

GRSCRUB – External FPGA Configuration Supervisor

Application Note 2020-06-12

Doc. No GRLIB-AN-0012

Issue 1.0 Contract N/A

Delivery N/A

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 2 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

CHANGE RECORD

Issue Date Section / Page Description

1.0 2020-06-12 First issue of this document.

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 3 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

TABLE OF CONTENTS

1 Introduction .. 4

1.1 Scope of the Document ... 4

1.2 Reference Documents ... 4

2 Abbreviations ... 5

3 Soft error mitigation in SRAM-based FPGAs .. 6

4 GRSCRUB IP - FPGA configuration supervisor... 7

4.1 GRSCRUB IP operation modes... 7

4.2 GRSCRUB IP additional features.. 8

4.3 GRSCRUB IP system setup .. 8

4.4 GRSCRUB IP and SEM-IP comparison... 9

5 Designing with the GRSCRUB IP ... 9

5.1 GRSCRUB synchronization.. 10

5.2 GRSCRUB operation control .. 11

5.2.1 Identifying the addresses of the GRSCRUB’s registers ... 11

5.2.2 Initial Golden memory configuration.. 12

5.2.3 Programming the target FPGA ... 14

5.2.4 Mapping the target FPGA .. 15

5.2.5 Storing the golden CRC codes.. 15

5.2.6 Scrubbing the target FPGA .. 16

6 Connecting with the target FPGA .. 18

7 Experimental evaluation setup ... 20

7.1.1 Test controller ... 20

7.1.2 Target FPGA – Xilinx Kintex UltraScale XCKU060 ... 21

8 Evaluation results ... 22

8.1 Performance analysis .. 23

9 Conclusion ... 23

APPENDIX A Example of Tcl script to configure the GRSCRUB IP using GRMON3 24

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 4 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

1 INTRODUCTION

1.1 Scope of the Document

This application note presents the GRSCRUB IP functionalities and describes the system integration
targeting a Xilinx Kintex UltraScale FPGA embedded in an ADA-SDEV-KIT2 development board.

The work has been performed by Cobham Gaisler AB, Göteborg, Sweden.

1.2 Reference Documents

The following documents are referred as they contain relevant information:

[RD1] J. Heiner et al., “Fault Tolerant ICAP Controller for High-Reliable Internal Scrubbing,”
2008 IEEE Aerospace Conference, Big Sky, MT, 2008, pp. 1-10.

[RD2] F. Brosser et al., “Assessing scrubbing techniques for Xilinx SRAM-based FPGAs in
space applications,” 2014 International Conference on Field-Programmable Technology
(FPT), Shanghai, 2014, pp. 296-299.

[RD3] A. Stoddard et al., “A Hybrid Approach to FPGA Configuration Scrubbing,” in IEEE
TNS, vol 64, no 1, pp 497-503, Jan 2017.

[RD4] Xilinx, “Soft Error Mitigation Controller,” v4.1 LogiCORE IP Product Guide, Vivado
Design Suite, PG036, Apr. 2018.

[RD5] C. Gaisler, GRLIB IP Core User’s Manual, Version 2020.1, Mar. 2020.

[RD6] D. S. Lee et al., “An Analysis of High-Current Events Observed on Xilinx 7-Series and
Ultrascale Field-Programmable Gate Arrays,” IEEE Rad. Effects Data Workshop

(REDW), Portland, OR, USA, 2016, pp. 1-5.

[RD7] M. Berg et al., “Effectiveness of Internal Versus External SEU Scrubbing Mitigation

Strategies in a Xilinx FPGA: Design, Test, and Analysis,” in IEEE TNS, vol. 55, no. 4,
pp. 2259-2266, Aug. 2008.

[RD8] Xilinx, “KCU105 Board User Guide,” UG917 (v1.10), Feb 2019.

[RD9] C. Gaisler, “GRMON3 User's Manual,” GRMON3-UM (Version 3.2.2), Mar. 2020.

[RD10] AlphaData, “ADM-SDEV-BASE/XCKU060 User Manual,” V1.4, 2020.

[RD11] Xilinx, “UltraScale Architecture Configuration,” UG570 (v1.12), March 31, 2020.

[RD12] Imec, “Mixed-Signal ASICs for Harsh Environments,” 2019 [Online]. Available:
http://dare.imec-int.com/.

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 5 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

2 ABBREVIATIONS

FPGA Field Programmable Gate Arrays

SEE Single Event Effects

CLB Configurable Logic Blocks

I/O Input and Output

SEU Single Event Upsets

SET Single Events Transients

SDC Silent Data Corruptions

SEFI Single Event Functional Interrupt

SEM-IP Soft Error Mitigation Intellectual Property

IP Intellectual Property

BRAM Block RAMs

FF Flip-Flops

ECC Error Correction Code

EDAC Error Detection And Correction

CRC Cyclic Redundancy Check

FFC Full Frame Check

SMAP SelectMap

GRLIB Cobham Gaisler’s IP library

FAR Frame Address Register

DUT Device Under Test

RF Register File

IU Integer Unit

AMBA Advanced Microcontroller Bus Architecture

AHB AMBA High-performance Bus

APB Advanced Peripheral Bus

AXI Advanced eXtensible Interface

CMOS Complementary Metal Oxide Semiconductor

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 6 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

3 SOFT ERROR MITIGATION IN SRAM-BASED FPGAS

Radiation-induced soft errors are errors provoked by ionized particles that affect the system without
damaging the device permanently. Even the space-grade Field Programmable Gate Arrays (FPGA)
are susceptible to Single Event Effects (SEE) that may affect not only the user data but also the

configuration memory of the device. SRAM-based FPGAs are particularly susceptible to soft errors
due to the memory elements used to configure the design logic and architecture.

The FPGA configuration memory defines the Configurable Logic Blocks (CLB), Input and Output
(I/O) interconnections, and clock lines, for instance. Single Event Upsets (SEU) affecting such
elements may lead to persistent errors in the system, changing the architectural implementation of the
design. The Single Events Transients (SET) are transient pulses that propagate through the

combinational logic and may be captured by a memory cell, changing the storage data. Soft errors
can also directly affect the memory data, registers, and flip-flops, and cause Silent Data Corruptions
(SDC), which are incorrect results outputs. The Single Event Functional Interrupt (SEFI) occurs when
a soft error affects the control logic or a state register and leads to hangs or crashes in the design.

The configuration memory of the Xilinx SRAM-based FPGAs is organized in frames, and each frame
contains data divided into 32-bit words. Xilinx defines the configuration memory bits as non-essential,

essential, and critical, and such characterization is dependent on the implemented design. Non-
essential bits are related to the unused area of the FPGA configuration memory. The essential bits are
the configuration bits that define the design, and soft errors in such bits modify the circuitry, which
might or might not affect the design functionality. When the bit upset affects the function of the design,

such a bit is defined as critical. Therefore, soft errors in critical bits are the most damage to the system
since the design is directly corrupted. Another significant cause of design failure is the accumulation
of upsets in the essential bits. The higher the number of bit-flips in the configuration memory, the
higher the probability of the circuitry changes affect the design.

Scrubbing is a well-known technique responsible for coping with errors in the configuration memory
and avoiding their build-up. Scrubbing can be defined as internal when the scrubber engine is

embedded in the target FPGA being monitored, and external when the scrubber controller is located
externally to the target FPGA in a different component. The literature presents several scrubbing
implementations that mainly differ in the error detection, power consumption, resource usage, and
correction speed [RD1, RD2, RD3]. A well-known internal scrubbing core is the Xilinx Soft Error

Mitigation Intellectual Property (SEM-IP) [RD4] that is compatible with most of Xilinx FPGAs.

The memory elements that store dynamic data, such as Block RAMs (BRAM), distributed memory,

and Flip-Flops (FF), are not protected by the scrubbing technique. Soft errors affecting the dynamic
elements can be mitigated by applying fault tolerance techniques such as redundancy or Error
Correction Code (ECC). Triplicating logic is an efficient method to cope with the effects of single
faults in the design. Additional user level techniques can also be applied to deal with SDCs. Moreover,

a periodic reset may be required to reestablish the system state and restore the initial state of flip -
flops. Since SEFIs may also affect internal control elements of the FPGA or the configuration
interface, a complete power cycle might be required to restore the system.

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 7 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

4 GRSCRUB IP - FPGA CONFIGURATION SUPERVISOR

The Cobham Gaisler’s GRSCRUB IP core is an external FPGA configuration supervisor that features
programming and scrubbing capabilities, which prevents the accumulation of errors in the
configuration memory of SRAM-based FPGAs. The GRSCRUB IP targets soft errors affecting the

FPGA configuration memory, and it is able to detect and correct single and multiple errors. However,
one must notice that the GRSCRUB IP does not avoid bit-flips from happening or its effects on the
design, as well as other scrubbers. Therefore, additional mitigation techniques at design level are
recommended to decrease the number of single points of failure in the system and increase the fault

masking, such as the ones described in Section 3.

The GRSCRUB IP is currently compatible with the Kintex UltraScale and Virtex-5 Xilinx FPGA

families. It accesses the FPGA configuration memory externally through the SelectMap (SMAP)
interface, which provides better performance in comparison with JTAG, due to the parallel data access.
The GRSCRUB is part of the Cobham Gaisler’s IP library (GRLIB) [RD5]. Moreover, the GRSCRUB
IP will be integrated into the next version of the GR716 Microcontroller (GR716B), which is a mixed-

signal fault-tolerant microcontroller based on the LEON3FT SPARC V8 processor. After the initial
configuration, the GRSCRUB IP is self-standing, which releases the processor core or the
primary system to perform other tasks.

4.1 GRSCRUB IP operation modes

The GRSCRUB IP implements five operation modes:

1) Idle mode: the IP is in idle waiting for an operation command.

2) Programming mode: the IP programs the configuration bitstream into the target FPGA.

3) Scrubbing mode: the IP executes a scrubbing operation. As described further, two scrubbing

methods are supported: blind and readback scrubbing. The IP can be configured to scrub the entire

FPGA configuration memory or just selected frames.

4) Mapping mode: the IP identifies and maps the frame addressing of the target FPGA. The frame

addressing defines the frames positioning in the target FPGA, required for any scrubbing opera-

tion. Only frames that refer to configuration blocks are mapped, i.e., the memory block frames

are not considered. The frame addresses are saved in the Golden memory and are accessed by the

IP in scrubbing mode during reading and writing operations.

5) Golden Cyclic Redundancy Check (CRC) mode: the IP computes the golden CRC codes for

the current frame data of the target FPGA configuration memory. The CRC code can be selected

as a data check in the readback scrubbing mode. A CRC code is computed to each frame of the

configuration memory, and it is verified against the golden CRC copy.

The GRSCRUB IP scrubbing operation mode supports both blind and readback scrubbing methods.
In the blind scrubbing mode, the GRSCRUB IP rewrites the configuration frames without any data
verification. The blind scrubbing can be performed periodically, continually refreshing the

configuration data. In the readback scrubbing mode, the GRSCRUB IP verifies the integrity of each
frame of the FPGA configuration memory, and then, in the event of errors, rewrites the frame with
the correct data read from the Golden memory. Differently from the blind scrubbing, the readback
mode allows detecting errors and correcting the frame only if necessary. The readback can also be

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 8 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

executed periodically.

The error detection can be performed through CRC verification or by comparing a frame bit-by-bit
against its golden version stored in the Golden memory. The latter option is defined as Full Frame
Check (FFC). The CRC is an error detection code that applies redundancy to check inconsistencies.
A standard 32-bit CRC (CRC32C) algorithm is computed for each FPGA frame and compared to the

golden code saved in the Golden memory. Note that the CRC code used by the GRSCRUB IP is not
related to the FRAME_ECC primitive from Xilinx FPGAs [RD4]. The CRC and FFC data
verifications do not check the masked bits. Each data verification method can be configured to be
enabled or not.

4.2 GRSCRUB IP additional features

The configuration interface of the target FPGA can also be affected by soft errors, which may lead to

catastrophic results during the scrubbing operation. For instance, in case the FPGA Frame Address
Register (FAR) is affected by an SEU during a blind scrubbing execution and its value changes to
another valid address, all the subsequent frames would be overwritten wrongly, compromising the
entire design. In [RD6], the authors observed high-current events in Xilinx FPGAs due to SEEs af-

fecting the configuration interface, which led the blind scrubbing to write multiples frames in incor-
rect addresses.

The GRSCRUB IP was designed to decrease the probability of failures during the scrubbing operation

due to a faulty interface. The GRSCRUB IP verifies the integrity of the configuration interface of the
target FPGA before each new scrubbing execution. The verification is performed by reading a specific
frame and checking its address. If the returned address matches the expected one, the interface is
considered stable and, therefore, the scrubbing cycle starts. Otherwise, an error is reported. In addition,

setting up the configuration interface for each scrubbed frame could be a safer approach instead of
configuring all frames at once. For instance, writing one frame at a time during blind scrubbing avoids
overwritten the entire memory in case of errors in the FAR register. Both blind and readback
scrubbing can be configured to enable or disable such features.

4.3 GRSCRUB IP system setup

Fig. 1 shows the block diagram of a GRSCRUB-based system, which can be the GR716B Microcon-

troller or a design implemented in a flash-based FPGA, integrated with the target FPGA. The config-
uration memory of the target FPGA is accessed externally through the slave SelectMap configuration

Figure 1 GRSCRUB IP system block diagram.

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 9 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

interface. The GRSCRUB IP can access SelectMap through all the supported bus widths (i.e., 8-, 16-,
or 32-bit). The slave SelectMap clock is provided externally by the system in which the GRSCRUB
IP is embedded. The GRSCRUB IP is a multiple clock domain design, which includes the internal

system clock, and the SelectMap clock used for synchronization.

The GRSCRUB IP accesses through an AMBA AHB or AXI4 bus, a memory that stores the golden
configuration bitstream and the mask data of the design implemented in the target FPGA (Golden

memory). The golden bitstream is used both to configure the FPGA at start-up and to repair the con-
figuration memory in the event of soft errors. The mask data information is provided by the synthesis
tool and contains a description of all dynamic bits in the design. During data verification in the scrub-
bing operation, the GRSCRUB IP does not verify the dynamic bits in the frames, and the mask data

is used to mask only these specific bits.

4.4 GRSCRUB IP and SEM-IP comparison

The Xilinx Soft Error Mitigation Intellectual Property (SEM-IP) [RD4] is an internal scrubbing core
compatible with most of Xilinx FPGAs. The SEM-IP main advantage is the high-speed for single
error detection and correction. As demonstrated in [RD7], internal scrubbers are susceptible to get
locked and have the correction capability compromised due to faults in the scrubber interface or

multiple errors in the configuration memory. In this context, external scrubbers may provide higher
robustness and the ability to deal with multiple errors. Table 1 presents a comparison between the
GRSCRUB IP and the SEM-IP.

5 DESIGNING WITH THE GRSCRUB IP

In the context of applications implemented in SRAM-based FPGAs demanding a high level of
reliability, such as space applications, the GRSCRUB IP can be integrated into the system to maintain

Table 1 GRSCRUB and SEM-IP comparison

 GRSCRUB SEM-IP [RD4]

Type of scrubbing External Internal

FPGA programming Yes No

Single error detection Yes Yes

Single error correction Yes Yes

Multiple errors detection Yes Yes

Multiple errors correction Yes No

Advantages

Programming;

Frame mapping;

MBU correction;

Robustness

High correction speed

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 10 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

the FPGA configuration memory consistent by repairing the logic and correcting bit-flips. Fig. 2
presents two user-case examples for implementing the GRSCRUB IP system setup. The GRSCRUB
IP can be implemented in a non-volatile-based FPGA as an IP core and connected to the target SRAM-

based FPGA through SelectMap. The external memory is used as the Golden memory of the
GRSCRUB IP.

Another approach is using the GR716B Microcontroller connected to the target FPGA. The GR716B
is based on a fault-tolerant SPARC V8 32-bit LEON3FT processor, and it will be implemented using
Imec’s DARE180 [RD12] radiation-hardened cell library in a 180nm Complementary Metal Oxide
Semiconductor (CMOS) technology platform from UMC (Taiwan). In addition to the GRSCRUB IP

core, the design integrates several on-chip data bus standards (SpaceWire, MIL-STD-1553, CAN-FD,
I2C, SPI, UART, etc.), and other digital and analog cores, such as fault-tolerant memory controllers
and digital-to-analog and analog-to-digital converters, respectively. Since the GRSCRUB IP core is
self-standing, the target FPGA can be supervised without interrupting the microcontroller software

execution. The GR716B Microcontroller is expected to be available during 2021.

5.1 GRSCRUB synchronization

As described in [RD5], the SelectMap clock (CCLK signal) of the target FPGA is provided by the

system which embeds the GRSCRUB IP, and a dedicated register buffer must be integrated into the
system design to allow controlling (enabling/disabling) the CCLK signal. This control is performed
by the GRSCRUB IP to synchronize the reading and writing operations in the SelectMap interface.

The clock synchronization is critical. The data and control signals must be correctly synchronous with
the CCLK signal. The synchronization can be affected by the system setup and connections to access
the target FPGA. Delay due to long paths is one cause of signal desynchronization.

For example, for the experimental setup presented in the next section, it was required to invert the
CCLK signal to ensure the stability of data and control signals in the rising edge of the clock. Because

of the long cabling between both boards, the clock signal was delayed, which affected the
synchronization. A system with short signals paths and designed with synchronization constraints
should not require inverting the SelectMap clock signal.

Figure 2 User-case examples for implementing the GRSCRUB system: GRSCRUB as an IP
core implemented in a non-volatile-based FPGA; and GRSCRUB embedded in the

GR716B Microcontroller.

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 11 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

5.2 GRSCRUB operation control

The GRSCRUB IP operation is configured through the IP’s registers accessed via AHB or AXI. After
the operation being configured, the GRSCRUB IP is self-standing to execute the operation mode.

The GRSCRUB’s registers can also be controlled through the Cobham Gaisler’s GRMON3 debug
monitor [RD9]. An example of a Tcl script to configure the GRSCRUB IP using GRMON3 is

presented and described in the APPENDIX A. See the GRSCRUB specification [RD5] for more
information on how to configure the IP.

5.2.1 Identifying the addresses of the GRSCRUB’s registers

The base address of the GRSCRUB’s registers is defined in the bus specification of component
instantiation. For instance, in the example of APPENDIX A, the APB base address of the
GRSCRUB’s registers is 0x80000D00. See the GRSCRUB IP specification [RD5] to more details

about the APB address offset of the GRSCRUB’s registers.

Example of registers configuration (from APPENDIX A):

 [..]

 # Initialize variables

 variable REG

 # GRSCRUB registers start address

 set grscrub_regaddr 0x80000D00

 # Initialize register offsets for GRSCRUB IP

 array set REG {

 GRSCRUB.STAT 0x80000D00

 GRSCRUB.CONFIG 0x80000D04

 GRSCRUB.IDCODE 0x80000D08

 GRSCRUB.DELAY 0x80000D0C

 GRSCRUB.FCR 0x80000D10

 GRSCRUB.LFAR 0x80000D14

 GRSCRUB.LGBAR 0x80000D18

 GRSCRUB.HGBAR 0x80000D1C

 GRSCRUB.LGSFAR 0x80000D20

 GRSCRUB.LMASKAR 0x80000D24

 GRSCRUB.LFMAPR 0x80000D28

 GRSCRUB.LGCRCAR 0x80000D2C

 GRSCRUB.LGRBKAR 0x80000D30

 GRSCRUB.ECNT 0x80000D34

 GRSCRUB.SETUP 0x80000D38

 GRSCRUB.CAP 0x80000D3C

 GRSCRUB.FRAMEID 0x80000D40

 GRSCRUB.ERRFRAMEID 0x80000D44

 }

 […]

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 12 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

5.2.2 Initial Golden memory configuration

Before starting using the GRSCRUB IP, the configuration bitstream and mask data must be loaded to
the Golden memory of the system, and the corrected memory addresses should be set in the

GRSCRUB registers. The Golden memory can be RAM or ROM. This application note focuses only
on the RAM memory example. If the Golden memory is ROM, all data should be previously stored
on the memory. See the GRSCRUB IP specification [RD5] to more details about the Golden memory
storage.

The example of the Tcl script presented in the APPENDIX A access a RAM memory, in which the
GRSCRUB IP can perform read and write operations. The mem_load32 procedure loads to the

Golden memory the configuration bitstream and the mask data of the target FPGA. One should add
the correct path of the files and set the correct memory addresses in the bitfolder, MEM_BASE,

and BITPARAMS variables.

The MEM_BASE and BITPARAMS variables are the addresses in the Golden memory defined by the

user. In the example below, the base address of the memory component in the design (Golden memory)
is 0x40000000. Based on this address, the following load addresses are set:

• Configuration bitstream: BITPARAMS(LOADAD.BIT) is the lower address to store the

configuration bitstream of the target FPGA design in the Golden memory.

• Mask data: BITPARAMS(LOADAD.MSK) is the lower address to store the mask data of

the target FPGA design in the Golden memory.

In addition to the configuration bitstream and mask data addresses, the following load addresses need
to be defined:

• Mapping data: BITPARAMS(LOADAD.MAP) is the lower address in the Golden memory

to the GRSCRUB read the mapping information of the FPGA frames. The GRSCRUB also
writes the frames mapping data at this address during Mapping operation mode (only if the

Golden memory is RAM).
• CRC codes: BITPARAMS(LOADAD.CRC) is the lower address in the Golden memory to

the GRSCRUB read the CRC code information of the FPGA frames. The GRSCRUB also

writes the CRC code data at this address during Golden CRC operation mode (only if the
Golden memory is RAM).

Example of MEM_BASE and BITPARAMS configuration (from APPENDIX A):

 […]

 ### Golden memory address definition ###

 # Golden memory base address

 set MEM_BASE 0x40000000

 # Set memory addresses #

 # load configuration bitstream (generated by the synthesis tool)

 set BITPARAMS(LOADAD.BIT) [expr $MEM_BASE + 0x00000006]

 # load mask data (generated by the synthesis tool)

 set BITPARAMS(LOADAD.MSK) [expr $MEM_BASE + 0x01800006]

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 13 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

 # Address for GRSCRUB to read the frame mapped addresses.

 # The GRSCRUB might also store the frame mapped addresses. (optional)

 set BITPARAMS(LOADAD.MAP) [expr $MEM_BASE + 0x03000000]

 # Address for GRSCRUB to read the golden CRC data.

 # The GRSCRUB might also store the golden CRC data. (optional)

 set BITPARAMS(LOADAD.CRC) [expr $MEM_BASE + 0x04000000]

 […]

The load addresses are used in the mem_load32 procedure to store the required data information.

Besides the load addresses, one should set the addresses of the relevant information of the
configuration bitstream and the mask data that will be accessed by the GRSCRUB IP. Note that in the
example the LOADAD.MAP and LOADAD.CRC also correspond to the addresses of the relevant

information.

The following additional addresses need to be defined:

• The starting address of the configuration bitstream: BITPARAMS(START.BIT) is the

address of the first dummy word in the configuration bitstream (0xFFFFFFFF), after the

initial header. All configuration bitstreams have an initial header with ASCII characters that
provides some file information, which is not required to program the FPGA. The
synchronization phase starts at the first dummy word (0xFFFFFFFF). See the Xilinx

Configuration Guide [RD11] to more details about the bitstream composition. The
GRSCRUB’s LGBAR register should be set with this address. See the GRSCRUB IP

specification [RD5] for more details.

• Address of the first valid data word in the configuration bitstream:
BITPARAMS(START.GOLD) is the address of the first golden word referent to the FPGA

configuration frames to be scrubbed by the GRSCRUB IP. If all frames of the FPGA
configuration memory should be scrubbed, this is the address of the first valid data word of
the configuration bitstream. At the beginning of the configuration bitstream are the

synchronization words to set up the FPGA configuration interface (i.e., SelectMap). The valid
data words are located just after the synchronization words. See the Xilinx Configuration
Guide [RD11] to more details about the bitstream composition and how to identify the first
bitstream configuration data word. If a partial scrubbing is defined, the
BITPARAMS(START.GOLD) is the address in the Golden memory of the first word of the

first frame to be scrubbed. The GRSCRUB’s LGSFAR register should be set with this address.
See the GRSCRUB IP specification [RD5] for more details.

• Address of the last valid data word in the configuration bitstream:
BITPARAMS(END.BIT) is the address of the last golden data word referent to the FPGA

configuration frames to be scrubbed by the GRSCRUB IP. If all frames of the FPGA

configuration memory should be scrubbed, this is the address of the last valid data word of
the configuration bitstream. After all configuration data, the configuration bitstream contains
synchronization words to set up the FPGA configuration interface (i.e., SelectMap) and
finishing the programming phase correctly. See the Xilinx Configuration Guide [RD11] to

more details about the bitstream composition and how to identify the last bitstream
configuration data word. If a partial scrubbing is defined, the BITPARAMS(END.GOLD) is

the address in the Golden memory of the last word of the last frame to be scrubbed. The

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 14 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

GRSCRUB’s HGBAR register should be set with this address. See the GRSCRUB IP
specification [RD5] for more details.

• Address of the first valid word in the mask data: BITPARAMS(START.MSK) is the

address related to the first mask word related to the first golden word of the FPGA
configuration frames to be scrubbed by the GRSCRUB IP. It is the same logic applied to
define the BITPARAMS(START.GOLD) address. See the Xilinx Configuration Guide

[RD11] to more details about the mask data composition. The GRSCRUB’s LMASKAR
register should be set with this address. See the GRSCRUB IP specification [RD5] for more

details.

Example of BITPARAMS configuration (from APPENDIX A):

 […]

 # Define the start addresses in the Golden memory #

 # Start address of the configuration bitstream in the Golden memory.

 set BITPARAMS(START.BIT) [expr $MEM_BASE + 0x0000008C]

 # Address of the first configuration bitstream frame in the Golden memory

 set BITPARAMS(START.GOLD) [expr $MEM_BASE + 0x000001a4]

 # Set the highest configuration bitstream address in the Golden memory

 set BITPARAMS(END.BIT) [expr $MEM_BASE + 0x01701e74]

 # Address of the first mask data related with the first configuration bit-

stream frame in the Golden memory.

 set BITPARAMS(START.MSK) [expr $MEM_BASE + 0x018001a4]

 […]

5.2.3 Programming the target FPGA

Before enabling the programming operation mode, the GRSCRUB’s registers must be configured.

See the GRSCRUB IP specification [RD5] to more details about how to configure GRSCRUB’s
registers.

The grscrub_init_progmode procedure in the APPENDIX A shows a configuration example

of the CONFIG, LGBAR, HGBAR, and IDCODE registers.

The grscrub_progfpga procedure shows the steps required for enabling the programming

operation mode. The steps are the following:

1) ensure the GRSCRUB is disabled;
2) clear the done (OPDONE and SCRUND) and error (SCRERR) bitfields in the STATUS

register;
3) configure the required registers (grscrub_init_progmode procedure); and

4) enabling the GRSCRUB IP to execute the operation.

The programming is finished when the OPDONE bitfield of the STATUS register goes high. If an
error occurs during the execution, the SCRERR bitfield of the STATUS register goes high, and the

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 15 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

ERRID indicates the id of the error.

If the DONE signal of the target FPGA is mapped to a LED on the board, one can check if the LED
is ON when the target FPGA is programmed successfully.

5.2.4 Mapping the target FPGA

Before enabling the mapping operation mode, the GRSCRUB’s registers must be configured. See the
GRSCRUB IP specification [RD5] to more details about how to configure GRSCRUB’s registers.

The grscrub_init_fpgamappingmode procedure in the APPENDIX A shows a

configuration example of the CONFIG, LGBAR, HGBAR, LFAR, FCR, LMASKAR, LGSFAR,

LFMAPR, and IDCODE registers.

If all frames of the configuration memory should be mapped, the LFAR is set to the address of the
first frame of the configuration bitstream (i.e., 0x00000000), and the FCR is set with the total

number of FPGA frames (e.g., 49030 for the KU060 FPGA). Note that although the FCR register is

configured with the total number of frames of the FPGA, only the configuration frames are mapped
(e.g., 37498 frames for the KU060 FPGA). One can also set the FCR register directly with the

number of configuration frames. If only a partial number of frames should be mapped, the LFAR is
set to the address of the first frame to be mapped (e.g., 0x00020000), and the FCR is set with the

number of FPGA frames to be mapped (e.g., 7500). In both cases, the FCR is also set with the frame

length of the target FPGA (e.g., 123 words for the KU060 FPGA).

The grscrub_fpgamapping procedure shows the steps require for enabling the mapping

operation mode. The steps are the following:

1) ensure the GRSCRUB is disabled;
2) clear the done (OPDONE and SCRUND) and error (SCRERR) bitfields in the STATUS

register;
3) configure the required registers (grscrub_init_fpgamappingmode procedure); and

4) enabling the GRSCRUB IP to execute the operation.

The mapping phase is finished when the OPDONE bitfield of the STATUS register goes high. If an
error occurs during the execution, the SCRERR bitfield of the STATUS register goes high , and the
ERRID indicates the id of the error.

To verify if the target FPGA frames were mapped correctly, one can check the address
BITPARAMS(LOADAD.MAP) in the Golden memory and verify if the addresses of the frames are

correctly stored.

5.2.5 Storing the golden CRC codes

The golden CRC codes must be stored in the Golden memory before enabling the GRSCRUB read-
back with CRC detection. One can store the golden CRC codes previously or execute the GRSCRUB
operation mode. For the latter, the Golden memory must be writable.

Before enabling the golden CRC operation mode, the GRSCRUB’s registers must be configured. See

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 16 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

the GRSCRUB IP specification [RD5] to more details about how to configure GRSCRUB’s registers.

The grscrub_init_readbackmode procedure in the APPENDIX A shows a generic example

of how to configure the GRSCRUB for readback scrubbing, and the same configuration is used for
golden CRC operation mode. The grscrub_init_readbackmode procedure is detailed in the

next section.

Note that the golden CRC codes refer to the target FPGA frames that will be scrubbed. Therefore, if
all frames will be scrubbed, the golden CRC codes should be generated for all frames. On the other
hand, if only a partial number of frames will be scrubbed, the golden CRC codes should be generated
only for the partial number of frames.

The grscrub_init_goldencrc procedure shows the steps required for enabling the golden

CRC operation mode. The steps are the following:

1) ensure the GRSCRUB is disabled;

2) clear the done (OPDONE and SCRUND) and error (SCRERR) bitfields in the STATUS
register;

3) configure the required registers (grscrub_init_readbackmode procedure); and

4) enabling the GRSCRUB IP to execute the operation.

The execution is finished when the OPDONE bitfield of the STATUS register goes high. If an error

occurs during the execution, the SCRERR bitfield of the STATUS register goes high, and the ERRID
indicates the id of the error.

To verify if the golden CRC codes were generated correctly, one can check the address
BITPARAMS(LOADAD.CRC) in the Golden memory and verify if the golden CRC codes are

correctly stored.

5.2.6 Scrubbing the target FPGA

5.2.6.1 Blind Scrubbing

Before enabling the blind scrubbing operation mode, the GRSCRUB’s registers must be configured.
See the GRSCRUB IP specification [RD5] to more details about how to configure GRSCRUB’s
registers.

The grscrub_init_blindscrubmode procedure in the APPENDIX A shows a configuration

example of the CONFIG, DELAY, LGBAR, HGBAR, LFAR, FCR, LGSFAR, LFMAPR, and

IDCODE registers.

If all frames of the configuration memory should be scrubbed, the LFAR is set to the address of the
first frame of the configuration bitstream (i.e., 0x00000000), and the FCR is set with the number

of configuration frames of the FPGA (e.g., 37498 for the KU060 FPGA). If only a partial number

of frames should be scrubbed, the LFAR is set to the address of the first frame to be scrubbed (e.g.,
0x00020000), and the FCR is set with the number of FPGA frames to be scrubbed (e.g., 7500). In

both cases, the FCR is also set with the frame length of the target FPGA (e.g., 123 words for the

KU060 FPGA).

The blind scrubbing can be configured to execute only once or periodically. The SCRUN bitfield of

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 17 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

the CONFIG register must be 1 for a periodic run. A delay can be defined between periodic scrubbing
runs. The delay period can be set in the DELAY register.

The grscrub_blindscrubbingfpga procedure shows the steps required for enabling the

blind scrubbing operation mode. The steps are the following:

1) ensure the GRSCRUB is disabled;
2) clear the done (OPDONE and SCRUND) and error (SCRERR) bitfields in the STATUS

register;
3) configure the required registers (grscrub_init_blindscrubmode procedure); and

4) enabling the GRSCRUB IP to execute the operation.

The SCRUND bitfield of the STATUS register goes high after each scrubbing execution in a periodic
run. The OPDONE bitfield goes high only in one time execution. If an error occurs during the

scrubbing, the execution is stopped, the SCRERR bitfield of the STATUS register goes high, and the
ERRID indicates the id of the error.

During periodic scrubbing, one can check the HOLD bitfield of the STATUS register to identify the
GRSCRUB execution. The HOLD bitfield is 0 when the GRSCRUB IP is performing the scrubbing
operation on the target FPGA. The HOLD bitfield is 1 when the GRSCRUB IP is in hold waiting
during the delay period.

One can also check the FRAMEID register that represents the id of the current frame of the target
FPGA scrubbed by the GRSCRUB IP.

5.2.6.2 Readback scrubbing

Before enabling the readback scrubbing operation mode, the GRSCRUB’s registers must be

configured. See the GRSCRUB IP specification [RD5] to more details about how to configure
GRSCRUB’s registers.

The grscrub_init_readbackmode procedure in the APPENDIX A shows a configuration

example of the DELAY, LGBAR, HGBAR, LFAR, FCR, LGSFAR, LMASKAR, LFMAPR,
LGCRCAR, and IDCODE registers. At the initialization, one can also clean the ECNT,

ERRFRAMEID, and FRAMEID registers to reset the number of detected errors and frame id of
previous runs. In this example, the CONFIG register is set in the specific readback procedure, as
further described.

The configuration of the number of frames to be scrubbed (FCR register) and initial frame address
(LFAR) for the entire configuration memory or just partial number of frames is the same presented
in the blind scrubbing section.

The readback scrubbing can also be configured to execute only once or periodically. The SCRUN
bitfield of the CONFIG register must be 1 for a periodic run. A delay can be defined between periodic

scrubbing runs. The delay period can be set in the DELAY register.

The readback scrubbing can be configured to detect only or to detect and correct errors. The former
is configured in the grscrub_readbackfpga_onlydetection procedure, and the latter is

configured in the grscrub_readbackfpga_correction procedure. The CORM bitfield of

the CONFIG register defines readback mode. In both cases, the error detection can be through FFC,
CRC, or both (i.e., FFC + CRC). The FFCEN and CRCEN bitfields of the CONFIG register configure

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 18 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

the detection options.

The steps required for enabling the readback scrubbing operation mode are the following:

1) ensure the GRSCRUB is disabled;

2) clear the done (OPDONE and SCRUND) and error (SCRERR) bitfields in the STATUS
register;

3) configure the required registers (grscrub_init_readbackmode procedure);

4) configure the CONFIG register; and
5) enabling the GRSCRUB IP to execute the operation.

The SCRUND bitfield of the STATUS register goes high after each scrubbing execution in a periodic
run. The OPDONE bitfield goes high only in one time execution. If an error occurs during the
scrubbing, the execution is stopped, the SCRERR bitfield of the STATUS register goes high, and the
ERRID indicates the id of the error.

During periodic scrubbing, one can check the HOLD bitfield of the STATUS register to identify the
GRSCRUB execution. The HOLD bitfield is 0 when the GRSCRUB IP is performing the scrubbing

operation on the target FPGA. The HOLD bitfield is 1 when the GRSCRUB IP is in hold waiting
during the delay period.

One can also check the FRAMEID register that represents the id of the current frame of the target
FPGA scrubbed by the GRSCRUB IP.

The ECNT register presents the number of errors detected during the readback scrubbing. If the error
correction is enabled, the ECNT register shows the number of correctable and uncorrectable errors.
The error counters accumulate over scrubbing runs. One should clear the register to initiate a new
count.

6 CONNECTING WITH THE TARGET FPGA

The GRSCRUB IP must be connected to the slave SelectMap interface of the target FPGA. Fig. 3
shows an example of the GRSCRUB and the SelectMap connection in a Xilinx UltraScale FPGA. In

the example, the GRSCRUB port signals are directly attached to the SelectMap pins. The function of
the SelectMap pins is described in the GRSCRUB IP specification [RD5]. One should always check
the documentation of the Xilinx FPGA family for detailed information [RD11]. Also, refer to the
FPGA Data Sheet to define the proper voltage connection.

The interface mode pins M[2:0] of the target FPGA must be configured to slave SelectMap. Thus,
these pins must be connected to the GRSCRUB IP or directly tied to high/low levels externally, as in
the example.

The top system that embeds the GRSCRUB IP provides the clock to the SelectMap interface (CCLK

signal) and the GRSCRUB (SMAPCLKI signal). As previously described in section 5.1, a clock
buffer should be used to allow the GRSCRUB IP to control the CCLK signal. The GRSCRUB IP
enables or disables the CCLK through the CLK_EN signal. This control is required for the synchro-
nization of operations.

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 19 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

To allow the GRSCRUB IP to access and control the slave SelectMap interface, the generated con-

figuration bitstream of the target FPGA must be constrained by following the requirements below:

1) set the slave SelectMap interface;
2) set the SelectMap pins to persistent: the persistent property keeps the slave SelectMap ena-

bled after configuration;

3) do not compress the configuration bitstream;
4) do not use encryption in the configuration bitstream; and
5) do not prohibit readback in the security settings of the configuration bitstream.

Example of a constraint file used in the Vivado Design Suite tool:

Select Slave SelectMAP interface

set_property CONFIG_MODE {S_SELECTMAP} [current_design]

Configuration interface pins are persistent

set_property BITSTREAM.CONFIG.PERSIST {YES} [current_design]

Do not compress the bitstream

set_property BITSTREAM.GENERAL.COMPRESS {FALSE} [current_design]

Do not encrypt the bitstream

set_property BITSTREAM.ENCRYPTION.ENCRYPT {NO} [current_design]

Do not apply security

set_property BITSTREAM.READBACK.SECURITY {NONE} [current_design]

Figure 3 Example of connection of the GRSCRUP IP and slave SelectMap interface for

Xilinx UltraScale FPGA.

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 20 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

7 EXPERIMENTAL EVALUATION SETUP

The GRSCRUB IP evaluation setup consists of a host FPGA embedding the GRSCRUB IP in a system
similar to the one presented in Fig. 1, and the Device Under Test (DUT), which is the target FPGA
under evaluation, a Xilinx Kintex UltraScale FPGA. Fig. 4 presents the block diagram and the view

of the experimental setup. The test controller and the target FPGA block elements are detailed in the
following sections.

7.1.1 Test controller

A Xilinx KCU105 evaluation board [RD8] is used as the test controller. The board features a Xilinx
Kintex UltraScale XCKU040 FPGA, in which the GRSCRUB IP and a fault injection engine are
implemented. Table 2 presents the resource usage of the GRSCRUB IP embedded in the XCKU040

FPGA.

The fault injection engine is controlled via UART and is responsible for emulating upsets in the
configuration memory of the target FPGA. It also uses the SelectMap interface to access the
configuration frames and flip bits, one at time. The target frame and target bit inside the frame are

selected randomly. The injection engine reads the selected frame, flips the target bit, and then rewrites
the frame to the FPGA. Since both GRSCRUB IP and injector uses the SelectMap interface to access
the FPGA configuration memory, only one can be enabled at a time.

Besides the GRSCRUB IP and the fault injection system, the test controller design also contains other
IP cores from the GRLIB IP library [RD5], such as AHB bus, DDR3 memory controller, Debug
Support Unit (DSU), Ethernet, and UART. In this setup, the GRSCRUB IP is controlled through

Figure 4 GRSCRUB IP evaluation test setup.

Table 2 Resource usage of GRSCRUB IP implemented in the XCKU040 FPGA

LUT FF Carry DSP BRAM

4,550 2,678 117 5 1

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 21 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

Ethernet using the Cobham Gaisler’s GRMON3 debug monitor [RD9] that configures the IP to
execute the operation modes presented in Section 4.2.

Two FPGA Mezzanine Card (FMC) breakout boards are used to allow the communication between
the test controller and the DUT board. The SelectMap signals from the target FPGA are accessed and
controlled via the FMC cards. The 8-bit bus width of the SelectMap interface is used for reading and

writing operations.

The test controller frequency is 100 MHz, and the provided SelectMap clock is 10 MHz. The

maximum SelectMap clock frequency depends on the system setup. Due to the cabling to connect
both boards and long signal paths, the SelectMap frequency is restricted in the experimental setup.
Higher speeds can be achieved in a system integrating the target FPGA and GRSCRUB IP on the
same board.

The fault injection campaigns aim first to evaluate the GRSCRUB IP and test the scrubbing
functionality, and second to ensure that the IP operates transparently in dynamic designs. In all test

campaigns, the GRSCRUB IP programs the target FPGA, and then the test controller starts the
execution. For each injection run, one or more random faults are injected in the configuration memory
of the target FPGA. In sequence, the GRSCRUB IP is released to scrub the faulty bits. At the end of
the scrubbing execution, the configuration memory is verified to check if all bits were corrected. After

that, a new injection run starts, and the loop is repeated.

7.1.2 Target FPGA – Xilinx Kintex UltraScale XCKU060

An AlphaData ADM-SDEV-BASE development kit [RD10] embedding a Xilinx Kintex UltraScale
FPGA (XCKU060-1-FFVA1517I industrial part, equivalent to the XQRKU060-CNA1509 space-
grade part) is the adopted target FPGA. An FMC card is also attached to the board, providing access
to the JTAG interface. The JTAG connection is used to control the software execution when required.

Two test designs were implemented for the evaluation experiments, as described below:

• Static design: the design does not implement any dynamic function, and therefore most of the

configuration bitstream is empty. The functionality of the design is not evaluated since the goal is

only to validate the GRSCRUB IP features. The fault injection targets all FPGA configuration

frames, and the IP also monitors the entire configuration memory.

• LEON3FT-based design: the design implements a LEON3FT processor core. In addition to the

LEON3FT processor, the design also contains other IP cores from GRLIB [RD5], such as DSU,

fault-tolerant SRAM module, AHB bus, JTAG, and UART. The 16 KB Instruction and Data L1

caches and the processor Register File (RF) are implemented in BRAMs and are protected by

Error Detection And Correction (EDAC). The LEON3FT runs a test software that monitors and

tests the Integer Unit (IU) of the processor. The software is controlled using the GRMON3 via

JTAG. The floorplanning of the design is constrained to a specific area, and both fault injection

and GRSCRUB IP only target this area.

The resource usage of Static and LEON3FT designs implemented in the target FPGA are presented
in Table 3.

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 22 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

8 EVALUATION RESULTS

Table 4 presents the fault injection results for the Static design implemented in the target FPGA. The
blind, readback FFC, and readback CRC scrubbing modes of the GRSCRUB IP were evaluated.

Single or multiple random faults were injected per run, and then the GRSCRUB IP scrubbing mode
was enabled to correct the faults. In all tests, the GRSCRUB IP was able to detect and correct all
injected faults.

The tests with the LEON3FT-based design implemented in the target FPGA demonstrated that 99.6%

of the software runs were successful. The software executed continuously while single random faults
were injected in the target FPGA. After each injection, the GRSCRUB IP readback FFC scrubbing
was enabled to clear the bit-flip. A total of 11,399 faults were injected, and the GRSCRUB IP was
able to correct all injected faults.

The large amount of injected faults not leading to errors in the target design confirms that the
GRSCRUB IP scrubbing operation allows uninterrupted software execution in the presence of

correctable faults in the FPGA configuration memory by preventing the error build-up. The software
errors presented refer to critical points of failure related to non-protected modules in the target FPGA
design (the literature usually refers to such bits as "critical bits") that lead to errors before the
GRSCRUB IP be able to correct the fault. One must notice that such software errors are application-

dependent, i.e., different software benchmarks may lead to different results.

In this context, the GRSCRUB IP minimizes the latency of single points of failure in the system, but

it does not avoid errors happening and neither their effects on the design. Additional mitigation
techniques at the design level are recommended to decrease the number of single points of failure and
increase the fault masking.

Table 3 Resource usage of Static and LEON3FT designs implemented in
the XCKU060 FPGA

Design LUT FF Carry DSP BRAM

Static 23 521 3 0 0

LEON3FT 8,852 6,016 43 4 53

Table 4 Fault injection results for Static design and GRSCRUB IP in different
scrubbing modes

GRSCRUB IP

Scrubbing

Inj. faults

per run

Total
runs

Total faults

corrected

Blind 1 2,000 2,000

Blind 10 15,735 157,350

Readback FFC 10 12,086 120,860

Readback CRC 10 7,220 72,200

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 23 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

8.1 Performance analysis

Table 5 presents the approximated performance, in seconds, of the GRSCRUB operations targeting
the XCK060 in the experimental setup using 8-bit data in the SelectMap interface and targeting all

configuration memory frames.

The performance of the readback scrubbing operation is related to faulty-free configuration memory.

As detailed in [RD5], the scrubbing period depends on several factors, such as the number of scrubbed
frames, the data bus width, the GRSCRUB and SelectMAP frequencies operation, and the required
time to access the Golden memory. In addition, the required time for reading and writing operations
in the SelectMap interface should be considered. The performance of the readback operation is also

directly affected by the number of faults in the FPGA configuration memory.

9 CONCLUSION

The Cobham Gaisler’s GRSCRUB IP is an FPGA configuration supervisor that features programming
and scrubbing capabilities. The GRSCRUB IP will be included in the new version of the Cobham
Gaisler’s GR716B Microcontroller, and it is also available as an IP core in the GRLIB. Fault injection
tests targeting a Xilinx Kintex UltraScale FPGA demonstrated the GRSCRUB IP capability to correct

all injected faults in the FPGA configuration memory. Tests in a LEON3FT design confirms that the
GRSCRUB IP scrubbing operation allows uninterrupted software execution in the presence of
correctable errors in the FPGA configuration memory by preventing the error build -up. The
GRSCRUB IP reduces the persistent effects of errors in critical points of failure. However, the impact

on the design is not mitigated. Therefore, additional mitigation techniques at the design level are
recommended for that and to increase the fault masking.

Table 5 Performance of GRSCRUB operation targeting the XCK060 FPGA in the
experimental setup using 8-bit SelectMap bus width

GRSCRUB IP Operation
Performance

(aprox.)

Number of

frames

GRSCRUB

freq.

SMAP

freq.

SMAP bus

width

Programming 13.5 s 49,030

Mapping 7.1 s 100 MHz 10 MHz 8-bit data

Blind scrubbing 9.8 s 37,498

Readback (FFC / CRC) scrubbing 3.8 s

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 24 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

APPENDIX A EXAMPLE OF TCL SCRIPT TO CONFIGURE THE GRSCRUB IP USING

GRMON3

The Tcl source code presented below is an example of how to configure the GRSCRUB IP to execute
the operational modes. See the GRSCRUB specification [RD5] for more information on how to

configure the IP.

The Golden memory addresses used in the example depend on the memory space defined on the

memory controller component in the design.

The addresses of GRSCRUB registers depends on the address space defined on the AHB bus.

Fig. 5 presents the info sys command in GRMON3 that shows the information of the components of
the design.

• User adaptions:

In order to use the example source code, one should adapt the following parameters:

o Golden memory addresses;

o GRSCRUB registers addresses;

o Include the correct path of the configuration bitstream and mask files in the mem_load32
procedure.

Figure 5 Report in the GRMON3 of the core components in the example design.

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 25 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

• GRSCRUB_config.tcl source code:

1. #--GAISLER_LICENSE

2. #--

3. #-- File: GRSCRUB_config.tcl

4. #-- Author: Adria Barros de Oliveira - Cobham Gaisler AB

5. #-- Description: Tcl functions to configure the GRSCRUB IP using GRMON3

6. #--

7.

8.

9. ###

10. ### GRSCRUB CONFIGURATION
11. ###

12.
13. namespace eval grscrub {
14.

15. # Clear old variables
16. catch {unset REG}
17. catch {unset bitfolder}

18.
19. # Initialize variables
20. variable REG

21.
22. # GRSCRUB registers start address
23. set grscrub_regaddr 0x80000D00

24.
25. # Initialize register offsets for GRSCRUB IP
26. array set REG {

27. GRSCRUB.STAT 0x80000D00
28. GRSCRUB.CONFIG 0x80000D04
29. GRSCRUB.IDCODE 0x80000D08

30. GRSCRUB.DELAY 0x80000D0C
31. GRSCRUB.FCR 0x80000D10
32. GRSCRUB.LFAR 0x80000D14

33. GRSCRUB.LGBAR 0x80000D18
34. GRSCRUB.HGBAR 0x80000D1C
35. GRSCRUB.LGSFAR 0x80000D20

36. GRSCRUB.LMASKAR 0x80000D24
37. GRSCRUB.LFMAPR 0x80000D28
38. GRSCRUB.LGCRCAR 0x80000D2C

39. GRSCRUB.LGRBKAR 0x80000D30
40. GRSCRUB.ECNT 0x80000D34
41. GRSCRUB.SETUP 0x80000D38

42. GRSCRUB.CAP 0x80000D3C
43. GRSCRUB.FRAMEID 0x80000D40
44. GRSCRUB.ERRFRAMEID 0x80000D44

45. }
46.
47.

48. # Choose correct patch to golden bitfiles.
49. variable bitfolder ./DUT
50.

51.
52. ### Golden memory address definition ###
53.

54. # Golden memory base address
55. set MEM_BASE 0x40000000
56.

57. # Set memory addresses #
58.
59. # load configuration bitstream (generated by the synthesis tool)

60. set BITPARAMS(LOADAD.BIT) [expr $MEM_BASE + 0x00000006]
61. # load mask data (generated by the synthesis tool)
62. set BITPARAMS(LOADAD.MSK) [expr $MEM_BASE + 0x01800006]

63. # Address for GRSCRUB to read the frame mapped addresses.
64. # The GRSCRUB might also store the frame mapped addresses. (optional)
65. set BITPARAMS(LOADAD.MAP) [expr $MEM_BASE + 0x03000000]

66. # Address for GRSCRUB to read the golden CRC data.
67. # The GRSCRUB might also store the golden CRC data. (optional)
68. set BITPARAMS(LOADAD.CRC) [expr $MEM_BASE + 0x04000000]

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 26 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

69.
70.

71. # Define the start addresses in the Golden memory #
72.
73. # Start address of the configuration bitstream in the Golden memory.

74. # This must be the address of the first dummy word in the configuration bitstream
75. # (0xFFFFFFFF), after the initial header.
76. # All configuration bitstreams have an initial header with ASCII characters that

77. # provides some file information, which is not required to program the FPGA.
78. # The synchronization phase starts at the first dummy word (0xFFFFFFFF).
79. # The LGBAR register is set with this address.

80. set BITPARAMS(START.BIT) [expr $MEM_BASE + 0x0000008C]
81.
82. # Address of the first configuration bitstream frame in the Golden memory

83. # The LGSFAR register is set with this address.
84. set BITPARAMS(START.GOLD) [expr $MEM_BASE + 0x000001a4]
85.

86. # Set the highest configuration bitstream address in the Golden memory
87. # The HGBAR register is set with this address.
88. set BITPARAMS(END.BIT) [expr $MEM_BASE + 0x01701e74]
89.

90. # Address of the first mask data related with the first configuration bitstream
91. # frame in the Golden memory.
92. # The LMASKAR register is set with this address.

93. set BITPARAMS(START.MSK) [expr $MEM_BASE + 0x018001a4]
94.
95.

96. ### Other configurations ###

97.
98. # Total number of configuration frames of KU060

99. set fcnt 49030
100.

101. # Frame length of KU060

102. set flen 123

103.

104. # Number of mapped frames

105. # (Only mapped frames can be scrubbed)

106. set numbermappedframes 37498

107.

108. # Define periodic scrubbing runs

109. # periodic = 1

110. # one time = 0

111. set scrun 0

112.

113. # Enable partial scrubbing

114. # patial = 1

115. # full = 0

116. set partial_en 0

117.

118. # Opdone bitfield position on Status register

119. set done 0x10

120.

121. # KU060 FPGA IDCODE

122. set FPGA_IDCODE 0x03919093

123.

124.

125. ##

126. ### Initialization procedures

127. ##

128.

129. # Initial configuration

130. proc init_config {{design "static"}} \

131. {

132. # Load bitstream and mask data

133. mem_load32 $design

134.

135. # Program the target FPGA

136. grscrub_progfpga

137.

138. # Map the frame addresses

139. grscrub_fpgamapping

140. }

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 27 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

141.

142. # Load the configuration bitstream and mask data in the Golden memory

143. proc mem_load32 {{design "static"}} \

144. {

145. variable BITPARAMS

146. variable BITPARAMSTMR

147. variable bitfolder

148. variable MEM_BASE

149. variable partial_en

150.

151. if {$design == "static"} {

152. load ${bitfolder}/static.bit $BITPARAMS(LOADAD.BIT)

153. load ${bitfolder}/static.msk $BITPARAMS(LOADAD.MSK)

154.

155. verify -max 2 ${bitfolder}/static.bit $BITPARAMS(LOADAD.BIT)

156. verify -max 2 ${bitfolder}/static.msk $BITPARAMS(LOADAD.MSK)

157.

158. puts "BIT-Files Loaded in RAM"

159.

160. } elseif {$design == "leon3mp"} {

161. load ${bitfolder}/leon3mp.bit $BITPARAMS(LOADAD.BIT)

162. load ${bitfolder}/leon3mp.msk $BITPARAMS(LOADAD.MSK)

163.

164. verify -max 2 ${bitfolder}/leon3mp.bit $BITPARAMS(LOADAD.BIT)

165. verify -max 2 ${bitfolder}/leon3mp.msk $BITPARAMS(LOADAD.MSK)

166.

167. # Adjust addresses

168. # Set partial scrubbing (Only the design frames are scrubbed)

169. set BITPARAMS(START.GOLD) [expr $MEM_BASE + 0x00384FB8]

170. set BITPARAMS(START.MSK) [expr $MEM_BASE + 0x01B84FB8]

171. set partial_en 1

172.

173. puts "BIT-Files Loaded in RAM"

174.

175. } else {

176. puts "This design option is not supported."

177. }

178. }

179.

180.

181. ##

182. ### Read and Write registers procedures

183. ##

184.

185. # Write a register. Takes a Register name from REG array, and 32-bit value

186. proc reg_write {reg val} \

187. {

188. silent wmem $reg $val

189.

190. return 0

191. }

192.

193. # Read a register. Takes a Register name from REG array

194. proc reg_read {reg} \

195. {

196. set val [silent mem $reg 4]

197.

198. return $val

199. }

200.

201.

202. ##

203. ### General procedures

204. ##

205.

206. # GRSCRUB IP enable

207. proc grscrub_enable {} \

208. {

209. variable REG

210.

211. set config_reg [expr ([reg_read $REG(GRSCRUB.CONFIG)])]

212.

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 28 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

213. #configuration reg -> en bitfild = 1

214. reg_write $REG(GRSCRUB.CONFIG) [expr $config_reg | 0x1]

215.

216. puts "GRSCRUB ip enabled"

217. }

218.

219. # GRSCRUB IP disable

220. proc grscrub_disable {} \

221. {

222. variable REG

223.

224. set config_reg [expr ([reg_read $REG(GRSCRUB.CONFIG)])]

225.

226. #configuration reg -> en bitfild = 0

227. reg_write $REG(GRSCRUB.CONFIG) [expr $config_reg & 0xFFFFFFFE]

228.

229. puts "GRSCRUB ip disabled"

230. }

231.

232. # Clean OPDONE and SCRUND bitfields of Status register

233. proc grscrub_doneclear {} \

234. {

235. variable REG

236. variable done

237.

238. set status_reg [expr ([reg_read $REG(GRSCRUB.STAT)])]

239.

240. #clear both dones

241. reg_write $REG(GRSCRUB.STAT) [expr $status_reg | 0x1010]

242.

243. grscrub_checkdoneclear

244.

245. puts "GRSCRUB done clean"

246. }

247.

248. # Verify if done bitfiled is clean

249. proc grscrub_checkdoneclear {} \

250. {

251. variable REG

252. variable done

253.

254. set status_reg [expr ([reg_read $REG(GRSCRUB.STAT)])]

255. set donecheck [expr $status_reg & $done]

256.

257. if {$donecheck == 0x0} {

258. puts "GRSCRUB done is clean!"

259. } else {

260. puts "GRSCRUB done is NOT clean!"

261. }

262. }

263.

264. # Clean the SCRERR bitfield of Status register

265. proc grscrub_errorclear {} \

266. {

267. variable REG

268.

269. set status_reg [expr ([reg_read $REG(GRSCRUB.STAT)])]

270.

271. reg_write $REG(GRSCRUB.STAT) [expr $status_reg | 0x8]

272.

273. puts "GRSCRUB error clean"

274. }

275.

276. # Show GRSCRUB registers

277. proc grscrub_showregs {} \

278. {

279. variable grscrub_regaddr

280.

281. puts "\nGRSCRUB registers:"

282.

283. mem $grscrub_regaddr 80

284. }

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 29 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

285.

286. ##

287. ### Programming the target FPGA

288. ##

289.

290. # Configure the GRSCRUB for programming operation mode

291. proc grscrub_init_progmode {} \

292. {

293. variable REG

294. variable BITPARAMS

295. variable FPGA_IDCODE

296.

297. puts "GRSCRUB init program mode"

298.

299. #configuration reg -> opmode = 0001

300. reg_write $REG(GRSCRUB.CONFIG) 0x00000010

301.

302. #golden bitstream addresses

303. reg_write $REG(GRSCRUB.LGBAR) $BITPARAMS(START.BIT)

304. reg_write $REG(GRSCRUB.HGBAR) $BITPARAMS(END.BIT)

305.

306. reg_write $REG(GRSCRUB.IDCODE) $FPGA_IDCODE

307. }

308.

309. # Configure GRSCRUB to program the target FPGA

310. proc grscrub_progfpga {} \

311. {

312. variable REG

313. variable done

314.

315. puts "\nStarting FPGA Programming"

316.

317. grscrub_disable

318. grscrub_doneclear

319. grscrub_errorclear

320. grscrub_init_progmode

321.

322. # wait

323. after 100

324.

325. grscrub_enable

326.

327. puts "FPGA Programming..."

328.

329. # wait OPDONE or SCRERR bitfield of Status register

330. while {([expr { $done & [expr [reg_read $REG(GRSCRUB.STAT)]]}] != $done) &&

331. ([expr [reg_read $REG(GRSCRUB.STAT)]] != 0x14) &&

332. ([expr [reg_read $REG(GRSCRUB.STAT)]] != 0x00000060) &&

333. ([expr [reg_read $REG(GRSCRUB.STAT)]] != 0x80000060) &&

334. ($grmon::interrupt != 1)} {

335. # wait if not done

336. after 100

337. }

338.

339. # check if programmed successfully

340. if {([expr { 0x00000060 & [expr [reg_read $REG(GRSCRUB.STAT)]]}] != 0x00000060)} {

341. puts "GRSCRUB FPGA programmed successfully!"

342. } else {

343. puts "ERROR to program FPGA!!!"

344. }

345.

346. grscrub_disable

347. }

348.

349.

350. ##

351. ### Mapping the target FPGA

352. ##

353.

354. # Configure the GRSCRUB for mapping operation mode

355. proc grscrub_init_fpgamappingmode {} \

356. {

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 30 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

357. variable REG

358. variable BITPARAMS

359. variable fcnt

360. variable flen

361. variable FPGA_IDCODE

362. variable partial_en

363.

364. puts "GRSCRUB FPGA mapping init"

365.

366. #configuration reg -> opmode = 0011

367. reg_write $REG(GRSCRUB.CONFIG) 0x00000030

368.

369. #golden bitstream address

370. reg_write $REG(GRSCRUB.LGBAR) $BITPARAMS(START.BIT)

371. reg_write $REG(GRSCRUB.HGBAR) $BITPARAMS(END.BIT)

372.

373. if {$partial_en==1} {

374. # Set partial scrubbing: Example of partial scrubbing in frames of row1 only (KU060)

375.

376. #set specific frame address

377. reg_write $REG(GRSCRUB.LFAR) 0x00020000

378.

379. #set specific number of frames

380. reg_write $REG(GRSCRUB.FCR) [expr [expr 7500 << 9] | [expr $flen << 2]]

381.

382. } else {

383. # Full scrubbing of the configuration memory

384.

385. #set frame address 0x0

386. reg_write $REG(GRSCRUB.LFAR) 0x00000000

387.

388. # Set the total number of FPGA configuration frames

389. # However, only the frames defined in the configuration block are mapped,

390. # that means that all block memories are excluded from the mapping phase.

391. reg_write $REG(GRSCRUB.FCR) [expr [expr $fcnt << 9] | [expr $flen << 2]]

392.

393. }

394.

395. #mask addr

396. reg_write $REG(GRSCRUB.LMASKAR) $BITPARAMS(START.MSK)

397.

398. #start frame addr

399. reg_write $REG(GRSCRUB.LGSFAR) $BITPARAMS(START.GOLD)

400.

401. #map addr in the golden memory

402. reg_write $REG(GRSCRUB.LFMAPR) $BITPARAMS(LOADAD.MAP)

403.

404. reg_write $REG(GRSCRUB.IDCODE) $FPGA_IDCODE

405. }

406.

407. # Configure GRSCRUB to map frame addresses of the target FPGA

408. proc grscrub_fpgamapping {} \

409. {

410. variable REG

411. variable done

412.

413. puts "\nGRSCRUB starting FPGA address mapping"

414.

415. grscrub_disable

416. grscrub_doneclear

417. grscrub_errorclear

418.

419. grscrub_init_fpgamappingmode

420.

421. #wait

422. after 100

423.

424. grscrub_enable

425.

426. puts "Mapping FPGA configuration memory..."

427.

428. # wait OPDONE or SCRERR bitfield of Status register

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 31 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

429. while {([expr { $done & [expr [reg_read $REG(GRSCRUB.STAT)]]}] != $done) &&

430. ([expr { 0x00000008 & [expr [reg_read $REG(GRSCRUB.STAT)]]}] != 0x8) &&

431. ([expr { 0x00000020 & [expr [reg_read $REG(GRSCRUB.STAT)]]}] != 0x20) &&

432. ($grmon::interrupt != 1)} {

433. # wait if not done

434. after 100

435. }

436.

437. grscrub_disable

438.

439. # check if mapped successfully

440. if {([expr [reg_read $REG(GRSCRUB.STAT)]] == $done)} {

441. puts "GRSCRUB FPGA mapping successfully"

442. } else {

443. puts "ERROR to map FPGA!!!"

444. }

445. }

446.

447.

448. ##

449. ### Golden CRC codes

450. ##

451.

452. # Configure the GRSCRUB for golden CRC operation mode

453. proc grscrub_init_goldencrc {} \

454. {

455. variable REG

456. variable shift_en

457. variable done

458.

459. puts "\nStarting golden CRC - to memory"

460.

461. grscrub_disable

462. grscrub_doneclear

463. grscrub_errorclear

464.

465. grscrub_init_readbackmode

466.

467. #configuration reg

468. # -> opmode = 100 golden crc

469. reg_write $REG(GRSCRUB.CONFIG) 0x00000040

470.

471. grscrub_enable

472.

473. puts "Readding FPGA configuration memory..."

474.

475. # wait OPDONE bitfield of Status register

476. while {([expr { $done & [expr [reg_read $REG(GRSCRUB.STAT)]]}] != $done) &&

477. ($grmon::interrupt != 1)} {

478. # wait if not done

479. after 100

480. }

481.

482. # Check error

483. if {([expr [reg_read $REG(GRSCRUB.STAT)]] == $done)} {

484. puts "GRSCRUB FPGA golden CRC successfully"

485. } else {

486. puts "ERROR to compute golden CRC!!!"

487. }

488.

489. grscrub_disable

490. }

491.

492. ##

493. ### Readback Scrubbing

494. ##

495.

496. # Configure the GRSCRUB for readback scrubbing operation mode

497. proc grscrub_init_readbackmode {} \

498. {

499. variable REG

500. variable BITPARAMS

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 32 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

501. variable fcnt

502. variable flen

503. variable FPGA_IDCODE

504. variable numbermappedframes

505. variable partial_en

506.

507. puts "GRSCRUB init readback mode"

508.

509. # clear error counter and frame id registers

510. reg_write $REG(GRSCRUB.ECNT) 0x00000000

511. reg_write $REG(GRSCRUB.ERRFRAMEID) 0x00000000

512. reg_write $REG(GRSCRUB.FRAMEID) 0x00000000

513.

514. #delay (optional, only used in periodic scrubbing)

515. reg_write $REG(GRSCRUB.DELAY) 0x10000000

516.

517. #golden bitstream addresses

518. reg_write $REG(GRSCRUB.LGBAR) $BITPARAMS(START.BIT)

519. reg_write $REG(GRSCRUB.HGBAR) $BITPARAMS(END.BIT)

520.

521.

522. if {$partial_en==1} {

523. # Set partial scrubbing: Example of partial scrubbing in frames of row1 only (KU060)

524.

525. #set specific frame address

526. reg_write $REG(GRSCRUB.LFAR) 0x00020000

527.

528. #set specific number of frames

529. #note: only mapped frames

530. reg_write $REG(GRSCRUB.FCR) [expr [expr 7500 << 9] | [expr $flen << 2]]

531.

532. } else {

533. # Full scrubbing of the configuration memory

534.

535. #set frame address 0x0

536. reg_write $REG(GRSCRUB.LFAR) 0x00000000

537.

538. # only mapped frames

539. reg_write $REG(GRSCRUB.FCR) [expr [expr $numbermappedframes<<9] | [expr $flen<<2]]

540.

541. }

542.

543. #mask addr

544. reg_write $REG(GRSCRUB.LMASKAR) $BITPARAMS(START.MSK)

545.

546. #start frame addr

547. reg_write $REG(GRSCRUB.LGSFAR) $BITPARAMS(START.GOLD)

548.

549. #map addr in the golden memory

550. reg_write $REG(GRSCRUB.LFMAPR) $BITPARAMS(LOADAD.MAP)

551.

552. reg_write $REG(GRSCRUB.IDCODE) $FPGA_IDCODE

553.

554. #required if crc on

555. reg_write $REG(GRSCRUB.LGCRCAR) $BITPARAMS(LOADAD.CRC)

556.

557. }

558.

559. # Configure GRSCRUB to readback only detection

560. proc grscrub_readbackfpga_onlydetection {{datacheck "ffc"}} \

561. {

562. variable REG

563. variable shift_en

564. variable done

565. variable scrun

566.

567. puts "\nStarting readback GRSCRUB IP - only detection"

568.

569. grscrub_disable

570. grscrub_doneclear

571. grscrub_errorclear

572.

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 33 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

573. grscrub_init_readbackmode

574.

575. #data verification

576. #bit 12 -> FFC

577. #bit 11 -> CRC

578. if {$datacheck == "ffc"} {

579. reg_write $REG(GRSCRUB.CONFIG) 0x0000102C

580. puts "FFC selected"

581. } elseif {$datacheck == "crc"} {

582. reg_write $REG(GRSCRUB.CONFIG) 0x0000082C

583. puts "CRC selected"

584. } else {

585. #all

586. reg_write $REG(GRSCRUB.CONFIG) 0x0000182C

587. puts "All methods selected: FFC + CRC"

588. }

589.

590. # if periodic scrubbing

591. if {$scrun == 1} {

592. set config_reg [expr ([reg_read $REG(GRSCRUB.CONFIG)])]

593. #configuration reg -> scrun = 1

594. reg_write $REG(GRSCRUB.CONFIG) [expr $config_reg | 0x2]

595. puts "Periodic scrubbing enabled"

596. puts "CTRL+C to exit, and grscrub_disable to disable the IP."

597. }

598.

599. grscrub_enable

600.

601. puts "Readding FPGA configuration memory..."

602.

603. # wait OPDONE or SCRERR bitfield of Status register

604. while {([expr { $done & [expr [reg_read $REG(GRSCRUB.STAT)]]}] != $done) &&

605. ($grmon::interrupt != 1) &&

606. ([expr { 0x00000020 & [expr [reg_read $REG(GRSCRUB.STAT)]]}] != 0x00000020)} {

607. # wait if not done

608. after 100

609. }

610.

611. # check if readback successfully

612. if {([expr [reg_read $REG(GRSCRUB.STAT)]] == $done) ||

613. ([expr [reg_read $REG(GRSCRUB.STAT)]] == 0x00001010)} {

614. set run_error [expr [reg_read $REG(GRSCRUB.ECNT)] & 0x0000FFFF]

615. puts "GRSCRUB FPGA readback successfully"

616. puts "GRSCRUB Last readback mismatches: $run_error"

617. } else {

618. puts "ERROR to readback FPGA!!!"

619. }

620.

621. grscrub_disable

622. }

623.

624. # Configure GRSCRUB to readback detection and correction

625. proc grscrub_readbackfpga_correction {{datacheck "ffc"}} \

626. {

627. variable REG

628. variable shift_en

629. variable done

630. variable scrun

631.

632. puts "\nStarting GRSCRUB readback - correction"

633.

634. grscrub_disable

635. grscrub_doneclear

636. grscrub_errorclear

637.

638. grscrub_init_readbackmode

639.

640. #data verification

641. #bit 12 -> FFC

642. #bit 11 -> CRC

643. if {$datacheck == "ffc"} {

644. reg_write $REG(GRSCRUB.CONFIG) 0x00001024

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 34 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

645. puts "FFC selected"

646. } elseif {$datacheck == "crc"} {

647. reg_write $REG(GRSCRUB.CONFIG) 0x00000824

648. puts "CRC selected"

649. } else {

650. #all

651. reg_write $REG(GRSCRUB.CONFIG) 0x00001824

652. puts "All methods selected: FFC + CRC"

653. }

654.

655. # if periodic scrubbing

656. if {$scrun == 1} {

657. set config_reg [expr ([reg_read $REG(GRSCRUB.CONFIG)])]

658. #configuration reg -> scrun = 1

659. reg_write $REG(GRSCRUB.CONFIG) [expr $config_reg | 0x2]

660. puts "Periodic scrubbing enabled"

661. puts "CTRL+C to exit, and grscrub_disable to disable the IP."

662. }

663.

664. grscrub_enable

665.

666. puts "Readding FPGA configuration memory..."

667.

668. # wait OPDONE or SCRERR bitfield of Status register

669. while {([expr { 0x00000010 & [expr [reg_read $REG(GRSCRUB.STAT)]]}] != 0x00000010) &&

670. ($grmon::interrupt != 1) &&

671. (([expr { 0x000001E0 & [expr [reg_read $REG(GRSCRUB.STAT)]]}] == 0x00000000) ||

672. ([expr { 0x000001E0 & [expr [reg_read $REG(GRSCRUB.STAT)]]}] == 0x000000A0))} {

673. # wait if not done

674. after 100

675. }

676.

677. # check error

678. if {(([expr { 0x00000020 & [expr [reg_read $REG(GRSCRUB.STAT)]]}] == 0x00000020) &&

679. ([expr { 0x000001E0 & [expr [reg_read $REG(GRSCRUB.STAT)]]}] != 0x000000A0))} {

680. puts "ERROR to readback FPGA!!!"

681. } else {

682. set run_error [expr [reg_read $REG(GRSCRUB.ECNT)] & 0x0000FFFF]

683. set uncor_error [expr [expr [reg_read $REG(GRSCRUB.ECNT)] & 0xFFFF0000] >> 16]

684. set corect_errors [expr run_error-uncor_error]

685. puts "GRSCRUB FPGA readback successfully"

686. puts "GRSCRUB Last readback mismatches: $run_error"

687. puts "GRSCRUB Correctable errors: $corect_errors"

688. puts "GRSCRUB Uncorrectable errors: $uncor_error"

689. }

690.

691. grscrub_disable

692. }

693.

694. ##

695. ### Blind Scrubbing

696. ##

697.

698. ## Configure the GRSCRUB for blind scrubbing operation mode

699. proc grscrub_init_blindscrubmode {} \

700. {

701. variable REG

702. variable BITPARAMS

703. variable fcnt

704. variable flen

705. variable scrun

706. variable FPGA_IDCODE

707. variable numbermappedframes

708. variable partial_en

709.

710. puts "GRSCRUB init blind scrub mode"

711.

712. # if periodic scrubbing

713. if {$scrun == 1} {

714. reg_write $REG(GRSCRUB.CONFIG) 0x00000022

715. } else {

716. reg_write $REG(GRSCRUB.CONFIG) 0x00000020

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 35 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

717. }

718.

719. #delay (optional, only used in periodic scrubbing)

720. reg_write $REG(GRSCRUB.DELAY) 0x10000000

721.

722. #golden bitstream addresses

723. reg_write $REG(GRSCRUB.LGBAR) $BITPARAMS(START.BIT)

724. reg_write $REG(GRSCRUB.HGBAR) $BITPARAMS(END.BIT)

725.

726.

727. if {$partial_en==1} {

728. # Set partial scrubbing: Example of partial scrubbing in frames of row1 only (KU060)

729.

730. #set specific frame address

731. reg_write $REG(GRSCRUB.LFAR) 0x00020000

732.

733. #set specific number of frames

734. #note: only mapped frames

735. reg_write $REG(GRSCRUB.FCR) [expr [expr 7500 << 9] | [expr $flen << 2]]

736.

737. } else {

738. # Full scrubbing of the configuration memory

739.

740. #set frame address 0x0

741. reg_write $REG(GRSCRUB.LFAR) 0x00000000

742.

743. # only mapped frames

744. reg_write $REG(GRSCRUB.FCR) [expr [expr $numbermappedframes<<9] | [expr $flen<<2]]

745.

746. }

747.

748. #start frame addr

749. reg_write $REG(GRSCRUB.LGSFAR) $BITPARAMS(START.GOLD)

750.

751. #map addr in the golden memory

752. reg_write $REG(GRSCRUB.LFMAPR) $BITPARAMS(LOADAD.MAP)

753.

754. reg_write $REG(GRSCRUB.IDCODE) $FPGA_IDCODE

755. }

756.

757. # Configure GRSCRUB to blind scrubbing

758. proc grscrub_blindscrubbingfpga {} \

759. {

760. variable REG

761. variable done

762.

763. puts "\nStarting GRSCRUB blind scrubbing"

764.

765. grscrub_disable

766. grscrub_doneclear

767. grscrub_errorclear

768.

769. grscrub_init_blindscrubmode

770.

771. grscrub_enable

772.

773. puts "Bling Scrubbing FPGA..."

774.

775. # wait OPDONE or SCRERR bitfield of Status register

776. while {([expr { $done & [expr [reg_read $REG(GRSCRUB.STAT)]]}] != $done) &&

777. ($grmon::interrupt != 1) &&

778. ([expr { 0x00000020 & [expr [reg_read $REG(GRSCRUB.STAT)]]}] != 0x00000020)} {

779. #wait if not done

780. after 10

781. }

782.

783. # check error

784. if {([expr [reg_read $REG(GRSCRUB.STAT)]] == $done) ||

785. ([expr [reg_read $REG(GRSCRUB.STAT)]] == 0x00001010)} {

786. puts "GRSCRUB FPGA Bling Scrubbing successfully"

787. } else {

788. puts "ERROR to Bling Scrubbing FPGA!!!"

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 36 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

789. }

790.

791. grscrub_disable

792. }

793.

794. ##

795. ### Bit-flip simulation

796. ##

797.

798. # Simulate a bit-flip to quick test the GRSCRUB scrubbing functionality

799. # The simplest way to simulate a bit-flip is changing the original golden configuration

800. # bitstream in the Golden memory. Thus, the GRSCRUB will check, detect a mismatch, and

801. # overwrite the FPGA frame "correcting" the bit-flip.

802. # word_addr: address in the golden memory (word must be in the scrubbed frames)

803. # bit_pos: bit position between 0 and 31

804. proc bitflip_sim {word_addr bit_pos} \

805. {

806.

807. puts "\nBit-flip simulation"

808.

809. # read 32-bit word from golden memory

810. set golden_word [silent mem $word_addr 4]

811. # puts "Original word: $golden_word"

812. puts [format "Original word:0x%08x" $golden_word]

813.

814. set faulty_word [expr $golden_word ^ [expr 1 << $bit_pos]]

815. # puts "Faulty word: $faulty_word"

816. puts [format "Faulty word: 0x%08x" $faulty_word]

817.

818. puts "\nWrite faulty word in the Golden memory. A bit-flip should be detected."

819. silent wmem $word_addr $faulty_word

820.

821. # Select the scrubbing method to test

822. # Note: to test the CRC detection, the golden CRC codes must be regenerated with the

faulty word

823.

824. # The GRSCRUB should detect and "correct" the word in the target FPGA

825. grscrub_readbackfpga_correction "ffc"

826.

827. puts "\nWrite original word in the Golden memory. Another bit-flip should be de-

tected."

828. silent wmem $word_addr $golden_word

829.

830. # The GRSCRUB should detect and "correct" the word in the target FPGA

831. grscrub_readbackfpga_onlydetection "ffc"

832. #before blind scrubbing, one bit-flip should be detected

833. grscrub_blindscrubbingfpga

834. #after blind scrubbing, the bit-flip should be corrected

835. puts "The bit-flip should be corrected after blind scrubbing."

836. grscrub_readbackfpga_onlydetection "ffc"

837. }

838. }

839.

840.

841. ###

842. ### MAIN

843. ###

844.

845. # Clear old variables

846. catch {unset setdesign}

847. catch {unset affected_word_addr}

848. catch {unset affected_bit}

849.

850. # Init variables

851. # Select static or leon3mp design

852. set setdesign "static"

853.

854. # optional bit-flip simulation

855. set affected_word_addr 0x400001a4

856. set affected_bit 0

857.

858. # Select the data check for readback

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 37 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

859. # ffc, crc, or all (ffc + crc)

860. #set datacheck "ffc"

861.

862. ## Alias to sub namespace procedures

863. interp alias {} init_config {} grscrub::init_config

864. interp alias {} grscrub_enable {} grscrub::grscrub_enable

865. interp alias {} grscrub_disable {} grscrub::grscrub_disable

866. interp alias {} grscrub_showregs {} grscrub::grscrub_showregs

867. interp alias {} grscrub_init_goldencrc {} grscrub::grscrub_init_goldencrc

868. interp alias {} grscrub_readbackfpga_onlydetection {} grscrub::grscrub_readbackfpga_on-

lydetection

869. interp alias {} grscrub_readbackfpga_correction {} grscrub::grscrub_readbackfpga_cor-

rection

870. interp alias {} grscrub_blindscrubbingfpga {} grscrub::grscrub_blindscrubbingfpga

871. interp alias {} bitflip_sim {} grscrub::bitflip_sim

872.

873.

874. ## Execute main procedures ##

875.

876. # See system components

877. info sys

878.

879. # Initial configuration: configure golden memory, programming, and mapping target FPGA

880. init_config $setdesign

881.

882. # Show GRSCRUB registers

883. grscrub_showregs

884.

885. #Set golden CRC codes

886. grscrub_init_goldencrc

887.

888. # Example of how to configure readback scrubbing only detection

889. # Select the data check for readback

890. # ffc, crc, or all (ffc + crc)

891. grscrub_readbackfpga_onlydetection "ffc"

892. grscrub_readbackfpga_onlydetection "crc"

893. grscrub_readbackfpga_onlydetection "all"

894.

895. # Example of how to configure readback scrubbing detection + correction

896. # Select the data check for readback

897. # ffc, crc, or all (ffc + crc)

898. grscrub_readbackfpga_correction "ffc"

899. grscrub_readbackfpga_correction "crc"

900. grscrub_readbackfpga_correction "all"

901.

902. # Example of how to configure blind scrubbing

903. grscrub_blindscrubbingfpga

904.

905. # Bit-flip simulation to test the scrubbing correction (optional)

906. bitflip_sim $affected_word_addr $affected_bit

907.

908. ### End of example of GRSCRUB IP configuration ###

Doc. No: GRLIB-AN-0012GRLIB-AN

Issue: 1 Rev.: 1

Date: 2020-06-12 Page: 38 of 38

Status:

© Cobham Gaisler AB
Contract: N/A

Deliverable: N/A

Copyright © 2020 Cobham Gaisler.

Information furnished by Cobham Gaisler is believed to be accurate and reliable. However, no
responsibility is assumed by Cobham Gaisler for its use, or for any infringements of patents or other
rights of third parties which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Cobham Gaisler.

All information is provided as is. There is no warranty that it is correct or suitable for any purpose,
neither implicit nor explicit.

