
Evaluation of synthesizable CPU cores

DANIEL MATTSSON
MARCUS CHRISTENSSON

Maste r ' s Thes is
Com p u t e r Science an d Eng in ee r i n g Pro g r a m
CHALMERS UNIVERSITY OF TECHNOLOGY
Depar t men t of Computer Engineer ing
Gothe n bu r g 20 0 4

All rights reserved. This publication is protected by law in
accordance with “Lagen om Upphovsrätt, 1960:729”. No part of this
publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior permission
of the authors.

 Daniel Mattsson and Marcus Christensson, Gothenburg 2004.

Abstract

The three synthesizable processors: LEON2 from Gaisler Research,
MicroBlaze from Xilinx, and OpenRISC 1200 from OpenCores are
evaluated and discussed. Performance in terms of benchmark results
and area resource usage is measured. Different aspects like usability
and configurability are also reviewed.

Three configurations for each of the processors are defined and
evaluated: the comparable configuration, the performance optimized
configuration and the area optimized configuration. For each of the
configurations three benchmarks are executed: the Dhrystone 2.1
benchmark, the Stanford benchmark suite and a typical control
application run as a benchmark.

A detailed analysis of the three processors and their development tools
is presented. The three benchmarks are described and motivated.
Conclusions and results in terms of benchmark results, performance
per clock cycle and performance per area unit are discussed and
presented.

Sammanfattning

De tre syntetiserbara processorerna: LEON2 från Gaisler Research,
MicroBlaze från Xilinx och OpenRISC 1200 från OpenCores utvärderas
och diskuteras. Prestanda i form av resultat från benchmarkprogram
och areautnyttjande mäts. Olika aspekter som användarvänlighet och
konfigurerbarhet undersöks också.

Tre konfigurationer av varje processor definieras och utvärderas: den
jämförbara konfigurationen, den prestandaoptimerade
konfigurationen samt den areaoptimerade konfigurationen. För var
och en av de tre konfigurationerna exekveras tre benchmarkprogram:
Dhrystone 2.1, Stanford samt en typisk styrapplikation vilken körs som
ett benchmarkprogram.

En detaljerad analys av de tre processorerna och deras
utvecklingsverktyg framförs. De tre benchmarkprogrammen beskrivs
och skälet till att de används motiveras. Slutsatser och resultat i form
av resultat från benchmarkprogram, prestanda per klockcykel och
prestanda per areaenhet diskuteras och framförs.

Evaluation of synthesizable CPU cores

Conclusions

The purpose of the thesis work was to produce a report containing a
qualitative and quantitative comparison between the three processors:
LEON2, MicroBlaze and OpenRISC 1200.

LEON2 yields the best results for both the Dhrystone 2.1 benchmark
and the Stanford benchmark, for all three configurations compared.
MicroBlaze performs nearly as well as LEON2 for the fastest
configuration, where LEON2 operates at significantly lower clock
frequency.

LEON2 yields best performance per clock cycle for for all benchmarks
and all configurations. The OpenRISC 1200 processor shows better
performance per clock cycle than MicroBlaze in the Stanford
benchmark and is therefore considered a more efficient architecture
than the MicroBlaze architecture. MicroBlaze is significantly more
efficient per area unit than the other two processors, but it is highly
optimized for Xilinx FPGAs. The LEON2 shows better efficiency per
area unit than the OpenRISC 1200 processor.

The MicroBlaze area usage is less than half the area usage of the other
two processors. For the area optimized configuration LEON2 and
OpenRISC 1200 utilizes approximately the same area.

The opinion of the authors regarding usability is that LEON2 is less
difficult than the others to manage. MicroBlaze has the best
documentation and the best support for adding user defined IP-blocks.
The OpenRISC 1200 documentation is insufficient and the processor is
in general more difficult to manage than both the MicroBlaze and
LEON2 processors.

We are convinced that this report fulfills the scope and requirements of
this Master's thesis. All three processors have been implemented on the
target FPGA circuit. For all three processors, three configurations have
been defined and evaluated. Two benchmarks have been executed on
the processors implemented in hardware on the FPGA development
board. The results have been documented and further analyzed.

Evaluation of synthesizable CPU cores

Acknowledgements

First of all we would like to thank our supervisor Jiri Gaisler at Gaisler
Research for invaluable support and help with technical questions.

We would also like to thank the other employees at Gaisler Research
and especially Edvin Catovic for help with technical problems and
giving feedback on the final report.

Further we would like to thank our examiner Lars Bengtsson at the
department of Computer Engineering at Chalmers for undertaking our
Master's thesis.

Daniel Mattsson and Marcus Christensson

Gothenburg, 21st of December 2004

Evaluation of synthesizable CPU cores

Table of Contents

1 Introduction...1
1.1 Background..1
1.2 Project description..1
1.3 Project goals...1

1.3.1 Measures...2
1.3.2 Motivation..2

2 Analysis and methods...3
2.1 FPGA development board...3
2.2 Analysis of the processors...3

2.2.1 LEON2..3
2.2.2 MicroBlaze..7
2.2.3 OpenRISC 1200..9
2.2.4 Summary..12

2.3 Development tools..15
2.3.1 LEON2..15
2.3.2 MicroBlaze..16
2.3.3 OpenRISC 1200..16

2.4 Processor configurations...17
2.4.1 Parameters common for all configurations...17
2.4.2 Comparable configuration...19
2.4.3 Performance optimized configuration...21
2.4.4 Area optimized configuration...22

2.5 Benchmarks..23
2.5.1 Pros and cons regarding benchmarking..23
2.5.2 Dhrystone 2.1...23
2.5.3 Stanford...24
2.5.4 Typical control application..24

3 Results..25
3.1 Benchmarks..25

3.1.1 Comparable configuration...25
3.1.2 Performance optimized configuration...29
3.1.3 Area optimized configuration...33
3.1.4 Benchmark summary..36

3.2 Synthesis results...38
3.2.1 Comparable configuration...39
3.2.2 Performance optimized configuration...39
3.2.3 Area optimized configuration...40
3.2.4 Synthesis discussion...41
3.2.5 Synthesis summary..42

3.3 Performance...43
3.3.1 Performance per clock cycle..43
3.3.2 Performance per area unit...45
3.3.3 Performance summary...47

3.4 Usability...48

Evaluation of synthesizable CPU cores

3.4.1 LEON2..48
3.4.2 MicroBlaze..49
3.4.3 OpenRISC 1200..51
3.4.4 Usability summary..53

3.5 Configurability..54
3.5.1 LEON2..54
3.5.2 MicroBlaze..54
3.5.3 OpenRISC 1200..54
3.5.4 Configurability summary...54

3.6 Summary..55

4 Discussion...56
4.1 Obstacles..56
4.2 Future improvements...57

5 Glossary..58

6 References...60

7 Index of tables..61

8 Index of figures...62

A Information on caches..63
A.1 Cache overview..63
A.2 Cache organization...63
A.3 Cache operation...63
A.4 Cache access...64
A.5 Replacement policies..64

A.5.1 FIFO...64
A.5.2 LRU..64
A.5.3 LRR..65
A.5.4 Random..65

A.6 Calculating cache size...65

B Implementation procedure...66
B.1 General...66
B.2 LEON..66

B.2.1 Generating a working system...66
B.2.2 Software applications..66
B.2.3 Simulation in Modelsim..66
B.2.4 Synthesis and bitstream generation..67
B.2.5 Running on physical hardware..67

B.3 MicroBlaze...67
B.3.1 Generating a working system...67
B.3.2 Software applications..67
B.3.3 Simulation in Modelsim..68
B.3.4 Synthesis and bitstream generation..68
B.3.5 Running on physical hardware..68

B.4 OpenRISC 1200..69

Evaluation of synthesizable CPU cores

B.4.1 Generating a working system...69
B.4.2 Software applications..69
B.4.3 Simulation in Modelsim..70
B.4.4 Synthesis and bitstream generation..70
B.4.5 Running on physical hardware..70

B.5 Discussion..70

C Paranoia..71
C.1 About...71
C.2 Compilation..71
C.3 LEON2..71

C.3.1 Single precision floating-point...71
C.3.2 Double precision floating-point..71

C.4 MicroBlaze...71
C.4.1 Modifications..71
C.4.2 Single precision floating-point...72
C.4.3 Double precision floating-point..72

C.5 OpenRISC 1200..72

Evaluation of synthesizable CPU cores

1 Introduction

In this chapter the background and description of this
thesis work is presented. The project goals are formulated
and motivated.

1.1 Background

Gaisler Research develops and supports the LEON SPARC V8 processor, a
synthesizable processor for embedded applications. In this context, it is of
interest to make a comparative analysis with synthesizable processors from
other providers.

1.2 Project description
The work will consist of comparing three different processors: LEON2 from
Gaisler Research, MicroBlaze from Xilinx and OpenRISC 1200 from
OpenCores. The work will consist of three parts: initial analysis,
implementation and benchmarking.

During the initial analysis, the processor architectures shall be analyzed and
compared. Characteristics such as pipeline depth, cache architecture,
instruction set, configurable options, etc should be described and evaluated.

Each processor shall be synthesized and implemented on a Virtex-II FPGA
breadboard. Characteristics such as gate count, maximum clock frequency,
and performance shall be measured. It is foreseen that two implementations
of each processor will be done: minimum area and maximum performance.

Performance of the implemented processors shall be measured with a set of
standard benchmarks. For this, the installation of a cross-compiler toolchain
for each of the processors will be necessary.

A final report shall be produced, containing the description of the work, the
findings, and the conclusion.

1.3 Project goals

The goals with this Master's thesis is to compare the synthesizable processors
LEON2 from Gaisler Research, MicroBlaze from Xilinx and OpenRISC 1200
from OpenCores.

1

Evaluation of synthesizable CPU cores 1 Introduction

1.3.1 Measures

The three processors will be compared on the following aspects:
� Implementation aspects

� Processor clock frequency
� Processor area
� Instruction Set Architecture (ISA)

� Performance
� Benchmark results

� Usability
� Documentation
� Tools
� Hardware configuration
� Portability
� Adding user defined IP-blocks

� Configurability

1.3.2 Motivation

Clock frequency is not directly comparable between different instruction set
architectures, since the amount of work accomplished by the processor during
one clock cycle can differ a lot between different ISAs. Even so the clock
frequency can be rather interesting because lower clock frequency utilizes less
power.

Usability is of great importance since customers do not want to spend money
on learning complex tools. The comparison of usability is somewhat difficult
and should be considered as the personal opinions of the authors.

An adaptable system is desirable and therefore the ability to configure as
much as possible is important.

Portability is the ability to port the hardware to different platforms (e.g.
FPGAs, ASICs). A widely portable processor attracts more customers.

2

1.3 Project goals Evaluation of synthesizable CPU cores

2 Analysis and methods

In this chapter the three synthesizable processors will be
analyzed. Three configurations of each processor will be
defined and further evaluated.

2.1 FPGA development board

The three processors were evaluated in hardware on the GR-PCI-XC2V
development board from Pender Electronic Design GmbH [PEWEB]. The
development board includes a Xilinx Virtex-II FPGA (XC2V3000fg676-4),
which is clocked by an onboard oscillator operating at 40 MHz. The hardware
designs were downloaded to the FPGA via the onboard JTAG interface.

The following onboard features were used in the evaluations:
� 1 Mbyte of SRAM for storing programs.
� UART interface for output.

2.2 Analysis of the processors

In this section a detailed review of the three processors to be evaluated is
presented. Parameters and data for each processor will be presented as well
as a brief overview.

2.2.1 LEON2

2.2.1.1 Overview

LEON2 is a 32-bit RISC SPARC V8 compliant architecture, and uses big
endian byte ordering as specified in the SPARC V8 reference manual [SPA92].
An overview of the LEON2 processor architecture can be seen in Figure 1
below.

3

Evaluation of synthesizable CPU cores 2 Analysis and methods

LEON2 is a synthesizable processor developed by ESA and maintained by
Gaisler Research. The processor was originally developed as a fault-tolerant
processor for space applications. This report covers the non fault-tolerant
version licensed under the GNU LGPL license, which is freely available as a
VHDL model from the Gaisler Research website [GRWEB]. LEON2 targets
both the ASIC and FPGA markets.

2.2.1.2 ISA

LEON2 utilizes the SPARC V8 instruction set architecture. The design goals of
the SPARC V8 ISA were to make software optimization done by the compiler
easy and to ease implementations of pipelined hardware.

The ISA has three different instruction formats and three addressing modes:
immediate, displacement and indexed. Branch instructions have one annulled
delay slot, see [SPA92].

The ISA includes instructions for multiply and accumulate (MAC) operations,
multiplication and division. LEON2 implements optionally the MAC as 16x16-
bit input with a 40-bit accumulator. The multiply operation can be
implemented as six different hardware implementations as seen in Table 1.

4

Figure 1: Overview of the LEON2 processor architecture.

5-stage IU
Debug

Support Unit

ICache DCache

MMU

FPU

Local RAM

CP

Debug
Serial Link

AHB
Controller

Memory
Controller

Ethernet

PCI

Local RAM

AHB/APB
Bridge

UARTS

Timers

IrqCtrl

IO port

PROM SRAM SDRAMIO

AMBA AHB

AMBA APB

8/16/32-bits memory bus

2.2 Analysis of the processors Evaluation of synthesizable CPU cores

Configuration Latency
(clock)

Approx. area
(Kgates)

iterative 35 1000
M16x16 + pipeline reg 5 6500

m16x16 4 6000
m32x8 4 5000

m32x16 2 9000
m32x32 1 15000

Table 1: Multiplier configurations.

The divide instruction can be implemented in hardware as a radix-2 divider
which results in a latency of 35 clock cycles. [GR04]

The ISA includes support for two coprocessors, one FPU and one custom user
defined coprocessor. The FPU can be chosen from one of the following:
GRFPU provided by Gaisler Research, Meiko FPU from Sun Microsystems and
the incomplete open source LTH FPU developed at Lunds Tekniska Högskola
in Sweden.

2.2.1.3 Integer unit

The integer unit implements the SPARC V8 ISA as a single issue 5-stage
pipeline. Multipliers and dividers are configurable as described in 2.2.1.2 ISA.

The LEON2 register file is windowed with 2-32 register windows. Each
register window has eight in registers, eight out registers and eight local
registers. The in and out registers are shared between adjacent windows. In
addition to the mentioned registers there are eight global registers. This
means that the programmer at every instant can access 32 registers. The total
number of registers can be calculated as 8+16*NWINDOWS, where
NWINDOWS is the number of windows. This gives a total of 40-520 registers
depending on the configured amount of register windows.

2.2.1.4 Cache system

The cache system is a Harvard architecture with 1-64 Kbyte per way for both
the instruction and the data cache. Each cache line can contain between 4
and 8 sub-blocks, each containing 4 byte.

The caches can be configured as either one way direct-mapped or 2-4 way set
associative. In a multi-way configuration three replacement policies can be
used: least recently used (LRU), last recently replaced (LRR) and pseudo-
random. When using LRR, only two way set associativity is available.

For reduced cache miss latency the instruction cache uses streaming during
line-refill, which means that data is sent to the processor at the same time as
it is written to the cache. On a cache miss in the data cache, only the
requested sub-block is fetched.

5

Evaluation of synthesizable CPU cores 2.2 Analysis of the processors

The data cache uses write-through policy. To minimize pipeline stalls caused
by store instructions, a double-word write buffer is used.

The caches have support for individual cache line locking in multi-way
configurations. To prevent a specific memory address to be blocked from the
cache, the last line in each set can not be locked.

In order to sustain cache consistency when there are several units on the AHB
(AMBA High Speed Bus) bus (section 2.2.1.6 System interface) capable of
writing to the memory, the data cache can perform bus snooping on the AHB
bus. Bus snooping is only available when the MMU is disabled, since the
cache is virtually addressed.

2.2.1.5 MMU

A memory management unit can be enabled providing support for memory
protection mechanisms required for advanced operating systems. The MMU
can be configured to either use a shared or split translation lookaside buffer
(TLB) for instruction and data memories. The TLB is fully associative and the
number of entries can be configured between 2 and 32. The MMU supports
page sizes of 4 Kbyte, 256 Kbyte and 16 Mbyte.

2.2.1.6 System interface

The integer unit interfaces to memory and other peripherals via the AMBA
Advanced High performance Bus (AMBA-2.0 AHB) and the AMBA Advanced
Peripheral Bus (AMBA-2.0 APB).

The AMBA-2.0 AHB bus connects to high-speed peripherals, DMA controllers,
on-chip memory and interfaces. The bus has pipelined operation and supports
burst transfers, multiple masters and split transactions. The AMBA-2.0 APB
bus is optimized for minimal power consumption and uses an interface with
reduced complexity to support peripheral functions. The protocol is designed
for ancillary or general-purpose peripherals.

2.2.1.7 Power management

A power-down mode is supported from which the processor wakes up when
an unmasked interrupt with a specified priority becomes pending. In power-
down mode the integer unit is halted.

2.2.1.8 Memory controller

The memory controller supports several memory types including:
� PROM
� SRAM
� SDRAM (up to two banks of PC100/PC133)

6

2.2 Analysis of the processors Evaluation of synthesizable CPU cores

2.2.1.9 Additional units

In addition to the above mentioned units, several other units can be
connected:
� Debug Support Unit (DSU), available for easier debugging.
� PCI interface.
� Ethernet MAC.
� On-chip RAM for fast memory accesses.
� GRFPU and MEIKO FPU (both fully IEEE-754 compliant) and the

incomplete LTH FPU.

2.2.2 MicroBlaze

2.2.2.1 Overview

MicroBlaze is a 32-bit RISC synthesizable processor which uses big endian
byte ordering. An overview of the MicroBlaze processor architecture can be
seen in Figure 2. MicroBlaze is developed and maintained by Xilinx Inc. The
processor is designed specifically for Xilinx FPGAs and therefore highly
optimized for their FPGA circuits. [XIL04a]

MicroBlaze is distributed with the Xilinx Embedded Development Kit (EDK) as
a parameterizable netlist, but the VHDL source code can be obtained from
Xilinx at a higher cost. [XILWEB] The version of MicroBlaze evaluated here is
version 2.10.a supplied with Xilinx EDK version 6.2.

7

Figure 2: Overview of the MicroBlaze processor architecture.

3-stage IU MicroBlaze
Debug Unit

ILMB
IOPB

Local RAM

Memory
Controller

UARTS

Timers

IrqCtrl

IO port

External memory

OPBLMB

8/16/32-bits memory bus

ICache DCache

DOPB
DLMB

CP
FSL

Evaluation of synthesizable CPU cores 2.2 Analysis of the processors

2.2.2.2 ISA

MicroBlaze has its own ISA specially designed for MicroBlaze. The ISA has
two different instruction formats and two addressing modes, immediate and
displacement.

The ISA includes instructions for multiplication and division, which are
optionally implemented in hardware. The multiplication, which has a latency
of 3 clock cycles when implemented in hardware, can only be implemented if
the FPGA has built-in hard multipliers. The division has, if implemented in
hardware, a latency of 34 clock cycles. [XIL04a]

The ISA includes instructions for blocking and non-blocking reads and writes
to the FSL (Fast Simplex Link) bus for fast communication with a custom unit.
Branch instructions have one delay slot which is always executed.

2.2.2.3 Integer unit

The MicroBlaze integer unit is a single issue 3-stage pipeline implementing
the MicroBlaze ISA. Hardware multiplier and divider are available if
configured and supported by target FPGA architecture as described in 2.2.2.2
ISA. The register file has 32 general purpose registers, each 32-bit wide.
MicroBlaze uses a simple technique called a branch history buffer (BHB) to
reduce branch miss rate.

2.2.2.4 Cache system

The cache architecture is a Harvard architecture where both instruction and
data caches can vary in size between 2 and 64 Kbyte. A single cache line
contains 4 byte, resulting in not exploiting the spatial locality of a program.

The caches are direct-mapped and supports individual cache line locking.
Since the MicroBlaze cache is direct-mapped, locking one line can render
other memory addresses blocked from the cache, possibly affecting
performance negatively. The data cache operates as a write-through cache
and implements allocate-on-write. The MicroBlaze cache is limited to only
allow caching of a continuous subspace of the total memory.

2.2.2.5 MMU

No memory management unit available.

2.2.2.6 System interface

The system interface for MicroBlaze consists of the Local Memory Bus (LMB),
the IBM CoreConnect On-chip Peripheral Bus v2.0 (OPB) and the Fast
Simplex Link bus (FSL).

The integer unit interfaces to the internal block RAM with a single-cycle
access through the LMB. The OPB, which is a multi-master multi-slave bus,

8

2.2 Analysis of the processors Evaluation of synthesizable CPU cores

provides a handshake interface to both on- and off-chip peripherals and
memory. The FSL is available at the ISA level, capable of point-to-point
transfers of data with a latency of two clock cycles.

2.2.2.7 Power management

No power management available.

2.2.2.8 Memory controller

MicroBlaze has support for a number of memory types, including:
� Intel StrataFlash
� SRAM
� SDRAM
� DDR SDRAM

2.2.2.9 Additional units

MicroBlaze can interface to an extensive amount of IP-cores including:
� Xilinx Microprocessor Debug Module (MDM) for debugging.
� Ethernet MAC.
� Quixilica IEEE-754 single precision FPU.
� UART

2.2.3 OpenRISC 1200

2.2.3.1 Overview

OpenRISC 1200 is a synthesizable processor developed and managed by a
team of developers at OpenCores [OCWEB]. OpenRISC 1200 is a 32-bit RISC
processor implementing the 32-bit OpenRISC 1000 architecture. An overview
of the OpenRISC 1200 processor architecture can be seen in Figure 3 below.
The processor uses big endian byte ordering. The processor is intended for
embedded, portable and network applications. OpenRISC 1200 is an open
source IP-core freely available from the OpenCores website as a Verilog
model, licensed under the GNU LGPL license.

9

Evaluation of synthesizable CPU cores 2.2 Analysis of the processors

2.2.3.2 ISA

OpenRISC 1200 implements the ORBIS32 instruction set architecture.
ORBIS32 has five instruction formats and three addressing modes: immediate,
displacement and pc-relative.

The ISA includes instructions for multiplication and division, which are
optionally implemented in hardware. The hardware multiplication has a
latency of 3 clock cycles. The division has, if implemented in hardware, an
estimated latency of 64 clock cycles1. [ORSRC]

A MAC instruction with two 32-bit operands and a 48-bit accumulator is
included in the ISA. The ISA can be extended with custom instructions and an
additional coprocessor can be attached. Branch instructions have one delay
slot which always is executed.

2.2.3.3 Integer unit

The OpenRISC 1200 integer unit is a single issue 5-stage pipeline
implementing the ORBIS32 ISA. Hardware multiplier and divider is available
if configured as described in 2.2.3.2 ISA. The register file has 32 general
purpose registers, each 32-bit wide.

1 The value of 64 is an estimation obtained from source code studies, since the latency is
undocumented.

10

Figure 3: Overview of the OpenRISC 1200 processor architecture.

5-stage IU
Debug Unit

IWB

Local RAM
Memory

Controller

UARTS Timers IrqCtrl

External memory

WishBone

8/16/32-bits memory bus

ICache DCache

DWB

CP

2.2 Analysis of the processors Evaluation of synthesizable CPU cores

2.2.3.4 Cache system

The cache architecture is a Harvard architecture where the instruction cache
can vary in size between 512 byte and 8 Kbyte and the data cache size can
vary between 1 and 8 Kbyte. A single cache line contains either 8 or 16 byte
data. [ORSRC]

Both caches are direct-mapped. The data cache operates in a write-through
mode and optionally implements allocate-on-write. Cache locking is
implemented as locking the cache on a one way basis. Critical-word-first is
implemented as cache fetch technique in both caches.

2.2.3.5 MMU

A memory management unit is implemented and can be enabled providing
support for memory protection mechanisms required for advanced operating
systems. The MMU uses a split TLB for instruction and data memories. The
TLBs are direct-mapped and has 64 entries each, with a fixed page size of
8 Kbyte.

2.2.3.6 System interface

OpenRISC 1200 interfaces to memory and peripherals via two Wishbone2

compliant 32-bit bus interfaces. The Wishbone interface supports
point-to-point, shared bus, crossbar switch and data flow interconnections.
The multi-master multi-slave bus also supports both single cycle data transfers
and burst transfers.

2.2.3.7 Power management

OpenRISC 1200 implements three different power modes. The slow and idle
mode is implemented in software and reduces power usage by adjusting the
clock frequency. The doze mode disables all operations in the integer unit.
The clocks to the internal modules of the processor are disabled, except for
the timer unit. In the sleep mode all internal units are disables and all clocks
are gated. The sleep and doze modes will be leaved when a pending interrupt
occurs and normal operation mode is entered.

2.2.3.8 Memory controller

The OpenRISC 1200 processor supports a number of memories including:
� SDRAM
� SSRAM
� FLASH
� SRAM

2 Wishbone SoC Interconnection specification Rev. B

11

Evaluation of synthesizable CPU cores 2.2 Analysis of the processors

2.2.3.9 Additional units

A lot of third party IP-cores are available from OpenCores. Some examples are
listed below:
� FFT cores
� Ethernet MAC
� I2C controller core
� Cryptographic cores

2.2.4 Summary

All three processors presented in 2.2 Analysis of the processors are 32-bit
RISC big endian synthesizable processors with single issue pipelines. LEON2
and OpenRISC 1200 has 5-stage pipelines in contrary to MicroBlaze, which
has a 3-stage pipeline.

LEON2 and OpenRISC 1200 are available for free under the LGPL license, but
MicroBlaze on the other hand is commercially available from Xilinx for use in
their FPGA circuits.

LEON2 has a large windowed register file, while the others use a flat register
file with less registers. The windowed register file results in a worst case
execution time which is more difficult to analyze compared to the case when
a flat register file is used. The use of a flat register file can not result in a
window overflow in contrary to the windowed register file in LEON2, where
window overflows may result in large overheads.

All three processors have Harvard caches with similar values for the effective
cache size. LEON2 extinguishes itself from the others by, besides direct-
mapped support, also providing support for a 2-4 way set associative cache
configuration, in which three replacement strategies can be used. MicroBlaze
only allows caching of a continuous address range, while the others can cache
multiple address ranges.

MicroBlaze is optimized for Xilinx FPGAs and offers an efficient use of the
FPGA resources for improved performance and low area resource usage. The
key parameters for the three processors are summarized in Table 2 below.

12

2.2 Analysis of the processors Evaluation of synthesizable CPU cores

LEON2 MicroBlaze OpenRISC 1200

License GNU LGPL Ships with Xilinx EDK GNU LGPL
Platform FPGA, ASIC Xilinx FPGA FPGA, ASIC
Distributed file format VHDL EDIF3 Verilog
General

Architecture 32-bit RISC 32-bit RISC 32-bit RISC

Byte ordering Big endian Big endian Big endian

Pipeline depth 5 3 5
Issue type Single Single Single

Branch prediction N/A4 BHB5 N/A
Register file

Organization Windowed Flat Flat

of global registers 8 32 32

of windows 2-32 N/A N/A
of registers/window 16 N/A N/A

Total # of GPRs6 40-520 32 32
ISA

Type SPARC V8 MicroBlaze ISA ORBIS327

Addressing modes Immediate,
displacement, indexed

Immediate,
displacement

Immediate,
displacement, pc-

relative

MAC 16x16-bit, 40-bit Acc N/A 32x32-bit, 48-bit Acc

MUL latency 1-35 cycles8 3 cycles9 3 cycles

DIV latency 35 cycles 34 cycles10 ~64 cycles11

Branch delay slots 112 1 1

Branch latency 0-1 1-3 Unknown

Load delay 1, 213 2 Unknown14

Custom instructions No No Yes

Custom coprocessor Yes Yes (via FSL) Yes

Hardware floating-
point support

GRFPU, Meiko FPU,
LTH FPU15

Quixilica FPU16 N/A17

3 The VHDL source code is commercially available.
4 N/A indicates that the feature is not available.
5 Branch History Buffer.
6 Number of General Purpose Registers
7 32-bit OpenRISC Basic Instruction Set.
8 Six different hardware multipliers available with different latencies and area requirements.
9 When the target FPGA has built-in hardware multipliers.
10 When the optional hardware divider is implemented.
11 Estimated by looking at the OpenRISC 1200 Verilog source code. 64 cycles is only an approximate

value.
12 The delay slot can be “annulled” for some branch instructions.
13 Only used for ASIC.
14 The OpenRISC 1200 documentation does not include information regarding the load delay.
15 GRFPU is available from Gaisler Research, Meiko FRU is available from SUN, and LTH FPU is an

13

Evaluation of synthesizable CPU cores 2.2 Analysis of the processors

LEON2 MicroBlaze OpenRISC 1200

Software floating-
point support

IEEE-754 Single and
double precision

Single precision18 IEEE-754 Single and
double precision

Cache

Hierarchy Harvard Harvard Harvard

Instruction cache size 1-256 Kbyte 2-64 Kbyte 512 byte-8 Kbyte

Data cache size 1-256 Kbyte 2-64 Kbyte 4-8 Kbyte

Line size 16-32 byte 4 byte 8-16 byte

Sub-block size 4 byte N/A N/A

Placement scheme Direct-mapped, 2-4
way set associative

Direct-mapped Direct-mapped

Replacement strategies LRU, LRR19, Random N/A N/A20

D$ write policy Write-through Write-through Write-through

Store Buffer 1 double-words N/A 0,4,8 words21

I$ refill policy Streaming during
line-refill

Line refill Critical-word-first line
refill

D$ read refill policy Only requested sub-
block

Line refill Critical-word-first line
refill

Allocate-on-write No Yes Optional

Read hit wait states 0 0 0

Write hit wait states 0 0 0

Valid bits One per sub-block One per cache line One per cache line

Line-locking Individual Individual Set basis

Bus snooping Data cache22 N/A N/A

System Interface AMBA-2.0 AHB,
AMBA-2.0 APB

LMB, IBM OPB v2.0,
FSL

Wishbone SoC rev. B
32-bit

Power management Power-down mode N/A Slow and idle mode,
sleep mode, doze

mode
Memory

On-chip RAM Configurable Configurable Configurable

External Memory
Controller

PROM, SRAM,
SDRAM, memory-

mapped I/O devices

DDR SDRAM,
SDRAM, SRAM,
external FLASH

SDRAM, SRAM,
SSRAM, FLASH

MMU

incomplete open source FPU. Both the GRFPU and the Meiko FPU implements full IEEE-754
floating-point support.

16 Quixilica FPU is a single precision IEEE-754 third-party IP core commercially available.
17 There exists an IEEE-754 single-precision compliant FPU which works in simulation, but the

implementation is incomplete for synthesis.
18 Double precision has not been confirmed. Single precision does not follow the IEEE-754 standard.
19 LRR can only be used in a 2-way set associative cache configuration.
20 OpenCores claim to use LRU, but LRU seems unnecessary in a direct-mapped cache.
21 The OpenRISC 1200 source code reports that only a store buffer of size 4 or 8 words has been tested

properly, a test run with Stanford confirmed that a store buffer length of 16 words did not work.
22 Not available when the MMU is enabled.

14

2.2 Analysis of the processors Evaluation of synthesizable CPU cores

LEON2 MicroBlaze OpenRISC 1200

Shared or split TLB Configurable N/A Split

of TLB entries 2-32 N/A 64

TLB placement scheme Fully associative N/A Direct-mapped

Page size 4 Kbyte, 256 Kbyte,
16 Mbyte

N/A 8 Kbyte

Operating system
support

eCos, Thumbpod
(Java), SnapGear
Embedded Linux

(Linux and uClinux),
OAR RTEMS RTOS,

VxWorks

AT Nucleus Plus
RTOS, Express Logic
ThreadX, Micriµm
µC/OS-II RTOS,

uClinux, VxWorks

Linux, uClinux, OAR
RTEMS RTOS

Table 2: Summary of the synthesizable processors' parameters.

2.3 Development tools
This section will present development tools used for software and hardware
development. The purpose of this section is to cover the available tools for
each one of the three processors.

2.3.1 LEON2

A number of make scripts are used to configure and implement the LEON2
processor. There is a graphical TCL/Tk based configuration tool which works
similar to the TCL/Tk graphical configuration tool for the Linux kernel.

Simulation is done through TSIM which is a commercially available cycle
accurate instruction set simulator, capable of simulating LEON-based
computer systems. An evaluation version is also available. The simulator can
be executed standalone or connect remotely to the GNU debugger, GDB.

Synthesis is available through both Xilinx XST and Synplicity Synplify.
Hardware simulation can be done with Mentor Graphics Modelsim, Cadence
NCsim and the GNU HDL simulator (GHDL).

There are two cross-compiler toolchains for the LEON2 processor, one for
bare-C applications and one for RTEMS applications. Both of them use the
GNU compiler toolchain and the GNU debugger. There is a graphical IDE for
C/C++ development available as a plugin for Eclipse 3.0.

There is a graphical user interface for GRMON, which acts as a front-end for
LEON2 debugging. This user interface is also provided as an Eclipse 3.0
plugin.

In order to debug a LEON2 microprocessor system, GRMON can be used.
GRMON can connect to a LEON2 system implemented on a physical FPGA

15

Evaluation of synthesizable CPU cores 2.2 Analysis of the processors

development board via a hardware debug unit, or execute the instruction set
simulator TSIM. To debug the software the GNU debugger (GDB) can connect
to GRMON.

2.3.2 MicroBlaze

MicroBlaze hardware and software development is done using Xilinx
Embedded Development Kit (EDK). EDK is a development environment where
the hardware is instantiated as different IP-blocks connected via buses and
signals. The software is developed on top of the generated libraries derivated
from the hardware design. EDK focuses on system development closely
integrated with a microprocessor. Both Xilinx's soft processor MicroBlaze and
IBM's PowerPC 405, available as a hard macro in some FPGA circuits, are
supported. EDK includes an integrated development environment (IDE)
named Xilinx Platform Studio (XPS), which is a graphical GUI on top of the
EDK.

The design is mainly specified in the Microprocessor Hardware Specification
file (MHS) and the Microprocessor Software Specification file (MSS). The
MHS file instantiates the different hardware IP-blocks and connects them
together. A make script is used to synthesize and route the hardware, compile
the software libraries and applications, generate simulation models and
bitstreams etc.

XPS acts as a graphical front-end for the make scripts when compiling the
software and implementing the hardware. The compiler used in the
compilation is a modification of the GNU Compiler Collection tools (GCC).
For synthesis the Xilinx XST is used.

In order to debug software Xilinx Microprocessor Debugger (XMD) is
included. XMD can connect to a MicroBlaze or PowerPC processor
implemented on a physical FPGA development board or execute an
instruction set simulator. To debug the software the GNU debugger (GDB)
can connect to XMD.

The Xilinx Embedded Development Kit v6.2 is available for the Windows,
Solaris and Linux platforms.

2.3.3 OpenRISC 1200

The hardware configuration is done by manually editing the Verilog files.
Most of the configuration options are changed from within one file,
containing numerous define statements.

For the OpenRISC 1200 processor there is a GNU toolchain including the GCC
compiler and GNU debugger (GDB). An instruction set simulator called
or1ksim is also available.

16

2.3 Development tools Evaluation of synthesizable CPU cores

To connect to the debug unit implemented on the target FPGA, a tool called
JP1 can be compiled. JP1 connects via a dedicated JTAG port on the FPGA
circuit and serves as a server for GDB. GDB can connect to JP1 providing
access to the FPGA board. From within GDB the user can download software
programs into the processor memory, modify registers, execute programs etc.

2.4 Processor configurations

This section aims to describe the differences between the three processor
configurations, the comparable, the performance optimized and the area
optimized configuration. Parameters and configuration options of interest for
the different configurations are presented.

2.4.1 Parameters common for all configurations

For a better overview of the differences between the three configurations,
parameters and configuration options specific for each configuration are listed
in separate tables. Parameters and configuration options that remains
constant for all configurations are listed in Table 3 below. Note that some of
the parameters in Table 3 are not configurable and are there merely for
greater understanding.

LEON2 MicroBlaze OpenRISC 1200

Branch prediction Not needed23 BHB N/A
Register file

Organization Windowed Flat Flat
of global regs 8 32 32

of windows 8 N/A N/A

of registers/window 16 N/A N/A

Total # of GPRs 136 32 32
Reg-file RAM bits 4352 1024 1024

ISA

MAC No N/A Yes24

Load delay 1 2 Unknown

Branch latency 0-1 1-3 Unknown

Custom instructions No N/A No

Custom coprocessor No No No

Floating-point support SW SW SW

Cache

Hierarchy Harvard Harvard Harvard

Line size 32 byte 4 byte 16 byte

Sub-block size 4 byte N/A N/A

23 No branch prediction needed since branch is always resolved during the delay slot.
24 The compiler does not use the MAC instructions however the area will be affected negatively.

Unfortunately the system did not work properly with the MAC unit turned off.

17

Evaluation of synthesizable CPU cores 2.3 Development tools

LEON2 MicroBlaze OpenRISC 1200

D$ write policy Write-through Write-through Write-through

Store buffer 1 double-word N/A 4 words

I$ refill policy Streaming during
line-refill

Line refill Critical-word-first line
refill

D$ read refill policy Only requested sub-
block

Line refill Critical-word-first line
refill

Allocate-on-write No Yes No

Bus snooping No N/A N/A

Line-locking enabled No Yes25 N/A

Valid bits/line 8 1 1

Lock bits/line 0 1 0
On-chip RAM No 8 Kbyte 8 Kbyte
Memory Controller26 SRAM SRAM1 SRAM227 SRAM

Read latency 2 1 3 1

Read cycle time 328 3 5 3

Word write latency 2 1 2 1
Word write cycle time 3 3 4 3

Byte write latency 5 4 5 4

Byte write cycle time 6 6 7 6
External memory 1 Mbyte SRAM 1 Mbyte SRAM 1 Mbyte SRAM
MMU No N/A No

Table 3: The basic parameters which are common between all three configurations.

The software for the LEON2 processor is written for the use of eight register
windows. Therefore the LEON2 processor is kept at the standard
configuration of eight register windows.

The OpenRISC 1200 and the MicroBlaze processors use on-chip RAM to
execute a bootloader, in which the caches are initiated and enabled. After the
caches are enabled a jump is performed to the start of the program in external
memory. This initialization is not needed in the LEON2 processor, since the
DSU performs all the initialization needed. The execution can therefore start
directly in external memory.

The cycle time for the memory controller denotes the smallest number of
clock cycles between the start of two consecutive memory accesses.The
latencies of the memory controllers are defined as the time in clock cycles

25 Line-locking is enabled in hardware but not used in software.
26 All latencies and cycle times are measured in clock cycles.
27 In order to satisfy the timing constraints for the 80 MHz configuration, see 3.1.2 Performance

optimized configuration, the memory controller had to be rewritten.
28 During a read burst transaction the lead-out cycle can be left out for all reads but the last.

18

2.4 Processor configurations Evaluation of synthesizable CPU cores

from the clock cycle when the memory controller recognizes a bus memory
access to the clock cycle when the memory controller acknowledges the
transfer.

Since the FPGA development board used [PE03] does not have individual
byte write signals to the external SRAM chips, a memory controller with read-
modify-write support had to be used for byte writes. The OpenRISC 1200
memory controller and the MicroBlaze memory controller did not have such
support. Therefore such a memory controller had to be written.

The timing constraints for the performance optimized configuration of the
MicroBlaze processor required a timing optimization of the SRAM controller,
denoted SRAM2 in Table 3.

2.4.2 Comparable configuration

The comparable configuration aims to be as fair as possible with respect to
available resources. The three processors are configured to run with the same
amount of cache memory and at the same clock frequency. Multiplication and
division are configured to be handled in hardware with roughly the same
latencies among the different processors. SRAM is used as external memory
for all the processors, and the MicroBlaze and the OpenRISC 1200 uses the
same memory controller, which is similar to the LEON2 memory controller,
see Table 3 for more details. Floating-point arithmetics are configured to be
performed in software for all three processors.

Table 4 below includes only parameters specific for the comparable
configuration of all the processors, refer to Table 3 for options common for all
configurations. Note that some of the parameters in Table 4 are not
configurable and are there merely for greater understanding.

19

Evaluation of synthesizable CPU cores 2.4 Processor configurations

LEON2 MicroBlaze OpenRISC 1200

Clock frequency 30 MHz 30 MHz 30 MHz
ISA

MUL 4 cycles29 3 cycles 3 cycles

DIV 35 cycles 34 cycles ~64 cycles

Cache

Instruction cache size 8 Kbyte 8 Kbyte 8 Kbyte

Data cache size 8 Kbyte 8 Kbyte 8 Kbyte

Placement scheme 2-way LRU Direct-mapped Direct-mapped

Replacement bits/line 1 0 0

Tag bits/line 20 7 19
Address width 32 20 32

Total cache line size30 285 41 148

Number of cache lines 256 2048 512

Cache RAM bits31 72960 83968 75776
Total cache RAM bits 145920 167936 151552

Memory Controller SRAM SRAM1 SRAM

Table 4: Parameters for the comparable configurations.

The three processors have been written with different cache parameter
settings in mind. The cache organizations are not configured to be similar
since the cache are considered part of the processor. The cache size is kept
constant, but the cache line size, the degree of associativity, and the
replacement strategy differ between the processors.

Considering the vast amount of cache configuration possibilities, a better
parameter to use as a comparable measure is the total number of RAM bits
used for memory in each processor. For example, in spite of the large LEON2
register file, the processor still utilizes less RAM bits than the others because
of the larger cache line size.

29 Multiplier m32x8 is used yielding a latency of 4 clock cycles.
30 Size in bits of a cache line, including data, tag, replacement bits, valid bits and lock bits.
31 Calculated using Formula i and Formula ii in appendix A Information on caches.

20

2.4 Processor configurations Evaluation of synthesizable CPU cores

2.4.3 Performance optimized configuration

Table 5 below includes only parameters specific for the performance
optimized configuration of all the processors, refer to Table 3 for options
common for all configurations. Note that some of the parameters in Table 5
are not configurable and is there merely for greater understanding. The
configuration options in Table 5 was achieved during an iterative process.
Different configurations were synthesized and benchmarked, and the best was
chosen as the configuration defined in Table 5.

LEON2 MicroBlaze OpenRISC 1200

Clock frequency 53.3 MHz 80 MHz 40 MHz
ISA

MUL 4 cycles32 3 cycles 3 cycles

DIV 35 cycles 34 cycles ~64 cycles

Cache
Instruction cache size 16 Kbyte 8 Kbyte 8 Kbyte

Data cache size 16 Kbyte 8 Kbyte 8 Kbyte

Placement scheme 4-way LRU Direct-mapped Direct-mapped

Replacement bits/line 5 0 0
Tag bits/line 20 7 19

Address width 32 20 32

Total cache line size33 289 41 148
Number of cache lines 512 2048 512

Cache RAM bits34 147968 83968 75776

Total cache RAM bits 295936 167936 151552
Memory Controller SRAM SRAM2 SRAM

Table 5: Parameters for the performance optimized configurations.

In order to get MicroBlaze running at 80 MHz, the memory controller had to
be replaced by a version with better timing, since it was part of the critical
path. Another reason was that the SRAM chip read latency required an extra
wait state.

An eight word store buffer for the OpenRISC 1200 processor was evaluated,
but did not yield any significant improvement in the benchmark results for the
evaluated cache configurations. Therefore also the performance optimized
configuration has a four word store buffer.

32 Multiplier m32x8 is used yielding a latency of 4 clock cycles.
33 Size in bits of a cache line, including data, tag, replacement bits, valid bits and lock bits.
34 Calculated using Formula i and Formula ii in appendix A Information on caches.

21

Evaluation of synthesizable CPU cores 2.4 Processor configurations

2.4.4 Area optimized configuration

Table 6 below only includes parameters specific for the area optimized
configuration of all the processors, refer to Table 3 for options common for all
configurations. Note that some of the parameters in Table 6 are not
configurable and is there merely for greater understanding.

LEON2 MicroBlaze OpenRISC 1200

Clock frequency 26.7 MHz 26.7 MHz 26.7 MHz
ISA

MUL Software 3 cycles 3 cycles

DIV Software Software Software
Cache

Instruction cache size 4 Kbyte 4 Kbyte 4 Kbyte

Data cache size 4 Kbyte 4 Kbyte 4 Kbyte

Placement scheme Direct-mapped Direct-mapped Direct-mapped

Replacement bits/line 0 0 0

Tag bits/line 20 8 20

Address width 32 20 32

Total line size 284 42 149

Number of lines 128 1024 256

Cache bits35 36352 43008 38144

Total cache RAM bits 72704 86016 76288
Memory Controller SRAM SRAM1 SRAM

Table 6: Parameters for the area optimized configurations.

For the area optimized configuration the same clock frequency was used for
all processors to give the synthesis tool the same prerequisites. MicroBlaze
and OpenRISC 1200 are configured to use hardware multiplier since the
Virtex-II FPGA used includes dedicated hard multiplier resources. The LEON2
processor includes support for enabling or disabling hardware multiplier and
divider individually, but since the compiler (GCC) does not provide individual
settings for hardware multiplication and division, the options are not
separated in the graphical configuration tool. There is no benefit of having
individual enabling of hardware multiplication and division, because the
generated code either has instructions for both or for none of them.

The caches in LEON2 are configured to use a one way (direct-mapped) cache
architecture because it has a lower area overhead compared to a multi-way
configuration. The lowest area usage would be obtained if the processors
disabled all caches. However the area cost for using caches is low since the
Virtex-II includes lots of hard RAM resources, and the amount of logic
inferred is small compared to the gain in performance.

35 Calculated using Formula i and Formula ii in appendix A Information on caches.

22

2.4 Processor configurations Evaluation of synthesizable CPU cores

2.5 Benchmarks

In this section the different benchmarks used are presented and further
discussed. Pros and cons regarding benchmarking in general are discussed.

2.5.1 Pros and cons regarding benchmarking

When choosing a benchmark, the system's intended area of usage should be
considered. If the system is intended for automotive applications, the
benchmark should try to benchmark parameters important in such
applications.

The ideal benchmark is measuring the performance of all the applications the
system will ever run, but such a benchmark is difficult to construct. Most
benchmarks include fragments from real applications, or algorithms
comparable to algorithms in real applications, in an attempt to behave
comparable to real applications.

It is of great importance to know the differences between the underlying
hardware and software when comparing benchmark results from different
processors.

2.5.2 Dhrystone 2.1

The Dhrystone benchmark was created back in 1984 by Dr. Reinhold P.
Weicker. Today Dhrystone 2.1 is the current version, which was written in
1988. Weicker's intention with writing Dhrystone was to measure the
performance of computer systems, and since the computer systems of that era
were focused on integer performance, Dhrystone primarily targets integer
performance. [AW04]

Dhrystone is a synthetic benchmark composed of a, of that time, “typical”
application mix of mathematical and other operators. Dhrystone is written in
the C language which makes it highly portable but there are some drawbacks:
� The size of the code is very small, not stressing the memory system of

todays machines.
� The small size of the code makes it possible for compiler writers to write a

compiler that recognizes the code and optimizes it.
� A large amount of the execution time is spent in basic library functions,

rendering the benchmark, really measuring the performance of the library
functions of different compilers.

� Compiler optimizations may render unrealistic results.

The Dhrystone benchmark basically consists of a main loop executed a
number of times. The output of the benchmark is the time spent in the main
loop.

23

Evaluation of synthesizable CPU cores 2.5 Benchmarks

2.5.3 Stanford

Stanford is a small benchmark suite gathered by John Hennessy and modified
by Peter Nye. The suite contains the following programs:
� Perm Heavily recursive permutation program.
� Towers Program solving the Towers of Hanoi problem.
� Queens Program solving the Eight Queens problem 50 times.
� Intmm Program multiplying two integer matrices.
� Mm Program multiplying two floating-point matrices.
� Puzzle Compute-bound program.
� Quick Program sorting an array using Quicksort.
� Bubble Program sorting an array using Bubblesort.
� Tree Program sorting an array using Treesort.
� FFT Program calculating a Fast Fourier Transform.

Stanford measures the execution time in milliseconds for each one of the ten
small programs included in the benchmark suite. Two weighted sums are
calculated. One reflecting the execution times of the fixed-point programs and
one reflecting the execution times of the floating-point programs. The
weighted sums are calculated based on the program execution times and a
number of, in Stanford, predefined constants. The fixed-point weighted sum
includes execution times for all programs except Mm and FFT, and the
floating-point weighted sum includes all the execution times.

Note that, since MicroBlaze and OpenRISC 1200 does not include hardware
floating-point support, the Stanford benchmark is compiled with the GCC
option -msoft-float. This options forces all floating-point operations to be done
in software with integer arithmetics. Thus the floating-point applications in
this benchmark actually reflects integer performance.

2.5.4 Typical control application

The third benchmark consist of a typical control application. The benchmark
uses floating-point operations and thus it is compiled with soft floating-point
support for all processors to get a fair comparison.

24

2.5 Benchmarks Evaluation of synthesizable CPU cores

3 Results

This chapter presents the results obtained from the
benchmarks and the synthesis, the usability in terms of
available tools, available documentation and how easy the
processors are to port and configure are discussed. The
configurability of the processors is also discussed.

3.1 Benchmarks

This section presents the benchmark results for the Dhrystone 2.1 benchmark,
the Stanford benchmark and the typical control application benchmark. Three
configurations are evaluated, the comparable configuration, the performance
optimized configuration and the area optimized configuration. The results are
discussed and for some cases further explained.

3.1.1 Comparable configuration

The comparable configurations of the processors run at the same clock
frequency and have the same amount of cache memory. Hardware multipliers
and dividers are used with roughly the same latencies among the processors.
For a complete specification of the different configuration parameters see
Table 4 and Table 2 for the configuration possibilities and other non-
configurable options.

3.1.1.1 Dhrystone 2.1

The Dhrystone 2.1 benchmark measures only integer performance and does
not stress an 8 Kbyte cache much. The significance of the Dhrystone 2.1
benchmark results should not be taken too seriously since the benchmark is
considered unreliable for today's processor architectures as stated in chapter
2.5.2 Dhrystone 2.1.

LEON2 MicroBlaze OpenRISC 1200

Processor frequency (MHz) 30 30 30
Time for one Dhrystone iteration (us) 22.5 32.7 50.5
Dhrystone iterations/second 44444.4 30611.4 19808.6

Dhrystone iterations/second/MHz 1481.48 1020.38 660.29

Table 7: Dhrystone 2.1 benchmark results for the comparable configuration.

The Dhrystone 2.1 benchmark results, see Table 7, are best for LEON2,
followed by MicroBlaze and OpenRISC 1200.

3.1.1.2 Stanford

Stanford is a larger benchmark stressing the memory subsystem more than
the Dhrystone 2.1 benchmark. The benchmark suite contains a number of

25

Evaluation of synthesizable CPU cores 3 Results

small programs benchmarking different aspects of the processors. Refer to
2.5.3 Stanford for further descriptions of the included programs and more
information on the Stanford benchmark suite.

LEON2 MicroBlaze OpenRISC 1200

Processor frequency (MHz) 30 30 30
Run times (ms)

Perm 50 129 122

Towers 67 144 130
Queens 50 77 74

Intmm 34 54 54

Mm 1050 63336 1749

Puzzle 367 374 380
Quick 33 66 56

Bubble 50 112 70

Tree 67 109 99
FFT 1450 37536 2692

Fixed-point composite 88 156 140
Floating-point composite 1039 50736 1846

Table 8: Stanford benchmark results for the comparable configuration.

The Stanford benchmark suite results are shown in Table 8. The most
noticeable result is that the LEON2 processor performs best in all fixed-point
subtests. In all but the Puzzle test, LEON2 has more than 32 percent shorter
execution time than the other processors. OpenRISC 1200 performs slightly
better than MicroBlaze in all tests but the Puzzle test and the Intmm test.

For the floating-point tests, an interesting result is that the floating-point
results for the MicroBlaze processor are nearly unrealistically good. The
results can not be explained by the configuration parameters. One possibility
could be that the MicroBlaze processor does not implement the full IEEE-754
floating-point standard, which LEON2 and OpenRISC 1200 does. To confirm
this, Kahan's floating-point test program Paranoia [PASRC] was compiled and
executed on the MicroBlaze processor.

The result from Paranoia, see appendix C Paranoia, shows that the MicroBlaze
GCC library does not implement proper IEEE-754 floating-point operations.
The GCC library floating-point functions seems to have serious faults.
Paranoia showed that the LEON2 GCC library behaves correctly.
Unfortunately no results were obtained for the OpenRISC 1200, see appendix
C Paranoia for more details. The OpenRISC 1200 seems to implement proper
floating-point operations, since the floating-point routines in the GCC library
are compiled from the same source code as the LEON2 floating-point routines.

36 The MicroBlaze GCC library software routines for floating-point arithmetics does not comply with
the IEEE-754 floating-point standard.

26

3.1 Benchmarks Evaluation of synthesizable CPU cores

Because of the above mentioned shortages in the MicroBlaze GCC library, the
results for the floating-point programs in Stanford can not be compared to the
other processors results for those programs.

One interesting observation in Figure 4, showing the fixed-point results for
Stanford, is that the Perm program is much faster in the LEON2 case
compared to the other processors. This could be explained by the fact that
Perm is a recursive program, with a small recursion depth, and that LEON2
has a windowed register file, which accelerates function calls compared to a
flat register file. With a greater recursion depth, the LEON2 processor could
have shown worse results since greater depth increases the probability of
window overflows.

Both the LEON2 processor and the MicroBlaze processor only fetch the
requested word on a data read. The OpenRISC 1200 processor fetches a
whole cache line using the critical word first policy on a data cache read. This
gives the OpenRISC 1200 an advantage in programs where data has a high
spatial locality such as the Quick and Bubble sorting algorithms. In these two
tests the OpenRISC 1200 processor performs significantly better than the
MicroBlaze processor.

3.1.1.3 Typical control application

The typical control application is a real application, larger than both
Dhrystone 2.1 and Stanford. The typical control application stresses the
memory system significantly. Refer to 2.5.4 Typical control application for
more information.

27

Figure 4: Stanford integer results for the comparable configuration. The result is presented in
iterations/second.

������� �
	��
��� � ����������� � ��� ��� ��������� � ����� �! "���#�#�� � �$� ��� %&	��
' 	���� � �

(
)+* ,
,

- * ,
.�(

.�)+* ,
.�,

. - * ,
)�(

)�)+* ,
)/,

) - * ,
0�(

0�)+* , 13234�5�6
7�8 9;: <3=�> ?A@CB4�D B3EAFHG I�JLK 6;MAM

Evaluation of synthesizable CPU cores 3.1 Benchmarks

LEON2 MicroBlaze OpenRISC 1200
Processor frequency (MHz) 30 30 30
Run time (s) 168 ~21237 N/A38

Table 9: Typical control application benchmark results for the comparable configuration.

The results from the typical control application benchmark, see Table 9, for
MicroBlaze can not be compared with the results for LEON2, since the typical
control application uses floating-point arithmetics and MicroBlaze does not
implement working IEEE-754 floating-point arithmetics. For more details refer
to 3.1.1.2 Stanford. In spite of the fact that MicroBlaze uses a simpler and
thus faster algorithm, the LEON2 processor still performs better. A possible
explanation could be the less advanced cache architecture in MicroBlaze.

The typical control application did not execute correctly on the OpenRISC
1200, and therefore did not yield any useful results. This could be the effect
of some bug in the toolchain or even in the processor, but more realistically it
is an incomplete port of the newlib C library [NLWEB]. The OpenRISC 1200
port of the library was downloaded from the OpenCores CVS server, also
available via the OpenCores website [OCWEB], and the versions tried were
1.8.2 and 1.11.0.

3.1.1.4 Reflections

The LEON2 processor performs best for both Dhrystone 2.1 and Stanford. Its
time for one Dhrystone 2.1 run is more than 31 percent shorter than the other
processors and the Stanford fixed-point composite shows more than 37
percent better results than the other processors. The OpenRISC 1200
processor performs slightly better than the MicroBlaze processor when
running Stanford at the same clock frequencies with the configuration defined
in 2.4.2 Comparable configuration, mainly due to the cache architecture in
MicroBlaze.

The MicroBlaze's incomplete support for IEEE-754 floating-point, combined
with the non-existing results for the OpenRISC 1200 from the typical control
application (see 3.1.1.3 Typical control application), raises the question
whether this benchmark is motivated or not. The benchmark results are
presented anyway since it is a real application and since it really shows the
importance of a good implementation of the memory subsystem.

37 Time measured with a stopwatch since the MicroBlaze timer overflows.
38 No result available since the control application did not execute properly because of a possible bug

somewhere, or an incomplete port of the newlib library.

28

3.1 Benchmarks Evaluation of synthesizable CPU cores

3.1.2 Performance optimized configuration

The goal with the performance optimized configurations is to achieve
maximum performance. In other words to achieve as good results as possible
for the benchmarks. The three processors are individually tuned for optimal
performance. For a complete specification of the different configuration
parameters, see Table 2 and Table 5.

3.1.2.1 Dhrystone 2.1

LEON2 MicroBlaze OpenRISC 1200

Processor frequency (MHz) 53.3 80 40
Time for one Dhrystone iteration (us) 12.8 13.1 37.8
Dhrystone iterations/second 78431.4 76189.6 26454.9

Dhrystone iterations/second/MHz 1471.51 952.37 661.37

Table 10: Dhrystone 2.1 benchmark results for the performance optimized configuration.

The Dhrystone 2.1 benchmark results, see Table 10, are best for LEON2,
followed by MicroBlaze and OpenRISC 1200. The efficiency of the
architecture is reflected by the Dhrystone iterations/second/MHz value in
Table 10. LEON2 shows more than two times the OpenRISC 1200 value for
Dhrystone iterations/second/MHz. When not taking efficiency into
consideration, LEON2 still yields the best result, even though MicroBlaze
shows nearly the same result.

Better results for the LEON2 processor was achieved with another
configuration, which was running with a clock frequency of 66.7 MHz with
soft multiplication and division, and a smaller cache with a simpler
architecture. However it showed worse result for larger and more advanced
programs. It also showed lower efficiency when taking the clock frequency
into consideration.

29

Evaluation of synthesizable CPU cores 3.1 Benchmarks

3.1.2.2 Stanford

LEON2 MicroBlaze OpenRISC 1200

Processor frequency (MHz) 53.3 80 40
Run times (ms)

Perm 34 52 91

Towers 50 58 97

Queens 34 31 55
Intmm 34 22 41

Mm 600 241 1313

Puzzle 200 150 285
Quick 16 25 42

Bubble 33 44 53

Tree 50 44 79

FFT 733 148 1981
Fixed-point composite 60 62 106

Fixed-point composite*MHz 3180 4976 4232
Floating-point composite 561 198 1369

Floating-point composite*MHz 29733 15864 54748

Table 11: Stanford benchmark results for the performance optimized configuration.

The Stanford benchmark suite results are shown in Table 11. The MicroBlaze
processor results for the floating-point programs can not be taken into
consideration, see 3.1.1.2 Stanford for more information.

The results shown in Figure 5 shows that the LEON2 processor and the
MicroBlaze processor ties in the subtests with four wins each. When weighted
into the composite value, the LEON2 processor wins with a small marginal.
Despite the less advanced cache architecture for MicroBlaze, it still performs

30

Figure 5: Stanford integer results for the performance optimized configuration. The result is
presented in iterations/second.

�N����� �
	��
��� � �O��������� � ��� �L� ��������� � ����� �! "
��#�#�� � �$� ��� %&	��
' 	���� � �

(
,
.�(
.�,
)�(
)/,
0�(
0H,
P (
P ,
,�(
,�,
Q�(
Q�, 13234�5�6

7�8 9;: <3=�> ?A@CB4�D B3EAFHG I�JLK 6;MAM

3.1 Benchmarks Evaluation of synthesizable CPU cores

well thanks to the higher clock frequency. The OpenRISC 1200 processor
shows better results than MicroBlaze for the product of the frequency and the
fixed-point composite in the Stanford benchmark. The result could indicate
that the OpenRISC 1200 processor has a more efficient architecture than the
MicroBlaze processor. Even so it fails to perform as well as the other two
processors because of the poor implementation, which prevents it from
reaching higher clock frequencies.

When comparing the sorting algorithms, Quick and Bubble are algorithms
that operates on arrays, which are data with high spatial locality. Tree on the
other hand uses a binary tree data type, which in this case is implemented
with pointers. This results in a data structure where the data has low spatial
locality. The OpenRISC 1200 data cache performs better than the MicroBlaze
data cache on data with high spatial locality, in contrary to data with low
spatial locality, where it yields worse results due to high overheads for
fetching data never to be used. Therefore it yields much worse results than
the MicroBlaze processor in the binary tree sorting algorithm, compared to
the Quick and Bubble algorithms, where the results are good when taking
clock frequency into the calculation. In the tree sorting algorithm, the
OpenRISC 1200 processor does not benefit as much from its larger cache
lines, with critical word first, as in the other algorithms, where the data has
higher spatial locality.

3.1.2.3 Typical control application

LEON2 MicroBlaze OpenRISC 1200

Processor frequency (MHz) 53.3 80 40
Run time (s) 93 ~11039 N/A40

Run time*MHz 4929 ~8800 N/A

Table 12: Typical control application benchmark results for the performance optimized
configuration.

Even though the MicroBlaze does not implement proper IEEE-754
floating-point arithmetics, the LEON2 processor performs better in this
benchmark. The 67 MHz version of the LEON2 processor, with soft
multiplication and division, and smaller and simpler cache, performed worse
results in this benchmark. The execution time was approximately 17 percent
longer than the execution time for the 53 MHz version.

39 Time measured with a stopwatch since the MicroBlaze timer overflows.
40 No result available since the control application did not execute properly because of a possible bug

somewhere, or an incomplete port of the newlib library.

31

Evaluation of synthesizable CPU cores 3.1 Benchmarks

3.1.2.4 Reflections

Compared to the results from the comparable configuration, the outcome was
more even in the performance optimized configuration. LEON2 and
MicroBlaze showed almost the same results for Dhrystone 2.1 and Stanford.
MicroBlaze is optimized for high clock frequencies, which can be seen in the
benchmarks for this configuration. The fact that MicroBlaze reaches higher
clock frequencies than the other two processors, can be the result of a high
optimization for Xilinx FPGA circuits. The results from the OpenRISC 1200 on
the other hand were more moderate, which likely is due to the lower clock
frequency.

The 67 MHz version of the LEON2 processor yielded approximately 15
percent shorter execution time than the 53 MHz version for both Dhrystone
2.1 and Stanford. For the typical control application benchmark, the 53 MHz
version showed approximately 15 percent shorter execution time than the
67 MHz version. Since the typical control application is considered to be the
most realistic benchmark of the three, the result from this benchmark is the
reason why the 53 MHz configuration were chosen as the performance
optimized configuration for LEON2. The efficiency per clock cycle for the
67 MHz version is lower than for the 53 MHz version, which can be confirmed
by the fact that the relative decrease in clock frequency is higher than the
relative decrease in execution time for the 67 MHz version compared to the
53 MHz version.

32

3.1 Benchmarks Evaluation of synthesizable CPU cores

3.1.3 Area optimized configuration

The goal with the area optimized configurations is to achieve moderate
performance with low area cost. The three processors are individually tuned
for low area cost.

To give the synthesis tools the same prerequisites, the three processors run at
the same clock frequencies. Since increased cache size does not increase the
used logic as much as the used block RAMs, the cache size has not been
considered as a vital area parameter. Therefore all processors are configured
with the same cache size of 4 Kbyte for instruction and data caches
respectively. All three processors were also synthesized with software division.
Since LEON2 does not support individual parameter settings for
multiplication and division, hardware multiplication was also turned off for
this processor. For a complete specification of the different configuration
parameters, see Table 2 and Table 6.

3.1.3.1 Dhrystone 2.1

LEON2 MicroBlaze OpenRISC 1200

Processor frequency (MHz) 26.7 26.7 26.7
Time for one Dhrystone iteration (us) 32.6 43.1 93.9
Dhrystone iterations/second 30690.5 23188.3 10653.8

Dhrystone iterations/second/MHz 1149.46 868.48 399.02

Table 13: Dhrystone 2.1 benchmark results for the area optimized configuration.

Table 13 shows the Dhrystone 2.1 benchmark results. As in the comparable
configuration, LEON2 shows the best results, followed by MicroBlaze and
OpenRISC 1200.

33

Evaluation of synthesizable CPU cores 3.1 Benchmarks

3.1.3.2 Stanford

LEON2 MicroBlaze OpenRISC 1200

Processor frequency (MHz) 26.7 26.7 26.7
Run times (ms)

Perm 50 145 137

Towers 83 162 146

Queens 50 86 83
Intmm 150 92 131

Mm 2550 769 3852

Puzzle 467 421 443
Quick 50 122 68

Bubble 67 131 80

Tree 117 172 139

FFT 2216 449 4049
Fixed-point composite 133 201 176
Floating-point composite 1861 625 3098

Table 14: Stanford benchmark results for the area optimized configuration.

The Stanford benchmark suite results are shown in Table 14. The MicroBlaze
processor results for the floating-point programs can not be taken into
consideration, see 3.1.1.2 Stanford for more information.

Figure 6 shows that the LEON2 processor yields best results followed by
OpenRISC 1200 and MicroBlaze. In the Puzzle and Intmm tests, where
MicroBlaze performed so well, LEON2 yielded less good results and finished
last in both tests. Intmm is a program doing an extensive amount of
multiplications and since LEON2 is configured with software multiplication

34

Figure 6: Stanford integer results for the area optimized configuration. The result is presented as
iterations/second.

������� �
	��
��� � ����������� � ��� ��� ��������� � ����� �! "���#�#�� � �$� ��� %&	��
' 	���� � �

(
)+* ,
,

- * ,
.�(

.�)+* ,
.�,

. - * ,
)�(13234�5�6

7�8 9;: <3=�> ?A@CB4�D B3EAFHG I�JLK 6;MAM

3.1 Benchmarks Evaluation of synthesizable CPU cores

and division, the results are expected to be worse than for the other
processors. The same reasoning could be applied in the Puzzle case, since
Puzzle also uses multiplication.

3.1.3.3 Typical control application

LEON2 MicroBlaze OpenRISC 1200
Processor frequency (MHz) 26.7 26.7 26.7
Run time (s) 374.5 ~36341 N/A42

Table 15: Typical control application benchmark results for the area optimized configuration.

MicroBlaze performs better than LEON2, but since it does not implement
proper IEEE-754 floating-point arithmetics, no conclusions can be made from
the result.

3.1.3.4 Reflections

LEON2 showed better results than MicroBlaze and OpenRISC 1200 for
Dhrystone 2.1 and Stanford. Due to the software multiplication, LEON2 did
not perform as well compared to the other processors for some subtests in
Stanford.

41 Time measured with a stopwatch since the MicroBlaze timer overflows.
42 No result available since the control application did not execute properly because of a possible bug

somewhere, or an incomplete port of the newlib library.

35

Evaluation of synthesizable CPU cores 3.1 Benchmarks

3.1.4 Benchmark summary

For reasons mentioned in 3.1.1.4 Reflections, only two of the benchmarks
yielded useful results. The results from these benchmarks are presented in
Figure 7 and Figure 8.

The fact that the 67 MHz version of LEON2 performs better than the 53 MHz
version in both Dhrystone 2.1 and Stanford, but yields worse result for the
typical control application, shows how difficult it is to find usable benchmarks
which reflect the execution of real programs. Thus, when only considering
Dhrystone 2.1 (see Figure 7) and Stanford (see Figure 8), MicroBlaze and
LEON2 performs roughly the same for the performance optimized
configuration. However, since both Dhrystone 2.1 and Stanford are small
synthetic benchmark programs, that not fully stress the cache, which the
typical control application does, the result from the typical control application
must be taken into account. In spite of the fact that MicroBlaze uses a
simplified algorithm for floating-point arithmetics, LEON2 still performs better
in the typical control application benchmark for all configurations but the
area optimized configuration, where it uses soft multiplication and division.

The previous mentioned conclusions and the fact that LEON2 yields best
results for nearly all benchmarks for all three configurations, must render
LEON2 a better processor than both MicroBlaze and OpenRISC 1200, with
respect to performance.

36

Figure 7: Iterations/second for Dhrystone 2.1 for the three configurations.

R$S�T
U�V�W V�X�Y Z [�ZHW \ S�W�T]V�^�_�Z�S�U�`a b T b c Z�d e W Z�VfS�U a b T b c Z�d
g

h g�g�g
i g�g�g�g
i h g�g�g
j�g�g�g�g
j h g�g�g
k3g�g�g�g
k h g�g�g
l g�g�g�g
l�h g�g�g
h g�g�g�g
h�h g�g�g
m�g�g�g�g
m h g�g�g
n g�g�g�g
n�h g�g�g
o�g�g�g�g prqrs�t�u

v+w xzy {}|3~ �;���s�� �A�;��� ���]� u;�;�

3.1 Benchmarks Evaluation of synthesizable CPU cores

MicroBlaze performs well in most benchmarks and must be considered a
worthy opponent to LEON2. MicroBlaze is optimized with high clock
frequencies in mind, which can be seen from the more moderate benchmark
results for the comparable configuration and the area optimized
configuration, which both run at fairly low clock frequencies. The main
drawbacks of the MicroBlaze processor must be the cache subsystem and the
floating-point implementation.

OpenRISC 1200 performs well for the comparable configuration and the area
optimized configuration, where it yields better results than MicroBlaze in the
Stanford fixed-point benchmark, see Figure 8. The major drawback of the
OpenRISC 1200 processor must be the poor implementation which prevents it
from reaching higher clock frequencies. This can be seen in the results from
the benchmarks for the performance optimized configuration, see 3.1.2
Performance optimized configuration.

37

Figure 8: Stanford fixed-point composite/second for the three configurations.

R$S�T
U�V�W V�X�Y Z [�Z�W \ S�W�T]V�^3_�Z�S�U�`a b T b c Z�d e W Z�VfS�U a b T b c Z�d
g i
j k
l h
m n
o�
i gi�i
i ji k
i li h
i mi n prqrs�t�u

v+w xzy {}|3~ �;���s�� �A�;��� ���]� u;�;�

Evaluation of synthesizable CPU cores 3.1 Benchmarks

3.2 Synthesis results

Synplicity Synplify Pro is used for the synthesis of both the OpenRISC 1200
and the LEON2 processor. Xilinx XST is used for the synthesis of MicroBlaze.
The Synplicity Synplify Pro synthesis tool generates better synthesis results in
most cases compared to the synthesis results when Xilinx XST is used. The
reason why Synplicity Synplify Pro is not used for the synthesis of the
MicroBlaze processor is the fact that Xilinx XST is tightly integrated into the
Xilinx EDK implementation flow, and since the MicroBlaze processor is
distributed as a parameterizable netlist, i.e. it is already synthesized. In
reality, only the peripherals in a MicroBlaze system are synthesized.

Since both the MicroBlaze processor and the peripherals are highly optimized
for Xilinx FPGA circuits, the FPGA resource usage is expected to be much
lower than the resource usage of the other processors. OpenRISC 1200 and
LEON2 are written not only for Xilinx FPGA circuits, the two processors are
mostly written in general Verilog and VHDL code. In some critical parts, low-
level cells are instantiated for the intended target technology. The consensus
is that it is very difficult for a synthesis tool to synthesize both OpenRISC
1200 and LEON2 with the same low FPGA resource utilization as MicroBlaze.

All three processor systems are synthesized with instruction cache, data cache,
integer unit, timer unit, debug unit, and UART. The MicroBlaze and
OpenRISC 1200 systems are synthesized with 8 Kbyte of on-chip RAM, which
is needed for initialization of the caches. All initialization for the LEON2
processor is handled by the debug support unit.

A processor core is in this section defined as the integer unit and both caches,
and since MicroBlaze and LEON2 have this hierarchical distinction of the
processor core, the synthesis of them is straight-forward. OpenRISC 1200 on
the other hand instantiates all processor units inside a toplevel Verilog file. In
order to produce comparable results, that is synthesize the same units, the
debug unit and the timer unit had to be turned off when synthesizing the
OpenRISC 1200 processor core.

The synthesis results for both the whole system and the synthesis results for
the processor cores are presented. The results for the whole systems are the
results after the mapping stage, where the design has been mapped to the
target FPGA circuit. The results for the processor cores are the results after
synthesis.

The synthesis results presented are the total amount of lookup tables (LUT),
the number of RAMB16 cells and the number of MULT18X18 cells. In a Xilinx
Virtex-II FPGA circuit the LUT cells can implement any logic function with up
to four input variables. The smallest block RAM resource in a Xilinx Virtex-II
FPGA circuit is the RAMB16 cell, which is an 18 Kbit dual-port RAM where

38

3.2 Synthesis results Evaluation of synthesizable CPU cores

16 Kbit are used to store data and 2 Kbit can be used to store parity
information. The MULT18X18 cell is a hardware signed multiplier with two
18-bit inputs and one 36-bit output.

3.2.1 Comparable configuration

All three processors are synthesized with a clock frequency of 30 MHz for the
comparable configuration. MicroBlaze and OpenRISC 1200 are configured to
use 8 Kbyte of on-chip RAM. All three processors have an effective cache size
of 8 Kbyte. The LEON2 processor uses a 2-way set associative cache
architecture with LRU replacement policy, while MicroBlaze and OpenRISC
1200 use a direct-mapped cache architecture. A 2-way LRU implementation of
the cache results in a higher area usage than for a direct-mapped cache
implementation. For more information on parameters and configuration
options for the comparable configuration refer to Table 3 and Table 4. The
FPGA resource usage for the whole systems, including all peripherals, and for
the processor cores are presented in Table 16.

LEON2 MicroBlaze OpenRISC 1200

System

Number of 4-input LUTs 7460 2441 6197
Number of RAMB16 14 14 16

Number of MULT18X18s 1 3 4
Processor core

Number of 4-input LUTs 5516 1679 4626

Number of RAMB16 14 10 12

Number of MULT18X18s 1 3 4

Table 16: FPGA resource usage for the comparable configuration.

MicroBlaze has as expected the lowest FPGA resource usage of the three
processors, primarily since it is highly optimized for Xilinx FPGA circuits.
LEON2 has the highest resource usage among the three processors, but it also
has for example the largest register file and the most advanced cache
subsystem among the three processors.

MicroBlaze and OpenRISC 1200 use four additional RAMB16 cells for the
whole system compared to the processor core, this is because the on-chip
RAM is not part of the processor core. The great variety of used MULT18X18
cells between the processors can be explained by the latency of the hardware
multiplication and the implementation strategy, which differ among the three.

3.2.2 Performance optimized configuration

For the performance optimized configuration, each processor are individually
tuned with the highest performance in mind. Low FPGA resource usage is not
considered the primary goal for this configuration of the three processors.

39

Evaluation of synthesizable CPU cores 3.2 Synthesis results

The tuning resulted in a LEON2 system running at 53 MHz, a MicroBlaze
system running at 80 MHz and an OpenRISC 1200 system running at
40 MHz. MicroBlaze and OpenRISC 1200 are configured to use 8 Kbyte of
on-chip RAM, for more information on parameters and configuration options
for the performance optimized configuration refer to Table 3 and Table 5. The
FPGA resource usage for the whole systems including all peripherals and for
the processor cores is presented in Table 17.

LEON2 MicroBlaze OpenRISC 1200

System

Number of 4-input LUTs 8974 2442 6443

Number of RAMB16 26 14 16
Number of MULT18X18s 1 3 4

Processor core

Number of 4-input LUTs 7178 1679 4888

Number of RAMB16 26 10 12
Number of MULT18X18s 1 3 4

Table 17: FPGA resource usage for the performance optimized configuration.

As seen in Table 17 above MicroBlaze has the lowest resource usage among
the three processors. The LUT resource usage for the OpenRISC 1200
processor core and the LEON2 processor core are roughly three and four times
larger than the LUT resource usage of the MicroBlaze processor core.

3.2.3 Area optimized configuration

The goal with the area optimized configuration for each processor is to
optimize each processor individually for low area usage, i.e. low resource
utilization with reasonable performance. To give the implementation tools the
same prerequisites, each system is configured to run at a clock frequency of
27 MHz.

MicroBlaze and OpenRISC 1200 are configured to use 8 Kbyte of on-chip
RAM, for more information on parameters and configuration options for the
area optimized configuration refer to Table 3 and Table 6. The FPGA resource
usage for the whole systems including all peripherals and for the processor
cores are presented in Table 18 below.

40

3.2 Synthesis results Evaluation of synthesizable CPU cores

LEON2 MicroBlaze OpenRISC 1200

System

Number of 4-input LUTs 5781 2325 5865

Number of RAMB16 8 12 14

Number of MULT18X18s 0 3 4
Processor core

Number of 4-input LUTs 3820 1566 3909

Number of RAMB16 8 8 10
Number of MULT18X18s 0 3 4

Table 18: FPGA resource usage for the area optimized configuration.

MicroBlaze still has the lowest area usage, but LEON2 now has a lower area
usage than the OpenRISC 1200. This is primarily because the LEON2
processor is configured without hardware multiplication and the OpenRISC
1200 is configured to support MAC instructions. A synthesis of the OpenRISC
1200 core without multiplier and MAC unit yielded a resource usage of 3541
LUTs. A synthesis with only the MAC unit turned of yielded 3665 LUTs. This
results in an approximate cost of 244 LUTs for hardware multiplication
support in OpenRISC 1200.

3.2.4 Synthesis discussion

The difference, in number of RAMB16 cells, between the whole system and
the processor core for MicroBlaze and OpenRISC 1200 is equal to four for all
three configurations. Four RAMB16 cells corresponds to 8 Kbyte, which is the
size of the on-chip RAM in both processors.

There is no difference in the resource usage between the MicroBlaze processor
core for the performance optimized configuration and the comparable
configuration. This is because the core is a parameterizable netlist, and
therefore not synthesized, and it is instantiated with the same parameters in
both cases. The resource usage for the area optimized configuration of the
MicroBlaze processor core is lower compared to the other two configurations.
This is because the area optimized configuration is configured to use smaller
caches and software division.

LEON2 has the largest difference in LUT resource usage between the
performance optimized and the area optimized configuration, compared to
the other two processors. This is because the LEON2 processor is much more
configurable, for example the cache associativity can be configured from one
up to four ways. Different replacement policies can be used with different
resource utilization impact.

41

Evaluation of synthesizable CPU cores 3.2 Synthesis results

3.2.5 Synthesis summary

The total number of LUTs as well as the number of LUTs used for the
processor core and additional peripherals are summarized in Figure 9 below.
Both the MicroBlaze system and its core have a very low LUT usage, which
remains almost constant among the three configurations of the processor.
LEON2 is the most configurable processor resulting in very different resource
usage between the three configurations. The OpenRISC 1200 processor keeps
at almost the same resource usage for all three configurations. This could be
explained by the fact that the difference in settings between the three
configurations is fairly small.

When looking at a specific processor, in Figure 9, the amount of LUT cells is
constant for the additional peripherals over the three configurations. This is
because each processor has the same peripherals, with almost the same
configuration, in all three configurations.

MicroBlaze has the lowest area usage, but has no portability to for example
other FPGA vendors than Xilinx, like the other two processors have. For the
comparable and the performance optimized configuration, LEON2 has the
highest area usage, but it also yields the highest performance. OpenRISC 1200
utilize a bit less area resources than LEON2 for the same two configurations.
However it yields a lower performance than LEON2, and has a simpler cache
architecture. For the area optimized configuration, where all processors are
tuned for low area usage, LEON2 and OpenRISC 1200 have almost the same
area usage.

42

Figure 9: FPGA LUT usage for all processor cores and additional peripherals for all
configurations. LEON, MB and OR are abbreviations for LEON2, MicroBlaze and OpenRISC 1200
respectively.

������� ��� ��� ������� �]� ��� ������� ��� ���
�

�A�����
�3�����
�A�����
� �����
� �����
�������
� �����
�3�����
������� �¡A¡ 8 ¢ 8 <3E£?A> D B�: 8 Dr¤ B�: ?3> ¥¦�: <A9CBA¥C¥z<3:�9C<3: B

§ ¨
©ª «¬
­® ¯
°±
²

³f´+µ·¶�¸�¹�¸+º+» ¼ ½&¶�¼H¼+¾¿´�¶�À�Á µLÁ Â�¼�¾ Ã
¹�¼/¸¿´N¶�À�Á µÄÁ Â�¼�¾

3.2 Synthesis results Evaluation of synthesizable CPU cores

3.3 Performance

Since there is no obvious unit for measurement of performance, an attempt to
present measurement units of interest will be done in this section. Parameters
as clock frequency, area resource usage and benchmark results will be taken
into consideration.

3.3.1 Performance per clock cycle

To get a fair comparison between different processors and configurations, the
relation performance per clock cycle can be used. This gives an estimate on
how efficient a processor architecture is. The estimate for the different
configurations has been calculated for the Dhrystone 2.1 benchmark and for
the fixed-point composite of the Stanford benchmark. Figure 10 below
presents the results for the Dhrystone 2.1 benchmark. LEON2 has the best
efficiency results for all three configurations. Notable is the lower efficiency of
the area optimized configuration, where LEON2 has a smaller cache and uses
software division and multiplication. The reduction in efficiency for the area
optimized configuration of LEON2 compared to the other two configurations
is greater than for the other two processors, when looking at the same case.
This is probably due to the use of hardware multiplication in the area
optimized configuration for the other two processors. The efficiency for the
MicroBlaze processor shows little difference between the three configurations.

43

Figure 10: Dhrystone 2.1 result for the three configurations. The result is presented as Dhrystone
iterations/second/MHz, which gives the relation performance per clock cycle for the different
processor configurations.

R�S�TfU�V�W V�X�Y Z [�ZHW \ S�W�T�V�^3_�Z�S�U�`a b T b c Z�d e W Z�V]S�U a b T b c Z�d
g

i g�g
j�g�g
k3g�g
l g�g
h g�g
m�g�g
n g�g
o�g�g
��g�g
i g�g�g
i�i g�g
i j�g�g
i k3g�g
i l g�g
i h g�g p£qrs�t�u

vHw xCy {;|3~ �}���s�� �r�;��� ���]� u£�;�

Evaluation of synthesizable CPU cores 3.3 Performance

The efficiency for the configurations for the Stanford fixed-point composite is
visualized in Figure 11. The main difference compared to the Dhrystone 2.1
result presented in Figure 10 must be the efficiency gain for the OpenRISC
1200 processor, which yields better results than MicroBlaze for the Stanford
efficiency test. As seen in Figure 10 and Figure 11, the OpenRISC 1200 shows
nearly constant efficiency for the comparable configuration and the
performance optimized configuration. This indicates that the two
configurations are nearly identical, besides the increase in clock frequency,
which can be confirmed from Table 4 and Table 5. Notable is that the
comparable configuration shows best efficiency per clock cycle for all three
processors.

44

Figure 11: Stanford fixed-point composite result for the three configurations. The result is
presented as Stanford fixed-point composites/second/MHz, which gives the relation performance
per clock cycle for the different processor configurations.

R$S�T
U�V�W V�X�Y Z [�ZHW \ S�W�T]V�^�_�Z�S�U�`a b T b c Z�d e W Z�V]S�U a b T b c Z�d
g

g�Å g�j h
g�Å g h
g�Å g n�h
g�Å i

g�Å i j h
g�Å i h
g�Å i n�h
g�Å j

g�Å j�j h
g�Å j h
g�Å j n�h
g�Å k

g�Å k�j h
g�Å k h
g�Å k n�h p£qrs�t�u

v+w xzy {;|3~ �}�z�s�� �r�;��� ����� u;�;�

3.3 Performance Evaluation of synthesizable CPU cores

The performance optimized configuration of the LEON2 processor is expected
to show a higher performance per clock cycle compared to the comparable
configuration when executing larger applications. This is because the cache
size for the performance optimized configuration of LEON2 is twice the size of
the cache for the comparable configuration. The difference is even larger
compared to the area optimized configuration, which besides a smaller cache
also uses a direct-mapped cache architecture. This can be seen from the
results for the typical control application benchmark, see Figure 12.

3.3.2 Performance per area unit

When designing a system, two important aspects are area usage and
performance in terms of throughput. To draw conclusions about both area
usage and performance for the processors discussed in this report, a very
simple model is used. A high value of benchmark performance per area
resource is considered a system with good performance with respect to its
area usage.

Both the Dhrystone 2.1 and the Stanford integer benchmarks have been
executed on all three processors and the performance from those benchmarks
is measured in Dhrystone 2.1 iterations/second and Stanford fixed-point
composites/second. In a Xilinx FPGA circuit the most important resource is
the LUT cells, which therefore is used as an estimate of a processors area. The
benchmark performance per area resource is calculated as Dhrystone 2.1
iterations/second/LUT for Dhrystone 2.1 and Stanford fixed-point
composites/second/LUT for the Stanford fixed-point benchmark. These data
are shown in Table 19 below.

45

Figure 12: Typical control application iterations/second/MHz for
LEON2 for the three configurations.

R$S�TfU�V�W V�X�Y Z [�Z�W \ S�W�T]V�^3_�Z�S�U�`a b T b c Z�d e W Z�V]S�U a b T b c Z�d
g

g�Å g�g�g�g�j h
g�Å g�g�g�g h
g�Å g�g�g�g n�h
g�Å g�g�g i

g�Å g�g�g i j h
g�Å g�g�g i h
g�Å g�g�g i n�h
g�Å g�g�g�j

g�Å g�g�g�j�j h

Evaluation of synthesizable CPU cores 3.3 Performance

LEON2 MicroBlaze OpenRISC
1200

Comparable configuration

Number of 4-input LUTs 5516 1679 4626
Dhrystone iterations/second 44444.4 30611.4 19808.6

Stanford integer composite/second 11.36 6.41 7.14

Dhrystone iterations/second/LUT 8.06 18.23 4.28
Stanford fixed-point composite/second/LUT 2.06E-3 3.82E-3 1.54E-3

Performance optimized configuration

Number of 4-input LUTs 7178 1679 4888
Dhrystone iterations/second 78431.4 76189.6 26454.9

Stanford fixed-point composite/second 16.67 16.13 9.43

Dhrystone iterations/second/LUT 10.93 45.38 5.41

Stanford fixed-point composite/second/LUT 2.32E-3 9.61E-3 1.93E-3
Area optimized configuration

Number of 4-input LUTs 3820 1566 3909

Dhrystone iterations/second 30690.5 23188.3 10653.8
Stanford integer composite/second 7.52 4.98 5.68

Dhrystone iterations/second/LUT 8.03 14.81 2.73

Stanford fixed-point composite/second/LUT 1.97E-3 3.18E-3 1.45E-3

Table 19: Performance values for all processors in all configurations. The performance values are
weighted by the area resource usage of the cores. A large value is a good value.

As expected Table 19 shows great results for the MicroBlaze processor, which
is highly optimized for Xilinx FPGAs. To visualize the differences in Table 19,
see Figure 13 and Figure 14 below.

As Figure 13 shows, the variance in result for MicroBlaze between the three
configurations is roughly proportional to the performance difference among
them. This is to be expected since the area usage for the MicroBlaze processor

46

Figure 13: Dhrystone 2.1 iterations/second/LUT for all configurations and processor cores.

Æ
Ç�ÈfÉ�Ê�Ë Ê�Ì�Í Î Ï�ÎHË Ð Ç�Ë�È�Ê�Ñ3Ò�Î�Ç�ÉAÓ Ô È]Ô ÕAÎ�Ö ×�Ë Î�ÊfÇ�ÉAÓ Ô È]Ô ÕAÎ�Ö
Ø
Ù
ÚrØ
Ú Ù
Û�Ø
Û Ù
ÜrØ
Ü Ù
Ý Ø
Ý�Ù
Ù Ø p£qrs�t�u

vHw xCy {;|3~ �}���s�� �r�;��� ���]� u;�£�

D
hr

ys
to

ne
 it

er
at

io
ns

/s
ec

on
d/

LU
T

3.3 Performance Evaluation of synthesizable CPU cores

core is almost constant for the three configurations. Common for the three
processors in Figure 13 is that the performance optimized configuration yields
best results. Even the simplest configuration of a processor needs a certain
amount of area. By adding extra performance enhancing logic, like store
buffers, the area increases of course. However the relative increase in area is
smaller than the relative increase in performance, which explains why the
performance optimized configuration renders best results.

As in the Dhrystone 2.1 benchmark (see Figure 13), the MicroBlaze processor
renders much better results than the other processors for the Stanford
benchmark (see Figure 14). Despite the larger area of LEON2, when
compared to OpenRISC 1200, it still yields better performance per area unit.

3.3.3 Performance summary

The LEON2 processor shows highest efficiency per clock cycle for all the
configurations for both the Dhrystone 2.1 benchmark and the Stanford fixed-
point composite benchmark. Since Stanford is considered a more reliable
benchmark than Dhrystone 2.1 and OpenRISC 1200 shows better results than
MicroBlaze for the Stanford benchmark, the OpenRISC 1200 processor can be
considered more effective per clock cycle than the MicroBlaze processor.

The performance optimized configuration yields best performance per area
unit for all processors. MicroBlaze reaches a significantly better result than
the other two processors, but is highly optimized for Xilinx FPGA circuits and
therefore not as portable as the others. When looking at the more portable
processors, the LEON2 processor achieves better performance per area unit
than the OpenRISC 1200 processor.

47

Figure 14: Stanford fixed-point composite/second/LUT for all configurations and processor cores.

R$S�T
U�V�W V�X�Y Z [�ZHW \ S�W�T�V�^3_�Z�S�U a b T b c Z�d e W Z�V]S�U a b T b c Z�d
g�Å g�g�Þ+ß�g
i Å g�g�Þ+`�k
j�Å g�g�Þ+`�k
k�Å g�g�Þ+`�k
l Å g�g�Þ+`�k
h Å g�g�Þ+`�k
mHÅ g�g�Þ+`�k
n Å g�g�Þ+`�k
o�Å g�g�Þ+`�k
�HÅ g�g�Þ+`�k
i Å g�g�Þ+` j p£qrs�t�u

vHw xCy {;|3~ �}���s�� �r�;��� ���]� u£�;�

S
ta

nf
or

d
fix

ed
-p

oi
nt

 c
om

po
si

te
/s

ec
on

d/
LU

T

Evaluation of synthesizable CPU cores 3.3 Performance

3.4 Usability

This section is intended to give a description of how easy the system is to use.
Aspects like how easy the available tools are to use, how much documentation
there is and how well it is written will be reviewed together with other
important matters like how much effort needed to add a new IP-block.

3.4.1 LEON2

3.4.1.1 Tools

The tool evaluated for LEON2 is the configuration and implementation
environment, which consists of make scripts. A TCL/Tk based configuration
GUI can be invoked from the make scripts for generating a working LEON2
system. The GUI is very similar to the Linux 2.4 kernel graphical configuration
tool and is very simple to use. To help the user, there are tool tip boxes for all
configuration options. The output of the configuration tool is a configuration
file, which is used by the mkdevice program to generate a VHDL package
containing constants defining the configuration of the LEON2 processor.

Everything from configuration to implementation and simulation is handled
by make scripts, which works well. The use of make scripts is positive since it
is commonly used in software development and is shown effective there.

Debugging possibilities are considered adequate since the GRMON with the
DSU back-end easily connects to the hardware DSU in a LEON2 system.
Debugging in GRMON is simple and works reliably. Downloading software
applications to the target FPGA is fast and all initialization is performed
automatically by the DSU. With the simulation back-end (TSIM) for GRMON,
debugging works similarly to debugging in real hardware. The TSIM
simulator is commercially available from Gaisler Research, but there is also an
evaluation version. GRMON supports the GDB interface through which GDB
can connect.

The simulation models provided, works fine with HDL simulation. Simulation
models for common components like SDRAM and SRAM are included. The
UART provides text output in for example Modelsim. The UART has a
configuration option to speed up UART communication in simulation,
providing faster simulation.

3.4.1.2 Documentation and support

The available documentation for the LEON2 processor and the included tools
is good. There is a mailing list providing LEON2 support at Yahoo, see
[LMWEB], which is frequently visited by Gaisler Research employees. There is
also commercial support available.

48

3.4 Usability Evaluation of synthesizable CPU cores

3.4.1.3 Hardware configuration

Configuring the LEON2 processor hardware is easy. The configuration is done
with a graphical tool which has help available for all options. To add user
defined IP-blocks, the VHDL files have to be altered manually. Adding user
defined IP-blocks was not necessary for running the benchmarks and has
therefore not been evaluated.

3.4.1.4 Portability

Since the LEON2 is already ported to the GR-PCI-XC2V development board,
the actual porting process will not be reviewed here. The LEON2 processor
includes support for several development boards and the configuration files
for the supported boards can easily be altered to support other development
boards. Target technology dependent HDL code is instantiated from
technology independent components, which uses the intended target
technology43.

3.4.2 MicroBlaze

3.4.2.1 Tools

The tools evaluated for the MicroBlaze processor are the ones included in the
Embedded Development Kit v6.2, abbreviated EDK. EDK includes the GNU
toolchain for compilation and debugging, a graphical user interface named
Xilinx Platform Studio (XPS) for developing FPGA systems with a MicroBlaze
or PowerPC processor, and additional tools.

From within XPS one can configure MicroBlaze, add peripherals and user
defined IP cores, add software and finally synthesize, place and route and
combine the hardware and software into a single bitstream. The bitstream can
be downloaded to the FPGA circuit.

The hardware IP-blocks can be instantiated as VHDL, Verilog or a synthesized
netlist. To include an IP-block, the interface, and possibly synthesis order,
must be defined in some additional files. If the proper directory structure for
the IP-block is obtained, the IP-block can easily be instantiated from the XPS
GUI. Instead of using the XPS GUI the more advanced user can edit the
underlying files.

A possible downside with the underlying configuration files is that they do not
follow any standards. A better approach would be to use a standardized HDL
such as VHDL to define the interfaces and toplevel instantiation of the IP-
blocks.

43 The LEON2 processor is ported to several technologies: Xilinx (Virtex, Virtex-II), Actel (Proasic,
Axcel), TSMC-0.25, Atmel (ATC35, ATC25, ATC18) and UMC (FS90, 0.18).

49

Evaluation of synthesizable CPU cores 3.4 Usability

A positive aspect of XPS is that it includes a user friendly wizard for building a
base system. This wizard works fine for the supported FPGA development
boards, but if the user wants to use an unsupported FPGA development board
like the GR-PCI-XC2V [PE03], some additional modification has to be done.
The user does not necessary have to use the wizard for building a base
system, but this requires deeper knowledge of the hardware being used.

The software can be simulated with an instruction set simulator (ISS) started
from the Xilinx Microprocessor Debugger (XMD). The user can use a graphical
debugger, like the included version of GDB, to remotely connect to the ISS
started by XMD. A shortcoming is that no access to peripherals can be done
with this ISS, only the correctness of the software algorithms without input
and output can be tested.

The system can be simulated from a HDL simulator like Modelsim.
Unfortunately some libraries44 and models must be compiled before
generating the simulation. The documentation lack some information
regarding this. A shortcoming with the simulation is that it does not include a
behavioral model for neither an external memory or a UART. To simulate a
system executing code located in an external memory, the user must add a
simulation model of the memory, and instantiate it together with the rest of
the system in a toplevel entity.

When running the system on the FPGA development board, XMD can connect
to the MicroBlaze processor via a debug unit using the JTAG interface. From
XMD the user can download software applications into the MicroBlaze
memory, control the execution flow, and inspect registers etc.

The source code for the MicroBlaze processor is proprietary and is not
included45 in the EDK. The processor being closed source requires that the
documentation follows a high standard. The closed source code makes the
simulation and debugging more difficult, because it is difficult to know what
is really happening inside the processor.

3.4.2.2 Documentation and support

The available documentation for MicroBlaze and for the included tools is very
informative. There is also an extensive answer database available at the Xilinx
website [XILWEB], where users can submit questions. The documentation
regarding how to generate a working simulation of the system is
unfortunately inadequate.

44 The Simprim library, the Unisim library, the Xilinx core library and the MicroBlaze processor
simulation model.

45 The source code for MicroBlaze can be bought from Xilinx.

50

3.4 Usability Evaluation of synthesizable CPU cores

3.4.2.3 Hardware configuration

The configuration of the MicroBlaze hardware is handled smoothly through
the “Add/Edit Hardware Platform Specification” dialog. The user can add,
remove and configure different IP-blocks from a simple dialog. For more
experienced users, all configuration can be done by manually editing plain
text files.

3.4.2.4 Portability

The porting of the MicroBlaze system to the GR-PCI-XC2V FPGA development
board [PE03] simply consisted of editing the FPGA pin configuration in the
user constraints file. To support the external SRAM memory supplied on the
board, a memory controller had to be written with read-modify-write support
for byte write operations.

In order to start the execution in external memory, a bootloader had to be
implemented in on-chip RAM. The bootloader initiates and enables the
caches, followed by a jump to the program in external memory.

The MicroBlaze processor was easy to port to the GR-PCI-XC2V development
board. The problems that occurred mostly depended on the interface to the
external memory.

3.4.3 OpenRISC 1200

3.4.3.1 Tools

The tools used for compilation and debugging are the standard GNU
toolchain, which works well. Compilation is straight-forward, the only matter
is that the toolchain port does not include a complete, working C-library.
Debugging through GDB is easy, the connection to the development board is
handled well by the JP1 program included. A graphical front-end for the
debugger is available, DDD, which provides a more user friendly environment.

3.4.3.2 Documentation and support

The OpenRISC 1000 architecture [OC04] is well documented compared to the
other available documentation for the OpenRISC 1200 processor. Especially
the OpenRISC 1200 specification [OC01] lacks some information. The main
problem with the OpenRISC 1200 specification is that it does not reflect the
current state of the implementation. The specification seems to document an
implementation that will be available in the future. For example the authors
claims that the data cache implements an LRU replacement scheme within
each set. The source code does not implement other data cache configurations
than a one way set associative cache of either 4 Kbyte or 8 Kbyte. One way
associative cache means one cache line per set, which is the same as a direct-
mapped cache, this makes an LRU implementation useless. In fact, the source

51

Evaluation of synthesizable CPU cores 3.4 Usability

code does not implement an LRU scheme anyway. The same corresponds to
the instruction cache, except that it can be configured to an additional size of
512 byte. With the documentation being unsatisfiable it is in some cases vital
that the source code is open source. Though it is of great importance that the
source code is easy to read, and unfortunately, this is not the case with the
OpenRISC 1200 source code.

The OpenRISC 1200 source code is written in almost uncommented Verilog
code. This and the fact that the Verilog code is written with a low level of
abstraction, makes it difficult to understand the code. The lack of a generate
construct combined with the lack of a record data type in Verilog, both
available in VHDL, makes the source code larger and more difficult to grasp.

The documentation of the toolchain is really good, since it is a port of the well
documented GNU toolchain. Unfortunately we have not found any
documentation regarding port specific parameters.

Fortunately there exists a reference design called OpenRISC Platform System-
On-Chip (ORPSOC), which shows how to connect some IP-blocks together via
the Wishbone bus. This reference design was used as a starting point, when
the OpenRISC 1200 was ported to the GR-PCI-XC2V development board.

Support and help with an OpenRISC 1200 system can be found in the web
forums on the OpenCores website [OCWEB], where users can submit
questions. The Embedded Systems Group at the De Nayer Instituut in Belgium
has made a good tutorial [DN04a] regarding how to get an OpenRISC 1200
system implemented on a FPGA development board. The group has also made
a tutorial [DN04b] regarding how to build the required software tools. Both
these tutorials are available at the groups website [DNWEB].

3.4.3.3 Hardware configuration

The configuration of the OpenRISC 1200 processor is done by manually
editing the Verilog source code. All configuration options for the processor are
gathered together into a single file containing numerous define statements.
The configuration file contains comments for the different options, explaining
their effects.

Adding user IP-blocks is somewhat more difficult, the user has to manually
edit the Verilog source code for the Wishbone bus, plus instantiate and
connect the IP-block. This requires a deep understanding of the bus
architecture, and the underlying language. An easier approach, could be to
use the ORPSOC reference design and modify it. The advantage with this
approach is that the bus interconnect is already implemented.

52

3.4 Usability Evaluation of synthesizable CPU cores

3.4.3.4 Portability

When porting the OpenRISC 1200 system to the GR-PCI-XC2V FPGA
development board [PE03], the user constraints file had to be edited to
achieve the correct FPGA pin configuration. Since the supplied SRAM
controller only had support for read-modify-write on a 16 bit basis, it had to
be rewritten to support read-modify-write on a 32 bit basis.

In order to start the execution in external memory, a bootloader had to be
implemented. The bootloader initiates and enables the caches followed by a
jump to the program in external memory.

The OpenRISC 1200 processor must be considered fairly easy to port to the
GR-PCI-XC2V FPGA development board even though there were some
obstacles encountered during the porting process. One problem worth
mentioning was the fact that the debug unit requires a dedicated JTAG
interface. The problem was solved by dedicating some FPGA pins to a JTAG
interface for the debug unit. This lead to the annoying procedure of having to
move the JTAG cable between the interfaces when switching from
programming to debugging and the other way around. The most troublesome
obstacle was a bug in the cache, which produced Wishbone bus burst accesses
that did not comply to the Wishbone standard, which led to erroneous
execution. The bug has been reported to the OpenRISC 1200 development
team. A workaround was used in the cacheable slave units.

3.4.4 Usability summary

LEON2 must be considered the processor which is most easy to configure and
implement of the three processors. It is also easier than the others to simulate
and debug on real hardware. MicroBlaze has the best documentation together
with the best support for adding user defined IP-blocks. Both OpenRISC 1200
and MicroBlaze are easy to port, but MicroBlaze must be considered the
easiest of the two since it was straight-forward to add user defined IP-blocks.

53

Evaluation of synthesizable CPU cores 3.4 Usability

3.5 Configurability

The intention of this section is to describe how configurable the three
processors are. The word configurable is here intended to be interpreted as
the amount of configuration options for a processor and not as how easy the
processor is to configure, which is evaluated in 3.4 Usability.

3.5.1 LEON2

The LEON2 processor has an extensive amount of configurable parameters.
This can easily be reviewed by the number of configurable parameters in
Table 2, which contains some of the more interesting parameters. Besides the
many functional options, one can also find several options for improved
timing, simulation and debugging.

3.5.2 MicroBlaze

The amount of configurable parameters for MicroBlaze is less than for the
LEON2 processor. Most notable is the configurability of the caches, which is
much less configurable than for LEON2. A limitation is that the caches only
can be configured to cache a continuous subset of the total memory.

3.5.3 OpenRISC 1200

The OpenRISC 1200 processor is quite configurable. There are options for
specific parameters like whether to use software or hardware multiplication
and some options for the ALU. The main difference in the configuration
options between the OpenRISC 1200 and the MicroBlaze processor is that in
OpenRISC 1200 there are also options regarding how to physically implement
something, rather than just whether to implement it or not.

3.5.4 Configurability summary

The LEON2 processor is the most configurable among the three. The other
two processor have options for many desirable parameters like cache size,
while LEON2 besides the high-level configuration options also can configure
more low-level options like replacement strategies and specific options
regarding the windowed register file. OpenRISC 1200 is more configurable
than MicroBlaze and have options like configurable size of the cache lines and
the store buffer, which MicroBlaze is missing.

54

3.5 Configurability Evaluation of synthesizable CPU cores

3.6 Summary

The three processors have been compared on performance, area usage,
configurability and usability. The LEON2 processor shows the best
performance both in terms of benchmark results and in terms of performance
per clock cycle. MicroBlaze has the smallest area for both the core and for the
whole system, for all configurations. It also has the best performance per area
unit. The small area usage for the MicroBlaze processor origins from a high
optimization for Xilinx FPGA circuits, which results in less portability
compared to the other two processors.

LEON2 is the most configurable processor with the most advanced cache
architecture, while MicroBlaze and OpenRISC 1200 have less configuration
options and more simple cache architectures.

MicroBlaze has the most extensive documentation, both for the processor and
for available IP-blocks. The documentation for LEON2 is adequate, while the
documentation for OpenRISC 1200 is insufficient. Both MicroBlaze and
LEON2 have qualified support. The support for the OpenRISC 1200 have not
been tested in the same extent.

Both LEON2 and MicroBlaze have satisfying configuration tools, which makes
configuration easy. The LEON2 configuration tool has help readily available
for all configuration options, while the options in MicroBlaze are well
documented but more difficult to access. The OpenRISC 1200 configuration is
done by manually editing the Verilog files.

HDL simulation and debugging are considered less difficult for LEON2
compared to the other two processors. The MicroBlaze processor does not
include simulation models for external memory and simulation is therefore
not as trivial as for LEON2. Adding user defined IP-blocks showed to be very
simple for MicroBlaze, but required more work for OpenRISC 1200.

55

Evaluation of synthesizable CPU cores 3.6 Summary

4 Discussion

4.1 Obstacles

One of the more difficult parts of this thesis work was to define three
configurations. It is not obvious how to choose which parameters to use and
how to assure that the resulting configurations are comparable. Finding an
optimal configuration for a specific purpose is a non-trivial iterative process
which can result in configurations like the 53 MHz and the 67 MHz version of
the LEON2 processor. The second showed best result for the Dhrystone 2.1
and the Stanford benchmarks, while the other one showed best result for the
typical control application benchmark and yielded better efficiency per clock
cycle. In this particular case, the typical control application and the efficiency
per clock cycle were considered more important aspects.

Interpreting results is far from trivial. In the case of comparing benchmark
results between different processors it is important that the software library
routines are similar and use the same amount of optimization. The
benchmarks must be examined thorough in order to find specific
characteristics which can explain differences in results for different
processors. To be able to explain the differences, an extensive knowledge of
the internal structure and implementation of the processors is essential.

When comparing results between different processors, care must be taken to
assure that the results are comparable, otherwise the benchmark result is
useless. This was the case with the software floating-point operations for the
MicroBlaze processor, where the software routines did not comply to the
IEEE-754 floating-point standard. If the Paranoia program had not been
executed, the wrong conclusions regarding the result from the floating-point
part of the Stanford benchmark would have been made.

Beside the main scope of this Master's thesis, considerable time was spent on
debugging an erroneous execution in the OpenRISC 1200 processor, which
resulted in the finding of a bug in the internal bus communication.
MicroBlaze was also configured to run software on SDRAM, which was the
first choice of external memory. SDRAM was later discarded due to
incomplete support from the OpenRISC 1200 processor combined with the
internal nature of the target FPGA circuit.

56

4 Discussion Evaluation of synthesizable CPU cores

4.2 Future improvements

There are several improvements which can be done to achieve more
comparable results. A possible improvement could be to use memory
controllers with identical number of latency and delay cycles for all
processors. Another improvement could be to get the typical control
application to execute properly on the OpenRISC 1200 processor. To do this a
working C library must be compiled for the OpenRISC 1200.

An extension of the number of benchmarks could be done to increase the
reliability of the results. The development board of choice could had been
changed into a development board which is currently unsupported by all
processors. This could result in a comparison of the portability for all three
processors, including LEON2.

57

Evaluation of synthesizable CPU cores 4.2 Future improvements

5 Glossary
AHB Advanced High-speed Bus

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

ASIC Application Specific Integrated Circuit
BHB Branch History Buffer

CVS Concurrent Versioning System

DDR SDRAM Double Data Rate SDRAM

DSU Debug Support Unit
EDIF Electronic Design Interchange Format

Ethernet MAC Ethernet Media Access Controller

FFT Fast Fourier Transform

FIFO First In First Out
FIFO First In First Out

FPGA Field Programmable Gate Array

FPU Floating-Point Unit

FSL Fast Simplex Link
GCC GNU Compiler Collection

GDB GNU Debugger

GNU GNU's Not UNIX

GPR General Purpose Register
GUI Graphical User Interface

HDL Hardware Definition Language

I2C Inter-IC

IDE Integrated Development Environment
ISA Instruction Set Architecture

ISS Instruction Set Simulator

JTAG Joint Test Access Group

LGPL Lesser General Public Licence
LMB Local Memory Bus

LRR Last Recently Replaced

LRU Least Recently Used

LUT LookUp Table
MAC Multiply and ACcumulate

MMU Memory Management Unit

OPB On-chip Peripheral Bus

PCI Peripheral Component Interconnect
PROM Programmable ROM

58

5 Glossary Evaluation of synthesizable CPU cores

RAM Random Access Memory
RISC Reduced Instruction Set Computer

ROM Read Only Memory

RTEMS Real-Time Executive for Multiprocessor Systems

RTOS Real-Time Operating System
SDRAM Synchronous Dynamic RAM

SPARC Scalable Processor ARChitecture

SRAM Static RAM

SSRAM Synchronous SRAM
TCL/Tk Tool Command Language/Toolkit

TLB Translation Lookaside Buffer

UART Universal Asynchronous Receiver-Transmitter

VHDL Very High Speed Integrated Circuit HDL

59

Evaluation of synthesizable CPU cores 5 Glossary

6 References
[AW04]: Alan R. Weiss (October 1, 2002), "Dhrystone Benchmark - History, Analysis,

"Scores" and Recommendations", EEMBC Certification Labratories,
"http://ebenchmarks.com/download/ECLDhrystoneWhitePaper2.pdf"

[DN04a]: Patrick Pelgrims, Tom Tierens and Dries Driessens (2004), "Basic Custom
OpenRISC System Hardware Tutorial, Xilinx, Version 1.00", De Nayer
Instituut, "http://emsys.denayer.wenk.be/empro/openrisc-HW-tutorial-
Xilinx.pdf"

[DN04b]: Patrick Pelgrims, Tom Tierens and Dries Driessens (2003), "Basic Custom
OpenRISC system Software Tutorial, Linux, Version 1.00", De Nayer Instituut,
"http://emsys.denayer.wenk.be/empro/openrisc-SW-tutorial.pdf"

[GR04]: Gaisler Research (2004), "LEON2 Processor User's Manual, XST edition,
version 1.0.24", Gaisler Research, "http://www.gaisler.com/doc/leon2-
1.0.24-xst.pdf"

[OC01]: OpenCores (Sep 6, 2001), "OpenRISC 1200 IP Core Specification, Preliminary
draft, Rev. 0.7", OpenCores,
"http://www.opencores.org/cvsget.cgi/or1k/or1200/doc/or1200_spec.pdf"

[OC04]: OpenCores (August 31, 2004), "OpenRISC 1000 Architecture Manual",
OpenCores,
"http://www.opencores.org/cvsget.cgi/or1k/docs/openrisc_arch.doc"

[PE03]: Gaisler Research and Pender Electronic Design GmbH (May 8, 2003), "LEON-
PCI-XC2V Development Board User Manual, Rev. 1.0", Pender Electronic
Design GmbH, "http://www.pender.ch/docs/GR-PCI-
XC2V_User_Manual_rev1-0.pdf"

[SPA92]: SPARC International Inc. (1992), "The SPARC Architecture Manual, Version
8, Rev. SAV080SI9308", SPARC International Inc.,
"http://www.sparc.org/standards/V8.pdf"

[XIL04a]: Xilinx Inc. (June 14, 2004), "MicroBlaze Processor Reference Guide,
Embedded Development Kit, Version 6.2", Xilinx Inc.,
"http://www.xilinx.com/ise/embedded/edk6_2docs/mb_ref_guide.pdf"

[XIL04b]: Xilinx Inc. (June 16, 2004), "Embedded System Tools Guide v3.0, Embedded
Development Kit, Version 6.2", Xilinx Inc.,
"http://www.xilinx.com/ise/embedded/edk6_2docs/est_guide.pdf"

[ORSRC]: OpenCores (2004), The OpenRISC 1200 Source Code available at
OpenCores.org

[PASRC]: W. M. Kahan (1995), A C version of Kahan's Floating Point Test 'Paranoia'
[DNWEB]: De Nayer Instituut, "http://emsys.denayer.wenk.be", [accessed: Oct 2004]
[GRWEB]: Gaisler Research, "www.gaisler.com", [accessed: Sept 2004]
[LMWEB]: LEON2 mailing list, "http://groups.yahoo.com/group/leon_sparc/",

[accessed: 2004]
[NLWEB]: Red Hat Inc., "http://sources.redhat.com/newlib/", [accessed: Nov 2004]
[OCWEB]: OpenCores, "www.opencores.org", [accessed: Sept 2004]
[PEWEB]: Pender Electronic Design GmbH, "www.pender.ch", [accessed: Sept 2004]
[XILWEB]: Xilinx Inc., "www.xilinx.com", [accessed: Sept 2004]
[PH97]: David A. Patterson and John L. Hennessy (1997), "Computer Organization &

Design, second edition", Morgan Kaufmann, ISBN: 1-55860-428-6

60

6 References Evaluation of synthesizable CPU cores

7 Index of tables
Table 1: Multiplier configurations..5
Table 2: Summary of the synthesizable processors' parameters..15
Table 3: The basic parameters which are common between all three configurations..............18
Table 4: Parameters for the comparable configurations..20
Table 5: Parameters for the performance optimized configurations.......................................21
Table 6: Parameters for the area optimized configurations..22
Table 7: Dhrystone 2.1 benchmark results for the comparable configuration.........................25
Table 8: Stanford benchmark results for the comparable configuration.................................26
Table 9: Typical control application benchmark results for the comparable configuration.... .28
Table 10: Dhrystone 2.1 benchmark results for the performance optimized configuration.....29
Table 11: Stanford benchmark results for the performance optimized configuration.............30
Table 12: Typical control application benchmark results for the performance optimized

configuration..31
Table 13: Dhrystone 2.1 benchmark results for the area optimized configuration..................33
Table 14: Stanford benchmark results for the area optimized configuration..........................34
Table 15: Typical control application benchmark results for the area optimized configuration. .

35
Table 16: FPGA resource usage for the comparable configuration..39
Table 17: FPGA resource usage for the performance optimized configuration........................40
Table 18: FPGA resource usage for the area optimized configuration.....................................41
Table 19: Performance values for all processors in all configurations. The performance values

are weighted by the area resource usage of the cores. A large value is a good value.. .
46

61

Evaluation of synthesizable CPU cores 7 Index of tables

8 Index of figures
Figure 1: Overview of the LEON2 processor architecture...4
Figure 2: Overview of the MicroBlaze processor architecture...7
Figure 3: Overview of the OpenRISC 1200 processor architecture...10
Figure 4: Stanford integer results for the comparable configuration. The result is presented in

iterations/second. ..27
Figure 5: Stanford integer results for the performance optimized configuration. The result is

presented in iterations/second..30
Figure 6: Stanford integer results for the area optimized configuration. The result is presented

as iterations/second..34
Figure 7: Iterations/second for Dhrystone 2.1 for the three configurations............................36
Figure 8: Stanford fixed-point composite/second for the three configurations.......................37
Figure 9: FPGA LUT usage for all processor cores and additional peripherals for all

configurations. LEON, MB and OR are abbreviations for LEON2, MicroBlaze and
OpenRISC 1200 respectively...42

Figure 10: Dhrystone 2.1 result for the three configurations. The result is presented as
Dhrystone iterations/second/MHz, which gives the relation performance per clock
cycle for the different processor configurations...43

Figure 11: Stanford fixed-point composite result for the three configurations. The result is
presented as Stanford fixed-point composites/second/MHz, which gives the relation
performance per clock cycle for the different processor configurations...................44

Figure 12: Typical control application iterations/second/MHz for LEON2 for the three
configurations...45

Figure 13: Dhrystone 2.1 iterations/second/LUT for all configurations and processor cores. .46
Figure 14: Stanford fixed-point composite/second/LUT for all configurations and processor

cores...47
Figure 15: Cache line structure..63
Figure 16: Memory address..64

62

8 Index of figures Evaluation of synthesizable CPU cores

A Information on caches

A.1 Cache overview
The cache contains copies of small memory blocks residing in a lower
hierarchy memory. Since the cache is smaller than lower hierarchy memories,
accessing the cache can be done faster than accessing the lower hierarchy
memories.

A.2 Cache organization
The cache is organized as a number of sets, each consisting of a specified
number of cache lines. The number of cache lines in each set is determined by
the degree of cache associativity (i.e. the number of ways).

Figure 15 visualizes the structure of a cache line, which consists of the
following fields:
� Data, a number of sub-blocks.
� Tag, which together with the set index forms a unique identifier for the

cache line.
� Extra bits such as:

� Valid bit(s), specifies whether the cache line (or sub-blocks) is a valid
copy of the cache line (or sub-blocks) in the lower hierarchy memory.

� Replacement algorithm bits. Some replacement algorithms requires
additional information bits.

� Lock bit, which when set prevents the cache line or the individual sub-
blocks from being thrown out of the cache.

� Dirty bit, used in a write-back cache to specify whether or not the cache
line needs to be written back to lower hierarchy memory or not. [PH97]

A.3 Cache operation

On a memory access to a specified sub-block in a cacheable memory area, a
request for the specified sub-block is sent to the cache. If the sub-block resides
in the cache, the sub-block is returned to the requester, a so called cache hit.
If the sub-block on the other hand is not in the cache, a cache miss occurs,
which means that the cache line containing the sub-block has to be fetched by
the cache from a lower hierarchy memory. A replacement algorithm decides

63

Figure 15: Cache line structure.

à·á�â£áãäá]åæ
ç�âAèCáêé$ë â£ì

Evaluation of synthesizable CPU cores

where to place the cache line in the cache, and writes the cache line to that
location. If the location is not free, the cache line occupying the location is
written back to lower hierarchy memory if needed before being overwritten.

A.4 Cache access

To find a sub-block in the cache, the index field of the sub-block memory
address (see Figure 16) is used to address a certain set in the cache. To find
the correct cache line in the set, the address tag field is compared with the tag
of each cache line in the set. If a tag match occurred and if the cache line
valid bit indicates that the cache line is valid, the correct cache line is found.
The correct sub-block in the cache line data field (see Figure 15) is then
addressed by the address line offset field (see Figure 16).

The size in bits of the sub-block field, the line offset field and the index field
in Figure 16 is derived from the logarithm of two of the number number of
bytes in each sub-block, the number of sub-blocks in each cache line, and the
number of sets in the cache. The tag field is calculated according to Formula
ii.

If a write miss occurs in the data cache, an implementation can either
implement allocate-on-write or not. Allocate-on-write means that the cache
line from which the miss occurred is fetched from main memory into the
cache.

A.5 Replacement policies

A.5.1 FIFO

The FIFO (First In First Out) algorithm replaces the oldest cache line in a set
specified by the address of the to be written sub-block. The FIFO algorithm
requires storing extra temporal information bits to each cache line.

A.5.2 LRU

The LRU (Least Recently Used) algorithm replaces the least recently used
cache line in a set specified by the address of the to be written sub-block. The
LRU algorithm requires storing extra history bits to each cache line.

64

Figure 16: Memory address.

í]î
ï+ð£ïNñ ò�ó/ôÄò/õ õ�ö�÷/øùNú û ÷üòHõ�õ�ö�÷/øý û�þ ÷/ÿ�����

� í�� ù í��

Evaluation of synthesizable CPU cores

A.5.3 LRR

The LRR (Last Recently Replaced) algorithm replaces the last recently
replaced cache line in a set specified by the address of the to be written sub-
block. The LRR algorithm requires extra bits to each cache line.

A.5.4 Random

The Random algorithm replaces a random cache line in a set specified by the
address of the to be written sub-block. The replacement is almost always
pseudo-random, which means that it is not completely random. The Random
algorithm does not require any additional bits.

A.6 Calculating cache size

Formula i: The total size of the cache in bits.

Formula i above calculates the total number of bits in the cache from the
following parameters:
� Extra is the number of additional bits added to each cache line, e.g. valid

bit, replacement policy bits, lock bits etc.
� Tag is the number of bits in the cache line tag field, see Formula ii below.
� Data is the number of bits of data in each cache line.
� CacheSize is the total number of data bytes in the cache.
� LineSize is the total number of bytes in each cache line.

Formula ii: The size of the tag field in bits.

Formula ii above calculates the size of the tag field in bits from the following
parameters:
� MemorySize is the total cacheable address range size in byte. The second

logarithm of MemorySize is referred to as address width in Table 4.
� NumberOfWays is the number of ways in the cache, which corresponds to

the degree of associativity of the cache.
� CacheSize is the total number of data bytes in the cache.

65

�
	���
�����
����������������! #"%$&�(')
+*,��
.-/*101
��2
43 ��
����5�6���7���89�;:��6���7���

��
�-1�=<�>�?4@4A ��BC	�'�D������E�GFIHKJLBNMO�.'QPSRQTU
LD�V
��
����4���������

Evaluation of synthesizable CPU cores

B Implementation procedure

B.1 General
The main problem with porting a system is to adapt it to the new
development board. The FPGA pin configuration must be set correctly to
comply with the development board's units. The system must be able to
communicate with board components as external memories and interfaces.

The problems specific for the GR-PCI-XC2V development board are the fact
that the development board only supports SRAM write accesses of 32-bit
words and the fact that the chip select signals to components attached to the
data bus must be configured correctly to avoid several units driving the bus
simultaneously.

In order to prevent incorrect behavior of the system, which could damage the
development board, simulation in Modelsim was used before the actual
hardware implementation. The simulation caused additional problems like
simulating external memories and UARTs.

B.2 LEON

B.2.1 Generating a working system

Since the LEON2 processor already is ported to the GR-PCI-XC2V
development board, only the configuration of the processor was necessary.
The configuration was made with the TCL/Tk GUI distributed with the LEON2
processor.

B.2.2 Software applications

Since the DSU takes care of all initialization, no on-chip RAM was necessary.
The 24-bit timer in the LEON2 processor uses a 10-bit prescaler. The DSU
configures the prescaler to increment the timer every microsecond. For the
typical control application, this implementation could cause an overflow in
the timer. To resolve this problem, the prescaler was adjusted in software for
this application.

B.2.3 Simulation in Modelsim

Simulation in Modelsim is straight-forward since all behavioral models are
provided for both UARTs and external memories. The VHDL model was
configured for faster UART output, which made simulation of programs with
UART output possible.

66

Evaluation of synthesizable CPU cores

B.2.4 Synthesis and bitstream generation

Synthesis is done with either Synplicity Synplify Pro or Xilinx XST. Synplicity
Synplify Pro yielded the best results and was therefore used for synthesis.

B.2.5 Running on physical hardware

Impact was used to program the FPGA circuit with the generated bit file over
the JTAG interface. To be able to run a program in SRAM, GRMON with the
DSU back-end was used to initialize the memory and start execution.

B.3 MicroBlaze

B.3.1 Generating a working system

To generate a working MicroBlaze system for the GR-PCI-XC2V development
board, a basic system was created with the Xilinx XPS. To address the
problem with driving the board chip select signals, a simple IP-core was
designed and instantiated in the MHS file describing the toplevel structure of
the system. Since the existing SRAM controllers included in Xilinx EDK did
not have support for read-modify-write operation when writing single bytes, a
new memory controller had to be designed.

The memory controller is attached as a slave on the OPB bus and implements
a read-modify-write scheme for single byte writes. The memory controller was
instantiated in the MHS file. Since adjustable frequency of the system clock
was desired, an IP-block including a Virtex-II DCM was designed and
instantiated. The development board RS232 interface was used for standard
output.

B.3.2 Software applications

Since the benchmarks will be executed in SRAM, a straight-forward
implementation is to put a bootloader in on-chip RAM and download and
start execution of the software from the debug software. This implementation
requires no initialization in SRAM, since all initialization like enabling caches
is done in on-chip RAM.

The bootloader invalidates both caches and enables them. The bootloader
finishes with a jump to the lowest address in the SRAM. To verify correctness
of connections and timing to SRAM, a simple memory test was executed in
on-chip RAM during the implementation phase.

67

Evaluation of synthesizable CPU cores

B.3.3 Simulation in Modelsim

Before running a simulation, the libraries Unisim, Simprim and XilinxCoreLib
had to be compiled. The compilation was done with the compxlib tool. The
MicroBlaze simulation model also had to be compiled, which was done with
the compedklib tool.

The simulation model of the system was generated with the Xilinx XPS. A
shortcoming is that the simulation model does not include a behavioral model
of neither SRAM nor UART. A model for the UART is not vital, since the
software can be simulated without output to standard output.

To be able to simulate the system with a SRAM memory model, the memory
model and the MicroBlaze system must be instantiated from a toplevel HDL
file.

B.3.4 Synthesis and bitstream generation

Synthesis is done with the default synthesis tool in Xilinx XPS, which is the
Xilinx XST. When generating a bitstream the system is first synthesized after
which it is mapped, placed and routed. A final bitstream is produced and
initialized with the program for the on-chip RAM.

B.3.5 Running on physical hardware

Impact was used to program the FPGA circuit with the generated bit file over
the JTAG interface. To be able to run a program in SRAM, XMD was used to
initialize the memory.

XMD had problems with identifying the physical ethernet device on the JTAG
chain when connecting to the MicroBlaze debug target. To resolve this
problem, the length of the instruction register of the FPGA circuit and the
physical ethernet device had to be specified as shown below.

XMD% mbconnect mdm \
-configdevice devicenr 4 irlength 6 \
-configdevice devicenr 5 irlength 16 \
-debugdevice devicenr 4

Instructions for debugging with XMD can be found in the Embedded System
Tools Guide, [XIL04b].

68

Evaluation of synthesizable CPU cores

B.4 OpenRISC 1200

B.4.1 Generating a working system

The ORPSOC reference design was used as an initial design, which was
modified to comply with the GR-PCI-XC2V development board. There is a
guide for generating a basic working system, which was very helpful, see
[DN04a].

There is a bug in the OpenRISC 1200 processor, which leads to bus accesses
that do not fully comply to the Wishbone specification. Finding this bug took
several days, because it was really difficult to reproduce the error in
simulation. Once reproduced in simulation, a workaround was simple to
implement and only took a few hours. A workaround is to modify the read
acknowledge process in the on-chip RAM implemented by the research group
at De Nayer Instituut [DNWEB]. A working version of the read acknowledge
process could look like the following lines of code:
always @ (posedge wb_clk_i or posedge wb_rst_i)
 begin
 if (wb_rst_i)
 ack_re <= 1'b0;
 else if (wb_cyc_i & wb_stb_i & ~wb_err_o &
 ~wb_we_i & ~ack_re & (|wb_sel_i[3:0]))
 ack_re <= #1 1'b1;
 else ack_re <= #1 1'b0;
 end

The toplevel Verilog file had to be edited to support the GR-PCI-XC2V
development board, to address the problem with driving the board chip select
signals. Since the existing SRAM controller only had support for read-modify-
write operation on a 16-bit basis, a new memory controller with read-modify-
write support on a 32-bit basis had to be designed. The memory controller is
attached as a slave on the Wishbone bus. The development board RS232
interface was used for standard output.

The OpenRISC 1200 processor only instantiates Virtex primitives. In a
Virtex-II the RAMB4 primitive does not exist and is therefore replaced by the
RAMB16 primitive, resulting in an approximate loss of RAM bits by 75
percent. This problem was solved by adding support for more efficient use of
RAMB16 cells in all components instantiating RAMB4 cells.

B.4.2 Software applications

To execute software, the same procedure as for the MicroBlaze processor was
done, see B.3.2 Software applications. Special care had to be taken to make
sure that the benchmark stacks were placed in the SRAM.

69

Evaluation of synthesizable CPU cores

B.4.3 Simulation in Modelsim

The OpenRISC 1200 system and a behavioral model for the SRAM was
instantiated in a toplevel Verilog file. To simulate the on-chip RAM, a
behavioral model was written.

B.4.4 Synthesis and bitstream generation

Synthesis is done with the Synplicity Synplify Pro. When generating a
bitstream the netlist is mapped, placed and routed. A final bitstream is
produced and initialized with the program for the on-chip RAM.

B.4.5 Running on physical hardware

Impact was used to program the FPGA circuit with the generated bit file over
the JTAG interface. To debug an OpenRISC 1200 system the JP1 tool was
used to provide an interface to GDB. For downloading and executing the
software, GDB was used. In order to support the JP1 tool, the system had to
be configured with an additional JTAG interface, used only for debugging.

B.5 Discussion

The first intention was to implement all systems with SDRAM as external
memory. MicroBlaze, which was the first system implemented, had support
for SDRAM and was therefore implemented with SDRAM as external memory.
The simulation with SDRAM was rather troublesome, since the behavioral
model for the SDRAM did not have support for the Motorola SREC S1
format46, which the MicroBlaze GCC toolchain program, mb-objdump
produced in some cases. A lot of effort was spent on this problem and resulted
in support for the S1 format in the memory model. The memory model was
also rewritten to support different configurations of row and column sizes.

The memory controller for the OpenRISC 1200 processor required that system
bus clock frequency was running at twice the rate of the memory clock
frequency. The lowest allowable output frequency of the instantiated DCM
was 24 MHz, which required that the system clock had to be running at
48 MHz, which was simply not possible on a Xilinx Virtex-II FPGA with the
intended configuration. The two above mentioned problems rendered the use
of SDRAM impossible for this configuration of OpenRISC 1200. Therefore
SRAM was used instead. To be able to compare the results between the
OpenRISC 1200 and the MicroBlaze processor, the MicroBlaze processor was
reconfigured to use SRAM instead.

46 http://www.amelek.gda.pl/avr/uisp/srecord.htm

70

Evaluation of synthesizable CPU cores

C Paranoia

C.1 About
Paranoia, or Kahan's floating-point test program, is a small program to test
the compliance with the IEEE-754 floating-point standard. The original
version was written in BASIC by W. M. Kahan in 1983.

In the test of the processors, version 1.1 of the Paranoia program was used,
which is written in the C programming language.

C.2 Compilation
The Paranoia floating-point test program was compiled with the NOSIGNAL
and BATCHMODE defined. For the single precision tests SINGLE_PRECISION
was also defined.

C.3 LEON2

C.3.1 Single precision floating-point
Paranoia version 1.1 [cygnus]
...
No failures, defects nor flaws have been discovered.
Rounding appears to conform to the proposed IEEE standard P754,
except for possibly Double Rounding during Gradual Underflow.
The arithmetic diagnosed appears to be Excellent!
END OF TEST.

C.3.2 Double precision floating-point
Paranoia version 1.1 [cygnus]
...
No failures, defects nor flaws have been discovered.
Rounding appears to conform to the proposed IEEE standard P754,
except for possibly Double Rounding during Gradual Underflow.
The arithmetic diagnosed appears to be Excellent!
END OF TEST.

C.4 MicroBlaze

C.4.1 Modifications

The C library function printf in MicroBlaze does not handle floating-point
operations properly. To work around this error, the precision used in all printf
calls with floating-point numbers as arguments, had to be reduced from
seventeen decimals to six decimals. This was done with a search replace in the
Paranoia source code. All occurrences of the string “%.17e” was replaced with
the string “%.6e”. This could be done with the UNIX command sed:

71

Evaluation of synthesizable CPU cores

sed "s/\%\.17e/\%\.6e/g" paranoia.c > mb_paranoia.c

Some characters in the Paranoia output are garbled and the printf function
also fails on some prints resulting in whole sentences and words being left
out. This is because the C library printf function uses floating-point operations
and MicroBlaze does not handle them properly.

C.4.2 Single precision floating-point
Paranoia version 1.1 [cygnus]
...
The number of FAILUREs encountered = 1.
The number of SERIOUS DEFECTs discovered = 5.
The number of DEFECTs discovered = 3.
The number of FLAWs discovered = 1.

unacceptable Serious Defects.
 program's subsequent diagnoses.
END OF TEST.

C.4.3 Double precision floating-point
Paranoia version 1.1 [cygnus]
...
The number of FAILUREs encountered = 2.
The number of SERIOUS DEFECTs discovered = 3.
The number of DEFECTs discovered = 6.
The number of FLAWs discovered = 2.

unacceptable Serious Defects.
 program's subsequent diagnoses.
END OF TEST.

C.5 OpenRISC 1200
Unfortunately no results could be obtained for the OpenRISC 1200 processor
since the absence of a working C library led to erroneous execution.

72

Evaluation of synthesizable CPU cores

	1 Introduction
	1.1 Background
	1.2 Project description
	1.3 Project goals
	1.3.1 Measures
	1.3.2 Motivation

	2 Analysis and methods
	2.1 FPGA development board
	2.2 Analysis of the processors
	2.2.1 LEON2
	2.2.1.1 Overview
	2.2.1.2 ISA
	Table 1: Multiplier configurations.

	2.2.1.3 Integer unit
	2.2.1.4 Cache system
	2.2.1.5 MMU
	2.2.1.6 System interface
	2.2.1.7 Power management
	2.2.1.8 Memory controller
	2.2.1.9 Additional units

	2.2.2 MicroBlaze
	2.2.2.1 Overview
	2.2.2.2 ISA
	2.2.2.3 Integer unit
	2.2.2.4 Cache system
	2.2.2.5 MMU
	2.2.2.6 System interface
	2.2.2.7 Power management
	2.2.2.8 Memory controller
	2.2.2.9 Additional units

	2.2.3 OpenRISC 1200
	2.2.3.1 Overview
	2.2.3.2 ISA
	2.2.3.3 Integer unit
	2.2.3.4 Cache system
	2.2.3.5 MMU
	2.2.3.6 System interface
	2.2.3.7 Power management
	2.2.3.8 Memory controller
	2.2.3.9 Additional units

	2.2.4 Summary
	Table 2: Summary of the synthesizable processors' parameters.

	2.3 Development tools
	2.3.1 LEON2
	2.3.2 MicroBlaze
	2.3.3 OpenRISC 1200

	2.4 Processor configurations
	2.4.1 Parameters common for all configurations
	Table 3: The basic parameters which are common between all three configurations.

	2.4.2 Comparable configuration
	Table 4: Parameters for the comparable configurations.

	2.4.3 Performance optimized configuration
	Table 5: Parameters for the performance optimized configurations.

	2.4.4 Area optimized configuration
	Table 6: Parameters for the area optimized configurations.

	2.5 Benchmarks
	2.5.1 Pros and cons regarding benchmarking
	2.5.2 Dhrystone 2.1
	2.5.3 Stanford
	2.5.4 Typical control application

	3 Results
	3.1 Benchmarks
	3.1.1 Comparable configuration
	3.1.1.1 Dhrystone 2.1
	Table 7: Dhrystone 2.1 benchmark results for the comparable configuration.

	3.1.1.2 Stanford
	Table 8: Stanford benchmark results for the comparable configuration.

	3.1.1.3 Typical control application
	Table 9: Typical control application benchmark results for the comparable configuration.

	3.1.1.4 Reflections

	3.1.2 Performance optimized configuration
	3.1.2.1 Dhrystone 2.1
	Table 10: Dhrystone 2.1 benchmark results for the performance optimized configuration.

	3.1.2.2 Stanford
	Table 11: Stanford benchmark results for the performance optimized configuration.

	3.1.2.3 Typical control application
	Table 12: Typical control application benchmark results for the performance optimized configuration.

	3.1.2.4 Reflections

	3.1.3 Area optimized configuration
	3.1.3.1 Dhrystone 2.1
	Table 13: Dhrystone 2.1 benchmark results for the area optimized configuration.

	3.1.3.2 Stanford
	Table 14: Stanford benchmark results for the area optimized configuration.

	3.1.3.3 Typical control application
	Table 15: Typical control application benchmark results for the area optimized configuration.

	3.1.3.4 Reflections

	3.1.4 Benchmark summary

	3.2 Synthesis results
	3.2.1 Comparable configuration
	Table 16: FPGA resource usage for the comparable configuration.

	3.2.2 Performance optimized configuration
	Table 17: FPGA resource usage for the performance optimized configuration.

	3.2.3 Area optimized configuration
	Table 18: FPGA resource usage for the area optimized configuration.

	3.2.4 Synthesis discussion
	3.2.5 Synthesis summary

	3.3 Performance
	3.3.1 Performance per clock cycle
	3.3.2 Performance per area unit
	Table 19: Performance values for all processors in all configurations. The performance values are weighted by the area resource usage of the cores. A large value is a good value.

	3.3.3 Performance summary

	3.4 Usability
	3.4.1 LEON2
	3.4.1.1 Tools
	3.4.1.2 Documentation and support
	3.4.1.3 Hardware configuration
	3.4.1.4 Portability

	3.4.2 MicroBlaze
	3.4.2.1 Tools
	3.4.2.2 Documentation and support
	3.4.2.3 Hardware configuration
	3.4.2.4 Portability

	3.4.3 OpenRISC 1200
	3.4.3.1 Tools
	3.4.3.2 Documentation and support
	3.4.3.3 Hardware configuration
	3.4.3.4 Portability

	3.4.4 Usability summary

	3.5 Configurability
	3.5.1 LEON2
	3.5.2 MicroBlaze
	3.5.3 OpenRISC 1200
	3.5.4 Configurability summary

	3.6 Summary

	4 Discussion
	4.1 Obstacles
	4.2 Future improvements

	5 Glossary
	6 References
	7 Index of tables
	8 Index of figures

