
.

BCC

Bare-C Cross-Compiler

2020 User's Manual

The most important thing we build is trust

BCC User's Manual

BCC-UM 1 www.cobhamaes.com/gaisler
September 2020, Version 1.0.52

BCC-UM
September 2020, Version 1.0.52

2 www.cobhamaes.com/gaisler

Table of Contents
1. Introduction .. 3

1.1. Scope .. 3
1.2. BCC 1.0 life cycle status .. 3
1.3. Installation ... 3

1.3.1. Host requirements ... 3
1.3.2. Linux / Cygwin ... 3
1.3.3. Windows ... 3

1.4. Building from source ... 4
1.5. Support .. 4

2. General development flow ... 5
2.1. Overview ... 5
2.2. GCC options ... 5
2.3. Floating-point considerations ... 5
2.4. LEON SPARC V8 instructions .. 6
2.5. Alternate register windows organization (only for GCC 3.X) ... 6
2.6. Single vector trapping .. 6
2.7. Memory organization ... 6
2.8. NGMP, RAM applications located at address 0 and multibus systems 6
2.9. Recommended compiler options for LEON systems ... 6
2.10. Making LEON boot-proms .. 7

3. Libraries ... 8
3.1. Newlib and Stdio .. 8
3.2. Time functions .. 8
3.3. Task switching .. 8
3.4. Interrupt handling .. 8
3.5. Extended IrqCtrl .. 10
3.6. Interrupt nesting .. 11
3.7. Installing custom irq handlers .. 11
3.8. Small binary ... 11
3.9. Amba PLUG and PLAY ... 11
3.10. FreeRTOS ... 12

4. Execution and debugging ... 13
4.1. TSIM simulator and GRMON debug monitor ... 13
4.2. Running on the TSIM simulator ... 13
4.3. Debugging with GDB ... 13
4.4. Debugging on target hardware ... 14
4.5. Using the DDD graphical front-end to GDB ... 14
4.6. Using the Insight debugger .. 15

5. Support ... 17

BCC-UM
September 2020, Version 1.0.52

3 www.cobhamaes.com/gaisler

1. Introduction

1.1. Scope

BCC is a cross-compiler for LEON3 processors. It is based one the GNU compiler tools and the Newlib standalone
C-library. The cross-compiler system allows compilation of both tasking and non-tasking C and C++ applications.
It supports hard and soft floating-point operations, as well as SPARC V8 multiply and divide instructions. BCC
can also be used to compile the eCos kernel.

BCC consists of the following packages:

• GNU GCC C/C++ compiler 3.4.4 and 4.4.2
• GNU Binutils 2.19.51
• Newlib C-library 1.13.1
• Low-level I/O routines for LEON3, including interrupt support
• uIP light-weight TCP/IP stack
• GDB debugger 6.4 with DDD and Insight Graphical front-end
• Linux and Windows/Cygwin hosts

LEON2 support has been dropped since BCC release 1.0.36d. LEON2 support is available in BCC 2.

1.2. BCC 1.0 life cycle status

This document (BCC-UM 1.0.52) describes BCC version 1.0.52 which is part of the BCC 1.0 series (1.0.x).

• BCC 1.0.x with GCC 3.4.4 has reached End of life status as of year 2020 and is not recommended for new
development.

• BCC 1.0.x with GCC 4.4.2 has reached Legacy status and is not recommended for new development.
• BCC 2 is the current Production status bare-metal tool chain for LEON and is recommended for new devel-

opment.

For more information about LEON software life cycle and software options, please visit the Cobham Gaisler
website or contact Cobham Gaisler support (Chapter 5).

1.3. Installation

1.3.1. Host requirements

BCC is provided for two host platforms: GNU Linux/x86 and Microsoft Windows. The following are the platform
system requirements:

 Linux: Linux-2.6.x, glibc-2.11 (or higher)

1.3.2. Linux / Cygwin

BCC is provided as a bzipped tar-file. It should be uncompressed in the /opt directory of the host:

 $ mkdir /opt
 $ tar -C /opt -xjf sparc-elf-[version-number].tar.bz2

After installation, add /opt/sparc-elf-[gcc-version-number]/bin to the PATH variable. This
should be done by adding the following line to the file .profile in the home directory:

 export PATH=/opt/sparc-elf-[gcc-version-number]/bin:$PATH

On Cygwin hosts, all installation steps should be done in a cygwin shell window. See http://www.cygwin.com
for information on Cygwin.

1.3.3. Windows

BCC for Windows is provided for native Windows (MinGW) and for the Cygwin environment. For the Cygwin
version see previous section. The native version will not require any additional packages and can be run from a
standard Command Prompt.

http://www.cygwin.com

BCC-UM
September 2020, Version 1.0.52

4 www.cobhamaes.com/gaisler

The native Windows version of BCC is packaged with zip. Use a tool like WinZip to uncompress it to a directory,
e.g., C:\opt. Note that the directory must not contain spaces (or any other non-ASCII characters) as this will
confuse the compiler.

To use the compiler the bin subdirectory, e.g., C:\opt\bin, must be added to the PATH environment variable.
This can be done from the Control Panel:

 System -> Advanced -> Environment Variables...

Se http://www.mingw.org for more information on MinGW and the optional MSYS environment.

1.4. Building from source

The source code for BCC is available from the Cobham Gaisler website. To build BCC from source, the following
steps shall be performed:

• Untar the source archive to [dir].
• Issue:

 $ cd [dir]; make download

This will download the original GCC, binutils and newlibc sources.
• Issue:

 $ cd [dir]; make install

This will untar all the downloaded original archives over the current sourcetree, preserving the LEON specific
files.

• Issue

 $ cd [dir]; make all

This will build the GCC 4.4.2 and 3.4.4 toolchains. The default prefix is /opt.

1.5. Support

BCC is provided freely without any warranties. Technical support can be obtained from Cobham Gaisler through
the purchase of technical support contract. Please contact sales@gaisler.com for more details.

http://www.mingw.org

BCC-UM
September 2020, Version 1.0.52

5 www.cobhamaes.com/gaisler

2. General development flow

2.1. Overview

Compilation and debugging of applications is typically done in the following steps:

1. Compile and link the program with GCC
2. Debug program using a simulator (gdb connected to TSIM/GRSIM)
3. Debug program on remote target (gdb connected to GRMON)
4. Create boot-prom for a standalone application with mkprom2

BCC supports both tasking and non-tasking C/C++ programs. Compiling and linking is done in the same manner
as with a host-based GCC, and will not be explained here. The produced binaries will run on LEON3 and LEON4
systems, without requiring any switches during compilation.

2.2. GCC options

All GCC options are described in detail in the GCC manual. Some useful options are:

 -g generate debugging information - must be used for debugging with GDB.

 -msoft-float emulate floating-point - must be used if no FPU exists in the system.

 -mcpu=v8 generate SPARC V8 mul/div instructions - needs hardware multiply and divide.

 -O2, -O3 or -Os optimize code for maximum performance or minimal code size.

 -qsvt use the single-vector trap model.

 -mfix-b2bst enable workarounds for GRLIB technical note GRLIB-TN-0009.

 -mfix-tn0013 enable workarounds for GRLIB technical note GRLIB-TN-0013.

 -mfix-gr712rc enable workarounds applicable to GR712RC. -mfix-gr712rc enables
workarounds for the following technical notes:

• GRLIB-TN-0009
• GRLIB-TN-0012
• GRLIB-TN-0013

 -mfix-ut700 enable workarounds applicable to UT700 and UT699E. -mfix-ut700 enables
workarounds for the following technical notes:

• GRLIB-TN-0009
• GRLIB-TN-0013

 -mtune=ut699 set UT699 specific parameters (gcc-3.4.4 and gcc-4.4.2).

 -qfix-tn0018 Enable workarounds for GRLIB technical note GRLIB-TN-0018.

Note that in GCC version 3.4.4 -mcpu=v8 was called -mv8 and -mflat is present:

 -mv8 generate SPARC V8 mul/div instructions - needs hardware multiply and divide.

 -mflat do not use register windows (i.e. no save/restore instructions). This options is on-
ly available in gcc-3.4.4.

Ordinary C programs can be compiled without any particular switches to the compiler driver:

 $ sparc-elf-gcc -msoft-float -g -O2 hello.c -o hello.exe

The default link address is start of RAM, i.e. 0x40000000 for LEON. Other link addresses can be specified through
the -Ttext option (see GCC manual).

2.3. Floating-point considerations

If the targeted LEON processor has no floating-point hardware, then all applications must be compiled and linked
with the -msoft-float option to enable floating-point emulation. When running the program on the TSIM
simulator, the simulator should be started with the -nfp option (no floating-point) to disable the FPU.

BCC-UM
September 2020, Version 1.0.52

6 www.cobhamaes.com/gaisler

2.4. LEON SPARC V8 instructions

LEON3 processors can be configured to implement the SPARC V8 multiply and divide instructions. The BCC
compiler does by default not issue those instructions, but emulates them trough a library. To enable generation
of mul/div instruction, use the -mcpu=v8 switch during both compilation and linking. The -mcpu=v8 switch
improves performance on compute-intensive applications and floating-point emulation.

Both LEON3 and LEON4 can also supports multiply and accumulate (MAC). The compiler will never issue those
instructions, they have to be coded in assembly. Note that the BCC assembler and other utilities are based on a
modified version of GNU binutils-2.15 that supports the LEON MAC instructions.

2.5. Alternate register windows organization (only for GCC 3.X)

The compiler normally produces binaries that assumes that the target processor has 8 register windows. However,
by compiling and linking with the -mflat switch, it is possible to produce binaries that will run on processors
with only 2 register windows.

-mflat affect performance and code size. Using -mflat, the code size will increase with ~10%, and the per-
formance will decrease with the same amount. When creating boot proms (see below), it is essential that the same
-mflat parameter is given to mkprom2, as was used when the binary was compiled. Any miss-match will pro-
duce a faulty prom image.

2.6. Single vector trapping

When the VHDL model is configured to support single vector trapping (SVT) the -qsvt switch can be used with
the linker to build an image that uses a dispatcher rather than a static trap table. The saving amounts to ~4KiB for
the trap table, however trap handling will be slower. The image will try to enable SVT on boot using %asr17.

2.7. Memory organization

The resulting executables are in ELF format and have three main segments; text, data and bss. The text
segment is by default at address 0x40000000 for LEON3 and LEON4, followed immediately by the data and
bss segments. The stack starts at top-of-ram and extends downwards. The area between the end of bss and the
bottom of the stack is used for the heap.

2.8. NGMP, RAM applications located at address 0 and multibus systems

To create an application that is located at address 0, like when targeting a NGMP system, the option -Wl,-
msparcleon0 can be given to GCC or -msparcleon0 to ld. (Until BCC version 1.0.40: On systems with
multiple busses -qambapp can be given to GCC in the final link. This activates the AMBA PnP scan. From
version 1.0.41 onward AMBA scanning is default).

2.9. Recommended compiler options for LEON systems

Table 2.1 contains recommended GCC 4.4.2 options related to code generation for LEON based systems. Options
in the table apply also to GCC 3.4.4 when -mcpu=v8 is changed to -mv8.

The recommendations in Table 2.1 apply to BCC version 1.0.52. Other toolchains and other versions of BCC may
have other recommendations.

Table 2.1. Recommended compiler options for GCC 4.4.2

System Recommended options for GCC 4.4.2

GR740 silicon revision 1 -mcpu=v8 -Wl,-msparcleon0

GR740 silicon revision 0, LEON4-N2X -mcpu=v8 -Wl,-msparcleon0 -mfix-tn0013

GR712RC -mcpu=v8 -mfix-gr712rc -qfix-tn0018

UT699E, UT700 -mcpu=v8 -mfix-ut700 -qfix-tn0018

BCC-UM
September 2020, Version 1.0.52

7 www.cobhamaes.com/gaisler

System Recommended options for GCC 4.4.2

UT699/EPICA-NEXT, SCOC3 -mcpu=v8 -mtune=ut699 -qfix-tn0018

LEON3FT and LEON3FT-RTAX systems with
SPARC V8 mul/div based on GRLIB versions up
to and including build 4174.

-mcpu=v8 -mfix-b2bst -mfix-tn0013 -
qfix-tn0018

LEON3FT and LEON3FT-RTAX systems with
SPARC V8 mul/div based on GRLIB version
4175 to 4206

-mcpu=v8 -mfix-tn0013 -qfix-tn0018

LEON3FT and LEON3FT-RTAX systems with
SPARC V8 mul/div based on GRLIB version
4207 to 4248.

-mcpu=v8 -qfix-tn0018

LEON3FT and LEON3FT-RTAX systems with
SPARC V8 mul/div based on GRLIB version
4249 and later.

-mcpu=v8

LEON3 systems with SPARC V8 mul/div imple-
mented without cache parity protection.

-mcpu=v8

For GRLIB version up to and including 4206, also add

• -mfix-tn0013

LEON3/LEON3FT systems without SPARC V8
mul/div.

Do not use -mcpu=v8, but otherwise follow the recom-
mendations in this table.

LEON2 systems (AT697) Not supported

2.10. Making LEON boot-proms

To make a boot-prom that will run from the prom on a standalone LEON3 or LEON4 target, use the mkprom2
utility freely available at the Cobham Gaisler website. It will create a compressed boot image that will load the
application to the RAM, initialize various LEON registers, and finally start the application. mkprom2 will set all
target dependent parameters, such as memory sizes, memory waitstates, UART baudrate, and system clock. The
applications compiled with sparc-elf-gcc do not set these parameters themselves, and thus do not need to be re-
linked for different board architectures.

The example below creates a boot-prom for a system with 1 Mbyte RAM, one RAM waitstate, 3 waitstates for
ROM access, and 25 MHz system clock.

 $ mkprom2 -ramsize 1024 -ramws 1 -romws 3 -freq 25 hello.exe -msoft-float

Note that mkprom2 creates ELF files. To create an SRECORD file for a prom programmer, use objcopy:

 $ sparc-elf-objcopy -O srec hello.prom hello.srec

It is essential that the same -mflat, -qsvt and -msoft-float parameters are given to mkprom2, as was
used when the binary was compiled. Any miss-match will produce a faulty PROM image.

For more information on how to use mkprom2, see the mkprom2 users manual available at Cobham Gaisler
website.

BCC-UM
September 2020, Version 1.0.52

8 www.cobhamaes.com/gaisler

3. Libraries

3.1. Newlib and Stdio

BCC applications use Newlib, which is a POSIX compatible C-library with full math support. However, no file
or other I/O related functions are supported, with the exception of I/O to stdin/stdout. Stdin/stdout are mapped on
UART A, accessible via the usual stdio functions.

3.2. Time functions

The LEON timers are used to generate the system time. The function clock() will return the time expired in
microseconds. The gettimeofday(), time() and times() can also be used to get the time. Before the time functions
can be used, leonbare_init_ticks() should be called to start the LEON timers and install the timer interrupt handler:

 #include <asm-leon/timer.h>
 void leonbare_init_ticks();

This will initialize Timer1 and Timer2. Timer1 is used to generate ticks at 100Hz while Timer2 is used to create
high resolution timer events. Timer1 ticks can be used by installing a ticker callback at:

 tickerhandler ticker_callback;

Timer2 timer events can be generated by initializing a struct timerevent structure and calling

 #include <asm-leon/timer.h>
 int addtimer(struct timerevent *e);

struct timerevent 'expire' field is the timeposition at which the event should be triggered. The current time can be
retrieved using int gettimeofday(struct timeval *tv, struct timezone *tz);

3.3. Task switching

Task switching is supported by the functions:

 #include <contextswitch.h>
 int thread_setjmp(threadctx_t env, int val);
 void thread_longjmp(threadctx_t env, int val);

thread_longjmp() will save the current register windows to the stack and jump to the stack previously saved by
thread_setjmp() similar to clib's setjmp and longjmp construct. You can create your own scheduler by using a
construct like:

 void sched() {
 ...
 thread_longjmp(next());
 }
 ...
 if (!thread_setjmp(self()))
 sched();
 ...

3.4. Interrupt handling

Installing an interrupt handler is done by initializing member handler of a global variable struct irqaction and
calling:

 #include <asm-leon/irq.h>
 void chained_catch_interrupt (int irq, struct irqaction *a);

BCC-UM
September 2020, Version 1.0.52

9 www.cobhamaes.com/gaisler

where irq is the irq number (1 - 15). The supplied struct irqaction will be inserted in a list and therefore
should be global. The simple void *catch_interrupt(void func(int irq), int irq); is also supported which uses
chained_catch_interrupt internally.

The source code for libgloss (libleonbare.a) can be found in the src/libgloss directory.

For systems using the extended LEON3 interrupt controller with support for up to 31 interrupts it is possible to
use irq 1-31 with catch_interrupt() and chained_catch_interrupt().

An example on how to install an interrupt handler is supplied in the src/examples/c-irq.c example of
the BCC distribution.

Low-level interrupt processing takes around 40 instructions to set up the C enviroment for the interrupt handler
and another ~25 instruction to dispatch irq to the associated handler. If very fast processing is required, a custom
lowlevel assembly irqroutine can be installed using:

 #include <asm-leon/irq.h>
 void lolevelirqinstall(int irqnr,void (*handler)());

This will install the instructions:

 sethi %hi(handler), %l4;
 jmpl %l4 + %lo(handler), %g0;
 nop

at address traptable+0x100+(irqnr*16). The callers low-level interrupt routine has to ensure proper enviroment
setup before calling a C routine. This includes saving volatile register, checking for invalid windows and avoiding
nested irqs. An appropriate routine would be written in assembler.

In case of single vector trap schemes (-qsvt) you have to use the following funtion to insert an irq handler:

 int svtlolevelirqinstall(int trap,void (*handler)())

In case of -qsvt a table is used to dispatch the traps:

 struct svt_trap_entry {
 int start,end;
 void (*func)(void);
 };
 extern struct svt_trap_entry trap_table[28];

Where start and end specify the range of traps that handler func should process. The last entry in the table should
be {0,0,0}. You can modify the table by hand or use svtlolevelirqinstall to install a interrupt handler for you. Note
that the irq number is trap number + 0x10. The symbol svt_trap_table_ext_end marks the end of the trap dispatch
table. To insert a trap handler in -qsvt mode you can use the function:

 int svtloleveltrapinstall(int trap,void (*handler)());

Using svtlolevelirqinstall(irq,handler) is equivalent to svtloleveltrapinstall(irq+0x10,handler).

 Trap pre-amble

 1572 400001a0 ae10200a mov 10, %l7
 1579 400001a4 a1480000 mov %psr, %l0
 1580 400001a8 108022fc ba 0x40008d98
 1581 400001ac a7500000 mov %wim, %l3

 1582 40008d98 2d000004 sethi %hi(0x1000), %l6
 1587 40008d9c a02c0016 andn %l0, %l6, %l0
 1588 40008da0 2d100023 sethi %hi(0x40008c00), %l6
 1595 40008da4 ac15a1a8 or %l6, 0x1a8, %l6
 1596 40008da8 29100025 sethi %hi(0x40009400), %l4

BCC-UM
September 2020, Version 1.0.52

10 www.cobhamaes.com/gaisler

 etraps.s save state

 1597 40008dac 81c52170 jmp %l4 + 0x170
 1599 40008db0 932de008 sll %l7, 8, %o1
 1606 40009570 aa27a138 sub %fp, 312, %l5
 1613 40009574 c2256074 st %g1, [%l5 + 0x74]
 1616 40009578 c43d6078 std %g2, [%l5 + 0x78]
 1620 4000957c c83d6080 std %g4, [%l5 + 0x80]
 1624 40009580 cc3d6088 std %g6, [%l5 + 0x88]
 1634 40009584 15100029 sethi %hi(0x4000a400), %o2
 1635 40009588 d602a050 ld [%o2 + 0x50], %o3
 1639 4000958c d6256134 st %o3, [%l5 + 0x134]
 1644 40009590 960560b0 add %l5, 176, %o3
 1651 40009594 d622a050 st %o3, [%o2 + 0x50]

 check for invalid window:

 1654 40009598 a8102001 mov 1, %l4
 1655 4000959c a92d0010 sll %l4, %l0, %l4
 1656 400095a0 808d0013 andcc %l4, %l3, %g0
 1663 400095a4 02800013 be 0x400095f0
 1664 400095a8 01000000 nop
 1665 400095f0 81c5a008 jmp %l6 + 0x8
 1673 400095f4 9c100015 mov %l5, %sp

 back in irqtrap_fast.s:
 check for nested_irq flag + set pil

 1674 40008db0 932de008 sll %l7, 8, %o1
 1675 40008db4 92140009 or %l0, %o1, %o1
 1676 40008db8 11100029 sethi %hi(0x4000a400), %o0
 1677 40008dbc 90122054 or %o0, 0x54, %o0
 1678 40008dc0 d0020000 ld [%o0], %o0
 1688 40008dc4 80a00008 cmp %o0
 1691 40008dc8 22800002 be,a 0x40008dd0
 1692 40008dcc 92126f00 or %o1, 0xf00, %o1
 1693 40008dd0 818a6020 mov %o1, 0x20, %psr
 1700 40008dd4 01000000 nop
 1701 40008dd8 01000000 nop
 1702 40008ddc 01000000 nop

 --

 call routine catch_interrupt.c: handler_irq():

 1703 40008de0 90100017 mov %l7, %o0
 1710 40008de4 40000028 call 0x40008e84
 1711 40008de8 9203a0f0 add %sp, 240, %o1
 1712 40008e84 9de3bf98 save %sp, -104, %sp
 1713 40008e88 03100029 sethi %hi(0x4000a400), %g1
 1714 40008e8c 9b2e2002 sll %i0, 2, %o5
 1715 40008e90 82106228 or %g1, 0x228, %g1
 1722 40008e94 e000400d ld [%g1 + %o5], %l0
 1723 40008e98 80a42000 cmp %l0
 1726 40008e9c 02800018 be 0x40008efc
 1727 40008ea0 a4102001 mov 1, %l2
 1734 40008ea4 10800007 ba 0x40008ec0
 1735 40008ea8 da040000 ld [%l0], %o5
 1739 40008ec0 80a36000 cmp %o5
 1748 40008ec4 02bffffa be 0x40008eac
 1749 40008ec8 23100029 sethi %hi(0x4000a400), %l1
 1750 40008ecc c2046124 ld [%l1 + 0x124], %g1
 1754 40008ed0 90100018 mov %i0, %o0
 1761 40008ed4 80a06000 cmp %g1
 1762 40008ed8 12bffff5 bne 0x40008eac
 1764 40008edc 94100019 mov %i1, %o2
 1765 40008ee0 d2042008 ld [%l0 + 0x8], %o1
 1775 40008ee4 9fc34000 call %o5
 1777 40008ee8 e4246124 st %l2, [%l1 + 0x124]

 -- installed irq handler
 1780 40001260 9de3bf98 save %sp, -104, %sp

3.5. Extended IrqCtrl

The extended irq functionality is activated by the following code. Extended irq number is 13 in this example.

BCC-UM
September 2020, Version 1.0.52

11 www.cobhamaes.com/gaisler

 #include <asm-leon/irq.h>
 extern struct irqmp_type irqmp;
 ...
 irqmp.addr = 0x80000200;
 irqmp.eirq = 13;
 enable_irq(13);
 ...

irqmp.addr is the address of the irq controller, irqmp.eirq is the extended irq number. Having initialized the appli-
cation like this you can register an irq handler for an irq > 15 using catch_interrupt(). Note that the extended irq
number's interrupt handler itself is not called but the handler of the irq indicated by the extended irq ctrl's extended
irq acknowledge register. Another possibility is of course to implement the extended irq handling yourself.

3.6. Interrupt nesting

The variable

 extern unsigned int nestedirq;

can be set to 1 if irq nesteing is desired. It is set to 0 by default. In case of 0 the PSR's PIL will be set to 15 (highest)
to keep the irq processing uninterrupted. If nestedirq is set to 1 the PSR's PIL will be set to the incoming irq's level,
therefore causing higher level irq's to interrupt the current irq processing.

3.7. Installing custom irq handlers

To overwrite a compile-time generated traptable entry the function traptable_genjmp() can be used:

 #include <asm-leon/leon3.h>
 extern void traptable_genjmp(unsigned long *p, int i, int arg, unsigned int fn);
 extern unsigned int sparc_leon23_get_tbr_base(void);

where p is the traptable base, i the traptable index, arg a 13 bit value in %l7 at the time of the traphandler call
and fn the assembly function address to be called. The routine sparc_leon23_get_tbr_base() can be
used to retrieve the current %tbr base value.

Below is a simple example that routes the window_overflow (0x5) trap call through mynewhandler:

 ...
 #include <asm-leon/leon3.h>
 ...
 void wrap(void) {
 __asm__ __volatile__("\n.global mynewhandler\nmynewhandler:\n"
 "mov %%psr, %%l0\n"
 "ba _window_overflow;nop\n"
 ::);
 }
 extern void mynewhandler();
 main () {
 traptable_genjmp((void *)sparc_leon23_get_tbr_base(), 5, 0, (int)&mynewhandler);
 ...

3.8. Small binary

Newlib atexit() introduces a dependency on malloc() which will add ~10KiB extra code. If you want to
avoid this you can link against libsmall.a (-lsmall). libsmall.a's atexit() supports only static 32
exit-function entries. The C library newlib atexit() function is declared weak and can be overridden.

The compiler option -lsmall removes references to malloc() by overriding the newlib atexit() function.

3.9. Amba PLUG and PLAY

Up to BCC 1.0.40: The option -qambapp can be given to GCC to enable PLUG and PLAY scanning for UART,
timer and irq-ctrl across AHB2AHB bridges. The default setup only scanns the main BUS's configuration area
at 0xfff00000.

BCC-UM
September 2020, Version 1.0.52

12 www.cobhamaes.com/gaisler

From BCC 1.0.41 and upward: recursive scanning is enabled per default, -qnoambapp can be given to disable
recursive scaning.

3.10. FreeRTOS

The sheduling library FreeRTOS is included in the BCC distribution. The precompiled library libfreertos.a
was compiled using the configuration file supplied in [installdir]/sparc-elf/include/freer-
tos/FreeRTOSConfig.h.

To recompile it with another configuration, goto [installdir]/src/freertos/, update FreeRTOSConfig.h and issue

 $ make recompile

Additional sources can be added to $(LIBOBJ).

Refer to the documentation available on the FreeRTOS website http://www.freertos.org for information on how
to use the FreeRTOS API.

http://www.freertos.org

BCC-UM
September 2020, Version 1.0.52

13 www.cobhamaes.com/gaisler

4. Execution and debugging

4.1. TSIM simulator and GRMON debug monitor

LEON applications can be debugged on either the TSIM simulator or on a hardware target connected with the
GRMON debug monitor. Both TSIM and GRMON can be connected to the GNU debugger (sparc-elf-gdb) to
perform source-level symbolic debugging.

For more information on GRMON and TSIM, see their respective user manuals.

4.2. Running on the TSIM simulator

To execute an application in the TSIM LEON simulator, use the load command to load the binary, and the run
command to execute the application:

 $ tsim-leon3

 TSIM LEON SPARC simulator, version 2.0.3 (professional version)

 Copyright (C) 2001, Gaisler Research - all rights reserved.
 using 64-bit time
 serial port A on stdin/stdout
 allocated 4096 K RAM memory, in 1 bank(s)
 allocated 2048 K ROM memory
 icache: 1 * 4 kbytes, 16 bytes/line (4 kbytes total)
 dcache: 1 * 4 kbytes, 16 bytes/line (4 kbytes total)
 tsim> load hello.exe
 section: .text at 0x40000000, size 35120 bytes
 section: .data at 0x40008930, size 2080 bytes
 section: .jcr at 0x400091b4, size 4 bytes
 tsim> run

 starting at 0x40000000
 Hello world!

 Program exited normally.
 tsim>

4.3. Debugging with GDB

To debug an application with GDB, start TSIM with the -gdb option (or issue the gdb command inside TSIM).
TSIM by default listens on port 1234 for a GDB connection. This can be changed to any port using the TSIM -
port switch at start-up.

 $ tsim-leon3 -gdb

 TSIM LEON SPARC simulator, version 2.0.3 (professional version)

 Copyright (C) 2001, Gaisler Research - all rights reserved.
 using 64-bit time
 serial port A on stdin/stdout
 allocated 4096 K RAM memory, in 1 bank(s)
 allocated 2048 K ROM memory
 icache: 1 * 4 kbytes, 16 bytes/line (4 kbytes total)
 dcache: 1 * 4 kbytes, 16 bytes/line (4 kbytes total)
 gdb interface: using port 1234

Then, start GDB in a separate shell, load the application to the target, add optional breakpoints, and finally execute
the application using the GDB run command:

 $ sparc-elf-gdb hello.exe
 GNU gdb 5.3
 Copyright 2002 Free Software Foundation, Inc.
 GDB is free software, covered by the GNU General Public License, and you are
 welcome to change it and/or distribute copies of it under certain conditions.
 Type "show copying" to see the conditions.
 There is absolutely no warranty for GDB. Type "show warranty" for details.
 This GDB was configured as "--host=i686-pc-linux-gnu --target=sparc-tsim-elf"...
 (gdb) target extended-remote localhost:1234
 Remote debugging using localhost:1234

BCC-UM
September 2020, Version 1.0.52

14 www.cobhamaes.com/gaisler

 0x00000000 in ?? ()
 (gdb) load
 Loading section .text, size 0x8930 lma 0x40000000
 Loading section .data, size 0x820 lma 0x40008930
 Loading section .jcr, size 0x4 lma 0x400091b4
 Start address 0x40000000, load size 37204
 Transfer rate: 297632 bits in <1 sec, 275 bytes/write.
 (gdb) break main
 Breakpoint 1 at 0x40001384: file hello.c, line 4.
 (gdb) run
 The program being debugged has been started already.
 Start it from the beginning? (y or n) y
 Starting program: /home/jiri/samples/hello.exe

 Breakpoint 1, main () at hello.c:4
 4 printf("Hello world!\n");
 (gdb)

To re-execute the application, first re-load it to the target using the GDB load command and the issue run again.

4.4. Debugging on target hardware

To connect GRMON to a LEON system, start GRMON on the command line in a terminal shell. By default,
GRMON will connect to the processor debug support unit (DSU) using a serial port of the host (ttyS0 or com1).
See the GRMON manual for more information on how to connect via JTAG, PCI, ethernet or Spacewire. Once
connected, the application can be downloaded and executed using the same procedure as when the simulator is
used:

 $ grmon -u

 GRMON - The LEON multi purpose monitor v1.0.7

 Copyright (C) 2004, Gaisler Research - all rights reserved.
 For latest updates, go to http://www.gaisler.com/
 Comments or bug-reports to support@gaisler.com

 using port /dev/ttyS0 @ 115200 baud

 initialising

 Component Vendor
 Leon3 SPARC V8 Processor Gaisler Research
 AHB Debug UART Gaisler Research
 Ethernet DSU interface Gaisler Research
 LEON2 Memory Controller European Space Agency
 AHB/APB Bridge Gaisler Research
 Leon3 Debug Support Unit Gaisler Research
 Generic APB UART Gaisler Research
 Multi-processor Interrupt Ctrl Gaisler Research
 Modular Timer Unit Gaisler Research

 Use command 'info sys' to print a detailed report of attached cores

 grmon[grlib]> load hello.exe
 section: .text at 0x40000000, size 35120 bytes
 section: .data at 0x40008930, size 2080 bytes
 section: .jcr at 0x400091b4, size 4 bytes
 total size: 37204 bytes (99.4 kbit/s)
 read 110 symbols
 entry point: 0x40000000

 grmon[grlib]> run
 Hello world!

 Program exited normally.
 grmon[grlib]>

Connecting GDB to GRMON when attached to a real LEON target is done in the same way as when using the
simulator. GRMON uses port 2222 by default to communicate with GDB.

4.5. Using the DDD graphical front-end to GDB

DDD is a graphical front-end to GDB, and can be used regardless of target. DDD must be started with the --
debugger switch to select the sparc debugger, rather than the native GDB:

BCC-UM
September 2020, Version 1.0.52

15 www.cobhamaes.com/gaisler

 ddd --debugger sparc-elf-gdb --attach-window

For further details on DDD operation, see the DDD web site: http://www.gnu.org/software/ddd/. DDD also has a
built-in manual under the HELP menu in the main window.

Figure 4.1. DDD with TSIM

Attaching to TSIM or GRMON is done in the same manner as when using sparc-elf-gdb without DDD. The GDB
commands are entered in the bottom command window. Remember to load the application first, before issuing a
run command. On Cygwin hosts, the Cygwin X-server must first be started by issuing startx in a Cygwin terminal.
This will open an Xterm window, from which DDD should be started with the options mentioned above.

4.6. Using the Insight debugger

The Insight debugger is based on GDB-6.4 with an TCL/TK based graphical front-end. It can be used on both
Linux and Cygwin hosts. The debugger is started with:

 sparc-elf-insight app.exe

This will create the Insight main window:

http://www.gnu.org/software/ddd/

BCC-UM
September 2020, Version 1.0.52

16 www.cobhamaes.com/gaisler

Figure 4.2. Insight main window

Clicking on the RUN button (or selecting Run->Connect) will open the Connect to target menu:

Figure 4.3. Insight target selection window

To connect to TSIM, select Remote/TCP and port 1234. To connect to GRMON, select port 2222. Enable the
breakpoint on main, but disable the breakpoint on exit. Before clicking on OK, make sure that you have started
TSIM or GRMON in a separate terminal, and entered GDB mode. Insight automatically downloads the application
to the target when needed, so the load command does not have to be issued manually. To restart the application,
just click on the run button again.

Insight requires at least TSIM version 2.0.5 or GRMON version 1.1.12.

BCC-UM
September 2020, Version 1.0.52

17 www.cobhamaes.com/gaisler

5. Support

For support contact the Cobham Gaisler support team at support@gaisler.com.

When contacting support, please identify yourself in full, including company affiliation and site name and address.
Please identify exactly what product that is used, specifying if it is an IP core (with full name of the library
distribution archive file), component, software version, compiler version, operating system version, debug tool
version, simulator tool version, board version, etc.

The support service is only for paying customers with a support contract.

BCC-UM
September 2020, Version 1.0.52

18 www.cobhamaes.com/gaisler

Cobham Gaisler AB
Kungsgatan 12
411 19 Gothenburg
Sweden
www.cobhamaes.com/gaisler
sales@gaisler.com
T: +46 31 7758650
F: +46 31 421407

Cobham Gaisler AB, reserves the right to make changes to any products and services described
herein at any time without notice. Consult Cobham or an authorized sales representative to verify that
the information in this document is current before using this product. Cobham does not assume any
responsibility or liability arising out of the application or use of any product or service described herein,
except as expressly agreed to in writing by Cobham; nor does the purchase, lease, or use of a product
or service from Cobham convey a license under any patent rights, copyrights, trademark rights, or any
other of the intellectual rights of Cobham or of third parties. All information is provided as is. There is no
warranty that it is correct or suitable for any purpose, neither implicit nor explicit.

Copyright © 2020 Cobham Gaisler AB

	
	Table of Contents
	1. Introduction
	1.1. Scope
	1.2. BCC 1.0 life cycle status
	1.3. Installation
	1.3.1. Host requirements
	1.3.2. Linux / Cygwin
	1.3.3. Windows

	1.4. Building from source
	1.5. Support

	2. General development flow
	2.1. Overview
	2.2. GCC options
	2.3. Floating-point considerations
	2.4. LEON SPARC V8 instructions
	2.5. Alternate register windows organization (only for GCC 3.X)
	2.6. Single vector trapping
	2.7. Memory organization
	2.8. NGMP, RAM applications located at address 0 and multibus systems
	2.9. Recommended compiler options for LEON systems
	2.10. Making LEON boot-proms

	3. Libraries
	3.1. Newlib and Stdio
	3.2. Time functions
	3.3. Task switching
	3.4. Interrupt handling
	3.5. Extended IrqCtrl
	3.6. Interrupt nesting
	3.7. Installing custom irq handlers
	3.8. Small binary
	3.9. Amba PLUG and PLAY
	3.10. FreeRTOS

	4. Execution and debugging
	4.1. TSIM simulator and GRMON debug monitor
	4.2. Running on the TSIM simulator
	4.3. Debugging with GDB
	4.4. Debugging on target hardware
	4.5. Using the DDD graphical front-end to GDB
	4.6. Using the Insight debugger

	5. Support

