Gaisler

rRONTGRADC

USER MANUAL

RELEASED DECEMBER 2023

Frontgrade Gaisler Zephyr distribution

Zephyr

Gaisler Zephyr
distribution User's Manual

ZEPHYR-UM

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Géteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table of Contents

O [L oo (8 1o o PP POPPPTRRPPPPN 4
L1 INSEAING ZEPNYT oot 4
1.1.2. EXtracting the @archiVeu. e e 4
1.1.2. Installing Kernel improveMENES cooiiiiiiiii e e 4
1.1.3. Installing GRLIB driversinto Zephyrcoouiioiiiiiieii e 5

1.2, ATChIVE COMEENT ...ttt ettt e e ettt e ettt e e ettt e e e e etbreeeentn s eeeen 5
2. ZEPNYT KNl e et 6
2.1 KENE PAICHES .o 6
2.1.1. Applying the PatChES ... e 6

3. GRLIB TEVICE AIIVEIS ..ottt ettt et e e et e e e et e e e enans 7
3.1. Driversincluded in the PaCKagE ooiiiiiiiii e 7
3.2. ENabling the AriVEIS oo 7
3.3. Application CONFIQUIBLTION ittt e e e e e eeaens 7
B3 L EXAMPI e e 8

S 1o oo PP 9
|. DEVICE OrVErS FEFEIEINCE ...ttt ettt e e ettt e et et e et et e e e e ena e eeee 10
5. DIIVES TEISITAIION oottt ettt et e et e et e e 15
5.1, Manual regiStralion couuuoiiiiieiiiit ettt 15

5.2. System specific device registration tableSoooiiiiiiiiiiiii 15

6. GRSPW PaCKet OriVEr ...ttt e e e e e e e eeees 17
L 20 B [L oo (8o 1o PP PPTTR 17

6.2. SOftWare deSIgN OVEIVIBIW ...oeeee ettt ettt e 17

6.3. DEVICE INEITACE ..iiiii it ettt e e et e 22

B.4. DMA TNEEITACE . oeeiieiii e ettt 30

B.5. API TEFEIENCE it e 43

B.6. RESIIICIIONS ...iiiitii ettt ettt e et e et e e et e e e e 45

7. GRCAN CAN AriVEN oottt e et e e et e e e et e e e eaa e aeens 46
4% T [L oo (8o 1o o PP SPPPTTR 46

7.2. Opening and CloSING GEVICE coeiiiiiiiii e e 46

7.3. OPEFALiON MOOE ..oeeiiiiiiii ettt ettt et ettt ettt et b e e e e e e s 48

T4, CONFIQUIBLTON oeeeeeeee e e e et ettt e ettt e e e e et e e e eeba e eeees 49

7.5, RECAIVE FIlTEIS oo e 51

7.6, DIVEr SEALISHICS ..vueiiiit et e et e et e e 51

T.7. DEVICE STAIUS ...ieieiieeeei ettt 52

7.8. CAN DUS TraNSIEIS oottt et 52

7.0, I UL APl e 56
oS e €)= PRSPPI 58
LS00 (0ot 1o PP SPPPTTR 58

8.2. DIVEN TEQISIIALION ...eiiitiieiiit ettt et e e e e e 58

8.3. Opening and CloSING TEVICE ccoeuiiiiiiii e e 58

8L, SEBLUS SEIVICE .otuiiiiit ettt ettt ettt ettt ettt ettt et e ea e eaaas 59

8.5. Transfer ConfigUIAtion iiiiiueiiiiii e et e e e e 59

8.6. Transfer INTEITaCE ... e 61

8.7. Synchronous TX/RX MOOE ...ceuuiiiiiii et 63

8.8, SlAVE SEIECE oo 64

8.9, RESIIICIIONS ...eiiiti ettt ettt e e e e et e et e 64

9. AHB Status RegiSter AriVEr ..o 65
L% B [L oo (0o 1o PSP SP PP 65

O.2. DIIVEN TEQISIIALION ..eeeitiieeeiii ettt e e et e et e e e e 65

9.3. Opening and CloSING TEVICE ccoeiiiieiiii e 65

0.4, REQIStEr INTEITACE ..o 66

O.5. INLEITUPL SEIVICE FOULINE ...eiiti ettt e e e et e e e 66

10. Clock Qating UNIT riVEN ieieee ettt ettt et e e e e b e e enaans 69
TO.1. INEFOOUCTION ettt ettt et ettt e et e e e et e e enaa e e enees 69

10.2. DIIVEF TEQISLIALION ...eieitiieiiii ettt et e e et e e et eeeeaa s 69

10.3. Opening and ClOSING TEVICE cciiiiii it 69

FO4. OPEIEIION .euieieiiti ettt ettt ettt e et e et e et et e e e e 70

ZEPHYR-UM
Dec 2023, Version 1.0.0

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
2

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

O RS O] (I (= = TP TP 71
10.6. Probe CloCK gating StatUS ...c.uceeieii e e e e e e e e e 71
JO.7. CPU OVEITIAR ..ttt ettt et et e e e et e e e e e e aeens 71
10, GRIS53B DIVl ettt et e et e et ettt e e e e e e aes 73
B T g oo 0ot o o PSP PP PPT 73
12. GR1553B BUS CONLrOHEr DIIVEr ...ttt e 75
122, INEFOAUCTION ..ottt ettt e e et e et e e et e et e e et e e eaeeeenns 75
12.2. BC Device Handling vvniiiiiieie e e e e 76
12.3. Descriptor List HAaNAIING ooniieiiie e e e e 78
13. GR1553B Remote Terminal DIIVEN coouiiiiiiiee e 0
C TN I 1 oo (0ot (o o LR SP TP PP 90
132, USEr INEITaCE oot e e ettt et e aa e 0
14. GR1553B BUS MONITOF DIIVEr ..oeiiiiieee ettt et e e e e e e e 100
T4.2. INEFOAUCTION ettt et e e et e et e e et e e et e e et e e eaeeeens 100
T4.2. USEr INEEITACE e et e 100
15. GR716 memory protection UNit AriVErccouiiiiiiii e e 105
1520 INEFOAUCTION «.eeeeet ettt e e et e et e et e et e e et e e e eeenns 105
15.2. DriVEr reQiStraliOnN coeiie i i e e e e e e 105
LG TR = 11 0] =N 105
15.4. Opening and ClOSING GEVICE ivuiiiiii et e e e e anns 105
15.5. OPEration MOUE ...cvuiiiiiiiiei et e e e e e e e e e e e e e e e anaeen 106
158, RESEL .ottt ettt e e e e e e ean 107
15.7. Segment CoNfigUIalion iieii e e e 107
16. MEMOrY SCrUDDEr ..oee e e e 111
16.1. INEFOAUCTION «.eeeeeee ettt et e e e e e et e e et e et e e e aa e e eneeenns 111
16.2. SOftWare deSIgN OVEIVIEW iveiiceieei eanes 111
16.3. Memory scrubber user interfateocvivieiiiii i 112
16.4. APL FEIOrENCE e 119
17. SPaCEWITE ROULEN DIIVEN ..ieiit i et e e e e e e e e e e e eens 121
17.0. INEFOAUCTION ettt ettt et et e et e e et e et e e e an e e eaeeenns 121
17.2. DIIVEF SOUIMCES ..eetuiiiti et e et et et e e et e et et e e et e et et e e et e et tat e e et e e et e e et e ean e eenaeaeen 121
2 T (0T 11 o P 121
17.4. Register and aCCeSS ArVEr iieiie i e e r e e e e aeeen 121
17.5. Setup routing talbleoeei e 122
T T G =T T 125
17.7. Error Nandling ooeeee e 128
17.8. TIME COUBS ..eeiiii ettt et ettt et e e e et e et e et e et e e eaeeenns 129
e T 1 1= o oo == 130
17.10. Configure tIMEOULS ...cvuieeii e ee e et e e e e e e e et e e e e e enns 132
17.11. Configure packet max 1ength ... 133
17.12. Configure Plug-and-Playcoiiiiiii e 133
17.13. Read Out Credit COUNLEIS uuiie ittt ettt e e e e e e e eens 133

ZEPHYR-UM
Dec 2023, Version 1.0.0

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
3

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

1. Introduction

Frontgrade Gaisler Zephyr distribution provides software support for processors and SoC systems in addition to
what is publically available at the Zephyr project [https.//www.zephyrproject.org].

In summary the package includes:
o Zephyr kernel improvements
» Based on officia zephyr-v3.5.0
» Kernel patches (Section 2.1)
¢ GRLIB device drivers (Chapter 3)
o Examples
* Documentation

Specific support for the following SoC components are included:

¢ GR716A component
¢ GR716B component

The purpose of this software distribution is to provide a common Zephyr RTOS kernel environment adapted for
SPARC LEON processors. This Zephyr support package is based on the Zephyr release zephyr-v3.5.0, it adds
Frontgrade Gaisler kernel patches, provides devicedriverswhich has not been upstreamed, and demonstrates usage
on LEON with examples.

Currently only the LEON SPARC processor family is supported by this distribution. Please see the Frontgrade
Gaider website for updates on NOEL-V support in Zephyr.

1.1. Installing Zephyr

Zephyr development environment and documentation packages are freely available via the Zephyr Project web
site and Git repositories. Application development information and the kernel reference is available online via
the Zephyr Project Documentation [https://docs.zephyrproject.org/latest/index.html]. Examples and demos for
Zephyr are also available.

To get started with Zephyr on LEON, the official Getting started Guide [https://docs.zephyrproject.org/lat-
est/getting_started/index.html], is the recommended starting point. After following the guide, the Zephyr envi-
ronment will reside in ${ HOVE} / zephyr pr oj ect with the kernel source tree in ${ HOVE} / zephyr pr o-
j ect/ zephyr.

The official guide describes how to install the required host tools, the SDK (including compiler tools), and how
to retrieve the Zephyr kernel and module source code using the west tool. By default, the guide will check out
the Zephyr master branch. Section 2.1 below describes how to switch to the recommended base commit and apply
the provided patches. Zephyr SDK version 0.16.4 has been tested together with zephyr-gaisler-1.0.0.

The examplesin the Getting started Guide can be used with the GR716A-MINI board, by using the CMake argu-
ment - DBOARD=gr 716a_m ni . The output binary in zephyr/ zephyr . el f can beloaded and run directly
with tsim-gr716 or GRM ON. Further information about the Zephyr GR716A-MINI integration is available at:
https://docs.zephyrproject.org/latest/boards/sparc/gr716a_mini/doc/index.html.

1.1.1. Extracting the archive

It is assumed that the steps in the Zephyr official Getting started Guide (above) have been performed before
proceeding with the following.

After obtaining the compressed tar file for the Frontgrade Gaisler Zephyr distribution, uncompress and untar it
to a suitable location. The distribution has been prepared to reside in the / opt / zephyr-gai sl er-1. 0.0
directory, but can be installed in any location. It can be installed with the following commands:

$ nkdir -p /opt
$ cd /opt
$ tar -xf /path/to/zephyr-gaisler-1.0.0.tar.bz2

1.1.2. Installing kernel improvements

See Section 2.1.1 for instruction on how to apply the kernel patches.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 4

https://www.frontgrade.com/gaisler
https://www.zephyrproject.org
https://www.zephyrproject.org
https://docs.zephyrproject.org/latest/index.html
https://docs.zephyrproject.org/latest/index.html
https://docs.zephyrproject.org/latest/getting_started/index.html
https://docs.zephyrproject.org/latest/getting_started/index.html
https://docs.zephyrproject.org/latest/getting_started/index.html
https://docs.zephyrproject.org/latest/boards/sparc/gr716a_mini/doc/index.html

rRONTGRADE

Gaisler
1.1.3. Installing GRLIB drivers into Zephyr
See Section 3.2 for instruction on how enable the GRLIB driver in Zephyr.
1.2. Archive content
The extracted distribution archive contains the following directories and files:
pat ch Kernel patches
grlib-drivers Zephyr module with device drivers
exanpl es Example applications
zephyr -gai sl er-1. 0. 0. pdf This document
ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 5

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

2. Zephyr kernel

Zephyr is an open-source Real-Time Operating System (RTOS) with device drivers and a cross-compilation
toolchain that can be used with GRLIB System On Chip (SoC) processor designs. The Zephyr Project [https://
www.zephyrproject.org] provides the software source code releases, documentation, forums and other resources
available to the Zephyr Community.

An overview of the the Zephyr support for GRLIB processors can be found on the Frontgrade Gaisler website
[https://gaisler.com/index.php/products/operating-systems/zephyr].

2.1. Kernel patches

Patches for the Zephyr kernel tree are provided in the directory named pat ch, and should be applied on top
of the Zephyr tag zephyr - v3. 5. 0. These patches add improvements related to the SPARC architecture and
the LEON3 SOC:s which reside in the kernel. For example device drivers and kernel improvements which were
not part of the upstream Zephyr repository at the time of the release tag. Note that the patch set provided by this
distribution may change between Zephyr release versions because they may become added to the officia kernel
tree between releases.

Summary of patches:
« SOC support for the GR716B component
» Board description for the GR716B-MINI board, compatible with TSIM3
» Extended device tree for GR716A
» Support for SPARC V8E single-vector trapping (SVT). Enabled by default on GR716A and GR716B

» Devicedriver for the GRLIB GRGPIO GPIO controller, using the Zephyr GPIO API. Enabled for GR716A
and GR716B.

» Device driver for the GRLIB SPIMCTRL SPI master controller, using the Zephyr SPI API. Enabled for
SPIMCTRL in GR716A and GR716B.

« Devicedriver for the GR716A ADC contrallers, using the Zephyr ADC API. Allows using the 8 ADC con-
trollersin GR716A.

2.1.1. Applying the patches

It isassumed that Zephyr isinstalled according to the Zephyr official documentation. To apply the patches, issue:

$ cd $HOVE/ zephyr proj ect/ zephyr

$ git branch gaisler-3.5.0 zephyr-v3.5.0
$ git checkout gaisler-3.5.0

$ git am/path/to/the/patch/dir/*.patch
$ west update

The command west update is needed to synchronize third-party modules with any changes made to the file
zephyr/west.ym .

The patches can be inspected for example with the Git log front end command gitk.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 6

https://www.frontgrade.com/gaisler
https://www.zephyrproject.org
https://www.zephyrproject.org
https://www.zephyrproject.org
https://gaisler.com/index.php/products/operating-systems/zephyr
https://gaisler.com/index.php/products/operating-systems/zephyr

rRONTGRADE

Gaisler

3. GRLIB device drivers

The driversin the Zephyr GRLIB driver module are drivers which have either not been upstreamed (yet), or do
not fit naturally in the Zephyr kernel, or share code with BCC bare-metal distribution from Frontgrade Gaidler. In
genera thisis because there is no related API provided by Zephyr for the type interface class (SpaceWire, MIL-
STD-1553B, €tc.).

Users of the BCC LEON cross-compiler driver library (I i bdr v) will find these Zephyr driversfamiliar: the user
interface is the same.

3.1. Drivers included in the package
Below isalist of the drivers currently distributed in the GRLIB Zephyr driver module.

Table 3.1. Driversincluded in the Zephyr GRLIB driver module

Driver Kernel configuration (K config) to include driver Example
provided
GR716A pin control CONFI G_GRLI B_GR716A M SC Yes
GR716A PLL control CONFI G_GRLI B_GR716A M SC Yes
AHBSTAT driver CONFI G_GRLI B_AHBSTAT Yes
GRLIB clock gating unit driver CONFI G_GRLI B_CLKGATE Yes
GR1553B driver CONFI G_GRLI B_GR1553B Yes
GRCAN and GRCANFD driver CONFI G_GRLI B_GRCAN No
GRLIB GRSPW?2 packet driver CONFI G_GRLI B_GRSPW Yes
GRLIB SpaceWire router CONFI G_GRLI B_GRSPWROUTER Yes
|2C master driver CONFI G_GRLI B_| 2CVST No
GR716A memory protection unit driver |CONFI G_GRLI B_GR716A_MEMPROT Yes
Memory scrubber (MEMSCRUB) driver |CONFI G_GRLI B_ MEMSCRUB Yes
GRLIB SPI (SPICTRL) driver CONFI G_GRLI B_SPI CTRL No

3.2. Enabling the drivers

The extracted zephyr-gai sl er-1.0.0.tar. bz2 contains a Zephyr module consisting of device driv-
er source code and configuration files. To make the drivers available to an application, the application lo-
cal CvakeLi sts.txt file will need a reference to the grli b-drivers path in its CMake variable
EXTRA_ZEPHYR_MODULES. Assuming the module is installed in the default location, the line to add to
CMakelLi sts. txt is

set (EXTRA_ZEPHYR_MODULES / opt/ zephyr-gai sl er-1.0.0/grlib-drivers)

An example on setting EXTRA ZEPHYR MODULES can be found in exanpl es/ ahb-
st at/ CvakeLi sts. txt.

3.3. Application configuration

A general description on how to configure the Zephyr kernel and subsystems to adapt for atarget application isis
availablein the Zephyr documentation: Interactive Kconfig interfaces [https://docs.zephyrproject.org/latest/build/
kconfig/menuconfig.html]. That page describes the interactive menuconfig and guiconfig systems which are ref-
erenced in the following.

When the module has been added to EXTRA_ZEPHYR _MODULES, the configuration system will be aware of the
GRLIB drivers and will make new options available in the Zephyr menuconfig. These new options are available
under " Mbdul es” ---> "grlib-drivers". The menuconfig and guiconfig interfaces are useful for ex-
ploring the options described by the module Kconfig. However, changes made in the interactive configuration
interfaces are stored in the build directory and will be lost if the build directory is manually removed, or when

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 7

https://www.frontgrade.com/gaisler
https://docs.zephyrproject.org/latest/build/kconfig/menuconfig.html
https://docs.zephyrproject.org/latest/build/kconfig/menuconfig.html
https://docs.zephyrproject.org/latest/build/kconfig/menuconfig.html

rRONTGRADE

Gaisler

using west build --pristine. If an appliction is designed to use one of the Zephyr device drivers permanently, the
preferred route is to update the application prj . conf asdescribed below.

A driver can be selected permanently in the application by adding the corresponding configuration option to the
application loca prj . conf file. For example by adding aline with the content CONFI G_GRLI B_ AHBSTAT=y
to enable building the AHBSTAT device driver. See also Table 3.1.

A useful method to determine kernel configuration parameters the application needsisto use theinteractive menu-
configaction[D] Save m ni mal config (advanced) . That will write the minimum set of application
configuration parameters to afile, which can be merged with prj . conf .

3.3.1. Example

Below is an example of prj . conf and CMakeLi sts. t xt for an application using the AHBSTAT device
driver.

Example 3.1. Aminimal prj . conf

CONFI G_GRLI B_AHBSTAT=y

Example 3.2. Aminimal CMakelLi st s. t xt

crmake_mi ni mum r equi red(VERSI ON 3. 20. 0)

set (BOARD gr 716a_mi ni)

set (EXTRA_ZEPHYR_MODULES / opt/ zephyr-gaisler-1.0.0/grlib-drivers)
find_package(Zephyr REQUI RED HI NTS $ENV{ ZEPHYR BASE})

proj ect (hel | o_wor | d)

target _sources(app PRI VATE src/ nain.c)

See dsothedirectory / opt / zephyr - gai sl er-1. 0. 0/ exanpl e/ ahbst at .

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 8

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

4. Support

For support contact the support team at support@gaiser.com.

When contacting support, pleaseidentify yourself in full, including company affiliation and site name and address.
Please identify exactly what product that is used, specifying if it is an IP core (with full name of the library
distribution archive file), component, software version, compiler version, operating system version, debug tool
version, simulator tool version, board version, etc.

The support serviceisonly for paying customers with a support contract.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 9

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Part |. Device drivers reference

The following sections describe the device drivers included in zephyr-gaisler-1.0.0. Each driver is described in
a separate chapter.

Examples on how to use the drivers can be found in the exanpl es directory.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 10

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table of Contents

5. DIIVES TEISITAIION oottt et e et et r e et e e ettt et e e 15
5.1 Manual FEQISITAIION ceeetieeiiii ettt ettt ettt et e e e e e e e eaaas 15
5.2. System specific device registration tableScooiiiiiiiiii e 15

6. GRSPW PaCKEl riVEr ...ttt ettt et et e e et e e e ana e e enees 17
L 20 B [L oo (8o 1o o R PP TPPPTRR 17

6.1.1. HardwWare SUPPOIT eeiiiiiiie ettt e et e e e 17
B.1.2. DIIVEN SOUICES ...iiiiiti ettt e ettt e e ettt e et e e et e e et et e e e e et e e et et e e e e et 17
6.1.3. DIIVEN FEQISIIALION ciieetieeeiit ettt ettt e e et ettt e e et e e et e e e e e e b e eenees 17
B.1.4, EXAMPIES ..ttt et ee 17
6.1.5. Known driver IMItalioNSccoouuiiiiiiie e 17
6.2. SOftWare deSIgN OVEIVIEIW ..eeeei ittt e et e et e e 17
B.2. 1. OVEIVIEIW .ottt ettt et e e et e e ettt e et et e e e et e e era e 17
6.2.2. INITIAHZALON ..eeeee e e 18
6.2.3. LINK CONTIOI .eeeiit ettt e e et e et e e e eat e eeees 18
6.2.4. TIME COUE SUPPOIT ...ttt ettt ettt et e ettt e ettt e e et e e e e et e e e eeae e eeeens 18
6.2.5. RMAPR SUPPOI oottt ettt ettt e et e 18
B.2.6. POIT SUPPOM ..eee ittt ettt e 19
6.2.7. SpaceWire node address CONfIQUIation ooeeieuiieiiiiiiie e 19
6.2.8. User DMA buffer handlingoooeiiiiiii e 19
6.2.9. Driver DMA buffer handling uuiiiiiiiiei e 20
6.2.10. Polling mode and iNTEITUPES veeueieiiii e e 21
6.2.11. Starting and Stopping DIMA ... e 21
6.3, DEVICE INEITACE .ot e ettt e e 22
6.3.1. Opening and ClOSING TEVICE ... iiiiii et 22
6.3.2. Hardware CapabilitieScoouuiiiiiiiiiiii e 23
6.3.3. LINK CONIIOl ...ttt ettt e e e e e e enaa s 24
6.3.4. Node address Configuration coooeuuieiiiiii e 26
6.3.5. TIME-CONLIOl COUES iiiti ittt et e eeeaa e eees 27
6.3.6. POIT CONTIOI ...ttt e e et e e ettt e et eab e e e eaa e eeens 28
6.3.7. RMAP CONIOl ..ottt e e b 29
6.3.8. INterrupt NANAIING ...oeeeeeei e 30
B.4. DMA TNEEITACE oot ettt e e et e et e e 30
6.4.1. Opening and closing DMA channelscoooiiiiiiii e 30
6.4.2. Starting and stopping DMA OPEration ccouuuiiiiiiiiieiiie e 33
6.4.3. Packet buffer desCription oviiiiiiiiei e 34
6.4.4. Packet DUFFE TISES ...t 35
6.4.5. SENAING PACKELS ...ttt 36
6.4.6. RECEIVING PACKELS iiiitt ettt ettt e e e et e e enb e eeees 37
6.4.7. TranSMIiSSION QUEUE SEAEUS ceeeveeiiiti et ettt e et e e ettt e e et e e e et e e e e et e e e eaae e eeens 39
6.4.8. QUEUE FIUSNING o.eeieiiit e e 40
B.4.9. SEALISHICS ..vueeiitii ettt ettt 40
6.4.10. DMA channel configuralioncoouueiiiiimieiii e 41
6.4.11. DMA Chann@l SLAIUS covuniiiiiiieiiii ettt e et e eeae e e 43
B.5. API TEIEIENCE .ot e 43
6.5.1. Data SITUCLUINES eeiiiiei ettt et et r e e e e r e e e ees 44
6.5.2. DEVICE TUNCLIONS ..etiiiiiti e e e et e et e e e e e eenes 44
6.5.3. DMA TUNCHIONS .ottt ettt e e e eaeans 44
B.6. RESIIICIIONS ...ieiitieeeiit ettt ettt e et e et e et et e et e e s 45
7. GRCAN CAN AV oottt e e et ettt et e e b e e e e aa e e eabe e e enaen 46
4% T [L oo (8o 1o o R TP 46
T 1L USEr INEEITACE ittt et 46
7.1.2. DIIVEN TEQISIIALION eiiiett i eeeiii ettt ettt ettt et et e e e et e e et e e e abe e eeneen 46
7.3 EXAMPIES ot ee 46
7.1.4. KNown driver IMItaliONS iiiiiiiiiiii e 46
7.2. Opening and ClOSING GEVICE . .couuiiiiiiii et 46
7.2.1. Static buffer allOCEHON cooueiiiiii e 47
7.3, OPEFELION MOOE ..eeieiieie ettt ettt e et et e e et e e et e e e aba s 48
ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Géteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 11

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

7.3.1. Starting and StOPPING ..vvuieeiie e 48

A o g1 o1 = 1 o 49
741 Channel SElECHION ...ou.iie i e e 49
7.4.2. GRCAN TiminNg Par@MeErSuciuniiiiiit e e e e e e ee e e e e e e e e e e e e e e e e aeeanaes 50
7.4.3. GRCANFD Timing Par@mMELErSccvuveeiieeiieii et ieeie e ee e e e e ne et e et ean e e e eaneeaneenns 50

7.5, RECAIVE fIllEIS oo e 51
T.5.1. Dala SHIUCIUMNES oottt e e e e e e e e e e e et e e e e e et en 51
7.5.2. ACCEPLANCE FIltEr ..o 51
75,3, SYNC I o e 51

ST T = g = = o= 51
A L= o = LN 52
7.8. CAN DUS tranSf €8S ooeieii e 52
T.8.1. Dala SHIUCIUMNES ouiiiiiiie et e e e e e e e e e e et e e et eaeanaen 52

8= T I = 0 1.1 o o 53
8= TG TR (== o1 o 54
7.8.4. BUS-Off TECOVEIY oot e e e e e e e e ans 56
T.8.5. AHB EITOI TECOVEIY 1uiitiitiiiiii ettt ettt e e e et e e e e e et e e et e e anane 56

8 T L 1= 0o AN PN 56
7.9.1. INtEITUPL QENEIEHION ...euiiet i e e e e e e e e e e et e et e e e e e e e e eaeanaes 56
S B0)V PP OPTRUPPTRPPRPPR 58
S 00 1 11 oo o 1 o o It 58
S B T A< g = | 1o o 58
8.3. Opening and ClOSING GEVICE ...ccuiiiiiii e e e e e e e e e et e aa e anns 58
G S = W Y= Y o 59
8.5. Transfer ConfigUIralion couiiiiiii e e e e e e e e e e e e anns 59
8.6. Transfer INMEIfatEoeiiii e e e e e e 61
8.7. Synchronous TX/RX MOUE ...ceuiiiiiiiicii e e e e e e e e eanes 63
8.8, SlAVE SElCE oot e 64
S TR (= o £ o 64
AN o | IS e (WS R e 1 o | = 65
LS 00 R 1 11 oo T 1 o o It 65
LS A B T A< g = 1 1o o 65
9.3. Opening and ClOSING GEVICE ...ccuiiieiii e e e e e e e e e e e e et e aa e anns 65
S =0 1 = 111 = T 66
O.5. INLEITUPL SEIVICE FOULINE ..ovuieieieee et e e e e e e e e e e e e e e e et e e e et e et e an e e e e e eaneenns 66
10. ClOCK Qating UNit AriVEr ... e e e e e e e e e e e e e e e e et e et e et e en e anaaannas 69
0 I O 11T [T 1 o 69
O T B A= g =K = o] I 69
10.3. Opening and ClOSING TEVICE ...oeuiieiii e e e e e et e e eans 69
0 @ o 1o 70
R o o (= T 71
10.6. Probe CloCK Qating SLALUS ..ovuuieeiie it iei e e e e e e e e e e e e e e e anas 71
O T O o U 0 = 1 o 71
i € o S B V= PP PP PPPT 73
I O 11T [T 1 o 73
11.1.1. Considerations and lIMItalionNS ccuiiiiiiiiiii e 73
11.1.2. GRI553B HAIGWEIE ...ceuiiiiieeiieeit ettt et et e et e e et eeeb e ean s 73
11.1.3. SOfIWArE AriVEr e e e 73
I D V7 o T 1 = () 73

12. GR1553B BUS CONIOEr DIIVEr ...eeiiiiiiei e e e e e e e e et e e e e e e e eaaeees 75
5220 O 11 oo [0 Tox 1 o 75
12.1.1. GR1553B Bus Controller Hardwarecccoeiiiiiiiiiiiee e e 75
N S o) 1 1= = o Y 75
A I R B LV g (=K== £ o N 75

12.2. BC DeVviCe HandliNg cvniiieiieie e e et e e e e e e e e e e e 76
1220, DEVICE APl e 76

12.3. Descriptor List HAaNAIiNG ...coeoveiii e e e e e e e e 78
D231 OVEIVIBIW oottt et ettt e et e e et ettt e e et e e et e et e eenaae 78
12.3.2. Example: stepsfor creating @alist o.evvieieiii i 79

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 12

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

e T T V= o Gl = 0 = 80
12.3.4. MINOE FIaAME oottt ettt e et e e e e et e e ea e ean s 80
e TS o (=<] o] e) 80
12.3.6. Changing a scheduled BC list (during BC-runtime)cccccoveiiiiiiiiiiiii e, 8l
12.3.7. CuStOmM MEMOIY SEIUD ..ottt r e e aees 8l
12.3.8. Interrupt handling ooni e 8l
12,30, LISt AP e et e 82

13. GR1553B Remote Terminal DIIVEN oouuiiiiiiiii et e e e e e e eees 90
T I 1 g oo [0 Tot i o o I PP TUPPTN 90
13.1.1. GR1553B Remote Terminal Hardwarecoooouiiiiiiiiiiiieiiieeeee e 90
13.1.2. DriVer reQiStratiOn ieeiie it e e e e e 90

132, USEr INOITaCE oeeiiieeiii et ettt et 90
L1320 OVEIVIBIW oottt ettt et ettt et e e et et et e e et e e et e et e eaneae 90
13.2.2. Application Programming INterfaceccoeviiiiiiiiiie e 93

14. GR1553B BUS MONITON DIIVEr ..ottt e et e e e e e e e een s 100
T4.2. INEFOAUCTION ettt ettt et et e e ettt e e e et e e e et e e et e e et e e et e eanaas 100
14.1.1. GR1553B Remote Terminal Hardwarecocoeiiiiiiiiiiiiiee e, 100

I R B L Y g (=T = o I 100

T4.2. USEr INTEITACE oeeeie e et ettt e e e e et e e eees 100
TA.2. 0. OVEIVIEIW oottt ettt e et et e e et et et e et e et b e e e e ea s 100
14.2.2. Application Programming INterfacecccoveiiiiiiiii i 101

15. GR716 memory protection UNit AriVEr ccuiiiiii e e e e e e eans 105
152, INEFOAUCTION ..o eee ettt et ettt et et e et r et e et r e e e e e et e e et e e et e ennaas 105
1500, USEr INEEITACE .oeeeeie ettt e e e e e e e ees 105
1502, FEAIUMES oottt ettt ettt et e e e e aeen 105
15.2.3. LIMIBHONS oottt ettt ettt e et e et e et e e et e e ea e eens 105

15.2. DIiVEr reQISITAION ...ouiiieieii eas 105
LG T T 1 10 = 105
15.4. Opening and ClOSING AEVICE ...ccuiiiniiiiii e e e e e e e e e e e anaas 105
T ST @ o= 1 o] o 1 1470 o = 106
15.5.1. Starting and StOPPING ..vvueveneieieiie e e e e e e e 106

158, RESEL .ottt e et e e ean s 107
15.7. Segment CONFIQUIALION iueie e e e e e e e e e e e e e e et e et e aneeenns 107
15.7.1. NUMDEr Of SEOMENES ..oieeiii e e e e e e e e eneeanns 107
15.7.2. DEL8 SITUCIUMNES ...eeceieeieee ettt et e et et e et e e e et e e e e e en e e e eeneees 108
T T PP UPTRUPTI 108
N €T TP UPTRPPTRPPRPIN 109

T 1Y =g To YA S F o]o= 111
16.1. INEFOAUCTION ..eeeeee ettt ettt et e e e et et e et r e e et e e et e e et a e et e ennaas 111
16.1.1. HardWare SUDPPOM ...oeeiiei et e et e an e ean e e e eneees 111
16.1.2. DIIVEN SOUICES ..ueeeueiiieeeieeet e eet e e et et et e et e e et e e et e e e e et et e e e eb e e et e e ebn e eeneeennas 111
16.1.3. EXAMPIES et 111

16.2. SOftWare deSIgN OVEIVIEW iieiie i e e e e e e et e e et e e e e e et e e e e e e e e eaneees 111
I O D T LY - o P 111

16.3. Memory scrubber USer iNtErfaCe oeeiiiiiii i 112
16.3.1. REIUIMN VAIUES ..ottt e e e et e eaa e eees 112
16.3.2. Opening and ClOSING GEVICE cvuiiiii i e e e 112
16.3.3. Configuring the MEeMOrY rangecc.ocieiiiie e en 113
16.3.4. Starting/stopping different ModeS.oveiiiiiii 114
16.3.5. Setting up error thresholds ..o 117
16.3.6. Registering an ISR ..oouiieii i 118
16.3.7. POIING the €TOr SLALUS ovuiieiee e e e e e e e e e e e e aaaas 118

L6.4. AP Bl OIENCE et aaas 119
17. SPaCEWITE ROULEr DIIVEr ..o e e e e e e e e e e et e e e eaaeenns 121
17.0. INEFOAUCTION ettt et ettt et et e et e et e et r e e e e e eb e e et a e et e eanaas 121
17.2. DIIVEL SOUIMCES .oeeueitt ettt e et e e et e e et e ettt ettt e e et e ettt e et e ettt e e e eh e e et e et an e e etaaeeat e eenneeeanaes 121
2 T 0T 1 o S 121
17.4. Register and aCCESS ArVEr iveiiiei e e e e e e e e e e e e e e aeens 121
17.5. Setup routing talle coei e 122

ZEPHYR-UM
Dec 2023, Version 1.0.0

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
13

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

S T O 411 125
T T g =T o T P 125
0 A 4 o 7= 0 | 1o 128
8 T 10T oo == S 129
e T 1= o oo === 130
A (O @Yo U= 1 = 11| 132
17.11. Configure packet max 1ength ... 133
17.12. Configure PlUg-and-Play ccouiiiiii e 133
17.13. Read OUL Credit COUNLEIS ...uuiieiii i e e e e e e e e e e e e e e e e ees 133

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 14

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

5. Driver registration

Devicedriversinthislibrary can operate on any number of peripherals (cores) of aspecific type. Before operation
starts, the drivers must have knowledge of the available peripheral devices. This knowledge is transferred at run-
timein a process named driver registration.

Driversin thislibrary rely on static memory allocation and will never call mal | oc() and related functions. This
means that memory required by the drivers need to be all ocated by the user and communicated to the drivers. This
isalso performed in the driver registration step.

In the rest of this chapter, the APBUART driver will be used as an example on peripheral registration. The same
procedures is used for the other drivers.

5.1. Manual registration

Manual registration does not require dynamic memory allocation or AMBA Plug& Play bus scanning. It can be
useful for resource constrained systems.
Registration of a peripheral can be performed with the function
int apbuart register(struct apbuart_devcfg *devcfg);
which takes a device configuration record as its parameter. For example:
#i ncl ude <drv/ apbuart. h>

struct apbuart_devcfg MYDEVCFQD = {

.regs = {
. addr = 0x80000100,
.interrupt = 2,

},
b

int main(void) {
struct apbuart_priv *dev;

apbuart _regi st er (&MYDEVCFQD) ;
dev = apbuart_open(0);

[---1]
}

It isalso possible to register multiple peripherals at once using the function
int apbuart_init(struct apbuart_devcfg *devcfgs[]);

which takesa NULL terminated array as parameter:
#i ncl ude <drv/apbuart.h>

struct apbuart_devcfg MYDEVCFG] = {

{ .regs = { .addr = 0x80000100, .interrupt =2, }, }
{ .regs = { .addr = 0x80000200, .interrupt =3, }, }
b
struct apbuart_devcfg *MYDEVCFGS[] = {
&WDEVCF(0] ,
&WDEVCF(F 1],

NULL,
s

int main(void) {
struct apbuart_priv *dev;

apbuart _i ni t (MYDEVCFGS) ;
dev = apbuart_open(1);

[...]
}

In addition to specifying register base addresses and interrupt numbers, the above examples also allocate (static)
device private data. For more details, see the definition of the different st ruct [dri ver] _devcf g types.

5.2. System specific device registration tables

Device configuration tables have been prepared for the following systems:

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 15

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
Table 5.1. Device registration tables for manual registration
System Header files
GR716 gr716/
ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 16

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

6. GRSPW Packet driver

6.1. Introduction
This section describes the GRSPW packet driver for Zephyr.

It isan advantage to understand the SpaceWire bus/protocols, GRSPW hardware and software driver design when
developing using the user interfacein Section 6.3 and Section 6.4. The Section 6.2.1 describesthe overall software
design of the driver.

The driver useslinked lists of packet buffersto receive and transmit SpaceWire packets. The packet driver imple-
ments an APl which allows efficient custom data buffer handling providing zero-copy ability and multiple DMA
channel support. The link control handling has been separated from the DMA handling.

6.1.1. Hardware Support

The GRSPW cores user interface are documented in the GRIP Core User's manual. Below is alist of the major
hardware features it supports:
¢ GRSPW, GRSPW2 and GRSPW2_DMA (router AMBA port)
Multiple DMA channels
Link Control
* Port Control
* RMAP Control

6.1.2. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the Zephyr source
treesrc/libdrv/src/.

Table 6.1. Source Location

Filename Description
i ncl ude/ drv/ grspw pkt.h GRSPW user interface definition
src/grspw *.c GRSPW driver implementation

6.1.3. Driver registration
This driver uses the driver registration mechanism described in Chapter 5.

Table 6.2. Driver registration functions

Registration method Function
Register one device grspw_register()
Register many devices grspw_init()

6.1.4. Examples
Examples are availableinthesr c/ | i bdr v/ exanpl es/ directory in the Zephyr distribution.
6.1.5. Known driver limitations

The known limitations in the GRSPW Packet driver exists listed below:

« The statistics counters are not atomic, clearing at the same the interrupt handler is called could cause invalid
statistics, one must disable interrupt when reading/clearing.

6.2. Software design overview

6.2.1. Overview

The driver API has been split up in two major parts listed below:
» Deviceinterface, see Section 6.3.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 17

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

« DMA channel interface, see Section 6.4.

GRSPW device parametersthat affects the GRSPW core and all DM A channels are accessed over the device API
whereas DMA specific settings and buffer handling are accessed over the per DMA channel API. A GRSPW2
device may implement up to four DMA channels.

In order to access the driver the first thing isto open a GRSPW device using the device interface.

For controlling the device one must open a GRSPW deviceusing' i d = gr spw_open(dev_i ndex)' and
call appropriate device control functions. Device operations naturally affectsall DM A channels, for examplewhen
the link is disabled all DMA activity pause. However there is no connection software wise between the device
functions and DMA function, except from that the gr spw_cl ose requires that al of its DMA channels have
been closed. Closing adevicefailsif DMA channels are still open.

Packets are transferred using DMA channels. To open a DMA channel one cadls 'dme_id =
grspw_dnma_open(id, dnmachan_index)' and use the appropriate transmission function with the
dma_i d to identify which DMA channel used.

6.2.2. Initialization

During early initialization when the operating system boots the driver performs some basic GRSPW device and
software initialization. The following steps are performed or not performed:

¢ GRSPW device and DMA channels 1/O registers are initialized to a state where most are zero.

« DMA isstopped on al channels

« Link state and settings are not changed (RMAP may be active).

¢ RMAP settings untouched (RMAP may be active).

 Port select untouched (RMAP may be active).

» Time Codes are disabled and TC register cleared.

* |IRQ generation disabled.

« Status Register cleared.

» Node address/ DMA channels node address is untouched (RMAP may be active).

» Hardware capabilities are read.

» Deviceindex determined.

6.2.3. Link control

The GRSPW link interface handles the communication on the SpaceWire network. It consists of a transmitter,
receiver, aFSM and FIFO interfaces. The current link state, status indicating past failures, parameters that affect
the link interface such as transmitter frequency for exampleis controlled using the GRSPW register interface.

The SpaceWire link is controlled using the software device interface. The driver initialization sequence during
boot does not affect the link parameters or state. The link is controlled separately from the DMA channels, even
though the link goes out from run-mode this does not affect the DMA interface. The DMA activity of all channels
are of course paused.

Function names prefix: gr spw_I i nk_*() .
6.2.4. Time Code support

The GRSPW supports sending and receiving SpaceWire Time Codes. An interrupt can optionally be generated on
Time Code reception and the last Time Code can be read out from a GRSPW register.

Function names prefix: gr spw_t c_*()
6.2.5. RMAP support

The GRSPW device has optional support for an RMAP target implemented in hardware. The target interface is
abletointerpret RMAP protocol (pr ot i d=1) requests, take the necessary actionson the AMBA busand generate
a RMAP response without the software's knowledge or interaction. The RMAP target can be disabled in order
to implement the RMAP protocol in software instead using the DMA operations. The RMAP CRC algorithm
optionally present in hardware can also be used for check summing the data payload.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 18

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The device interface is used to get the RMAP features supported by the hardware and configuring the below
RMAP parameters:

¢ Probeif RMAP and RMAP CRC is supported by hardware

« RMAP enable/disable

e SpaceWire DESTKEY of RMAP packets

The SpaceWire node address, which also affects the RMAP target, is controlled from the address configuration
routines, see Section 6.2.7.

Function names prefix: gr spw_rnap_*()
6.2.6. Port support

The GRSPW device has optional support for two ports (two connectors), where only one port can be active at a
time. The active SpaceWire port is either forced by the user or auto selected by the hardware depending on the
link state of the SpaceWire ports at a certain condition.

The device interface is used to get information about the GRSPW hardware port support, current set up and to
control how the active port is selected.

Function names prefix: gr spw_port _*()
6.2.7. SpaceWire node address configuration

The GRSPW core supports assigning a SpaceWire node address or arange of addresses. The address affects the
received SpaceWire Packets, both to the RMAP target and to the DMA receiver. If areceived packet does not
match the node addressit isdropped and the GRSPW statusindicatesthat one or more packetswith invalid address
was received.

The GRSPW2 and GRSPW2_DMA cores that implements multiple DMA channels use the node address as a
way to determine which DMA channel areceived packet shall appear at. A unique node address or range of node
addresses per DMA channel must be configured in this case.

It is also possible to enable promiscuous mode to enable al node addresses to be accepted into the first DMA
channel, this option does not affect the RMAP target node address decoding.

The GRSPW SpaceWire node address configuration is controlled using the device interface. A specific DMA
channel's node address is thus affected by the "global" device API and not controllable using the DMA channel
interface.

If supported by hardware the node address can be removed before DMA writes the packet to memory. Thisisa
configuration option per DMA channel using the DMA channel API.

Function names prefix: gr spw_addr _*()
6.2.8. User DMA buffer handling

Thedriver is designed with zero-copy in mind. The user isresponsible for setting up data buffersonitsown . The
driver useslinked lists of packet buffersasinput and output from/to the user. It makesit possibleto handle multiple
packets on asingle driver entry, which typically has a positive impact when transmitting small sized packets.

The API supports header and data buffersfor every packet, and other packet specific transmission parameters such
as generate RMAP CRC and reception indicators such asif packet was truncated.

Since the driver never reads or writes to the header or data buffers the driver does not affect the CPU cache of the
DMA buffers, it is the user's responsibility to handle potential cache effects.

Note that the UT699 does not have D-cache snooping, this means that when reading received buffers D-cache
should either be invalidated or the load instructions should force cache miss when accessing DMA buffers
(LEON LDA instruction) .

Function names prefix: gr spw_dma_* ()

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 19

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

6.2.8.1. Buffer List help routines

The GRSPW packet driver internally uses linked lists routines. The linked list operations are found in the header
file and can be used by the user as well. The user application typically defines its own packet structures having
the same layout as struct grspw_pkt in the top and adding custom fields for the application buffer handling as
needed. For small implementations however the pkt _i d field may be enough to implement application buffer
handling. Thepkt _i d fieldisnever accessed by thedriver, instead isan optional application datastorageintended
for identifying a specific packet, which packet pool the packet buffer belongs to, or a higher level protocoal id
information for example.

Function names prefix: gr spw_l i st _*()
6.2.9. Driver DMA buffer handling

The driver represents packets with the struct grspw_pkt packet structure, see Table 6.32. They are arranged in
linked lists that are called queues by the driver. The order of the linked lists are always maintained to ensure that
the packet transmission order is represented correctly.

hext = &pl—»hext = &p2
count = 3 flags flags
hlen hlen
1e§d_= & pd dlen dlen ext = NULL
tail = &p2 data data flags
hdr hdr hlen
dlen
data
hdr

Figure 6.1. Queue example - linked list of three grspw_pkt packets
6.2.9.1. DMA Queues

The driver uses one queue per DMA channel transfer direction, thus two queues per DMA channel. The number
of packets within a queue is maintained to optimize moving packets internally between queues and to the user
which a so needs this information. The different queues are listed below.

* RX SCHED queue - packets that have been assigned a RX DMA descriptor.

e TX SCHED queue - packets that have been assigned a TX DMA descriptor.

Packet in the SCHED queues always are assigned to a DMA descriptor waiting for hardware to perform RX or
TX DMA operations.

The DMA descriptor table has a size limitation imposed by hardware. 64 TX or 128 RX descriptors can be defined
for one hardware descriptor table in memory. Naturally this also limits the number of packets that the SCHED
gueues may contain at any single point in time. It is up to the user to control the input and output to them by
gueuing and dequeueing from and to private queues.

The current number of packets in respective queue can be read by doing function calls using the DMA API, see
Section 6.4.7. The user can for example use thisto determine to wait or continue with packet processing.

6.2.9.2. DMA Queue operations

The user can control how the RX SCHED and TX SCHED queues are populated, by providing and removing
packet buffers. The user can control how and when packets are moved from RX SCHED and TX SCHED queues

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 20

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

into user provided queues by manually trigger the move by calling reception and transmission routines as described
in Section 6.4.6 and Section 6.4.5.

For RX, the packets aways flow in one direction from USER RX READY -> RX SCHED -> USER RX RECV.
Likewise the TX packets flow USER TX SEND -> TX SCHED -> USER TX SENT. The procedures triggering
gueue packet moves are listed below and in Figure 6.2 and Figure 6.3. The interface of theses procedures are
described in the DMA channel API.

e USER->RX SCHED —gr spw_dma_r x_pr epar e, Section 6.4.6.

* RX SCHED ->USER-gr spw_dma_r x_r ecv, Section 6.4.6.

e USER->TX SCHED queue—gr spw_dna_t x_send, Section 6.4.5.

e TX SCHED ->USER—-grspw_dnma_t x_recl ai m Section 6.4.5.

RX SCHED

Queue "RX RECV"

—»-User receive
packet buffers

"RX PREPARE"
Jser input empty—»
packet buffers

&p7
&p8
&p9
Figure 6.2. RX queue packet flow and operations
" " TX SCHED " "
TX SEND Queue TX RECLAIM

—» User retake
packet buffers

User input —»
packet buffers &p7
&p8

&p9

Figure 6.3. TX queue packet flow and operations

Packets which the user has provided to the driver shall be considered owned by the driver until the user takes the
packets back again. In particular, the struct grspw_pkt fields should not be accessed by the user while the packet
buffers are assigned to the driver.

6.2.10. Polling mode and interrupts

All user DMA operations are non-blocking and the user is thus responsible for processing the DMA descriptor
tables at auser defined interval by calling reception and transmit routines of the driver. DMA interrupt generation
is controlled individually per packet. It is configured in the packet data structure.

Thedriver does not contain an interrupt service routine. The user can install an ISR by using the operating system.
6.2.11. Starting and stopping DMA

The driver has been designed to make it clear which functionality belongs to the device and DMA channel APIs.
The DMA API is affected by started and stopped mode, where in stopped mode means that DMA is not possible
and used to configure the DMA part of the driver. During started mode a DMA channel can accept incoming and
send packets. Each DMA channel controlsits own state. Parts of the DMA API isnot available in during stopped
mode and some during stopped mode to simplify the design. The device API is not affected by this.

Typically the DMA configurationis set and user buffersareinitialized before DMA is started. The user can control
thelink interface separately from the DMA channel before and during DMA starts.

When the DMA channel is stopped by calling gr spw_dma_st op() thedriver will:
» Stop DMA transfers and DMA interrupts.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 21

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

» Stop accepting new packetsfor transmission and reception. However the DMA functionswill till be open for
the user to retrieve sent and unsent TX packet buffers and to retrieve received and unused RX packet buffers.

The DMA closeroutines requiresthat the DM A channel is stopped. Similarly, the device close routine makes sure
that all DMA channels are closed to be successful. Thisisto make sure that all user tasks has return and hardware
isinagood state. It is the user's responsibility to stop the DMA channel before closing.

DMA operational function names: gr spw_dna_{start, stop} ()

6.3. Device Interface

This section covers how the driver can be interfaced to an application to control the GRSPW hardware on device
level, such aslink state and node addresses.

6.3.1. Opening and closing device

A GRSPW device must first be opened before any operations can be performed using the driver. The number of
devices registered to the driver can be retrieved using gr spw_dev_count . A particular device can be opened
using gr spw_open and closed gr spw_cl ose. The functions are described below.

An opened device can not be reopened unless the device is closed first. When opening a device the device is
marked opened by the driver. This procedure isthread-safe by protecting from other threads by using the GRSPW
driver's semaphore lock. The semaphore is used by al GRSPW devices on device opening, closing and DMA
channel opening and closing.

During opening of a GRSPW device the following steps are taken:
¢ GRSPW device l/O registers are initialized to a state where most are zero.
» Descriptor tables memory for all DMA channels are allocated from the heap or from a user assigned address
and cleared. The descriptor table length is always the maximum 0x400 Bytes for RX and TX.
¢ Internal data structures are initialized.
e Thedeviceis marked opened to protect the caller from other users of the same device.

The example below prints the number of GRSPW devices to standard output. It then opens, prints the current link
settings and closes the first GRSPW device present in the system.

int print_spw_|link_properties(void)
{

voi d *devi ce;

int count;

uint32_t |inkcfg, clkdiv;

count = grspw_dev_count();
printf ("%l GRSPW devices present\n", count);

devi ce = grspw_open(0);
if (!device)
return -1; /* Failure */

l'inkcfg = grspw_get _| i nkcfg(device);
if (linkcfg & LI NKOPTS _AUTCOSTART) {
printf("GRSPW: Link is in auto-start after start-up\n");

cl kdiv = grspw_get_cl kdi v(device);
printf("GRSPW): C ock divisor reset value is %\n", clkdiv);

grspw_cl ose(device);

return 0; /* success */

}

Table 6.3. gr spw_dev_count function declaration

Proto |int grspw dev_count (voi d)
About | Retrieve number of GRSPW devices registered to the driver.

Return |int. Number of GRSPW devices registered to driver, zero if none.

Notes | The number of GRSPW devices registered to the driver may or may not be equal to the number of de-
vicesin the system

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 22

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 6.4. gr spw_open function declaration

Proto |void *grspw_open(int dev_no)
About |Open a GRSPW device

The GRSPW device isidentified by index. Index value (dev_no) must be equal to or greater than ze-
ro, and smaller than value returned by gr spw_dev_count . The returned value is used asinput ar-
gument to all functions operating on the device. It is not possible to open an already opened device in-
dex.

Param |dev_no [IN] Integer
Device identification number.

Return |Pointer. Status and driver's internal device identification.

NULL Failed to open device. Failsif device is already open, if dev_no isout of range, or if
driver failed to install its ISR.

Pointer GRSPW device handle to use as input parameter to all device API functions for the
opened device.

Table 6.5. gr spw_cl ose function declaration

Proto |int grspw close(void *d)
About |Close a GRSPW device

All DMA channels are also stopped and closed automatically, similar to calling gr spw_dna_st op
and gr spw_dna_cl ose for al channels.

Param |d [IN] pointer
Device handle returned by gr spw_open.

Return |int.
Value Description
DRV_OK |Successfully closed device.
others Device closed, but failed to unregister interrupt handler.

6.3.2. Hardware capabilities

Thefeaturesand capabilities present in hardware might not be symmetricin asystemwith several GRSPW devices.
For example the two first GRSPW devices on the GR712RC implements RM AP whereas the others does not. The
driver can read out the hardware capabilities and present it to the user. The set of functionality are determined
at design time. In some system where two or more systems are connected together it is likely to have different
capabilities.

The capabilities are read out from the GRSPW /O registers and written to the user in an easier accessible way.
See below function declarations for details.

Depending on device capabilities, parts of the driver APl may be inactivated due to missing hardware support.
See respective section for details.

The function gr spw_r map_support and gr spw_port _count retrieves a subset of the hardware ca-
pabilities. They are described in respective section.

Table 6.6. gr spw_hw_support function declaration

Proto |void grspw_hw support(void *d, struct grspw_hw sup *hw)
About |Get GRSPW hardware capabilities

Write hardware capabilities of GRSPW device to user parameter hw.
Param |d [IN] pointer

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 23

https://www.frontgrade.com/gaisler

FRONTGRADE
Device handle returned by gr spw_open.
Param |hw[OUT] pointer
Address to where the driver will write the hardware capabilities. Pointer must to memory and be valid.

Return |None.

Thegrspw_hw_sup datastructureisdescribed by the declaration and table below. It isused to describe the GRSPW
hardware capabilities.

/* Hardware support in GRSPWcore */
struct grspw_hw sup {

int8_t rmap; /* 1f RVAP in HWis avail able */

int8_t rmap_crc; /* 1f RVAP CRC is avail able */

int8_t rx_unalign; /* RX unaligned (byte boundary) access allowed*/
int8_t nports; /* Nunber of Ports (1 or 2) */

int8_t ndma_chans; /* Nunber of DMA Channels (1..4) */

int hw_ver si on; /* GRSPW Har dwar e Version */

int8_t irgq; /* SpWDistributed Interrupt available if 1 */

}

Table 6.7. grspw_hw_sup data structure declaration

rmap 0 RMAP target functionality is not implemented in hardware.
1 RMAP target functionality isimplemented in hardware.
rmap_crc Non-zero if RMAP CRC is availablein hardware.

rx_unalign Non-zero if hardware can perform RX unalibned (byte boundary) DMA accesses.

nports Number of SpaceWire portsin hardware. Values: 1 or 2.

ndma_chans |Number of DMA channelsin hardware. Values: 1, 2, 3 or 4.

hw_version 157 16 |The 12-hitsindicates GRLIB AMBA Plug & Play device ID of APB device. Indicates
if GRSPW, GRSPW2 or GRSPW2_DMA..

4.0 The 5 LSB bitsindicates GRLIB AMBA Plug & Play device version of APB device.
Indicates subversion of GRSPW or GRSPW?2.

irq Non-zero if SpaceWire distributed interrupt functionality isimplemented in hardware.

6.3.3. Link Control

The SpaceWirelink is controlled and configured using the device API functions described below. Thelink control
functionality is described in Section 6.2.3.

In system where the GRSPW controller is connected directly to a GRSPW SpaceWire router, the link interface
is configured in the corresponding router driver.

Table 6.8. gr spw_get | i nkcf g function declaration

Proto |uint32_t grspw get linkcfg(void *d)
About |Get link configuration

The function returns the link configuration, which can be masked with the LI NKOPTS_* defines.
Param |d [IN] pointer
Device handle returned by gr spw_open.

Return |uint32_t. Link configuration read from 1/O registers

Bits Description

0 Link isenabled. Mask: LI NKOPTS_ENABLE/LI NKOPTS_ DI SABLE

1 Link is started. Mask: LI NKOPTS_START

2 Link isin autostart mode. Mask: L1 NKOPTS_ AUTOSTART

9 Interrupt generation on link error is enabled. Mask: LI NKOPTS_ERRI RQ

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 24

https://www.frontgrade.com/gaisler

rRONTGRADE

Table 6.9. gr spw_set _| i nkcf g function declaration

Gaisler

Proto |int grspw set linkcfg(void *d, uint32_t cfqQ)

About | Set link configuration

The function sets the link configuration using the with the LI NKOPTS_* defines.

Param |d [IN] pointer
Device handlereturned by gr spw_open.

Param |cf g [IN] uint32_t
Link configuration to set from 1/O registers

Bits Description

0 Link enable. Mask: LI NKOPTS_ENABLE/LI NKOPTS_DI SABLE

1 Link started. Mask: LI NKOPTS_START

2 Link in autostart mode. Mask: LI NKOPTS_AUTOSTART

9 Enableinterrupt generation on link error. Mask: LI NKOPTS_ERRI RQ

Return |int. The function always returns DRV_OK.

Table 6.10. gr spw_get _cl kdi v function declaration

Proto |uint32_t grspw get cl kdiv(void *d)

About |Get clock divisor

Start clock and run clock can be masked individually by using GRSPW CLKDI V_START and
GRSPW CLKDI V_RUN. Thereferred defines are available in thefilei ncl ude/ r egs/ gr -
spwregs. h.

The function reads and returns the clock divisor register, masked with GRSPW CLKDI V_MASK.

Param |d [IN] pointer
Device handle returned by gr spw_open.

Return |uint32_t. Clock divisor read from /O registers
Bits Description

15..8 |Clock divisor used during startup

7.0 Clock divisor used in RUN state

Table 6.11. gr spw_set _cl kdi v function declaration

Proto |int grspw set clkdiv(void *d, uint32_t cfg)

About |Set clock divisor

i ncl ude/ regs/ gr spw-regs. h.

The function sets the clock divisor register with value cf g masked with GRSPW CLKDI V_MASK in

Param |d [IN] pointer
Device handle returned by gr spw_open.

Param |cl kdi v [IN] uint32_t
Clock devisor valueto write to 1/0 registers.

Bits Description

15..8 |Clock divisor used during startup

7.0 Clock divisor used in RUN state

Return |int. The function always returns DRV_OK.

Table6.12. gr spw_| i nk_st at e function declaration

‘Proto ‘spw_l ink state t grspw link state(void *d)

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 25

https://www.frontgrade.com/gaisler

FRONTGRADE
About | Get current SpaceWire link state.
Param |d [IN] pointer
Deviceidentifier returned by gr spw_open.

Return |enum spw_link_state t. SpaceWire link state according to SpaceWire standard FSM state ma-
chine numbering. The possible return values are listed below. The values are defined by enum
spw_| i nk_state_t andshal be prefixed with SPW LS .

Value Description.

ERRRST Error reset.

ERRWAIT Error Wait state.

READY Error Wait state.

CONNECTING Connecting state.

STARTED Stated state.

RUN Run state - link and DMA isfully operational.

Table 6.13. gr spw_get _st at us function declaration

Proto |uint32_t grspw get_status(void *d)
About |Get status register value

Param |d [IN] pointer

Device handle returned by gr spw_open.

Return |uint32_t.

Current value of the GRSPW Status Register.

Register definitions for the GRSPW Status Register are available in the filei ncl ude/ regs/ gr -
spw r egs. h. Therelevant defines are prefixed with GRSPW STS .

Table 6.14. gr spw_cl ear _st at us function declaration

Proto |void grspw clear_status(void *d, uint32_t status)

About |Clear bitsin the status register

Param |d [IN] pointer

Device handle returned by gr spw_open.

Param |st at us [IN] uint32_t

Mask of bitsto clear in the GRSPW Status Register.

Register definitions for the GRSPW Status Register are availablein thefilei ncl ude/ r egs/ gr -
spw r egs. h. Therelevant defines are prefixed with GRSPW STS .

Return |None.

6.3.4. Node address configuration

This part for the device API control s the node address configuration of the RMAP target and DMA channels. The
node address configuration functionality is described in Section 6.2.7. The data structures and functionsinvolved
in controlling the node address configuration are listed below.

struct grspw_addr_config {

/* lIgnore address field and put all received packets to first
* DMA channel .
*/

int8_t prom scuous;

/* Default Node Address and Mask */

uint8_t def_addr;

uint8_t def_mask;

/* DWVA Channel custom Node Address and Mask */
struct {

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 26

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

int8_t node_en; /* Enabl e Separate Addr */
uint8_t node_addr; /* Node address */

ui nt8_t node_nask; /* Node address mask */

} dnme_nacfg[4];

Table 6.15. grspw_addr_config data structure declaration

promiscu- |Enable (1) or disable (0) promiscous mode. The GRSPW will ignore the address field and put all
ous received packetsto first DMA channel. See hardware manual for. Thisfield is also used to by the
driver indicate if the settings should be written and read, or only read. See function description.

def _addr GRSPW default node address.
def_ mask | GRSPW default node address mask.

dma _nacfg |DMA channel node address array configuration, see below field description. DMA channel N is
described by dma_nacf g[N] .

Field Description
node_en Enable (1) or disable (1) separate node address for DMA channel N (determined by
array index).

node_addr |Node addressfor DMA channel N (determined by array index).
node_mask |Node address mask for DMA channel N (determined by array index).

Table 6.16. gr spw_addr _ct r| function declaration

Proto |void grspw addr_ctrl(void *d, const struct grspw addr_config *cfqQ)
About | Set node address configuration

The GRSPW deviceis either configured to have one single node address or arange of address-

es by masking. The cf g input memory layout is described by the grspw_addr_config data struc-
turein Table 6.15. When using multiple DMA channels one must assign each DMA channel a
unique node address or a unique range by masking. Each DMA channel is represented by the input
dma_nacfg[N .

Param |d [IN] pointer
Device handle returned by grspw_open.

Param |cf g [IN] pointer
Address configuration to set.

Return |None.

6.3.5. Time-control codes

SpaceWire Time Code handling is controlled and configured using the device API functions described below. The
Time Code functionality is described in Section 6.2.4.

Table 6.17. gr spw_get _t ccf g function declaration

Proto |uint32_ t grspw get tccfg(void *d)

About | Get time-code configuration

The function reads and returns the time-code configration from GRSPW control register.
Param |d [IN] pointer
Device handle returned by gr spw_open.

Return |uint32_t. Time-code configuration read from 1/O registers. The return value can be evaluated against
the following masks:

Mask Description
TCOPTS EN_RX Enable time-code receptions
TCOPTS EN_TX Enable time-code transmissions
ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 27

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

] ‘TCOF’TS_EN_RXIRQ ‘Generate interrupt when a valid time-code is received.]

Table 6.18. gr spw_set _t ccf g function declaration

Proto |void grspw set tccfg(void *d, uint32_t cfg)

About | Set time-code configuration

The function sets the time-code configuration in GRSPW control register.

Param |d [IN] pointer

Device handle returned by gr spw_open.

Param |cf g [IN] uint32_t

Time-code configuration to writein /O registers. The following masks can be used at configuration:

Mask Description

TCOPTS EN_RX Enable time-code receptions

TCOPTS EN_TX Enable time-code transmissions

TCOPTS EN_RXIRQ |Generateinterrupt when avalid time-code is received.

Return |None.

Table 6.19. gr spw_get _t ¢ function declaration

Proto |uint32_t grspw get _tc(void *d)

About | Get time register value

The function reads and returns the GRSPW time register value.
Param |d [IN] pointer

Device handle returned by gr spw_open.

Return |uint32_t. Time register read from 1/O registers. The return value can be evauated against the follow-

ing masks:

Mask Description

TCTRL_MASK Time control flags of time register
TIMECNT_MASK Time counter of time register

6.3.6. Port Control

The SpaceWire port selection configuration, hardware support and current hardware status can be accessed using
the device API functions described below. The SpaceWire port support functionality is described in Section 6.2.3.

In cases where only one SpaceWire port isimplemented this part of the API can safely be ignored. The functions
till deliver consistent information and error code failureswhen forcing Port1, however provides no real function-
ality.

Table 6.20. gr spw_port _ctr| function declaration

Proto |int grspw port_ctrl(void *d, int *port)

About | Always read and optionally set port control settings of GRSPW device. The configuration determines
how the hardware selects which SpaceWire port that is used. Thisis an optional feature in hardware to
support one or two SpaceWire ports. An error isreturned if operation not supported by hardware.

Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.
Param |port [IQ] pointer to bit-mask

The port configuration isfirst written if por t does not point to -1. The port configuration is always
read from the 1/O registers and stored in the por t address.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 28

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Value |Description

-1 The current port configuration is read and stored into the por t address.
0 Force to use PortO.
1 Force to use Port1.

>1 Hardware auto select between PortO or Port1.

Return |Vaue. Description

0 Request successful.

-1 Request failed. Portl is not implemented in hardware.

Table 6.21. gr spw_port _count function declaration

Proto |int grspw port_count(void *d)

About |Reads and returns number of ports that hardware supports.
Param |d [IN] pointer
Device identifier. Returned from gr spw_open.

Return |int. Number of portsimplemented in hardware.
Vaue |Description

1 One SpaceWire port isimplemented in hardware. In thiscasegr spw_port _ctr!| function
has no effect and gr spw_port _act i ve alwaysreturnsO.

2 Two SpaceWire ports are implemented in hardware.

Table 6.22. gr spw_port _act i ve function declaration

Proto |int grspw port_active(void *d)

About | Reads and returns the currently actively used SpaceWire port.
Param |d [IN] pointer

Deviceidentifier. Returned from gr spw_open.

Return |int. Currently active SpaceWire port
Vaue |Description

0 SpaceWire port0 is active.

1 SpaceWire portl is active.

6.3.7. RMAP Control

The device API described below is used to configure the hardware supported RMAP target. The RMAP support
is described in Section 6.2.5.

Availability of RMAP support can be determined by using the function gr spw_hw_support .

When RMAP CRC isimplemented in hardware it can be used to generate and append a CRC on a per packet
basis. It is controlled by the DMA packet flags. Header and data CRC can be generated individually. See
Table 6.32 for more information.

Table 6.23. gr spw_rmap_set _ctrl function declaration

Proto |int grspw rmap_set _ctrl(void *d, uint32_t options)
About |Set RMAP configuration

Param |d [IN] pointer

Device handle returned by gr spw_open.

Param |opti ons [IN] uint32_t

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 29

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

RMAP control options to set in 1/0 registers. The following bit masks, prefixed with RVAPOPTS _
shall be used.

Bit Description
EN_RMAP |Enable (1) or Disable (0) RMAP target handling in hardware.

EN_BUF Enable (0) or Disable (1) RMAP buffer. Disabling ensures that all RMAP requests are
processed in the order they arrive.

Return |int. The function always returns DRV_OK.

Table 6.24. gr spw_r nap_set _dest key function declaration

Proto |int grspw rmap_set destkey(void *d, uint32_ t destkey)
About | Set RMAP destination key

Param |d [IN] pointer

Device handle returned by gr spw_open.

Param |dest key [IN] uint32_t

Destination key to set. The value shall be AND:ed with the define GRSPW DK _DESTKEY available
inthefilei ncl ude/ r egs/ gr spw-r egs. h.

Return |int. The function always returns DRV_OK.

6.3.8. Interrupt handling

No interrupt service routineisinstaled by the GRSPW driver. The user can install and uninstall an ISR by using
the Operating System Abstraction Layer functionsosal _i sr_regi st er andosal _i sr_unr egi ster.At
least one GRSPW interrupt source must be enabled in the driver for interrupts to be generated. Possible interrupt
sources are time-code tick-out, link-error, and DMA interrupts.

The functions gr spw_dma_t x_count and gr spw_dnma_r x_count can be used from interrupt context to
determine how many TX/RX packets are (at least) available to the user. gr spw_get st at us can be used to
determine whether anew time count value (Tick Out) is available. Section 6.6 lists the API functions allowed to
be called from ISR context.

6.4. DMA interface

This section covers how the driver can be interfaced to an application to send and transmit SpaceWire packets
using the GRSPW hardware.

GRSPW2 and GRSPW2_DMA devices supports more than one DMA channel. The device channel zero isalways
present.

6.4.1. Opening and closing DMA channels

The first step before any SpaceWire packets can be transferred is to open a DMA channdl to be used for trans-
mission. As described in the device API Section 6.3.1 the GRSPW device the DMA channel belongs to must be
opened and passed onto the DMA channel open routines.

The number of DMA channels of a GRSPW device can obtained by calling gr spw_hw_support .

An opened DMA channel can not be reopened unless the channel is closed first. When opening a channel the
channel is marked opened by the driver. This procedure is thread-safe by protecting from other threads by using
the operating system abstraction layer. Protection is used by all GRSPW devices on device opening, closing and
DMA channel opening and closing.

During opening of a GRSPW DMA channel the following steps are taken:
« DMA channel 1/O registers are initialized to a state where most are zero. The channel state is set to stopped.
» Resources used for the DMA channel implementation itself are allocated and initialized.
* The channel is marked opened to protect the caller from other users of the DMA channel.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 30

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Below is a partial example of how the first GRSPW device's first DMA channel is opened, link is started and a
packet can be received.

int spw_receive_one_packet (voi d)

{

voi d *devi ce;

void *dma0;

int count;

uint32_t |inkcfg, clkdiv;
spw_link_state_t state;
struct grspw_list Ist;

devi ce = grspw_open(0);
if (!device)
return -1; /* Failure */

/* Start Link */

linkcfg = LI NKOPTS_ENABLE | LI NKOPTS_START; /* Start Link */
grspw_set _Il i nkcf g(device, |inkcfg);

clkdiv = (9 << 8) | 9; /* Cock Dvisor factor of 10 */
grspw_set _cl kdi v(devi ce, clkdiv);

/* wait until link is in run-state */

do {

state = grspw_| i nk_state(device);
} while (state !'= SPWLS RUN);

/* Open DVA channel */

dma0 =

gr spw_dma_open(devi ce, 0);

if (!dna0) {
grspw_cl ose(devi ce);
return -2;

}

/* Initialize and activate DVA */

if (DRV.OK !'= grspw. dma_start(dma0)) {
grspw_dma_cl ose(dma0) ;
grspw_cl ose(devi ce);
return -3;

}

I* ...

*/

/* Prepare driver with RX buffers */
grspw_dma_r x_prepare(dma0, 1, &preinited_rx_unused_buf_list0);

/* Start sending a nunber of SpaceWre packets */
grspw_dme_t x_send(dma0O, 1, &preinited_tx_send_buf_list);

/* Receive at |east one packet */

do {

/* Try to receive as nmany packets as possible */

count

= grspw_dma_rx_recv(dma0, & st);

} while (0 == count);

if (-1

== count) {

printf("GRSPW. DMAO: Receive error\n");
} else {
printf("GRSPW. DMAO: Received %l packets\n", count);

}

I* ...

*/

grspw_dma_cl ose(dma0) ;
grspw_cl ose(devi ce);
return 0; /* success */

}

Table 6.25. gr spw_dna_open function declaration

Proto |void *grspw _dma_open(void *d, int chan_no)

About |OpensaDMA channel of a previously opened GRSPW device. The GRSPW deviceisidentified by
its device handle d and the DMA channel isidentified by index chan_no.
The function alocates buffers as necessary using dynamic memory allocation (mal | oc() .
The returned valueis used as input argument to al functions operating on the DMA channel.

Param |d [IN] pointer
Device handle returned by gr spw_open.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 31

https://www.frontgrade.com/gaisler

FRONTGRADE

Param [chan_no [IN] Integer

DMA channel identification number. DMA channels areindexed by 0, 1, 2 or 3. Other input values
cause NULL to be returned. The index must be equal or greater than zero.

Return |Pointer. Status and driver's internal device identification.
Value Description

NULL Indicates failure to DMA channel. Failsif DMA channel does not exists, DMA channel a-
ready has been opened or that DMA channel resource allocation or initialization failes.

Pointer | Pointer to internal driver structure. Should not be dereferenced by user. Input to all DMA
channel API functions, identifies which DMA channel.

Notes |May block until other GRSPW device operations compl ete.

Table 6.26. gr spw_dna_cl ose function declaration

Proto |int grspw dna_cl ose(void *c)

About |Closesapreviously opened DMA channel. The specificed DMA channel is stopped and closed. This
will result in the same functionality ascalling gr spw_dna_st op to stop on-going DMA transfers
and then free DMA channel resources.

Param |c [IN] pointer
DMA channel handle returned by gr spw_dma_open.
Return |int. Return code as indicated below.

Value Description
DRV_OK Success.
DRV_NOTOPEN DMA channel ¢ was not open.

6.4.1.1. Static buffer allocation

The function gr spw_dna_open uses dynamic memory for allocating DMA buffers. An alternative is to use
gr spw_dna_open_user buf , which allowsthe user to provide the buffersinstead. Note that the corresponding
function for closing the DMA channel isgr spw_dna_cl ose_user buf inthiscase.

Table 6.27. gr spw_dnma_open_user buf function declaration

Proto |void *grspw _dma_open_userbuf(void *d, int chan_no, struct grspw.ring
*rx_ring, struct grspwring *tx ring, struct grspw rxbd *rx_bds,
struct grspw_txbd *tx_bds)

About |OpensaDMA channel of a previously opened GRSPW device. The GRSPW deviceisidentified by
its device handle d and the DMA channel isidentified by index chan_no.

The function requires the caller to provide buffersfor thedriver touse (r x_ri ngtx_ring
r x_bds t x_bds). These memory areas shall not be referenced by the user aslong asthe
DMA channel is opened. The areas can be reused when the channel has been closed with
grspw_dma_cl ose_user buf.

Thereturned value is used as input argument to all functions operating on the DMA channel.
Param |d [IN] pointer
Device handle returned by gr spw_open.

Param |chan_no [IN] Integer

DMA channel identification number. DMA channels are indexed by 0, 1, 2 or 3. Other input values
cause NULL to be returned. The index must be equal or greater than zero.

Param |r x_ri ng [IN] Pointer

RX buffer ring area. Size shall be GRSPW RXBD_NR * sizeof (struct grspw_ring),
aligned to 32-bit word.

Param |t x_ri ng [IN] Pointer

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 32

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

TX buffer ring area. Size shall be GRSPW TXBD_NR * si zeof (struct grspw_ring),
aligned to 32-bit word.

Param |r x_bds [IN] Pointer

RX DMA buffer descriptor table area. Must be 1 KiB, and aligned to 1 KiB address boundary.
Param |t x_bds [IN] Pointer

TX DMA buffer descriptor table area. Must be 1 KiB, and aligned to 1 KiB address boundary.
Return |Pointer. Status and driver'sinterna device identification.

Value Description

NULL Indicates failure to DMA channel. Failsif DMA channel does not exists, DMA channel a-
ready has been opened or that DMA channel resource allocation or initialization failes.

Pointer | Pointer to internal driver structure. Should not be dereferenced by user. Input to all DMA
channel API functions, identifies which DMA channel.

Notes |May block until other GRSPW device operations compl ete.

Table 6.28. gr spw_dna_cl ose_user buf function declaration

Proto |int grspw dma_cl ose_userbuf(void *c)

About |Closes apreviously opened DMA channel. The specificed DMA channel is stopped and closed. This
will result in the same functionality as calling gr spw_dma_st op to stop on-going DMA transfers
and then free DMA channel resources.

Param |c [IN] pointer
DMA channel handle returned by gr spw_dre_open_user buf .
Return |int. Return code as indicated below.

Value Description
DRV_OK Success.
DRV_NOTOPEN DMA channel ¢ was not open.

6.4.2. Starting and stopping DMA operation

The start and stop operational modes are described in Section 6.2.11. The functions described below are used to
change the operational mode of aDMA channels. A summary of which DMA API functions are affected arelisted
in Table 6.29, see function description for details on limitations.

Table 6.29. functions available in the two operational modes

Function Stopped Started

gr spw_dnma_open N/A N/A

grspw_dma_cl ose Yes Yes

grspw _dma_start Yes No

gr spw_dnma_st op No Yes

grspw _dma_rx_recv Yes, with limitations, see |Yes
Section 6.4.6

grspw _dnma_r x_prepare Yes, with limitations, see |Yes
Section 6.4.6

grspw_dma_rx_fl ush Yes No

grspw_dma_t x_send Yes, with limitations, see |Yes
Section 6.4.5

grspw dnma_tx_reclaim Yes, with limitations, see |Yes
Section 6.4.5

grspw dnma_tx_flush Yes No

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 33

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Function Stopped Started
grspw_dma_config Yes No
grspw _dma_config read Yes Yes
grspw dma_stats_read Yes Yes
grspw_dma_stats_clr Yes Yes

Table 6.30. gr spw_dna_st art function declaration

Proto |int grspw dma_start(void *c)

About |Starts DMA operational mode for the DMA channel indicated by the argument. After thisstepitis
possible to send and receive SpaceWire packets. If the DMA channel is already in started mode, no
action will be taken.

The start routine clears and initializes the following:

* DMA descriptor rings.

 DMA queues.

o Statistic counters.

* 1/O registersto match DMA configuration previously set with gr spw_dma_confi g

* Interrupt

* DMA Status

 Enablesthe receiver
Even though the receiver is enabled the user is required to prepare empty receive buffers after this
point, seegr spw_dma_r x_pr epar e. The transmitter is enabled when the user provides send
buffersthat ends up in the TX SCHED queue, seegr spw_dma_t x_send.

Param |d [IN] pointer
Device handle returned by gr spw_open.
Return |int. DRV_STARTEDIf channel was aready started, else DRV_CK.

Table 6.31. gr spw_dmna_st op function declaration

Proto |void grspw dna_stop(void *c)

About | Stops DMA operational mode for the DMA channel indicated by the argument. The transmitter will
abort ongoing transfers and the receiver disabled. Packets in the RX SCHED queue will remain in this
queue. The RXPKT_FLAG_RX packet flag is used to signal if the packet contains received data or
not. Similarly, the TXPKT_FLAG_TX packet flag marksif the packet was actually transferred or not.

Param |d [IN] pointer
Device identifier returned by gr spw_open.

Return |None.

Notes |The user may want to flush the RX/TX SCHED queues with functionsgr spw_dma_r x_f | ush and
grspw_dma_t x_f | ush after stopping to get unprocessed packets back.

6.4.3. Packet buffer description

The GRSPW packet driver describes packets for both RX and TX using acommon memory layout defined by the
data structure grspw_pkt. It is described in detail below.

There are differencesin which fields and bits are used between RX and TX operations. Thebitsusedinthef | ags
field are defined different. When sending packets the user can optionally provide two different buffers, the header
and data. The header can maximally be 256Bytes due to hardware limitations and the data supports 24-bit length
fields. For RX operations hdr and hl en are not used. Instead all datareceived is put into the data area.

On some systems, the data buffer pointer must be 32-bit word aligned for reception.

struct grspw_pkt {

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 34

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

struct grspw_pkt *next; /* Next packet in list. NULL if |ast packet */

uintptr_t pkt_id; /* User assigned ID (not touched by driver) */

voi d *dat a; /* 4-byte or byte aligned depends on HW*/

void *hdr; /* 4-byte or byte aligned depends on HW (only TX) */
uint32_t dlen; /* Length of Data Buffer */

uint16_t fl ags; /* RX/TX Options and status */

uint8_t hlen; /* Length of Header Buffer (only TX) */

h

Table 6.32. grspw_pkt data structure declaration

next | The packet structure can be part of alinked list. Thisfield is used to point out the next packet in the
list. Set to NULL if this packet isthelast in the list or asingle packet.

pkt_id |User assigned ID. Thisfield is never touched by the driver. It can be used to store a pointer or other
datato help implement the user buffer handling.

data Data Buffer Address. DMA will read from this. The address must be 4-byte or byte aligned depending
on hardware.

hdr Header Buffer Address. DMA will read hl en bytes from this. The address must be 4-byte or byte
aligned depending on hardware. Thisfield is not used by RX operation.

dien Data payload lenght. The number of bytes hardware DMA read or written from/to the address indicat-
ed by the data pointer. On RX thisis the complete packet data received.

flags |RX/TX transmission options and flags indicating resulting status. The bits described below isto be
prefixed with TXPKT_FLAG_or RXPKT_FLAG_ in order to match the TX or RX options defini-
tionas declared by the driver's header file.

Bits TX Description (prefixed TXPKT_FLAG)

NOCRC_MASK |Indicatesto driver how many bytes shuld not be part of the header CRC calcula-
tion. 0 to 15 bytes can be omitted. Use NOCRC_LENN to select a specific lenght.

IE Enable (1) or Disable (0) IRQ generation on packet transmission completed.

HCRC Enable (1) or disable (0) Header CRC generation (if CRC isavailable in hard-
ware). Header CRC will be appended (one byte at end of header).

DCRC Enable (1) or disable (0) Data CRC generation (if CRC is available in hardware).
Data CRC will be appended (one byte at end of packet).

TX Is set by the driver to indicate that the packet was transmitted. This does no signa

a successful transmission, but that transmission was attempted, the LINKERR bit
needs to be checked for error indication.

LINKERR Set if alink error was exibited during transmission of this packet.

Bits RX Description (prefixed RXPKT_FLAG)

IE Enable (1) or Disable (0) IRQ generation on packet reception completed.
TRUNK Set if packet was truncated.

DCRC Set if data CRC error detected (only valid if RMAP CRC is enabled).
HCRC Set if header CRC error detected (only valid if RMAP CRC is enabled).
EEOP Set if an End-of-Packet error occured during reception of this packet.
RX Marksif packet was recevied or not.

hlen Header length. The number of bytes hardware will transfer using DMA from the address indicated by
the hdr pointer. Thisfield is not used by RX operation.

6.4.4. Packet buffer lists

The DMA transfer operations take packet lists as input parameters. A packet list is alinked list with elements of
type struct grspw_pkt. The public driver interface header file includes functions for manipulating lists, prefixed
withgrspw |ist_*().

Thefollowing list is a summary of some of the available list manipulation functions.
e grspw_list_clr initidlizesalist.
e grspw_list_is_enpty determinesif alistisempty.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 35

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

e grspw_|l i st_append appends apacket to the end of alist.
e grspw_|ist_append_li st appends packetsfrom onelist to the end of another list.

6.4.5. Sending packets

Packets are sent by adding packets to the TX SCHED queue where they will be assigned a DMA descriptor and
scheduled for transmission. After transmission has completed the packet buffers can be retrieved to view the
transmission status and to be able to reuse the packet buffers for new transfers. During the time the packet isin
the driver it must not be accessed by the user.

Transmission of SpaceWire packets are described in Section 6.2.1.
Inthe below example Figure 6.4 three SpaceWire packets are scheduled for transmission. Thecount should be set

tothree. The second packet is programmed to generate an interrupt when transmission finished, GRSPW hardware
will also generate a header CRC using the RMAP CRC agorithm resulting in a 16 bytes long SpaceWire packet.

pkts (input
pnext = NULL
head = &p(
il = &p2 flags= 0
taill = &p next = &pl » next = &p2 hlen = 0
flags= 0 flags = dlen = 4
hlen = 0 FLAG_IE | DATA2 PAYLOAD
FLAG_HCRC data = &d2 >
dlen=5 - — a|b|c|d
hlen = 7 hdr = NULL
oL dien = 8 DATA1 PAYLOAD
hdr = NULL data= &dl .
hdr = &hl \E‘Jb|C|d|e|f|9|h

HEADER1 (without CRQ)

DATAO PAYLOAD
a|b|c|d|e|f|g

a|b|c|d|e

Figure 6.4. TX packet description pkt s inputtogr spw t x_dma_send
The below tables describe the functions involved in initiating and completing transmissions.

Table 6.33. gr spw_dna_t x_send function declaration

Proto |int grspw dma_tx send(void *c, struct grspw.|ist *pkts)

About |Schedule list of packets for transmission at some point in future.

The GRSPW transmitter is enabled when packets are added to the TX SCHED queue. (US-
ER->SCHED)

The fastest solution in retrieving sent TX packets and sending new framesisto call:
1. grspw_dma tx_reclaim(opts=0)
2. grspw_dma tx_send(opts=1)

NOTE: the TXPKT_FLAG_TX flag must not be set in the packet structure.

Param |c [IN] pointer

DMA channel handle returned by gr spw_dna_open.

Param |pkt s [IN] pointer

A linked list of initialized SpaceWire packets. The grspw_list structure must be initialized so that
head pointsto thefirst packet andt ai | pointsto thelast.

The layout and content of the packet is defined by the grspw_pkt data structureis described in Ta
ble 6.32. Note that TXPKT_FLAG_TX of thef | ags field must not be set.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 36

https://www.frontgrade.com/gaisler

FRONTGRADE
Return |int. See return codes below
Vaue |Description
-1 Error: DMA channel is not in started mode.
>=0 Successfully added pktsto TX SCHED list.
Notes | Thisfunction performs no operation when the DMA channel is stopped.

Table 6.34. gr spw_dna_t x_r ecl ai mfunction declaration

Proto |int grspw dma_tx_reclaimvoid *c, struct grspw_|ist *pkts)

About |Reclaim TX packet buffers that has previously been scheduled for transmission with
grspw_dma_t x_send.

The packetsin the SCHED queue which have been transmitted are moved to the pkt s packet list.
The user pkt s list isnot cleared by the function. When the move has been completed the packet can
safely be reused again by the user. The packet structures have been updated with transmission status
to indicate transfer failures of individual packets.

Thetypical solution for retrieving sent TX packets and sending new framesisto call:
1. grspw_dma tx_reclaim()
2. grspw_dma tx_send()

NOTE: the TXPKT_FLAG_TX flag indicates if the packet was transmitted.

Param |c [IN] pointer

DMA channel handle returned by gr spw_dna_open.

Param |pkt s [OUT] pointer

Sent TX packets will be taken from the SCHED queue and added to the pkt s queue. The user queue
pkt s isnot cleared.

The layout and content of the packet is defined by the grspw_pkt data structureis described in Ta-
ble 6.32. Note that TXPKT_FLAG_TX of thef | ags field indicatesif the packet was sent of not.
In case of DMA being stopped one can use this flag to seeif the packet was transmitted or not. The
TXPKT_FLAG_LINKERR indicatesif alink error occurred during transmission of the packet, re-
gardlessthe TXPKT_FLAG_TX is set to indicate packet transmission attempt.

Return |int. See return codes below

Value |Description

-1 Error: DMA channel is not in started mode.

0 No packet reclaimed (SCHED list contains no sent packets).
>0 Number of packets successfully reclaimed to user list.

Notes |This function can operate in stopped mode. This is useful when alink goes down and the DMA activi-
ty is stopped by user or by driver automatically.

6.4.6. Receiving packets

Packets are received by adding empty/free packets to the RX SCHED queue where they will be assigned aDMA
descriptor and scheduled for reception. After a packet is received into the buffer(s) the packet buffer(s) can be
retrieved to view the reception status and to be able to reuse the packet buffers for new transfers. During the time
the packet isin the driver it must not be accessed by the user.

Reception of SpaceWire packets are described in Section 6.2.1.

In the Figure 6.5 example three SpaceWire packets are received. The count parameters is set to three by the
driver to reflect the number of packets. The first packet exhibited an early end-of-packet during reception which
also resulted in header and data CRC error. All header pointers and header lengths have been set to zero by the
user since they are no used, however the values in those fields does not affect the RX operations. The RX flag is
set to indicate that DMA transfer was performed.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 37

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

pkts (input
head = &p(;/ pext = NULL
T flags =
tail = &p2 next = &pl »next = &p2 FLAG_RX
flags = flags = hlen =0
FLAG_RX | FLAG_RX dlen = 4
FLAG_EEOP | hlen = 0 DATA2 PAYLOAD
FLAG_DCRC | data= &d2
FLAG_HCRC dlen = 8 T NULL a|bfc]d
hlen =0 data = &dl\
dlen= 5 ndr = NULL DATA1 PAYLOAD
data = &d0 a|b|c|d|e|f|g|h
hdr = NULL DATAO PAYLOAD

a|b|c|d|e

Figure 6.5. RX packet output fromgr spw_dma_r x_recv
The below tables describe the functions involved in initiating and completing transmissions.

Table 6.35. gr spw_dna_r x_pr epar e function declaration

Proto
About

int grspw dma_rx_prepare(void *c, struct grspw_|list *pkts)

Add RX packet buffers for future reception.

The received packets can later be read out with gr spw_dma_r x_r ecv. The packetsin pkt s list
are put to the SCHED queue of the driver (USER->SCHED).

Thetypical solution for retreiving received RX packets and preparing new packet buffers for future
receive, isto call:

1. grspw_dma rx_recv(&recvlist)

2. grspw_dma rx_prepare(& freelist)
NOTE: the RXPKT_FLAG_RX flag must not be set in the packet structure.
¢ [IN] pointer

Param
DMA channel handle returned by gr spw_dna_open.

Param |pkt s [IN] pointer

A linked list of initialized SpaceWire packets. The grspw_list structure must be initialized so that
head pointsto thefirst packet andt ai | pointsto the last.

The layout and content of the packet is defined by the grspw_pkt data structure described in Ta
ble 6.32. Note that RXPKT_FLAG_RX of thef | ags field must not be set.

int. See return codes below

Value
-1 Error: DMA channel is not in started mode.

0 No packets added (SCHED list isfull).

>0 Number of packets successfully added to RX SCHED queue.
This function performs no operation when the DMA channel is stopped.

Return
Description

Notes

Table 6.36. gr spw_dma_r x_r ecv function declaration

Proto
About

int grspw dma_rx recv(void *c, struct grspw.|ist *pkts)

Get received RX packet buffers which have previously been scheduled for reception with
grspw_dma_r x_pr epar e.

The packets in the RX SCHED queue which have been received are moved to the pkt s packet list
(SCHED->USER). When the move has been compl eted the packet(s) can safely be reused again by
the user. The packet structures have been updated with reception status to indicate transfer failures of

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 38

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

individual packets and received packet length. The header pointer and length fields are not touched by
the driver, all data ends up in the data area.

NOTE: the RXPKT_FLAG_RX flag indicatesif a packet was received, thusif the datafield contains
new valid data or not.

Param |c [IN] pointer
DMA channel handle returned by gr spw_dne_open.
Param |pkt s [OUT] pointer

Received RX packets will be taken from the SCHED queue and added to the pkt s queue. The user
queue pkt s isnot cleared.

The layout and content of the packet is defined by the grspw_pkt data structure described in Ta-

ble 6.32. Note that RXPKT_FLAG_RX of thef | ags field indicatesif the packet was received or
not. In case of DMA being stopped one can use thisflag to see if the packet was received or not. The
TRUNK, DCRC, HCRC and EEOP flags indicates if an error occured during transmission of the
packet, regardiess the RXPKT_FLAG_RX is set to indicate packet reception attempt.

Return |int. See return codes below

Value |Description

-1 Error: DMA channel is not in started mode.

0 No packet received (SCHED list contains no received packets).
>0 Number of received packets added to user list.

Notes |Thisfunction can be called when the DMA channel isin stopped mode. Thisis useful when alink
goes down and the DMA activity is stopped by user or by driver automatically.

6.4.7. Transmission queue status

The current number of packets processed by hardware but not yet reclaimed/received by the driver can be queried
using the functions described below. These numbers give a hint on how many packets will be reclaimed by a call
togrspw_dma_t x_r ecl ai mor received by gr spw_dnma_r x_r ecv.

Table 6.37. gr spw_dna_t x_count function declaration

Proto |int grspw dma_tx_count(void *c)

About | Get number of packets transmitted by hardware but not yet reclaimed by the driver.

Thisis determined by looking at the TX descriptor pointer register. The number represents how many
of the send packets that actually have been transmitted by hardware but not reclaimed by the driver
yet.

Param |c [IN] pointer

DMA channel handle returned by gr spw_dma_open.

Return |int. The number of packets transmitted by hardware but not yet reclaimed by the driver.

Notes |Thisfunction can be called from interrupt context.

Table 6.38. gr spw_dna_r x_count function declaration

Proto |int grspw dma_rx_count(void *c)

About | Get number of packets received by hardware but not yet retrieved by the driver.

Thisis determined by looking at the RX descriptor pointer register. The number represents how many
of the prepared packets that actually have been received by hardware but not handled by the driver
yet.

Param |c [IN] pointer

DMA channel handle returned by gr spw_dma_open.

Return |int. The number of packets received by hardware but not yet retrieved by the driver.

Notes |Thisfunction can be called from interrupt context.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 39

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

6.4.8. Queue flushing

When a DMA channd is stopped after being in started state, it may contain scheduled unsent TX pack-
ets and scheduled unreceived RX packets. These packets can be given back to the user with the functions
grspw dna_tx _flushandgrspw dma_rx_fl ush.

Table 6.39. gr spw_dma_t x_f | ush function declaration

Proto |int grspw dma_tx_flush(void *c, struct grspw_|ist *pkts)
About |Flush TX packets from driver

Likegr spw_dnma_t x_r ecl ai m but also move scheduled unsent packets to user list. This func-
tion can only be called when DMA channel isin stopped mode. Return value is the sum of sent pack-
ets and unsent packets. The TXPKT _FLAG TX packet flag indicates, for each packet, if it was sent or
not.

Param |c [IN] pointer
DMA channel handle returned by gr spw_dma_open.
Param |pkt s [OUT] pointer

Thelist will be initialized to contain the SpaceWire packets moved from the SCHED queue to the
packet list. The grspw_list structure will be initialized so that head points to the first packet, t ai |
pointsto the last and the last packet (tail) next pointer isNULL.

Return | Number of packets. See return codes below

Vaue |Description
-1 Error: DMA channel isin started mode.
others | Number of sent and unsent packets added to user list.

Notes |Thisfunction can only be called in DMA channel stopped mode.

Table 6.40. gr spw_dna_r x_f | ush function declaration

Proto |int grspw dma_rx_flush(void *c, struct grspw_|list *pkts)
About |Flush RX packets from driver

Likegr spw_dma_r x_r ecv, but also move scheduled unreceived packets to user list. This function
can only be called when DMA channel isin stopped mode. Returns sum of recevied packets and unre-
ceived packets. The RXPKT _FLAG_RX packet flag indicatesif the packet was received or not.

Param |c [IN] pointer

DMA channel handle returned by gr spw_dna_open.
Param |pkt s [OUT] pointer

Thelist will be initialized to contain the SpaceWire packets moved from the SCHED queue to the
packet list. The grspw_list structure will be initialized so that head points to the first packet, t ai |
pointsto the last and the last packet (tail) next pointer isNULL.

Return |Number of packts. See return codes below

Vaue |Description

-1 Error: DMA channel isin started mode.

others | Number of received and unreceived packets added to user list.
Notes |Thisfunction can only be called in DMA channel stopped mode.

6.4.9. Statistics

The driver counts statistics at certain events. The driver's DMA channel counters can be read out using the DMA
API. Packet transmission statistics, packet transmission errors and packet queue statistics can be obtained.

struct grspw dne_stats {
/* Descriptor Statistics */

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 40

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

int tx_pkts; /* Nunber of Transmitted packets */

int tx_err_link; /* Nunber of Transmitted packets with Link Error*/
int rx_pkts; /* Nunber of Received packets */

int rx_err_trunk; /* Nunber of Received Truncated packets */

int rx_err_endpkt; /* Nunber of Received packets wi th bad ending */

h

Table 6.41. grspw_dma_stats data structure declaration

tx_pkts Number of transmitted packets with link errors.
tx_err_link Number of transmitted packets with link errors.
rx_pkts Number of received packets.

rx_err_trunk Number of received Truncated packets.
rx_err_endpkt Number of received packets with bad ending.

Table 6.42. gr spw_dna_st at s_r ead function declaration

Proto |void grspw dna_stats read(void *c, struct grspw dna_stats *sts)

About | Readsthe current driver statistics collected from earlier events by aDMA channel and DMA channel
usage. The statistics are stored to the address given by the second argument. The layout and content of
the statistics are defined by the grspw_dma_stats data structure is described in Table 6.41.

Note that the snapshot is taken without lock protection, as a consequence the statistics may not be syn-
chonized with each other. This could be caused if the function is interrupted by athe GRSPW inter-
rupt or other tasks performing driver operations on the same DMA channel.

Param |c [IN] pointer

DMA channel identifier. Returned from gr spw_dma_open.

Param |st s [OUT] pointer
A snapshot of the current driver statistics are copied to this user provided buffer.

The layout and content of the statistics are defined by the grspw_dma_stats data structure is described
in Table 6.41.

Return |None.

Table 6.43. gr spw_dma_st at s_cl r function declaration

Proto |void grspw dna_stats clr(void *c)

About |ResetsaDMA channel's statistic counters. The channel counters are set to zero.
Param |c [IN] pointer

DMA channel handle returned by gr spw_dna_open.

Return |None.

6.4.10. DMA channel configuration

Various aspects of DMA transfers can be configured using the functions described in this section. The configu-
ration affects:

* DMA transfer options, no-spill, strip address/PID.

* Receive max packet length.

struct grspw_dma_config {

int flags; /* DVA config flags, see DVAFLAG * options */
int rxmaxlen; /* RX Max Packet Length */

s

Table 6.44. grspw_dma_config data structure declaration

flags RX/TX DMA transmission options See below.
Bits Description (prefixed DMAFLAG)
ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 41

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

NO_SPILL Enable (1) or Disable (0) packet spilling, flow control.

STRIP_ADR |Enable (1) or Disable (0) stripping node address byte from DMA write
transfers (packet reception). See hardware support to determine if present in
hardware. See hardware documenation about DMA CTRL SA hit.

STRIP_PID Enable (1) or disable (0) stripping PID byte from DMA write transfers
(packet reception).(if CRC is available in hardware). See hardware sup-
port to determine if present in hardware. See hardware documenation about
DMA CTRL SP hit.

rxmaxlen Max packet reception length. Longer packets with will be truncated see
RXPKT_FLAG_TRUNK flagin packet structure.

If the function gr spw_dna_confi g is not called after the user has opened the DMA channel with
gr spw_dnma_open, then the configuration will have default values:

o Packet spilling is enabled (NO_SPI LL=0).

« Node address byte stripping is disabled (STRI P_ADR=0).

e PID byte stripping isdisabled (STRI P_PI D=0).

« Maximum packet reception length is 4096 bytes (r xmax| en=4096).

If the DMA channel is stopped the last configuration set with gr spw_dnma_conf i g is used the next time the
channel is started with gr spw_dna_st art .

Table 6.45. gr spw_dna_confi g function declaration

Proto |int grspw dma_config(void *c, struct grspw dma_config *cfq)

About | Set the DMA channel configuration options as described by the input arguments.

It is only possible the change the configuration on stopped DMA channels, otherwise an error codeis
returned.

The hardware registers are not written directly. The settings take effect when the DMA channel is
started calling gr spw_dnma_start.

Param |c [IN] pointer
DMA channel handle returned by gr spw_dma_open.

Param |cf g [IN] pointer

Address to where the driver will read the DMA channel configuration from. The configuration options
are described in Table 6.44.

Return |int. Return code as indicated bel ow.

Value Description

DRV_OK Success.

DRV_FAIL Failure due to invalid input arguments or DMA has already been start-
ed.

Table 6.46. gr spw_dnma_confi g_r ead function declaration

Proto |void grspw dna _config read(void *c, struct grspw dma_config *cfg)

About | Copiesthe DMA channel configuration to user defined memory area.

Param |c [IN] pointer

DMA channel handle returned by gr spw_dna_open.

Param |sts [OUT] pointer

The driver DMA channel configuration options are copied to this user provided buffer.

The layout and content of the statistics are defined by the grpsw_dma _config data structure is de-
scribed in Table 6.44.

Return |int. Return code as indicated below.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 42

https://www.frontgrade.com/gaisler

rRONTGRADE
Gaisler
Value Description
DRV_OK |Success.
DRV_FAIL |Failure due to invalid input argument.

6.4.11. DMA channel status

Status information unique to a DMA channel is exported by the drivers DMA channel status interface. It reads
and manipul ates status bits available in the GRSPW DMA control register.

The following statusinformation is available:
» Buserrors caused by the receive DMA channel (GRSPW DVA_STATUS_RA).
« Buserrors caused by the transmit DMA channel (GRSPW DMA_STATUS _TA).
A packets has been received (GRSPW DVA_STATUS_PR).
A packets has been sent (GRSPW DVA_STATUS_PS).

Table 6.47. gr spw_dnma_get _st at us function declaration

Proto |uint32_t grspw dma_get status(void *c)
About |Get DMA channel status

The function reads and returns status from the GRSPW DMA control register. Status bitsin the regis-
ter are not cleared. Use function gr spw_dra_cl ear _st at us to clear the status bits.

Param |c [IN] pointer

DMA channel handle returned by gr spw_dra_open.
Return |uint32_t.

Mask of DMA channel status bits read from GRSPW DMA control register.

The return value shall be evaluated against the following bit masks:
Mask Description
GRSPW_DMA_STATUS RA |RX AHB Error
GRSPW_DMA_STATUS TA |TX AHB Error
GRSPW_DMA_STATUS PR |Packet received
GRSPW_DMA_STATUS PS |Packet sent

Table 6.48. gr spw_dnma_cl ear _st at us function declaration

Proto |void grspw dna _clear_status(void *c, uint32_t status)
About |Clear DMA channel status

The function clears the status bitsin GRSPW DMA control register corresponding to
the bits set in the st at us parameter. Current status can be retrieved with the function
grspw_dma_get _st at us.

Param |c [IN] pointer

DMA channel handle returned by gr spw_dna_open.

Param |st at us [IN] uint32_t

Mask of DMA channel status bitsto clear in GRSPW DMA control register.

The bit masks are the same as the masks for gr spw_dna_get st at us return value.
Return |None.

6.5. APl reference

This section lists all functions and data structures of the GRSPW driver API, and in which section(s) they are
described.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 43

https://www.frontgrade.com/gaisler

rRONTGRADE

6.5.1. Data structures

The data structures used together with the Device and/or DMA API are summarized in the table below.

Table 6.49. Data structures reference

Gaisler

Data structure name Section
struct grspw_pkt 6.4.3
struct grspw_addr_config 6.3.4
struct grspw_hw_sup 6.3.2
struct grspw_dma_stats 6.4.9
struct grspw_dma_config 6.4.10

6.5.2. Device functions

The GRSPW device API. The functions listed in the table below operates on the GRSPW common registers and

driver set up. Changes here typically affectsall DMA channels and link properties .

Table 6.50. Device function reference

Prototype Section
i nt grspw dev_count (voi d) 6.3.1
voi d *grspw_open(int dev_no) 6.3.1
int grspw close(void *d) 6.3.1
void grspw addr_ctrl (void *d, struct grspw addr_config *cfq) 6.3.4,
spw_link_state_t grspw_|ink_state(void *d) 6.3.3,
uint32_t grspw_get _linkcfg(void *d) 6.3.3,
int grspw set linkcfg(void *d, uint32_t cfq) 6.3.3,
uint32_t grspw get clkdiv(void *d) 6.3.3,
int grspw set_clkdiv(void *d, uint32_t clkdiv) 6.3.3,
uint32_t grspw get status(void *d) 6.3.3,
void grspw cl ear_status(void *d, uint32_t status) 6.3.3,
uint32_t grspw get tccfg(void *d) 6.3.5,
void grspw set _tccfg(void *d, uint32_t cfg) 6.3.5,
uint32_t grspw get_tc(void *d) 6.3.5,

6.5.3. DMA functions

The GRSPW DMA channel API. The functionslisted in the table below operates on one GRSPW DMA channel

and itsdriver set up. Thisinterfaceis used to send and receive SpaceWire packets.
GRSPW2 and GRSPW2_DMA devices supports more than one DMA channel.

Table 6.51. DMA channel function reference

Prototype Section
void *grspw _dma_open(void *d, int chan_no) 6.4.1,
6.3.1
voi d grspw _dnma_cl ose(void *c) 6.4.1,
6.3.1
voi d *grspw dnma_open_userbuf (void *d, int chan_no, struct 6.4.1,
grspw ring *rx_ring, struct grspwring *tx ring, struct grspw.rxbd |63.1
*rx_bds, struct grspw_ txbd *tx_bds)
ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 44

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Prototype Section
voi d grspw _dma_cl ose_userbuf (void *c) 6.4.1,
6.3.1
int grspw dna_start(void *c) 6.4.2,
voi d grspw dma_stop(void *c) 6.4.2,
int grspw. dnma_rx_recv(void *c, struct grspw_|ist *pkts) 6.4.6,
int grspw dme_rx_prepare(void *c, struct grspw_|list *pkts) 6.4.6,
int grspw dnma_rx flush(void *c, struct grspw |ist *pkts) 6.4.8,
int grspw dnma_tx send(void *c, struct grspw.|list *pkts) 6.4.5,
int grspw dna_tx_reclainmvoid *c, struct grspw_list *pkts) 6.4.5,
int grspw dma_tx_flush(void *c, struct grspw_ |ist *pkts) 6.4.8,
void grspw dnma_stats read(void *c, struct grspw dnma_stats *sts) 6.4.9
void grspw dnma_stats _clear(void *c) 6.4.9
int grspw._dnma_config(void *c, struct grspw dma_config *cfqg) 6.4.10
int grspw. dma_config_read(void *c, struct grspw dnma_config *cfqQ) 6.4.10
uint32_ t grspw dna_get status(void *c) 6.4.11
void grspw dma_cl ear _status(void *c, uint32_t status) 6.4.11

6.6. Restrictions

To processinterrupt events, the user I SR should typically wake up atask which performsthe driver API functions
necessary. The following GRSPW Packet driver functions are allowed to be called from an ISR:

e grspw_get_status

e grspw link_state

e grspw_dnma_rx_count

e grspw_dnma_t x_count

e grspw_dev_count

e grspw_cl ear_status

e grspw get clkdiv

e grspw get |inkcfg

e grspw_get _tc

e grspw get _tccfg

e grspw _dna_get status

e grspw_dme_cl ear _status

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 45

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

7. GRCAN CAN driver

7.1. Introduction

This section describes the driver used to control the GRLIB GRCAN and GRCANFD devices for CAN DMA
operation.

7.1.1. User Interface

This section covers how the driver can beinterfaced to an application to control both the GRCAN and GRCANFD
hardware.

Controlling the driver and device is done with functions provided by the driver prefixed with gr can_. GR-
CANFD specific functions are prefixed with gr canf d_. All driver functions take a device handle returned by
gr can_open asthefirst parameter. All supported commands and their data structures are defined in the CAN
driver's header filedr v/ gr can. h.

All driver functions are non-blocking.

7.1.2. Driver registration

This driver uses the driver registration mechanism described in Chapter 5.

Table 7.1. Driver registration functions

Registration method Function
Register one device grcan_register()
Register many devices grcan_init()

7.1.3. Examples
Examples are availableinthesr c/ | i bdr v/ exanpl es/ directory in the Zephyr distribution.
7.1.4. Known driver limitations

e The DMA buffers must be CPU accessible and within the same address space. No address trandlation is
performed by the driver.

7.2. Opening and closing device

A GRCAN device must first be opened before any operations can be performed using the driver. The number of
devices registered to the driver can be retrieved using gr can_dev_count . A particular device can be opened
using gr can_open and closed gr can_cl ose. The functions are described below.

An opened device can not be reopened unlessthe deviceisclosed first. When opening adevice the deviceis marked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal _I dst ub
from the OSAL. Protection is used by all GRCAN devices on opening and closing.

During opening of a GRCAN device the following steps are taken:
¢ GRCAN device l/O registers areinitialized, including masking all interrupts.
e Thecoreisdisabled (to allow configuration).
* Internal data structures are initialized.
» Thedeviceis marked opened to protect the caller from other users of the same device.

The example below printsthe number of GRCAN devicesto screen then opens and closesthefirst GRCAN device
present in the system.
int print_grcan_devices(void)

struct grcan_priv *device;
int count;

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 46

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

count = grcan_dev_count();
printf ("%l GRCAN device(s) present\n", count);

device = grcan_open(0);
if (!device) {

return -1; /* Failure */
}

if (grcan_canfd_capabl e(device)) {
printf("Device is CANFD capable!\n");
}

grcan_cl ose(device);

return 0; /* success */

}

Table 7.2. gr can_dev_count function declaration

Proto |int grcan_dev_count (voi d)
About | Retrieve number of GRCAN devices registered to the driver.
Return |int. Number of GRCAN devices registered in system, zero if none.

Table 7.3. gr can_open function declaration

Proto |struct grcan_priv *grcan_open(int dev_no)

About |OpensaGRCAN device. The GRCAN deviceisidentified by index. The returned value is used asin-
put argument to all functions operating on the device.

The function allocates DMA buffers as hecessary using dynamic memory alocation (mal | oc()).

Param |dev_no [IN] Integer

Deviceidentification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
by gr can_dev_count .

Return |Pointer. Status and driver'sinternal device identification.

NULL Indicates failure to open device. Failsif device semaphore fails or device already is
open.

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which GRCAN device.

Table 7.4. gr can_cl ose function declaration

Proto |int grcan_cl ose(struct grcan_priv *d)

About |Closesa previously opened device.
Param |d [IN] pointer
Deviceidentifier. Returned from gr can_open.

Return |int. Thisfunction always returns O (success)

Table 7.5. gr can_canf d_capabl e function declaration

Proto |int grcan_canfd_capabl e(struct grcan_priv *priv);
About |Checksif the given deviceis CANFD capable.

Param (pri v [IN] Pointer

Deviceidentifier. Returned by gr can_open.

Return |int. Non-zer isdevice is CANFD capable, zero if not.

7.2.1. Static buffer allocation

The function gr can_open uses dynamic memory for alocating DMA buffers. An alternative is to use
gr can_open_user buf , which allows the user to provide the buffers instead. Note that the corresponding
function for closing the DMA channel isgr can_cl ose_user buf inthiscase.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 47

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 7.6. gr can_open_user buf function declaration

Proto |struct grcan_priv *grcan_open_userbuf (int dev_no, void *rxbuf, int
rxbuf _size, void *txbuf, int txbuf_size)

About |OpensaGRCAN device. The GRCAN deviceisidentified by index. The returned valueisused asin-
put argument to all functions operating on the device.

The function requires the caller to provide DMA buffers for the driver to use (r xbuf andt xbuf).
These memory areas shall not be referenced by the user aslong as the driver channel is opened. The
areas can be reused when the driver has been closed with gr can_cl ose_user buf .

Param |dev_no [IN] Integer

Deviceidentification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
by gr can_dev_count .

Param |r xbuf [IN] Pointer

RX DMA buffer address. Must be aligned to 1 KiB address boundary.
Param |r xbuf _si ze [IN] Integer

RX DMA buffer sizein bytes. Must be amultiple of 64.

Param |t xbuf [IN] Pointer

TX DMA buffer address. Must be aligned to 1 KiB address boundary.
Param |t xbuf _si ze [IN] Integer

TX DMA buffer sizein bytes. Must be a multiple of 64.

Return |Pointer. Status and driver'sinternal device identification.

NULL Indicates failure to open device. Failsif device semaphore fails or device already is
open.

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which GRCAN device.

Table 7.7. gr can_cl ose_user buf function declaration

Proto |int grcan_cl ose_userbuf(struct grcan_priv *d)

About |Closes apreviously opened device.
Param |d [IN] pointer
Deviceidentifier. Returned from gr can_open_user buf .

Return |int. Thisfunction always returns O (success)

7.3. Operation mode

Thedriver always operates in one of four modes: STATE_STARTED, STATE_STOPPED, STATE_BUSOFF or
STATE_AHBERR. In STATE_STOPPED mode, the DMA is disabled and the user is allowed to configure the
device and driver. In STATE_STARTED mode, the receive and transmit DMA can be active and only alimited
number of configuration operations are possible.

Thedriver entersSTATE_BUSOFF modeif abus-off conditionisdetected and STATE_AHBERR if an AHB error
is caused by the GRCAN DMA. When any of these two modes are entered, the user should call gr can_st op()
followed by gr can_st art () to put thedriver in STATE_STARTED again.

Transitions between started and stopped mode are normally caused by the users interaction with the driver API
functions. In somesituations, such CAN bus-off or DMA AHB error condition, thedriver itself makesthetransition
from started to stopped.

7.3.1. Starting and stopping

Thegr can_st art () function placesthe CAN corein STATE_STARTED mode. Configuration set by previous
driver function calls are committed to hardware before started mode enters. It is necessary to enter started modeto

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 48

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

be able to receive and transmit messages on the CAN bus. Thegr can_st ar t () function call will fail if receive
or transmit buffers are not correctly alocated or if the CAN coreis aready isin started mode.

The function gr can_st op() makes the CAN core leave the previous mode and enter STATE_STOPPED
mode. After calling this function, further callstogr can_r ead()/grcanfd_read() orgrcan_wite()

/grcanfd_write() will fail. Itisnecessary to enter stopped mode to change operating parameters of the CAN
core such as the baud rate and for the driver to safely change configuration such as FIFO buffer lengths. The
function will fail if the CAN core already is in stopped mode.

Function gr can_get _st at e() isused to determine the driver operation mode.

Table 7.8. gr can_get _st at e function declaration

Proto |int grcan_get state(struct grcan_priv *d)
About |Get current GRCAN software state

If STATE _BUSOFF or STATE_AHBERRIs returned then the function gr can_st op() shall be
called before continue using the driver.

Param |d [IN] Pointer
Deviceidentifier. Returned by gr can_open.
Return |int. Status

Vaue Description

STATE_STOPPED Stopped

STATE_STARTED Started

STATE_BUSOFF Bus-off has been detected

STATE_AHBERR AHB error has been detected
GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB error.

7.4. Configuration

The CAN core and driver are configured using function calls. Return values for most functions are O for success
and non-zero on failure.

The function gr can_set _si | ent () setsthe SI LENT bit in the configuration register of the CAN hardware
the next time the driver is started. If the SI LENT bit is set the CAN core operates in listen only mode where
grcan_wite()/grcanfd wite() calsfal and grcan_read()/grcanfd_read() calls proceed.
This function fails and returns nonzero if called in started mode.

grcan_set _abort () setsthe ABORT bit inthe configuration register of the CAN hardware. The ABORT bhitis
used to cause the hardwareto stop the receiver and transmitter when an AMBA AHB error isdetected by hardware.
This function fails and returns nonzero if called in started mode.

7.4.1. Channel selection

grcan_set _sel ection() selects active channel used during communication. The function takes a second
argument, a pointer to a grcan_selection data structure described below. This function fails and returns nonzero
if called in started mode.

The grcan_selection data structure is used to select active channel. Each channel has one transceiver that can be
activated or deactivated using this data structure. The hardware can however be configured active low or active
high making it impossiblefor the driver to know how to set the configuration register in order to select apredefined
channel.

struct grcan_sel ection {
int selection;
int enabl e0;
int enabl el;

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 49

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 7.9. grcan_selection member description

M ember Description

selection Select receiver input and transmitter output.
enable0 Set value of output 1 enable

enablel Set value of output 1 enable

7.4.2. GRCAN Timing parameters

grcan_set btrs() setsthetiming registers manually. See the CAN hardware documentation for a detailed
description of the timing parameters. The function takes a pointer to a grcan_timing data structure containing all
available timing parameters. The grcan_timing data structure is described below. This function fails and returns
nonzero if called in started mode.

The grcan_timing data structure is used when setting GRCAN timing configuration registers manually. The pa-
rameters are used when hardware generates the baud rate and sampling points.

struct grcan_timng {
unsi gned char scal er;
unsi gned char ps1;
unsi gned char ps2;
unsigned int rsj;
unsi gned char bpr;

b

Table 7.10. grcan_timing member description

M ember Description

scaler Prescaler

psl Phase segment 1

ps2 Phase segment 2

rs Resynchronization jumps, 1..4

bpr Value Baud rate
0 system clock / (scaler+1) / 1
1 system clock / (scaler+1) / 2
2 system clock / (scaler+1) / 4
3 system clock / (scaler+1) / 8

The function gr can_set _speed() can be used to set the CAN bus frequency. It takes a parameter in Hertz
and calculates the appropriate timing register parameters. If the timing register values could not be calculated,
then anon-zero value is returned.

7.4.3. GRCANFD Timing parameters

grcanfd_set _Dbtrs() setsthetiming registersmanually. Seethe CAN hardware documentation for adetailed
description of the timing parameters. The function takes a pointer to two grcanfd_timing data structure containing
all available timing parameters. One for nominal bit-rate and one for fd bitrate. The grcanfd_timing data structure
is described below. This function fails and returns nonzero if called in started mode.

The grcanfd_timing data structure is used when setting GRCAN timing configuration registers manualy. The
parameters are used when hardware generates the baud rate and sampling points.

struct grcanfd_timng {
unsi gned char scal er;
unsi gned char ps1;
unsi gned char ps2;
unsi gned char sjw;
unsi gned char resv_zero;

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 50

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 7.11. grcanfd_timing member description

M ember Description

scaler Prescaler

psl Phase segment 1

ps2 Phase segment 2

rsw Synchronization Jump Width
resv_zero Reserved.

Thefunction gr canf d_set _speed() can be used to set the CAN bus frequency. It takes two parametersin
Hertz, nominal and FD, and calculates the appropriate timing register parameters. If the timing register values
could not be calculated, then a non-zero value is returned.

7.5. Receive filters

7.5.1. Data structures

Thegrcan_filter structureis used when changing acceptancefilter of the CAN receiver and the SYNC Rx/Tx Filter
usingthefunctionsgr can_set _afilter andgrcan_set sfilter.Thisdatastructureisused differently
for different driver functions.

struct grcan_filter {
unsi gned | ong | ong mask;
unsi gned | ong | ong code;

I

Table 7.12. grcan_filter member description

M ember Description
mask Selects what bitsin code will be used or not. A set bit isinterpreted as don't care.
code Specifies the pattern to match, only the unmasked bits are used in the filter.

7.5.2. Acceptance filter

grcan_set_afilter() setsacceptance filter which is matched for each message received. Let the second
argument point to a grcan_filter data structure or NULL to disable filtering and let all messages pass the filter.
M essages matching the condition below are passed and possible to read from user space:

(id XOR code) AND nask = 0

grcan_set _afilter() canbecaledinany modeand never fails.

7.5.3. Sync filter

grcan_set _sfilter () setsRx/Tx SYNC filter which is matched by receiver for each message received. L et
the second argument point to a grcan_filter data structure or NULL to disable filtering and let all messages pass
the filter. Messages matching the condition below are treated as SY NC messages:

(id XOR code) AND nask = 0
grcan_set _sfilter() canbecalledinany modeand never fails.

7.6. Driver statistics

grcan_get st at s() copiesthedriver'sinternal countersto auser provided data area. The format of the data
written is described below (grcan_stats). The function will fail if the user pointer is NULL.

grcan_cl r_stat s() clearsthedriver's collected statistics. This function never fails.

The grcan_stats data structure contains various statistics gathered by the CAN hardware.

struct grcan_stats {
unsi gned int rxsync_cnt;

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 51

https://www.frontgrade.com/gaisler

unsi gned int txsync_cnt;
unsi gned int ahberr_cnt;

unsigned int ints;

unsi gned int busoff_cnt;

s

rRONTGRADE

Gaisler

Table 7.13. grcan_stats member description

Member Description

rxsync_cnt Number of received SY NC messages (matching SY NC filter)
txsync_cnt Number of transmitted SY NC messages (matching SY NC filter)
ahberr_cnt Number of DMA AHB errors

ints Number of times the interrupt handler has been invoked.
busoff_cnt Number of bus-off conditions

7.7. Device status

grcan_get _status() storesthe current status of the CAN core to the location pointed to by the second
argument. This function istypically used to determine the error state of the CAN core. The 32-bit status word can
be matched against the bit masks in the table below.

Table 7.14. Device status word bit masks

Mask

Description

GRCAN_STAT_PASS

Error-passive condition

GRCAN_STAT OFF

Bus-off condition

GRCAN_STAT OR

Overrun during reception

GRCAN_STAT_AHBERR

AMBA AHB error

GRCAN_STAT ACTIVE

Transmission ongoing

GRCAN_STAT_RXERRCNT

Reception error counter, 8-bit

GRCAN_STAT_TXERRCNT

Transmission error counter, 8-bit

grcan_get status() failsif the user pointerisNULL.

7.8. CAN bus transfers

7.8.1. Data structures

The struct grcan_canmsg type is used for GRCAN when transmitting and receiving CAN messages. For GR-
CANFD the struct grcan_canfdmsg type is used instead. The structure describes the drivers view of a CAN mes-
sage. See the transmission and reception section for more information.

struct grcan_canmsg {
char extended;
char rtr;
char unused;
unsi gned char |en;
unsi gned char data[8];
unsigned int id;

s

Table 7.15. struct grcan_canfdmsg member description

Member Description

extended Indicates whether the CAN message has 29 or 11 bits ID tag. Extended or Stan-
dard frame.

rtr Remote Transmission Request bit.

len Length of dat a.

data CAN message data, dat a[0] isthe most significant byte — the first byte.

ZEPHYR-UM
Dec 2023, Version 1.0.0

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
52

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
M ember Description
id The ID field of the CAN message. An extended frame has 29 bits whereas a stan-
dard frame has only 11-bits. The most significant bits are not used.
struct grcan_canfdnmsg {
uint8_t extended;
uint8_t rtr;
uint8_t fdopts;
uint8_t len;
uint32_t id;
uni on {
uint64_t dwords[8];
uint8_t bytes[64];
} data;
s
Table 7.16. struct grcan_canmsg member description
Member Description
extended Indicates whether the CAN message has 29 or 11 bits ID tag. Extended or Stan-
dard frame.
rtr Remote Transmission Request bit.
fdopts FD options. Bit1: 1=Switch bit rate. bit2: 1=FD frame.
len Length of dat a.
id The ID field of the CAN message. An extended frame has 29 bits whereas a stan-
dard frame has only 11-bits. The most significant bits are not used.
data CAN message data, dat a[0] isthe most significant byte/lword — the first byte

7.8.2. Transmission

Messages are transmitted using the gr can_wri t e() function for GRCAN cores and grcanfd_wite()
for GRCANFD cores. It is possible to transmit multiple CAN messages in one call. An example transmission is
shown below:

result = grcan_wite(d, & x_nsgs[0], nsgcnt);

On successthe number of CAN messagestransmitted isreturned and on failurea GRCAN_RET _ valueisreturned.
The parameter t x_nsgs points to the beginning of a struct grcan_canmsg structure which includes data, length
and transmission parameters. The last function parameter specifiesthe total number of CAN messagesto be trans-
mitted. For gr canf d_wri t e() the parameter t x_mnsgs points to the beginning of a struct grcan_canfdmsg
instead.

The transmit operation is non-blocking: gr can_wri t e() /grcanfd_write() will returnimmediately with
areturn value indicating the number CAN messages scheduled.

Each message has an individual set of parameters controlled by the struct grcan_canmsg or struct grcan_canfdmsg
type.

The user is responsible for checking the number of messages actually sent when in non-blocking mode. A 3
message transmission reguests may end up in only 2 transmitted messages for example.

Table 7.17. gr can_wr i t e function declaration

Proto |int grcan_wite(struct grcan_priv *d, struct grcan_cannsg *nsg,
size_ t count)

About |Transmit CAN messages

Multiple CAN messages can be transmitted in one call.
Param |d [IN] Pointer
Deviceidentifier. Returned by gr can_open.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 53

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
Param |nsg [IN] Pointer
First CAN messages to transmit
Param |count [IN] Integer
Total number of CAN messages to transmit.
Return |int. Status
Value Description
>=0 Number of CAN messages transmitted. This can be less than the
count parameter.
GRCAN_RET_INVARG Invalid argument: count parameter islessthan one or the msg pa-
rameter iSNULL.
GRCAN_RET_NOTSTARTED |Driver is not in started mode or deviceis configured as silent. Noth-
ing done.
GRCAN_RET_BUSOFF A write was interrupted by a bus-off error. Device has |eft started
mode.
GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB error.

Table 7.18. gr canf d_wr i t e function declaration

Proto |int grcanfd wite(struct grcan_priv *d, struct grcan_canfdnmsg *msg,
size_t count)
About | Transmit CAN-FD messages
Multiple CAN messages can be transmitted in one call.
Param |d [IN] Pointer
Deviceidentifier. Returned by gr can_open.
Param |nmsg [IN] Pointer
First CAN messages to transmit
Param |count [IN] Integer
Total number of CAN messages to transmit.
Return |int. Status
Value Description
>=0 Number of CAN messages transmitted. This can be less than the
count parameter.
GRCAN_RET_INVARG Invalid argument: count parameter islessthan one or the msg pa-

rameter isNULL.

GRCAN_RET_NOTSTARTED |Driver is not in started mode or deviceis configured as silent. Noth-

ing done.

GRCAN_RET_BUSOFF A write was interrupted by a bus-off error. Device has |eft started
mode.

GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB error.

7.8.3. Reception

CAN messages arereceived using thegr can_r ead() function for GRCAN and gr canf d_r ead() for GR-
CANFD. An example is shown below:

enum { NUM MSG = 5 };
struct grcan_cannsg rx_nmsgs[NUM M5Q ;

len = grcan_read(d, & x_nsgs[0], NUM MSG;

The requested number of CAN messages to be read is given in the third argument and messages are stored in

r X_msgs.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 54

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The actual number of CAN messages received is returned by the function on success. The function will fail and
return a GRCAN_RET _ value if a NULL buffer pointer is passed, buffer length isinvalid or if the CAN coreis
not started.

The receive operation is non-blocking: the function will returnimmediately with the number of messagesreceived.
If no message was available then O is returned.

Table 7.19. gr can_r ead function declaration

Proto |int grcan_read(struct grcan_priv *d, struct grcan_cannsg *nsg,
size_t count)
About |Receive CAN messages
Multiple CAN messages can be received in one call.
Param |d [IN] Pointer
Deviceidentifier. Returned by gr can_open.
Param |nsg [IN] Pointer
Buffer for received messages
Param |count [IN] Integer
Number of CAN messagesto receive.
Return |int. Status
Value Description
>=0 Number of CAN messages received. This can be less than the
count parameter.
GRCAN_RET_INVARG Invalid argument: count parameter islessthan one or the msg pa

rameter isNULL.

GRCAN_RET_NOTSTARTED |Driver is not in started mode. Nothing done.

GRCAN_RET_BUSOFF A read was interrupted by a bus-off error. Device has | eft started
mode.
GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB Error.

Table 7.20. gr canf d_r ead function declaration

Proto |int grcanfd_read(struct grcan_priv *d, struct grcan_canfdnmsg *nsg,
size_t count)
About | Receive CAN-FD messages
Multiple CAN messages can be received in one call.
Param |d [IN] Pointer
Deviceidentifier. Returned by gr can_open.
Param |nsg [IN] Pointer
Buffer for received messages
Param |count [IN] Integer
Number of CAN messagesto receive.
Return |int. Status
Value Description
>=0 Number of CAN messages received. This can be less than the
count parameter.
GRCAN_RET_INVARG Invalid argument: count parameter islessthan one or the nsg pa
rameter isNULL.
GRCAN_RET_NOTSTARTED |Driver is not in started mode. Nothing done.
ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 55

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

GRCAN_RET_BUSOFF A read was interrupted by a bus-off error. Device has | eft started
mode.
GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB Error.

7.8.4. Bus-off recovery

If ether grcan_ wite()/grcanfd wite() or grcan_read()/grcanfd read() returns
GRCAN_RET_BUSOFF, then abus-off condition was detected and the driver hasentered STATE_BUSOFF mode.
To continue using the driver, the user shall call gr can_st op() followed by grcan_start () to re-enter
started mode.

7.8.5. AHB error recovery

Similar to the bus-off condition, an AHB error condition can be caused by the GRCAN DMA. The driver will
enter STATE_AHBERR and the recovery procedure is the same as for bus-off.

7.9. Interrupt API

The GRCAN driver hasits own interrupt service routine which may be engaged when the driver isin the started
state. The main purpose of thisISR isto perform error-handling and to make sure the driver has an up-to-date view
of bus errors. It also handles error conditions, statistics and sometimes transitions the driver out from the started
the state. Actual CAN message RX and TX is done with DMA and is not controlled by the ISR.

Thefunction grcan_set_isr() can be used to install acustom function which is called from the GRCAN driver ISR.
A call to the callback will be done from the ISR context. Note that GRCAN driver functions should not be called
from this callback since it may conflict with concurrent callsin non-interrupt context.

Table 7.21. gr can_set _i sr function declaration

Proto |void grcan_set isr(struct grcan_priv *d, int (*isr)(struct
grcan_priv *priv, void *data), void *data)

About | Set user Interrupt Service Routine (ISR) callback function

Thei sr parameter isthe user callback function to be called from the GRCAN ISR.

Only one callback can be registered at atime. A second call togr can_set _i sr replacesthe previ-
ously registered callback.

Ifi sr isNULL, then no user callback will be called from the driver ISR.
Parameter pr i v of the callback isthe driver device handle.

The dat a parameter is passed to the user callback i sr . It may be NULL.
Param |d [IN] pointer

Device handle returned by gr can_open.

Param |i sr [IN] pointer

User callback function as described above. Ifi sr isNULL then the callback is uninstalled, but the
GRCAN ISR is still active.

Param |dat a [IN] pointer
Data to pass to the user callback. It may be NULL.
Return |None.

The GRCAN driver functions are in general not re-entrant for the same device context (struct grcan_priv). That is
adriver design choice to avoid extensive locking to protect driver software state.

7.9.1. Interrupt generation

CAN RX and TX interrupts are not generated by default. The user can control generation of RX and TX interrupts
using the functionsgr can_t xi nt and gr can_r xi nt .

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 56

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
Table 7.22. gr can_t xi nt function declaration
Proto |int grcan_txint(struct grcan_priv *d, int n)
About |Generate TX interrupt
The parameter n specifies which events generate CAN TX interrupts:
e 0: never (default)
* 1: every CAN message transmitted
 -1: When all messages have been transmitted
Param |d [IN] Pointer
Deviceidentifier. Returned by gr can_open.
Param |n [IN] Integer
Specifies condition for generating TX interrupt.
Return |int. 0
Table 7.23. gr can_r xi nt function declaration
Proto |int grcan_rxint(struct grcan_priv *d, int n)
About |Generate RX interrupt
The parameter n specifies which events generate CAN RX interrupts:
e 0: never (default)
« 1: every CAN message transmitted
e -1: When RX buffer isfull
Param |d [IN] Pointer
Deviceidentifier. Returned by gr can_open.
Param |n [IN] Integer
Specifies condition for generating RX interrupt.
Return |int. 0
ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 57

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

8. SPI driver

8.1. Introduction

This section describes the driver used to control the GRLIB SPICTRL device for SPI master operation.
8.2. Driver registration

This driver uses the driver registration mechanism described in Chapter 5.

Table 8.1. Driver registration functions

Registration method Function
Register one device spi _register()
Register many devices spi _init()

8.3. Opening and closing device

A SPICTRL device must first be opened before any operations can be performed using the driver. The number
of devices registered to the driver can be retrieved using spi _dev_count . A particular device can be opened
usingspi _open and closed spi _cl ose. The functions are described below.

Anopened device can not be reopened unlessthe deviceisclosed first. When opening adevicethe deviceismarked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal _| dst ub
from the OSAL. Protection is used by al SPICTRL devices on opening and closing.

During opening of a SPICTRL device the following steps are taken:
« SPICTRL devicel/O registersareinitialized, including clearing the event register and masking all interrupts.
» Thecoreisdisabled (to allow configuration).
 Internal data structures areinitialized.
» The device is marked opened to protect the caller from other users of the same device.

Table 8.2. spi _dev_count function declaration

Proto |int spi_dev_count (void)
About |Retrieve number of SPICTRL devices registered to the driver.
Return |int. Number of SPICTRL devices registered in system, zero if none.

Table 8.3. spi _open function declaration

Proto |struct spi_priv *spi_open(int dev_no)

About |OpensaSPICTRL device. The SPICTRL deviceisidentified by index. The returned valueis used as
input argument to all functions operating on the device.

Param |dev_no [IN] Integer

Deviceidentification number. Devices are indexed by the order registered to the driver. Must be equal
to or greater than zero, and smaller than that returned by spi _dev_count .

Return |Pointer. Status and driver'sinternal device identification.

NULL Indicates failure to open device. Failsif deviceis already open, or invalid dev_no pa-
rameter.

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which SPICTRL device.

Table 8.4. spi _cl ose function declaration

Proto |int spi_close(struct spi_priv *priv)

About |Closes apreviously opened device.
Param |d [IN] pointer

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 58

https://www.frontgrade.com/gaisler

FRONTGRADE
Deviceidentifier. Returned from spi _open.
Return |int.
Value Description
DRV_OK |Successfully closed device.

8.4. Status service

SPI controller event status can be read by calling the spi _get _event function. It returns a copy of the SPI
controller event register which can be used for determining if a transfer has completed or if more data shall be
written to or read. Bitsin the event register can be cleared by callingspi _cl ear _event.

Table 8.5. spi _get _event function declaration

Proto |uint32_t spi_get_event(struct spi_priv *priv)

About |Get event register value

Bitsin the event register can be cleared by calling spi _cl ear _event .
Param |d [IN] pointer

Device handle returned by spi _open.

Return |uint32_t.

Current value of the SPI event register.

Register definitions for the SPICTRL event register are available in thefilei ncl ude/ r egs/
spictrl-regs. h. Therelevant defines are prefixed with SPI CTRL_EVENT _.

Table 8.6. spi _cl ear _event function declaration

Proto |void spi_clear_event(struct spi_priv *priv, uint32 t event)

About |Clear bitsin the event register

Param |d [IN] pointer

Device handlereturned by spi _open.
Param [event [IN] uint32_t

Mask of bitsto clear in the SPI event register.

Register definitions for the SPICTRL event register are available in thefilei ncl ude/ r egs/
spi ctrl-regs. h. Therelevant defines are prefixed with SPI CTRL_EVENT _.

Return |None.

8.5. Transfer Configuration

The SPI driver allows for configuring the SPI controller settings between transfers. Thisis useful when multiple
SPI slaves are attached to the same SPICTRL device, and the slaves have different timing and transfer require-
ments. In this case, one configuration record can be associated with each slave device.

Interrupts can be enabled for transfers by configuring the SPI controller event mask register viathe configuration
service. Thisallows for user notification of when the transmit queue is empty or when the receive queue is non-
empty.

The driver supports reconfiguration of the SPI controller at any time between calls to spi _stop and
spi _start.

struct spi_config {

unsi gned int freq; /* SPI clock frequency, Hz */
int node; /* SPI node */
enum spi _wordl en wordl en; /* SPI Word length */
int intnmask; /* SPI controller interrupt mask */
int nmsb_first; /* 1f true then send Msb first, else LSh. */
int sync; /* Synchronous TX/ RX node */
uint32_t asl ave; /* Automatic slave select, active high mask */
ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 59

https://www.frontgrade.com/gaisler

int
int
int
int

s

cl ock_gap;
tac;

asel del ;

i gsel ;

rRONTGRADE

Gaisler

/* MODE. CG */

/* Toggl e automatic slave select during clock gap */
/* Automatic slave select delay */

/* Ignore SPISEL input */

Table 8.7. spi_config data structure declaration

freg The SPI clock frequency in Hz. Used to calculate values for the hardware registers controlling
SPICLK.
mode SPI mode O, 1, 2, or 3
wordlen | Word length. Must be one of the following values:
Vaue Description
SPI_WORDLEN_4 |4 bit word length
SPI_WORDLEN_5 5 bit word length
SPI_WORDLEN_6 6 bit word length
SPI_WORDLEN_7 7 bit word length
SPI_WORDLEN_8 8 bit word length
SPI_WORDLEN_9 9 bit word length
SPI_WORDLEN_10 |10 bit word length
SPI_WORDLEN_11 |11 bit word length
SPI_WORDLEN_12 |12 hit word length
SPI_WORDLEN_13 |13 hit word length
SPI_WORDLEN_14 |14 bit word length
SPI_WORDLEN_15 |15 bit word length
SPI_WORDLEN_16 |16 bit word length
SPI_WORDLEN_32 |32 hit word length
intmask Interrupt mask.
Thisfield iswritten to the SPI controller Mask register when spi _conf i g iscalled.
Register definitions for the SPI controller Mask register are available in thefilei n-
cl ude/ regs/spictrl-regs. h. Therelevant defines are prefixed with SPI CTRL_MASK .
msb_first |If true then send M Sh first, else L Sh. This controls the SPI controller Mode register bit named Re-
verse data (REV).
sync Synchronous TX/RX mode.
Value Description
0 Allow RX to overrun.
1 Prevent RX from overrunning.
aslave Automatic slave select, active high mask
Value Description
0 Disable automatic slave select.
mask Thisvalue iswritten, inverted, to the SPI controller automatic slave select
register. In addition, automatic slave select (ASEL) will be enabled in the
SPI controller mode register.
clock_gap |Number of SCK clock cycles to insert between consecutive words. A value between 0 and 31.
tac Toggle automatic slave select during clock gap
Value Description
0 Set MODE. TAC=' 0
1 Set MODE. TAC=' 1
ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0

60

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

aseldel Automatic slave select delay.

A valuein therange 0..3 which iswritten to MODE. ASELDEL.

igsel Ignore SPISEL input
Value Description
0 Set MODE. | GSEL=' 0'
1 Set MODE. | GSEL=" 1"

Table 8.8. spi _conf i g function declaration

Proto |int spi_config(struct spi_priv *priv, struct spi_config *cfg)

About | Set transfer configuration in hardware.

The cf g input layout is described by the spi_config data structure in Table 8.7.
Param |d [IN] pointer
Device identifier. Returned from spi _open.

Param |cf g [IN] pointer
Address to where the driver will read the transfer configuration from. (See Table 8.7.)
Return |int.

Value Description

DRV_OK Successfully configured device.

DRV_FAIL Invalid word length or frequency field in cf g. Device not configured.
DRV_STARTED |Deviceisin started mode. Device not configured.

A default configuration is available in the symbol SPI _ CONFI G_DEFAULT:

extern const struct spi_config SPI_CONFI G _DEFAULT;

It can be used to derive default parameters.
8.6. Transfer Interface

Two functions are available for performing SPI transfers. Thespi _wr i t €32 function writeswords to the hard-
ware transmit queue, and spi _r ead32 reads words from the hardware receive queue. These functions never
block and may return before the requested number of words have been processed. The transfer parameters set by
thelast call tospi _confi g are used.

For the user to determine status of the transfer queues during transfers, the spi _st at us service can be used to
read out the event register. Transmit queue status is obtained by observing the Not full (NF) and Last character
(LT) flags. Likewise, existence of receive data is determined by testing bits Not empty (NE). In addition, the bit
Transfer in progress (TIP) can be used to determine if atransfer has completed.

For high performance transfers, or large transfers, using a custom interrupt service routine can come in handy. It
can be responsible for supplying the transmit queue with data and for reading out received data to a user receive
buffer. When the transfer is considered complete, the user may be informed by for example unblocking it with a
semaphore or an event. As the driver usage varies heavily with the application and the connected SPI slaves, no
default interrupt service routine is provided by the SPI driver.

If the user has activated interrupts at configuration, the user must install an interrupt handler prior to calling
spi_write32andspi _read32.

Before the transfer functions can be used, the core must be configured with spi _confi g and enabled with
spi _start.Atend of transfers, the spi _st op function can be called to disabled the SPI core. Disabling the
coreisonly needed if it shall be reconfigured.

The example below opens, configures and enables the first SPICTRL device. Then 8 words are written and 8
words are read.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 61

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
int spi_transfers(void)
{
struct spi_priv *device;
int i;
int ret;
struct spi_config cfg;
uint32_t txbuf[8];
uint32_t rxbuf[8];
ret = spi_dev_count();
printf ("% SPICTRL devices present\n", ret);
device = spi_open(0);
if (!device) {
return -1; /* Failure */
}
/* Base config on sane default */
cfg = SPI_CONFI G_DEFAULT;
cfg.freq = 125 * 1000;
cfg.node = 1;
cfg.wordl en = SPI _WORDLEN 8;
ret = spi_config(device, &cfg);
if (DRV.OK I=ret) {
return -1;
}
spi _start();
i =0;
do {
i += spi_wite32(device, & xbufl[i], 8-i);
} while (i<8);
i =0;
do {
i += spi_read32(device, & xbuf[i], 8-i);
} while (i<8);
spi _stop();
spi _cl ose(device);
return 0; /* success */
}
Table 8.9. spi _st art function declaration
Proto |int spi_start(struct spi_priv *priv)
About |Start SPI device. The SPICTRL coreis enabled.
Param |d [IN] pointer
Device handle returned by spi _open.
Return |int.
Value Description
DRV_OK Device was started by the function call.
DRV_STARTED |Device dready in started mode. Nothing performed.
Table 8.10. spi _st op function declaration
Proto |int spi_stop(struct spi_priv *priv)
About |Stop SPI device. The SPICTRL coreisdisabled.
Param |d [IN] pointer
Device handle returned by spi _open.
Return |int.
Value Description
DRV_OK |Success
Table 8.11. spi _wri t 32 function declaration
Proto |int spi_wite32(struct spi_priv *priv, const uint32_t *txbuf, int
count)
About | Writewordsto SPICTRL transmit queue.
ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 62

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The function tries to write count words of the configured word length to the transmit queue. Trans-
mission dataisindicated by t xbuf . Each word is represented by an uint32_t, regardless of config-
ured word length. Wordsint xbuf shall be represented with its LSB at bit 0.

If t xbuf isNULL then zero valued bits will be shifted out on MOSI. The function returns as soon as
the transmit queueis full or the requested number of words have been installed.

This function never blocks.

Transfer properties are set with the the function spi _confi g.

Param |d [IN] pointer

Device handle returned by spi _open.

Param |t xbuf [IN] pointer

Transmit data. If t xbuf isNULL then zero valued words are shifted out.
Param |count [IN] Integer

Number of words to transmit

Return |int. Number of words written to transmit queue, zero if none.

Table 8.12. spi _r ead32 function declaration

Proto |int spi_read32(struct spi_priv *priv, uint32_t *rxbuf, int count)
About |Read words from SPICTRL receive queue.

The function triesto read count words of the configured word length from the receive queue. Re-
ceived dataiswritten to the location r xbuf . Each word is represented by an uint32_t, regardless of
configured word length. Words stored in r xbuf are represented with its LSB at bit O.

If r xbuf isNULL then the MISO bits are not stored. The function returns as soon as the receive
queue is empty or the requested number of words have been read.

This function never blocks.

Transfer properties are set with the the function spi _confi g.
Param |d [IN] pointer

Device handle returned by spi _open.

Param |r xbuf [OUT] pointer

Received data. Can be NULL to ignore shifted in data.

Param |count [IN] Integer

Number of wordsto receive

Return |int. Number of words read from receive queue, zero if none.

8.7. Synchronous TX/RX mode

The SPI configuration option cf g. sync is used to determine the behaviour when anspi _wr i t €32 operation
would cause the SPI receive queue to become full. The sync option is set and remembered when the SPI driver
is configured using spi _confi g.

When cf g. sync=0, calsto spi _write32 will write words to the SPI transmit queue as long as there is
room in the SPI transmit queue. The receive queue may overrun. It is up to the driver user to empty the SPI
receive queue. Typically thisinvolves user knowledge of how many SPI words are outstanding and restrictscalling
spi _write32 towhenitwill not cause the receive queue to overrun. One scenario is when the SPI daveisan
output device, only capable of receiving commands but never sends anything back to the SPI master.

If cf g. sync=1, then callstospi _wri t e32 will only write words to the SPI transmit queue when it is guar-
anteed that the receive queue will not overrun. This relaxes the restrictions on how callstospi _w it e32 and

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 63

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

spi _r ead32 can be combined. It meansthat the user does not have to maintain the number of outstanding words
and the receive queue will never overrun.

For both settings of the cf g. sync option, the spi _wri t e32 function writes at most count words to the

transmit queue and returns the number of words actually written. The differenceiswhen spi _wite32 isa-
lowed to write to the queue.

8.8. Slave select

When performing SPI transfers, the user may want to select and deselect SPI slaves. This can be done with the the
function spi _sl ave_sel ect . Another option isto use a dedicated GPIO signal.

Table 8.13. spi _sl ave_sel ect function declaration

Proto |int spi_slave_select(struct spi_priv *priv, uint32_t mask)
About |Select SPI dave

This function writes the inverted value of sl avemask parameter to the SPICTRL SLV SEL register.
This function shall not be called when atransfer isin progress.

Param |d [IN] pointer
Deviceidentifier. Returned from spi _open.
Param |mask [IN] uint32_t

Slave mask
Return |int.
Value Description
DRV_OK Success
DRV_NOIMPL Slave select not availablein SPICTRL or mask out of range.
DRV_WOULDBLOCK Transfer in progress

Thedriver functionsspi _read32() andspi _write32() do not automatically perform slave select.

8.9. Restrictions

The SPI driver is designed to operate each opened devicein onetask only. One or more SPI devices can be opened
and operated by one task, but multiple tasks can not operate on the same SPI device.

The following functions are always alowed to be called from any task:
e spi _dev_count
e Spi _open

The following functions are allowed to be called from an ISR.
e spi _get _event
e spi _cl ear_event

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 64

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

9. AHB Status Register driver

9.1. Introduction

This section describes the driver used to control the AHBSTAT device, commonly known as the AHB status
register.

9.2. Driver registration
This driver uses the driver registration mechanism described in Chapter 5.

Table 9.1. Driver registration functions

Registration method Function
Register one device ahbstat _register()
Register many devices ahbstat _init()

9.3. Opening and closing device

An AHBSTAT device must first be opened before any operations can be performed using the driver. The number
of devices registered to the driver can be retrieved using ahbst at _dev_count . A particular device can be
opened using ahbst at _open and closed ahbst at _cl ose. The functions are described below.

When opened, the device can not be reopened unlessthe deviceisclosed first. When opening thedeviceit ismarked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal _I dst ub
from the OSAL. Protection is used by the AHBSTAT device on opening and closing.

During opening of an AHBSTAT device the following steps are taken:

* AHB statusregister isinitialized to start monitoring AMBA AHB bus transactions and correctable errors.
* Internal data structures are initialized.
» Thedeviceis marked opened to protect the caller from other users of the device.

Table 9.2. ahbst at _dev_count function declaration

Proto |i nt ahbstat _dev_count (voi d)
About | Retrieve number of AHBSTAT devices registered to the driver.
Return |int. Number of AHBSTAT devicesregistered to driver, zero if none.

Table9.3. ahbst at _open function declaration

Proto |struct ahbstat priv *ahbstat open(int dev_no)

About |Opensan AHBSTAT device. The AHBSTAT deviceisidentified by index. The returned valueis used
asinput argument to all functions operating on the device.

Param |dev_no [IN] Integer

Deviceidentification number. Devices are indexed by the order registered to the driver. Must be equal
or greater than zero, and smaller than that returned by ahbst at _dev_count .

Return |Pointer. Status and driver's internal device identification.

NULL Indicates failure to open device. Failsif deviceis already open, or invalid dev_no pa-
rameter.

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifiesthe AHBSTAT device.

Notes |The AHBSTAT ISRisnotinstaled by ahbst at _open.

Table 9.4. ahbst at _cl ose function declaration

Proto |int ahbstat _cl ose(struct ahbstat_priv *d)

About |Closesa previously opened device.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 65

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

If the AHB statu register interrupt service routine has been installed, it will be uninstalled by the close
operation.

Param |d [IN] pointer
Device handle returned by ahbst at _open.

Return |int.
Value Description
DRV_OK |Successfully closed device.
others Device closed, but failed to unregister interrupt handler.

9.4. Register interface

The AHB status registers base address can beretrieved using theahbst at _get _r egs function. Registers and
bit definitions are provided in the C header file dr v/ r egs/ ahbst at . h. Individual bits are described in the
GRLIB IP Core User's Manua (GRIP).

Table 9.5. ahbst at _get _r egs function declaration

Proto |volatile struct ahbstat regs *ahbstat get regs(struct ahbstat priv
*d)

About |Get AHBSTAT registers base address

Register definitions for AHBSTAT are provided by the header filedr v/ r egs/ ahbst at . h.
Param |d [IN] pointer

Device handle returned by ahbst at _open.

Return |Pointer. Address of AHBSTAT register area.

9.5. Interrupt service routine

An interrupt service routine is provided by the driver which is installed by calling the driver function
ahbst at _set _user. The user can provide a callback function which is called by the interrupt routine, using
function. When a user callback is installed, the drivers interrupt routine will re-enable bus monitoring only if
the user callback returns O. If the user callback returns a value other than O, then the callback itself should re-
enable AHBSTAT monitoring by clearing the NE bit. The callback is called with a custom argument as selected
by ahbst at _set user.

The example below defines and enables an 1SR callback which rewrites the failing location in case of correctable
error.

#i ncl ude <drv/ahbstat.h>
#i ncl ude <drv/regs/ahbstat.h>

vol atile int user_ncerr = 0;

int user(
vol atile struct ahbstat_regs *regs,
uint32_t status,
uint32_t failing_address,
voi d *userdata
)
{
if (!(status & AHBSTAT_STS CE)) {
/* Not correctable so this callback can't handle it. */
return O;
}
int *ncerr;
ncerr = (int *) userdata;
(*ncerr) ++;

volatile uint32_t *data = (volatile uint32_t *) failing_address;
uint32_t tnp;

/* Read and wite back */
tnmp = *data;
*data = tnp;

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 66

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

/* Reenabl e AHBSTAT probing */
regs->status = 0;

/* Returns 1 to prevent driver ISR to reenabl e AHBSTAT probing */
return 1;

}

int user_exanpl e(voi d)

{
const int DEVNO = 0;
struct ahbstat_priv *devi ce;
int ret;

devi ce = ahbstat _open(DEVNO);
if (NULL == device) {
return -1; /* Failure */

}

ret = ahbstat_set_user(device, user, (void *) &user_ncerr);
if (DRV.OK !'=ret) {
return -2; /* Failure */

}

/* Force correctable errors etc... */

[...]
printf("Nunber of correctable errors detected and corrected: %l\n", user_ncerr);

ret = ahbstat_cl ose(device);
if (DRV.OK I=ret) {
return -3; /* Failure */

}

return 0; /* success */

}

Table 9.6. ahbst at _set _user function declaration

Proto |int ahbstat_set user(struct ahbstat_priv *d, int (*userhan-
dler)(volatile struct ahbstat_regs *regs, uint32_t status, uint32_t
failing _address, void *userarg), void *userarg)

About |Install the AHBSTAT ISR and set | SR user callback function.

Theuser handl er parameter isthe user callback function to be called from the AHBSTAT ISR.
The callback is called by the AHBSTAT ISR only if the has checked that the NE status bit is 1.

Only one callback can be registered at atime. A second call to ahbst at _set _user replacesthe
previously registered callback.

If user handl er isNULL, thenthe AHBSTAT ISR isuninstalled.
Parameter r egs of the callback isthe register base address of the AHBSTAT core.

Parameter st at us of the callback isan unmodified copy of the AHBSTAT status register at entry to
driversinterrupt routine.

Thef ai | i ng_addr ess parameter of the callback is a copy of the AHBSTAT failing addressregis-
ter at entry to the interrupt routine.

If the callback returns O, then the driver interrupt routine will reenable AHBSTAT by clearing the sta-
tus register. Otherwise the status register is not touched by the interrupt routine after callback returns.
Theuser ar g parameter is passed to the user callback user handl er . It may be NULL.

Param |d [IN] pointer

Device handlereturned by ahbst at _open.

Param |user handl er [IN] pointer

User callback function as described above. If user handl er isNULL then the callback is unin-
stalled, but the AHBSTAT ISR is still active.

Param |user dat a [IN] pointer
Datato passto the user callback. It may be NULL.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 67

https://www.frontgrade.com/gaisler

Return

rRONTGRADE

Gaisler

int. DRV_OK on success, else = DRV_OK if ISR ingtall failed.

Notes

The AHBSTAT ISR can not be uninstalled once installed. However, the user handler can be disabled
by calling ahbst at _set _user withuser handl er setto NULL.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 68

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

10. Clock gating unit driver

10.1. Introduction

This section describes the driver used to control the GRLIB clock gating unit, also known as CLKGATE or GR-
CLKGATE.

10.2. Driver registration
This driver uses the driver registration mechanism described in Chapter 5.

Table 10.1. Driver registration functions

Registration method Function
Register one device cl kgate_register()
Register many devices clkgate_ init()

10.3. Opening and closing device

An device must first be opened before any operations can be performed using the driver. The number of devices
registered to the driver can be retrieved using cl kgat e_dev_count . A particular device can be opened using
cl kgat e_open and closed cl kgat e_cl ose. The functions are described below.

When opened, the device can not be reopened unlessthe deviceisclosed first. When opening the deviceit ismarked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal _| dst ub
from the OSAL. Protection is used by the driver on opening and closing.

During opening of a clock gating unit, the following steps are performed:

¢ Internal data structures are initialized.
» The device is marked opened to protect the caller from other users of the device.

Table10.2. cl kgat e_dev_count function declaration

Proto |int cl kgate_dev_count (voi d)
About |Retrieve number of clock gating devices registered to the driver.

Return |int. Number of devices registered to driver, zero if none.

Table 10.3. cl kgat e_open function declaration

Proto |struct cl kgate_priv *cl kgate_open(int dev_no)

About |Opens an clock gating unit device, identified by index. The returned value is used as input argument
to al functions operating on the device.

This function does not change any device state.

Param |dev_no [IN] Integer

Deviceidentification number. Devices are indexed by the order registered to the driver. Must be equal
or greater than zero, and smaller than that returned by cl kgat e_dev_count .

Return |Pointer. Status and driver'sinternal device identification.

NULL Indicates failure to open device. Failsif deviceis already open, or invalid dev_no pa-
rameter.

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies the clock gating unit.

Table 10.4. cl kgat e_cl ose function declaration

Proto |int clkgate cl ose(struct clkgate priv *d)
About |Closesa previously opened device.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 69

https://www.frontgrade.com/gaisler

FRONTGRADE
This function does not change any device state.
Param |d [IN] pointer
Device handle returned by cl kgat e_open.

Return |int.
Value Description
DRV_OK |Successfully closed device.
others Device closed, but failed to unregister interrupt handler.

10.4. Operation

Each core supported by the clock gating unit can be individualy clock gated or enabled by the function
cl kgat e_gat e andcl kgat e_enabl e. The sequences performed by these functions are identical to the gate
and enabl e procedures described in component User's Manual, Clock Gating Unit section.

Core to bit mappings are defined in the C header filedr v/ r egs/ cl kgat e_bi t s. h with names prefixed by
CLKGATE_<component >_. Any number of the defines can be use (OR:ed) together when calling the driver
functions.

A corewhichisenabled with cl kgat e_enabl e will also be reset.

Thedriver does not arbitrate for the device. Protecting the driver from concurrent calls can be done on application
level if needed.

The example below, applicable to GR740, gates all cores and then enables the SpaceWire subsystem and the
second GRETH core.

#i ncl ude <drv/cl kgat e. h>

int clkgate_exanpl e(struct clkgate_priv *d)

{

int ret;

/* CGate all cores. */
ret = clkgate_gate(d, CLKGATE_GR740_ALL);
if (DRV.OK I=ret) {

return ret;

}

/* Enabl e and reset SpaceWre, GRETHL */
ret = cl kgate_enabl e(d, CLKGATE_GR740_GRSPW2 | CLKGATE_GR740_GRETH);
if (DRV.OK !'=ret) {

return ret;

}

return 0; /* success */

}

Table 10.5. cl kgat e_gat e function declaration

Proto |int clkgate gate(struct clkgate priv *d, uint32 t corenask)
About | Gate the clock for selected cores.

Coresto gate are selected with the cor ermask parameter with values CLKGATE_* asde-
fined in thefilei ncl ude/ cl kgat e. h. Multiple cores can be gated at the same time by
OR:ing these values together. To gate all component cores supporting clock gating, the mask
CLKGATE_<conponent >_ALL can be used.

The coresidentified as cor emask will be held in reset with its input clock disabled.
Param |d [IN] pointer
Device handle returned by cl kgat e_open.

Param |cor emask [IN] uint32_t
Bitmask representing the coresto operate on. (Values are CLKGATE_*.)

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 70

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

] Return ‘int. DRV_OK]

Table 10.6. cl kgat e_enabl e function declaration

Proto |int cl kgate_enabl e(struct cl kgate_priv *d, uint32_t coremask)
About |Enable the clock and reset selected cores.

Coresto enable are selected with the cor ermmask parameter with values CLKGATE_* asdefined in
thefilei ncl ude/ cl kgat e. h. Multiple cores can be enabled at the same time by OR:ing these
valuestogether.

Param |d [IN] pointer

Device handlereturned by cl kgat e_open.

Param |cor ermask [IN] uint32_t

Bitmask representing the coresto operate on. (Values are CLKGATE_*.)
Return |int. DRV_OK

10.5. Core reset

A core can bereset by caling cl kgat e_gat e() followed by cl kgat e_enabl e() with the same cor e-
mask parameter. For example:

void cl kgate_reset(struct clkgate_priv *priv, uint32_t corenask)

{

cl kgate_gate(priv, coremask);
cl kgat e_enabl e(priv, coremask);

}
10.6. Probe clock gating status

A function is available to read the current state of the clock gating unit registers. It provides the caller with infor-
mation on which cores are gated and which are enabled.

Table 10.7. cl kgat e_st at us function declaration

Proto |int clkgate status(struct clkgate priv *d, uint32_t *enabl ed,
uint32_t *di sabl ed)

About |Get enable status of cores

The function determines enabled and disbled state by reading the clock gating unit registers.
Param |d [IN] pointer

Deviceidentifier. Returned from cl kgat e_open.

Param |enabl ed [IN] Pointer

Output mask of cores which are enabled.

Param |di sabl ed [IN] Pointer

Output mask of cores which are disabled.

Return |uint32_t. The register content (before newval valueiswritten).

10.7. CPU override

The driver provides an interface to control the clock gating unit CPU/FPU override register, available in some
implementations.

Table 10.8. cl kgat e_over ri de function declaration

Proto |uint32_t clkgate_override(struct clkgate priv *d, int set, uint32_t
newal)

About |Get/set CPU/FPU override register

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 71

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The function returns and optionally sets the value of the register. If set is 0 then nothing will be writ-
ten to theregister, else the register is set to the value of the newval parameter.

Param |d [IN] pointer
Deviceidentifier. Returned from cl kgat e_open.

Param |set [IN] Integer
Determinesif register shall be updated with newval .

0 Do not write register.

1 Write value of newval toregister.

Param |newval [IN] Integer
New value

Return |uint32_t. The register content (before newval valueiswritten).

Notes |The CPU/FPU override functionality is not available in all implementations. See the component
datasheet for more information.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 72

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

11. GR1553B Driver

11.1. Introduction

Thisdocument describesthe device drivers specific to the GRLIB GR1553B core. The Remote Terminal (RT), Bus
Monitor (BM and Bus Controller (BC) functionality are supported by the driver. Device discovery and resource
sharing are commonly controlled by the GR1553B driver described in this chapter. Each 1553 mode is supported
by a separate driver, the drivers are documented in separate chapters.

This section gives an brief introduction to the GRLIB GR1553B device allocation driver used internally by the
BC, BM and RT devicedrivers. Thisdriver controls the GR1553B device regardless of interfaces supported (BC,
RT and/or BM). The device can be located at an on-chip AMBA or an AMBA-over-PCl bus. The driver provides
aninterface for the BC, RT and BM drivers.

Since the different interfaces (BC, BM and RT) are accessed from the same register interface on one core, the
APB device must be shared among the BC, BM and RT drivers. The GR1553B driver provides an easy function
interface that allows the APB device to be shared safely between the BC, BM and RT device drivers.

Any combination of interface functionality is supported, but the RT and BC functionality cannot be used simul-
taneoudly (limited by hardware).

Theinterfacetowardsto the BC, BM and RT driversisused internally by the device driversand is not documented
here. See respective driver for an interface description.

11.1.1. Considerations and limitations

Note that the following items must be taken into consideration when using the GR1553B drivers:

e The driver uses only Physical addressing, i.e it does not do MMU translation or memory mapping for the
user. The user is responsible for mapping DMA memory buffers provided to the 1553 drivers 1:1.

e Physical buffers addresses (assigned by user) must be located at non-cacheable areas or D-Cache
snooping must be present in hardware. If D-cache snooping is not present the user must edit the
GR1553*_READ_MEM() macrosin respective driver.

¢ SMP locking (spin-locks) has not been implemented, it does however not mean that SMP mode can not be
used. The CPU handling the IRQ (CPUOQ unless configured otherwise) must be the CPU and only CPU using
the driver API. Only one CPU can use respective driver API at atime.

The above restrictions should not cause any problems for the AT697 + GR-RASTA-IO (RASTA-101) systems
or similar.

11.1.2. GR1553B Hardware

The GRLIB GR1553B core may support up to three modes depending on configuration, Bus Controller (BC),
Remote Terminal (RT) or Bus Monitor (BM). The BC and RT functionality may not be used simultaneously, but
the BM may be used together with BC or RT or separately. All three modes are supported by the driver.

Interrupts generated from BC, BM and RT result in the same system interrupt, interrupts are shared.
11.1.3. Software driver

The driver provides an interface used internally by the BC, BM and RT device drivers, see respective driver for
an interface declaration. The driver sources and definitions are listed in the table below, the path is given relative
to the toolchains root directory.

Table 11.1. Source Location

Filename Description
src/libdrv/src/gr1553b/gris53h.c GR1553B Driver source
src/libdrv/src/include/gr1553b.h GR1553B Driver interface declaration

11.1.4. Driver Registration

This driver uses the driver registration mechanism described in Chapter 5.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 73

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 11.2. Driver registration functions

Registration method Function
Register one device gr 1553b_register ()
Register many devices gr1553b_init()

Theregistration of the driver is crucial for the user to be able to access the driver application programming inter-
faces. The drivers use a classic C-language API.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 74

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

12. GR1553B Bus Controller Driver

12.1. Introduction

This section describes the GRLIB GR1553B Bus Controller (BC) device driver interface. The driver relies on the
GR1553B driver. The reader is assumed to be well acquainted with MIL-STD-1553 and the GR1553B core.

12.1.1. GR1553B Bus Controller Hardware

The GR1553B core supportsany combination of the Bus Controller (BC), BusMonitor (BM) and Remote Terminal
(RT) functionality. This driver supports the BC functionality of the hardware, it can be used simultaneously with
the Bus Monitor (BM) functionality. When the BM is used together with the BC, interrupts are shared between
thedrivers.

The three functions (BC, BM, RT) are accessed using the same register interface, but through separate registers.
In order to share hardware resources between the three GR1553B drivers, the three depends on a lower level
GR1553B driver, see Chapter 11.

The driver supports the on-chip AMBA bus and the AMBA-over-PCI bus.
12.1.2. Software driver

The BC driver is split in two parts, one where the driver access the hardware device and one part where the
descriptors are managed. The two parts are described in two separate sections below.

Transfer and conditional descriptors are collected into a descriptor list. A descriptor list consists of a set of Major
Frames, which consist of a set of Minor Frames which in turn consists of up to 32 descriptors (also called Slots).
The composition of Mg or/Minor Framesand slotsisconfigured by theuser, and is highly dependent of application.

The Major/Minor/Slot construction can be seen as a tree, the tree does not have to be symmetrically, i.e. Maor
frames may contain different numbers of Minor Frames and Minor Frames may contain different numbers of Slot.

GR1553B BC descriptor lists are generated by thelist APl availableingr 1553bc_1I i st . h.

The driver provides the following services:
« Start, Stop, Pause and Resume descriptor list execution
» Synchronous and asynchronous descriptor list management
* Interrupt handling
* BC status
« Magor/Minor Frame and Slot (descriptor) model of communication
e Current Descriptor (Mg or/Minor/Slot) Execution Indication
« Software External Trigger generation, used mainly for debugging or custom time synchronization
* Magjor/Minor Frame and Slot/Message |ID
¢ Minor Frame time slot management

Thedriver sourcesand definitions arelisted in the table bel ow, the path isgiven rel ative to the extracted distribution
archive.

Table 12.1. BC driver Source location

Filename Description

src/libdrv/sre/gr1553b/gr1553bce.c GR1553B BC Driver source
src/libdrv/src/include/gri553bce.h GR1553B BC Driver interface declaration
src/libdrv/src/include/gris53be_list.h GR1553B BC List handling interface declaration

12.1.3. Driver registration

The driver registration is handled by the GR1553B driver, see Chapter 11.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 75

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

12.2. BC Device Handling

The BC device driver's main purpose is to start, stop, pause and resume the execution of descriptor lists. Lists are
described in the Descriptor List section. In this section services related to direct access of BC hardware registers
and Interrupt are described. The function API isdeclared in gr 1553bc. h.

12.2.1. Device API

The device API consists of the functions in the table below.

Table 12.2. Device API function prototypes

Prototype Description

void *gr1553bc_open(int mnor) Open aBC device by minor number. Private handle re-
turned used in all other device API functions.

void gri1553bc_cl ose(void *be) Close a previous opened BC device.

int gri553bc_start(void *bc, Schedule a synchronous and/or a asynchronous BC

struct gr1553bc_list *list,

struct gr1553bc_list *list async) descriptor Lists for execution. Thiswill unmask BC

interrupts and start executing the first descriptor in
respective List. This function can be called multiple

times.
int gr1553bc_pause(void *bc) Pause the synchronous List execution.
int gri553bc_restart(void *bc) Restart the synchronous List execution.
int gri1553bc_stop(void *bc, int options) Stop Synchronous and/or asynchronous list.
int th15§3bg)_i ndi cation(void *be, int async, Get the current BC hardware execution position (MID)
n m .
of the synchronous or asynchronous list.
voi d gr1553bc_stat us(void *bc, Get the BC hardware status and time.
struct gr1553bc_status *status)
void gr1553bc_ext_trig(void *bc, int trig) Trigger an externa trigger by writing to the BC action
register.
int gri1553bc_irq_setup(void *bc, Generic interrupt handler configuration. Handler will

bci f tf , id *dat .o .
ctratune_t tune, vol) be called in interrupt context on errors and interrupts

generated by transfer descriptors.

12.2.1.1. Data Structures

The gr1553bc_status data structure contains the BC hardware status sampled by the function
gr 1553bc_status().

struct gr1553bc_status {
unsigned int status;
unsigned int tinmne;

b

Table 12.3. gr1553bc_status member descriptions

M ember Description
status BC status register
time BC Timer register

12.2.1.2. gr1553bc_open

OpensaGR1553B BC device by deviceinstanceindex. Theminor number relatesto the order in which aGR1553B
BC deviceisfound in the Plug& Play information. A GR1553B core which lacks BC functionality does not affect
the minor number.

If a BC device is successfully opened a pointer is returned. The pointer is used internally by the GR1553B BC
driver, it is used asthe input parameter bc to al other device API functions.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 76

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

If the driver failed to open the device, NULL is returned.
12.2.1.3. gr1553bc_close

Closes a previously opened BC device. This action will stop the BC hardware from processing descriptorg/lists,
disable BC interrupts, and free dynamically memory allocated by the driver.

12.2.1.4. gr1553bc_start
Calling this function starts the BC execution of the synchronous list and/or the asynchronouslist. At least onelist
pointer must be non-zero to affect BC operation. The BC communication is enabled depends on list, and Interrupts

are enabled.

This function can be caled multiple times. If alist (of the same type) is already executing it will be replaced
with the new list.

12.2.1.5. gr1553bc_pause
Pause the synchronous list. It may be resumed by gr 1553bc_r esune() . See hardware documentation.
12.2.1.6. gr1553bc_resume

Resume the synchronous list, must have been previously paused by gr 1553bc_pause() . See hardware doc-
umentation.

12.2.1.7. gr1553bc_stop

Stop synchronous and/or asynchronous list execution. The second argument is a 2-bit bit-mask which determines
the lists to stop, see table below for a description.

Table 12.4. gr1553bc_stop second argument

Member Description
Bit 0 Set to one to stop the synchronous list.
Bit 1 Set to one to stop the asynchronous list.

12.2.1.8. gr1553bc_indication

Retrieves the current Mgjor/Minor/Slot (MID) position executing into the location indicated by mi d. The async
argument determines which type of list is queried, the Synchronous (async=0) list or the Asynchronous
(async=1).

Note that since the List API internally adds descriptors the indication may seem to be out of bounds.

12.2.1.9. gr1553bc_status

This function retrieves the current BC hardware status. Second argument determine where the hardware status
is stored, the layout of the data stored follows the gr 1553bc_st at us data structure. The data structure is
described in Table 12.3.

12.2.1.10. gr1553bc_ext_trig

The BC supports an external trigger signal input which can be used to synchronize 1553 transfers. If used, the
external trigger isnormally generated by somekind of TimeMaster. A message slot may be programmed to wait for
an external trigger before being executed, this feature allows the user to accurate send time synchronize messages
to RTs. However, during debugging or when software needs to control the time synchronization behaviour the

external trigger pulse can be generated from the BC core itself by writing the BC Action register.

This function sets the external trigger memory to one by writing the BC action register.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 77

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

12.2.1.11. gr1553bc_irg_setup

Install ageneric handler for BC deviceinterrupts. The handler will be called on Errors (DMA errors etc.) resulting
in interrupts or transfer descriptors resulting in interrupts. The handler is not called when an IRQ is generated by
a condition descriptor. Condition descriptors have their own custom handler.

Condition descriptors are inserted into the list by user, each condition may have a custom function and data as-
signed to it, see gr 1553bc_sl ot _i rg_prepar e() . Interrupts generated by condition descriptors are not
handled by this function.

The third argument is custom data which will be given to the handler on interrupt.

12.3. Descriptor List Handling

TheBC devicedriver can schedule synchronous and asynchronouslists of descriptors. Thelist containsadescriptor
table and a software description to make certain operations possible, for example transate descriptor address into
descriptor number (MID).

The BC stops execution of alist when a END-OF-LIST (EOL) marker isfound. Lists may be configured to jump
to the start of the list (the first descriptor) by inserting an unconditional jump descriptor. Once a descriptor list is
setup the hardware may process the list without the need of software intervention. Time distribution may also be
handled completely in hardware, by setting the "Wait for External Trigger” flag in a transfer descriptor the BC
will wait until the external trigger is received or proceed directly if already received. See hardware manual.

12.3.1. Overview

This section describes the Descriptor List Application Programming Interface (API). It provides functionality to
create and manage BC descriptor lists.

A listisbuilt up by the following building blocks:

* Major Frame (Consists of N Minor Frames)
e Minor Frame (Consists of up to 32 1553 Slots)
« Slot (Transfer/Condition BC descriptor), also called Message Slot

Theuser can configurelistswith different number of Major Frames, Minor Framesand slotswithin aMinor Frame.
The List manages a strait descriptor table and a Major/Minor/Slot tree in order to easily find it's way through all
descriptor created.

Each Minor frame consist of up to 32 slot and two extra slots for time management and descriptor find operations,
see figure below. In the figure there are three Minor frames with three different number of slots 32, 8 and 4. The
List manage time slot alocation per Minor frame, for example a minor frame may be programmed to take 8ms
and when the user alocate a message slot within that Minor frame the time specified will be subtracted from the
8ms, and when the message slot is freed the time will be returned to the Minor frame again.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 78

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Major 2 0|1 sLoT 31 -:' d
Minor 7 o Im |)
270 | 274 MID a1 | E E/
Major 3 (0 1 sLOT 7 | l.j
Minor0O ~ | YRRY)
3,00 | 301 MID 307 E F:/
MEIJOI' 3 (r 0 1 sLOT 3 | l.j
Minor1 % | | . YRRY
310 | 311 MID a1a| E P

Figure 12.1. Three consecutive Minor Frames

A specific Slot [Major, Minor, Slot] isidentified using aMID (Message-ID). The MID consist of three numbers
Major Frame number, Minor Frame number and Slot Number. The MID is a way for the user to avoid using
descriptor pointers to talk with the list API. For example a condition Slot that should jump to a message Slot can
be created by knowing "MID and Jump-To-MID". When allocating a Slot (with or without time) in a List the user
may specify acertain Slot or aMinor frame, when aMinor frameis given then the APl will find thefirst free Slot
as early in the Minor Frame as possible and return it to the user.

A MID can aso be used to identify a certain Major Frame by setting the Minor Frame and Slot number to Oxff.
A Minor Frame can be identified by setting Slot Number to Oxff.

A MID can be created using the macrosin the table below.

Table 12.5. Macros for creating MID

MACRO Name Description
GR1553BC_ID(major,minor,slot) ID of aSLOT
GR1553BC_MINOR_ID(mgjor,minor) ID of aMINOR (Slot=0xff)
GR1553BC_MAJOR_ID(major) ID of aMajor (Minor=0xff,Slot=0xff)

12.3.2. Example: steps for creating a list

Thetypical approach when creating lists and executing it:
e gris53bc _list_alloc(&list, MAJOR_CNT)
e gr1553bc list config(list, &listcfg)
¢ Create all Major Frames and Minor frame, for each major frame:
1. gr1553bc_major_alloc_skel(&major, &major_minor_cfg)
2. gr1553bc_list_set_major(list, &major, MAJOR_NUM)
 Link last and first Major Frames together:
1. gr1553bc list set major(&major7, & major0)
e gr1553bc list table aloc() (Allocate Descriptor Table)
» gr1553bc list_table build() (Build Descriptor Table from Majors/Minors)
 Allocate and initialize Descriptors predefined before starting:

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 79

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

1. gr1553bc_dot_aloc(list, &MID, TIME_REQUIRED, ..)
2. gr1553bc _dot_transfer(MID, ..)
e« START BCHARDWARE BY SCHEDULING ABOVE LIST
» Application operate on executing List

12.3.3. Major Frame

Consists of multiple Minor frames. A Major frame may be connected/linked with another Major frame, this will
result in a Jump Slot from last Minor frame in the first Mgjor to the first Minor in the second Magjor.

12.3.4. Minor Frame

Consists of up to 32 Message Slots. The services available for Minor Frames are Time-Management and Slot
allocation.

Time-Management is optional and can be enabled per Minor frame. A Minor frame can be assigned atime in
microseconds. The BC will not continue to the next Minor frame until the time specified has passed, the time
includesthe 1553 bustransfers. Seethe BC hardware documentation. Timeis managed by adding an extra Dummy
Message Slot with the time assigned to the Minor Frame. Every time a message Slot is allocated (with a certain
time: Slot-Time) the Slot-Time will be subtracted from the assigned time of the Minor Frame's Dummy Message
Slot. Thus, the sum of the Message Slotswill always sum up to the assigned time of the Minor Frame, as configured
by the user. When a Message Slot is freed, the Dummy Message Slot's Slot-Time is incremented with the freed
Slot-Time. Seefigure below for an example where 6 Message Slots has been allocated Slot-Timeinal ms Time-
Managed Minor Frame. Note that in the example the Slot-Time for Slot 2 is set to zero in order for Slot 3 to
execute directly after Slot 2.

Major 3 0|12 |3|4|5|6|7| TIME | J
Minor O ,.ljl
200 60 0 220 120 free 120 free DUMMY
us us us us us Ous us Ous 280us P

Figure 12.2. Time-Managed Minor Frame of 1ms
Thetotal time of al Minor Framesin aMajor Frame determines how long time the Mg or Frame isto be executed.

Slot allocation can be performed in two ways. A Message Slot can be allocated by identifying a specific free Slot
(MID identifiesa Slot) or by letting the API allocate thefirst free Slot in the Minor Frame (MID identifiesaMinor
Frame by setting Slot-1D to 0xff).

12.3.5. Slot (Descriptor)

The GR1553B BC core supports two Slot (Descriptor) Types.

« Transfer descriptor (also called Message Slot)
« Condition descriptor (Jump, unconditional-IRQ)

See the hardware manual for a detail description of a descriptor (Slot).

The BC Core is unaware of lists, it steps through executing each descriptor as the encountered, in a sequential
order. Conditions resulting in jumps gives the user the ability to create more complex arrangements of buffer
descriptors (BD) which is called lists here.

Transfer Descriptors (TBD) may have atime ot assigned, the BC core will wait until the time has expired before
executing the next descriptor. Time slots are managed by Minor frames in the list. See Minor Frame section. A
Message Slot generating a data transmission on the 1553 bus must have avalid data pointer, pointing to alocation
from which the BC will read or write data.

A Slotisallocatedusingthegr 1553bc_sl ot _al | oc() function, and configured by calling one of thefunction
described in the table below. A Slot may be reconfigured later. Note that a conditional descriptor does not have a
time slot, allocating atime for a conditional times slot will lead to an incorrect total time of the Minor Frame.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 80

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 12.6. Sot configuration

Function Name Description

gr1553bc_dlot_irg_prepare Unconditional IRQ slot

gr1553bc_slot_jump Unconditional jump

gr1553bc_slot_exttrig Dummy transfer, wait for EXTERNAL-TRIGGER
gr1553bc_dlot_transfer Transfer descriptor

gr1553bc_slot_empty Create Dummy Transfer descriptor
gr1553bc_slot_raw Custom Descriptor handling

Existing configured Slots can be manipulated with the following functions.

Table 12.7. Sot manipulation

Function Name Description

gr1553bc_slot_ dummy Set existing Transfer descriptor to Dummy. No 1553
bus transfer will be performed.

gr1553bc_slot_update Update Data Pointer and/or Status of a TBD

12.3.6. Changing a scheduled BC list (during BC-runtime)

Changing a descriptor that is being executed by the BC may result in a race between hardware and software. One
of the problemsisthat a descriptor contains multiple words, which can not be written simultaneously by the CPU.
To avoid the problem one can usethe INDICATION serviceto avoid modifying adescriptor currently in use by the
BC core. The indication service tells the user which Major/Minor/ Slot is currently being executed by hardware,
from that information an knowing the list layout and time slots the user may safely select which slot to modify
or wait until hardware is finished.

In most casesone can do descriptor initialization in several stepsto avoid race conditions. By initializing (allocating
and configuring) a Slot before starting the execution of the list, one may change parts of the descriptor which
are ignored by the hardware. Below is an example approach that will avoid potential races between software and
hardware:

1. Initialize Descriptor as Dummy and allocated time (often done before starting/ scheduling list)

2. Thelistis started, as aresult descriptorsin the list are executed by the BC

3. Modify transfer options and data-pointers, but maintain the Dummy bit.

4. Clear the Dummy bit in one atomic data store.

12.3.7. Custom Memory Setup

For designs where dynamically memory is not an option, or the driver is used on an AMBA-over-PCl bus (where
mal | oc() doesnot work), the API allowsthe user to provide custom addresses for the descriptor table and object
descriptions (lists, major frames, minor frames).

Being ableto configure a custom descriptor table may for example be used to save space or put the descriptor table
in on-chip memory. The descriptor tableissetup using thefunctiongr 1553bc_|i st _tabl e_al l oc(li st,
CUSTOM ADDRESS) .

Object descriptions are normally allocated during initialization procedure by providing the API with an object
configuration, for example a Magjor Frame configuration enables the API to dynamically allocate the software
description of the Major Frame and with all it's Minor frames. Custom object allocation requires internal under-
standing of the List management parts of the driver, it is not described in this document.

12.3.8. Interrupt handling

Therearedifferent typesof interrupts, Error IRQs, transfer IRQsand conditional IRQs. Error and transfer Interrupts
are handled by the general callback function of the device driver. Conditional descriptors that cause Interrupts
may be associated with a custom interrupt routine and argument.

Transfer Descriptors can be programmed to generate interrupt, and condition descriptors can be programmed to
generateinterrupt unconditionally (there exists other conditional typesaswell). When a Transfer descriptor causes

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 81

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

interrupt the general 1SR callback of the BC driver iscalled to let the user handle the interrupt. Transfers descriptor
IRQ is enabled by configuring the descriptor.

When a condition descriptor causes an interrupt a custom IRQ handler is called (if assigned) with a custom argu-
ment and the descriptor address. The descriptor address my be used to look up the MID of the descriptor. The
API provides functions for placing unconditional IRQ points anywhere in the list. Below is an pseudo example
of adding an unconditional IRQ point to alist:

voi d funcSetup()

{
int MD,

/* Allocate Slot for IRQ Point */
gr1553bc_sl ot _all oc(& D, TIME=0, ..);

/* Prepare unconditional IRQ at allocated SLOT */
gr1553bc_sl ot _irq_prepare(M D, funcl SR, data);

/* Enabling the IRQ nay be done later during list
* execution */
gr1553bc_sl ot _irq_enabl e(M D);

}
void funcl SR(*bd, *data)

{
/* HANDLE ONE OR MJLTI PLE DESCRI PTORS
*(MIULTIPLE IN THI S EXAMPLE): */
int MD,

/* Lookup M D from descriptor address */
gr1553bc_m d_from bd(bd, & D, NULL);

/* Print M D which caused the Interrupt */

printk("l1 RQ ON %96x\n", MD);
}

12.3.9. List API

Table 12.8. List API function prototypes

Prototype Description
int gri553bc_list_init(_ Initialize a List description structure. First step in creating a descrip-
struct gr1553bc_list **list, . . .
int max_mjor) tor list. This functions does not alocate any memory
int gri5s53bc_list_alloc(Allocate and initialize a List description structure. First step in creat-
struct gr1553bc_list **list, . . .
int max_mj or) ing adescriptor list.
void ?f 15?3b61|5i5§LJ If_EEE st FreeaList previously allocated using
struet af clist ist) gr 1553bc_list_alloc().
int gri553bc_list_config(Configure List parameters and associate it with a BC device that will
struct gr1553bc_list *list, . . .
struct gr1553bc_list_cfg *cfg, execute the list later on. List parameters are used when generating
voi d *bc) descriptors.
voi d gr1553bc_l i st_Iink_maj or (Links two Major frames together, the Mgjor frame indicated by next
struct gr1553bc_nmj or *ngj or, . . L :
struct gr1553bc_major *next) will be executed after the Major frame indicated by major. A uncon-
ditional jump isinserted to implement the linking.
int 9: r15§fb°r_'li5§;ielt ,_"fli glf (. Assign aMajor Frame aMajor Frame number in alist. Thiswill link
Struct gr1553be aj of *rmaj or Major (no-1) and Major (no+1) with the Major frame, the linking
int no) can be changed by calling gr 1553bc_I| i st _|i nk_maj or () af-
ter all major frames have been assigned a number.
int gri1553bc_m nor _table_size(Calculate the size required in the descriptor table by one minor
struct gr1553bc_m nor *minor) frame
int gri553bc_list_table_size(Calculate the size required for the complete descriptor list.
struct gr1553bc_list *list)
int 9: 155fb°_'1isgtsgt alb! et_i ,'3: t (t Initialize a descriptor list. Thebdt ab_cust omargument can be
void *bdtab customy used to assign a custom address of the descriptor list. This function
does not allocate any memory.
int 9: r15§fb°r_'lgzggfcalb! et_aL: ,OCE Allocate and initialize a descriptor list. Thebdt ab_cust omargu-
ioi J *bgt ab_cust—o'n,s st ment can be used to assign a custom address of the descriptor list.
ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 82

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Prototype

Description

voi d gr1553bc_list_table_free(

struct gr1553bc_list *list)

Free descriptor list memory previously allocated by
gr 1553bc_list_table_alloc().

int 9{ 155?b°_'115§t36t alb! et_bU: ! dg) Build all descriptorsin adescriptor list. Unused descriptors will be
r r i *1i P . . .
siruet 9 e-itst s initialized as empty dummy descriptors. After this call descriptors
can beinitialized by user.
int 9: 155?b0_EJSgL_i nit_skel (- Initialize a software description skeleton of aMajor Frame and it's
struc r c_nmmjor **mmjor . . .
Struct gr1553bo mejor_cfg +of &) Minor Frames. This function does not allocate any memory.
int gri1553bc_maj or _alloc_skel (. Allocate and initialize a software description skeleton of aMajor
struct gr1553bc_nsj or **ngj or, = dit's Mi =
struct gr1553bc_maj or_cfg *cfg) rame and it's Minor Frames.
int 9{ 155t3b0_'1[5;t36f r F?t 't ”fl(, . Get total unused slot time of aMinor Frame. Only available if time
ntmdy e management has been enabled for the Minor Frame.
int gri1553bc_slot_alloc(Allocate a Slot from aMinor Frame. The Slot location isidentified

struct gr1553bc_list *list,
int *md,

int tinmeslot,

uni on gr1553bc_bd **bd)

by MID. If the MID identifies a Minor frame the first free dlot is al-
located within the minor frame.

int

gr 1553bc_sl ot _free(
struct gr1553bc_list *list,
int mid)

Return aprevioudly allocated Slot to a Minor Frame. The slot-time is
also returned.

int

gr 1553bc_mi d_f rom bd(
uni on gr1553bc_bd *bd,
int *md,

int *async)

Get Sot/Message | D from descriptor address.

uni on gr1553bc_bd *gr 1553bc_sl ot _bd(

struct gr1553bc_list *list,
int md)

Get descriptor address from MID.

int 9{ 155?b°_i L—,gtggi r IQ,_P{ eplar eE Prepare a condition Slot for generating interrupt. Interrupt is dis-
struc r c_list *list, . . .
int i d? - abled. A custom callback function and datais assigned to Slot.
bcirg_func_t func,
voi d *data)
int gri553bc_sl ot _irq_enabl e(Enable interrupt of a previously interrupt-prepared Slot.
struct gr1553bc_list *list,
int md)
int gri1553bc_sl ot _irq_di sabl e(Disable interrupt of a previoudly interrupt-prepared Slot.
struct gr1553bc_list *list,
int md)
int 9{ 155t3b0_i'52t361 UlfTP(t et Initialize an allocated Slot, the descriptor isinitialized as a condi-
struct gr c_list *list, . L. . .
int i d? - tional Jump Slot. The conditional is controlled by the third argu-
uint32_t condition, ment. The Slot jumped to is determined by the fourth argument.
int to_md)
int gri553bc_slot_exttrig(Create adummy transfer with the "Wait for external trigger" bit set.
struct gr1553bc_list *list,
int mid)
int gri1553bc_slot_transfer(Create atransfer descri ptor_
struct gr1553bc_list *list,
int mid,
int options,
int tt,
uint16_t *dptr)
int gri553bc_sl ot _dummy(Manipulate the DUMMY bit of atransfer descriptor. Can be used to
struct gr1553bc_list *list, . .
int md enable or disable atransfer descriptor.
unsi gned int *dummy)
int gri553bc_slot_enpty(Create an empty transfer descriptor, with the DUMMY bit set. The
struct gr1553bc_list *list, . . .
int md) time- ot previously allocated is preserved.
int gri553bc_slot_update(Update a transfer descriptors data pointer and/or status field.
struct gr1553bc_list *list,
int md,
uintl16_t *dptr,
unsigned int *stat)
int gri553bc_sl ot _raw(_ Custom descriptor initialization. Note that a bad initialization may
struct gr1553bc_list *list, .
int md break the BC driver.
unsi gned int flags,
ui nt32_t wordo,
ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0

83

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Prototype Description

uint32_t wordl,
uint32_t word2,
ui nt32_t word3)

void gr1553bc_show | ist (Print information about a descriptor list to standard out. Used for de-

struct gr1553bc_list *list, bi .
int options) ugging.

12.3.9.1. Data structures

Thegr 1553bc_nmj or _cf g datastructure hold the configuration parametersof aMajor frameand al it'sMinor
frames. Thegr 1553bc_mi nor _cf g data structure contain the configuration parameters of one Minor Frame.

struct gr1553bc_m nor_cfg {
int slot_cnt;
int tineslot;

b

struct gr1553bc_mmjor_cfg {
int mnor_cnt;
struct gr1553bc_mi nor_cfg mnor_cfgs[1];

s
Table 12.9. gr1553bc_minor_cfg member descriptions.

M ember Description
slot_cnt Number of Slotsin Minor Frame
timesl ot Total time-slot of Minor Frame [us]

Table 12.10. gr1553bc_major_cfg member descriptions.

M ember Description

minor_cnt Number of Minor Framesin Mgjor Frame.

minor_cfgs Array of Minor Frame configurations. The length of the array is determined
by minor_cnt.

Thegr 1553bc_| i st _cf g datastructure hold the configuration parameters of adescriptor List. The Major and
Minor Frames are configured separately. The configuration parameters are used when generating descriptor.

struct gr1553bc_list_cfg {
unsi gned char rt_tineout[31];
unsi gned char bc_tineout;
int tropt_irqg_on_err;
int tropt_pause_on_err;
int async_list;

I
Table 12.11. gr1553bc _list_cfg member descriptions.

M ember Description

rt_timeout Number of us timeout tolerance per RT address. The BC has aresolution of
4us.

bc_timeout Number of us timeout tolerance of broadcast transfers

tropt_irq_on_err Determines if transfer descriptors should generate IRQ on transfer errors

tropt_pause on_err Determinesif the list should be paused on transfer error

async_list Set to non-zero if asynchronous list

12.3.9.2. gr1553bc_list_init

Initialize aList structure (no descriptors) with amaximum number of Major frames supported. The first argument
isapointer to wherethe newly allocated list pointer will be stored. The second argument determines the maximum
number of major frames the List will be able to support.

Thelist isinitialized according to the default configuration.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 84

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

This function will not allocate any memory. Replace this function call with gri553bc list_alloc() if you want the
driver to allocate the memory.

If aNULL pointer is provided, a negative result will be returned.
12.3.9.3. gr1553bc_list_alloc

Dynamically alocate and initialize a List structure (no descriptors) with a maximum number of Major frames
supported. The first argument is a pointer to where the newly alocated list pointer will be stored. The second
argument determines the maximum number of major frames the List will be able to support.

Thelist isinitialized according to the default configuration.

If thelist alocation fails, a negative result will be returned.

12.3.9.4. gr1553bc_list_free

Free aList that has been previoudly allocated with gr 1553bc_Ii st _al | oc().
12.3.9.5. gr1553bc_list_config

This function configures List parameters and associate the list with a BC device. The BC device may be used to
trand ate addresses from CPU address to addresses the GR1553B core understand, therefore the list must not be
scheduled on another BC device.

Some of the List parameters are used when generating descriptors, as global descriptor parameters. For example
all transfer descriptorsto a specific RT result in the same time out settings.

The first argument pointsto alist that is configure. The second argument points to the configuration description,
the third argument identifies the BC device that the list will be scheduled on. The layout of the list configuration
isdescribed in Table 12.11.

12.3.9.6. gr1553bc_list_link_major

At the end of a Major Frame a unconditional jump to the next Major Frame isinserted by the List API. The List
API assumes that a Major Frame should jump to the following Major Frame, however for the last Major Frame
the user must tell the API which frame to jump to. The user may also connect Major frames in a more complex
way, for example Major Frame 0 and 1 is executed only once so the last Mgjor frame jumps to Major Frame 2.

The Mgjor frame indicated by next will be executed after the Major frame indicated by major. A unconditional
jump isinserted to implement the linking.

12.3.9.7. gr1553bc_list_set_major

Major Frames are associated with anumber, aMajor Frame Number. Thisfunction creates an association between
aFrame and a Number, all Mgjor Frames must be assigned a number within aList.

The function will link Major[no-1] and Major[no+1] with the Major frame, the linking can be changed by calling
gr 1553bc_li st _|ink_maj or () after all major frames have been assigned a number.

12.3.9.8. gr1553bc_minor_table_size

Thisfunctionisused internally by the List API, however it can also be used in an application to calcul ate the space
required by descriptors of a Minor Frame.

Thetotal size of all descriptorsin one Minor Frame (in number of bytes) is returned. Descriptors added internally
by the List API are also counted.

12.3.9.9. gr1553bc_list_table_size

Thisfunctionisused internaly by the List API, however it can also be used in an application to calcul ate the total
space required by all descriptors of aList.

Thetotal descriptor size of all Major/Minor Frames of the list (in number of bytes) is returned.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 85

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

12.3.9.10. gr1553bc_list_table_init

The List isinitialized with the new descriptor table, i.e. the software's internal representation is initialized. The
descriptors themselves are not initialized.

The second argument bdt ab_cust omisthe memory area. If NULL the function will fail, if non-zero the value
will be taken asthe base descriptor address. If bit zero is set the address is assumed to be readable by the GR1553B
core, if bit zero is cleared the addressis assumed to be readable by the CPU and translated for the GR1553B core.
Bit zero makes sense to use on a GR1553B core located on a AMBA-over-PCI bus.

This function will not allocate any memory. Replace this function call with gr1553bc list_table alloc() if you
want the driver to allocate the memory.

12.3.9.11. gr1553bc_list_table_alloc

Thisfunction allocates all descriptors needed by aList, either dynamically or by auser provided address. The List
isinitialized with the new descriptor table, i.e. the software's internal representation isinitialized. The descriptors
themselves are not initialized.

The second argument bdt ab_cust omdeterminesthe allocation method. If NULL the API will allocate memory
usingmal | oc(), if non-zero the value will be taken as the base descriptor address. If bit zero is set the address
is assumed to be readable by the GR1553B core, if bit zero is cleared the address is assumed to be readable by
the CPU and trandlated for the GR1553B core. Bit zero makes sense to use on a GR1553B core located on a
AMBA-over-PCl bus.

12.3.9.12. gr1553bc_list_table_free
Free previously allocated descriptor table memory.
12.3.9.13. gr1553bc_list_table_build

This function builds all descriptors in a descriptor list. Unused descriptors will be initialized as empty dummy
descriptors. Jumps between Minor and Major Frames will be created according to user configuration.

After this call descriptors can beinitialized by user.
12.3.9.14. gr1553bc_major_init_skel
Initialize aMajor Frame and it's Minor Frames according to the configuration pointed to by the second argument.

This function will not allocate any memory. Replace this function call with gri55bc_major_alloc_skel() if you
want the driver to allocate the memory.

The configuration of the Major Frame is determined by the gr1553bc_major_cfg structure, described in Ta-
ble 12.10.

On success zero is returned, on failure anegative value is returned.
12.3.9.15. gr1553bc_major_alloc_skel

Allocate and initialize a Major Frame and it's Minor Frames according to the configuration pointed to by the
second argument.

The pointer to the allocated Major Frame is stored into the location pointed to by the major argument.

The configuration of the Mgor Frame is determined by the gri553bc_major_cfg structure, described in Ta
ble 12.10.

On success zero is returned, on failure a negative value is returned.
12.3.9.16. gr1553bc_list_freetime

Minor Frames can be configured to handle time slot allocation. This function returns the number of microseconds
that is left/unused. The second argument mid determines which Minor Frame.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 86

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

12.3.9.17. gr1553bc_slot_alloc

Allocate a Slot from a Minor Frame. The Slot location isidentified by ni d. If the MID identifies a Minor frame
thefirst free dot is allocated within the minor frame.

The resulting MID of the Slot is stored back to mi d, the MID can be used in other function call when setting up
the Slot. Themi d argument is thus of in and out type.

Thethird argument, t i mes| ot , determinesthetime slot that should be allocated to the Slot. If time management
isnot configured for the Minor Frame atime can still be assigned to the Slot. If the Slot should step to the next Slot
directly when finished (no assigned time-slot), the argument must be set to zero. If time management is enabled for
the Minor Frame and the requested time-slot is longer than the free time, the call will result in an error (negative
result).

The fourth and last argument can optionally be used to get the address of the descriptor used.
12.3.9.18. gr1553bc_slot_free

Return Slot and timeslot allocated from the Minor Frame.

12.3.9.19. gr1553bc_mid_from_bd

Looks up the Slot/Message ID (MID) from a descriptor address. This function may be useful in the interrupt
handler, where the address of the descriptor is given.

12.3.9.20. gr1553bc_slot_bd
L ooks up descriptor address from MID.
12.3.9.21. gr1553bc_slot_irq_prepare

Prepares a condition descriptor to generate interrupt. Interrupt will not be enabled until
gr 1553bc_sl ot _i rg_enabl e() is called. The descriptor will be initialized as an unconditional jump to
the next descriptor. The Slot can be associated with a custom callback function and an argument. The callback
function and argument is stored in the unused fields of the descriptor.

Once enabled and interrupt is generated by the Slot, the callback routine will be called from interrupt context.
The function returns a negative result if failure, otherwise zero is returned.
12.3.9.22. gr1553bc_slot_irq_enable

Enables interrupt of a previously prepared unconditional jump Slot. The Slot is expected to be initialized with
gr 1553bc_sl ot _irqg_prepare() . Thedescriptor is changed to do a unconditional jump with interrupt.

The function returns a negative result if failure, otherwise zero is returned.
12.3.9.23. gr1553bc_slot_irg_disable

Disable unconditional IRQ point, the descriptor is changed to unconditional JUMP to the following descriptor,
without generating interrupt. After disabling the Slot it can be enabled again, or freed.

The function returns a negative result if failure, otherwise zero is returned.
12.3.9.24. gr1553bc_slot_jump
Initialize a Slot with a custom jump condition. The arguments are declared in the table below.

Table 12.12. gr1553bc_list_cfg member descriptions.

Argument Description
list List that the Slot is located at.
ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 87

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Argument Description

mid Slot Identification.

condition Custom condition written to descriptor. See hardware documentation for
options.

to_mid Slot Identification of the Slot that the descriptor will be jumping to.

Returns zero on success.
12.3.9.25. gr1553bc_slot_exttrig

The BC supports an external trigger signal input which can be used to synchronize 1553 transfers. If used, the
externa trigger is normally generated by some kind of Time Master. A message slot may be programmed to
wait for an external trigger before being executed, this feature allows the user to accurate send time synchronize
messagesto RTs.

This function initializes a Slot to a dummy transfer with the "Wait for external trigger" bit set.
Returns zero on success.
12.3.9.26. gr1553bc_slot_transfer

Initializes a descriptor to atransfer descriptor. The descriptor isinitialized according to the function arguments an
theglobal List configuration parameters. The settingsthat are controlled on aglobal level (and not by thisfunction):

¢ |RQ after transfer error

* IRQ after transfer (not supported, insert separate IRQ slot after this)

* Pause schedule after transfer error

 Pause schedule after transfer (not supported)

« Slot time optional (set when MID allocated), otherwise O

e (OPTIONAL) Dummy Bit, set using slot_empty() or ... TT_DUMMY

« RT time out tolerance (managed per RT)

The arguments are declared in the table below.

Table 12.13. gr1553bc_dlot_transfer argument descriptions.

Argument Description
list List that the Slot islocated at
mid Slot Identification
options Options:
* Retry Mode

* Number of retires
» Busselection (A or B)
e Dummy bit

tt Transfer options, see BC transfer type macros in header file:
* transfer type

e RT src/dst address

* RT subaddress

 word count

* mode code

dptr Descriptor Data Pointer. Used by Hardware to read or write datato the 1553 bus. If bit zero is
set the address is trandlated by the driver into an address which the hardware can access(may
be the case if BC deviceislocated on an AMBA-over-PCl bus), if cleared it is assumed that
no trangation is required(typical case)

Returns zero on success.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 88

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

12.3.9.27. gr1553bc_slot_dummy
Manipulate the DUMMY hit of atransfer descriptor. Can be used to enable or disable atransfer descriptor.

The durmmy argument points to an area used as input and output, asinput bit 31 iswritten to the dummy bit of the
descriptor, as output the old value of the descriptors dummy bit is written.

Returns zero on success.

12.3.9.28. gr1553bc_slot_empty

Create an empty transfer descriptor, with the DUMMY bit set. The time-slot previously allocated is preserved.
Returns zero on success.

12.3.9.29. gr1553bc_slot_update

This function will update a transfer descriptors status and/or update the data pointer.

If thedpt r pointer is non-zero the Data Pointer word of the descriptor will be updated with the value of dpt r .
If bit zero is set the driver will translate the data pointer address into an address accessible by the BC hardware.
Trandlation is an option only for AMBA-over-PCI.

If thest at pointer isnon-zero the Statusword of the descriptor will be updated according to the content of st at .
The old Status will be stored into st at . The lower 24-bits of the current Status word may be cleared, and the
dummy bit may be set:

bd->status = *stat & (bd->status Oxffffff) | (*stat & 0x80000000);

Note that the status word is not written (only read) when value pointed to by st at iszero.
Returns zero on success.

12.3.9.30. gr1553bc_slot_raw

Custom descriptor initialization. Note that a bad initialization may break the BC driver.
The arguments are declared in the table below.

Table 12.14. gr1553bc_slot_transfer argument descriptions.

Argument Description

list List that the Slot islocated at

mid Slot Identification

flags Determine which words are updated. If bit N is set wordN is written into descriptor wordN, if
bit N is zero the descriptor wordN is not modified.

wordO 32-bit Word written to descriptor address 0x00

wordl 32-bit Word written to descriptor address 0x04

word2 32-bit Word written to descriptor address 0x08

word3 32-bit Word written to descriptor address 0x0C

Returns zero on success.
12.3.9.31. gr1553bc_show_list

Print information about a List to standard out. Each Major Frame's first descriptor for example is printed. This
function is used for debugging only.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 89

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

13. GR1553B Remote Terminal Driver

13.1. Introduction

This section describes the GRLIB GR1553B Remote Terminal (RT) device driver interface. The driver relies on
the GR1553B driver. The reader is assumed to be well acquainted with MIL-STD-1553 and the GR1553B core.

13.1.1. GR1553B Remote Terminal Hardware

The GR1553B core supportsany combination of the Bus Controller (BC), BusMonitor (BM) and Remote Terminal
(RT) functionality. This driver supports the RT functionality of the hardware, it can be used simultaneously with
the Bus Monitor (BM) functionality. When the BM is used together with the RT interrupts are shared between
thedrivers.

The three functions (BC, BM, RT) are accessed using the same register interface, but through separate registers.
In order to shared hardware resources between the three GR1553B drivers, the three depends on a lower level
GR1553B driver, see GR1553B driver section.

The driver supports the on-chip AMBA bus and the AMBA-over-PCI bus.

13.1.2. Driver registration

The driver registration is handled by the GR1553B driver, see Chapter 11.
13.2. User Interface

13.2.1. Overview

The RT software driver provides accessto the RT core and help with creating memory structures accessed by the
RT core. Thedriver provides the services list below,

e Basic RT functionality (RT address, Busand RT Status, Enabling core, etc.)

« Event logging support

* Interrupt support (Global Errors, Data Transfers, Mode Code Transfer)

* DMA-Memory configuration

* Sub Address configuration

« Support for Mode Codes

e Transfer Descriptor List Management per RT sub address and transfer type (RX/TX)

Thedriver sourcesand definitions arelisted in the table below, the path isgiven rel ative to the extracted distribution
archive.

Table 13.1. RT driver Source location

Filename Description
src/libdrv/sre/gr1553b/gris53rt.c GR1553B RT Driver source
src/libdrv/src/include/gri553rt.h GR1553B RT Driver interface declaration

13.2.1.1. Accessing an RT device

In order to access an RT core, a specific core must be identified (the driver support multiple devices). The core
is opened by calling gr 1553rt _open() , the open function allocates an RT device by calling the lower level
GR1553B driver and initializes the RT by stopping al activity and disabling interrupts. After an RT has been
opened it can be configured gr 1553rt _confi g_i ni t (), SA-table configured, descriptor lists assigned to
SA, interrupt callbacksregistered, and finally communication started by callinggr 1553rt _st art () . Oncethe
RT is started interrupts may be generated, data may be transferred and the event log filled. The communication
can be stopped by calling gr 1553rt _stop() .

When the application no longer needs to access the RT core, the RT is closed by calling gr 1553rt _cl ose() .

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 90

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

13.2.1.2. Introduction to the RT Memory areas

For the RT there are four different types of memory areas. The access to the areas is much different and involve
different latency requirements. The areas are:

e Sub Address (SA) Table

« Buffer Descriptors (BD)

« Databuffers referenced from descriptors (read or written)

« Event (EV) logging buffer

The memory types are described in separate sections below. Generally three of the areas (controlled by the driver)
can bedynamically allocated by the driver or assigned to acustom location by the user. Assigning acustom address
is typically useful when for example a low-latency memory is required, or the GR1553B core is located on an
AMBA-over- PCI bus where memory accesses over the PCl bus will not satisfy the latency requirements by the
1553 bus, instead amemory local to the RT core can be used to shorten the accesstime. Note that when providing
custom addresses the alignment requirement of the GR1553B core must be obeyed, which isdifferent for different
areas and sizes. The memory areas are configured using thegr 1553rt _confi g_i ni t () function.

13.2.1.3. Sub Address Table

The RT core provides the user to program different responses per sub address and transfer type through the sub
address table (SA-table) located in memory. The RT core consult the SA-table for every 1553 data transfer com-
mand on the 1553 bus. The table includes options per sub address and transfer type and a pointer to the next
descriptor that let the user control the location of the data buffer used in the transaction. See hardware manual
for a compl ete description.

The SA-tableisfixed size to 512 bytes.

Since the RT is required to respond to BC request within a certain time, it is vital that the RT has enough time
to look up user configuration of atransfer, i.e. read SA-table and descriptor and possibly the data buffer as well.
The driver provides a way to let the user give a custom address to the sub address table or dynamically alocate
it for the user. The default action isto let the driver dynamically allocate the SA-table, the SA-table will then be
located in the main memory of the CPU. For RT core's located on an AMBA-over- PCI bus, the default action is
not acceptable due to the latency requirement mentioned above.

The SA-table can be configured per SA by callingthegr 1553rt _sa_set opt s() function. The mask argu-
ment makes it possible to change individual bit in the SA configuration. This function must be called to enable
transfers from/to a sub address. See hardware manual for SA configuration options. Descriptor Lists are assigned
toaSA by calinggr 1553rt _|ist_sa().

Theindication service can be used to determine the descriptor used in the next transfer, see Section 13.2.1.8.
13.2.1.4. Descriptors

A GR1553B RT descriptor is located in memory and pointed to by the SA-table. The SA-table points out the
next descriptor used for a specific sub address and transfer type. The descriptor contains three input fields: Con-
trol/Status Word determines options for a specific transfer ans status of a completed transfer; Data buffer pointer,
16-bit aligned; Pointer to next descriptor within sub address and transfer type, or end-of-list marker.

All descriptors are located in the same range of memory, which the driver refers to as the BD memory. The
BD memory can by dynamically alocated (located in CPU main memory) by the driver or assigned to a custom
location by the user. From the BD memory descriptors for all sub addresses are allocated by the driver. The driver
works internally with 16-bit descriptor identifiers allowing 65k descriptor in total. A descriptor is allocated for a
specific descriptor List. Each descriptor takes 32 bytes of memory.

The user can build and initialize descriptors using the API function gr 1553rt _bd_i ni t () and update the
descriptor and/or view the status and time of a completed transfer.

Descriptors are managed by a data structure named gr 1553rt _| i st . A List is the software representation of
a chain of descriptors for a specific sub address and transfer type. Thus, 60 lists in total (two lists per SA, SAO
and SA31 are for mode codes) per RT. The List simplifies the descriptor handling for the user by introducing
descriptor numbers (ent r y_no) used when referring to descriptors rather than the descriptor address. Up to 65k
descriptors are supported per List by the driver. A descriptor list is assigned to a SA and transfer type by calling
gr1553rt _list_sa().

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 91

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

When alList is created and configured a maximal number of descriptors are given, giving the APl a possibility to
allocate the descriptors from the descriptor memory area configured.

Circular buffers can be created by a chain of descriptors where each descriptors data buffer is one element in the
circular buffer.

13.2.1.5. Data Buffers

Data buffers are not accessed by the driver at al, the address is only written to descriptor upon user request. Itis
up to the user to provide the driver with valid addresses to data buffers of the required length.

Note that addresses given must be accessible by the hardware. If the RT coreislocated on a AMBA-over-PCl bus
for example, the address of a data buffer from the RT core's point of view is most probably not the same as the
address used by the CPU to access the buffer.

13.2.1.6. Event Logging

Transfer events (Transmission, Reception and Mode Codes) may be logged by the RT core into a memory area
for (later) processing. The events logged can be controlled by the user at a SA transfer type level and per mode
code through the Mode Code Control Register.

The driver API access the eventlog on two occasions, either when the user reads the eventlog buffer using the
gr 1553rt _evl og_read() function or from theinterrupt handler, see the interrupt section for more informa-
tion. Thegr 1553rt _evl og_read() functionis called by the user to read the eventlog, it smply copies the
current logged entriesto a user buffer. The user must empty the driver eventlog in time to avoid entriesto be over-
written. A certain descriptor or SA may be logged to help the application implement communication protocols.

Theeventlog istypically sized depending the frequency of thelog input (logged transfers) and the frequency of the
log output (task reading the log). Every logged transfer is described with a 32-bit word, making it quite compact.

Thememory of the eventlog does not require astight latency requirement asthe SA-table and descriptors. However
the user still isprovided the ability to put the eventlog at acustom address, or letting the driver dynamically allocate
it. When providing a custom address the start address is given, the area must have room for the configured number
of entries and have the hardware required alignment.

Note that the alignment requirement of the eventlog varies depending on the eventlog length.
13.2.1.7. Interrupt service

The RT core can be programmed to interrupt the CPU on certain events, transfers and errors (SA-tableand DMA).
The driver divides transfers into two different types of events, mode codes and data transfers. The three types of
events can be assigned custom callbacks called from the driver's interrupt service routine (ISR), and custom argu-
ment can be given. The callbacks are registered per RT device using the functionsgr 1553rt _irqg_err (),
gr1553rt _irqg_nc(), grl1553rt_irqg_sa().Notethat thethree different callbacks have different argu-
ments.

Error interrupts are discovered in the ISR by looking at the IRQ event register, they are handled first. After the
error interrupt has been handled by the user (user interaction is optional) the RT coreis stopped by the driver.

Data transfers and Mode Code transfers are logged in the eventlog. When atransfer-triggered interrupt occurs the
ISR starts processing the event log from the first event that caused the IRQ (determined by hardware register)
calling themode code or datatransfer callback for each event in thelog which hasgenerated an | RQ (determined by
the IRQSR hit). Even though both the | SR and the eventlog read functionr 1553rt _evl og_r ead() processes
the eventlog, they are completely separate processes - one does not affect the other. It is up to the user to make
sure that events that generated interrupt are not double processed. The callback functions are called in the same
order as the event was generated.

Isis possible to configure different callback routines and/or arguments for different sub addresses (1..30) and
transfer types (RX/TX). Thus, 60 different callback handlers may be registered for data transfers.

13.2.1.8. Indication service

The indication service is typically used by the user to determine how many descriptors have been processed by
the hardware for a certain SA and transfer type. The gr 1553rt _i ndi cat i on() function returns the next

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 92

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

descriptor number which will be used next transfer by the RT core. The indication function takes a sub address
and an RT device as input, By remembering which descriptor was processed last the caller can determine how
many and which descriptors have been accessed by the BC.

13.2.1.9. Mode Code support

The RT core anumber of registersto control and interact with mode code commands. See hardware manual which
mode codes are available. Each mode code can be disabled or enabled. Enabled mode codes can belogged and in-
terrupt can be generated upon transmission events. Thegr 1553rt _confi g_i ni t () functionisused to con-
figure the aforementioned mode code options. Interrupt caused by mode code transmissions can be programmed
to call the user through an callback function, see the interrupt Section 13.2.1.7.

The mode codes " Synchronization with data’, " Transmit Bit word" and "Transmit Vector word" can be interacted
with through a register interface. The register interface can be read with the gr 1553rt _st at us() function
and selected (or al) hits of the bit word and vector word can be written using gr 1553rt _set _vecwor d()
function.

Other mode codes can interacted with using the Bus Status Register of the RT core. The register
can be read using the gr 1553rt _status() function and written selectable bit can be written using
gr 1553rt _set _bussts().

13.2.1.10. RT Time

TheRT core hasaninternal time counter with aconfigurabletimeresolution. Thefinest timeresolution of thetimer
counter is one microsecond. Theresolutionisconfigured usingthegr 1553rt _confi g_i ni t () function. The
current timeisread by calling thegr 1553rt _st at us() function.

13.2.2. Application Programming Interface

The RT driver API consists of the functionsin the table below.

Table 13.2. Data structures

Prototype Description

void *gr1553rt_open(int mnor) Open an RT device by instance number. Returns a handle identifying
the specific RT device. The handleis given as input in most func-
tions of the AP

void gri1553rt_close(void *rt) Close a previously opened RT device
int gr 1$§3rtt_00nf Pg_init(Configure the RT devicedriver
void *rt,

struct gr1553rt_cfg *cfg)

Configure the RT device driver and allo-
cate device memory

int gr1553rt_config_free(void *rt) Free dlocated device memory
int gris553rt_start(void *rt) Start RT communication, enables Interrupts
void gri1553rt_stop(void *rt) Stop RT communication, disablesinterrupts
void gr (11553: t_status(Get Time, BUusRT Status and mode code status
Vol *rt,
struct gr1553rt_status *status)
int gr ;353r:_i ndi cati on(Get the next descriptor that will processed of an RT sub-address and
Vol *rt,
int subadr, transfer type
int *txeno,
int *rxeno)
int gr _1353f:_e\/' 0g_read(Copy contents of event log to a user provided data buffer
void *rt,
unsi gned int *dst,
int max)
void 9_f3553:t_59t —vecwor d(Set al or a selection of hitsin the Vector word and Bit word used by
Vol *rt, n . . " " H n
unsi gned int nask, the "Transmit Bit word" and "Transmit Vector word" mode codes

unsi gned i nt words)

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 93

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

unsi gned int nask,
unsi gned int sts)

Prototype Description
voi d gr(11553:t_set _bussts(Modify a selection of bitsin the RT Bus Status register
void *rt,

voi d gr1553rt_sa_setopts(
void *rt,
int subadr,
unsi gned int nmask,
unsi gned int options)

Configures a sub address control word located in the SA-table.

void gr1553rt_list_sa(
struct gr1553rt_list *list,
int *subadr,
int *tx)

Get the Sub address and transfer type of a scheduled list

voi d gr1553rt_sa_schedul e(
void *rt,
int subadr,
int tx,
struct gr1553rt_list *list)

Schedule a RX or TX descriptor list on a sub address of a certain
transfer type

int gr1553rt_irq_err(
void *rt,
gr1553rt_irgerr_t func,
voi d *dat a)

Assign an Error Interrupt handler callback routine and custom argu-
ment

int gr1553rt_irq_nc(
void *rt,
gr1553rt_irgnc_t func,
voi d *data)

Assign aMode Code Interrupt handler callback routine and custom
argument

int gr1553rt_irqg_sa(
void *rt,
int subadr,
int tx,
gri1553rt_irqg_t func,
voi d *data)

Assign a Data Transfer Interrupt handler callback routine and custom
argument to a certain sub address and transfer type

int gri553rt_list_init(
void *rt,
struct gr1553rt_list **plist,
struct gr1553rt_list_cfg *cfg)

Initialize a descriptor List according to configuration. The List can
be used for RX/TX on any sub address.

int gr1553rt_list_alloc(
void *rt,
struct gri1553rt_list **plist,
struct gr1553rt_list_cfg *cfg)

Initialize and allocate a descriptor List according to configuration.
The List can be used for RX/TX on any sub address.

int gr1553rt_bd_init(
struct gr1553rt_list *list,
unsi gned short entry_no,
unsi gned int flags,
uint16_t *dptr,
unsi gned short next)

Initialize a Descriptor in aList identified by number.

int gri1553rt_bd_updat e(
struct gr1553rt_list *list,
int entry_no,
unsi gned int *status,
uint16_t **dptr)

Update the status and/or the data buffer pointer of a descriptor.

13.2.2.1. Data structures

Thegr 1553rt _cf g datastructureisused to configurean RT device. The configuration parametersare described

in the table below.

struct gri553rt_cfg {
unsi gned char rtaddress;
unsi gned i nt nodecode;
unsi gned short tinme_res;
void *satab_buffer;
void *evl og_buffer;
int evlog_size;
int bd_count;
voi d *bd_buffer;
void *bd_sw buffer;

I

Table 13.3. gr1553rt_cfg member descriptions

M ember Description
rtaddress RT Address on 1553 bus[0..30]
ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 94

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

M ember Description

modecode Mode codesenabl e/ di sabl e/ | RQ' EV- Log. Each mode code has a 2-bit configura-
tion field. Mode Code Control Register in hardware manual

time_res Time tag resolution in microseconds

satab_buffer Sub Address Table (SA-table) allocation setting. Can be dynamically allocated (zero) or
custom location (non-zero). If custom location of SA-tableis given, the address must be
aigned to 10-bit (1KiB) boundary and at least 16* 32 bytes.

evlog_buffer Eventlog DMA buffer allocation setting. Can be dynamically allocated (zero) or cus-
tom location (non-zero). If custom location of eventlog is given, the address must be of
evl og_si ze andalignedtoevl og_si ze. See hardware manual.

evlog_size Length in bytes of Eventlog, must be a multiple of 2. If set to zero event log is disabled,
note that enabling logging in SA-table or descriptors will cause failure when eventlog is
disabled.

bd_count Number of descriptorsfor RT device. All descriptor lists share the descriptors. Maximum
is65K descriptors.

bd_buffer Descriptor memory area all ocation setting. Can be dynamically allocated (zero) or custom
location (non-zero). If custom location of descriptorsis given, the address must be aligned
to32bytesand of (32 * bd_count) bytessize.

bd_sw_buffer Descriptor memory area allocation for internal usage. Can be dynamically allocated (zero)
or custom location (non-zero). If custom location of descriptorsis given, the area must be
of (4 * bd_count) bytessize.

Thegr 1553rt _|i st _cf g datastructure hold the configuration parameters of a descriptor List.

struct gr1553rt_list_cfg {
unsigned int bd_cnt;

b

Table 13.4. gr1553rt_list_cfg member descriptions

M ember

Description

bd_cnt

Number of descriptorsin List

The current status of the RT core is stored in the gr 1553rt st at us data structure by the function
gr1553rt_status(). The fields are described below.

struct gr1553rt_status {

unsi gned int status;
unsi gned int bus_status;
unsi gned short synctine;
unsi gned short syncword;
unsi gned short time_res;
unsi gned short tinmne;

s
Table 13.5. gr1553rt_status member descriptions

Member Description

status Current value of RT Status Register

bus status Current value of RT Bus Status Register

synctime Time Tag when last synchronize with data was received

syncword Data of last mode code synchronize with data

time res Time resolution in microseconds (set by config)

time Current TimeTag. (ti ne_res * tinme) givesthe number of microsec-
onds since last time overflow.

13.2.2.2. gr1553rt_open

Opens a GR1553B RT device identified by instance number, m nor . The instance number is determined by the
order in which GR1553B cores with RT functionality are found, the order of the Plug & Play.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 95

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

A handle is returned identifying the opened RT device, the handle is used internally by the RT driver, it is used
as an input parameter rt to al other functions that manipulate the hardware.

Close and Stop an RT deviceidentified by input argument rt previously returned by gr 1553rt_open().
13.2.2.3. gr1553rt_close

Close and Stop an RT deviceidentified by input argument rt previously returned by gr 1553rt_open().
13.2.2.4. gr1553rt_config_init

Configure memory for an RT device. The configuration parameters are stored in the location pointed to by cf g.
The layout of the parameters must follow thegr 1553rt _cf g data structure, described in Table 13.3.

This function will not alocate any memory. Replace this function call with gr1553rt_config_alloc() if you want
the driver to allocate memory. If any of the data pointersare NULL, then thisfunction will return anegative result.
On success zero is returned.

13.2.2.5. gr1553rt_config_alloc

Configure and allocate memory for an RT device. The configuration parameters are stored in the location pointed
toby cf g. Thelayout of the parameters must follow thegr 1553rt _cf g datastructure, described in Table 13.3.

If memory allocation fails (in case of dynamic memory allocation) the function return anegative result, on success
zerois returned.

13.2.2.6. gr1553bm_config_free
Free allocated memory.
13.2.2.7. gr1553rt_start

Starts RT communication by enabling the core and enabling interrupts. The user must have configured the driver
(RT address, Mode Code, SA-table, lists, descriptors, etc.) before calling this function.

After the RT has been started the configuration function can not be called.
On success this function returns zero, on failure a negative result is returned.
13.2.2.8. gr1553rt_stop

Stops RT communication by disabling the core and disabling interrupts. Further 1553 commands to the RT will
be ignored.

13.2.2.9. gr1553rt_status

Read current status of the RT core. The statusiswritten to thelocation pointed to by statusin the format determined
by thegr 1553rt _st at us structure described in Table 13.5.

13.2.2.10. gr1553rt_indication

Get the next descriptor that will be processed for a specific sub address. The descriptor number islooked up from
the descriptor address found the SA-table for the sub address specified by subadr argument.

The descriptor number of respective transfer type (RX/TX) will be written to the address given by t xeno and/or
r xeno. If end-of-list has been reached, -1 is stored intot xeno or r xeno.

If therequest issuccessful zeroisreturned, otherwise anegative number isreturned (bad sub address or descriptor).
13.2.2.11. gr1553rt_evlog_read

Copy up to max number of entries from eventlog into the address specified by dst . The actual number of entries
read isreturned. It isimportant to read out the eventlog entriesin time to avoid dataloss, the eventlog can be sized
so that dataloss can be avoided.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 96

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Zero isreturned when entries are available in the log, negative on failure.
13.2.2.12. gr1553rt_set_vecword

Set a selection of bitsin the RT Vector and/or Bit word. The words are used when,

» Vector Word is used in response to " Transmit vector word" BC commands
e Bit Word is used in response to "Transmit bit word" BC commands

The argument mask determines which bits are written, and wor ds determines the value of the bits written. The
lower 16-bits are the Vect or Wor d, the higher 16-bits are the Bit Word.

13.2.2.13. gr1553rt_set_bussts

Set a selection of bits of the Bus Status Register. The bits written is determined by the mask bit-mask and the
values written is determined by st s. Operation:

bus_status_reg = (bus_status_reg & ~mask) | (sts & mask)

13.2.2.14. gr1553rt_sa_setopts

Configure individua bits of the SA Control Word in the SA-table. One may for example Enable or Disable a SA
RX and/or TX. See hardware manual for SA-Table configuration options.

Themask argument isabit-mask, it determineswhich bitsarewritten and opt i ons determinesthevaluewritten.
Thesubadr argument selects which sub address is configured.

Note that SA-table is all zero after configuration, every SA used must be configured using this function.
13.2.2.15. gr1553rt_list_sa

This function looks up the SA and the transfer type of the descriptor list given by | i st . The SA is stored into
subadr , the transfer typeiswritteninto t x (TX=1, RX=0).

13.2.2.16. gr1553rt_sa_schedule

This function associates a descriptor list with a sub address (given by subadr) and atransfer type (given by t x).
Thefirst descriptor in the descriptor list iswritten to the SA-table entry of the SA.

13.2.2.17. gr1553rt_irq_err

his function registers an interrupt callback handler of the Error Interrupt. The handler f unc is called with the
argument data when a DMA error or SA-table access error occurs. The callback must follow the prototype of
gr1553rt _irqgerr _t

typedef void (*gr1553rt_irqerr_t)(int err, void *data);

Whereer r isthevalue of the GR1553B IRQ register at thetimethe error was detected, it can be used to determine
what kind of error occurred.

13.2.2.18. gr1553rt_irq_mc

This function registers an interrupt callback handler for Logged Mode Code transmission Interrupts. The han-
dler f unc is called with the argument data when a Mode Code transmission event occurs, note that inter-
rupts must be enabled per Mode Code using gr 1553rt_config_init(). The callback must follow the prototype of
gr1553rt _irqgnc_t:
typedef void (*gr1553rt_irqgnc_t)(

int ncode,

unsigned int entry,
void *data

)i
Where ntode is the mode code causing the interrupt, entry isthe raw event log entry.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 97

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

13.2.2.19. gr1553rt_irg_sa

Register aninterrupt callback handler for datatransfer triggered Interrupts, it is possibleto assign aunique function
and/or datafor every SA (given by subadr) and transfer type (given by t x). The handler f unc iscalled with the
argument dat a when a data transfer interrupt event occurs. Interrupts is configured on a descriptor or SA basis.
The callback routine must follow the prototype of gri553rt_irq t:
typedef void (*gr1553rt_irq_t)(

struct gr1553rt_list *list,

unsigned int entry,

int bd_next,
void *data

),

Wherel i st indicateswhich descriptor list (Sub Address, transfer type) caused theinterrupt event, ent r y isthe
raw event log entry, bd_next isthe next descriptor that will be processed by the RT for the next transfer of the
same sub address and transfer type.

13.2.2.20. gr1553rt_list_init

Configurealist structure according to configuration givenincf g, seethegr 1553rt _| i st _cf g datastructure
inTable 13.4. Assignthelist to an RT device, however not to asub addressyet. Ther t handleisstored withinlist.

This function will not allocate any memory. Replace this function call with gr1553rt_list_alloc() if you want the
driver to allocate the memory.

Note that descriptor are allocated from the RT device, so the RT device itself must be configured using
gr 1553rt _config_i nit () beforecalling thisfunction.

A negative number is returned on failure, on success zero is returned.
13.2.2.21. gr1553rt_list_alloc

Allocate and configure alist structure according to configuration givenin cf g, seethegr 1553rt _|i st _cfg
data structure in Table 13.4. Assign the list to an RT device, however not to a sub address yet. Thert handle
is stored within list.

The resulting descriptor list is written to the location indicated by the pl i st argument.

Note that descriptor are allocated from the RT device, so the RT device itself must be configured using
gr1553rt _config_al | oc() beforecalling thisfunction.

A negative number is returned on failure, on success zero is returned.
13.2.2.22. gr1553rt_bd_init

Initialize adescriptor entry in alist. Thisistypically done prior to scheduling the list. The descriptor and the next
descriptor isgiven by descriptor indexesrelativetothelist (entry_no and next), seetable below for options
onnext . Set bit 30 of theargument f | ags in order to set the IRQEN bit of the descriptors Control/Status Word.
The argument dpt r iswritten to the descriptors Data Buffer Pointer Word.

Note that the data pointer is accessed by the GR1553B core and must therefore be avalid addressfor the core. This
isonly anissueif the GR1553B coreislocated on a AMBA- over-PCl bus, the address may need to be translated
from CPU accessible address to hardware accessible address.

Table 13.6. gr1553rt_bd_init next argument description

Values of next Description

Oxffff Indicate to hardware that thisis the last entry in the list, the next descriptor
is set to end-of-list mark (0x3).

Oxfffe Next descriptor (entry_no+1) or O islast descriptor inlist.

other The index of the next descriptor.

A negative number is returned on failure, on success a zero is returned.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 98

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

13.2.2.23. gr1553rt_bd_update

Manipulate and read the Control/Status and Data Pointer words of a descriptor.

If st at us isnon-zero, the Control/Status word is swapped with the content pointed to by st at us.
If dpt r isnon-zero, the Data Pointer word is swapped with the content pointed to by dpt r .

A negative number is returned on failure, on success a zero is returned.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 99

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

14. GR1553B Bus Monitor Driver

14.1. Introduction

This section describes the GRLIB GR1553B Bus Monitor (BM) device driver interface. The driver relies on the
GR1553B driver. The reader is assumed to be well acquainted with MIL-STD-1553 and the GR1553B core.

14.1.1. GR1553B Remote Terminal Hardware

The GR1553B core supportsany combination of the Bus Controller (BC), BusMonitor (BM) and Remote Terminal
(RT) functionality. This driver supports the BM functionality of the hardware, it can be used simultaneously
with the RT or BC functionality, but not both simultaneously. When the BM is used together with the RT or BC
interrupts are shared between the drivers.

The three functions (BC, BM, RT) are accessed using the same register interface, but through separate registers.
In order to shared hardware resources between the three GR1553B drivers, the three depends on a lower level
GR1553B driver, see GR1553B driver section.

The driver supports the on-chip AMBA bus and the AMBA-over-PCI bus.
14.1.2. Driver registration

The driver registration is handled by the GR1553B driver, see Chapter 11.
14.2. User Interface

14.2.1. Overview

The BM software driver provides access to the BM core and help with accessing the BM log memory buffer. The
driver provides the services list below,

» Basic BM functionality (Enabling/Disabling, etc.)

« Filtering options

* Interrupt support (DMA Error, Timer Overflow)

¢ 1553 Timer handling

« Read BM log

Thedriver sourcesand definitions arelisted in the table below, the path isgiven rel ative to the extracted distribution
archive.

Table 14.1. BM driver Source location

Filename Description
src/libdrv/src/gr1553b/gr1553bm.c GR1553B BM Driver source
src/libdrv/src/include/gr1553bm.h GR1553B BM Diriver interface declaration

14.2.1.1. Accessing a BM device

In order to access a BM core a specific core must be identified (the driver support multiple devices). The core
is opened by calling gr 1553bm _open() , the open function allocates a BM device by calling the lower level
GR1553B driver and initializes the BM by stopping all activity and disabling interrupts. After a BM has been
opened it can be configured gr 1553bm confi g_i ni t () andthen started by callinggr 1553bm start ().
Once the BM is started the log isfilled by hardware and interrupts may be generated. The logging can be stopped
by calling gr 1553bm st op() .

When the application no longer needs to access the BM driver services, the BM is closed by calling
gr 1553bm cl ose() .

14.2.1.2. BM Log memory

The BM log memory is written by the BM hardware when transfers matching the filters are detected. Each com-
mand, Status and Data 16-bit word takes 64-bits of space in the log, into the first 32-bits the current 24-bit 1553

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 100

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

timer is written and to the second 32-bit word status, word type, Bus and the 16-bit data is written. See hardware
manual.

The BM log DMA-area can be dynamically allocated by the driver or assigned to a custom location by the user.
Assigning a custom address is typically useful when the GR1553B core is located on an AMBA-over-PCl bus
where memory accesses over the PCl bus will not satisfy the latency requirements by the 1553 bus, instead a
memory local to the BM core can be used to shorten the access time. Note that when providing custom addresses
the 8-byte alignment requirement of the GR1553B BM core must be obeyed. The memory areas are configured
using the gr 1553bm confi g() function.

14.2.1.3. Accessing the BM Log memory

The BM Log is filled as transfers are detected on the 1553 bus, if the log is not emptied in time the log may
overflow and dataloss will occur. The BM log can be accessed with the functions listed below.

e gr1553bm_available()

e gr1553bm_read()

A custom handler responsible for copying the BM log can be assigned in the configuration of the driver. The
custom routine can be used to optimize the BM log read, for example one may not perhaps not want to copy al
entries, search the log for a specific event or compress the log before storing to another location.

14.2.1.4. Time

Th BM core has a 24-bit time counter with a programmable resolution through the
gr 1553bm confi g_i ni t () function. Thefinest resolution isamicrosecond. The BM driver maintains a 64-
bit 1553 time. The time can be used by an application that needs to be able to log for along time. The driver must
detect every overflow in order maintain the correct 64-bit time, the driver gives users two different approaches.
Either the timer overflow interrupt is used or the user must guarantee to call the gr 1553bm ti me() function
at least once before the second time overflow happens. The timer overflow interrupt can be enabled from the
gr 1553bm config_i nit () function.

The current 64-bit time can be read by calling gr 1553bm ti me() .

The application can determine the 64-bit time of every log entry by emptying the complete log at least once per
timer overflow.

14.2.1.5. Filtering

The BM core has support for filtering 1553 transfers. The filter options can be controlled by fields in the config-
uration structure givento gr 1553bm config_init().

14.2.1.6. Interrupt service

The BM core can interrupt the CPU on DMA errors and on Timer overflow. The DMA error is unmasked by the
driver and the Timer overflow interrupt is configurable. For the DMA error interrupt a custom handler may be
installed throughthegr 1553bm confi g_i ni t () function. On DMA error the BM logging will automatically
be stopped by acall togr 1553bm st op() from withinthe ISR of the driver.

14.2.2. Application Programming Interface
The BM driver API consists of the functionsin the table below.

Table 14.2. function prototypes

Prototype Description

void *gr1553bmopen(int mnor) | OpenaBM device by instance number. Returns a handle identifying the
specific BM device opened. The handle is given asinput parameter bmin
al other functions of the API

voi d gr1553bm cl ose(void *bm C|O$apreviou§y openaj BM device

int gri1553bm config_init(Configure the BM device driver BM log DMA-memory

void *bm
struct gr1553bmcfg *cfg)

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 101

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
Prototype Description
int gr ,13532"1_00”” g_alloc(Configure the BM device driver and allocate BM log DMA-memory
void *bm
struct gr1553bmcfg *cfg)
voi d gr1553bm config_free(void *bnfFree allocated memory
int gri5s3bmstart(void *bm Start BM logging, enables Interrupts
voi d gr1553bm st op(voi d *bm Stop BM logging, disablesinterrupts
void gr (1155gbm_t i me(Get 1553 64-bit Time maintained by the driver. The lowest 24-bits are tak-
void *bm

en directly from the BM timer register, the most significant 40-bits are tak-
en from a software counter.

uint64_t *tine)

int 3;?35322_3\/& I abl e(The current number of entriesin thelog isstored intonent ri es.
int *nentries)

int 3;12532? ead(Copy contents a maximum number (max) of entries from the BM ng to
struct gr1553bmentry *dst, |@USer provided data buffer (dst). The actual number of entries copied is

int *max) stored into max.

14.2.2.1. Data structures

Thegr 1553bm cf g data structure is used to configure the BM device and driver. The configuration parameters
are described in the table below.

struct gr1553bmconfig {
uint8 t tinme_resolution;
int time_ovf_irq;
unsigned int filt_error_options;
unsigned int filt_rtadr;
unsigned int filt_subadr;
unsigned int filt_nt;
unsi gned int buffer_size;
voi d *buffer_custom
bntopy_func_t copy_func;
voi d *copy_func_arg;
brisr_func_t dma_error _isr;
void *dma_error_arg;

s

Table 14.3. gr1553bm_config member descriptions.

M ember Description

time_resolution 8-hit time resolution, the BM will update the time according to this setting. 0 will make
the time tag be of highest resolution (no division), 1 will make the BM increment the time
tag once for two time ticks (div with 2), etc.

time ovf_irq Enable Time Overflow IRQ handling. Setting thisto 1 makes the driver to update the 64-
bit time by it self, it will use time overflow |RQ to detect when the 64-bit time counter
must be incremented. If set to zero, the driver expect the user to call gri553bm_time()
regularly, it must be called more often than the time overflows to avoid an incorrect time.

filt_error_options |Buserror log options:

bit0,4-31 = reserved, set to zero Bitl = Enables logging of Invalid mode code errors Bit2
= Enables logging of Unexpected Data errors Bit3 = Enables logging of Manchester/pari-
tyerrors

filt_rtadr RT Subaddress filtering bit mask, bit definition:

31: Enableslogging of mode commands on subadr 31 1..30: BitN enables/disables log-
ging of RT subadr N 0: Enables logging of mode commands on subadr 0

filt_mc Mode code Filter, iswritten into "BM RT Mode code filter" register, please see hardware
manual for bit declarations.

buffer_size Size of buffer in bytes, must be aligned to 8-byte boundary.

buffer_custom Custom BM log buffer location, must be aligned to 8-byte and be of buffer_size length. If

NULL dynamic memory allocation is used.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 102

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

M ember Description

copy_func Custom Copy function, may be used to implement a more effective/ custom way of copy-
ing the DMA buffer. For example the DMA log may need to processed at the same time
when copying.

copy_func_arg Optional Custom Data passed onto copy_f unc()

dma_error_isr Custom DMA error function, note that this function is called from Interrupt Context. Set
to NULL to disable this callback.

dma_error_arg COptiona Custom Datapassed ontodma_error _i sr()

struct gri553bmentry {
uint32_t tine;
uint32_t data;

s

Table 14.4. gr1553bm_entry member descriptions.

M ember Description
time Time of word transfer entry. Bit31=1, bit 30..24=0, bit 23..0=time
data Transfer status and data word
Bits Description
31 Zero
30..20 Zero
19 0=BusA, 1=BusB
18..17 Word Status: 00=0k, 01=Manch-
ester error, 10=Parity error
16 Word type: 0=Data, 1=Command/
Status
15..0 16-bit Data on detected on bus

14.2.2.2. gr1553bm_open

Opens a GR1553B BM device identified by instance number, mi nor . The instance number is determined by the
order in which GR1553B cores with BM functionality are found, the order of the Plug & Play.

A handleisreturned identifying the opened BM device, the handle is used internally by the driver, it isused asan
input parameter bmto all other functions that manipulate the hardware.

This function initializes the BM hardware to a stopped/disable level.

14.2.2.3. gr1553bm_close

Close and Stop a BM device identified by input argument bm previoudly returned by gr 1553bm open() .
14.2.2.4. gr1553bm_config_init

Configure the log DMA-memory for aBM device. The configuration parameters are stored in the location point-
ed to by cf g. The layout of the parameters must follow the gr 1553bm conf i g data structure, described in
Table 14.3.

This function will not allocate any memory. Replace this function call with gri553bm_config_alloc() if you want
the driver to allocate memory. If BM device is started or any of the data pointers are NULL, then this function
will return a negative result. On success zero is returned.

14.2.2.5. gr1553bm_config_alloc

Configure and allocate the log DMA-memory for a BM device. The configuration parameters are stored in the
location pointed to by cf g. The layout of the parameters must follow the gr 1553bm conf i g data structure,
described in Table 14.3.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 103

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

If BM deviceis started or memory allocation fails (in case of dynamic memory allocation), then this function will
return a negative result. On success zero is returned.

14.2.2.6. gr1553bm_config_free
Free allocated memory.
14.2.2.7. gr1553bm_start

Starts 1553 logging by enabling the core and enabling interrupts. The user must have configured the driver (log
buffer, timer, filtering, etc.) before calling this function.

After the BM has been started the configuration function can not be called.

On success this function returns zero, on failure a negative result is returned.

14.2.2.8. gr1553bm_stop

Stops 1553 logging by disabling the core and disabling interrupts. Further 1553 transfers will be ignored.
14.2.2.9. gr1553bm_time

This function reads the driver's internal 64-bit 1553 Time. The low 24-bit time is acquired from BM hardware,
the MSB is taken from a software counter internal to the driver. The counter is incremented every time the Time
overflows by:
e using "Time overflow" IRQ if enabled in user configuration
* by checking "Time overflow" IRQ flag (IRQ is disabled), it is required that user calls this function before
the next timer overflow. The software can not distinguish between one or two timer overflows. Thisfunction
will check the overflow flag and increment the driver internal time if overflow has occurred since last call.

This function update software time counters and store the current time into the address indicated by the argument
time.

14.2.2.10. gr1553bm_available

Copy up to max number of entries from BM log into the address specified by dst . The actual number of entries
read is returned in the location of max (zero when no entries available). The max argument isthusin/out. It is
important to read out thelog entriesin timeto avoid dataloss, thelog can be sized so that dataloss can be avoided.

Zero isreturned on success, on failure a negative number is returned.
14.2.2.11. gr1553bm_read

Copy up to max number of entries from BM log into the address specified by dst. The actual number of entries
read is returned in the location of max (zero when no entries available). The max argument is thus in/out. It is
important to read out thelog entriesin timeto avoid dataloss, thelog can be sized so that dataloss can be avoided.

Zero isreturned on success, on failure a negative number is returned.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 104

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

15. GR716 memory protection unit driver

15.1. Introduction

This section describes the driver used to control the two memory protection units (MEMPROT) available in
GR716.

15.1.1. User Interface
This section covers how the driver can be interfaced to an application to control the MEMPROT hardware.

Controlling the driver and device is done with functions provided by the driver prefixed with nenpr ot _. All
driver functionstake adevice handle returned by menpr ot _open asthefirst parameter. All supported functions
and their data structures are defined in the driver's header filedr v/ menpr ot . h.

15.1.2. Features

* Global enable and disable
* Per-segment configuration
e Automatic locking and unlocking

15.1.3. Limitations

The GR716 master-to-APB grant interface is not directly supported by the driver. Register structures definitions
are available in the header file.

15.2. Driver registration
This driver uses the driver registration mechanism described in Chapter 5.

Table 15.1. Driver registration functions

Registration method Function
Register one device menprot _register()
Register many devices menprot _init()

15.3. Examples

Examples are availableinthesr c/ | i bdr v/ exanpl es directory in the Zephyr distribution.

15.4. Opening and closing device

A MEMPROT device must first be opened before any operations can be performed using the driver. The number
of devices registered to the driver can be retrieved using menpr ot _dev_count . A particular device can be
opened using menpr ot _open and closed menpr ot _cl ose. The functions are described below.

An opened device can not be reopened unlessthe deviceisclosed first. When opening adevice the deviceis marked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal _I dst ub
from the OSAL. Protection is used by all MEMPROT devices on opening and closing. It is assumed that at most
one thread operates on one MEMPROT device at atime.

During opening of a MEMPROT device the following steps are taken:
» Thedeviceis marked opened to protect the caller from other users of the same device.
¢ Internal data structures are initialized.
e Thedeviceislocked using the PCR. PROT field.

The example below printsthe number of MEMPROT devicesto screen then opensand closesthe first MEMPROT
device present in the system.

int print_menprot_devices(void)

{
struct menprot_priv *device;
int count;

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 105

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

count = nenprot_dev_count();
printf ("% MEMPROT device(s) present\n", count);

devi ce = nenprot_open(0);
if (!device) {

return -1; /* Failure */
}

nmenpr ot _cl ose(device);
return 0; /* success */

}

Table 15.2. menpr ot _dev_count function declaration

Proto |i nt nenprot_dev_count (voi d)

About |Retrieve number of devices registered to the driver.

Return |int. Number of devices registered in system, zero if none.

Table 15.3. menpr ot _open function declaration

Proto |struct nenprot _priv *nmenprot_open(int dev_no)

About |OpensaMEMPROT device. The device isidentified by index. The returned valueis used as input ar-
gument to all functions operating on the device.

Param |dev_no [IN] Integer

Deviceidentification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
by menpr ot _dev_count .

Return |Pointer. Status and driver's internal device identification.

NULL Indicates failure to open device. Failsif device semaphore fails or device already is
open.

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which MEMPROT device.

Table 15.4. menpr ot _cl ose function declaration

Proto |int nenprot_cl ose(struct nenprot_priv *d)

About |Closes apreviously opened device.

Param |d [IN] pointer

Deviceidentifier. Returned from menpr ot _open.
Return |int. DRV_OK

Memory protection configuration is not changed by the open and close functions. In particular, memory pro-
tection is not disabled by close.

15.5. Operation mode
The driver always operates in one of two modes: started or stopped,

Thistrandates directly to whether the memory protection unit is enabled or disabled.
» Sarted isequivalent to PCR. EN=1. It means that the memory protection unit is enabled.
* Sopped is equivalent to PCR. EN=0. It means that the memory protection unit is disabled.

All API functions are available in both operation modes.
15.5.1. Starting and stopping

Themenpr ot _start () function places the driver in started mode. The function menpr ot _st op() makes
the driver core leave the started mode and enter stopped mode. menpr ot _i sst art ed() isused to determine
the driver operation mode.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 106

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 15.5. menpr ot _st art function declaration

Proto |int nenprot_start(struct nenprot_priv *priv)
About |Start driver.

Param |d [IN] pointer

Device handle returned by menpr ot _open.

Return |int.
Value Description
DRV_OK Device was started by the function call.
DRV_BUSY Device aready in started mode. Nothing performed.

Table 15.6. menpr ot _st op function declaration

Proto |int nmenprot_stop(struct nmenprot _priv *priv)

About |Stop driver.

Param |d [IN] pointer
Device handle returned by menpr ot _open.

Return |int.
Value Description
DRV_OK Device was stopped by the function call.
DRV_BUSY Device already in stopped mode. Nothing performed.

Table 15.7. menpr ot _i sst ar t ed function declaration

Proto |int nmenprot_isstarted(struct nenmprot_priv *d)
About |Get current MEMPROT driver running state

Param |d [IN] Pointer

Device identifier. Returned by menpr ot _open.

Return |int. Status

Value Description

0 Stopped

1 Started
15.6. Reset

Opening the driver does not change any of the units configuration. To reset the memory protection unit to aknown
accept-all state, the function menpr ot _r eset () can be used.

Table 15.8. menpr ot _r eset function declaration

Proto |int nenprot_reset(struct nenprot_priv *d)

About |Reset memory protection unit.

This function disables the unit and disables al segment configurations.
Param |d [IN] Pointer

Device identifier. Returned by menpr ot _open.

Return |int. DRV_OK

15.7. Segment configuration

15.7.1. Number of segments

The number of implemented segments can be retrieved with the function nenpr ot _nseg() .

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 107

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 15.9. menpr ot _nseg function declaration

Proto |int nenprot_nseg(struct menmprot_priv *d)

About |Retrieve number of implemented memory segments for memory protection device.
Param |d [IN] Pointer
Deviceidentifier. Returned by menpr ot _open.

Return |int. Number of memory segments supported. Thisisthe value of the constant register field
PCR. NSCEG.

15.7.2. Data structures

struct menprot _segi nf o isused by the application to describe individual memory protection segments.
The structure isavailablein dr v/ menpr ot . h and describes how the driver shall configure the segment.

/* User representation of one nenory protection segnent */
struct nenprot_segi nf of

uintptr_t start;

uintptr_t end;

uint32_t g;

int en;

b
Table 15.10. memprot_seginfo data structure declaration

start Start address

end End address

g Exclusive writegrant G . Thisisabit mask. See GR716-DS-UM for bit definitions of G .
Bit Description

Q) - Grant master 0 exclusive write access.

1 Gl - Grant master 1 exclusive write access.

i G - Grant master i exclusive write access.

en Disable or enable segment.
Value Description
0 Disable this segment.
1 Enable this segment.
15.7.3. Set

Anindividual memory segment can be configured by calling the function menpr ot _set () with auser supplied
asstruct menprot_segi nf o parameter. The following example configures segment 2.

struct menprot_seginfo si;

si.start = 0x80004000;
si . end = 0x800040ff;
si.g =1 << 2;
si.en = 1;

menpr ot _reset (dev);
menpr ot _set (dev, 2, &si);
menprot _start (dev);

For any segment configuration to be in effect, the device must be in started operation mode.

Closing the driver does not cancel the configured memory protections.

Table 15.11. menpr ot _set function declaration

Proto |int nenprot_set(struct menprot_priv *d, int segment, const struct
menpr ot _segi nfo *segi nf o)

About | Configure amemory protection segment.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 108

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The information contained in the segi nf o isinstalled in the hardware registers corresponding to the
segnent number.

Param |d [IN] Pointer
Deviceidentifier. Returned by menpr ot _open.

Param |segment [IN] Integer
Target segment number.

Must bein therange O to nenpr ot _nseg() - 1.
Param |segi nf o [IN] Pointer

User representation of segment configuration.
Return |int. DRV_OK

15.7.4. Get

Memory protection segments can be read back from hardwareintoast r uct nenpr ot _segi nf o record with
the function menpr ot _get () . Everything in the record is qualified with the en field.

Protection segments are not affected when opening the driver which means that the previous configuration can
be read out.

Table 15.12. nenpr ot _get function declaration

Proto |int nenprot_get(struct menprot_priv *d, int segment, struct
menpr ot _segi nfo *segi nf o)

About | Read back memory protection segment configuration from hardware.

The configuration contained in the hardware registers corresponding segment indexed by segnent is
read back and written to the segi nf o.

Param |d [IN] Pointer

Deviceidentifier. Returned by menpr ot _open.

Param |segmrent [IN] Integer
Target segment number.

Must bein therange 0 to nenpr ot _nseg() - 1.
Param |segi nf o [OUT] Pointer

User representation of segment configuration.
Return |int. DRV_OK

15.7.4.1. Example

The following example function pri nt al | () printsinformation on all memory protection segment of a partic-
ular device. In additiontotheen field, i sst art ed() canbeused asaglobal qualifier to determineif asegment
isin effect.

static void printsi(const struct nenprot_seginfo *si)
{
printf(" start
printf(" end
printf(" g
printf(" en

%98x\ n", (unsigned) si->start);

%98x\ n", (unsigned) si->end);

%08x\ n", (unsigned) si->g);

% (%)\n", si->en, si->en ? "enabled" : "disabled");

}

void printall(struct nenprot_priv *dev)
{
const int nseg = menprot_nseg(dev);
for (int i =0; i < nseg; i++) {
struct menprot_seginfo si;
printf("SEGVENT %\ n", i);

nmenprot _get (dev, i, &si);
printsi(&si);
puts("");
ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 109

https://www.frontgrade.com/gaisler

rRONTGRADCE

Gaisler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 110

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

16. Memory scrubber

16.1. Introduction
This section describes the Memory Scrubber (MEM SCRUB) driver for SPARC/LEON processors.

16.1.1. Hardware Support

The MEMSCRUB core hardware interface is documented in the GRIP Core User's manua. The MEMSCRUB
core is used to monitor the memory AHB bus and can be programmed to scrub a memory area.

16.1.2. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the driver source tree
src/libdrv.

Table 16.1. MEMSCRUB driver source location

L ocation Description
src/include/drv/ menscrub. h MEMSCRUB user interface definition
src/ menscrub MEMSCRUB driver implementation

16.1.3. Examples

There is an example available that uses the MEMSCRUB driver to scrub a memory area and log the different
events. The exampleis part of the driver distribution, it can be found under exanpl es/ nenscr ub.

16.2. Software design overview
The driver provides afunction interface, an AP, to the user.

The API is not designed for multi-threading, i.e. multiple threads operating on the driver independently. The
driver does not contain any lock or protection for SMP environments. Changing the MEM SCRUB configuration
is not intended to be done extensively at runtime or independently of the rest of the system, since it usualy has
a system-level impact. Therefore the user must take care of any impact that the different actions might have on
other parts of the system (such asthreads, CPUs, DMAS, ...).

16.2.1. Driver usage

The driver provides aset of functions that allow to start and stop the scrubber in different modes. Thefirst stepis
to setup the memory range (or memory ranges) in which the scrubber is going to act (see Section 16.3.3).

After setting up the range we can start the scrubber in one of the three modes available (see Section 16.3.4):

« Init mode: Initialize the memory area.
¢ Scrub mode: Scrub the memory area.
« Regen mode: Regenerate the memory area. Similar to scrub mode, but has an optimized access pattern for
correcting many errors.
Note that scrub and regen mode can be changed on the fly.

The driver provides functions to check if the scrubber is active and to stop it (see Section 16.3.4).

When dealing with errors, the drivers provides two different interfaces:

* Interrupts (see Section 16.3.6): Allowsthe user to install an Interrupt Service Routine (1SR) that will be exe-
cuted whenever an error exceeds its corresponding threshold. Also the MEM SCRUB core allows to generate
an interrupt when its done.

* Polling (see Section 16.3.7): Allows the user to poll the error status to check if an error have occurred.

Only one of these interfaces can be used at agiven time.

The different errors that the MEM SCRUB can report are:

* AHB correctable error.
* AHB uncorrectable error.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 111

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

« Scrubber run count errors.
» Scrubber block count errors.

There are functions that allow to configure the error count thresholds for each type of error individualy (see
Section 16.3.5). When the error count for a certain type exceeds the threshold, the error status is updated and an
interrupt is generated. If athreshold is disabled, the error status is not updated and no interrupt is generated.

16.3. Memory scrubber user interface

16.3.1. Return values

MEMBCRUB_ERR_OK
MEMBCRUB_ERR_El NVAL
MEMBCRUB_ERR_ERROR

All the driver function calls return the following values when an error occurred:

e MEMSCRUB_ERR _OK - Successful execution.
« MEMSCRUB_ERR_EINVAL - Invalid input parameter. One of the input values checks failed.
« MEMSCRUB_ERR _ERROR - Internal error. Can have different causes.

16.3.2. Opening and closing device

A MEMSCRUB device must first be opened before any operations can be performed using the driver. The number
of devices registered to the driver can be retrieved using nenscr ub_dev_count . A particular device can be
opened using nenscr ub_open and closed nenscr ub_cl ose. The functions are described below.

An opened device can not be reopened unlessthedeviceisclosed first. When opening adevice the deviceis marked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal _| dst ub
fromthe OSAL. Protectionisused by all MEMSCRUB devices on opening and closing. It is assumed that at most
one thread operates on one MEM SCRUB device at atime.

During opening of a MEMSCRUB device the following steps are taken:
» Thedeviceis marked opened to protect the caller from other users of the same device.
¢ Internal data structures are initialized.
e Error and interrupt statusis cleared.

The example below prints the number of MEM SCRUB devices to standard output. It then opens and closes the
first MEM SCRUB device present in the system.

int print_menscrub_devi ces(void)

{

struct menscrub_priv *device;
int count;

count = nenscrub_dev_count ();
printf ("% MEMPROT device(s) present\n", count);

devi ce = nenmscrub_open(0);
if (!device) {

return -1; /* Failure */
}

nenscrub_cl ose(device);
return 0; /* success */

}

Table 16.2. menscr ub_dev_count function declaration

Proto |int nemscrub_dev_count (voi d)

About | Retrieve number of devicesregistered to the driver.

Return |int. Number of devices registered in system, zero if none.

Table 16.3. menscr ub_open function declaration

‘Proto ‘struct menscrub_priv *nenscrub_open(int dev_no)

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 112

https://www.frontgrade.com/gaisler

About |OpensaMEMSCRUB device. The deviceisidentified by index. The returned value is used as input

rRONTGRADE

Gaisler

argument to all functions operating on the device.

Param |dev_no [IN] Integer

Deviceidentification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
by menscrub_dev_count.

Return |Pointer. Status and driver'sinternal device identification.

NULL Indicates failure to open device. Failsif device semaphore fails or device already is
open.

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which MEMPROT device.

Table 16.4. renscr ub_cl ose function declaration

Proto

int nmenmscrub_cl ose(struct menscrub_priv *d)

About |Closes a previously opened device.

Param |d [IN] pointer

Deviceidentifier. Returned from menscr ub_open.

Return |int. MEMSCRUB_ERR_OK

Hardware configuration is not changed by the menscr ub_open() function, apart from clearing the error
and interrupt status at open. menscr ub_cl ose() doesnot change the current hardware configuration.

16.3.3. Configuring the memory range

int
int
int
int
int

menscrub_range_set (struct memscrub_priv *priv, uint32_t start, uint32_t end)
menscrub_range_get (struct memscrub_priv *priv, uint32_t * start, uint32_t * end)
menscrub_secondary_range_set (struct menmscrub_priv *priv, uint32_t start, uint32_t end)
menscrub_secondary_range_get (struct menmscrub_priv *priv, uint32_t * start, uint32_t * end)

menscrub_scrub_position(struct menmscrub_priv *priv, uint32_t * position)

Thedriver uses these functions to setup the primary and secondary memory ranges of the MEM SCRUB core. The

scrubber will act on the range from address st art to end, both inclusive.

The position function shows the actual position of the MEM SCRUB within the memory range.

These functions return a negative value if something went wrong, as explained in Section 16.3.1. Otherwise, the

function returns MEM SCRUB_ERR_OK when successful.

Table 16.5. menscr ub_r ange_set function declaration

Proto |int nenmscrub_range_set(struct nmenscrub_priv *priv,

uint32 t start,

uint32 t end)

About | Set the primary memory range for the MEMSCRUB core. The range is defined by the memory ad-

dressesst art and end, both inclusive. See Section 16.3.3.

Param (st art [IN] Integer

32-hit start address. The address hits below the burst size alignment are constant ‘0'.

Param |end [IN] Integer

32-bit end address. The address bits below the burst size alignment are constant ‘1’.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went

wrong, as explained in Section 16.3.1.

Table 16.6. menscr ub_r ange_get function declaration

Proto |int nenmscrub_range_get(struct menscrub _priv *priv, uint32_t *
start, uint32 t * end)
ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 113

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

About |Get the primary memory range for the MEM SCRUB core. The range is defined by the memory ad-
dressesst art and end, both inclusive. See Section 16.3.3.

Param |st art [IN] Pointer

Pointer to the 32-bit start address. The address bits below the burst size alignment are constant ‘0'.
Param |end [IN] Pointer

Pointer to the 32-bit end address. The address bits below the burst size alignment are constant *1'.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

Table 16.7. menmscr ub_secondary_r ange_set function declaration

Proto |int nemscrub_secondary_range_set(struct nmenscrub_priv *priv,
uint32_t start, uint32_t end)

About | Set the primary memory range for the MEM SCRUB core. The range is defined by the memory ad-
dressesst art and end, both inclusive. See Section 16.3.3.

Param (st art [IN] Integer
32-hit start address. The address bits below the burst size alignment are constant ‘0’.
Param |end [IN] Integer

32-bit end address. The address bits bel ow the burst size alignment are constant ‘1.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

Table 16.8. renscr ub_secondary_range_get function declaration

Proto |int nenmscrub_secondary range_get(struct nenscrub_priv *priv,
uint32 t * start, uint32_t * end)

About | Get the secondary memory range for the MEMSCRUB core. The range is defined by the memory ad-
dressesst art and end, both inclusive. See Section 16.3.3.

Param |start [IN] Pointer

Pointer to the 32-bit start address. The address bits below the burst size alignment are constant ‘0'.
Param |end [IN] Pointer

Pointer to the 32-bit end address. The address bits below the burst size alignment are constant *1'.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

Table 16.9. menscr ub_scrub_posi ti on function declaration

Proto |int nemscrub_scrub_position(struct nmenscrub_priv *priv, uint32_t *
position)

About | Get the position of the scrubber within the memory range. See Section 16.3.3.
Param |posi ti on [IN] Pointer
Pointer to the 32-bit position address.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

16.3.4. Starting/stopping different modes.

int memscrub_init_start(struct memscrub_priv *priv, uint32_t value, uint8_t delay, int options)
int memscrub_scrub_start(struct memscrub_priv *priv, uint8_t delay, int options)

int memscrub_regen_start(struct memscrub_priv *priv, uint8_t delay, int options)

int memscrub_stop(struct menscrub_priv *priv)

int menmscrub_active(struct menscrub_priv *priv)

The driver uses these functions to start or stop the different modes of the MEM SCRUB core:

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 114

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

« Init mode: Initialize the memory area.
e Scrub mode: Scrub the memory area.

« Regen mode: Regenerate the memory area. Similar to scrub mode, but has an optimized access pattern for
correcting many errors.

All the modes act on the configured memory range (see Section 16.3.3).
The active functions checks if the scrubber is currently running.

These functions return a negative value if something went wrong, as explained in Section 16.3.1. Otherwise, the
function returns MEMSCRUB_ERR_OK when successful.

Table 16.10. nenscrub_i nit _start function declaration

Proto |int nmemscrub_init_start(struct memscrub_priv *priv, uint32_t value,
uint8 t delay, int options)

About |Start theinitialization mode of the scrubber. See Section 16.3.4.
Param |val ue [IN] Integer

32-bit value to be written into each memory position.

Param |del ay [IN] Integer
8-bit delay value. Processor cycles delay time between processed blocks.

Param |opti ons [IN] Integer

Options.
Value Description
MEMSCRUB_OPTIONS_INTERRUPTDONE_ENABLE Enable interrupt when done.
MEMSCRUB_OPTIONS INTERRUPTDONE_DISABLE Disable interrupt when done
(default).
MEMSCRUB_OPTIONS _EXTERNALSTART_ENABLE Enable external start.
MEMSCRUB_OPTIONS _EXTERNALSTART_DISABLE Disable external start (de-
fault).
MEMSCRUB_OPTIONS_LOOPMODE_ENABLE Enable loop mode.
MEMSCRUB_OPTIONS LOOPMODE_DISABLE Disable loop mode (default).
MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_ENABLE |Enable secondary memory
range.
MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_DISABLE |Disable secondary memory
range (default).

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

Table 16.11. mnenscr ub_scrub_st art function declaration

Proto |int nmemscrub_scrub _start(struct nenscrub_priv *priv, uint8_ t delay,
int options)

About | Start the scrubbing mode of the scrubber. See Section 16.3.4.
Param |del ay [IN] Integer

8-bit delay value. Processor cycles delay time between processed blocks.

Param |opti ons [IN] Integer

Options.
Value Description
MEMSCRUB_OPTIONS INTERRUPTDONE_ENABLE Enable interrupt when done.
MEMSCRUB_OPTIONS INTERRUPTDONE_DISABLE Disable interrupt when done
(default).
ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 115

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

MEMSCRUB_OPTIONS EXTERNALSTART _ENABLE Enable external start.
MEMSCRUB_OPTIONS EXTERNALSTART _DISABLE Disable external start (de-
fault).
MEMSCRUB_OPTIONS L OOPMODE_ENABLE Enable loop mode.
MEMSCRUB_OPTIONS _LOOPMODE_DISABLE Disable loop mode (default).
MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_ENABLE |Enable secondary memory
range.
MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_DISABLE |Disable secondary memory
range (default).
Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

Table 16.12. nenscr ub_r egen_st art function declaration

Proto |int nemscrub_regen _start(struct nenscrub_priv *priv, uint8_t delay,
int options)
About | Start the regeneration mode of the scrubber. See Section 16.3.4.
Param |del ay [IN] Integer
8-hit delay value. Processor cycles delay time between processed blocks.
Param |opti ons [IN] Integer
Options.
Value Description
MEMSCRUB_OPTIONS INTERRUPTDONE_ENABLE Enable interrupt when done.
MEMSCRUB_OPTIONS INTERRUPTDONE_DISABLE Disable interrupt when done
(default).
MEMSCRUB_OPTIONS EXTERNALSTART_ENABLE Enable external start.
MEMSCRUB_OPTIONS EXTERNALSTART_DISABLE Disable external start (de-
fault).
MEMSCRUB_OPTIONS L OOPMODE_ENABLE Enable loop mode.
MEMSCRUB_OPTIONS L OOPMODE_DISABLE Disable loop mode (default).
MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_ENABLE |Enable secondary memory
range.
MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_DISABLE |Disable secondary memory
range (default).
Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

Table 16.13. nenscr ub_st op function declaration

Proto |int nemscrub_stop(struct menscrub_priv *priv)
About | Stop the scrubber. See Section 16.3.4.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

Table 16.14. menscr ub_act i ve function declaration

Proto |int nemscrub_active(struct nenscrub_priv *priv)

About |Returns the active status of the scrubber. When the scrubber is active, it returns a non-zero positive
value. When the scrubber is stopped, it returns zero. See Section 16.3.4.

Return |int. Positive value when successful. Otherwise, returns a negative value if something went wrong, as
explained in Section 16.3.1.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 116

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
16.3.5. Setting up error thresholds

int menscrub_ahberror_setup(struct menscrub_priv *priv, int uethres, int cethres, int options)
int menscrub_scruberror_setup(struct nemscrub_priv *priv, int blkthres, int runthres, int options)

The driver uses these functions to setup the thresholds for AHB and scrub errors respectively. The following
thresholds can be enabled or disabled:

e AHB correctable error.

* AHB uncorrectable error.

» Scrubber run count errors.

¢ Scrubber block count errors.

If athreshold is disabled, no error status or interrupt will be generated for that type of error. If athreshold is
enabled, the error status or interrupt will be triggered when the error count exceeds the threshold value.

These functions return a negative value if something went wrong, as explained in Section 16.3.1. Otherwise, the
function returns MEMSCRUB_ERR_OK when successful.

Table 16.15. menscr ub_ahber r or _set up function declaration

Proto |int nemscrub_ahberror_setup(struct nmenscrub_priv *priv, int
uethres, int cethres, int options)

About | Setup the AHB correctable and uncorrectable error thresholds for the MEM SCRUB core. See Sec-
tion 16.3.5.

Param |uet hr es [IN] Integer

AHB uncorrectable error threshold value (only 8 LSB used).
Param |cet hr es [IN] Integer

AHB correctable error threshold value (only 10 LSB used).
Param |opti ons [IN] Integer

Options.

Value Description

MEMSCRUB_OPTIONS AHBERROR_CORTHRES ENABLE Enable AHB correctable er-
ror threshold.

MEMSCRUB_OPTIONS AHBERROR_CORTHRES DISABLE Disable AHB correctable
error threshold (default).

MEMSCRUB_OPTIONS AHBERROR_UNCORTHRES ENABLE |Enable AHB uncorrectable
error threshold.

MEMSCRUB_OPTIONS_ AHBERROR_UNCORTHRES DISABLE |Disable AHB uncorrectable
error threshold (default).

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

Table 16.16. nenscr ub_scr uberror _set up function declaration

Proto |i nt nemscrub_scruberror_setup(struct nemscrub_priv *priv, int blk-
thres, int runthres, int options)

About | Setup the scrubber run and block count error thresholds for the MEM SCRUB core. See Sec-
tion 16.3.5.

Param |bl kt hr es [IN] Integer

Block count error threshold value (only 8 LSB used).
Param |runt hr es [IN] Integer

Run count error threshold value (only 10 LSB used).
Param |opti ons [IN] Integer

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 117

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
Options.
Value Description
MEMSCRUB_OPTIONS_SCRUBERROR_RUNTHRES ENABLE Enable run count error
threshold.
MEMSCRUB_OPTIONS SCRUBERROR_RUNTHRES DISABLE Disable run count error
threshold (default).
MEMSCRUB_OPTIONS_SCRUBERROR_BLOCKTHRES ENABLE |Enable block count error
threshold.
MEMSCRUB_OPTIONS_SCRUBERROR_BLOCKTHRES DISABLE |Disable block count error
threshold (default).
Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

16.3.6. Registering an ISR

typedef void (*nenscrub_isr_t) (
void *arg,
ui nt 32_t ahbaccess,
ui nt 32_t ahbst at us,
uint32_t scrubstatus

)
int memscrub_isr_register(struct menmscrub_priv *priv, menmscrub_isr_t isr, void * data)
int menmscrub_isr_unregister(struct nmenscrub_priv *priv)

The driver uses these functionsto register and unregister an ISR for error interrupts. When registering an ISR, in-
terruptsare enabled. To set the error thresholdsthat trigger interrupts use the functions described in Section 16.3.5.

These functions return a negative value if something went wrong, as explained in Section 16.3.1. Otherwise, the
function returns MEM SCRUB_ERR_OK when successful.

Table 16.17. menscr ub_i sr_regi st er function declaration

Proto |int nemscrub_isr_register(struct menmscrub_priv *priv,
menscrub_isr_t isr, void * arg)

About |Registersan ISR for the MEM SCRUB core. See Section 16.3.6.
Param |i sr [IN] Pointer

The ISR function pointer.

Param |ar g [IN] Pointer

The ISR argument pointer.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

Table 16.18. mnenscr ub_i sr_unr egi st er function declaration

Proto |int nemscrub_isr_unregister(struct nenscrub_priv *priv)
About |Unregistersan ISR for the MEM SCRUB core. See Section 16.3.6.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

16.3.7. Polling the error status

int memscrub_error_status(struct menmscrub_priv *priv, uint32_t * ahbaccess, uint32_t * ahbstatus, uint32_t * scrubstatus)

The driver uses this function to poll the error status and clear the error status in case an error isfound. To set the
error thresholds that trigger error status use the functions described in Section 16.3.5.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 118

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

This function returns a negative value if something went wrong, as explained in Section 16.3.1. Otherwise, the
function returns MEM SCRUB_ERR_OK when successful.

Table 16.19. nenscr ub_error _st at us function declaration

Proto |int nemscrub_error_status(struct nmenmscrub _priv *priv, uint32_t *
ahbaccess, uint32_t * ahbstatus, uint32_t * scrubstatus)

About |Poll the state of the error status registers. Returns the status registers and the AHB failing access reg-
ister. If aerror has been detected the function automatically clears the status in order to catch new er-
rors. See Section 16.3.7.

Param |ahbaccess [OUT] Pointer

The value pointed will be updated with the AHB failing access.

Param |ahbst at us [OUT] Pointer

The value pointed will be updated with the AHB error status register content.
Param |scr ubst at us [OUT] Pointer

The value pointed will be updated with the scrub error status register content.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 16.3.1.

16.4. API reference

This section lists al functions part of the MEMSCRUB driver API, and in which section(s) they are described.
The API is also documented in the source header file of the driver, see Section 16.1.2.

Table 16.20. MEMSCRUB function reference

Prototype Section

int nmenscrub_range _get(struct menscrub_priv *priv, uint32_t *start, [16.3.3
uint32_t *end)

int nenscrub_range_set(struct nenscrub_priv *priv, uint32_t start, 16.3.3
uint32_t end)

i nt nmenscrub_secondary_range_get (struct menmscrub_priv *priv, 16.3.3
uint32_t *start, uint32_t *end)

i nt nmenscrub_secondary_range_set (struct menmscrub_priv *priv, 16.3.3
uint32_t start, uint32_t end)

int nmenscrub_scrub_position(struct nmenscrub _priv *priv, uint32_t 16.3.3
*posi tion)

int nenscrub_init_start(struct nenscrub_priv *priv, uint32_t value, [16.34
uint8 t delay, int options)

int menscrub_scrub_start(struct nmenmscrub _priv *priv, uint8 t delay, [16.34
i nt options)

int menscrub_regen_start(struct menmscrub_priv *priv, uint8_t delay, [16.34
i nt options)

int nmenscrub_stop(struct nmenmscrub_priv *priv) 16.3.4
int nenscrub_active(struct nmenscrub_priv *priv) 16.3.4
i nt nmenscrub_ahberror_setup(struct menscrub_priv *priv, int 16.3.5

uethres, int cethres, int options)

i nt menmscrub_scruberror_setup(struct menmscrub_priv *priv, int blk- [16.35
thres, int runthres, int options)

int nmenscrub_isr_register(struct nenscrub_priv *priv, 16.3.6

menscrub_isr_t isr, void * data)

int nenscrub_isr_unregister(struct menscrub_priv *priv) 16.3.6
ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.0.0 119

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Prototype Section

int menscrub_error_status(struct nenmscrub_priv *priv, uint32_t *ah- [16.3.7
baccess, uint32_t *ahbstatus, uint32_t *scrubstatus)

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 120

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

17. SpaceWire Router Driver

17.1. Introduction

The SpaceWire router connects external SpaceWire ports and internal AMBA ports together using anon-blocking
switch matrix which can connect any input port to any output port. A single routing table is used for the whole
router. This chapter describes the API used configure the router. The AMBA port interfaces are controlled by the
SpaceWire driver (Chapter 6).

17.2. Driver sources

The driver sources and definitions are listed in Table 17.1. The path is given relative to the driver source tree at
src/libdrv.

Table 17.1. SpaceWire Router driver source location

L ocation Description
src/include/drv/grspwrouter.h SpaceWire Router driver interface
src/grspwrouter SpaceWire Router driver implementation
17.3. Routing

Packets can enter into the router from either the external SpaceWire ports or theinternal AMBA ports. The router
looks at the first byte of the packet, the destination address, to determine where the package shall be routed. If it
is below 32, it is treated as a physical address and will be routed to either a SpaceWire port, an AMBA port, or
be spilled if there is no port available at the address. For logical addresses (32 and above), the router needs to be
provided route information to know to which port the packet shall be routed.

It is also possible to configure the router to do static routing, where all incoming packets on a specific port are
routed to a specific output port, regardless of the destination address in the packet.

When routing a packet, the router can be instructed to drop the address byte (called header deletion). This can for
example be used to do path addressing, where the packet starts with the entire path through the network and the
first address in the path is dropped after every link to reveal the next step in the path.

17.4. Register and access driver

This driver uses the driver registration mechanism described in Chapter 5.

Table17.2. gr spwr out er _aut oi ni t function declaration

Name grspwrouter_autoinit()

Proto int grspwouter_autoinit()
About Register SpaceWire router devices using Plug-n-Play

Registers any available SpaceWire router devices and returns the number of devices found.

Return |i nt - The number of devicesfound and registered

Table 17.3. gr spwr out er _r egi st er function declaration

Name grspwrouter _register()
Proto drvret grspwouter_register(struct grspwouter_devcfg * devcfg)

About Manually register a single SpaceWire router device

The configuration must include the location of the register area and the interrupt number in de-
vcf g- >regs. Thedevcf g- >dev member is used be the driver to store information. The memo-
ry used by thedevcf g argument must never be freed.

Param devcf g - [in] - Settings defining the router device

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 121

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Name grspwrouter _register()

Return |drvret - DRV_OK on success

When the driver has been registered a device can be accessed by calling gr spwr out er _open() . Thefunction
needs to be provided the system and SpaceWire frequency (in MHz) to be able to configure the scalers used to set
up the correct link rate used for initialisation and optional timeouts. The function will configure the timer prescaler
so that all router timers operate at 10KHz. Thisis doneto be able to set reasonable timeout values using the API.

Table 17.4. gr spwr out er _open function declaration

Name grspwrouter _open()

Proto grspwouter_dev * grspwouter_open(uint32_t index, uint32_t
spw freq, int32 t sys freq)

About Initialize handle to SpaceWire router driver
This function returns a handle to SpaceWire router driver for the device specified by i ndex.

Thespw_f r eq argument shall specify the SpaceWire clock frequency (in MHz) provided to the
router. Thisvalue is used to configure the initialization bit rate for the all the SpaceWirelinks. It is
alsoused by gr spwrout er _port _|ink_start tosettherun state speed of individual links.
Use the value 0 to keep the existing value.

Thesys_freq arguments shall specify the system clock frequency (in MHz). Thisvalueis used to
configure the various timeout functionality provided by the router. This function will set the timer
scaler so that all timers run at 10KHz. Use the value 0 to keep the existing value.

For the GR740 the default internal SpaceWire clock frequency is 400MHz. This corresponds to an
external clock frequency for aSPW_CLK of 50 MHz if the default PLL configuration of 8x is used.

Param i ndex - Index of the SpaceWire router device

Param spw_f r eq - SpaceWire clock frequency

Param sys_freq - System clock frequency

Return gr spwr out er _dev *
e grspw out er _dev - on success
e NULL - if no device with the provided index, or if already opened

Table 17.5. gr spwr out er _cl ose function declaration

Name grspwrouter _close()

Proto drvret grspwouter_close(grspwouter_dev * dev)

About Closes a previously opened device

The provided handle must have been previously opened by gr spwr out er _open() .
Param dev - [in] - A valid device handle
Return drvret

¢ DRV_CX - on success
* DRV_I NVAL - if not previously opened by gr spwr out er _open

17.5. Setup routing table

The router looks at the address of each incoming packet and uses that as an index in a routing table with
information on where to route the packet. The routing information for a specific address is set using the
grspw out er_route_set () .Itispossibleto specify one or multiple target ports.

For each routeit is possible to set the following options:
» Enable/disable header deletion

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 122

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

« Spill or wait if output port'slink interface is not in run-state
e Set normal / high priority
« Enable packet distribution or group adaptive

Table 17.6. gr spwr out er _rout e_set function declaration

Name

grspwrouter_route set()

Proto

drvret grspwouter _route set(grspwouter _dev * dev, uint8 t ad-
dress, uint32 t to _mask, bool header deletion, bool spill _packet,
uint32 t options)

About

Set up aroute for incoming packets based on destination address

Incoming packets with the destination addressaddr ess will be routed to the first available output
port of the ones specified inthet o_mask. If packet distribution has been enabled the same packet
will be sent on all specified output ports.

Thet o_mask argument can be built using a mask where each bit index corresponds to the
SpaceWire port with the same index. The GRSPWROUTER_PORT() define can be used for this:

to_mask = GRSPWROUTER PORT(3) | GRSPWROUTER PORT(4)

On the GR740 the following defines can be used:
+ AMBA port 0 (GRSPWROUTER_GR740_AMBA_0)
« AMBA port 1 (GRSPWROUTER_GR740_ AMBA _1)
« AMBA port 2 (GRSPWROUTER_GR740 AMBA_2)
« AMBA port 3 (GRSPWROUTER_GR740 AMBA_3)
» SpaceWire port 1 (GRSPWROUTER_GR740_SPW_1)
» SpaceWire port 2 (GRSPWROUTER_GR740_SPW_2)
» SpaceWire port 3 (GRSPWROUTER_GR740_SPW _3)
* SpaceWire port 4 (GRSPWROUTER_GR740_SPW_4)
 SpaceWire port 5 (GRSPWROUTER_GR740_SPW _5)
 SpaceWire port 6 (GRSPWROUTER_GR740_SPW_6)
 SpaceWire port 7 (GRSPWROUTER_GR740_SPW _7)
» SpaceWire port 8 (GRSPWROUTER_GR740_SPW_8)

Packets sent to the AMBA ports are handled by the SpaceWire driver.

The router can be configured to automatically remove the first byte of the packet, the byte that con-
tains the destination address. Thisis called header deletion.

If the output port'slink interface is not in run-state the router can be ordered to wait until thelink is
up or to spill the packet.

The opt i ons argument can be built by or:ing the following defines:
 Set high priority when more than one packet is competing for the same output port
(GRSPWROUTER_ROUTE_PRI ORI TY)
 Enable packet distribution (default group adaptive) (GRSPWROUTER _PACKET DI ST)

Param

dev - [in] - Valid router device handle

Param

addr ess - Route incoming packets with this destination address

Param

t o_nmask - Route packets to these output ports

Param

header _del et i on - Remove thefirst byte of the packet when routing it

Param

spi I | _packet - Spill the packet if the output port's link interface is not in run-state

Param

opti ons - Enable high priority (GRSPWROUTER_ROUTE_PRIORITY) and/or packet distribu-
tion (GRSPWROUTER_PACKET_DIST)

Return

drvret
¢ DRV_CX - on success

ZEPHYR-UM

Dec 2023, Version 1.0.0 123

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Name grspwrouter_route set()
 DRV_I NVAL - if addressisO

Table17.7. gr spw out er _rout e_di sabl e function declaration

Name grspwrouter_route disable()

Proto drvret grspwouter_route disable(grspwouter_dev * dev, uint8_t
address)

About Disable aroute for incoming packets based on destination address

PrSTATUS the router from routing packets with a specific destination address. Only logical ad-
dresses can be blocked. Packets with a physical destination address will still be routed.

Param dev - [in] - Valid router device handle
Param |addr ess - Packets with thislogical destination address will not be routed (32 - 255)
Return drvret

« DRV_CK - on success
e DRV_I NVAL - on non-logical address

The router also supports static routing in which all packets received on a certain port are always forwarded un-
modified to a specified port regardless of the target address in the packet. Static routing is enabled for a port by
grspwouter_static_route_set().

Table17.8. gr spwrout er _port_stati c_rout e_set function declaration

Name grspwrouter_port_static route set()

Proto drvret grspwouter_port_static_route_set(grspwouter_dev * dev,
uint8 t port, uint32_t destination, bool use route_info)

About Set up a static route for incoming packets on a specific port

This function enables static routing for a port where incoming packets are always routed unmodified
to a specific output port regardless of the address in the packet. By settinguse_route_i nfoto
t r ue it is possible to use the normal route information to route the packet to multiple ports.

Param dev - [in] - Valid router device handle

Param port - Index of avalid port

Param desti nati on - Target port

Param use_rout e_i nf o - Usethetarget addresses configured by gr spwr out er _r out e_set for
the target

Return drvret

¢ DRV_CX - on success
» DRV_I NVAL - if static routing not supported, or invalid port or destination

Table17.9. gr spw out er _port _stati c_route_di sabl e function declaration

Name grspwrouter_port_static route disable()

Proto drvret grspwouter _port_static_route_disable(grspwouter_dev *
dev, uint8_t port)

About Disable static routing for the port

Disable static routing for the port.
Param dev - [in] - Valid router device handle

Param port - Index of avalid port

Return drvret
¢ DRV_CX - on success

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 124

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Name grspwrouter_port_static route disable()
e DRV_I NVAL - if invalid port

17.5.1. GR716B

The SpaceWire router in GR716B can only use 1 logical address at a time. The current logical address that is
mapped can beread by gr 716b_gr spwr out er _mapped_adr _get ()

If alogical address has aready been selected then in order to change the currently mapped address it must first be
reset withgr 716b_gr spwr out er _mapped_adr _reset ()

After the mapped address has been reset a new route can then be created with gr spwr out er _rout e_set ()

Table17.10. gr 716b_gr spw out er _mapped_adr _get function declaration

Name |gr716b_grspwrouter_mapped_adr_get()

Proto uint8 t gr716b_grspw outer mapped_adr_get(grspwouter_dev * dev)

About Return the current mapped address

Returns routers current mapped address. GR716b only.

Param dev - [in] - Valid router device handle

Return |ui nt 8_t - Current mapped address

Table17.11. gr 716b_gr spw out er _mapped_adr _r eset function declaration

Name gr716b_grspwrouter_mapped_adr_reset()

Proto uint8 t gr716b_grspwout er mapped_adr_reset(grspw outer_dev *
dev)

About Resets the current mapped adress

Reset the currently mapped address on GR716B. The currently mapped address needs to be reset
before a new address can be mapped.

Param dev - [in] - Valid router device handle

Return drvr et
¢ DRV_CX - on success

17.6. Link handling

A SpaceWirelink can be started with adesired link rate by callingthegr spwr out er _port _|ink_start ()
function.

Table17.12. grspwrouter _port _|ink_start functiondeclaration

Name grspwrouter_port_link_start()

Proto drvret grspwouter _port link start(grspwouter_dev * dev, uint8_t
port, uint32_t link rate)

About Start the SpaceWire link

Configure the link rate to use and enable the link. The link rate shall be specified in MBits/s.

This function can only be called on a SpaceWire port, not an AMBA port.

Param dev - [in] - Valid router device handle

Param port - Index of avalid SpaceWire port
Param | i nk_r at e - Therequested run-state link rate

Return drvret
¢ DRV_CX - on success

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 125

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Name grspwrouter_port_link_start()
« DRV_I NVAL - port isnot a SpaceWire port or invalid link rate

Table17.13. gr spwrout er _port _|i nk_st op function declaration

Name grspwrouter_port_link_stop()

Proto drvret grspwouter_port_link_stop(grspwouter_dev * dev, uint8_t
port)

About Stops the SpaceWire port link

This function can only be called on a SpaceWire port, not an AMBA port.
Param dev - [in] - Valid router device handle
Param port - Index of avalid SpaceWire port

Return drvret
« DRV_CK - on success
e DRV_I NVAL - port is not a SpaceWire port

The current state of the link can be checked by using gr spw out er _port _|i nk_st at us() . Possible states
are:

* error reset (GRSPWROUTER_LINK_ERROR_RESET)

* error wait (GRSPWROUTER_LINK_ERROR_WAIT)

* ready (GRSPWROUTER_LINK_READY)

* started (GRSPWROUTER_LINK_STARTED)

 connecting (GRSPWROUTER_LINK_CONNECTING)

¢ run state (GRSPWROUTER_LINK_RUN_STATE)

Table17.14. gr spwrout er _port | i nk_st at us function declaration

Name grspwrouter_port_link_status()

Proto drvret grspwouter_port_|ink status(grspwouter_dev * dev, uint8_t
port, link _state * status)

About Returnsthe link state of the SpaceWire port

This function can only be called on a SpaceWire port, not an AMBA port.
Param dev - [in] - Valid router device handle

Param port -Index of avalid SpaceWire port

Param st at us - [out] - The current link state

Return drvret

¢ DRV_CX - on success
e DRV_I NVAL - port is hot a SpaceWire port

An overview of the run state of al links can be read out by gr spw out er _| i nk_st at us(), which return
abitmask indicating which links are in run state.

Table 17.15. gr spwr out er _| i nk_st at us function declaration

Name grspwrouter_link_status()

Proto void grspwouter |ink _status(grspwouter_dev * dev, uint32_t *
run_state)

About Return list of SpaceWire portswith linksin runstate

The mask returned by the function indicates which SpaceWire port links are in runstate. Bit 1 is
SpaceWire port 1, bit 2 is SpaceWire port 2, and so on.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 126

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Name grspwrouter_link_status()

Param dev - [in] - Valid router device handle
Param run_st at e - [out] - Mask indicating runstate of each link

The status of a port can be checked with gr spwr out er _port _st at us() . Thisincludesinformation on any
error events that have occurred and if the port is currently transmitting or receiving data.

Table17.16. gr spwr out er _port _st at us function declaration

Name grspwrouter _port_status()

Proto drvret grspwouter_port_status(grspwouter_dev * dev, uint8_t
port, uint32_t * status)

About Return the status of the port

This function returns the value of the status register for the port.

The status value can be parsed using the following defines:

* port type (SpaceWire/AMBA/FIFO/Custom)
(GRSPWROUTER_STATUS PORT_TY PE(status))

« apacket for which this port was the input port has been spilled due to the packet length trunca-
tion feature (GRSPWROUTER_STATUS _ERR_TRUNC)

« apacket for which this port was the input port has been spilled due to the time-code / distribut-
ed interrupt code truncation feature (GRSPWROUTER_STATUS ERR INTTRUNC)

* an RMAP / SpaceWire Plug-and-Play command received on this port was spilled by the con-
figuration port (GRSPWROUTER_STATUS ERR_RMAP)

» apacket received on this port was spilled due to the spill-if-not-ready feature
(GRSPWROUTER_STATUS ERR_NOTRDY)

« thisport either was started, or currently istrying to start, due to the link-start-on-request feature
(GRSPWROUTER_STATUS _START_REQUEST)

 apacket that isincoming on this port currently is being spilled
(GRSPWROUTER_STATUS SPILL)

« apacket arrives at this port and the port has been given access to the routing table
(GRSPWROUTER_STATUS ACTIVE_STATUYS)

« the active SpaceWire portsif dual portsisimplemented
(GRSPWROUTER_STATUS_ACTIVE_PORT)

 apacket for which this port was the input port was spilled due to a packet timeout
(GRSPWROUTER_STATUS _ERR_TIMEOUT)

» amemory error occur while accessing the on-chip memory in the ports
(GRSPWROUTER_STATUS ERR_MEM)

« transmit FIFO on this port is full (GRSPWROUTER_STATUS TX_FIFO_FULL)

* receive FIFO on this port is empty (GRSPWROUTER_STATUS RX_FIFO_EMPTY)

« current link state (GRSPWROUTER_STATUS LINK_STATE(status))

« the number of the input port for the current or last packet transfer on this port
(GRSPWROUTER_STATUS INPUT_PORT (status))

 port istheinput port of an ongoing packet transfer (GRSPWROUTER_STATUS RX_BUSY)

* port isthe output port of an ongoing packet transfer
(GRSPWROUTER_STATUS TX_BUSY)

» aninvalid address error occurred on this port (GRSPWROUTER_STATUS ERR_ADRS)

* acredit error has occurred (GRSPWROUTER_STATUS ERR_CREDIT)

« an escape error has occurred (GRSPWROUTER_STATUS ERR_ESCAPE)

« adisconnect error has occurred (GRSPWROUTER_STATUS ERR_DISCON)

 aparity error has occurred (GRSPWROUTER_STATUS ERR_PARITY)

Param dev - [in] - Valid router device handle

Param port - Index of avalid port

Param st at us - [out] - The port status register

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 127

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Name |grspwrouter_port_status()

Return drvret
« DRV_CK- on success
* DRV_I NVAL - portisnot avalid port

17.7. Error handling

Thegr spwr out er _i sr_regi st er () function canbeused toinstall ahandler that will be called when spec-
ified error events occur on the port, or when alink enters run state. It is possible to specify for which events the
handler should be called, and for which ports.

Table17.17. gr spwr out er _i sr_r egi st er function declaration

Name grspwrouter _isr_register()

Proto void grspwouter_isr_register(grspwouter_dev * dev, uint32_t
err_mask, uint32_t port_mask, grspwouter_isr_func isr, void *
arg)

About Register handler for port events

Register a handler for the selected interrupt types. The defines below can be or:ed together to form
the mask argument:

» Generate an interrupt when a SpaceWire Plug and Play error has been detected in the configu-
ration port (GRSPWROUTER_INTERRUPT_CONF_PNP)

» Generate an interrupt when a packet has been spilled because of the spill-if-not-ready feature
(GRSPWROUTER_INTERRUPT_NOTRDY)

» Generate an interrupt when a SpaceWire link enters run-state
(GRSPWROUTER_INTERRUPT_RUN_STATE)

» Generate an interrupt when a packet has been spilled because of the time code/ distributed in-
terrupt code truncation feature (GRSPWROUTER_INTERRUPT_INTTRUNC)

» Generate an interrupt when a packet has been spilled due to the packet length truncation fea-
ture (GRSPWROUTER_INTERRUPT_TRUNC)

» Generate an interrupt when a packet has been spilled due to the timeout mechanism
(GRSPWROUTER_INTERRUPT_TIMEOUT)

» Generate an interrupt when either a header CRC error, protocol 1D error, pack-
et type error, early EOP, or early EEP has been detected in the configuration port
(GRSPWROUTER_INTERRUPT_CONF_PORT)

» Generate an interrupt when an error has been detected in the configuration port
for an RMAP command such that the PSTS.EC field is set to a non-zero value
(GRSPWROUTER_INTERRUPT_CONF_RMAP)

* Generate an interrupt when an invalid address error has occurred on a port
(GRSPWROUTER_INTERRUPT_ADRYS)

» Generate an interrupt when alink error (parity, escape, credit, disconnect) has been detected on
a SpaceWire port (GRSPWROUTER_INTERRUPT_LINK)

» Generate an interrupt when amemory error occur in any of the router's on-chip memories
(GRSPWROUTER_INTERRUPT_MEM)

The define GRSPWROUTER _INTERRUPT_ALL can be used to enable all interrupt types and
GRSPWROUTER_INTERRUPT_NONE to disable al interrupt types.

Param dev - [in] - Valid router device handle

Param err _mask - Interrupts that the handler should trigger on

Param port _mask - Portsthat the interrupts can be generated for

Param i sr -[in] - Interrupt handler function pointer

Param ar g - [in] - Custom argument to interrupt handler

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 128

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

17.8. Time codes

To makeit possibleto send time codes the time code support needs to be enabled both globally in the router and for
each port that shall send or receive them. The router will keep track of the current time code, but initiating atime
code change or handling interrupts codes must be doneviaan AMBA port using the SpaceWire driver (Chapter 6).

Time codes ae enabled globaly by grspwouter tc enable() and per port by
grspw out er_port _tc_enabl e() .Usingthelatter function therouter can be configured to ignorethetime
code values it receives from the AMBA port and instead always use itsinternal time representation.

Table 17.18. gr spwr out er _t c_enabl e function declaration

Name grspwrouter_tc_enable()

Proto void grspwouter_tc_enable(grspwouter_dev * dev)

About Enable the handling of time codes

Enable the router time code support. Also needs to be enabled for each port that intend to use time
codesusing gr spwr out er _port _tc_enabl e.

Param dev - [in] - Valid router device handle

Table 17.19. gr spwr out er _t ¢_di sabl e function declaration

Name grspwrouter_tc_disable()

Proto void grspwouter_tc _disable(grspwouter_dev * dev)

About Disable time code support

Disable the router time code support.

Param dev - [in] - Valid router device handle

Table 17.20. gr spwr out er _port _t c_enabl e function declaration

Name |grspwrouter_port_tc_enable()

Proto drvret grspwouter_port _tc_enabl e(grspwouter_dev * dev, uint8_t
port, bool router_tine)

About Enable time code support

This function enables time codes to be sent and received viathe port. If rout er _ti meistrue
the router will not look at the timer value and instead use itsinternal time representation.

Time code support also needs to be enabled globally using gr spwr out er _t c_enabl e.

Param dev - [in] - Valid router device handle

Param port - Index of avalid port

Param rout er _tine - If true, always use the routers time, never the incoming time

Return drvret

* DRV_CX - on success
e DRV_I NVAL - if invalid port

Table17.21. gr spwrout er _port _tc_di sabl e function declaration

Name |grspwrouter_port_tc disable()

Proto drvret grspwouter port tc disable(grspwouter _dev * dev, uint8_t
port)
About Disable time code support

Disables support for time codes for the port. Any time codes received will be dropped.

Param dev - [in] - Valid router device handle

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 129

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Name grspwrouter _port_tc disable()
Param port - Index of avalid SpaceWire port

Return drvret
* DRV_CK- on success
e DRV_I NVAL - if invalid port

The internal time representation can be read out with grspwrouter _tc_get() and set to O with
grspwouter_tc _reset().

Table 17.22. gr spwr out er _t c_get function declaration

Name |grspwrouter_tc_get()
Proto uint8 t grspwouter _tc _get(grspwouter_dev * dev)
About Return the current time code

Returns routers internal time representation.

Param dev - [in] - Valid router device handle

Return |ui nt 8_t - Current time code

Table 17.23. gr spwr out er _t ¢c_r eset function declaration

Name grspwrouter_tc reset()
Proto void grspwouter_tc_reset(grspwouter_dev * dev)

About Set the current time code to O

Sets the routers internal time representation to O.

Param dev - [in] - Valid router device handle

17.9. Interrupt codes

The routing of interrupt-codes needs to be enabled both for the router and per port. For the router it is enabled by
gr spw out er _i c_enabl e() . When enabling the interrupt code support it is possible to set atime out that
will trigger an interrupt if an acknowledge reply is not received within the specified time period (100ys - 6.59).

It also possible to set a cooldown period to protect against being flooded by interrupt codes (100us - 25ms). A new
interrupt-code will not be registered until the cooldown has expired. Both the timeout and cooldown are optional
and can be disabled by setting the time period to 0.

Table17.24. gr spwr out er _i ¢c_enabl e function declaration

Name grspwrouter_ic_enable()

Proto drvret grspwouter _ic_enable(grspwouter_dev * dev, uint32_t tine-
out, uint32_t cool down)

About Enable interrupt code support

Enable the router interrupt code support. Also needs to be enabled for each port that intend to send
or receive interrupt codes using gr spwr out er _port _i c_enabl e.

A timer can be configured that will trigger an interrupt when an acknowledge reply is not received
within the specified time period (100us - 6.5s).

A cooldown period can be configured that prevents new interrupts from being submitted until the
specified time period has passed (100ps - 3.1ms).

Set the timeout to zero to disable.

Param dev - [in] - Valid router device handle

Param ti meout - Timeout in microseconds (or O to disable) (100 - 6553500 in steps of 100)

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 130

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Name grspwrouter_ic_enable()
Param cool down - Cooldown period in microseconds (or O to disable) (100 - 3100 in steps of 100)

Return drvret

* DRV_CK- on success
« DRV_I NVAL - if the timeout or cooldown value istoo big

Table 17.25. gr spwr out er _i ¢_di sabl e function declaration

Name grspwrouter_ic_disable()

Proto voi d grspwouter _ic_disable(grspwouter_dev * dev)

About Disable interrupt code support

Disable interrupt code support for al portsin router

Param dev - [in] - Valid router device handle

The per port interrupt-code support is enabled by gr spw out er _port _i c_enabl e() . By default it enables
forwarding of both interrupt codes and interrupt acknowledgement codes in both directions, but it is possible to
disable the transmission or reception of interrupt or interrupt acknowledgement codes.

Table 17.26. gr spwr out er _port _i c_enabl e function declaration

Name |grspwrouter_port_ic_enable()

Proto drvret grspwouter _port _ic_enable(grspwouter_dev * dev, uint8_t
port, uint32_t options)

About Enable interrupt code support for port

By default forwarding of both interrupt codes and interrupt acknowledgement codes in both direc-
tion are enabled. This can be changed by or:ing the defines below together to form an opt i ons ar-
gument:
« Disable the transmission of interrupt codes (GRSPWROUTER_IC _DIS TX_INT)
« Disable the reception of interrupt codes (GRSPWROUTER_IC DIS RX_INT)
« Disable the transmission of interrupt acknowledgement codes
(GRSPWROUTER_IC_DIS TX_ACK)
« Disable the reception of interrupt acknowledgement codes
(GRSPWROUTER_IC_DIS _RX_ACK)

Interrupt code support also needs to be enabled globally using gr spwr out er _i ¢_enabl e.

Param dev - [in] - Vaid router device handle

Param port - Index of avalid SpaceWire port

Param opti ons - Options mask

Return drvret

¢ DRV_CX - on success
* DRV_I NVAL - if invalid port

Table17.27. gr spwr out er _port _i c_di sabl e function declaration

Name grspwrouter_port_ic_disable()

Proto drvret grspwouter port _ic_disable(grspwouter _dev * dev, uint8_t
port)
About Disable interrupt code support for port

Disables support for interrupt codes for the port. Any interrupt codes received will be dropped.

Param dev - [in] - Valid router device handle

Param port - Index of avalid SpaceWire port

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 131

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Name grspwrouter_port_ic_disable()

Return drvret
« DRV_CK- on success
e DRV_I NVAL - if invalid port

Usingthegr spwr out er _port _code_truncati on() functionitispossibleto abort the currently received
packet when an interrupt code or time code with a specified value is received. The packet will be truncated and
marked with an EEP.

Table17.28. gr spwr out er _port _code_truncat i on function declaration

Name grspwrouter_port_code_truncation()

Proto drvret grspwouter_port_code_truncation(grspwouter_dev * dev,
uint8_t port, bool enable, uint8 t value, uint8 t mask)

About Abort packet on time/interrupt code

Configure the port to abort the current packet if atime or interrupt code with the specified valueis
received.

Param dev - [in] - Valid router device handle

Param port - Index of avalid SpaceWire port

Param enabl e - Enable packet truncation

Param val ue - Thevalue that can cause truncation
Param mask - Mask for the value
Return drvr et

* DRV_CK - on success
e DRV_I NVAL - if invalid port

17.10. Configure timeouts

The packet timeout functionality is enabled by gr spwr out er _port _ti nmeout (). It possible to enable it
for overruns (when the input port has data available, but the output port(s) can not accept data fast enough) and
underruns (when the output port(s) can accept more data, but the input port can not provide data fast enough). It
isalso possible to useit to automatically stop the link if it has not been used within the specified time.

Table 17.29. gr spwr out er _port _ti nmeout function declaration

Name grspwrouter_port_timeout()

Proto drvret grspwouter_port_timeout(grspwouter_dev * dev, uint8_t
port, uint32_t tinmeout, bool overrun, bool underrun, bool autodis-
connect)

About Enable timeouts

Enable atimeout for packets transfers (overrun and underrun) and auto-disconnect per port.

An overrun timeout occurs when the input port has data available but the output port(s) can not ac-
cept data fast enough. An underrun timeout occurs when the output port(s) can accept more data but
the input port can not provide data fast enough. The timeout can be set to between 100ys - 6.5s.

Param dev - [in] - Valid router device handle

Param port - Index of avalid SpaceWire port
Param ti meout - Thetimeout in microseconds (100 - 6553500 in steps of 100)
Param overrun - Enable for overrun

Param under r un - Enable for underrun

Param aut odi sconnect - Enable for auto disconnect (Only for SpaceWire ports)

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 132

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Name grspwrouter _port_timeout()

Return drvret

« DRV_CK- on success

e DRV_I NVAL - if trying to enable auto disconnect on non-SpaceWire port, or if invalid
port, or if the timeout valueistoo big

17.11. Configure packet max length

A max packet length can be configured for each port. If a packet exceeds this length it will be trun-
cated by the router and get an error end of packet (EEP). The max packet length is set by the
gr spw out er _port_max_| engt h() function.

Table 17.30. gr spwr out er _port _nmax_| engt h function declaration

Name |grspwrouter_port_max_length()

Proto drvret grspwouter _port_max_| ength(grspwouter _dev * dev, uint8_t
port, uint32_t length)

About Set the maximum length of packets

If an incoming packetsis larger it will be truncated and marked with an EEP. Use the length O to ac-
cept any length.

Param dev - [in] - Valid router device handle

Param port - Index of avalid SpaceWire port

Param | engt h - The maximum length of the packet or O to disable

Return drvret
« DRV_CK - on success
e DRV_I NVAL - if invalid port

17.12. Configure Plug-and-Play

The router supports the SpaceWire Plug-and-Play protocol which can be used to discover devices on the network.
The gr spwr out er _pnp_set () function is used to set the vendor id, product id, and serial number of the
device which is presented to any device scanning the network using the protocol.

Table 17.31. gr spwr out er _pnp_set function declaration

Name grspwrouter_pnp_set()

Proto void grspwouter_pnp_set(grspwouter_dev * dev, uintl1l6_t
vendor id, uintl6 t product _id, uint32_t serial, bool
keep_instance_id)

About Set the SpaceWire Plug-and-Play information

Sets the serial number, vendor id, and product id that is presented when accessing this device using
the SpaceWire Plug-and-Play protocol. Bits 3:0 of the serial number can be set using the INSTAN-
CEID[7:0] signal. Usekeep_i nst ance_i d to preserve this part of the serial nhumber.

Param dev - [in] - Valid router device handle

Param vendor _i d - Custom vendor id

Param product _i d - Custom product id

Param seri al - Custom serial number
Param keep_i nstance_i d - Usereset value for bits 3:0 of serial number

17.13. Read out credit counters

The credit counter for a SpaceWire port can be read out using gr spwr out er _port _cred() . It can only be
called on a SpaceWire port and will return an error if used on an AMBA port.

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 133

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table17.32. gr spwr out er _port _cr ed function declaration

Name grspwrouter_port_cred()

Proto drvret grspwouter_port_cred(grspwouter_dev * dev, uint8_t port,
uint8 t * in, uint8_.t * out)

About Read the credit counters for the port

Returns the current credit counters for the SpaceWire port. Can not be used on an AMBA port.
Param dev - [in] - Valid router device handle

Param port - Index of avalid SpaceWire port

Param i n-[out] - Incoming credit

Param out - [out] - Outgoing credit

Return drvret
« DRV_CK - on success
e DRV_I NVAL - if invalid SpaceWire port

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 134

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Frontgrade Gaisler AB
Kungsgatan 12

411 19 Goteborg
Sweden
frontgrade.com/gaisler
sales@gaisler.com

T: +46 31 7758650

F: +46 31 421407

Frontgrade Gaisler AB, reserves the right to make changes to any products and services described herein at any time without
notice. Consult the company or an authorized sales representative to verify that the information in this document is current before
using this product. The company does not assume any responsibility or liability arising out of the application or use of any product
or service described herein, except as expressly agreed to in writing by the company; nor does the purchase, lease, or use of
a product or service from the company convey a license under any patent rights, copyrights, trademark rights, or any other of
the intellectual rights of the company or of third parties. All information is provided as is. There is no warranty that it is correct or

suitable for any purpose, neither implicit nor explicit.

Copyright © 2023 Frontgrade Gaisler AB

ZEPHYR-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.0.0 135

https://www.frontgrade.com/gaisler
https://www.frontgrade.com/gaisler

	
	Table of Contents
	1. Introduction
	1.1. Installing Zephyr
	1.1.1. Extracting the archive
	1.1.2. Installing kernel improvements
	1.1.3. Installing GRLIB drivers into Zephyr

	1.2. Archive content

	2. Zephyr kernel
	2.1. Kernel patches
	2.1.1. Applying the patches

	3. GRLIB device drivers
	3.1. Drivers included in the package
	3.2. Enabling the drivers
	3.3. Application configuration
	3.3.1. Example

	4. Support
	Part I. Device drivers reference
	5. Driver registration
	5.1. Manual registration
	5.2. System specific device registration tables

	6. GRSPW Packet driver
	6.1. Introduction
	6.1.1. Hardware Support
	6.1.2. Driver sources
	6.1.3. Driver registration
	6.1.4. Examples
	6.1.5. Known driver limitations

	6.2. Software design overview
	6.2.1. Overview
	6.2.2. Initialization
	6.2.3. Link control
	6.2.4. Time Code support
	6.2.5. RMAP support
	6.2.6. Port support
	6.2.7. SpaceWire node address configuration
	6.2.8. User DMA buffer handling
	6.2.8.1. Buffer List help routines

	6.2.9. Driver DMA buffer handling
	6.2.9.1. DMA Queues
	6.2.9.2. DMA Queue operations

	6.2.10. Polling mode and interrupts
	6.2.11. Starting and stopping DMA

	6.3. Device Interface
	6.3.1. Opening and closing device
	6.3.2. Hardware capabilities
	6.3.3. Link Control
	6.3.4. Node address configuration
	6.3.5. Time-control codes
	6.3.6. Port Control
	6.3.7. RMAP Control
	6.3.8. Interrupt handling

	6.4. DMA interface
	6.4.1. Opening and closing DMA channels
	6.4.1.1. Static buffer allocation

	6.4.2. Starting and stopping DMA operation
	6.4.3. Packet buffer description
	6.4.4. Packet buffer lists
	6.4.5. Sending packets
	6.4.6. Receiving packets
	6.4.7. Transmission queue status
	6.4.8. Queue flushing
	6.4.9. Statistics
	6.4.10. DMA channel configuration
	6.4.11. DMA channel status

	6.5. API reference
	6.5.1. Data structures
	6.5.2. Device functions
	6.5.3. DMA functions

	6.6. Restrictions

	7. GRCAN CAN driver
	7.1. Introduction
	7.1.1. User Interface
	7.1.2. Driver registration
	7.1.3. Examples
	7.1.4. Known driver limitations

	7.2. Opening and closing device
	7.2.1. Static buffer allocation

	7.3. Operation mode
	7.3.1. Starting and stopping

	7.4. Configuration
	7.4.1. Channel selection
	7.4.2. GRCAN Timing parameters
	7.4.3. GRCANFD Timing parameters

	7.5. Receive filters
	7.5.1. Data structures
	7.5.2. Acceptance filter
	7.5.3. Sync filter

	7.6. Driver statistics
	7.7. Device status
	7.8. CAN bus transfers
	7.8.1. Data structures
	7.8.2. Transmission
	7.8.3. Reception
	7.8.4. Bus-off recovery
	7.8.5. AHB error recovery

	7.9. Interrupt API
	7.9.1. Interrupt generation

	8. SPI driver
	8.1. Introduction
	8.2. Driver registration
	8.3. Opening and closing device
	8.4. Status service
	8.5. Transfer Configuration
	8.6. Transfer Interface
	8.7. Synchronous TX/RX mode
	8.8. Slave select
	8.9. Restrictions

	9. AHB Status Register driver
	9.1. Introduction
	9.2. Driver registration
	9.3. Opening and closing device
	9.4. Register interface
	9.5. Interrupt service routine

	10. Clock gating unit driver
	10.1. Introduction
	10.2. Driver registration
	10.3. Opening and closing device
	10.4. Operation
	10.5. Core reset
	10.6. Probe clock gating status
	10.7. CPU override

	11. GR1553B Driver
	11.1. Introduction
	11.1.1. Considerations and limitations
	11.1.2. GR1553B Hardware
	11.1.3. Software driver
	11.1.4. Driver Registration

	12. GR1553B Bus Controller Driver
	12.1. Introduction
	12.1.1. GR1553B Bus Controller Hardware
	12.1.2. Software driver
	12.1.3. Driver registration

	12.2. BC Device Handling
	12.2.1. Device API
	12.2.1.1. Data Structures
	12.2.1.2. gr1553bc_open
	12.2.1.3. gr1553bc_close
	12.2.1.4. gr1553bc_start
	12.2.1.5. gr1553bc_pause
	12.2.1.6. gr1553bc_resume
	12.2.1.7. gr1553bc_stop
	12.2.1.8. gr1553bc_indication
	12.2.1.9. gr1553bc_status
	12.2.1.10. gr1553bc_ext_trig
	12.2.1.11. gr1553bc_irq_setup

	12.3. Descriptor List Handling
	12.3.1. Overview
	12.3.2. Example: steps for creating a list
	12.3.3. Major Frame
	12.3.4. Minor Frame
	12.3.5. Slot (Descriptor)
	12.3.6. Changing a scheduled BC list (during BC-runtime)
	12.3.7. Custom Memory Setup
	12.3.8. Interrupt handling
	12.3.9. List API
	12.3.9.1. Data structures
	12.3.9.2. gr1553bc_list_init
	12.3.9.3. gr1553bc_list_alloc
	12.3.9.4. gr1553bc_list_free
	12.3.9.5. gr1553bc_list_config
	12.3.9.6. gr1553bc_list_link_major
	12.3.9.7. gr1553bc_list_set_major
	12.3.9.8. gr1553bc_minor_table_size
	12.3.9.9. gr1553bc_list_table_size
	12.3.9.10. gr1553bc_list_table_init
	12.3.9.11. gr1553bc_list_table_alloc
	12.3.9.12. gr1553bc_list_table_free
	12.3.9.13. gr1553bc_list_table_build
	12.3.9.14. gr1553bc_major_init_skel
	12.3.9.15. gr1553bc_major_alloc_skel
	12.3.9.16. gr1553bc_list_freetime
	12.3.9.17. gr1553bc_slot_alloc
	12.3.9.18. gr1553bc_slot_free
	12.3.9.19. gr1553bc_mid_from_bd
	12.3.9.20. gr1553bc_slot_bd
	12.3.9.21. gr1553bc_slot_irq_prepare
	12.3.9.22. gr1553bc_slot_irq_enable
	12.3.9.23. gr1553bc_slot_irq_disable
	12.3.9.24. gr1553bc_slot_jump
	12.3.9.25. gr1553bc_slot_exttrig
	12.3.9.26. gr1553bc_slot_transfer
	12.3.9.27. gr1553bc_slot_dummy
	12.3.9.28. gr1553bc_slot_empty
	12.3.9.29. gr1553bc_slot_update
	12.3.9.30. gr1553bc_slot_raw
	12.3.9.31. gr1553bc_show_list

	13. GR1553B Remote Terminal Driver
	13.1. Introduction
	13.1.1. GR1553B Remote Terminal Hardware
	13.1.2. Driver registration

	13.2. User Interface
	13.2.1. Overview
	13.2.1.1. Accessing an RT device
	13.2.1.2. Introduction to the RT Memory areas
	13.2.1.3. Sub Address Table
	13.2.1.4. Descriptors
	13.2.1.5. Data Buffers
	13.2.1.6. Event Logging
	13.2.1.7. Interrupt service
	13.2.1.8. Indication service
	13.2.1.9. Mode Code support
	13.2.1.10. RT Time

	13.2.2. Application Programming Interface
	13.2.2.1. Data structures
	13.2.2.2. gr1553rt_open
	13.2.2.3. gr1553rt_close
	13.2.2.4. gr1553rt_config_init
	13.2.2.5. gr1553rt_config_alloc
	13.2.2.6. gr1553bm_config_free
	13.2.2.7. gr1553rt_start
	13.2.2.8. gr1553rt_stop
	13.2.2.9. gr1553rt_status
	13.2.2.10. gr1553rt_indication
	13.2.2.11. gr1553rt_evlog_read
	13.2.2.12. gr1553rt_set_vecword
	13.2.2.13. gr1553rt_set_bussts
	13.2.2.14. gr1553rt_sa_setopts
	13.2.2.15. gr1553rt_list_sa
	13.2.2.16. gr1553rt_sa_schedule
	13.2.2.17. gr1553rt_irq_err
	13.2.2.18. gr1553rt_irq_mc
	13.2.2.19. gr1553rt_irq_sa
	13.2.2.20. gr1553rt_list_init
	13.2.2.21. gr1553rt_list_alloc
	13.2.2.22. gr1553rt_bd_init
	13.2.2.23. gr1553rt_bd_update

	14. GR1553B Bus Monitor Driver
	14.1. Introduction
	14.1.1. GR1553B Remote Terminal Hardware
	14.1.2. Driver registration

	14.2. User Interface
	14.2.1. Overview
	14.2.1.1. Accessing a BM device
	14.2.1.2. BM Log memory
	14.2.1.3. Accessing the BM Log memory
	14.2.1.4. Time
	14.2.1.5. Filtering
	14.2.1.6. Interrupt service

	14.2.2. Application Programming Interface
	14.2.2.1. Data structures
	14.2.2.2. gr1553bm_open
	14.2.2.3. gr1553bm_close
	14.2.2.4. gr1553bm_config_init
	14.2.2.5. gr1553bm_config_alloc
	14.2.2.6. gr1553bm_config_free
	14.2.2.7. gr1553bm_start
	14.2.2.8. gr1553bm_stop
	14.2.2.9. gr1553bm_time
	14.2.2.10. gr1553bm_available
	14.2.2.11. gr1553bm_read

	15. GR716 memory protection unit driver
	15.1. Introduction
	15.1.1. User Interface
	15.1.2. Features
	15.1.3. Limitations

	15.2. Driver registration
	15.3. Examples
	15.4. Opening and closing device
	15.5. Operation mode
	15.5.1. Starting and stopping

	15.6. Reset
	15.7. Segment configuration
	15.7.1. Number of segments
	15.7.2. Data structures
	15.7.3. Set
	15.7.4. Get
	15.7.4.1. Example

	16. Memory scrubber
	16.1. Introduction
	16.1.1. Hardware Support
	16.1.2. Driver sources
	16.1.3. Examples

	16.2. Software design overview
	16.2.1. Driver usage

	16.3. Memory scrubber user interface
	16.3.1. Return values
	16.3.2. Opening and closing device
	16.3.3. Configuring the memory range
	16.3.4. Starting/stopping different modes.
	16.3.5. Setting up error thresholds
	16.3.6. Registering an ISR
	16.3.7. Polling the error status

	16.4. API reference

	17. SpaceWire Router Driver
	17.1. Introduction
	17.2. Driver sources
	17.3. Routing
	17.4. Register and access driver
	17.5. Setup routing table
	17.5.1. GR716B

	17.6. Link handling
	17.7. Error handling
	17.8. Time codes
	17.9. Interrupt codes
	17.10. Configure timeouts
	17.11. Configure packet max length
	17.12. Configure Plug-and-Play
	17.13. Read out credit counters

