT_SUCCESS;
}

8.7. Disable .bss section initialization

As part of its startup code, the BCC C run time initializes the .bss segment with zeroes. This initial-
ization is disabled by defining a global variable named __bcc_cfg_skip_clear_bss. The value of
__bcc_cfg_skip_clear_bss does not matter as long as the symbol address is not 0.

BCC-UM
December 2017, Version 2.0.2

48 www.cobham.com/gaisler

Disabling .bss initialization can be useful when executing an application on a simulated system where execution
is slow and memory is already cleared.

NOTE: If the .bss section is not preinitialized, then disabling the initialization will result in a non-functional
program.

8.7.1. Example

The following example illustrates how initialization of the .bss section can be disabled.

#include <bcc/bcc_param.h>

int __bcc_cfg_skip_clear_bss;

int main(void)
{
 ...
 return 0;
}

8.8. Heap memory configuration

By default, the application heap starts at the end of bss, and ends at the stack pointer. The heap can be relocated by
the user by assigning initialization values to the variables __bcc_heap_min and __bcc_heap_max, declared
in the header file bcc/bcc_param.h.

The following example configures a heap of 16 MiB starting at address 0x60000000:

#include <stdlib.h>
#include <stdio.h>
#include <bcc/bcc_param.h>

#define MYHEAPSIZE (16 * 1024 * 1024)
uint8_t *__bcc_heap_min = (uint8_t *) 0x60000000;
uint8_t *__bcc_heap_max = (uint8_t *) 0x60000000 + MYHEAPSIZE;

int main(void)
{
 void *p;
 p = malloc(MYHEAPSIZE / 2);
 printf("malloc(%d KiB) => %p\n", MYHEAPSIZE / 1024, p);
 free(p);
 return 0;
}

__bcc_heap_min and __bcc_heap_max can optionally be assigned by the application at run-time, but only
before any dynamic memory functions have been called. The initialization hook __bcc_init70() is a suitable
location.

To gain full control over heap allocation, the function sbrk() can be redefined by the user: see the Newlib C
library documentation, chapter System Calls for more information.

8.9. API reference

This section lists API functions related to BCC customization with references to the related section(s). The API
is also documented in the source header file bcc/bcc_param.h.

Table 8.13. BCC customization functions reference

Prototype Section

int __bcc_con_init(void) 8.2.1

char __bcc_con_inbyte(void) 8.2.2

int __bcc_con_outbyte(char c) 8.2.2

int __bcc_timer_init(void) 8.3.1

uint32_t bcc_timer_get_us(void) 8.3.2,
5.3

BCC-UM
December 2017, Version 2.0.2

49 www.cobham.com/gaisler

Prototype Section

int __bcc_int_init(void) 8.4.1

void __bcc_init40(void) 8.6

void __bcc_init50(void) 8.6

void __bcc_init60(void) 8.6

void __bcc_init70(void) 8.6

BCC-UM
December 2017, Version 2.0.2

50 www.cobham.com/gaisler

9. Support

For support contact the Cobham Gaisler support team at support@gaisler.com.

When contacting support, please identify yourself in full, including company affiliation and site name and address.
Please identify exactly what product that is used, specifying if it is an IP core (with full name of the library
distribution archive file), component, software version, compiler version, operating system version, debug tool
version, simulator tool version, board version, etc.

The support service is only for paying customers with a support contract.

BCC-UM
December 2017, Version 2.0.2

51 www.cobham.com/gaisler

Appendix A. Recommended GCC
options for LEON systems
This appendix contains recommended GCC options for LEON systems related to code generation and linking.

NOTE: The recommendations apply to BCC version 2.0.2. Other LEON toolchains and other versions of BCC
may have other recommendations.

Table A.1. Recommended GCC options for BCC 2.0.2

System Recommended GCC options

GR740 -qbsp=gr740 -mcpu=leon3

GR712RC -qbsp=gr712rc -mcpu=leon3 -mfix-gr712rc

GR716 -qbsp=gr716 -mcpu=leon3 -qnano -qsvt

UT699E, UT700 -mcpu=leon3 -mfix-ut700

UT699/EPICA-NEXT, SCOC3 -mcpu=leon -mfix-ut699

LEON3FT and LEON3FT-RTAX systems with
SPARC V8 mul/div based on GRLIB versions
up to and including build 4174.

-mcpu=leon3 -mfix-b2bst -mfix-tn0013

LEON3FT and LEON3FT-RTAX systems
without SPARC V8 mul/div based on GRLIB
versions up to and including build 4174.

-mcpu=leon3v7 -mfix-b2bst -mfix-tn0013

LEON3FT and LEON3FT-RTAX systems with
SPARC V8 mul/div based on GRLIB versions
later than build 4174.

LEON3 systems with SPARC V8 mul/div im-
plemented without cache parity protection.

-mcpu=leon3

For GRLIB version up to and including 4206, also add

• -mfix-tn0013

LEON3FT and LEON3FT-RTAX systems
without SPARC V8 mul/div based on GRLIB
versions later than build 4174.

LEON3 systems without SPARC V8 mul/div
implemented without cache parity protection.

-mcpu=leon3v7

For GRLIB version up to and including 4206, also add

• -mfix-tn0013

AGGA4 -qbsp=agga4 -mcpu=leon -mfix-at697f

AT697 -qbsp=leon2 -mcpu=leon -mfix-at697f

Other LEON2 systems -qbsp=leon2 -mcpu=leon

In addition to Table A.1:

• -qnano can always be used.
• -msoft-float can always be used.
• Systems which support SVT (single vector trapping) can use -qsvt.
• If no -mcpu= option is given explicitly, then SPARC V7 code will be generated.
• The BCC 2.0.2 run-time supports the GCC option -mflat.

Table A.2 describes the GCC -mcpu= options applicable to BCC 2.0.2. If no -mcpu= option is used, then -
mcpu=v7 is implied.

BCC-UM
December 2017, Version 2.0.2

52 www.cobham.com/gaisler

Table A.2. GCC -mcpu= options for BCC 2.0.2

Option Description

-mcpu=v7 (or no -mcpu= option) no mul/div, no casa

-mcpu=leon mul/div, no casa

-mcpu=leon3 mul/div, casa

-mcpu=leon3v7 no mul/div, casa

BCC-UM
December 2017, Version 2.0.2

53 www.cobham.com/gaisler

Appendix B. Recommended Clang
options for LEON systems
This appendix contains recommended Clang options for LEON systems related to code generation and linking.

NOTE: The recommendations apply to BCC version 2.0.2. Other LEON toolchains and other versions of BCC
may have other recommendations.

Table B.1. Recommended Clang options for BCC 2.0.2

System Recommended Clang options

GR740 -qbsp=gr740 -mcpu=gr740

GR712RC 1 -qbsp=gr712rc -mcpu=gr712rc

GR716 -qbsp=gr716 -mcpu=leon3 -qnano -qsvt

UT699E, UT700 1 -qbsp=leon3 -mcpu=leon3

UT699/EPICA-NEXT, SCOC3 Unsupported

LEON3FT and LEON3FT-RTAX systems with
SPARC V8 mul/div based on GRLIB versions
up to and including build 4206. 1

-qbsp=leon3 -mcpu=leon3

LEON3FT and LEON3FT-RTAX systems with
SPARC V8 mul/div based on GRLIB versions
later than build 4206.

-qbsp=leon3 -mcpu=leon3

LEON3/LEON3FT systems without SPARC V8
mul/div.

Unsupported

AGGA4 Unsupported

AT697 Unsupported

Other LEON2 systems Unsupported
1 The LLVM/Clang toolchain does not implement workarounds for the errata described in GRLIB-TN-0009, GRLIB-TN-0010, GR-
LIB-TN-0011, GRLIB-TN-0012 and GRLIB-TN-0013. It is recommended to use the GCC based toolchain on devices affected by one or
more of these errata.

In addition to Table B.1:

• -qnano can always be used.
• -msoft-float can always be used.
• Systems which support SVT (single vector trapping) can use -qsvt.
• If no -mcpu= option is given explicitly, then SPARC V8 code will be generated.
• Systems supporting the LEON-REX extension can use -mrex.

Table B.2 describes the Clang -mcpu= options applicable to BCC 2.0.2. If no -mcpu= option is used, then
SPARC V8 with mul/div is generated.

Table B.2. Clang -mcpu= options for BCC 2.0.2

Option Description

no -mcpu= option specified mul/div, no casa

-mcpu=leon3, -mcpu=gr712rc, -
mcpu=gr740

mul/div, casa

BCC-UM
December 2017, Version 2.0.2

54 www.cobham.com/gaisler

Cobham Gaisler AB
Kungsgatan 12
411 19 Gothenburg
Sweden
www.cobham.com/gaisler
sales@gaisler.com
T: +46 31 7758650
F: +46 31 421407

Cobham Gaisler AB, reserves the right to make changes to any products and services described
herein at any time without notice. Consult Cobham or an authorized sales representative to verify that
the information in this document is current before using this product. Cobham does not assume any
responsibility or liability arising out of the application or use of any product or service described herein,
except as expressly agreed to in writing by Cobham; nor does the purchase, lease, or use of a product
or service from Cobham convey a license under any patent rights, copyrights, trademark rights, or any
other of the intellectual rights of Cobham or of third parties. All information is provided as is. There is no
warranty that it is correct or suitable for any purpose, neither implicit nor explicit.

Copyright © 2017 Cobham Gaisler AB

	
	Table of Contents
	1. Introduction
	1.1. Scope
	1.2. Installation
	1.2.1. Host requirements
	1.2.2. Linux
	1.2.3. Windows

	1.3. Contents of /opt/bcc-2.0.2-gcc
	1.4. BCC tools
	1.5. Documentation
	1.6. Toolchain source code distribution
	1.6.1. BCC source code installation
	1.6.2. Building

	1.7. Support

	2. Using BCC
	2.1. General development flow
	2.2. Compiler options
	2.2.1. sparc-gaisler-elf-gcc options
	2.2.2. sparc-gaisler-elf-clang options

	2.3. Compiling BCC applications
	2.4. Floating-point considerations
	2.5. LEON SPARC V8 instructions
	2.6. Multiply and accumulate instructions
	2.7. Single register window model (flat)
	2.8. Register usage
	2.9. Single vector trapping
	2.10. Memory organization
	2.11. BCC Board Support Packages
	2.12. Multiprocessing
	2.13. Debugging with GDB
	2.14. Examples
	2.14.1. Target specific examples

	2.15. Creating a bootable ROM images

	3. LLVM based toolchain
	3.1. Introduction
	3.2. BCC LLVM/Clang tools

	4. C standard library
	4.1. File I/O
	4.2. Time functions
	4.3. Dynamic memory allocation
	4.4. Atomic types and operations
	4.5. Newlib nano

	5. BCC library
	5.1. Usage
	5.2. Console API
	5.3. Timer API
	5.3.1. Interrupt based timer service

	5.4. Cache control API
	5.5. Bus access API
	5.6. IU control/status register access API
	5.6.1. Processor State Register
	5.6.2. Trap Base Register
	5.6.3. Processor power-down

	5.7. FPU context API
	5.8. Trap API
	5.8.1. Single vector trapping (SVT)

	5.9. Interrupt API
	5.9.1. Interrupt disable and enable
	5.9.2. Interrupt source masking
	5.9.3. Clear and force interrupt
	5.9.4. Interrupt remap
	5.9.5. Interrupt service routines
	5.9.5.1. Automatic memory management
	5.9.5.2. User memory management

	5.9.6. Interrupt nesting
	5.9.6.1. Advanced configuration

	5.9.7. Low-level interrupt handlers

	5.10. Asymmetric Multiprocessing API
	5.10.1. Processor identification
	5.10.2. Inter-processor control

	5.11. Default trap handlers
	5.12. API reference

	6. AMBA Plug&Play library
	6.1. Introduction
	6.1.1. AMBA Plug&Play terms and names
	6.1.2. Availability

	6.2. Device scanning
	6.3. User callback
	6.3.1. Criteria matching
	6.3.2. Device information

	6.4. Example
	6.5. API reference

	7. Board Support Packages
	7.1. Overview
	7.2. LEON3
	7.3. GR712RC
	7.4. GR716
	7.4.1. Boot ROM
	7.4.1.1. Executing from volatile RAM
	7.4.1.2. Executing from persistent memory
	7.4.1.3. System clock

	7.5. LEON2
	7.6. AGGA4

	8. Customizing BCC
	8.1. Introduction
	8.2. Console driver
	8.2.1. Initialization
	8.2.2. Input and output functions
	8.2.3. Customization
	8.2.4. C library I/O

	8.3. Timer driver
	8.3.1. Initialization
	8.3.2. Time access functions
	8.3.3. Customization

	8.4. Interrupt controller driver
	8.4.1. Initialization
	8.4.2. Access functions
	8.4.3. Customization

	8.5. Initialization override example
	8.6. Initialization hooks
	8.7. Disable .bss section initialization
	8.7.1. Example

	8.8. Heap memory configuration
	8.9. API reference

	9. Support
	Appendix A. Recommended GCC options for LEON systems
	Appendix B. Recommended Clang options for LEON systems

