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1 INTRODUCTION

1.1 Scope of the Document

This document describes behaviour for the LEON/GRLIB Memory Management Unit (MMU). The 
behaviour of the memory management unit has changed starting at GRLIB build ID 4152 and this 
document explains the reason for the changes and the effects on software for the old and new 
behaviour.

1.2 Distribution

LEON3, LEON3FT, LEON4 and LEON4FT users are free to use the material in this document in 
their own documents and to redistribute this document. Please contact Cobham Gaisler for inquires 
on other distribution.

1.2.1 Contact

For questions on this document, please contact Cobham Gaisler support at support@gaisler.com. 
When requesting support include the part name if the question is a specific device or the full 
GRLIB IP library package name if the question relates to a GRLIB IP library license.

1.2.1.1 Checking GRLIB version

The GRLIB build ID is present in the AMBA plug&play area. The build ID is also reported by the 
GRMON debug monitor when connecting to the device.

If you are licensing GRLIB for use in your own FPGA or ASIC design, this can be seen in the file 
name of the downloaded release package, in the directory name after unpacking the release, and in 
the file lib/grlib/stdlib/version.vhd in the release file tree (constant grlib_build).

1.3 Reference Documents

[SPARCv8] The SPARC Architecture Manual, Version 8, Revision SAV080SI9308, SPARC
International Inc

© Cobham Gaisler AB
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2 SRMMU BEHAVIOUR

2.1 Overview

The LEON MMU is implemented based on the SRMMU description in appendix H of [SPARCv8]. 
Sections H.5 and H.6 of [SPARCv8] describes the behaviour of the Fault Status Register and the 
Fault Address Register. LEON processors implemented from versions prior to build 4152 of the 
GRLIB library have a guard for the FSR and FAR registers where one invalid address error prevents 
new invalid address errors from overwriting the registers. This has effects on the software handling 
of MMU faults.

This document assumes that the reader is familiar with the SPARC V8 reference MMU architecture. 
Please see [SPARCv8] appendix H before proceeding to the next sections.

2.2 Description of SRMMU behaviour before and after build 4152

LEON processors implemented with build IDs lower than 4152 (applies to Cobham GR712, 
UT699, UT699e, UT700) will only overwrite (overwrite here means updating FSR and FAR while 
FSR.FAV='1') an invalid address error when the MMU receives an AMBA ERROR response during 
page table traversal. In addition to this, these implementations will signal invalid address error for 
errors described in [SPARCv8] as translation errors. The table below describes differences in 
behaviour between the two versions:

State New event Behaviour of versions 
prior to build 4152

Behaviour build 4152 
and higherFAR.FAV FSR.FT

Don't Care Don't care AMBA ERROR response FSR and FAR updated. 
FSR.FT=internal error

FSR and FAR updated. 
FSR.FT=translation error

0 Don't care Any fault FSR and FAR updated FSR and FAR updated

0 Don't care PTD is found in a level-3 
page table, or a PTE has 
ET=3

FSR and FAR updated 
with invalid address error

FSR and FAR updated 
with translation error

1 Invalid 
address 
error

Any, except AMBA 
ERROR response
(see first row for AMBA 
ERROR case)

No change FSR and FAR updated 
according to [SPARCv8] 
section H.5.

1 Invalid 
address 
error

PTD is found in a level-3 
page table, or a PTE has 
ET=3

No change FSR and FAR updated 
with translation error

Table 1: Fault type reporting and overwrite conditions for different LEON MMU versions
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2.3 Effects 

The MMU behaviour prior to LEON/GRLIB build 4152 requires additional software handling to 
resolve MMU faults in cases where a MMU lookup alters the state of the MMU FSR and FAR 
registers but does not cause a trap where the registers are read to clear the FSR.FAV bit. In this case, 
implementations prior to build 4152 may contain old information in the FSR and FAR registers for 
a subsequent trap.

Three cases where this happens are described in the subsections below.

2.3.1 Branch prediction causing MMU faults

In LEON processors with branch prediction, the processor will assume that branches are always 
taken and will speculatively fetch the instructions at the branch target address. Consider the code 
sequence below:

...
nop
nop
cmp %g1, %g2
bne btarget
nop
nop
nop
...

In the above sequence, the processor in LEON/GRLIB implementations with build ID lower than 
4152 will always fetch the instructions at the branch target btarget, regardless of if the branch is 
later taken or not. If btarget is an invalid address (MMU page table entry PTE.V='0') then the MMU 
FSR and FAR registers will be updated with information on the fault. For LEON/GRLIB 
implementations with build ID 4152 and higher, the branch prediction behaviour can be 
configurable via register %ASR17.

For LEON/GRLIB implementations with build ID lower than 4152, this will mean that a 
subsequent MMU fault will not update the FSR and FAR registers. A load or store to an invalid 
address, following the sequence above, will cause an MMU trap. But the FSR and FAR registers 
will contain information from the speculative instruction fetch.

In LEON implementations with build ID 4152 and higher, the latest access will update the FSR and 
FAR registers during normal operation.

© Cobham Gaisler AB
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2.3.2 Load and branch to invalid addresses

In LEON processors, prior to build 4152, the sequence below will cause a trap on the load 
instruction while the MMU FAR and FSR registers will contain information about the btarget 
address. This is assuming that both the dtarget and btarget addresses are invalid (PTE.ET=0).

...
nop
nop
set dtarget, %g2
ld [%g2], %g0
ba btarget
nop
nop
nop
...

In the above sequence, the processor will follow the branch and fetch instructions from the btarget 
address. The lookup for btarget is done before the lookup for load address dtarget. A lookup is then 
performed for dtarget and the processor will, correctly trap, on the load instruction. The MMU FSR 
and FAR registers will contain information on the invalid address error for the instruction fetch.

In LEON implementations with build ID 4152 and higher, the data access will update the FSR and 
FAR registers and the MMU FSR and FAR registers will contain information for the trapped 
instructions. When this has been resolved, a new trap will be generated for the branch to btarget.

2.3.3 Interrupt before branch instruction

In LEON processors prior to build 4152, the FAR and FSR registers may reflect old information if 
an interrupt occurs before a branch instruction:

...
nop
nop
nop <--- IRQ happens here
b btarget
...

The btarget address instruction fault will get stored. If the IRQ handler returns to the same address 
then the situation will be resolved since we trap again trap again but if it returns somewhere else 
(for example timer IRQ leading to task switch) then there could be an unhandled error data in the 
MMU.

© Cobham Gaisler AB
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3 REQUIREMENTS ON SOFTWARE

3.1 Overview

LEON implementations with build ID 4152 and higher do not need special consideration. MMU 
handlers conforming to the SPARCv8 SRMMU description will function correctly.

LEON implementations with a build ID lower than 4152 need to implement the following for 
handling MMU faults:

• When the processor traps on a load or store instruction, or due to the execution flow entering 
a new memory page, the handler needs to be aware that the FSR and FAR registers may 
contain information about a previous, non-handled, instruction fault.

• When the processor traps with data_access_exception, the MMU FSR and FAR registers 
may instead of the data access causing the trap, contain information about a previous mis-
predicted instruction fault. It may also contain information about an instruction fault about 
to happen within 4 instructions after the trapping instruction.

• When the processor traps with any other exception, the MMU FSR and FAR registers may 
similarly contain information about a previous mis-predicted instruction fault or an 
instruction fault about to happen within 4 instructions after the trapping instruction. If this is 
not cleared then it will remain in the MMU until the next MMU-related trap.

For implementations with branch prediction, the fault above may be caused by branch prediction 
and would in this case not need to be handled. For implementations without branch prediction the 
fault is due to an instruction fault and is optional to handle (the fault will be regenerated after the 
data fault has been correctly handled).

When the MMU contains stale information from an old fault it is enough to read the FSR register, to 
clear the FSR.FAV flag, and then re-execute the failing instruction. This will regenerate the trap 
and, since FSR.FAV='0', will update FSR and FAR with the latest required information. This does 
not solve the case where the failing instruction is followed by a branch that causes the FSR and 
FAR register to be updated with an instruction fault.

The only known workaround for both cases is to:

1) make the data_access_exception trap handler capable of handling paging of instructions as well 
as data. (connect the instruction_access_exception and data_access_exception to the same handler 
and check the MMU FSR Access Type field instead).

2) clear the MMU error state whenever changing context (ensures instruction addresses are always 
valid for the current process).

© Cobham Gaisler AB
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3.2 Behaviour of different software versions

• Linux: The on-demand paging design of Linux minimizes the work performed by only 
mapping in accessed regions. MMU faults are part of the normal operation of Linux kernel 
and the trap handlers analyse the content of the FAR/FSR MMU registers. A workaround for 
the issues described in this document has been implemented to the 3.10 linux kernel, 
available from release 3.10.58-1.0.4 and onwards. The workaround is always enabled forall 
LEON targets.
Linux versions prior to release 3.10.58-1.0.4 do NOT correctly handle he SRMMU 
behaviour in devices with build ID lower than 4152. As long as the FAR register contains 
addresses that are valid for the current process, there will be no malfunction. This appears to 
be the typical case since no user reports about this issue have been received during the 10+ 
years that the problem has existed. There is a possible performance degradation due to the 
uncecessary MMU page table traversal and all users are recommended to upgrade or patch 
their Linux kernels as there is a risk for malfunctions being triggered.

• VxWorks: The default LEON VxWorks MMU fault trap handling is to shutdown or stop 
when the kernel or Real-Time Process (RTP) causes an MMU instruction or data fault 
exception. The MMU fault is not analysed. Thus, a workaround is not applicable for 
VxWorks. The user can override the default behaviour with a custom trap handler or 
VxWorks exception hook. User MMU fault trap handlers should take this errata into account 
if FAR/FSR are being analysed. The VxWorks operating system maps all valid address 
ranges when an Real-Time Process (RTP) is created. VxWorks thereby ensures that MMU 
faults only happen when there is an unexpected fault. The real-time design of VxWorks 
avoids MMU faults since it would have be hard to predict the impact on an application's 
real-time behaviour by pausing the application while handling MMU page faults.

• No other operating systems distributed by Cobham Gaisler have MMU support.
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4 FAQ

4.1 I am using a system with MMU enabled without problems. Do I need to do 
anything?

If your device has a build ID less than 4152 then your MMU will update FSR and FAR according to 
the old behaviour described in this document. Note that you may not notice this behaviour unless 
you have code sequences described in this document under the same conditions (load/store and 
branch to invalid address in sequence). Users of all devices prior to build ID 4152 should verify that 
their MMU trap handlers are equipped to handle stale values in FSR and FAR.
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Copyright © 2015 Cobham Gaisler. 

Information furnished by Cobham Gaisler is believed to be accurate and reliable. However, no 
responsibility is assumed by Cobham Gaisler for its use, or for any infringements of patents or other 
rights of third parties which may result from its use. No license is granted by implication or 
otherwise under any patent or patent rights of Cobham Gaisler. 

All information is provided as is. There is no warranty that it is correct or suitable for any purpose, 
neither implicit nor explicit.
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