RTEMS-5 Cross Compiler (RCC)

RCC

RCC User's Manual

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | G6teborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table of Contents

O [L oo (8 1o o PP POPPPTRRPPPPN 6
N €1 o 1= - | PP PP 6
1.2, Installation 0n host PlAfOrM ...eeee e 6

1.2.0. HOSE FEQUITEMENTS ...ttt ettt et e e et e e et eeeaaes 6

1.2.2. Installing RCC on Windows platforms coouuiiiiiiiiiieiece e 7

1.2.3. Installing on Linux PIatformcoooeieii e 8
1.3, Contents Of JOPL/TCC-1.3.2 .ooeei ittt ettt e et e e ettt e e e et eeeena e eeeens 9
L4, RCC L0008 oeuiiiitiii ettt ettt ettt ettt ettt ettt e et e e et e e e eat e aeen 9
1.5, DOCUMENTELION ...eeitieeeeit ettt ettt et e e et ettt et e et e e et e e e e e e et r e e e aaa e e eeaans 10
1.6. RCC SOUMCE Gt GOCESS ..ieevtueeiiiti i ee ettt e ettt e e ettt e ettt e et e et r e e et a b e e ettt reeeenbnaeeeentnaaaees 11
1.7. Changes SINCE RCC-1.2 ..ottt ettt e e 11
1.8. Known limitations in thiS FEI@ASE coeuiiiiii e 11
TS T o] oo g APPSR 12

2. USING RCC oottt ettt et ettt et et e e e eaa e aaen 13
2.1. General development FIOW iiii e 13
2.2. Compiler tOOICNEIN ... ettt 13

2.2.1. sparc-gaider-rtemsb toolchain BSP Selection ooovviiiiiiiiiiii e 13
2.2.2. CommON COMPIIEr OPLIONS iiiiiieeeeei ettt e e 14
2.2.3. GNU GCC tOO0IChAIN ..oeitieiiiii e e 14
224, LLVM Clang toOIChaIN ... ocoiiiiiiiii e e e 15
2.2.5. Floating-point CONSIAEIAIIONS uueieiieieeieii et e et e et e e et e e e e e eeaa e eees 17
2.2.6. SPARC VB INSITUCLIONS iiiiiiieeiiii ettt ettt et e e e e e e e e eeeees 17
2.2.7. LEON CASA INSIIUCHION oetiiiiiiii ettt et e e 17
2.2.8. LEON UMAC/SMAC INSIUCLIONS eeeitiieieiiiie ettt eeenenns 17
2.2.9. LEONGS/A/5 CPU COUNEN ...eiiitieeeeiti ettt ettt e e et e e et e e e enta e eeeees 17
2.2.10. Enabling/Disabling Interrupt by use of Write Partial PSR instruction 18
2.3. RTEMS @PPIICAIIONS .oveieeiiii ettt e e e e e e e e 18
2.4, MEMOTY OFgANISALION eiiiiteeeiti ettt ettt e et e e et et e e et et e e e e et e e e e ete e e e eete e eeeebeaeeees 18
2.5. Board-support packages (BSPS) ...cevuuiiiii e 19
250 LEONS BOP .ottt 19
252, GR7A0 BSP ... 19
253, GR7I2RC BOP oottt 21
254, UTB99 BSOP ..ottt ettt een 21
255, UTBIE/UTT00 BSP ...ttt ettt 21
25.6. ATBITF BSP ..o 21
2.6. DIIVEr MBNEOEN ...ttt e et e et e e ettt ettt e et e e e e e aee 21
2.6.1 INITAHZALHON ..ot 22
2.6.2. CONFIGUIALION .ottt et e e e et e e e aa s 22
2.6.3. Driver CONFIQUIBLION ...uueiieii ettt et e et eenaa s 23
2.6.4. drvmgr COMMENG eeeiiieieei ettt ettt ettt e e e et e e e eaa s 24
2.7. NetWOrk CONFIQUIBLION cieiiiee ettt ettt e e e e e 25
2.8, Pl e et 26
2.9. LEON3 BSP multiprocessing CONfigUIalioNS veeeruneieiiiie e e eeeens 26
2.9.1. Memory and device reSoUrce SNAMNG c.evuieiereneiiiii et r e eeeens 26
2.9.2. INtErrupt CONSIABIAIIONS ..vuueiiitt ettt et e et e et e e e e e et e e e eete e eeees 27
2.9.3. Symmetric multiprocessing (SMP) configurationccceovvvieiiiniieeiiineeeeieeeeeenn 27
2.9.4. Asymmetric multiprocessing (AMP) configurationccovveeiviiniiiiiiinieiiineeeeee, 28
2.9.5. RTEMS SMP AMP @X8MPIE ...ttt 29
2.10. M@King DOO-PIOMS ...eeitieeeeit ettt ettt et e e e e e e e e e eeaans 30

S XA ES e e e e a e 31
L. OVEIVIBIW ottt ettt et 31
B2 BUIAING oo eaaas 31

4. Execution and delUGgING oieeiieiiii s 32
T S 1 SO UPPT TSP 32
4.2 GRMON i e e ettt 32
4.3. GDB with GRMON and TSIM ..o e 33
4.4. Using DDD graphical front-end t0 gab coouuiiiiiiiiiie e 34

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Géteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 2

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

|, DEVICE ANVEIS MBI EIENCE .ouieiii e e et e e e e e e e e et e e e aneeanns 35
5. GRLIB AMBA PlUg&Play DUSeiiiiee e 36
L300 O 1 11 oo o 1 o o I 36

LI O Y= = 37

B3 INIGTAIZAIHON ..o 37

5.4. Finding AMBAPP devices by PIUQ&PIaY ovvniiiiiiie s 37

5.5. Allocating a deviCe SIIUCIUIE cieiiieii e e e e e e ees 38

5.6. NAME at@hase coviiiii i 38

B5.7. FrequenCy Of @ deViCeoieiiiiiiii e 38

Lo I V= 1V = = P 39
L300 O 1 11 oo o £ o o I 39

LA @ Y= T 39

LG T o g1 1o 1 = 1 o o T 44

L3 T TN F= o] o 46

B0, IO UL oot 46

6.6. AdAress translalion ccouiiiiii i 47

6.7. FUNCHION INLEIACE .ooeie e e e e e e aaas 48

T RMAP SEACK et e ea s 49
78 T 1 11 oo [Tox 4 o o I 49

7.2, DIiVEr INTEITaCe ..ovniii e 49

7.3. Logical and Path addreSSiNg cvuiviniiiciie et 49

7.4. Zero-copy iMpIementation couiiiieiiie e e 49

7.5. RMAP GRSPW IVEN oottt e e e 49

ST I 41220 = 50

A S 1= BT 1 1 = ot 50

8. SpaceWire Network MOdel oiiii e 53
S 00 O 1 11 oo o £ o o I 53

S O Y= = 53

LSRG T (= o 011 =0 1€ P 53

S VLo o (=3 D 1= o] o 11 oo 53

8.5. Read and WIite OPEralioN oiuiiiieii et e e e 53

8.6. Interrupt NaNAIiNG oiei i 54

8.7. Using the spacewire DUS AriVEr coeiii e 54

0. AMBA OVEr SPACEWITE .oiieiii e e et 55
LS 80 O 1 11 oo o 1 o o I 55

LS A O Y= T 55

LS G T (= o 01 =0 1€ P 55

9.4. Interrupt NANAIING ..oeneie e e 55

9.5. Memory allocation ON targEL coviiiiei e 55

9.6. Differences between on-chip AMBA driversc.cooiiiiiiiiii e 55

10. LEON PCI host Bridge AriVErSieeiiiieiie e e e e e e e e eans 57
0 I O 11T [T 1 o 57

F0.2, SOUIMCES ouitiiiiie ittt e e e e e e e et e e e e e e 57

0 T T @ oo 1= o o 57

O U S T 1= g == N 58

11. GRPCIZ DMA FVEN oottt ettt et et e e et e e e e eaans 60
I O 11T [T 1 o 60

11.2. SOftware deSigN OVEIVIEW iveiiieii e e e e e e et e e e e e e e e et et e e e e e eans 60

11.3. DMA USEr INTEITaCe oooviiinii e e e e e e e 62

I = 1 (= oo 68

12. GR-RASTA-ADCDAC PCI peripheraloooeiiiii et 69
13. GR-RASTA-IO PCl Peripheral ..o et 70
14. GR-RASTA-TMTC PCl Peripheral ...t 71
15. GR-RASTA-SPW_ROUTER PCI Peripheralcoouiiiiiiiiiiie e 72
16. GR-CPCI-LEON4-N2X PCI Peripheralooiiiiii e 73
16.1. Driver reQiStraliOn c.uciieiiiei e e e e e e e e e aas 73

16.2. Driver resource CONfIQUItioN ceuiiiieiiiei e e e e e e e e e et e e anes 73

17. GR-CPCI-GR740 PCI Peripheral oiiiiii e 74
A I B = g =T = o] ISP 74

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 3

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

17.2. Driver resource CONfIQUItioN iiuneiieiiie e e e e e e e e e e e e e e eenes 74
18. GRSPW Packet OriVEr ..ot e e e e e e e et e e e e aneaneenns 75
S 200 g 0o L8 1o T PPN 75
18.2. SOftware deSIgN OVEIVIEW iieiiieiiie e e e e et e e e e e e e et e et e e e e eeans 76
18.3. DEVICE INTEITACE oenieii e 83
18.4. DMA INEEI At ittt e e eas 93
18,5, APl TEfEIENCE e 108
19. GRSPW ROUTER AriVEr oo e e e e e e et e e ans 111
e T 1 g1 0o 16T 1o o PPN 111
19.2. SOftWare deSIgN OVEIVIEW iueiiciieei eanes 111
19.3. GRSPW ROUTER USEr iNtErfate cuiiviiiiiii e 112
TO.4. APl TEfBIBNCE e e e 133
DS YA I B o [= PPN 136
20 00 R 1 g 11 o 18 o oo TP 136
20.2. SOftware deSIgN OVEIVIEIW iieiiieiie e e e e e e e e et e e e e e eaaeens 136
20.3. SPWTDP USEr INTEIACE ..vniiiiiii e e 137
DO N N o I (== = (o TP 147
21. GR1553B GRLIB MIL-STD-1553B AriVErceuiiiiitiieiieiee e e e e ans 149
2 0 T 1 11 o 11 oo TP 149
21.2. GRIB53B HaIOWEIE ...u.itiiiiitiiiiit e et e e e et e e e e e e e e e e e aneeneannen 149
21.3. SOfWAIE AIVEr oo ea e 149
21.4. Driver REQISITAION ...ovuiiiiiiei e e e e e e e e e 149
A ST = 1 o] =N 149
22. GR1553B remote terminal AriVEr ... 150
2200 W g1 o L1 o i oo TP 150
22.2. USEr INEEI At it aaas 150
23. GR1553B bUS MONITOr AriVEr ..oeieiiii e e e e et e e e e ens 159
22 T80 R 1 g 11 o L1 o i oo TP 159
23.2. USEr INEEI At oiniiiii i e 159
24. GR1553B bus CONrOllEr AriVEr ..oeiei i e 164
23t T g o L8 oo TP 164
24.2. BC Device HandliNg c.oevniiiiii e r e e 165
24.3. Descriptor List HaNdliNg ...oeeiiiniiii e 167
25. B1553BRM GRLIB Actel Corel553BRM AriVEr ...oniieiiicieee e 179
2o Y00 R g 1 o 11 o i oo TSP 179
25,2, USEr INIEITACE ..ot et e e aaas 179
26. B1553RT GRLIB Actel Corelb53 RT OriVEr .ovuieniiiiieee e 188
b2 G Y00 R g1 o L1 o oo TP 188
26.2. USEr INTEITACE ..vitiiii i e 188
27. GRCAN CAN AriVEr oot e e e e et e e s et et et e e e tneaneens 193
2 50 R 1 g 11 o L8 o oo TP 193
27.2. USEr INEEI At iniiiii it 193
28. CAN_OC GRLIB Opencores CAN AriVEr oeieiiiciiei e e e e e e eans 202
b2 < 00 R g 1 o L1 o i o o TP 202
28.2. USEr INTEITACE .oviiiieii i 202
29. SACAN driver (SABECAN) oot e 209
b4 00 R g1 o L1 o i oo TSP 209
20.2. USEr INMTEITACE ..viriieii i e 209
30. CAN_MUX driver (CAN_MUX) oo e e e e e e 217
G000 I 1 11 oo [oo TP 217
30.2. USEr INLEITACE coviiiieii i e 217
I B T 7N O o [Y= S 219
G 3 0 I 1 11 T [o oo T PP 219
BL2. USEr INEITACE coviiiieii i e 219
R = 1010 =S oo 1o = 222
32. APBUART CONSOIE OIVEN oot e e e et e e et e e et e e e ae e ens 224
G 72200 W 1 g 11 o L1 o i oo TP 224
32.2. USEr INEITACE coviiiieii i 224
33. SPICTRL GRLIB SPI Master AriVErcunieiiiiiiiee e e e e 227
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 4

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

G 00 I 1 11 oo L1 o oo TSP 227
332, USEr INLEITACE coviriieii i 227
34. I2CMST GRLIB 12C MaSter AriVEr ..ovnieiiiiieie e e e e e e e e e aeans 231
G 7 3t I 1 g1 o L1 o o o TSP 231
3B4.2. USEr INTEITACE .oviiiiii i 231
LS T 1 [I I o =Y/ 232
G700 R 1 g 11 o 11 o oo TSP 232
35.2. DIVEN INTEITACE ..viiiiii i e e e e 232
35.3. USEr INTEITACE .ovitiieii i 232
36. GRGPIO GRLIB GPIO ArVEr oeieiiiiiiiiee et e e aneeaas 235
GG 700 I 1 11 oo L1 o oo T PP 235
36.2. USEr INTEITACE ..vitiieiii e 235
37. GRADCDAC GRLIB ADC/DAC AriVEN ..ot e e e 238
G700 R 1 11 o L8 o oo TP 238
B7.2. USEr INTEITACE coviriini i 238
38. GRTC GRLIB CCSDS Telecommand driVEr oeiiiiiiiii e e 245
38.1. INTRODUCTION et e e e e eaas 245
38.2. USEr INEITACE .oviiiieiii e 245
39. GRTM GRLIB CCSDS Telemetry DIIVEreoiiiiieiiee e e e e e e e 255
G100 I 1 g 11 oo L1 o oo TP 255
39.2. USEr INTEITACE ..viiiieii i e 255
O I] (O Y o [/ PP 264
210 14 I g 11 o [0 Tox o o TP 264
AL, SPWCUC AriVEN oottt et et e e et e et e et et e et e e et eaeens 267
N g O 11 o (1 Tox o o PP 267
N B L= T 1 (= ¢ = o T 267
42. GRPWRX GRLIB PacketWire ReCAIVEr AriVEr ..o 271
5 W 11 o (1 Tox o o TP 271
A L= T 01 (= 1 = o = T 271
43. GRAES GRLIB AES DMA OrVEr e e e e e e 278
G 54 I g 11 o [0 Tox o o TP 278
43.2. USEr INEEITACE ..ottt 278
44, AHB StatUS regiSter AriVEr oo e e e e 285
Y N @ = V1= Y PP 285
LY B L VL= g 01U o T 285
VG B TRV gl = o 1 1= 1o o 285
VA @ o= =1) o 285
AA.5, USEr INEEITACE ..ottt 285
I I @ AN O o | =0 ¢ V= S PR 287
L0 I g 11 o (1 Tox oo P 287
45.2. SOftware deSIgN OVEIVIEW euiie i et e e e e e e e e e enaeens 287
45.3. L2CACHE USEr INEITACE ..viiviiiiiii e e s 288
A5.4, APL TE EIONCE e 300
46. GRIOMMU AriVEN oo e e et e et e e et e et e e et e e et e ane s eanernaanas 302
L300 I g 11 o [0 Tox oo TP 302
46.2. SOftware deSIgN OVEIVIEW ...ceeiie i e e e e e e e e e e e enaeeas 302
46.3. GRIOMMU USEr INLEIACE ..ovieiiii i e 303
AB.4. APL TE EIONCE ot 313
R Y N I 1Y AN e [Y= S PP 315
0 W g 11 o (1 Tox o o PP 315
47.2. SOftware deSigN OVEIVIEW ...eeiie it e e e e e e e e e enaeens 315
A47.3. LASTAT USEr INLEITACE oniniieii i 315
A7 4, APl T B ONCE it e 318
48. MemOry SCrUBDEr AriVEr ..o e e e 320
bS50 I g 11 o [0 Tox o TP 320
48.2. SOftware deSIgN OVEIVIEW ...ceviie i e e e e e e e e e e eaaeens 320
48.3. Memory scrubber user iNterfaCe vvviie i 321
AB.4. APL TE EIONCE oriiiii i e 327
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 5

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 1. Introduction

1.1. General

This document describes the RTEM S LEON/ERC32 GNU cross-compiler system (RCC). The NOEL-V RISC-
V processor is not supported by this software distribution. Please see the Frontgrade Gaisler website for more
information on RTEM S support for NOEL-V. This chapter covers the following topics:

* Overview

¢ Installing RCC

« Contents and directory structure of RCC

¢ Compiling and linking LEON and ERC32 RTEMS applications

» Debugging RTEMS application with GRMON, TSIM and GDB

RCC is a multi-platform devel opment system based on the GNU family of freely available tools with additional
tools developed by RTEM S Community and Frontgrade Gaisler. RCC consists of the following packages:

¢ GCC-10.5.0 or LLVM/Clang-8.0.0 C/C++ compiler

¢ GNU binary utilities 2.35

¢ RTEMS-5.3 C/C++ real-time kernel, precompiled BSPs for LEON2/3/4/5 and ERC32

« Newlib-3.1.4 (cygwin-3_1 4-release-49-g7947581) standalone C-library

* GDB-8.2.1 SPARC cross-debugger

RCC includes precompiled BSPs for LEON2/3/4/5 and ERC32 in different configurations and some examplesto
easily get started using RTEMS on LEON/ERC32. The precompiled BSPs:

o AT697F

» UT699

» UT700 (also used for UTG99E)

* GR712RC

* GR712RC AMP configuration

¢ GR712RC SMP configuration

* GR740

¢ GR740 AMP configuration

¢ GR740 SMP configuration

e Generic LEON3

» Generic LEON3 soft-float (floating point software emulation)

e Generic LEON3 flat register window model

* Generic LEON3 SMP configuration

The ERC32 BSP istemporarily disabled but will be enabled in future rel eases.

1.2. Installation on host platform
1.2.1. Host requirements

RCC is provided for two host platforms: Linux/x86_64 and Windows/x86_64. The following are the platform
system requirements:

Linux (GCC): Linux-2.6.x, glibc-2.11.1 (or higher)
Linux (LLVM): Linux-3.x, glibc-2.18 (or higher)
Windows (GCC/LLVM): MSY S base 2013.07.23 (or higher)

Starting with RCC-1.3-rc7 release, precompiled SPARC objects/libraries are built with the DWARF4 debugging
format supported by GDB-8.2.1 and GRMON-3.1 and TSIM3. DWARF3 or later is not supported by GDB-6.8,
hence source level debugging is not supported for TSIM2 and GRMON2 unless the user rebuilds RTEM S kernel
and Newlib with DWARF2 (-gdwarf-2 flag) updating the build scripts described in the following subsections.

In order to build samples and recompile the RTEMS kernel sources an MSY S environment and some specific
development tools are required. MSY S provides standard UNIX tools such asrmeke, f i nd, aut oconf , etc. and

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 6

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

MINGW provides GCC and BINUTILS built for Windows. The RTEMS-5 kernel source build system requires
specific versions of automake-1.12.6 and autoconf-2.69 to work properly. The following links provides all tools
neccessary and section Section 1.2.2.1 describes the Windows M SY S setup flow briefly.

* http://www.mingw.org

« http://sourceforge.net/projectsmingw/files/Installer/

« ftp://ftp.gnu.org/gnu/autoconf/

« ftp://ftp.gnu.org/gnu/automake/

1.2.2. Installing RCC on Windows platforms

Thetoolchain installation zip file (spar c- rt ens- 5- gcc- 10. 5. 0- 1. 3. 2- mi ngw. zi p) must be extract-
ed to C: \ opt creating the directory C. \ opt\rcc- 1. 3. 2. The toolchain executables can be invoked from
the command prompt by adding the executable directory to the PATH environment variable. The directory C.
\opt\rcc-1. 3. 2\ bi n can be added to the PATH variable by selecting "My Computer->Properties->Ad-
vanced->Environment Variables'. Development often requires some basic utilities such as make, but is not re-
quired to compile. On Windows, the MSY S Base system can be installed to get a basic UNIX like devel opment
environment (including make).

The RTEMS build procedure rely on the autoconf and automake utilities to create Makefiles from the RTEMS
sources. The MSY S Base system doesn't include the required version of autoconf and automake, instead they can
be compiled from sources as described below.

1.2.2.1. Installing MSYS

The MSY S package can be freely downloaded from http://www.mingw.org. It is available as an self extracting
installation application (msys-get-installer.exe). The following text assumes the MSY S has been successfully in-
stalled to C: \ M NGW The following tools, apart from the MSY S and MINGW base, are also required to be se-
lected for installation from within the MSY Sinstaller:

o msys-findutils

* msys-m4

e msys-perl

e msys-coreutils-ext

e msys-patch

The directory where the toolchain isinstalled (C: \ opt\rcc-1. 3. 2) must befoundin/opt/rcc-1. 3.2
from the MSY S environment, this can done by adding an mount entry similar to one of the examples below to
the/ et ¢/ f st ab filein the MSY S environment.

C./opt/rcc-1.3.x /opt/rcc-1.3.x
or
C./opt [/opt

The path to the toolchain binaries (C: \ opt \ r cc- 1. 3. 2\ bi n) must added to the MSY S PATH environment
variable. Below is an example of how to change the PATH variable in the MSY S shell.

export PATH=/ opt/rcc-1. 3. x/ bi n: $PATH

The toolchain installation can be tested by compiling the samples included in the toolchain,

$ cd /opt/rcc-1.3.x/src/sanpl es
$ nmake

1.2.2.2. Building Newlib from sources

RCC comes with the Newlib C library precompiled and its source code, thus this step is optional and in general
not needed. The libraries can be found in spar c- gai sl er-rtens5/ | i b/ TARGET where TARGET is a
directory named according to the multilib path of a specific target, see Section 2.2.3.3.

The source code is located in src/ newl i b and required during source level debugging and when rebuilding
newlib. Newlib can be (re)built from sourcesusing thesr ¢/ bui | d- newl i b. sh script. By default it will build
Newlib once for every multilib defined for the compiler used. The libraries will overwrite the pre-built libraries
that comes with RCC. Additional target configurations can be added and or application specific compiler flags
can also be added to the script used when building newlib.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 7

https://www.frontgrade.com/gaisler
http://www.mingw.org

rRONTGRADE

Gaisler

1.2.2.3. Installing RTEMS source

Installing the RTEMS kernel source code is optional but recommended when debugging applications. The
toolchain libraries are built with debugging symbols making it possible for GDB to find the source files. The
RCC RTEMS sources is assumed to be located in C: \opt\rcc-1. 3. 2\src\rcc-1. 3. 2. The RTEMS
sources (rtens-5-1. 3. 2-src.txz) can be installed by extracting the source distribution to C: \ opt
\rcc-1. 3. 2\ src creating thedirectory C: \ opt\rcc-1. 3. 2\ src\rcc- 1. 3. 2.

Alternatively the sources can be obtained from the Git repository, see Section 1.6.
1.2.2.4. Building RTEMS from source

The RCC toolchain comes with pre-built RTEMS kernel for the most common LEON BSPs, thus this step is
optional.

The RTEMS build environment can be set up by following the Windows instructions available www.rtems.org
[http://lwww.rtems.org] and are briefly described here. In addition to the environment installed in Section 1.2.2.1
the RTEMS requires automake-1.12.6 and autoconf-2.69 to configure and build the RTEMS kernel. This section
describes how to install autoconf, automake and building the RTEM S SPARC BSPS from source.

Aspreviously mentioned the auto-tools can be downl oaded from the GNU project's FTP. RCC comeswith thetools
and aninstall script foundinthe/ opt/rcc- 1. 3. 2/ src/ t ool s. Thescriptisinvoked fromthe MSY S shell:
$ cd /opt/rcc-1.3.x/src/tools

$ sh autotools.sh
$ exit

After installing automake and autoconf it may be required to restart the MSY S shell.

Once the tools has been installed and the MSY S shell has been restarted, the installed RTEMS sources can be
built manually or using the prepared Makefile availableat / opt / rcc-1. 3. 2/ src/ buil d-rtens. sh. See
Section 2.2 for details on how to set the compiler options used when building aBSP. The build processis divided
in four steps, in the first step the make scripts are generated this step is called bootstrap. The bootstrapping can
be done with the make target boot as the examples shows below. The bootstrap step is only needed to be rerun
when adding or removing files from the source tree.

$ cd /opt/rcc-1.3.x/src/rcec-1.3.x

$./bootstrap -c

$./bootstrap -H
$./boostrap

The second step configures the RTEM S kernel and a build environmentin/ opt / rcc- 1. 3. 2/ src/ bui | d,

$ cd /opt/rcc-1.3.x/src/build

$../rcc-1.3.x/configure --target=sparc-gaisler-rtems5 --enabl e-rtenmsbsp="BSPs" ..
The third and fourth steps compiles and installs the new kernel to / opt/rcc- 1. 3. 2/ spar c- gai sl er -
rtenssS

$ make conpile
$ make install

1.2.3. Installing on Linux platform

TheRCC directory treeiscompiledtoresideinthe/ opt / r cc- 1. 3. 2 directory on all platforms. After obtaining
the XZ compressed tarfile with the binary distribution, uncompress and untar it in asuitablelocation - if thisis not
[opt/rcc-1. 3. 2 then alink have to be created to point to the location of the RCC directory. The distribution
can be installed with the following commands:

$ cd /opt
$ tar -JIxf sparc-rtems-5-gcc-7.2.x-1.3.y-linux.txz

After the compiler is installed, add / opt/rcc-1. 3. 2/ bi n to the executables search path and / opt /
rcc- 1. 3. 2/ man to the man path.
1.2.3.1. Building Newlib from sources

RCC comes with the Newlib C library precompiled and its source code, thus this step is optional and in general
not needed. The libraries can be found in spar c- gai sl er-rtens5/ 1 i b/ TARGET where TARGET is a
directory named according to the multilib path of a specific target, see Section 2.2.3.3.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 8

https://www.frontgrade.com/gaisler
http://www.rtems.org
http://www.rtems.org

rRONTGRADE

Gaisler

The source code is located in sr ¢/ newl i b and required during source level debugging and when rebuilding
newlib. Newlib can be (re)built from sourcesusing thesr ¢/ bui | d- newl i b. sh script. By default it will build
Newlib once for every multilib defined for the compiler used. The libraries will overwrite the pre-built libraries
that comes with RCC. Additional target configurations can be added and or application specific compiler flags
can also be added to the script used when building newlib.

1.2.3.2. Installing RTEMS source

Installing the RTEMS kernel source code is optional but recommended when debugging applications. The
toolchain libraries are built with debugging symbols making it possible for GDB to find the source files. The
RCC RTEMS sourcesisassumedtobelocatedin/ opt / rcc- 1. 3. 2/ src/rcc- 1. 3. 2. TheRTEM S sources
(rtenms-5-1. 3. 2-src.txz) can beingtaled by extracting the source distributionto / opt/ rcc- 1. 3. 2/
sr c. It can be done asfollows.

$ cd /opt/rcc-1.3.x/src
$ tar -JIxf /path/to/rtens-5-1.3.x.txz

Alternatively the sources can be obtained from the Git repository, see Section 1.6.
1.2.3.3. Building RTEMS from sources

The RCC toolchain comes with pre-built RTEMS kernel for the most common LEON BSPs, thus this step is
optional.

The RTEMS librariesfound in spar c- gai sl er - rt ens5/ BSP can be built from the sources using the sr ¢/
bui | d-rtens. sh. The RTEMS build environment requires that autoconf-2.69 and automake-1.12.6 are in-
stalled. The auto tools and an example installation script comes with RCC in the sr ¢/ t ool s directory, it is
described in Section 1.2.2.4.

See Section 2.2.1 for details on how to set the BSP compiler options prior to building RTEMS.

Alternatively the sources can be obtained from the Git repository, see Section 1.6.

1.3. Contents of /opt/rcc-1.3.2

The created RCC installation directory has the following sub-directories and files:

bin Toolchain executables

doc GNU, RCC and RTEM S documentation
include Host includes

info Info documents for GNU tools

lib Libgcc, libstdc++, libgomp multi-libraries
libexec Host toolchain executables

make RTEM S make scripts

man Man pages for GNU tools

sparc-gaider-rtems5/BSP RTEMS kernel and BSP target libraries, headers and linker scripts
sparc-gaisler-rtems5/lib Newlib C/Math target specific libraries
sparc-gaisler-rtemsb/include Newlib C/Math common headers

src Source code, examples and make scripts used to build RTEM S/Newlib from
source

1.4. RCC tools

The following tools areincluded in RCC under the bi n/ directory:

sparc-gaisler-rtemss-addr2line Convert address to C/C++ line number
sparc-gaisler-rtemsb-ar Library archiver
sparc-gaisler-rtemsb-as Cross-assembler
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 9

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

sparc-gaisler-rtemshs-c++ilt Utility to demangle C++ symbols
sparc-gaidler-rtemss-elfedit Utility to update ELF header
sparc-gaisler-rtems5-gdb GNU GDB C/C++ level Debugger
sparc-gai sler-rtemss-gprof Profiling utility

sparc-gaisler-rtemss-1d GNU linker

sparc-gaisler-rtems5-nm Utility to print symbol table

sparc-gai sler-rtems5-objcopy Utility to convert between binary formats
sparc-gai gl er-rtemss-objdump Utility to dump various parts of executables
sparc-gaisler-rtemss-ranlib Library sorter

sparc-gaisler-rtemsb-readel f ELF file information utility
sparc-gaisler-rtemsb-size Utility to display segment sizes
sparc-gaisler-rtemss-strings Utility to dump strings from executables
sparc-gaisler-rtemsb-strip Utility to remove symbol table

The following tools are specific for the GCC toolchain also found under the bi n/ directory:

sparc-gaisler-rtemss-c++ C++ cross-compiler
sparc-gaisler-rtems5-cpp The C preprocessor
sparc-gaisler-rtemss-g++ Same as sparc-gaisler-rtemsb-c++
sparc-gaisler-rtemss-gec C/C++ cross-compiler
sparc-gaisler-rtems5-gcov Coverage testing tool

The following tools are specific for the LLVM/Clang toolchain also found under the bi n/ directory:

sparc-gaisler-rtems5-clang clang C cross-compiler

sparc-gaisler-rtemsb-clang++ clang C++ cross-compiler

sparc-gaidler-rtemss-cpp Same as sparc-gai sler-rtemsb-clang

[lvm-objdump LLVM utility to dump various parts of executablesinformation
clang-format LLVM utility to format source code

The following tools included in RCC comes from the RTEMS tools project:

rtems-bin2c Utility to convert binary fileto C source array
rtems-bsp-builder Testing utility for building BSPs in various configurations
rtems-exeinfo RTEMS Executable Information display tool

rtems-Id RTEMS linker utility

rtems-ra Part of the RTEMS Linker

rtems-rap Part of the RTEMS Linker, manages RAP files
rtems-syms RTEMS Linker tool to generate symbol tables

rtems-test RTEMS Tester command line tool

rtems-tid Part of the RTEMS Linker vcreating traceable executables

1.5. Documentation

The GNU, RCC and RTEM S documentation are distributed together with the toolchain. It consists of API, user's
and tools manuals localted in the doc/ directory of the toolchain. The GRLIB drivers that Frontgrade Gaisler
develops are documented in the RCC Drivers user's manual found in the same directory.

RCC specific documentation:

rcc-drivers-1.3. 2. pdf GRLIB device driver documentation
rcc-1. 3. 2. pdf RCC User's Manual
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 10

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

GNU manuals:
as. pdf Using as - the GNU assembler
bi nutils. pdf The GNU binary utilities
cpp. pdf The C Preprocessor
gcc. pdf Using and porting GCC
gdb. pdf Debugging with GDB
gpr of . pdf the GNU profiling utility
| d. pdf The GNU linker
Newlib C library:
i bc. pdf Newlib C Library
i bm pdf Newlib Math Library
RTEMS manuals:
bsp_how o. pdf BSP and Device Driver Development Guide
c_user. pdf RTEMS C User's Guide (thisis the one you want!)
cpu_suppl enent . pdf RTEMS SPARC CPU Application Supplement
devel env. pdf RTEMS Devel opment environment guide
fil esystem pdf RTEMS Filesystem Design Guide
i tron. pdf RTEMSITRON 3.0 User's Guide
net wor ki ng. pdf RTEMS Network Supplement
new_chapt ers. pdf RTEMS Newly added features
porti ng. pdf RTEMS Porting Guide
posi x1003- 1. pdf RTEMS POSIX 1003.1 Compliance Guide
posi x_user s. pdf RTEMS POSIX API User's Guide
rel not es. pdf RTEMS Release Notes
start ed. pdf Getting Started with RTEM S for C/C++ Users

The documents are all provided in PDF format, with searchable indexes.

1.6. RCC source Git access

The RCC RTEMS kernel sources is distributed from Frontgrade Gaisler homepage in atar-file, the latest patches
arealso available using Git revision control system. Itispossibleto browsethe code at http://git.rtems.org/danielh/
rcc.git or checkout the repositoy issuing the below commands. The RCC sources are found in the rce-1.3 branch.

$ git clone git://git.rtems.org/danielh/rcc.git

1.7. Changes since RCC-1.2

This section lists some of the changes going from RCC-1.2 to RCC-1.3.
* Prebuilts BSPs are now available for UT699, GR712RC, UT700 and GR740 devices. The prebuilt BSPs are
using applicable work arounds and optimal 1SA configuration.
e Starting with RCC-1.3, GCC uses same compiler flags as the mainline GCC. For example the - mv8 and the
- mt une=ut 699 flags are no longer available.
e LLVM Clang toolchain wasintroduced with RCC-1.3-rc6 as an option a ongside the GCC compiler for some
of the LEON targets.

1.8. Known limitations in this release

This section lists known limitations in RCC-1.3 that will be addressed in future releases of RCC-1.3.

* ERC32isnot yet available as pre-built BSPs.
e The LEON3 multiprocessor BSP configuration (- gbsp=I eon3_np) isnot yet available as pre-built (BSP
configuration exists, enable in build-rtems.sh).

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 11

https://www.frontgrade.com/gaisler
http://git.rtems.org/danielh/rcc.git
http://git.rtems.org/danielh/rcc.git

rRONTGRADE

Gaisler

* The LEON3 BSP configuration without driver manager (- qbsp=Il eon3_st d) is not yet available as pre-
built.

1.9. Support

The RCC compiler system is provided freely without any warranties. Technical support can be obtained from
Frontgrade Gaisler through the purchase of atechnical support contract. See www.gaisler.com for more details.

When contacting the support team at support@gaisier.com, please identify yourself in full, including company
affiliation and site name and address. Please identify exactly what product that isused, specifyingif itisan P core
(with full name of the library distribution archive file), component, software version, compiler version, operating
system version, debug tool version, simulator tool version, board version, etc.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 12

https://www.frontgrade.com/gaisler
www.gaisler.com

rRONTGRADE

Gaisler

Chapter 2. Using RCC

2.1. General development flow

Compilation and debugging of applicationsistypically done in the following steps:
1. Compile and link program with gcc specifying a precompiled BSP with - gbsp=BSP flag
2. Debug program using a simulator (gdb connected to TSIM/GRSIM)
3. Debug program on remote target (gdb connected to GRMON)
4. Create boot-prom for a standal one application with mkprom2

RCC supports multi-tasking real-time C/C++ programs based on the RTEMS kernel. Compiling and linking is
done in much the same manner as with a host-based gcc.

2.2. Compiler toolchain

2.2.1. sparc-gaisler-rtems5 toolchain BSP selection

The gce and clang compiler frontends have been modified to support easy selection of a precompiled BSP or a
user built BSP using the flag: "- gbsp=BSP".

BSPs are compiled using a specific set of target compiler flagsand RTEM Skernel configuration. For details about
the prebuilt BSPs please see Section 2.5. Below are the predefined RTEM S BSP variants availablein RCC. Which
BSP is available depends on which compiler is being used, for LLVM/Clang some targets are disabled due to
missing support in compiler. Unless otherwise stated the RTEMS BSPs are configured single-core with driver
manager startup initialization.

Table 2.1. RCC -gbsp=BSP options per compiler toolchain. *) planned for futurerelease

BSP - qbsp= GCC [Clang |Description

| eon2 * generic LEON2 BSP (without driver manager startup initialization)

at 697f Yes No generic LEON2 BSP with AT697F compiler flags (without driver manag-
er startup initialization)

erc32 * ERC32 BSP (without driver manager startup initialization).

| eon3 Yes Yes generic LEON3/4/5 BSP (default if no other option given).

| eon3std * * generic LEON3/4/5 BSP (without driver manager startup initialization).

| eon3_sf Yes Yes generic LEON3/4/5 BSP, kernel built with soft-float

| eon3_fl at No No generic LEON3/4/5 BSP, kernel built with flat register window model.
Not prebuilt because RTEMS itself requires 8 register windows.

| eon3_snp Yes Yes generic LEON3/4/5 BSPin RTEMS SMP configuration.

| eon3_np * * generic LEON3/4/5 BSP in RTEM S Multiprocessor config (AMP).
gr712rc Yes Yes GR712RC LEON3/4/5 BSP.

gr712rc_nmp |Yes Yes GR712RC LEON3/4/5 BSP in RTEM S Multiprocessor config (AMP).
gr712rc_snp |Yes Yes GR712RC LEON3/4/5 BSP in RTEMS SMP configuration.

gr 740 Yes Yes GR740 LEON3/4/5 BSP.

gr 740_np Yes Yes GR740 LEON3/4/5 BSP in RTEM S Multiprocessor config (AMP).

gr 740_snp Yes Yes GR740 LEON3/4/5 BSPin RTEM S SMP configuration.

ut 699 Yes UT699 LEON3/4/5 BSP.

ut 700 Yes Yes UT700/UT699E LEON3/4/5 BSP.

gbsp=CUSTOM |Yes Yes User defined BSP configuration and compiler flags matching the RTEMS
cfg-fileinbsps/ spar ¢/ BSP/ conf i g/ CUSTOM cf g.

The prebuilt BSPs ar e built using target specific optimizations and with specific errata work arounds enabled. It
is important that the same compiler flags are used in all build steps compiling kernel and application and when
linking the final binary (this selects the correct libgcc/libe/libm from the target specific multilibs).

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 13

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The RTEMS BSP build configuration file is found relative the RTEMS source tree bsps/ spar ¢/ BSP/ con-

fi g/ BSP. cf g. When setting custom build flags it is copied/renamed and updated to reflect the compiler flags
used when building a custom RTEMS kernel/BSP. The name of the configuration file is used as input to the
RTEMS configure script's - - enabl e-rt ensbsps=" CUSTOM' . See Section 1.2 for build and installation in-
structions.

2.2.2. Common compiler options

Below are some SPARC/LEON specific and some other commonly used compiler options available on both GCC
and Clang. For compiler specific flags see GCC Section 2.2.3.1 and Clang Section 2.2.4.2

-g generate debugging information - must be used for debugging with gdb.

-nmeoft-fl oat emulate floating-point - must be used if no FPU existsin the system.

- ncpu=v8/ none generate SPARC V8 mul/div instructions and SUN SPARC timings.

-nfl at Enables flat register window model. SAVE/RESTORE instructions will not be
generated by compiler. It is ABI compliant with the SPARC ABI.

-2 optimize code - should be used for optimum performance and combination of

small code size.
-Gs optimize code for size - should be used for minimum code size.

For afull explaination and listing of compiler options see respective compiler manual, referenced from Section 1.5.
2.2.3. GNU GCC toolchain
2.2.3.1. sparc-gaisler-rtems5-gcc specific options

The GCC ntpu= options determines the instruction set (ISA) generated by the compiler whereas the - nf i x-
TARGET options determine target specific work arounds and compiler configurations. Below are the SPARC/
LEON specific and some other commonly used GCC options:

-ncpu=v7/ none generate SPARC V7 instructions. This ISA should be compilant with all LEON
targets. (default)

-ncpu=v8 generate SPARC V8 mul/div instructions and SUN SPARC timings.

-ncpu=l eon generate SPARC V8 mul/div instructions and LEON timings.

- ncpu=l eon3 generate SPARC V8 mul/div and CAS/CASA instructions and LEON3 timings.

-ncpu=l eon3v7 generate SPARC V7 with CAS/CASA instructions and LEON3 timings.

-nfix-ut 699 Enables work arounds for the UT699, for example the UT699 floating-point erra-
ta, the UT699 data cache nullify errata and the LEON3FT B2BST errata.

-nfix-ut 700 Enables all work arounds for the UT700/UT699%.

-nfix-gr712rc Enables all work arounds for the GR712RC (TN-0009, TN-0010, TN-0012 and
TN-0013).
Note: TN-0018 isworked around by run-time.

-nfix-at 697f Enables GCC compiler workarounds for AT697F errata.

For a full explaination and listing of GNU GCC options see the gcc manual (gcc. pdf) referenced from Sec-
tion 1.5.

2.2.3.2. LEON target GNU GCC compiler options

Below isasummary of commly used LEON chips and their specific compiler options.

ATGEI7F -nmcpu=l eon - nf i x- at 697f

GR712RC -nmcpu=l eon3 -nfi x-gr712rc

GR740 - ncpu=l eon3

uT699 -nmcpu=l eon - nfi x- ut 699

UT700/UT699E -nmcpu=l eon3 - nfi x-ut 700
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 14

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

2.2.3.3. GCC multi-libs

Below is a summary of al prebuilt variants (multi-libs) of the libgcc/libe/libm available prebuilt in the RCC
toolchain. The compiler flags during linking selects which library variant will be linked in. It is possible using
either Map-file from the linker or GCC -v flag to verify that the correct libraries are used in the final executable.

Table 2.2. RCC multi-lib variants selected during linking (gcc)

Directory Compiler linker flags CPU FPU (V8 |CAS
(none) SPARCv7 Y N N
soft -nsoft-fl oat SPARCv7 N N N
v8 -ncpu=v8 SPARCv8 Y Y N
leon -ntpu=l eon LEON2, UT699 |Y Y N
leon3 - ncpu=l eon3 LEON3/4/5 Y Y Y
leon3v7 - ncpu=l eon3v7 LEON3/4/5 Y N Y
leon3/mfix-gr712rc -ncpu=l eon3 -nfix-gr712rc GR712RC Y Y Y
leon3/mfix-ut700 -ntpu=l eon3 - nfi x-ut 700 UT699E, UT700 |Y Y Y
leon3/flat -ncpu=l eon - nfl at LEON3/4/5 Y Y Y
leon/mfix-ut699 -ncpu=l eon - nfi x-ut 699 uUT699 Y Y N
leon/mfix-at697f -ncpu=l eon - nfi x- at 697f AT697F Y Y N
soft/v8 -nsoft-fl oat - ncpu=v8 SPARCV8 N Y N
soft/leon3 -nsoft-float - ntpu=l eon3 LEON3/4/5 N Y Y
soft/leon3/flat -nmsoft-fl oat - ncpu=l eon LEON3/4/5 N Y Y
-nfl at
soft/leon3v7 -nsoft-fl oat - ncpu=l eon3v7 LEON3/4/5 N N Y
soft/leon3/mfix-gr712rc |- nsoft-fl oat - ncpu=l eon3 GR712RC N Y Y
-nfix-gr712rc
soft/leon3/mfix-ut700 -nsoft-fl oat - ntpu=l eon3 UT699E, UT700 |N Y Y
-nfix-ut700
soft/leon/mfix-ut699 -nmsoft-fl oat - ncpu=l eon uUT699 N Y N
-nfix-ut699
soft/leon/mfix-at697f -nsoft-fl oat - ncpu=l eon AT697 N Y N
-nfix-at 697f

2.2.4. LLVM Clang toolchain
2.2.4.1. Overview

The LLVM/Clang compiler toolchain is configured to use the LLVM internal assembler. Fileswith an . S (or
similar suffix) are passed through LLVM's internal assembler. However, if the spar c-gaider-rtemss-asis used
the Binutils assembler tool will be used instead. The result should be the same however it isimportant to note that
two different assembler utilities are packaged with the LLVM/Clang toolchain.

Newlib and RTEMS kernel packages are compiled using the Clang compiler, however the compiler-rt packageis
not being used in this toolchain. The following libraries are pre-built using GNU GCC compiler:

« libgce

e libstdc++-v3

* libatomic

2.2.4.2. sparc-gaisler-rtems5-clang specific options

The LLCM clang - ntpu= options determines the instruction set (1SA) other target specific options such aswork
aroundsand compiler configurations. SPARCv7 isnot supported currently by Clang. Below arethe SPARC/LEON
specific and some other commonly used LLVM/Clang options:

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 15

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

- ncpu=l eon3 generate SPARC V8 mul/div and CAS/CASA instructions and LEON3 timings.

-ncpu=gr712rc Build for target for GR712RC. Enables al work arounds for the GR712RC
(TN-0009, TN-0010, TN-0012 and TN-0013).
Note: TN-0018 is worked around by run-time.

- ncpu=gr 740 Build for target for GR740.

-nfix-ut 700 Build for target for UT700 and UT699E. Enables all work arounds for the
UT700/UT699E that are applicable to the environment (TN-0009, TN-0010 and
TN-0013).
Note: TN-0018 isworked around by run-time.

-z Clang optimize code for size more than Os - should be used for minimum code
size.

For afull explaination and listing of LLVM/Clang options see the Clang manual referenced from Section 1.5.
2.2.4.3. LEON target LLVM Clang compiler options

Below isasummary of commly used LEON chips and their specific compiler options.

ATGE97F Not supported.

GR712RC -ncpu=gr 712rc

GR740 - ncpu=gr 740

UT700/UT699E -nmcpu=l eon3 - nfi x-ut 700

UT699 Not currently supported. Use - ncpu=l eon3 for experimental use.
SPARCV7 Not supported. (Only SPARCV8 target support)

2.2.4.4. Clang multi-libs

Below is a summary of all prebuilt variants (multi-libs) of the libgcc/libc/libm available prebuilt in the RCC
LLVM/Clang toolchain. The compiler flags during linking selects which library variant will be linked in. It is
possible using either Map-file from the linker or cl ang - v flag to verify that the correct libraries are used in
the final executable.

Table 2.3. RCC multi-lib variants selected during linking (clang)

Directory Compiler linker flags CPU FPU (V8 |CAS
(none) SPARCVv8 Y Y N
soft -msoft-fl oat SPARCvV8 N Y N
leon3 -ncpu=l eon3 LEON3/4/5 Y Y Y
leon3/flat -ntpu=l eon3 - nf | at LEON3/4/5 Y Y Y
leon3/soft -nsoft-float - ncpu=l eon3 LEON3/4/5 N Y Y
leon3/soft/flat -nmsoft-fl oat - ncpu=l eon3 LEON3/4/5 N Y Y
-nfl at
gr7l2rc -ncpu=gr712rc GR712RC Y Y Y
gr712re/soft -msoft-fl oat - ncpu=gr 712rc GR712RC N Y Y
gr740 - mcpu=gr 740 GR740 Y Y Y
gr740/soft -nmsof t-fl oat - ncpu=gr 740 GR740 N Y Y
ut700 -ncpu=l eon3 - nfi x-ut 700 UT700/699E Y Y Y
ut700/soft -nsoft-float - ncpu=l eon3 UT700/699E N Y Y
-nfix-ut700
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 16

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

2.2.5. Floating-point considerations

If the targeted processor has no floating-point (FP) hardware, then al code must be compiled (and linked) with
the- nsof t - f | oat option to enable floating-point emulation by SW. When running the program on the TSIM
simulator, the ssimulator should be started with the - nf p option (no floating-point) to disable the FPU.

RTEMS saves the FPU register file and FSR register cross context switches and disables the FPU temporarily
during interruptsto avoid that afaulty | SR trash the FPU state. If an ISR needsto use FPU it isresponsible to save
and restore the FPU context itself using the RTEMS API. Due to the SPARC ABI the OS only needs to save the
FPU context on interrupts since the ABI states that FPU conext is clobbered on function calls.

When creating RTEMS classic tasksthe RTEMS_FLOATING_POINT option must be set if the task will execute
FP instructions. Otherwise the CPU will generate afp_disabled trap (trap type tt=0x04) on the first FP instruction
executed by the task.

The RTEMS Init() task is by default configured without the RTEMS FLOATING_POINT option. To enable
RTEMS FLOATING_POINT in the Init() task, the following configuration statement can be used:

#def i ne CONFI GURE_I NI T_TASK_ATTRI BUTES RTEMS_FLOATI NG_PO NT

Note that the pre-built RTEMS BSPs that comes with RCC are built using the floating point instructions. This
means calling RTEMS kernel libraries may contains floating point instructions which requires the calling task to
have afloating point context (RTEMS_FLOATING_POINT) to avoid an exception. Thisalso appliesto the string
formatting functions of the C standard library, suchaspri ntf ().

2.2.6. SPARC V8 instructions

LEON2/3/4/5 processors can be configured to implement the SPARC V8 multiply and divide instructions. De-
pending on the compiler options (see above sections) the compiler will either generate or not those instructions
or emulate them trough a SW library part of libgcc. Using the MUL/DIV improves performance significantly on
compute-intensive applications and floating-point emulation.

RTEMS saves the MUL/DIV (%y) register state cross context switches and on interrupts to protect against ISR
overwriting the MUL/DIV state.

2.2.7. LEON CASA instruction

Recent LEON3 and all LEONA4/5 processors can be configured to implement the CASA instruction using the same
instruction definitions as SPARC V9. The instruction is used to implement atomic Compare-And-Swap (CAS)
operations. The compiler typically generates CASinstruction when compiling atomic C11/C++11 code otherwise
they are not generated. The spin-lock implementation of RTEMS SMP isimplemented using C11 atomics. There-
fore RTEMS SMP requires CAS hardware support.

2.2.8. LEON UMAC/SMAC instructions

LEONZ2/3/4/5 models supports optionally the 32-bit multiply and accumulate (MAC). The compiler never issue
those instructions, they have to be coded in assembly. The GNU Binutils; and LLVM assembler supports the
LEON MAC instructions.

The RTEMS OS does not save the HW state of the MAC registers cross context switches.
2.2.9. LEONB3/4/5 CPU counter

Some of the LEON3/4/5 devices (GR740/GR716 for example) supports reading a CPU internal 56-bit or 32-
bit cycle counter, without accessing the bus. The counters are located in the specia registers ASR22:23 and are
accessible using the rd instruction by assembly code.

The LLVM/Clang compiler also provides access to the cpu cycle counters by generatingrd %asr 22/ 23 in-
structions when calling the builin function __bui | ti n_r eadcycl ecounter ().

The RTEMS OS uses the counters when available, otherwise it defaults to an ordinary timer. The LEON3 BSP
(bsp/ I eon. h) providesinline functionsto alow the user application to access them easily (regardless of com-
piler being used):

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 17

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

static inline uint32_t |eon3_up_counter_|l ow void)

static inline uint32_t |eon3_up_counter_high(void);
2.2.10. Enabling/Disabling Interrupt by use of Write Partial PSR instruction

The SPARCV8 requires that the whole Processor Status Register is read or written. However with some of the
LEON3/4/5 devices (GR740/GR716 for example) it is how aso possible to modify only parts of the PSR by
using the Partial Write Register instruction (pwr %psr). The instruction is compatible with the definition in the
SPARCVv8e specification.

By modify only the PIL field of the PSR the code can execute with traps enable (PSR.ET=1) and still guarantuee
that the state of PSR is well defined even if traps do occur while modifying PSR. In SPARCv8 the read-modi-
fy-write operation takes several instructions and hasto be carried out by trap handlerswheretrapsaredisabled. The
PWR allows users and run-times to shorten thetime interrupt is disabled and allows more efficient critical sections.

The GNU Binutils and LLVM assembler supports the generating the instruction by means of assembly code.
Currently the RTEMS OS or BSP does not use this instruction.

2.3. RTEMS applications

To compile and link an RTEM S application, use spar c-gaisler-rtemss-gcc:

$ sparc-gaisler-rtems5-gcc -g - rtenms-hello.c -o rtens-hello

RCC creates executables for LEON3/4/5 by default. To generate executables for another target/BSP add the -
gbs p=BSP switch during both the compile and link stages, see Section 2.2 for options. The load start addressis
specified by the BSP. The default BSP load addressis start of RAM, i.e. 0x40000000 L EON2/3/4/5 or 0x00000000
for GR740 or 0x2000000 for ERC32. Other load addresses can be specified through the use of the -Ttext option
(see GCC manual).

RCC uses the sources of RTEM S-5.3 with minor patches, and allows recompilation when user has modificatiions
or configuration changes to the BSP or the kernel. Install the RTEMS sources in /opt/rcc-1.3.2/src, and rebuild
and install with:

$ cd /opt/rcc-1.3/src
$ build-rtens.sh

2.4. Memory organisation

The resulting RTEMS executables are in ELF format and has three main segments; text, data and bss. The text
segment is by default at address 0x40000000 for LEON2/3/4/5, or 0x00000000 for GR740 or 0x2000000 for
ERC32, followed immediately by the data and bss segments. The GR740/LEON4 system has main memory at
0x00000000. The stack starts at top-of-ram and grows downwards.

Standalone App

Top-Of-RAM

Startup Stack

Heap

Data

Text

0X40000000

Figure 2.1. RCC RAM applications memory map
The SPARC trap table always occupiesthefirst 4 Kbytes of the. t ext segment and is modified during run-time.

The LEON BSPs auto-detects end-of-ram by looking at the stack pointer provided by the bootloader or GRMON
at early boot. Hence the heap will be sized by the loader.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 18

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

2.5. Board-support packages (BSPs)

RCC includes board support packagesfor LEON2, LEON3 and ERC32. LEON4 and LEONS5 are supported by the
LEON3 BSP. BSPs provide interface between RTEM S and target hardware through initialization code specific to
the target processor and a number of device drivers. Console and timer drivers are supported for all processors.

LEON2 and ERC32 BSPs assume a default system resource configuration such as memory mapping of on-chip
devices and usage of interrupt resources. LEON3/4/5 systems are based on GRLIB Plug & Play configuration,
and are thereby highly configurable regarding memory mapping and interrupt routing. At start-up, the LEON3
BSP scansthe system bus to obtain system configuration information. Device drivers support anumber of devices
which are automatically recognized, initiated and handled by the device drivers. Plug and play makesit possible
to use the same BSP for GR712RC, UT699, UT699E/UT700 and GR740 but compiled with different flags.

See Section 2.2.1 on how to select which BSP and compiler flags Section 2.2.2.
Seedoc/rcc-drivers-1. 3. 2. pdf for GRLIB/LEON device driver APl documentation.
2.5.1. LEON3 BSP

The LEON3 BSP includes two different console and timer drivers, 1) standard RTEMS drivers (-
gbsp=Il eon3st d) and 2) drivers which rely on the driver manager. The latter drivers are possible to config-
ure from the project configuration using standard driver manager configuration options, for example which AP-
BUART deviceis mapped to/ dev/ consol e and which timer is used as system clock (configuration required
for AMP systems).

The APBUART console driver registers the first UART under name / dev/ consol e, the second and third
UARTsget names/ dev/ consol e_b anddev/ consol e_c and soon. The LEON3 BSP requires at |east one
APBUART to implement system console and pr i nt k support.

The timer driver uses the General Purpose Timer (GPTIMER and GRTIMER). The driver handles GPTIMER
timer O and the lowest interrupt request line used by GPTIMER. GPT timer 0 and |owest request line should never
be used by an RTEMS application. If an application needs to use more timers GPT should be configured to have
two or more timers using separate request lines. Timer O interrupt can not be shared with other devices or GPT
timers 1-6.

For more information on how to configure a system based on GRLIB see GRLIB IP Library User's Manual.

Therest of the GRLIB/LEON device drivers are independent of the BSP but dependent on driver manager API for
initialization order etc. The RTEMS project configuration selects which drivers are linked in to final executable
image. Please see separate drivers documentation for details.

2.5.1.1. Multi processing (ASMP and SMP) configurations

The LEON3 BSP supports the RTEMS SMP and ASMP configurations. See the multi-processing Section 2.9 for
more information.

2.5.2. GR740 BSP

GR740 systems are supported by the LEON3 Plug & Play BSP, a custom linker script, the drivers listed below,
specific compiler flags and the LEON3 BSP GR740 initialization code. At start-up for example, the RTEMS
counter AP initialization code checksthetimers/counters present in HW and sel ects the best option. For the GR740
the best counter is the ASR22:23 up-counter which is selected for optimum performance. This is an example of
how the LEON3 BSP is adapted to the GR740 by use of Plug & Play probing.

Both SMP and uni-processor GR740 configurations are supported by RTEMS. See Section 2.2 how to select BSP
and set compiler flags for the GR740 (- gbsp=gr 740 or - qbsp=gr 740_snp).

Table 2.4. GR740 BSP device driver support in RCC, paths relative SPARC BSPs shared directory

Hardwar e device Documented |[SMP Comments
in section
MMU (LEON) N/A N/A RTEMS does not support MMU. A static MMU setup ex-
ampleisavailablein the RCC examples.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 19

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Hardware device Documented |SMP Comments

in section

FPU (LEON) N/A Yes RTEMS and toolchain supports both FPU emulation (-
msoft-float) and FPU configuration. RCC does not provide
pre-built BSP for FPU emulated configuration.

IRQ Controller N/A Yes Static CPU affinity mapping through weak array.

L2-Cache 45 Yes L2 cacheistypically setup before entering RTEMS by the
boot loader. L2 cache maintainence and EDAC error and
configurations such as MTRR regions can be setup using
the device driver.

SDRAM N/A N/A No memory controller driver support available.

PROM and I/O N/A N/A No memory controller driver support available.

SDRAM scrubber 48 No No specific SMP support, single task API.

/O MMU 46 Yes Only the bit-vector protection mode is support.

SpaceWire router 19 Yes Router configuration and maintainence. The SpaceWire
AMBA (DMA) ports are supported by the driver below.

SpaceWire AMBA 18 Yes The GRSPW packet driver replaces the older spw/
gr spw. c driver.

SpaceWire TDP 20 Yes SpaceWire TDP driver APl is SMP/Thread safe by use of
semaphores.

Ethernet GBit 2.7 Yes The GRETH driver located in | i bbsp/ spar ¢/
shar ed/ net / gr et h. ¢ supports SMP. One RX/TX dae-
mon task will be created per GRETH interface.

PCI host 28,10 Yes AMBA-to-PCI host bridge driver. Uses PCI Library to au-
tomatically configure PCI resources using Plug & Play
techinques.

PCI peripheral 17 Yes AMBA-to-PCI peripheral bridge driver. Used when an
RTEMS PCI host system is accessing the GR740 over PCI
as aperipheral device. For example two GR740 connected
together over PCI.

PCI DMA 11 Yes The PCI DMA engineis only supported in host mode. This
driver has not been tested with the GR740 acting as a pe-
ripheral.

1553B BC 24 Yes

1553B BM 23 Yes

1553B RT 22 No GR1553B RT mode driver is not currently SMP safe. Sin-
gle-core configuration only or SMP mode by using IRQ and
Task CPU affinity configuration.

CAN 2.0B 27 Yes

UART N/A Yes Used for console and data communication. Supports
interrupt and polling mode by driver resource config-
uration. The (default) Driver Manager driver islocat-
edinuart/apbuart _cons. ¢ andthe non-Driver
Manager APBUART device driver islocated inuart /
apbuart _termos.c.

SPI Master 33 No Interfaced through RTEMS SPI layer. SPI driver does not
itself implement SMP locking but does not use Interrupt
processing.

SPI Slave N/A No No driver support for SPI slave mode.

Timer N/A Yes The GPTIMER driver (ti mer/ gpti mer. c) supportsall
five timer cores. Latch/set functionlity not supported. One

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2

20

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Hardwar e device Documented |SMP Comments
in section

timer instance is used by the RTEMS System Clock. The
RTEMS clock APl uses the CPU upcounter (ASR22:23)
and the SM P implementation takes another timer instance.
The remaining timers are available through the Timer Li-
brary API (TLIB) (i ncl ude/t1i b. h).

Temperature sensor N/A N/A No driver support currently available.

Clock Gating Unit N/A N/A No driver support currently available.

Statistics unit 47 No No specific SMP support, single task API.

Pad/PLL control N/A N/A No driver support currently available.

AHB Status 44 Yes Example AMBA error reponse interrupt handler. User
needs to install hook to handle errors.

GPIO 36, 35 No No specific SMP support.

GRGPREG N/A N/A No device driver available. Application expected to perform

raw register access against GRGPREG.

2.5.3. GR712RC BSP

GR712RC systems are supported by the LEON3 Plug & Play BSP, specific compiler flags and specific GR712RC
devicedrivers.

Prebuilt version of both SMP and uni-processor GR712RC configurations are available in RCC. See Section 2.2
how to select BSP and set compiler flags for the GR712RC (- gbsp=gr 712r c or - gbsp=gr 712r c_snp).

IRQ14 is the default interrupt for servicing multi processing (ASMP and SMP) IPIs. The 1553, Ethernet and
Telecommand 1/0 aso generates IRQ14 which will bein conflict is used simulatneously. If one of these 1/0 will
generate interrupts it is required to move the IPI to another IRQ, see Section 2.9.2.2 on how to setup the IPI
configuration.

2.5.4. UT699 BSP

UT699 systems are supported by the LEON3 Plug & Play BSP, specific compiler flags and BSP/driver adaptations
that works around errata (forces cache miss when accessing DMA areas).

See Section 2.2 how to select BSP and set compiler flags for the UT699 (- gbsp=ut 699).
2.5.5. UT699E/UT700 BSP

UT699E/UT700 systems are supported by the LEON3 Plug & Play BSP, specific compiler flags and drivers. The
same build settings are always used for UT699E and UT700.

See Section 2.2 how to select BSP and set compiler flags for the UT699E/UT700 (- gbsp=ut 700).
2.5.6. AT697F BSP

AT697 systems are supported by the LEON2 BSP, specific compiler flags and drivers. The AT697 PCI support
requires the driver manager and the PCI library to set up PCI peripherals.

See Section 2.2 how to select BSP and set compiler flags for the AT697 (- gbsp=at 6971).
2.6. Driver Manager
The LEON3 BSP uses an optional Driver Manger that handles drivers and devices on the AMBA and PCI Plug

& Play buses. The drivers are automatically assigned to one or more hardware devices. The Driver Manager is
either initilized by the user from the Init() thread after RTEMS has started up, or during startup of RTEMS. The

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 21

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

precompiled LEON3 BSP has by default (see Section 2.2.1) the driver manager enabled (- - enabl e- dr virgr
was given to RTEMS configure during compile-time) that means that no extra initialization calls from Init() is
needed, however which drivers to be included must be configured uniquely per project. By default the Timer and
UART drivers are included for system clock and console. One can use - gbsp=Il eon3st d to avoid using the
driver manager. In most cases the GPTIMER and the APBUART drivers are required by the application.

If the driver manager was configured to be initialized by the BSP, the RTEMS_DRVMGR_STARTUP defineis
defined. If not configured the define is not set and the user can choose to initialize the driver manager manually
from for example the Init() task or not useit at all.

LEON2 systems are divided into two different systems, standard LEON2 systems and GRLIB-LEON2 systems
where the AMBA Plug & Play busis available. Both systems can use the LEON2 hardcoded bus with the Driver
Manager, however it's primary intention is to provide a root bus for a second bus supporting Plug & Play. For
examplea GRLIB-LEON2 system has hardcoded peripherals (the standard LEON2 peripherals) and GRLIB cores
attached available from the AMBA Plug & Play information, the setup for a system like that would be a LEON2
hardcoded bus and a LEON2 AMBA Plug & Play sub bus. Once the AMBA Plug & Play bus isinitialized all
device and their drivers can be used the same way asin LEON3/4/5 systems.

For AT697 PCl systems the driver manager can be used to scan the PCI bus. If, for example, a RASTA PCl
peripheral board is found with GRLIB devices the GRLIB device drivers can be reused on the LEON2/AT697
system to provide I/O accesses similar to any LEONS3/4/5 system with the same /O interfaces.

The ERC32 BSP does not support the driver manager.
2.6.1. Initialization

Before the driver manager is initialized one must register a root bus driver so that the driver man-
ager knows which bus to start search for devices at. For a LEON3 system this means calling
anmbapp_grlib_root_register() withaconfiguration structure. The driver manager itself must also be
initialized by calling dr virgr _i ni t () before any driver relying on the driver manager can be accessed. The
manager then calls each individual driver's register function one by one for initialization and registration. The
driver functions are typically named DRI VER r egi ster ().

As described previoudly this step is taken care of by the BSP when - - enabl e- dr vngr was used at RTEMS
configuration/build time.

2.6.2. Configuration

The driver manager is configured by defining the array dr virgr _dri ver s, it contains one function pointer
per driver that is responsible to register one or more drivers. Thedr virgr _dr i ver s can be set up by defining
CONFIGURE_INIT, selecting the appropriatedriversand including dr virgr / dr vihgr _conf def s. h. Theap-
proach is similar to configuring a standard RTEMS project using r t ens/ conf def s. h. Below is an example
how to select drivers.

#i nclude <rtemns. h>
#define CONFIGURE_INIT
#i ncl ude <bsp. h>

/* Standard RTEMS setup */

#def i ne CONFI GURE_APPLI CATI ON_NEEDS_CONSOLE_DRI VER
#def i ne CONFI GURE_APPLI CATI ON_NEEDS_CLOCK_DRI VER
#def i ne CONFI GURE_RTEMS_| NI T_TASKS_TABLE

#def i ne CONFI GURE_MAXI MUM DRI VERS

#i nclude <rtens/confdefs. h> 32

/* Driver manager setup */
#if defined(RTEMS_DRVMGR_STARTUP)
/* if --enable-drvngr was given to configure (-qgbsp=leon3, ..) include GPTI MER and APBUART drivers
* that rely on the driver manager
*/
#def i ne CONFI GURE_DRI VER_AMBAPP_GAI SLER GPTI MER
#def i ne CONFI GURE_DRI VER_AMBAPP_GAI SLER APBUART
#endi f

/* Sel ect additional drivers */
#def i ne CONFI GURE_DRI VER_AMBAPP_GAI SLER GRETH
#def i ne CONFI GURE_DRI VER_AMBAPP_GAI SLER_GRSPW

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 22

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

#def i ne CONFI GURE_DRI VER_AMBAPP_GAl SLER_GRCAN
#def i ne CONFI GURE_DRI VER_AMBAPP_GAl SLER_OCCAN
#def i ne CONFI GURE_DRI VER_AMBAPP_NCTRL

#def i ne CONFI GURE_DRI VER_AMBAPP_GAl SLER PCI F
#def i ne CONFI GURE_DRI VER_AMBAPP_GAI SLER_GRPCI
#def i ne CONFI GURE_DRI VER PCl _GR RASTA | O
#def i ne CONFI GURE_DRI VER PCI_GR_RASTA TMIC
#def i ne CONFI GURE_DRI VER PCI_GR 701

#i ncl ude <drvmgr/drvngr_confdefs. h>

By default the BSP automatically includes the timer and console drivers when the driver manager
is initialized on startup, whereas when using the standard built BSP (-gbsp=leon3std) the timer and
console drivers are included based on the CONFI GURE_APPLI CATI ON_NEEDS CLOCK DRI VER and
CONFI GURE_APPLI CATI ON_NEEDS _CONSOLE_DRI VER. However it is possible to remove the BSP default
driversusing #undef after including bsp. h from the RTEMS project configuration.

2.6.3. Driver configuration

Device drivers are configured per device using driver resources. The driver manager provides driver with an API
to easily extract the information using a common way for all driver to configure a device. Driver resources are
described by an array of different data types which are assigned names for flexibility. The name is searched for
by the driver once initialized, if resource name is found the resource value replaces the default value internal to
the driver. The resources are provided by the bus driver. It is up to the bus driver how the resources are assigned
to the bus. The LEON BSPs bus drivers use a default weak array (grli b_drv_resour ces on the LEON3
BSP) that can be overridden by the project configuration without any function calls. The driver parameters are
documented separately for each driver in the drivers manual. The example below sets up GRSPWO0 and GRSPW1
descriptor count driver resources for the AMBA Plug & Play bus on two different GR-RASTA-IO PCI boards
and the root bus.

/* ROOT AMBA PnP Bus: GRSPW and GRSPWL resources */
struct drvngr_key grlib_grspwol_res[] =

{"txDesc", DRVMGR KT_INT, {(unsigned int)32}},
{"rxDesc", DRVMGR KT_I NT, {(unsigned int)32}},
DRVMGR_KEY_EMPTY

b

/* 1f RTEMS_DRVMGR STARTUP is defined we override the "weak defaults" that
* is defined by the LEON3 BSP.
*/
struct drvngr_bus_res grlib_drv_resources =
{
.next = NULL,
.resource = {
{ DRI VER_AMBAPP_GAI SLER GRSPW I D, 0, &grlib_grspwol_res[O0]},
{ DRI VER_AMBAPP_GAI SLER GRSPW I D, 1, &grlib_grspwol_res[O0]},
DRVMGR_RES_EMPTY

s

#i f ndef RTEMS_DRVMGR_STARTUP

struct grlib_config grlib_bus_config = {
&anbapp_pl b, /* AMBAPP bus setup */
&grlib_drv_resources,/* Driver configuration */

¥
#endi f

/* GR-RASTA-10 0: GRSPW resources */

struct drvngr_key rastai o0_grspwo_res[] = {
{"txDesc", DRVMGR KT_INT, {(unsigned int)8}},
{"rxDesc", DRVMGR KT_INT, {(unsigned int)32}},
DRVMGR_KEY_EMPTY

b

/* GR-RASTA-10 1: CGRSPWL resources */

struct drvngr_key rastai o0_grspwo_res[] = {
{"txDesc", DRVMGR KT_INT, {(unsigned int)16}},
{"rxDesc", DRVMGR KT_INT, {(unsigned int)16}},
DRVMGR_KEY_EMPTY
b

/* GR-RASTA-10 1: GRSPW and GRPSWL resources use sane configuration */
struct drvngr_key rastaiol_grspwlol_res[] = {

{"txDesc", DRVMGR KT_INT, {(unsigned int)16}},

{"rxDesc", DRVMGR KT_INT, {(unsigned int)64}},

DRVMGR_KEY_EMPTY

b

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 23

https://www.frontgrade.com/gaisler

/*** D
struct
. hext

rRONTGRADE

Gaisler

iver resources for GR-RASTA-10 0 AMBA PnP bus ***/
drvngr_bus_res gr_rasta_io0_res = {

= NULL,

.resource = {
{ DRI VER_AMBAPP_GAI SLER GRSPW I D, 0, &rastai o0_grspw0_res[0]},
{ DRI VER_AMBAPP_GAI SLER GRSPW I D, 1, &rastai o0_grspwl_res[O0]},
DRVMGR_RES_EMPTY

},
s

/*** D
struct
. hext

iver resources for GR-RASTA-10 1 AMBA PnP bus ***/
drvngr_bus_res gr_rasta_iol_res = {

= NULL,

.resource = {
{ DRI VER_AMBAPP_GAI SLER GRSPW I D, 0, &rastaiol_grspw0ol_res[0]},
{ DRI VER_AMBAPP_GAI SLER GRSPW I D, 1, &rastaiol_grspw0ol_res[0]},
DRVMGR_RES_EMPTY

},
s

/* Tell

* Ok ok k Ok ko

CGR- RASTA-1 O driver about the bus resources.

The resources will
cores found on the GR- RASTA-|1 O >AMBAPP bus.

Resources for one GR-RASTA-10 board are avail abl e.
AMBAPP- >PCl - >GR- RASTA- | O >AMBAPP bus resources

be used by the drivers for the

* The "weak defaults" are overriden here.

*/
struct

NULL,
s

drvngr_bus_res *gr_rasta_io_resources[] = {
&gr_rasta_io0_res,/* GR RASTA-10 board 1 resources */
&gr_rasta_iol_res,/* GR RASTA-10O board 2 resources */

/* End of table */

rtems_task Init(rtens_task_argunent argunent)

{
| *

*/

Manual driver manager initialization only required when driver manager not initialized during
* startup (-ql eon2, -qleon3std)

#i f ndef RTEMS_DRVMGR_STARTUP
/* Register CGRLIB root bus (LEON3/4) */
anmbapp_grlib_root_register(&grlib_bus_config);

/* Initialize Driver Manager */

drvmgr_init();

#endi f

2.6.4. drvmgr command

The RTEMS shell comes with a number of commands, the drvmgr command can be used to extract information
about the current setup and hardware. Please seether t ens- shel | . ¢ sample application that comeswith RCC.
The rtems-shell on a GR712RC ASIC:

Creating /etc/passwd and group with three useabl e accounts

r oot / pwd

, test/pwd,

rtems/ NO PASSWORD

RTEMS SHELL (Ver.1.0-FRC):dev/console. Oct 3 2011. 'help’ to list commands.
[/] # drvrmgr --help

usage:
drvngr
drvngr

drvngr
drvngr

drvngr
drvngr
drvngr
drvngr
drvngr

drvngr
drvngr

drvngr

buses
devs

drvs
info [ID

mem
parent |D
remove | D
res |D

short [ID

t opo

Li st bus specfic information on all buses

Li st general and driver specfic information
about all devices

Li st driver specfic information on all drivers
Li st general and driver specfic information
about all devices or one device, bus or driver
Dynani cal | y nenory usage

Short info about parent bus of a device
Rermove a device or a bus

Li st Resources of a device or bus

Short info about all devices/buses or one

devi ce/ bus

Show bus topology with all devices

tr 1D OPT ADR Translate hw(0)/cpu(1l) (OPT bit0) address ADR

--help

[/] # drvngr topo

--- BUS TOPOLOGY ---

down(0)/up(1l) streans (OPT bitl) for device

| -> DEV 0x400f d3a0 GRLIB AMBA PnP

RCC-UM
Dec 2023, Version 1.3.2 24

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

DEV 0x400f d450 GAl SLER LEON3FT
DEV 0x400f d4a8 GAl SLER_LEON3FT
DEV 0x400f d500 GAl SLER AHBJTAG
DEV 0x400f d558 GAl SLER_ETHVAC
DEV 0x400f d5b0 GAl SLER_SATCAN
DEV 0x400f d608 GAl SLER_SPW2
DEV 0x400f d660 GAl SLER_SPW2
DEV 0x400f d6b8 GAl SLER_SPW2
DEV 0x400f d710 GAl SLER_SPW2
DEV 0x400f d768 GAl SLER_SPW2
DEV 0x400f d7c0 GAl SLER_SPW2
DEV 0x400f d818 GAl SLER B1553BRM
DEV 0x400f d870 GAl SLER_GRTC
DEV 0x400f d8c8 GAl SLER_GRTM
DEV 0x400f d920 GAl SLER SLI NK
DEV 0x400f d978 GAI SLER FTMCTRL
DEV 0x400f d9d0 GAI SLER_APBMST
DEV 0x400f d928 GAl SLER_LEON3DSU
DEV 0x400f d980 GAl SLER_APBMST
DEV 0x400f db30 GAl SLER CANAHB
DEV 0x400f dad8 GAl SLER_CANAHB
DEV 0x400f db88 GAl SLER_FTAHBRAM
DEV 0x400f dbe0 GAl SLER_APBUART
DEV 0x400f dc38 GAl SLER | RQVWP
DEV 0x400f dc90 GAl SLER GPTI MER
DEV 0x400f dce8 GAl SLER SPI CTRL
DEV 0x400f dd40 GAI SLER_CANMUX
DEV 0x400f dd98 NO_NAME

DEV 0x400f ddf 0 GAI SLER_ASCS
DEV 0x400f de48 GAl SLER GPI O
DEV 0x400f dead GAl SLER GPI O
DEV 0x400f def 8 GAI SLER | 2CMST
DEV 0x400f df 50 GAl SLER_CLKGATE
DEV 0x400f df a8 GAl SLER_AHBSTAT
DEV 0x400f €000 GAl SLER_APBUART
DEV 0x400f €058 GAl SLER_APBUART
DEV 0x400f e0b0 GAl SLER_APBUART
DEV 0x400f 108 GAl SLER_APBUART
DEV 0x400f €160 GAl SLER_APBUART
DEV 0x400f e1b8 GAl SLER GRTI MER

T T T T T T T T T T T T T T T T S SO SO SO S S S T T S TR S S S S S T S S S S
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYV

[/] # drvngr info 0x400f dbe0
-- DEVI CE 0x400f dbe0O --
PARENT BUS: 0x400f d408

NAME: GAl SLER_APBUART
STATE: 0x00000100

INIT LEVEL: 4

ERROR: 0

M NOR BUS: 0
M NOR DRV: 0
DRI VER: 0x400a2198 (APBUART_DRV)
PRI VATE: 0x400f e210
--- DEVICE | NFO FROM BUS DRI VER - - -
AMBA PnP DEVI CE
VENDOR | D: 0x0001 (VENDOR_GAIl SLER)
DEVI CE | D 0x000c (GAI SLER_APBUART)
I RQ 2
VERSI ON: Ox1
anmbapp_core: 0x400fdclc
interfaces: APBSLV
APBSLV FREQ 80000kHz
apb: 0x80000100- 0x800001f f
--- DEVICE | NFO FROM DEVI CE DRI VER - - -
UART Mode: TERM OS_POLLED
STATUS REG 0x100082
CTRL REG 0x80000803
SCALER REG ~ 0x103 baud rate 38610

2.7. Network configuration

The LEON2/3 BSPs support three network devices: the Frontgrade Gaisler GRETH MAC, GRETH_GBIT MAC
and the LAN91C111 (note: 91C111 only in single-core configuration). The GRETH driver comesin two editions,
one that needs the driver manager (in libbsp) to operate and the standard driver (in libchip). The driver man-
ager dependent GRETH driver adds the network interface automatically to thert ens_bsdnet _confi g net-
work interface configuration using net wor k_i nt er f ace_add() function. It also supports SMP. The drivers
under libchip/ directory does not support SMP currently. Since the LAN91C111 chip is supported over the I/
O bus it cannot be found by Plug & Play so it has to be manually set up by either hardcoding an entry in the
rtems_bsdnet _confi ginterfacelist or dynamically registered by callingnet wor k_i nt er f ace_add() .
The LAN91C111 attach routine is defined by RTEMS BSP_NETWORK_DRIVER_ATTACH_SMC91111 in
bsp.h. The standard GRETH deviceis setup in asimilar way, seebsp. h.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 25

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
Seesrc/sanpl es/rtens-ttcp. ¢ for asample networking application.

2.8. PCI

Frontgrade Gaider provides a PCI Library together with RTEMS located in cpukit/libpci in the soruces. The
documentation for the PCI Library islocated inthe RTEM S documentationdoc/ usr /| i bpci . t andavailable
prebuilt into PDF named c_user . pdf , see Section 1.5.

All the LEON PCI host bridge drivers have been written using the driver manger and the PCI library isinitialized
using the PCI bus layer for the driver manager. Even if the PCI Library does not require the driver manger the
PCI host drivers does.

The RTEM Sshell hasbeen extended with apci command can be used to extract information about the current setup
and hardware. Please seethert ens- shel | . ¢ sample application that comes with RCC. A non-PCI system:

reating /etc/passwd and group with three useabl e accounts
root/pwd , test/pwd, rtenms/NO PASSWORD

RTEMS SHELL (Ver.1.0-FRC):dev/console. Cct 3 2011. 'help’ to |ist commands.
[/] # pci --help

usage:
pci |s [bus:dev:fun|PClID] Li st one or all devices
pci r{8| 16| 32} bus:dev:fun OFS Configuration space read
pci r{8| 16|32} PClID OFS Configuration space read

access by PCIID
pci W 8| 16| 32} bus:dev:fun OFS D Configuration space wite

pci w{8| 16|32} PCIID OFS D Configuration space wite
access by PCIID
pci pciid bus:dev:fun Print PCIID for bus:dev:fun
pci pciid PClID Print bus:dev:fun for PCIID
pci pcfg Print current PCl config for
static configuration library
pci getdev {PCl|D bus:dev:fun} Get PCl Device fromRAM tree
pci infodev DEV_ADR Info about a PCl RAM Devi ce
pci --help
[/]1 # pci
SYSTEM UNKNOWN / UNI NI TI ALI ZED
CFG LI BRARY: AUTO
NO. PCl BUSES: 0 buses
PCI ENDI AN: Little
MACHI NE ENDI AN: Bi g

2.9. LEON3 BSP multiprocessing configurations

RTEMS supports uni-processor, asymmetric multiprocessing (ASMP) and Symmetric multiprocessing (SMP)
configurations. The LEON3 BSP support all three modes. The ASMP mode can be accomplished in one of two
possible setups:
« Uni-processor configuration and custom synchonization/communication protocols between CPUs imple-
mented by user. (- qgbsp=BSP)
« RTEMSASMP configuration where RTEM S services are used to synchonize and communicate between the
CPU nodes. For example using global objects like global semaphores and global tasks and Inter Processor
Communication services implemented on top the shared memory (SHM) driver. (- gbsp=BSP_np)

Note that in a multi-processor system with more than two CPUs RTEM S supports running SMP configuration on
two or more processor in parallel with another OS instance on a different set of processors. This means SMP and
ASMP can cooexist in the same system.

2.9.1. Memory and device resource sharing

An ASMP application typically assigns different hardware resourcesto different operating system instances with-
out overlap at compile-time. For example UARTO/IRQ?2 is used by CPUO and UARTY/IRQ3 by CPUL. In uni-
processor and ASMP configuration the resource sharing between operating system instances are configured using
the driver manager or by using the default configuration. Linker scripts or linker arguments are typically used to
separate address spaces between ASMP CPUSs.

In SMP configuration RTEMS has typically access to al resources. Instead it uses locks and scheduler to share/
protect resources between processors during run-time. This means that no specific driver manager configuration
releated to resource sharing is needed for SMP.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 26

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

2.9.2. Interrupt considerations
2.9.2.1. Interrupt Controller IRQ(A)MP

The GRLIB IRQ(A)MP interrupt controller has extended ASMP support which allows for assigning individual
isolated interrupt controllerson aprocessor basis. Anindividual isolated interrupt controller isalsoreferred toasan
internal interrupt controller inthe |RQ(A)M P documentation. For an RTEM S SMP applicationrunninginan AMP
setting, it isrecommended to dedicate one of the virtual interrupt controllersto RTEMS SMP. RTEM S will detect
which interrupt controller its processor is assigned to by probing the IRQ(A)MP Asymmetric multiprocessing
control register and the Interrupt controller select registers.

In SMP configuration, RTEM S assumes that the boot |oader (MKPROM or GRMON) has assigned all the proces-
sor part of the SMP system to the same (internal) interrupt controller. For example, the GR740 has a |IRQ(A)MP
with four internal controllers but only oneis used wghen RTEM S SMP control all four CPUs.

2.9.2.2. Inter processor interrupt (IPI)

When RTEM S AMP/SMP requests to notify another CPU an interrupt is generated on the target CPU by writing
the interrupt controller's registers. The ISR handling IPI requests are typically associated with a "free" interrupt
number, i.e. not used for 1/O interrupts. The interrupt is by default the highest interrupt number available, IRQ14.
It is recommended to change to a dedicated IRQ if other (1/0O) interrupt sourcesis also generating IRQ14.

The IPI interrupt is configurable on project compile time by overriding the weak variable LEON3_np_i r g with
acustom IRQ number. For exampleinclude this code in the project to handle IPIson IRQ11 on al RTEMS CPUs:

const unsigned char LEON3_np_irqg = 11;
2.9.2.3. Interrupt affinity (SMP only)

By default the boot CPU handles all interrupts (except for IPl and per-cpu iimer) in SMP configuration, thus
normally CPUO handles al 1/O interrupts. The LEON3 BSP uses a static interrupt affinity configuration table
to select which CPU will service a particular IRQ. LEON3_i rq_t o_cpu is aweak variable which translates
IRQ[I] to CPU[J]. It allows the user to override the default BSP behaviour during compile time. The tableis used
when registering anew interrupt handler.

2.9.3. Symmetric multiprocessing (SMP) configuration
2.9.3.1. Processor selection

RTEMS SMP dlows for a wide range of processor configuration arrangements in a multiproces-
sor system. By default, an SMP application will execute on the processors with index 0 up to
CONFI GURE_MAXI MUM_PROCESSORS-1, where CONFI GURE_MAXI MUM_PROCESSORS is a preprocessor
define which can be provided to the compiler using the - D option. The boot processor is hormally CPU 0, but
there is no restriction on this: the first processor reaching the kernel entry point is assigned as the boot processor.

An RTEMS SMP application can be configured at compile time to assign different schedulers to specific sets
of processors. This is described in detail in the RTEMS Classic APl Guide 5 in the sections named Scheduling
concepts and Scheduler algorithm Configuration. In this RCC User's Manual we will assume usage of the the
default scheduler. Processor assignments will be setup using a scheduler assignment table.

Processors are assigned to the application (scheduler) with the scheduler assignment table, specified us-
ing the CONFI GURE_SCHEDULER_ASSI GNVENTS preprocessor define. The define shall contain a list of
RTEMS_SCHEDULER_ASSI G\(i ndex, attr) and RTEMS_SCHEDULER ASSI GN_NO_SCHEDULERen-
tries. Thereis one entry for each processor in the range 0 to CONFI GURE_MAXI MUM_PROCESSORS-1.

The following example will assign RTEMS SMP to CPU1 and CPU2. CPUO and CPU3 will not be used in the
RTEMS SMP instance and can run operating system(s).

#def i ne CONFI GURE_MAXI MUM_PROCESSORS 4

/* RTEMS SMP on CPU[1,2]. Sonething else on CPUO,3]. */

#def i ne CONFI GURE_SCHEDULER_ASSI GNVENTS \
RTEMS_SCHEDULER_ASSI GN_NO_SCHEDULER, \
RTEMS_SCHEDULER ASSI G\(0, RTEMS_SCHEDULER_ASSI GN_PROCESSOR_MANDATORY), \
RTEMS_SCHEDULER _ASSI G\(0, RTEMS_SCHEDULER_ASSI GN_PROCESSOR_MANDATORY), \

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 27

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

RTEMS_SCHEDULER_ASSI GN_NO_SCHEDULER

For RTEMS_SCHEDULER_ASSI GN(i ndex, attr), the i ndex parame-
ter selects one of the optionally configured schedulers, and the at -
tr parameter is st to RTEMS_SCHEDULER_ASSI GN_PROCESSOR_MANDATCORY or
RTEMS_SCHEDULER_ASSI GN_PROCESSOR_OPTI ONAL. A processor is not used in the application if its en-
try inthelist is RTEMS_SCHEDULER _ASSI GN_NO_SCHEDULER.

2.9.4. Asymmetric multiprocessing (AMP) configuration

RTEMS supports asymmetric multiprocessing (AMP), the LEON3 BSP supports AMP in two different setups.
Either the RTEMS kernel is compiled with multiprocessing support (-gbsp=BSP_mp) or the user setup custom
resource sharing with driver manager resources (-qbsp=BSP), the differenceisthat RTEM S provide multiprocess-
ing objects and communication channels in the former case and in the latter case the user is responsible for all
synchronization itself which in many cases are sufficient. All nodes in a asymmetric multiprocessor system exe-
cutes thier own program image. Messages are passed between the nodes containing synchronization information,
for example take global semaphore A. Messages are sent over memory using the Shared Memory Support Driver
inthe LEON3 BSP, and interrupts are used to alert the receiving CPU.

The kernel must be compiled with multiprocessing support in order for the RTEMS AMP support to be avail-
able, the toolchain includes a precompiled LEON3 MP kernel inrcc- 1. 3. 2/ sparc-gai sl er-rt ens5/
| eon3_np, itisthe LEON3 BSP compiled with multiprocessing support. The MP kernel is selected when the -
gbsp=BSP_np argument is given to sparc-gaid er-rtemss-gcc.

Since each CPU executesits own program image, amemory areahasto be allocated for each CPU's program image
and stack. Thisis achieved by linking each CPU's RTEMS program at the start addresses of the CPU's memory
area and setting stack pointer to the top of the memory area. E.g. for two CPU system, the application running
on CPU 0 could run in memory area 0x40100000 - 0x401fffff, while CPU 1 runs in memory area 0x4020000 -
0x402fffff. Shared Memory Support Driver alocates 4 KB buffer at address 0x40000000 for message passing
(this area can not be used for applications).

Each CPU requiresits own set of standard peripherals such as UARTs and timers. In an MP system the BSP will
automatically allocate UART 1 and GPT O timer 1 to CPU 0, UART 2 and GPT 0 timer 2 to CPU 1 and so on.
When the default configuration does not meet the requirements or hardware setup a custom resource alocation
can be setup using the driver manager, see below.

The shared memory driver'sdefault memory layout configuration can be overidden without recompiling the kernel.
The default settings are set in the variable wesk variable BSP_shm cf gt bl , it can be overridden by defining
BSP_shm cf gt bl oncein the project as in the below example. The parameters that has an effect in changing
isthe fields base and length.
/* Override default SHM configuration */
shm config_table BSP_shmcfgthl = {
. base = (void *)0x40000000,
.l ength = 0x00010000
}
Hardware resource allocation is done by the BSP for UART, IRQ controller and System Clock Timer. Devices
which hasadriver that isimplemented using the driver manager can beignored by a specific CPU by assigning the
keysvalue NULL in the driver resouces. The driver manager simply ignores the device when aNULL resourceis
detect. An example is given below where CPUQ is assigned GRGPIO0 and CPU1 GRGPIO1. GPTIMER driver
have options that limit number of timers and which timer is used for system clock, the system console and debug
output can be selected to a specific UART with the APBUART driver.

CPUO Application:
struct rtens_drvngr_drv_res grlib_drv_resources[] =

{ DRI VER_AMBAPP_GAI SLER GRGPI O ID, 1, NULL} /* Used by CPUL */
s

CPUL1 Application:
struct rtens_drvngr_drv_res grlib_drv_resources[] =

{ DRI VER_AVMBAPP_GAI SLER GRGPI O_I D, 0, NULL}, /* Used by CPUO */
{ DRI VER_AMBAPP_GAI SLER GRGPI O_ID, 1, &grlib_drv_res_grgpi ol[0]}
b

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 28

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Following example shows how to run RTEMS MP application on a two CPU system using GRMON. CPU 0
executes image nodel.exe in address space 0x6000000 - 0x600fffff while CPU 1 executes image node2.exe in
address space 0x60100000 - Ox601fffff.

GRMON LEON debug monitor vi.1.22

Copyright (C) 2004, 2005 Gaisler Research - all rights reserved
For |atest updates, go to http://wwmw gaisler.com
Comments or bug-reports to support@aisler.com

grlib> 10 nodel. exe
section: .text at O0x60000000, size 143616 bytes
section: .data at 0x60023100, size 3200 bytes
total size: 146816 bytes (174.4 kbit/s)
read 852 synbols
entry point: 0x60000000
grlib> 10 node2. exe
section: .text at 0x60100000, size 143616 bytes
section: .data at 0x60123100, size 3200 bytes
total size: 146816 bytes (172.7 kbit/s)
read 852 synbols
entry point: 0x60100000
grlib> cpu act 0
active cpu: 0
grlib> ep 0x60000000
entry point: 0x60000000
grlib> stack 0x600fff00
stack pointer: 0x600fff00
grlib> cpu act 1
active cpu: 1
grlib> ep 0x60100000
entry point: 0x60100000
grlib> stack 0x601fff00
stack pointer: 0x601fff00
grlib> cpu act 0
active cpu: 0
grlib> run

RTEMS MP applications can not be run directly in GRSIM (using load and r un commands). Instead aboot image
containing several RTEM S MP applications should be created and simulated.

2.9.4.1. MP testsuite

The MP testsuiteis located in the sources under testsuite/mptests, it requires modifications to the make scriptsin
order to select a unique image RAM location. The default shared memory areais at 0x40000000-0x40000fff, the
two images for nodel and node2 needs to be located on a unique address and the heap/stack must also fit. The
argument -WI,- Ttext,0x40001000 for nodel and -WI,-Ttext,0x40200000 for node2 can be added to the link stage,
and the entry point (0x40001000 and 0x40200000) and stacks (0x401ffffO and 0x403ffff0) must also be set by
the loader (GRMON or mkprom for example). Depending on where the RAM memory is located and how much
memory is available the parameters may vary.

2.9.5. RTEMS SMP AMP example

An AMP demonstration including RTEM S SMPtargeting GR740isdistributed with RCC andisinstalled in the di-
rectory sr ¢/ sanpl es/ gr 740/ anpdeno. The demonstration consists of two applications: one single-proces-
sor RTEMS application and one RTEM S SMP application. Two different AMP configurations are demonstrated:

ampdemo-smp0

CPUO, CPU1 and CPU2 execute an RTEMS SMP application. CPU3 is started from the RTEMS SMP
application and executes an independent single-processor application.
ampdemo-sp0

CPUO executes a single-processor application. CPUO starts (wakes up) CPU1 which together with CPU2
and CPU3 execute an RTEM S SMP application.

The purpose of the example is to demonstrate how RTEMS SMP can be used to start other operating system
instances aswell as itself being a slave instance in an AMP setting. Initialization of the interrupt controller by
means of GRMON commands is also demonstrated: thisistypically performed by a boot loader when the system
is deployed. The preparation script configures a set of hardware breakpoints to assert that the operating system
instances do not interfer with each others GPTIMER and APBUART and.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 29

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

More information on how to run the RTEMS SMP AMP exampleis provided in sr ¢/ sanpl es/ gr 740/ am
pdeno/ README.

2.10. Making boot-proms

RTEMS applications are linked to run from beginning of RAM. To make a boot-PROM that will run from the
PROM on a standalone target, use the mkprom?2 utility freely available from www.gaisler.com. The mkprom
utility is documented in a separate document that is distributed together with the mkprom2 utility. Mkprom will
create a compressed boot image that will load the application into RAM, initiate various processor registers, and
finally start the application. Mkprom will set all target dependent parameters, such as memory sizes, wait-states,
baudrate, and system clock. The applications do not set these parameters themselves, and thus do not need to be
re-linked for different board architectures.

The example below creates a LEON3 boot-prom for a system with 1 Mbyte RAM, one walitstate during write, 3
waitstates for rom access, and 40 MHz system clock. For more details see the mkprom manual
$ nkpron2 -ramsz 1024 -rammws 1 -romws 3 -freq 40 hell o. exe

Note that mkprom creates binaries for LEON2/3/4 and for ERC32, select processor type with the mkprom options
-leon3, -leon2 or -erc32 flag. To create an SRECORD file for a prom programmer, use objcopy:

$ sparc-gai sl er-rtens5-objcopy -O srec hello.exe hello.srec

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 30

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 3. Examples

3.1. Overview

There is a samples collection distributed within the RCC under r cc- 1. 3. 2/ sr ¢/ sanpl es. It contains some
general RTEM S examples and some more specific LEON or boards specific examples.

3.2. Building

Following example compiles the famous "hello world" program and creates a boot-prom in SRECORD format:

$ sparc-gaisler-rtens5-gcc -qbsp=l eon3 -ntpu=leon3 -2 rtens-hello.c -o rtens-hello
$ nkpron2 -leon3 -freq 40 -dunp -baud 38400 -ransize 1024 -rnw rtens-hello
$ sparc-gaisler-rtens5-objcopy -O srec rtens-hello rtens-hello.srec

Severa example C programs can befoundin/ opt/rcc-1. 3. 2/ src/ sanpl es. Thisfolder also includes a
Makefilethat can be used to build the examples. Building the examplesfor a predefined BSP configuration isdone
by calling " make <bsp-target>". Calling make (without atarget) will compile al the examplesfor al the
pre-built BSPs. The CPU compiler flags are set to the same as when building the RTEMS BSP. The executables
will be stored bi n/ <bsp-t ar get >. Valid bsp-targets are the same listed in Section 2.2.1 leon3, leon3_smp,
gr712rc, gr712rc_smp, .. etc. Below is an example building for GR712RC
bash$ nake gr712rc
make BSP=gr712rc ODlI R=bin/gr712rc gr712rc_build
make[1] : Entering directory '/honme/daniel/git/rtemns/build-1.3/src/sanples’
sparc-gaisler-rtems5-gcc -Wall -g -2 -Werror -1./ -ncpu=leon3 -nfix-gr712rc \

-gbsp=gr712rc -DBRM BM TEST rtems-brmc brmlib.c -0 bin/gr712rc/rtenms-brmbm
sparc-gaisler-rtems5-gcc -Wall -g -2 -Werror -1./ -ncpu=leon3 -nfix-gr712rc \

-gbsp=gr712rc rtems-brmc brmlib.c -0 bin/gr712rc/rtems-brmrt
sparc-gaisler-rtems5-gcc -Wall -g -2 -Werror -1./ -ncpu=leon3 -nfix-gr712rc \

- gbsp=gr712rc -DBRM BC TEST rtems-brmc brmlib.c -0 bin/gr712rc/rtens-brmbc
sparc-gaisler-rtems5-gcc -Wall -g -2 -Werror -1./ -ncpu=leon3 -nfix-gr712rc \

- gqbsp=gr 712rc - DTASK_TX - DTASK_RX rtems-occan.c occan_lib.c -0 bin/gr712rc/rtenms-occan
sparc-gaisler-rtems5-gcc -Wall -g -2 -Werror -1./ -ncpu=leon3 -nfix-gr712rc \

- gqbsp=gr 712rc - DMULTI _BQOARD - DTASK_TX rtenms-occan.c occan_lib.c -0 bin/gr712rc/rtens-occan_tx

make[1] : Leaving directory '/opt/rcc-1.3-rc2/src/sanples’

It is also possible to build a single example by calling make <exanpl e> or to build a prom image by calling
make <exanpl e>. mkpr om In this case the executables will be stored in the root samples directory. When
building individual examplesit is possible to control the behaviour by setting the following variables.

BSP

By setting the BSP variable to one of the bsp-targets, then the hardware specific compilation flags for that
cpu-target will be added when compiling and the matchin - qbsp=BSP flag will be added.
CFLAGS

Override common compilation flags
CPUFLAGS

Override the hardware specific compilation flags
MKPROMFLAGS

Override mkprom2 flags
ODIR

Executables output directory. By default bi n/ BSP/ .
Below is the command line for building only the hel | o- wor | d example using the BSP option to make the
binary target a GR712RC system:
src/ sanpl es$ nake BSP=gr712rc CFLAGS="-C0 -g" rtens-hello

sparc-gaisler-rtems5-gcc - -g -1./ -ncpu=leon3 -nfix-gr712rc -qgbsp=gr712rc \
rtems-hello.c -o rtens-hello

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 31

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 4. Execution and debugging

Applications built by RCC can be debugged on the TSIM LEON/ERC32 simulator, or on target hardware using
the GRMON debug monitor (LEON only). Both TSIM and GRMON can be connected to the GNU debugger
(gdb) for full source-level debugging.

4.1. TSIM

The TSIM simulator can emulate afull ERC32 and LEON2/3 system with on-chip peripherals and external mem-
ories. For full details on how to use TSIM, see the TSIM User's Manual. Below is a simple example that shows
how the ‘hello world” program is run in the smulator:

$ tsimleon3 rtems-hello
TSI M LEON3 SPARC sinul ator, version 2.0.4a (professional version)

Copyright (C) 2001, Gaisler Research - all rights reserved.
For | atest updates, go to http://ww. gaisler.conm
Comments or bug-reports to support @ai sl er.com

using 64-bit tinme

serial port A on stdin/stdout

all ocated 4096 K RAM nenory, in 1 bank(s)

al | ocated 2048 K ROM nenory

icache: 1 * 4 kbytes, 16 bytes/line (4 kbytes total)
dcache: 1 * 4 kbytes, 16 bytes/line (4 kbytes total)
section: .text, addr: 0x40000000, size 92096 bytes
section: .data, addr: 0x400167c0O, size 2752 bytes
read 463 synbol s

tsin> go

resum ng at 0x40000000

Hello World

Program exi ted normal ly.
tsinm

4.2. GRMON

GRMON isused to download, run and debug L EON2/3 software on target hardware. For full details on how to use
GRMON, see the GRMON User' Manual. Below is a simple example that shows how the "hello world" program
is downloaded and run:

$ grnon -u -jtag

GRMON LEON debug nonitor v1.1.11

Copyright (C) 2004, 2005 Gai sl er Research - all rights reserved.
For |atest updates, go to http://ww. gaisler.conm

Comments or bug-reports to support @ai sl er.com

usi ng JTAG cabl e on parallel port
JTAG chai n: xc3s1500 xcf04s xcf04s

initialising
detected frequency: 41 Mz
GRLI B build version: 1347

Conponent Aerof | ex Gai sl er
LEON3 SPARC V8 Processor Aerof | ex Gaisler
AHB Debug UART Aerof | ex Gai sl er
AHB Debug JTAG TAP Aerof | ex Gai sl er
GR Et hernet MAC Aerof | ex Gaisler
LEON2 Menory Control |l er Eur opean Space Agency
AHB/ APB Bri dge Aerof | ex Gai sl er
LEON3 Debug Support Unit Aerof | ex Gai sl er
Nuhori zons Spartan3 I/ O interfac Aeroflex Gaisler
OC CAN controller Aerof | ex Gaisler
Generic APB UART Aerof | ex Gaisler
Mul ti-processor Interrupt Ctrl Aerof | ex Gai sl er
Modul ar Ti mer Uni t Aerof | ex Gaisler

Use conmmand 'info sys’ to print a detailed report of attached cores

grlib> 1o rtems-hello

section: .text at 0x40000000, size 92096 bytes
section: .data at 0x400167c0, size 2752 bytes
total size: 94848 bytes (339.7 kbit/s)

read 463 synbol s

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 32

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

entry point: 0x40000000
grlib> run

Hello World

grlib>

Note that the program was started from address 0x40000000, the default start address.

GRMON can also be used to program the boot-PROM image created by sparc-rtems-mkprom into the target’s
flash PROM.

grmon[grlib]> flash unlock all
grmon[grlib]> flash erase all
Erase in progress

Bl ock @ 0x00000000 : code
Bl ock @ 0x00004000 : code

0x00800080 K
0x00800080 K

grnon[grlib]> flash | oad prom out
section: .text at Ox0, size 54272 bytes
total size: 54272 bytes (93.2 kbit/s)
read 45 synbol s

grmon[grlib]> flash lock all

When boot-PROM isrun (i.e. after reset) it will initialize various LEON registers, unpack the application to the
RAM and start the application. The output on console when running “hello world” from PROM is shown below:

McProm LEON3 boot | oader v1.2
Copyright Gaisler Research - all right reserved

system cl ock : 40.0 MHz

baud rate : 38352 baud

prom 512 K, (2/2) ws (r/w

sram 11024 K, 1 bank(s), 0/0 ws (r/w

deconpressing .text
deconpressing .data

starting rtems-hello

Hello World

The application must be re-loaded with the load command before it is possible to re-executeit.

When running multiple RTEM S programs on a multiprocessing system, entry point and stack pointer have to be
set up individually for each CPU. E.g. when running appl.exe (link address 0x40100000) on CPUO and app2.exe
(link address 0x40200000) on CPU1.:

grlib> 10 appl. exe
grlib> 10 appl. exe
grlib> cpu act 0

grlib> ep 0x40100000
grlib> stack 0x401fff00
grlib> cpu act 1

grlib> ep 0x40200000
grlib> stack 0x402fff00
grlib> cpu act 0
grlib>run

4.3. GDB with GRMON and TSIM

To perform source-level debugging with gdb, start TSIM or GRMON with -gdb or enter the gdb command at the
prompt. Then, attach gdb by giving command "tar extended-remote localhost:2222" to gdb when connecting to
GRMON or "tar extended-remote localhost:1234" when connecting to TSIM. Note that RTEMS applications do
not have auser-defined main() function necessarily asordinary C-programs. | nstead, put abreakpointon| ni t (),
which is the default user-defined start-up function.

jupiter> sparc-rtens-gdb rtens-hello

G\U gdb 6.7.1

Copyright (C) 2007 Free Software Foundation, Inc.

Li cense GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.htnl>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copyi ng"
and "show warranty" for details.

This GDB was configured as "--host=i 686-pc-|inux-gnu --target=sparc-rtens".
(gdb) tar extended-renote |ocal host: 2222

Renot e debuggi ng usi ng | ocal host: 2222

(gdb) | oad

Loadi ng section .text, size 0x164e0 | ma 0x40000000

Loadi ng section .jcr, size Ox4 | ma 0x400164e0

Loadi ng section .data, size Oxaa8 | ma 0x400164e8

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 33

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Start address 0x40000000, |oad size 94092

Transfer rate: 57902 bits/sec, 277 bytes/wite.

(gdb) break Init

Breakpoint 2 at 0x400011f8: file rtems-hello.c, |ine 33.
(gdb) run

The program bei ng debugged has been started al ready.
Start it fromthe beginning? (y or n) y

Starting program /opt/rtens-4.10/src/sanples/rtens-hello

Breakpoint 2, Init (ignored=0) at rtens-hello.c:33
33 printf("Hello Wrld\n");

(gdb) cont

Cont i nui ng.

Hello World

Program exited with code 0363.

The application must be re-loaded with the load command before it is possible to re-executeit.

4.4. Using DDD graphical front-end to gdb

DDD isagraphical front-end to gdb, and can be used regardless of target. The DDD graphical debugger isfreely
available from http://www.gnu.org/software/ddd. To start DDD with the sparc-gaisler-rtems5-gdb debugger do:

ddd --debugger sparc-gaisler-rtens5-gdb

The required gdb commands to connect to a target can be entered in the command window. See the GDB and
DDD manuals for how to set the default settings. If you have problems with getting DDD to run, run it with --
check-configuration to probe for necessary libraries etc. DDD has many advanced features, seethe on-line manual
under the 'Help' menu.

On windows/cygwin hosts, DDD must be started from an xterm shell. First launch the cygwin X-server by issuing
'startx’ in a cygwin shell, and the launch DDD in the newly created xterm shell.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 34

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Device drivers reference

The following sections describes most of the LEON4, LEON3 and LEON2 device driversincluded in the Front-
grade Gaisler RCC RTEM S distribution. Each driver is described in a separate chapter.

Most of the driversfor GRLIB coresrelies on the RTEMS Driver Manager for anumber of services. The manager
is responsible for creating device instances representing a hardware device and then unite them with a device
driver supporting the hardware. The driver manager is documented in a separate chapter, please see Chapter 6.
Device drivers not supporting the Driver Manager uses typically ainitialization routine called by the application.

RCC samples and a common makefile can be found under / opt / rcc- 1. 3. 2/ src/ sanpl es in the distri-
bution. The I/O examples are often composed of a transmitting task and a receiving task communicating to one
another. The tasks are either intended to run on the same board requiring two cores, or run on different boards
requiring multiple boards with one core each, or both. The tasks use the console to print their progress and status.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 35

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 5. GRLIB AMBA Plug&Play bus

5.1. Introduction

The AMBA busthat GRLIB isbuilt upon supports Plug& Play probing of deviceinformation. Thissection givesan
overview of the AMBA Plug& Play (AMBAPP) routines that comes with the RCC distribution. Systems without
on-chip AMBA Play& Play support (AT697 for example) may use the library when accessing remote GRLIB
systems over SpaceWire or PCI.

The AMBAPP Layer isused by the AMBAPP Busdriver used to interfacethe AMBAPP busto the driver manager.
Note that the AMBAPP Busis not documented here.

5.1.1. AMBA Plug&Play terms and names

Throughout this document some software terms and names are frequently used, below is table that summarizes

some of them.

Table5.1. AMBA Layer terms and names

Term

Description

AMBAPP, AMBA PnP

AMBA Plugé& Play bus. See AHBCTRL and APBCTRL in GRIP documentation.

AMBA

AMBA bus without Plug& Play information, typically used in LEONZ2 designs

device AMBA AHB Master, AHB Slave or APB Slave interface. The ambapp_dev struc-
ture describe any of the interfaces.

core A AMBA [P core often consists of multiple AMBA interfaces but not more than
one interface of the same type. The ambapp_core structure is used to describe a
AMBA core as a unit with up to three interfaces all of different type.

bus All AMBA AHB and APB buses in a system in one ambapp_bus structure. See
scanning.

ambapp_plb The processor local AMBA PnP busin LEON3 BSP, RAM description of first
Plug& Play bus at OxFFFO0000.

scanning Process where the AMBA PnP busis searched for all AMBA interfaces and ade-
scription is created in RAM, the RAM copy makes it easier to access the PnP in-
formation rather than accessing directly.

depth Number of levels of AHB-AHB bridges from topmost AHB bus.

5.1.2. Sources

The sources of the driver manager is found according to the table below.

Table 5.2. AMBAPP Layer Sources

Path Description

ambapp.h Include path of AMBAPP layer header-file definitions

ambapp_ids.h Vendor and Device IDs auto generated from GRLIB devices.vhd

libbsp/sparc/shared/amba | Path within RTEM S sourcesto AMBAPP sources

ambapp.c Scanning routine anbapp_scan() and function to iterate over all devices
anmbapp_for _each()

ambapp_alloc.c Mark ownership of devices

ambapp_count.c

Helper function to get number of devicesfound in Plug & Play

ambapp_depth.c

Function to get bus depth of adevice

ambapp_find by idx.c

Helper function anbapp_fi nd_by i dx() used asinputto
anmbapp_for _each() to search for amatching device by index.

ambapp_freq.c

Functions to initialize AMBAPP bus frequency and get the frequency of a device

RCC-UM
Dec 2023, Version 1.3.2

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

36

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Path Description

ambapp_names.c Vendor and device ID name database

ambapp_old.c Old AMBAPP interface, reimplemented on top of ambapp.c. Deprecated.
ambapp_parent.c Get device parent bridge by searching the device tree

ambapp_show.c Print AMBAPP bus RAM description information onto terminal, for debugging

5.2. Overview

The AMBAPP layer provides functions for device driversto access the AMBA Plug& Play information in an easy
way by reading a RAM description rather than accessing the Plug& Play ROM information directly. It is also
beneficial to have a RAM description for remote systems over SpaceWire or PCl where scanning often must be
performed once at initialization.

The AMBAPP interface is defined in anbapp. h and vendor/device IDsin anbapp_i ds. h.

5.3. Initialization

Before accessing the AMBAPP interface one must initialize the ambapp_bus RAM description by scan-
ning the AMBA Plug&Play information for all buses, bridges and devices. The bus is scanned by calling
anmbapp_scan() with prototype as listed below, the RAM description will be written to abus. The function
takes an optional access function memfunc called when the AMBA library read the PnP information, the abus
argument is passed along to memfunc which makes it possible for the caller to have a custom argument to mem-
func. If addresses found in the Plug& Play information must be translated (as with AMBA-over-PCl for example)
the mmaps array must point to address tranglation information. The scanning routine starts scanning at (ioarea |
0x000ff00), the default Plug& Play areais located at OxFFFO000.

int anmbapp_scan(
struct anmbapp_bus *abus,
unsi gned int ioarea,
anbapp_nencpy_t nenfunc,
struct anmbapp_mmap *nmraps
)
A bus and device tree is created in abus during initialization, cores (struct ambapp_core) are not created by the
layer. The AMBAPP layer is used from the AMBAPP Bus driver in the driver manager, it creates AMBAPP cores

by finding AMBA devices that comes from the same IP core.

Thefrequency of the AMBAPP bus can not be read from the Plug& Play information, however how different AM-
BA AHB buses frequency relates to each can be found at respective AHB-AHB bridge. In order for the frequency
function ambapp_f req_get () to report a correct frequency the user is required to register the frequency of
one AMBAPP device calling the anbapp_freq_i ni t () function, prototype listed below. The LEON3 BSP
determines the frequency by assuming that the first GPTIMER clock frequency has been initialized to IMHz by
boot loader, the BSP registers the frequency of the GPTIMER APB device.

/* Initialize the frequency [Hz] of all AHB Buses from know ng the
* frequency of one particul ar APB/ AHB Devi ce.
*/
voi d anbapp_freq_init(
struct anmbapp_bus *abus,
struct anbapp_dev *dev,
unsigned int freq);

/* Returns the frequency [Hz] of a AHB/ APB device */
unsi gned i nt anbapp_freq_get (

struct anmbapp_bus *abus,

struct anmbapp_dev *dev);

5.4. Finding AMBAPP devices by Plug&Play

After the Plug& Play information has been scanned the user can search for AMBA devices in the RAM descrip-
tion without accessing the Plug& Play ROM by calling anbapp_f or _each() , see prototype below. The us-
er provided function is called every time the search options matches a AMBA device in the device tree. The
ambapp_for_each() function can search for a any combination of [VENDOR, DEVICE] ID, device types (AHB
MST, AHB SLV and/or APB SLV), free or allocated devices. If aVENDOR/DEVICE ID of -1 isgiven the func-
tion will match any vendors/devices.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 37

https://www.frontgrade.com/gaisler

I T T T S

/

int

rRONTGRADE

Gaisler

Iterates through all AMBA devices previously found, it calls func
once for every device that match the search arguments.

SEARCH OPTI ONS

Al search options nmust be fulfilled, type of devices searched (options)
and AMBA Pl ug&Play | D [VENDOR, DEVI CE], before func() is called. The options
can be use to search only for AMBA APB or AHB Sl aves or AHB Masters for
exanple. Note that when VENDOR=-1 or DEVICE=-1 it will match any vendor or
device ID, this means setting both VENDOR and DEVICE to -1 will result in
calling all devices natches the options argunent.

\ par am abus AMBAPP Bus to search

\ param options Search options, see OPTIONS_* above

\ par am vendor AVBAPP VENDCR | D to search for

\param device AMBAPP DEVICE ID to search for

\ param func Function called for every device natching search options
\ param arg Optional argunent passed on to func

func return value affects the search, returning a non-zero value wll
stop the search and anbapp_for_each will return imediately returning the
sane non-zero val ue.

Return Val ues
0 - all devices was scanned
non-zero - stopped by user function returning the non-zero val ue

anmbapp_f or _each(
struct anmbapp_bus *abus,
unsi gned int options,
int vendor,
int device,
anbapp_func_t func,
void *arg);

5.5. Allocating a device structure

A device can be marked alocated so that other parts of the code knows that the device has been taken, thisfeature
isnot used by the LEON BSPs. The ambapp_dev.owner field is set to a non-zero value to mark that the deviceis
alocated, useanbapp_al | oc_dev() andanbapp_free_dev() to set alocation mark.

5.6. Name database

Inanbapp_nanmes. ¢ AMBA Plug&Play vendor and device names are stored in a name database. The names
are taken from devi ce. vhd in GRLIB distribution. Names can be requested by calling appropriate function
listed below.

| *

Get Device Name from AMBA PnP nane dat abase */

char *anbapp_devi ce_i d2str(int vendor, int id);

| *

Get Vendor Name from AMBA PnP nane dat abase */

char *anbapp_vendor _i d2str(int vendor);

/*
*/
int

Set together VENDOR_DEVI CE Nanme from AMBA PnP nane database. Return |ength
of C-string stored in buf not including string termnation '\0'.

anbapp_vendev_i d2str(int vendor, int id, char *buf);

5.7. Frequency of a device

As described in the initialization section every AHB bus may have a unique bus frequency, APB buses always
have the same frequency asthe AHB busit is situated on. Since a core may consist of a AHB master, AHB slave
and a APB dlave interface the frequencies of the different interfaces may vary. The AMBAPP layer provides a
function anbapp_freq_get () that returnsthe frequency in Hz of asingle device interface.

/*

Returns the frequency [Hz] of a AHB/ APB device */

unsi gned i nt anbapp_freq_get (

struct anmbapp_bus *abus,
struct anmbapp_dev *dev);

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 38

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 6. Driver Manager

6.1. Introduction

This section describes the Driver Manager available in RCC-1.3 distribution. The sources are located in cpuk-
it/1ibdrvigr inthe RTEMS source release. The driver manager is used to ssmplify the handling of buses,
devices, bus drivers, device driver, configuration of device instances and providing a common programming in-
terface where possible for drivers regardless of bus architecture.

6.1.1. Driver manager terms and names

Throughout this document some terms and names are frequently used, below is table that summarizes some of
them.

Table 6.1. Driver Manager terms and names

Term Description

Bus Describes a bus with child devices.

Device Describes a hardware device situated on a bus, bus driver.

Bridge device A device with achild bus.

Busdrives Software that handles a bus, implements the bus.

Devicedriver Software that handles hardware devices.

Root device Topmost device in driver manager tree, has no parent bus.

Root bus Topmost bus, the root device exports, has no parent bus.

Register bus Process where the driver manager is informed about the existence of anew bus.

Register device Process where the driver manager is informed about the existence of a new device.

Register driver Before driver manager initialization, drivers are added into ainternal driver list.

Unite device and driver | Process where the driver manager finds a device driver for adevice.

Separate device and Process where adevice driver is requested to never use the device any more, for ex-

driver ample before adevice is removed.

Unregister busor de- | Inform driver manager about that a bus or device (and all child buses/devices) should

vice be removed from the device tree and related drivers be informed.

Init level The device driver and bus driver initialization processis performed in multiple stages,
caledinitialization levels.

6.1.2. Sources
The sources of the driver manager is found according to the table bel ow.

Table 6.2. Driver Manager Sources

Path Description

cpukit/Ilibdrvngr Path within RTEM S sources. Driver manager sources
drvngr/drvngr. h Include path of driver manager definitions
drvigr/drvngr _confdefs. h |Include patch of driver configuration

6.2. Overview

The driver manager works with the concepts bus, bus driver, device, device driver and driver resources. Since
everything is tied together somehow it is quite difficult to start describing the driver manager, instead each com-
ponent is described in a separate section below and the following text assumes that the reader has knowledge of
respective component.

The driver manager manages all buses and devicesin a system by using atree structure. The root of the tree starts
with the root device created by the root bus driver. The root device creates a bus which is called the root bus, it

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 39

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

is an ordinary bus without a parent bus. All buses have alinked list of devices which are situated directly on the
bus, if adeviceisabridge to another bus that device registers a child bus and the bus pointer in the device is set
appropriately. At the moment of writing a bridge device can only have one child bus. During the boot process the
device/bustreeiscreated either dynamically by busdriversreading plug and play or from hard coded information.

The BSP or user must register aroot bus driver in order for the driver manager to create and initialize the root
device. Thefunctiondr virgr _root _drv_r egi st er () mustbecalled beforethedriver manager initialization
process starts. Buses and devices areinitialized in afour step process called levels (1, 2, 3, 4). The driver manager
guarantees that the bus is aways initialized before to the same or higher level than devices on that bus, that the
devicesareinitialized inthe same order asthey areregistered in, and that child busesareinitialized after al devices
on the parent bus are initialized to the level. If a bus or device fails to initialize the children (devices or child
bus) are never initialized further, instead they are put on ainactive list for later inspection. Dependencies between
buses and devices are hence easily managed by the fact that drivers are not allowed to access certain APIs until
acertain level isreached.

Driversareregistered before the driver manager initialization startswithdr vimgr _dr v_r egi st er () , theman-
ager keepsalist of driverswhich is accessed to find asuitable driver for adevice. Every time anew deviceisreg-
istered by the bus driver the driver manager searches the driver list for asuitable driver, the busis asked (bus.ops-
>unite) if the driver is compatible with the device, if so the manager unites the driver with its device and inserts
the device into the initialization procedure. The driver's initialization routines will be called for al its devices at
every level. If adriver was not found, the device is never initialized.

The driver manager is either initialized by the BSP during startup or manually by the user from the Init task
where interrupt is enabled. The BSP initialization is enabled by passing —drvmgr to configure when building the
RTEMSkernel, inthat case RTEMS DRVMGR_STARTUP isdefined in [system.h]. When custom initialization
is selected interrupt is enabled during the driver manager initialization and driversinitialized during RTEM S boot
(system clock timer and system console UART for example) can not rely on the driver manager.

When the driver manager isinitialized during boot, thert ens_i niti al i ze_devi ce_dri vers() function
puts the manager into level 1 before RTEMS /O drivers are initialized, so that drivers relying on the manager for
devicediscovery are ableto register devicesto the I/O subsystem intime. At time of initialization most of RTEMS
APlsare available for drivers, for examplemal | oc() isavailable.

6.2.1. Bus and bus driver

A bus driver is responsible to make the driver manager aware of hardware devices, simply called devices, by
scanning Plug & Play information or by any other approach. It finds, createsand registersdevicesin adeterministic
order. The manager help bus drivers with new devices, insertion into the device tree and device numbering for
example. Each deviceis described in abus architecture independent way and with bus specific device information
like register addresses, interrupt numbers and bus frequency information. Drivers targeting devices on the bus
must know how to extract valuable information from the specific information.

All buses have alinked list of devices which are situated directly on the bus (bus.children), if adeviceisabridge
to another bus that device registers another device (dev.bus), a bus does maintain alist of child buses.

/*! Bus information. Describes a bus. */
struct drvngr_bus {
int obj _type; /*!'< DRVMGR_OBJ_BUS */
unsi gned char bus_type; /*!< Type of bus */
unsi gned char dept h; /*!'< Bus level distance fromroot bus */
struct drvngr_bus *next ; /*!'< Next Bus */
struct drvngr_dev *dev; /*!< Bridge device */
voi d *priv; /*!'< BUS driver Private */
struct drvngr_dev *children;/*! < devices on this bus */
struct drvngr_bus_ops *ops; /*!< Bus operations of bus driver */
struct drvngr_func *funcs; /*!< Extra operations */
int dev_cnt; /*1'< Nunber of devices this bus has */
struct drvngr_bus_res *reslist; /*!< Bus resources, head of a |inked
list of resources. */
struct drvngr_nmap_entry *maps_up; /*!< Map Translation, array of
address spaces upstreams to CPU */
struct drvngr_map_entry *maps_down; /*!< Map Transl ation, array of
address spaces downstreans to Hardware */
/* Bus status */

int level ; [*!< Initialization Level of Bus */

int state; /*1< Init State of Bus, BUS_STATE * */

int error; /*!< Return code from bus.ops->initN() */

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 40

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

s

A device driver can be configured per device instance using driver resources, the resources are managed per bus
as alinked list of bus resources (bus.reslist). A bus resource is an array of driver resources assigned by the bus
driver. The resources are described in a separate section below.

Bus bridges often interfaces parts of an address space onto the child bus and vice versa. For examplein a LEON
system one linear region of the PCI memory space may be accessed through the PCI Host's PCI Window from
the processor's AMBA memory space side. The bus. maps_up and bus. maps_down fields can be used to
describe the bridge address regions used to access buses in upstreams or downstreams direction. The driver man-
ager provides address trandation functions that is implemented using the region descriptions.

Every bus driver implements a number of functionsthat provide an interface to the driver manager, device drivers
or to the user. The function interface is listed below. Every bus has number of init functions similar to device
drivers where the bus is responsible for finding, creating, low level initialization and registration of new devices.
If abusdriver require some feature from the parent bus that is available in a certain level the bus can assume that
the parent bus and al its devices has already reached a higher level or the same as the busis requested to enter.
/*! Bus operations */

struct drvngr_bus_ops {
/* Functions used internally within driver manager */

int (*init[DRVYMGR _LEVEL_MAX]) (struct drvmgr_bus *);
int (*renove) (struct drvngr_bus *);
int (*unite)(struct drvngr_drv *, struct drvngr_dev *);

/* Functions called indirectly fromdrivers */

int (*int_register)(struct drvngr_dev *, int index, const char *info,
drvngr_isr isr, void *arg);

int (*int_unregister)(struct drvrngr_dev *, int index, drvngr_isr isr,
void *arg);

int
int

(
(
int (
(
(

int_clear)(struct drvngr_dev *, int index);

int_mask) (struct drvngr_dev *, int index);

int_unmask) (struct drvngr_dev *, int index);

get _parans) (struct drvngr_dev *, struct drvngr_bus_parans *);
freq_get)(struct drvngr_dev, int, unsigned int*);

*
*
*
int *
int
/*! Function called to request information about a device. The bus
* driver interpret the bus-specific information about the device.
*/
voi d (*info_dev)(struct drvrmgr_dev *, void (*print)(void *p, char *str),
void *p);

If a bus supports interrupt it can hide the actual implementation in the bus driver by implementing all or some
of theint_* routines listed in the table below. Device drivers are accessing interrupts using the generic interrupt
functions of the driver manager. The index determines which interrupt number the device requests, for example
0 means the first interrupt of the device, 1 the second interrupt of the device and so on, it is possible for the bus
driver to determine the absolute interrupt number usually by looking at the bus specific device information. If a
negative interrupt number isgiven it is considered to be an absolute interrupt number and should not be trans ated,
for example an index of -3 means IRQ3 on the AMBA bus or INTC# of the PCI bus.

Table 6.3. Interrupt backend inteface of driver manager

Operation Description

int_register Register an interrupt service routine (I1SR) and unmask(enable) appropriate interrupt
source

int_unregister Unregister ISR and mask interrupt source

int_clear Manual interrupt source acknowledge at the interrupt controller

int_mask Manual mask (disable) interrupt source at interrupt controller

int_unmask Manual unmask (enable) interrupt source at interrupt controller

6.2.1.1. Bus specific device information

A bus provide a bus dependent way to describe devices on that bus (register addressfor example). Theinformation
is created by the bus driver from plug & play or hardcoded information. The information may for example be
used by the bus driver to unite a device with a suitable device driver and by a device driver to get information
about a certain device instance.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 41

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Each bus hasits own device properties, for example aPCl device have up to 6 BARsor variable sizeand aGRLIB
AMBA AHB device has up to four different AHB areas of variable length. Thiskind of information is hidden by
the bus driver into the bus specific area that device drivers targeting the bus type can access.

6.2.2. Root driver

The driver that is responsible for initialization of the root device and root bus. The driver manager needs to know
what driver should handle the root (often CPU local) bus. The root bus driver is registered by the BSP (--drvmgr
option) or by the user before the driver manager is initialized. One can say it is the starting point of finding the
system's al devices.

6.2.3. Device driver

Driver for one or multiple hardware devices, simply called devices here. It uses the driver manager services pro-
vided. The driver holds information to identify supported hardware device, it tells the driver manager what kind
of busis supported and bus specific information so that the bus driver can pinpoint devices supported by driver.
The bus specific information may for example be a plug & play Vendor and Device ID used to identify certain
hardware.

/*! Information about a device driver */
struct drvngr_drv {

int obj _type; /*!< DRVMGR_OBJ_DRV */

struct drvngr_drv *next ; /*!1< Next Driver */

struct drvngr_dev *dev; /*!< Devices using this driver */
uint64_t drv_id; /*!'< Unique Driver ID */

char *nare; /*!1< Nanme of Driver */

int bus_type; /*!< Type of Bus this driver supports */
struct drvngr_drv_ops *ops; /*!< Driver operations */

struct drvngr_func *funcs; /*!< Extra Operations */

unsi gned i nt dev_cnt; /*!'< Nunmber of devices in dev */

unsi gned i nt dev_priv_size; /*!< If non-zero DRYMR will allocate
menory for dev->priv */
s
Every driver must be assigned a unique driver ID by the developer, the bus driver provides a macro to generate
the ID. The ID is used to identify driver resources to a specific driver, only the driver knows how the resources
areinterpreted. The driver provides operations executed per devicein drv.opsthat is called by the driver manager
at certain events such as device initialization and removal.

The driver manager manages alist of devices assigned to the driver order according to driver minor number. The
driver minor number is assigned as the lowest free number starting at 0. A device driver can lookup a device
pointer from knowing the minor number. The number of devices currently present is counted in drv.dev_cnt.

Thedriver manager can optionally allocate zeroed memory for the device private data structure and place a pointer
in dev.priv, thisis done by setting [drv.dev_priv_size]to a non-zero value.

Thedriver information above does not contain a bus specific device information needed to detect suitable devices.
Busdrivers provide extended driver structures containing this additional bus specific information, for examplethe
PCI bus has a pointer to an array of PCI device identifications:

struct pci_dev_id_match {

uint16_t vendor ;

uint16_t devi ce;

uint16_t subvendor;

uint16_t subdevi ce;

ui nt 32_t class; /* 24 lower bits */

ui nt 32_t class_mask; /* 24 lower bits */

}

struct pci_drv_info {

struct drvngr_drv general ; /* General bus info */
/* PCl specific bus information */
struct pci_dev_id_match *ids; /* Supported hardware */
I
6.2.4. Device

Represents a hardware device found by the bus driver, in this document called device. A deviceisfound, created
and registered by the bus driver, once registered the driver manager will insert it into the bus device tree, assign
a bus minor number (depending on the registration order) and triesto find driver that supports the hardware. If a

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 42

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

suitable driver is found it will unite the device with the driver. In the process of uniting the manager will assign
insert the device into the driver's device list, give a driver minor number to the device (lowest free number),
optionally allocate zeroed memory for driver private, queue the device for initialization.

The bus driver must have given the device a bus specific description in dev.businfo if before registering it. The
driver can use the information to get register addresses, interrupt number etc.

During thefirst level of initialization the device driver may register achild bus, in that case the bus will be queued
for initialization.

/*! Device infornmation */
struct drvngr_dev {

int obj _type; /*1 < DRVMGR_OBJ_DEV */

struct drvngr_dev *next ; /*1< Next device */

struct drvngr_dev *next _i n_bus;/*! < Next device on the sane bus */

struct drvngr_dev *next _in_drv;/*! < Next device using the same driver*/

struct drvngr_drv *drv; /*!< The driver owning this device */

struct drvngr_bus *parent; /*!< Bus that this device resides on */

short m nor_drv;/*! < Device nunber within driver */

short m nor_bus;/*! < Devi ce nunber on bus (for device
separation) */

char *nane; /*!< Nanme of Device Hardware */

voi d *priv; /*!< Driver private device structure */

voi d *busi nf o; /*1 < Host bus specific information */

struct drvngr_bus *bus; /*!< Bus, set only if this is a bridge */

/* Device Status */

unsi gned int state; /*1< State of device, see DEV_STATE_ * */
int | evel ; /*!I< Init Level */

int error; /*!I< Error state returned by driver */
s

6.2.5. Driver resources

A driver resource is aread-only configuration option used by a driver for a certain device instance. The resource
may be an integer with value 65 called "numberTxDescriptors’. The driver resources are grouped together in
arrays targeting one device instance, the arrays are grouped together into a bus resource. It is up to the bus driver
to install the bus resource, some bus drivers may use a predefined bus resource or it may provide an interface for
the user to provide its own configuration. Below isthe

/* Key Data Types */
#def i ne KEY_TYPE_NONE 0

#def i ne KEY_TYPE_I NT 1
#def i ne KEY_TYPE_STRI NG 2
#def i ne KEY_TYPE_POl NTER 3

/*! Union of different values */
uni on drvngr_key_val ue {

unsi gned int i /*1< Key data type UNSI GNED | NTEGER */
char *str; /*!< Key data type STRING */
voi d *ptr; /*!< Key data type ADDRESS/ PO NTER */

b

/* One key. One Value. Holding infornmation relevant to the driver. */
struct drvngr_key {

char *key_nane; /* Name of key */

int key_type; /* How to interpret key_value */

uni on drvngr_key_val ue key_val ue;/* The value or pointer to value */

I
A driver resource targets a device driver instance, not a device instance even this is in practise the same thing
since there is only one driver for adevice. Instead of using a bus specific device ID to identify a device instance
adriver |D together with ainstance minor number is used to target the driver instance. Below is atypical driver
resource array with two configuration options:

/* GRSPW and GRSPWL resources */
struct drvngr_key grlib_grspw Onl_res[] =

{
{"txDesc", KEY_TYPE_INT, {(unsigned int)16}},
{"rxDesc", KEY_TYPE_INT, {(unsigned int)32}},
KEY_EMPTY

}

Itisup to thedriver to interpret the options, one should refer to the driver documentation for configuration options
available and their format.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 43

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

A bus resource in an array of device resources (driver resource arrays), the bus resource is assigned to the busin
a bus driver dependent way. In the below example the LEON3 BSP root bus is configured by simply defining a
bus resource named [grlib_drv_resource], since the LEON3 root bus driver's defaults have been declared weak
it can be overridden by the user project. In the example the GRSPWO0 and GRSPW1 cores are configured with
the same driver resources.
/* 1f RTEMS_DRVMGR STARTUP is defined we override the "weak defaul ts"”
* that is defined by the LEON3 BSP.
*)
struct drvngr_bus_res grlib_drv_resources = {
.next = NULL,
.resource = {
{ DRI VER_AVBAPP_GAI SLER GRSPW I D, 0, &grlib_grspw Onl res[0]},
{ DRI VER_AVBAPP_GAI SLER GRSPW ID, 1, &grlib_grspw Onl res[0]},
RES EMPTY /* Mark end of device resource array */

}
}

6.2.6. Driver interface

Devicedrivers normally request aresource by name and type. Thefunctiondr vimgr _dev_key_get () returns
apointer to aresource value for a specific device, see below prototype.
extern union drvngr_key_val ue *drvngr_dev_key_get (

struct drvngr_dev *dev,

char *key_nane,
int key_type);

6.3. Configuration

The driver manager is configured by selecting drivers that will be registered to the manage, by registering a root
busdriver prior to driver manager initialization and drivers may optionally be configured by using driver resources,
see previous section.

Theroot busdevicedriver isregistered by callingdr virgr _r oot _drv_regi st er (), thismust bedonebefore
the driver manager isinitialized. When the BSP initializes the manager during the RTEM S boot process, nothing
need to be done by user. For examplecallinganbapp_grlib_root regi ster() registersthe GRLIB AM-
BA Plug & Play Bus asthe root bus driver and a so assigns the bus resources for the root bus.

Table 6.4. Root device driver entry points for LEON systems

System Root driver
LEON3 anbapp_bus_grlib. c, register by calling
anbapp_grlib_root _register().
LEON2 leon2_amba bus.c, register by calling| eon2_r oot _regi ster().
GRLIB-LEON2 leon2_amba _bus.c, register by calling leon2_root_register(). Add
LEON2 AMBA_AMBAPP_ID to the bus so that the GRLIB AMBA plug & play is
found.

The drivers are selected by defining the array drvmgr_drivers, it contains one function pointer per driver that is
responsible to register one or more drivers. The array is processed by _ DRV_Manager _i ni ti al i zati on()

during startup or when calling dr virgr _i ni t () from the Init task. .The drvmgr_drivers can be set up by defin-
ing CONFIGURE_INIT, selecting the appropriatedriversandincludingdr vingr / dr vimgr _conf def s. h. This
approach is similar to configuring a standard RTEMS project using r t ens/ conf def s. h. Below is an exam-
ple how to select drivers. It is also possible to define up to ten drivers in the project by using the predefined
CONFIGURE_DRIVER_CUSTOM macros.

#i nclude <rtemns. h>
#i ncl ude <bsp. h>

#define CONFI GURE_INIT

/* Standard RTEMS set up */

#def i ne CONFI GURE_APPL| CATI ON_NEEDS_CONSOLE_DRI VER
#def i ne CONFI GURE_APPLI CATI ON_NEEDS_CLOCK_DRI VER
#def i ne CONFI GURE_RTEMS_| NI T_TASKS_TABLE

#def i ne CONFI GURE_MAXI MUM DRI VERS 32

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 44

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

#i ncl ude <rtens/confdefs.h>

/* Driver manager set up */
#i f defined(RTEMS_DRVMGR_STARTUP)/* if --drvmgr was given to configure */

/* Add Tiner and UART Driver for this exanple */

#i f def CONFI GURE_APPLI CATI ON_NEEDS_CLOCK_DRI VER

#def i ne CONFI GURE_DRI VER_AVBAPP_GAI SLER GPTI MER
#endi f
#i f def CONFI GURE_APPLI CATI ON_NEEDS_CONSOLE_DRI VER
#def i ne CONFI GURE_DRI VER_AVBAPP_GAI SLER APBUART

#endi f
#endi f
#defi ne CONFI GURE_DRI VER_AMBAPP_GAl SLER_GRETH
#defi ne CONFI GURE_DRI VER_AMBAPP_GAI SLER_GRSPW
#def i ne CONFI GURE_DRI VER_AVBAPP_GAI SLER GRCAN
#def i ne CONFI GURE_DRI VER_AVBAPP_GAI SLER OCCAN
#def i ne CONFI GURE_DRI VER_AMBAPP_GAI SLER B1553BRM
#def i ne CONFI GURE_DRI VER_AVBAPP_GAI SLER APBUART
#defi ne CONFI GURE_DRI VER_AMBAPP_MCTRL
#defi ne CONFI GURE_DRI VER_AMBAPP_GAI SLER PCI F
#def i ne CONFI GURE_DRI VER_AMBAPP_GAI SLER_GRPCI
#defi ne CONFI GURE_DRI VER_PCI _GR_RASTA | O
#defi ne CONFI GURE_DRI VER_PCI _GR_RASTA_TMIC
#defi ne CONFI GURE_DRI VER PCI _GR 701

#i ncl ude <drvmgr/drvngr_confdefs. h>

6.3.1. Available LEON drivers

Below is a list of available drivers in the LEON3 BSP and the define that must be set before including
[drvmgr_confdefs.h] to include the driver in the project. All drivers are preceded with CONFIGURE_DRIVER .

Table 6.5. LEON device drivers available

Hardware Defineto includedriver
GPTIMER AMBAPP_GAISLER_GPTIMER
APBUART AMBAPP_GAISLER_APBUART
GRETH AMBAPP_GAISLER_GRETH
GRSPW AMBAPP_GAISLER_GRSPW
GRCAN AMBAPP_GAISLER_GRCAN
OCCAN AMBAPP_GAISLER_OCCAN
GR1553B AMBAPP_GAISLER_GR1553B
GR1553B RT AMBAPP_GAISLER_GR1553BRT
GR1553B BM AMBAPP_GAISLER_GR1553BBM
GR1553B BC AMBAPP_GAISLER_GR1553BBC
B1553BRM AMBAPP_GAISLER_B1553BRM
B1553RT AMBAPP_GAISLER_B1553RT
GRTM AMBAPP_GAISLER_GRTM
GRTC AMBAPP_GAISLER_GRTC
PCIF PCI Host AMBAPP_GAISLER_PCIF
GRPCI PCI Host AMBAPP_GAISLER_GRPCI
GRPCI2 PCI Host AMBAPP_GAISLER_GRPCI2
FTMCTRL and MCTRL AMBAPP_MCTRL
SPICTRL AMBAPP_GAISLER_SPICTRL
I2CMST AMBAPP_GAISLER_I2CMST
GRGPIO AMBAPP_GAISLER_GRGPIO
GRPWM AMBAPP_GAISLER_GRPWM
GRADCDAC AMBAPP_GAISLER_GRADCDAC
SPWCUC AMBAPP_GAISLER_SPWCUC
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 45

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Hardware Definetoinclude driver

GRCTM AMBAPP_GAISLER_GRCTM
SPW_ROUTER AMBAPP_GAISLER_SPW_ROUTER
AHBSTAT AMBAPP_GAISLER_AHBSTAT
GRAES AMBAPP_GAISLER_GRAES
GRPWRX AMBAPP_GAISLER_GRPWRX
L2CACHE AMBAPP_GAISLER_L2CACHE
GRIOMMU AMBAPP_GAISLER_GRIOMMU
AT697 PCI Host LEON2_AT697PCI

GRLIB-LEON2 AMBA PnP

LEON2_AMBAPP

GR-RASTA-ADCDAC

PCI_GR_RASTA_ADCDAC

GR-RASTA-10 PCI periphera

PCI_GR_RASTA_IO

GR-RASTA-TMTC PCI peripheral

PCI_GR _RASTA_TMTC

GR-701 PCI periphera

PCI_GR_701

GR-TMTC-1553 PCI peripheral

PCI_GR_TMTC_1553

GR-RASTA-SPW-ROUTER PCI periphera

PCI_GR RASTA_SPW_ROUTER

GR-LEON4-N2X PCI peripheral

PCI_GR_LEON4_N2X

GR-CPCI-GR740 PCI peripheral

PCI_GR_CPCl_GR740

6.4. Initialization

As described in the overview the driver manager the initialization of the driver manager is determined how the
RTEM Skernel has been built. When —drvmgr has been used when configuring the kernel the manager isinitialized
by the BSP and RTEMS boot code, otherwise the driver manager is optional and may be initialized by the user
calling drvmgr_init() after the root bus driver has been registered.

6.4.1. LEON3/4 BSP

In the RCC distribution the LEON3 BSP has been precompiled twice, once where the BSP initialized the driver
manager (-gleon3, -gleon3mp) and once for custom initialization or no driver manager (-gleon3std). Please see
RCC User'sManual for additional information about thegec flags. Two different driver versionsfor the GPTIMER,
APBUART and GRETH hardware is provided within the LEON3 BSP to support both initialization approaches.

6.5. Interrupt

The Driver manager provides a shared interrupt service. The device driver calls the driver manager which in turn
rely on the bus driver to satisfy the request, that way the manager can maintain one interrupt interface regardless
of bus.

For shared interrupt sources all registered interrupt handlers are called upon interrupt. The driver must itself detect
if the IRQ was actually generated by its device and then decide to handleit or not.

Theindex of theinterrupt functions determines which interrupt number the device requests, for example 0 means
the first interrupt of the device, 1 the second interrupt of the device and so on, it is possible for the bus driver to
determine the absolute interrupt number usually by looking at the bus specific device information. If a negative
interrupt number is given it is considered to be an absolute interrupt number and should not be trandated, for
example an index of -3 means IRQ3 on the AMBA bus or INTC# of the PCI bus.

Table 6.6. Driver interrupt interface

Operation Description

Register an interrupt service routine (ISR) and unmas (enable) appropriate in-
terrupt source

drvmgr_interrupt_register

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 46

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Operation Description

drvmgr_interrupt_unregister | Unregister ISR and mask interrupt source

drvmgr_interrupt_clear Manual interrupt source acknowledge at the interrupt controller
drvmgr_interrupt_mask Manual mask (disabl€) interrupt source at interrupt controller
drvmgr_interrupt_unmask Manual unmask (enable) interrupt source at interrupt controller

Theinterrupt service route (1SR) must be of the format determined by [drvmgr_isr]. The argument is user defined
per ISR and IRQ index.

/* Interrupt Service Routine (ISR */
typedef void (*drvngr_isr)(void *arg);

extern int drvngr_interrupt_register(
struct drvngr_dev *dev,
int index,
const char *info,
drvngr_isr isr,
void *arg);

extern int drvngr_interrupt_unregister(
struct drvngr_dev *dev,
int index,
drvngr_isr isr,
void *arg);

extern int drvngr_interrupt_clear(
struct drvngr_dev *dev,
int index);

extern int drvngr_interrupt_unmask(
struct drvngr_dev *dev,
int index);

extern int drvngr_interrupt_nmask(
struct drvngr_dev *dev,
int index);

6.6. Address translation

As described in the overview address regions can be translated between buses. It requires the bridge bus driver
to set up address maps in at least one direction. If a bus does not support DMA for example, it might be that it
is only the CPU that can access the bus but the bus can not access the CPU bus, hence the address trandation
will be unidirectional.

The tranglation software can transate addresses in up to four different waysusingdr vngr _transl ate(), as
listed in the table below. The function will return 0 if no map matches the translation requested, the length until
the end of the matching map or Oxffffffff if no translation was needed. If a bridge has no map, the addresses are
translated 1:1 (not changed) and Oxffffffff will be returned.

Thedrvngr _transl ate_check() function can be called instead, it has the same functionality but verifies
that the address range specified by the user is accessible. If not, the function will call pri nt k() with an error

message.

extern int drvngr_transl ate(
struct drvngr_dev *dev,
int options,
voi d *src_address,
void **dst_address);

Table 6.7. Trandate optionsto dr virgr _t r ansl at e()

Options argument Trandatedirection Example usage

CPUMEM_TO DMA Trandate aCPU RAM addresstoan | The CPU has abuffer in RAM, it
address that DMA unit can access trand ates the address to the PCI bus so
that PCI devices can accessit through
the host's PCI target BAR

CPUMEM_FROM_DMA Trandate a CPU RAM addressthat a | The CPU reads out the the DMA ad-
DMA unit can access into a an address | dress from a descriptor that the hard-
that the CPU can access ware use to access to CPU RAM, it

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 47

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Options argument Trandatedirection Example usage

can then tranglate it into the memory
address the CPU can access since the
memory is located at the CPU bus

DMAMEM_TO CPU Translate DMA unit local memory to | PCI target BAR2 value (PCI bus ad-
an address that the CPU can access dress) istrandated into an address
which the CPU access (CPU bus ad-
dress) in order to get to BAR2

DMAMEM_FROM_CPU Translate DMA unit local memory ad-
dress that the CPU can access, into an
address that the DMA unit can access

6.7. Function Interface

The driver manager provides an interface where device drivers and bus drivers can provide functions that can be
looked up by knowing an associated function ID. The functions can be used to provide additional bus support over
the driver manager structure, or adevice driver can provide afunction that the bus driver use.

For example some buses may require specia access methodsin order to access the hardware registers. Depending
on the bus driver (bus architecture for example) is must be performed differently, the driver can request afunction
pointer to aWRITE_U32 function in to implement register accesses.

Thedr vngr/ dr virgr . h header file defines anumber of read/write function ID numbersthat drivers can use to
get access routines on buses which define such operations.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 48

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 7. RMAP Stack

7.1. Introduction

This section describesthe RMAP stack functioninterface availablefor RTEMS. The RMAP stack provideasimple
interface that can generate RMAP commands and transmit them over SpaceWire by relying on the RMAP stack
driver layer. Read, read-modify-write and write with acknowledge or verification will block the caller until the
transaction is completed. The features of the RMAP stack is summarized below:

 header and data CRC generation, if not generated by hardware

* logical addressing

« path addressing

» generate al read and write types defined by the RMAP specification.

* thread safeif requested

* driver layer to support multiple SpaceWire hardware

* driver for GRSPW driver

* zero-copy API

The two interfaces the RMAP stack implements can be found in the rmap header file (rmap.h), it contains def-
initions of all necessary data structures, bit masks, procedures and functions used when accessing the function
interface.

This document describes the user interface, but not the driver interface.

7.1.1. Examples

The SpaceWire busdriver can be seen asan example, it canbefound underrt ens- 4. 10/ ¢/ src/li b/ 1i bb-
sp/ spar c/ shar ed/ drvngr/ spw_bus. c.

7.2. Driver Interface

The driver interface is not described in this document.

7.3. Logical and Path addressing

The RMAP stack is by default configured to do logical addressing, however a custom callback function may be
used to implement path addressing. The stack will call the function twice (one for distination path and one for
return path) when the RMAP header is generated, thefunction isresponsibleto write the address path bytes directly
into the header at the specified location.

7.4. Zero-copy implementation

The RMAP stack is zero-copy meaning that the data of the transfer isnot copied, thisimproves performance. Note
that when the RMAP driver does not support CRC generation the RMAP stack will write the data CRC after the
input data, this means that the caller is responsible to reserve one byte of space when writing data. The RMAP
stack will not write the data CRC after the data in cases where the RMAP driver that support CRC generation.

Note that even though the RMAP stack is zero-copy the RMAP driver may not be zero-copy, lowering the per-
formance.

To get true zero-copy from user to SpaceWire transfer one can instead use the asynchonous RMAP layer part of
the RMAP stack and interface that to the GRSPW Packet Driver.

7.5. RMAP GRSPW driver

A driver for the RTEMS GRSPW driver is provided with the RMAP stack, the driver automatically check if the
GRSPW hardware has support for CRC generation.

The GRSPW driver isnamed r map_drv_gr spw. c.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 49

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

7.6. Thread-safe

The RMAP stack can be configured to be thread safe, when entering the stack an internal semaphore will be
obtained guaranteeing that multiple threads of execution can enter simultaneoudly. It is not needed when only one
task isusing the RMAP stack or if the RMAP driver itself is thread-safe.

A task may be blocked waiting for another task to complete the RMAP operation, when the RMAP stack is
configured thread-safe.

7.7. User interface

The location of the RMAP stack isindicated in Table 7.1. All paths are given relative the RTEM S kernel source
root.

Table 7.1. RMAP stack source location

Sour ce description L ocation

Interface implementation |c/src/lib/libbsp/sparc/shared/ spw rnap.c

Interface declaration c/src/lib/libbsp/sparc/shared/include/rmap.h

7.7.1. Data structures

The [rmap_config] data structure is used to configure the RMAP stack, asan argumenttormap_i nit (). The
data structure isdefined inr map. h.

typedef int (*rmap_route_t)(
voi d *cooki e,
int dir,
int srcadr,
int dstadr,
voi d *buf,
int *len

)

struct rmap_config {

rmap_route_t rout e_func;
int tid_nsb;

int spw_adr;
struct rmap_drv *drv;

int max_rx_| en;
int max_t x_| en;
int t hread_saf e;

}
Table 7.2. rmap_config members

Member Description

route_func Function is a callback, called when the RMAP stack is about to generate the addressing
to the target node address. It can be used to implement path addressing. Set the function
pointer to NULL to make the stack use logical addressing.

tid_msb Control the eight most significant bitsin the TID field in the RMAP header. Set to -1
for normal operation, the RMAP stack will use all bitsin TID for sequence counting.
This option can be used when multiple RMAP stacks or other parts of the software sends
RMAP commands but not using the RMAP stack. This requires, of course, athread-safe

RMAP driver.

spw_adr The SpW Address of the SpW interface used.

drv RMAP driver used for transmission.

max_rx_len Maximum data length of received packets, this must match the RMAP driver's configura-
tion.

max_tx_len Maximum data length of transmitted packets, this must match the RMAP driver's configu-
ration.

thread safe Set this to non-zero to enable the RMAP stack to create a semaphore used to protect the

RMAP stack and the RMAP driver from multiple tasks entering the transfer function(s) of
the stack at the same time.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 50

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

A RMAP command is described the rmap_command structure, the type decide which parts of the union datais
used when generating the RMAP header. In order to simplify for the caller three data structures avoiding the
union are provided, they are named rmap_command_write, rmap_command_read, rmap_command_rmw.
They can be used instead of rmap_command as argument to the function interface.

struct rmap_conmmand {

char type;
unsi gned char dst adr;
unsi gned char dst key;
unsi gned char st at us;
unsi gned short tid;
unsi gned | ong | ong address;
uni on {
struct {
unsi gned int |ength;
unsi gned char *data;
} wite;
struct {
unsigned int |ength;
unsi gned int datal ength;
unsi gned int *data;
} read;
struct {
unsi gned int |ength;
unsi gned int data;
unsi gned int mask;
unsi gned int ol dl ength;
unsi gned int ol ddat a;
} read_mwite;
} data;

}

Table 7.3. rmap_command members

Member Description

type Type of RMAP transfer, Read/Write/Read-Modify-Write/Acked Write etc., see
RMAP_CMD_*.

dstadr Destination address of SpaceWire Node that the RMAP command should be execute upon.

dstkey SpaceWire destination key of target node

status Output from stack: Error/Status response. Zero if no response is successful

tid Output from stack: TID assigned to packet header

address 40-bit address that the operation targets

data A union of different input and output arguements depending on the type of command.

7.7.2. Function interface description
The table below sumarize al available functions in the RMAP stack.

Table 7.4. RMAP stack function prototypes

Prototype Name

void *rmap_init(struct rmap_config * config)

int rmap_ioctl(void * cookie, int command, void *arg)

int rmap_send(void * cookie, struct rmap_command * cmd)

int rmap_write(void * cookie, void *dst, void *buf , int length, int dstadr, int dstkey)

int rmap_read(void * cookie, void *src, void *buf , int length, int dstadr, int dstkey)

unsigned char rmap_crc_calc(unsigned char *data , unsigned int len)

7.7.2.1. rmap_init

The RMAP stack must be initialized before other function may be called. Calling rmap_init initializesthe RMAP
stack. During the initialization the RMAP stack is configured as described by the rmap_config data structure,
see the data structures section.

RCC-UM
Dec 2023, Version 1.3.2

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
51

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

If successful, rmap_init will return anon-zero value later used as input argument (cookie) in other RMAP stack
functions. The cookieis needed in order to support multiple RMAP stacksin parallel, the cookie identify acertain
stack.

If the RMAP stack fail to initialize zero is returned.
Thermap_config structure is described in Section 7.7.1.
7.7.2.2. rmap_ioctl

Set run-time options such as blocking, time out, get configuration and operating the stack such as starting and
stopping the communication link.

This function is not thread-safe.
If successful zero isreturned.
7.7.2.3. rmap_send

Execute a command by sending the command, then wait for the response if aresponse is expected. This function
will block until theresponseisreceived or if thetimeout isexpired. Thetimeout functionality may not be supported
by the RMAP driver.

Note that when the RMAP stack is in non-blocking mode the stack will not wait for the response, however if the
response is available the response is handled. If the response wasn't received -2 is returned.

Note that if the RMAP driver does not support CRC generation a byte will be written after the data provided by
the user, please see zero-copy section.

If an error occurs -1 is returned. On success O is returned. Note that even though the RMAP request failed the
RMAP stack may return zero, the RMAP status indicates the error response of the target, see the rmap_command
structure in the data structures section.

7.7.2.4.rmap_crc_calc

This function is a help function used by the RMAP stack to calculate the CRC of the header and data when CRC
generation is not provided by the RMAP driver.

7.7.2.5. rmap_write and rmap_read

The read and write functions are example functions that implement the most common read and write operations.
The function will call rmap_send to execute the read and write request.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 52

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 8. SpaceWire Network model

8.1. Introduction

This document describes the SpaceWire bus driver used to write device drivers for a SpaceWire Node accessed
over SpaceWire with RMAP.

8.2. Overview

In order to provide a standardized way of writing driversfor Nodes on a SpaceWire network and to improve code
reuse a Bus driver for a SpaceWire network as been written. The bus driver is written using the concepts of the
Driver Manager.

The SpaceWire Bus driver provides services to the nodes in the network, some of the services are listed below:
« Read/Write access to target (using the RMAP protocol)
« Interrupt handling
* Per node resources

The hardware topology is organized by the driver manager's bus and device trees, the SpaceWire bus driver is
attached to the SpaceWire core providing the actual SpaceWire interface in order to maintain the hardware topol-
ogy. It isimportant that the on-chip devices and drivers are loaded and initialized before the SpaceWire network
as the SpaceWire network depends on the on-chip devices. The bus driver initialization is controlled and started
by the user after the driver manager has initialized the on-chip bus.

The SpaceWire driver requires the SpaceWire RMAP stack to perform read and write access to the SpaceWire
Target Nodes.

The driver support Logical SpaceWire Addressing only at this point.
8.3. Requirements

The SpaceWire network must be Logical addressed and the SpaceWire bus driver requires the RMAP stack for
target node access.

8.4. Node Description

The SpaceWire busdriver isadriver for the devices on the SpaceWire bus, in this particular case adeviceiscalled
a SpaceWire Node, a node is described by the data structure spw_node. Each node has a Node 1D, a name, and a
list of optional keys. A SpaceWire node has the following configurable elements:

» Node ID (connected to driver)

* Node Name

» SpaceWire Destination key

¢ SpaceWire Node Address

* IRQ setup (up to four IRQs)

8.4.1. The Node ID

The Node ID identifies a type of target, not a certain Node. The Node ID in combination with the node index on
the bus creates a Unique identifier. The Node ID is used to identify a driver that can handle the node. The node
index is taken from the index in the Node table.

The NodelDs are defined inspw_bus_i ds. h.
8.5. Read and write operation

A SpaceWire target Node's memory and registers are accessed using RMAP commands. The RMAP protocol is
implemented by the RMAP stack in a separate module.

The driver manager provide read and write operations to registers and memory for drivers, the SpaceWire Bus
driver implements them for the SpaceWire bus. A node driver calls the standard read and write operations which

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 53

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

are trandated into a SpaceWire bus read/write which is implemented using the RMAP stack. All operations are
blocking until datais available, the return value indicates it the transfer was successful or not.

8.6. Interrupt handling

The RMAP protocol does not support interrupt handling, this is instead implemented by an separate interrupt
line, theinterrupt handling is an optional feature per SpaceWire node. Each SpaceWire node may have up to four
interrupts connected to interrupt capable GPIO pins.

The user must setup a Virtua Interrupt Table, the table entries provide a way for the bus driver to trandate a
Virtual IRQ number to a GPIO pin. The GPIO pin is used to connect to the IRQ and receive the interrupt. In the
node description a node may for example define it's IRQ1 to be connected to the SpaceWire bus Virtua IRQ 2,
which in turn is connected to GPIO5.

Setting up and controlling interrupts for node drivers are similar to a on-chip device driver, however the interrupt
service routine must take more thingsin to account. The ISR is expected to read and write to the node's registers
over the SpaceWire bus, that would require that SpaceWire bus is not busy and that the SpaceWire request is
executed very fast, non of these assumptions can be made. The ISR can thus not execute in interrupt context,
instead a high priority ISR task is managed by the SpaceWire bus driver. This way the ISR can access the node
over SpaceWire, however extra care must be taken in the node driver to avoid conflicts and races when the ISR
is executing as atask, instead of locking interrupt as in tradition drivers one may use a semaphore to protect the
critical regions.

8.7. Using the spacewire bus driver

The SpaceWire bus is registered to the driver manager for each SpaceWire network by calling the
spw_bus_regi st er () functionwith aconfiguration description. The configuration describe the nodes on the
network, IRQ setup, driver resources

The SpaceWire bus is attached to a on-chip GRSPW driver, the core that provides access to the SpaceWire bus
viathe RMAP stack.

Thereis an example of how to configure and use the SpaceWire bus driver in config_spw_bus.c.

SpaceWire Node drivers must set the bustypeto DRVMGR_BUS TYPE _SPW_RMAP and define an array with
al devices nodes that are supported by the driver. The AMBA PnP RMAP may be considered as an example
node driver.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 54

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 9. AMBA over SpaceWire

9.1. Introduction

This document describesthe AMBA Plug& Play busdriver used to write device driversfor AMBA cores accessed
over SpaceWire. The driver rely on the SpaceWire network bus driver.

9.2. Overview

The AMBA Plugé& Play bus driver for the SpaceWire network isageneric driver for all GRLIB systems by using
the Plug& Play functionality provided by GRLIB systems. The address of the Plug& Play area start address is
configurable. The driver isadriver for a SpaceWire Node on a SpaceWire Network.

The system is accessed using RMAP commands and interrupt handling is performed when the IRQMP core is
found.

The services provided to device drivers on the AMBA bus accessed over SpaceWire are listed below:
¢ AMBA Plug& Play scanning over SpaceWire
* Interrupt management (driver for IRQMP)
* Read and Write registers and memory over SpaceWire
« Memory alocating (anbapp_rmap_partiti on_nemalign())
* Driver resources

9.3. Requirements

The SpaceWire bus driver is required.
9.4. Interrupt handling

Seetheinterrupt serviceroutine of the AMBA Plug& Play busis executed on the SpaceWire bus driver's | SR task.
See the SpaceWire Bus driver's documentation about the constraints of the interrupt handling.

9.5. Memory allocation on target

Two functions are provided by the AMBA RMAP driver to simplify memory allocation of target memory,
anbapp_rmap_partition_create() andanbapp_rmap_partiti on_nemalign().

A partition symbolize amemory area with certain properties. For example, partition 0 might be SRAM and parti-
tion 1 might be on-chip RAM. A memory controller driver typically registers apartition after it hasinitialized the
memory controller and perhaps washed the memory, other drivers may then request memory from a certain par-
tition. The partition number that a driver request memory from may be configured from driver resources making
it possible for the user to easily control which parts of the memory is used. For example a descriptor table may
be required to be located in on-chip RAM.

Drivers request memory with memory alignment regquirements by caling
anmbapp_rmap_partition_nemal i gn() . Thedevicestructureispassed alongwhen creating partitionsand
when allocating memory, making it possible for the AMBA RMAP bus driver to allocate memory from the same
bus.

9.6. Differences between on-chip AMBA drivers

There some differenceswhen writing driversfor aremotetarget accessed over SpaceWireusingthe AMBA RMAP
driver, this section identifies the most common differences.
« Read and Write access (memory and registers) must be through functions rather than direct, functions are
provided
« Error handling of failed read/write accesses, this may also be handled on a global level (by the SpaceWire
bus driver)
« Memory allocation of target memory
* ISR may block (executed in task context)
¢ Lock out ISR method is different

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 55

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

« Drivers must set bus type to DRVMGR_BUS TYPE_AMBAPP_RMAP

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 56

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 10. LEON PCI host bridge drivers

10.1. Introduction

This section describes PCI Host support in RTEM S for SPARC/LEON processors. The supported PCI Host hard-
ware are listed below

* GRLIB GRPCI2

e GRLIB GRPCI

¢ GRLIB PCIF

« AT697 PCI

The PCI drivers require the Driver Manager and PCI Library available in the RCC distribution. The PCI Library
documentation is available in the doc/user directory in the RCC kernel source distribution. Note that the PCI
Library is not available in the official RTEMS distribution.

The GRPCI 2 core can support aDMA interface that has its own driver explained in Chapter 11.

10.1.1. Examples

Thereisasimple example available that initializes the PCI Bus, liststhe PCI configuration and demonstrates how
towriteaPCl devicedriver. The exampleispart of the RCC distribution, it can befound under / opt / r t enrs- 5/
src/ sanpl es/rtems-pci.c.Thert ens-shel | . c ssmplefound inthe same directory also demonstrates
PCI with RTEMS, note that thereis apci command which can be used to get information about the PCI set up.

10.2. Sources
The drivers can be found in the RTEMS SPARC BSP shared directory and in the LEON2 BSP. See table below.

Table 10.1. PCI driver source location

L ocation Description
.../1ibbsp/sparc/leon2/pci/at697 _pci.c |AT967 PCI
...Il1ibbsp/sparc/shared/pci/grpci2.c GRPCI2

...Il1ibbsp/sparc/shared/pci/grpci.c GRPCI
...1l1ibbsp/sparc/shared/pci/pcif.c GRLIB PCIF, ACTEL PCI AMBA wrapper
cpukit/Iibpci PCI Library
cpukit/Ilibpci/pci_bus.* PCI Busdriver for driver manager

doc/ user/libpci.t PCI Library documentation

10.3. Configuration

The PCI interrupt assignment can be configured to override the Plug & Play information. The PCI driver is con-
figured using any combination of the driver resourcesin the table below, see samples or driver manager documen-
tation how driver resources are assigned.

Table 10.2. PCI Host driver parameter description

Name Type Parameter Description

INTA# INT Select system IRQ for PCI interrupt pin INTA#
INTB# INT Select system IRQ for PCI interrupt pin INTB#
INTC# INT Select system IRQ for PCI interrupt pin INTC#
INTD# INT Select system IRQ for PCI interrupt pin INTD#
10.3.1. GRPCI

GRLIB designs using the GRPCI PCI Host bridge has in addition to the INTX# configuration options the below
options.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 57

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Name Type Parameter Description

tgtbarl INT PCI target Base Address Register (BAR) 0 (defaults is 0x40000000)
byteTwisting INT Enable (1) or Disable (0=default) PCI bytes twisting

10.3.2. GRPCI2

GRLIB designs using the GRPCI2 PCI Host bridge has in addition to the INTX# configuration options the bel ow
options.

The GRPCI 2 host has up to 6 BARS, each with a configurable size. The driver uses only thefirst BAR by defaullt,
it is set to start of RTEMS RAM memory and 256M Bytes. The tgtBarCfg option is an address to an array of 6
struct grpci 2_pci bar_cf g descriptions, each describing one BAR's size and PCI address and AMBA
address the PCI access is translated into. Thus, the programmer has full flexibility of where DMA capable PCI
targets should access. A size of O disablesthe BAR, seegr pci 2. h for the structure definition.

Name Type Parameter Description

tgtBarCfg INT PCI target Base Address Registers (BAR) configuration
byteTwisting INT Enable (1) or Disable (0=default) PCI bytes twisting
10.3.3. AT697

The AT697 PCI Host driver has additional configuration parameters to set up interrupts which is routed through
GPIO pins. The GPIO registers will be configured, and when a PCI target driver enables/disables IRQ the system
IRQ will be unmasked/masked.

Name Type Parameter Description

INTA# PIO INT Select PIO pin connected to PCI interrupt pin INTA#
INTB#_PIO INT Select PIO pin connected to PCI interrupt pin INTB#
INTC#_PIO INT Select PIO pin connected to PCI interrupt pin INTC#
INTD# _PIO INT Select PIO pin connected to PCI interrupt pin INTD#

Thetwo AT697 PCI target BARs are configurable from driver resources as below. A PCI target BAR determines
at which PCI addressthe AT697 AMBA spaceisaccessed on, the AT697 hastwo 16M bytes base addressregisters.
The default value is set to 0x40000000 (base of SRAM) and 0x60000000 (base of SDRAM).

Name Type Parameter Description
tgtbar2 INT PCI target Base Address Register (BAR) 0
tgtbar2 INT PCI target Base Address Register (BAR) 1

10.4. User interface

The PCI drivers are not accessed directly instead the user calls the PCI Library that translates into a call to the
active PCI host driver. When the drivers are initialized they register a backend to the PCI library, al PCI devices
areinitialized using the PCI configuration library, then a PCI Bus is registered which is implemented on top of
the PCI Library. That way the PCI Bus is independent of PCI host driver. The driver manager will find all PCI
devices and assign a suitable driver for them, and so on.

Please see the PCI Library documentation.
10.4.1. PCl address space

The PCI Library supports the following PCI address spaces:
+ 16-hit I/O Space (10)
 non-prefetchable memory space (MEMIO)
* prefetchable memory space (MEM)
« configuration space (CFG)

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 58

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

On LEON hardware the address spaces are accessed over dedicated AHB areas as ordinary AMBA memory ac-
cesses and it will be transformed into appropriate PCI access type depending on which AHB area (window) was
accessed and of which AMBA accesstype (burst, single access). Note that LEON hardware have only one memory
window which can do both MEM and MEMIO access types, so the PCI Library is configured with one MEMIO
Window. No special instructions are required to access I/O or configuration space. The location of the PCI Win-
dowsare determined by looking at AMBA plug and play information for the PCI Host core. The AT697 PCI MEM
Window is defined to 0xA0000000-0xF0000000.

The PCI Library isinformed about the PCl windows location and size. PCl BARs are allocated within the MEM,
MEMIO and 1/0 windows.

10.4.2. PCl interrupt

For every PCI target board found by the PCI Library the PCI driver is asked to provide a system IRQ for the
target's PCI Interrupt pin number. The interrupt is normally taken from AMBA Plug & Play interrupt number
assigned to the PCI Host hardware itself. However it can be overridden using driver resources as described in
section Section 10.4.

After the PCI Library has allocated memory for all targets BARs and assigned IRQ. The PCI bus driver can access
the IRQ number from configuration space and connect a PCl Target driver with its system interrupt source. The
PCI target drivers use the Driver Manager interrupt register routine.

When aPClI target driver enableinterrupt using the Driver Manager interrupt enableroutine, the system IRQ for the
PCI target is unmasked. AT697 PCI interrupt is not routed through the PCI core but through user selectable GPIO.
Enabling IRQ will only cause the system IRQ to be unmasked, the PCI driver will not change GPIO parameters,
thisis required by the user to set up. PCI islevel triggered.

PCI interrupts must be acknowledge after being handled to ensure that the interrupt handler is not executed twice.
The Driver Manager interrupt clear routine can be used to clear the pending bit in the LEON interrupt controlled
after the interrupt has been handled by the PCI target Driver.

When the LEON takes the PCI IRQ the LEON IRQ controller is acknowledged, however the PCI target is still
driving the IRQ line causing the LEON IRQ controller being set once again. Thisisbecause PCl islevel triggered
(level is till low), the other IRQs on the LEON is edge triggered. The solution isto acknowledge the LEON IRQ
controller after the PCI target has stop driving the PCI IRQ line, only then will the driver be able to stop the last
already handled IRQ to occur. This must be done in the PCI ISR of the target device driver after the hardware
causing the IRQ has been acknowledge.

10.4.3. PCIl endianess

The PCI busis defined little-endian whereas the SPARC and AMBA bus are defined big-endian, this imposes a
problem where the CPU has to byte-swap the datain PCI accesses. The GRPCI and GRPCI2 host controllers has
support for doing byte-swapping in hardware for us,, it is enabled/disabled using the byteTwisting configuration
option. The AT697 PCl and PCIF does not have this option, the software defaults to the PCI bus being non-
standard big-endian instead. Please see more information about this in hardware manuals and the PCI Library
documentation.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 59

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 11. GRPCI2 DMA driver

11.1. Introduction
This section describes GRPCI2 DMA driver for SPARC/LEON processors.

The GRPCI2 DMA driver is part of the GRPCI2 driver and is available if the GRPCI2 core support the DMA.
See Chapter 10 for more details on the GRPCI2 driver.

11.1.1. Hardware Support

The GRPCI2 DMA core hardware interface is documented in the GRIP Core User's manual. Below is a list of
the major hardware features it supports:

e Multiple DMA channels
« Interrupt handling
» Multi-processor SMP support

11.1.2. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the RTEM S source
treertems-5/c/src/lib/libbsp/sparc.

Table 11.1. GRPCI2 DMA driver source location

L ocation Description
shar ed/ i ncl ude/ grpci 2dnma. h GRPCI2 DMA user interface definition
...11ibbsp/sparc/shared/pci/grpci 2dma. ¢ |GRPCI2 DMA driver implementation

11.1.3. Examples

There is asimple example available that uses the DMA to transfer a memory block between a host and a periph-
era board. The example is part of the RCC distribution, it can be found under / opt/ rt ens- 5/ src/ sam
pl es/ pci/pci _deno/test.c.

11.2. Software design overview

The driver has been implemented using the Driver Manager Framework. The driver provides a kernel function
interface, an API, rather than implementing al O system device. The APl isdesigned for multi-threadding allowing
multiple threads to operate on the same or different DMA channel interfaces independently. Also the driver is
SMP-safe, allowing to use the same or different channels concurrently (see Section 11.2.6).

11.2.1. Driver usage

In order to usethedriver thefirst thing to do isto open aGRPCI2 DMA channel (see Section 11.3.2). Theallocation
of the channel can be done either by the user or managed internally on the driver. When a channel isopen, ani d
is assigned to the channel which islater used for any operation involving the channel.

Once a channel is open, the user needs data descriptor to begin preparing transfers for the DMA. There are helper
functions that allow to allocate data descriptors (see Section 11.3.6), otherwise the user must take care of the
allocation, repecting size and alignment requirements of the descriptors (see Section 11.2.5).

When data descriptors are available, the user can prepare transfers with helper functions that prepare the data
descriptors for the user-defined transfers (see Section 11.3.7).

After the datadescriptors are prepared, these can be pushed to achannel with agiven channel id (see Section 11.3.8)

As soon as athat channel is started (or if it was already started) the DMA will start processing any pushed data
descriptors on the channel (see Section 11.3.3).

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 60

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

There are two options to check whether a transfer is finished or not. The first one is checking the status of the
data descriptors that are part of the transfer (see Section 11.3.9). The second one is to enable interrupts for one
(or many) of the data descriptors so that a user-defined ISR is executed when the data descriptor is completed
(see Section 11.3.5). In this case, the user must provide the user-defined ISR before starting the DMA (see Sec-
tion 11.3.4).

The user can keep pushing as many transfers as needed for the channel. If at some point the user wants to cancel
an ongoing transfer, it has to stop the channel (see Section 11.3.3). Stopping a channel effectively cancels the
ongoing transfers on that channel. After that, any pushed transfers will not be handled until the channel is started
again (see Section 11.3.3).

When the user has finished using the channel, he should close it (see Section 11.3.2). Closing a channel will stop
it if there were any ongoing transfers.

11.2.2. Driver resource configuration

A GRPCI2 DMA device may implement up to eight DMA channels.
Thereis no limit to the number of data descriptors.

11.2.3. Initialization

During early initialization when the operating system boots the GRPCI2 driver, which registers the DMA driver
if there is harware support for it. The GRPCI2 DMA driver performs some basic software initialization. The
following steps are performed:

* GRPCI2 DMA registers are initialized to a state where most are zero.

« DMA isstopped.

* |IRQ statusis cleared.

* IRQ generation disabled.

o Status Register cleared.

* Driver semaphore is created.

« One semaphore per channel is created.

11.2.4. DMA control

The DMA is not controlled directly by the user, rather the user uses the software channel interface. The driver
providesacal to' grpci 2dma_acti ve()' that returnsthe state of the DMA core.

11.2.5. DMA buffer handling

The driver is designed with zero-copy in mind. There are helper functions distributed together with the driver
that do buffer allocation and handling. Otherwise the user is responsible for setting up channel and data buffers
onitsown,

The driver providesacall togr pci 2dma_open(poi nt er) , which uses a channel descriptor pointer asinput
when opening achanndl. If aNULL pointer is given, the driver will take care of the channel descriptor allocation
and deallocation, otherwise it isthe user responsibility to allocate and deallocate the channel descriptors used.

The driver uses data descriptor buffers as input when doing transfers. The driver provides calls to
grpci 2dnma_dat a_new() and gr pci 2drma_dat a_del et e() to alocate/deallocate descriptors. Other-
wiseisthe user responsibility to allocate and deall ocate the data descriptors used.

Both, channel and data descriptors have a certain allignment and size requirements. The following table describes
the macros required to do proper allcoation.

* GRPCI2DMA_BD_CHAN_SIZE - Size of achannel descriptor (in bytes).

* GRPCI2DMA_BD_DATA_SIZE - Size of adata descriptor (in bytes).

* GRPCI2DMA_BD_CHAN_ALIGN - Alignment of a channel descriptor (in bytes).

* GRPCI2DMA_BD_DATA_ALIGN - Alignment of a data descriptor (in bytes).

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 61

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Since the driver offers the possibility for the user to alocate the buffer descriptor, it is the user's responsibility
to handle potential cache effects.

11.2.6. SMP Support

The driver has been designed to be SMP safe. This means that multiple tasks can access the same or different
channels at the same time. Driver data structures and interrupt handling routines are protected by a semaphore.
Each channel and its data structure has its own semaphore. GRPCI2 DMA control registers are protected by spin-
locks when SMP is enabled.

11.3. DMA user interface

The GRPCI2 DMA driver internally uses channels to manage the DMA. The channel operations are found in the
header file and can be used by the user aswell. The user application typically opensits own channel, prepares data
buffers with the transfer that the user wants to perform and just pushes the data buffers to the channel.

11.3.1. Return values

GRPCI 2DVA_ERR_OK

GRPCI 2DVA_ERR_WRONGPTR
GRPCI 2DVA_ERR NOI NI T
GRPCl 2DVA_ERR_TOOVANY
GRPCI 2DVA_ERR_ERROR
GRPCl 2DVA_ERR_STOPDMVA
GRPCI 2DVA_ERR_NOTFOUND

All the driver function calls return the following values when an error occurred:
* GRPCI2DMA_ERR_OK - Successful execution.
¢ GRPCI2DMA_ERR_WRONGPTR - Wrong input parameter. One of the input values checks failed.
¢ GRPCI2DMA_ERR_NOINIT - Driver not initialized.
¢ GRPCI2DMA_ERR_TOOMANY - Maximum number of descriptor exceeded.
* GRPCI2DMA_ERR_STOPDMA - Cannot stop DMA.
* GRPCI2DMA_ERR_NOTFOUND - Descriptor not found.
* GRPCI2DMA_ERR ERROR - Internal error. Can have different causes.

Some functions also return a positive value upon successful execution, such as the channel id number or the
number of descriptors used.

11.3.2. Opening/closing a channel

int grpci2dma_open(void * chanptr)
int grpci2dma_cl ose(int chan_id)

The driver uses the open function to open a channel and return the assigned i d. If achanpt r is provided (i.e.
not NULL) the driver uses the memory pointed by the pointer as channel descriptor. Otherwise the driver allocates
memory for the descriptor. The pointer must be aligned, as described in Section 11.2.5.

Thedriver usesthe close function to close achannel withthegiveni d. If achanpt r was provided when opening
the channel, then the user should take care of deallocating the descriptor, otherwise is managed internally on the
driver.

The open function returns a possitive number which isthe assigned i d of the channel. Otherwise, open and close
functions return a negative value if something went wrong, as explained in Section 11.3.1.

Table 11.2. gr pci 2dnma_open function declaration

Proto |int grpci 2dma_open(void * chanptr)

About |Opensa GRPCI2DMA channel. The channél is later identified by the returned value. The returned
value is used as input argument to all functions operating on the channel. See Section 11.3.2.

Param |chanpt r [IN] Pointer

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 62

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The driver uses the memory pointed by the pointer as channel descriptor. If aNULL pointer is giv-
en, the driver allocates memory for the descriptor. The pointer must be aligned, as described in Sec-
tion 11.2.5.

Return |int. If positive or zero, represents the assigned i d of the channel. Otherwise, returns a negative value
if something went wrong, as explained in Section 11.3.1.

Table 11.3. gr pci 2dna_cl ose function declaration

Proto |int grpci2dma_close(int chan_id)
About |Closesa GRPCI2DMA channel. The channel isidentified by chan_i d. See Section 11.3.2.
Param [chan_i d [IN] Integer

Channel identification number. Number returned by the open function (see Section 11.3.2).

Return |int. GRPCI2DMA_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 11.3.1.

11.3.3. Starting/stopping a channel

int grpci2dma_start(int chan_id, int options)
int grpci2dma_stop(int chan_id)

The driver uses these function to start and stop the channel with the given chan_i d. Once achannel is started or
stopped, it will remain in that state until the channel is either stoped or started again (or closed).

When starting a channel, if there were transfers pushed on the channel the DMA will start transferring them as
soon as possible. Otherwise, the channel will remain active, which meansthat any futureincomming transfers will
be transferred as soon as possible by the DMA.

When stopping a channel, if there were unfinished transfers pushed on the channel the DMA will not finish them
and remove then from the actual channel. It is the user responsibility to take care of the non-finished transfers.
Any future pushed transfers on the stopped channel will not be transferred until the channel is started again.

Theopt i ons parameter defines the maximum number of data descriptors to be executed before moving to next
channel (up to 65536).

These functions return a negative value if something went wrong, as explained in Section 11.3.1. Otherwise, the
function returs GRPCI2DMA_ERR_OK when successful.

Table 11.4. gr pci 2dna_st ar t function declaration

Proto |int grpci2dma_start(voint chan_id, int options)
About |Startsa GRPCI2DMA channel. The channel isidentified by chan_i d. See Section 11.3.3.
Param |chan_i d [IN] Integer

Channel identification number. Number returned by the open function (see Section 11.3.2).

Param |opt i ons [IN] Integer

Defines the maximum number of data descriptors to be executed before moving to next channel (up to
65536). If 0 is given, the maximum is used as default (65536).

Return |int. GRPCI2DMA_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 11.3.1.

Table 11.5. gr pci 2dma_st op function declaration

Proto |int grpci2dma_stop(voint chan_id)
About | Stops a GRPCI2DMA channel. The channel isidentified by chan_i d. See Section 11.3.3.
Param |chan_i d [IN] Integer

Channel identification number. Number returned by the open function (see Section 11.3.2).

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 63

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Return |int. GRPCI2DMA_ERR_OK when successful. Otherwise, returns a negative value if something went

wrong, as explained in Section 11.3.1.

11.3.4. Registering an ISR for a channel

typedef void (*grpci2dnma_isr_t)(void *userarg, int chan_id, unsigned int dmastatus)
int grpci2dma_isr_register(int chan_id, grpci2dma_isr_t userisr, void *userarg)

The driver uses this functions to register an user 1SR for a channel with the given chan_i d. The user provide
the ISR and the argument to passwhen called intheuser i sr and user ar g parameters. The ISR will be called
when a data descriptor with enabled interrupts from that channel is processed. The ISR has three parameters,
the user provided argument, the channel id that generated the ISR and the error status of the DMA core, which
corresponds with the bits 7 to 11 on the DMA control register as described on the GRIP manual.

This functions returns a negative value if something went wrong, as explained in Section 11.3.1. Otherwise, the
function returs GRPCI2DMA_ERR_OK when successful.

Table 11.6. gr pci 2dna_i sr_r egi st er function declaration

Proto |int grpci2dma_isr_register(int chan_id, grpci2dme_isr_t userisr,
void *userarg)

About |Registersan ISR for a GRPCI2DMA channel. The channel isidentified by chan_i d. See Sec-
tion 11.3.4.

Param |chan_i d [IN] Integer
Channel identification number. Number returned by the open function (see Section 11.3.2).
Param |useri sr [IN] Pointer

The ISR function pointer.

Param |user ar g [IN] Pointer
The ISR argument pointer.

Return |int. GRPCI2DMA_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 11.3.1.

11.3.5. Enabling interrupts for data descriptors

int grpci2dma_i nterrupt_enabl e(void *databd, int bdindex, int bdmax, int options)

Thedriver usesthisfunction to enable interrupts on one or all of the range of data descriptorsin abuffer. The data
descriptor buffer is pointed by dat abd, and bdi ndex and bdnmax indicate where the range starts and where
it finishes (bdi ndex <=index < bdnmax. The opt i ons parameter can be GRPCI2DMA_OPTIONS ONE or
GRPCI2DMA_OPTIONS ALL that decideif to enable interrupts on only the descriptor pointed by bdi ndex or
in all the descriptors in the range starting from the one pointed by bdi ndex upto bdnmax - 1.

This functions returns a negative value if something went wrong, as explained in Section 11.3.1. Otherwise, the
function returs GRPCI2DMA_ERR_OK when successful.

Table11.7. gr pci 2dma_i nt er r upt _enabl e function declaration

Proto |int grpci2dma_interrupt_enabl e(void *databd, int bdindex, int bdnmax,
i nt options)

About |Enableinterrupt for one or arange of GRPCI2DMA data descriptors. See Section 11.3.5.
Param |dat abd [IN] Pointer

Pointer to the data descriptor buffer.

Param |bdi ndex [IN] Integer

Indicates the index of the data descriptor in the data buffer in which the range starts. This means that
i ndex >=bdi ndex.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 64

https://www.frontgrade.com/gaisler

FRONTGRADE
Param |bdmax [IN] Integer

Indicates the index of data descriptor in the data buffer which is no longer part of the range. This
meansthat i ndex < bdmax.

Param |opti ons [IN] Integer

Value Description
GRPCI2DMA_OPTIONS ALL Enable interrupts on all data descriptorsin the range.
GRPCI2DMA_OPTIONS ONE Enable interrupts on the first data descriptor in the range.

Return |int. GRPCI2DMA_ERR_OK when successful. Otherwise, returns anegative value if something went
wrong, as explained in Section 11.3.1.

11.3.6. Allocating data descriptors

void * grpci 2dma_dat a_new(i nt number)
voi d grpci 2dnma_dat a_del ete(void * dat abd)

The driver provides these functions to help the user allocating data buffer descriptors. The nunber parameter
defines how many descriptors to allocate in the buffer. The new function returns a pointer to the data descriptor
buffer or a NULL pointer if something went wrong. To deallocate a data descriptor buffer provide the data de-
scriptor buffer pointer provided by the new function to the delete function.

Table 11.8. gr pci 2dma_dat a_new function declaration

Proto |void * grpci2dma_data_new(int nunber)

About |Allocates GRPCI2DMA data descriptors. The number of data descriptorsisindicated by nunber .
See Section 11.3.6.

Param |nunber [IN] Integer

Number of consecutive data descriptors to allocate.

Return |void *. Pointer to the first allocated data descriptor. If a NULL pointer is returned, something went
wrong.

Table 11.9. gr pci 2dna_dat a_del et e function declaration

Proto |void grpci 2dnma_data_del ete(void * databd)
About |Deallocates GRPCI2DMA data descriptors. See Section 11.3.6.
Param |dat abd [IN] Pointer

Pointer to the first allocated data descriptor.

Return |None.

11.3.7. Prepare a transfer

int grpci2dma_prepare(uint32_t pci_start, uint32_t ahb_start, int dir,
int endianness, int size, void * databd, int bdindex, int bdmax, int bl ock_size)

The driver uses this function to prepare data descriptor buffers with user defined transfers. The transfer is defined
by the following parameters:

e pci _start: PCl start address.

e ahb_start: AHB start address.

« di r: Direction of the transfer. Can either be from AHB to PCI (GRPCI2DMA_AHBTORPCI) or from PCI
to AHB (GRPCI2DMA_PCITOAHB).

* endi anness: Endianness of the transfer. Can either belittle endian (GRPCI2DMA_LITTLEENDIAN) or
big endian (GRPCI2DMA_BIGENDIAN).

* si ze: Sizein bytes of the transfer. Must be a multiple of 4 bytes (32-bit).

The data descriptor buffer is pointed by dat abd, and contains up to bdnmax descriptors. The driver will use only
use the descriptors starting from index bdi ndex up to bdmax- 1. The bl ock_si ze parameter indicates the

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 65

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

sizein bytesfor each PCI transaction (or block). Each PCI transaction is guaranteed to be smaller than this value.
If a0 block sizeis given, the maximum is used by default, which is 256 KiB.

This function returns a negative value if something went wrong, as explained in Section 11.3.1. Otherwise, the
function returs the actual number of descriptors used for the transfer, denoted by bdsi ze. This means that the
descriptors from bdi ndex uptobdi ndex + bdsi ze - 1 areused for the transfer. So a subsequent call to
thisfunction to prepare another transfer could use the same data descriptor buffer withanew bdi ndex=bdsi ze.

Table 11.10. gr pci 2dma_pr epar e function declaration

Proto |int grpci2dma_prepare(uint32_t pci_start, uint32_t ahb_start, int
dir, int endianness, int size, void * databd, int bdindex, int bd-
max, int block_size)

About |Prepare agiven range of GRPCI2DMA data descriptors in a buffer with a user-defined transfer. The
function returns the number of data descriptors used. See Section 11.3.7.

Param |pci _start [IN] Integer

Indicates the start address of the transfer in the PCI address map.

Param |ahb_start [IN] Integer

Indicates the start address of the transfer in the AHB (on-chip) address map.
Param [di r [IN] Integer

Direction of the transfer.

Value Description
GRPCI2DMA_AHBTOPCI AHB (on-chip) to PCI.
GRPCI2DMA_PCITOAHB PCI to AHB (on-chip).

Param |endi anness [IN] Integer
Endianness of the transfer.

Value Description
GRPCI2DMA_BIGENDIAN Big endian.
GRPCI2DMA_LITTLEENDIAN Little endian.

Param |[si ze [IN] Integer

Size of the transfer in bytes. Must be a multiple of 4-bytes (32-bit).
Param |dat abd [IN] Pointer

Pointer to the data descriptor buffer.

Param |bdi ndex [IN] Integer

Indicates the index of the data descriptor in the data buffer in which the range starts. This means that
i ndex >=bdi ndex.

Param |bdnax [IN] Integer

Indicates the index of data descriptor in the data buffer which is no longer part of the range. This
meansthat i ndex < bdnmax.

Param |bl ock_si ze [IN] Integer

Indicates the size in bytes for each PCI transaction (or block). Each PCI transaction is guaranteed to
be smaller than this value. If a0 block sizeis given, the maximum is used by default, which is 256
KiB.

Return |int. If positive or zero, represents the actual number of descriptors used for the transfer, denoted by
bdsi ze. This means that the descriptors from bdi ndex uptobdi ndex + bdsize - 1are
used for the transfer. Otherwise, returns a negative value if something went wrong, as explained in
Section 11.3.1.

11.3.8. Push a transfer into a channel

int grpci2dma_push(int chan_id, void * databd, int bdindex, int bdsize)

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 66

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The driver uses this function to push a transfer to a channel with the given chan_i d. The transfer has been
prepared beforewiththepr epar e function and isgiven by the data descriptor buffer pointed by dat abd, starting
at index bdi ndex and consisting of bdsi ze descriptors. This means that the descriptors from bdi ndex up to
bdi ndex + bdsi ze - 1 arepushed tothe channel.

This function can be called anytime after channel is open. It can be called when the channel is stopped, started
or even with ongoing transfers.

This function returns a negative value if something went wrong, as explained in Section 11.3.1. Otherwise, the
function returs GRPCI2DMA_ERR_OK when successful.

Table 11.11. gr pci 2dnma_push function declaration

Proto |int grpci2dma_push(int chan_id, void * databd, int bdindex, int bd-
si ze)

About |Push agiven range of prepared GRPCI2DMA data descriptorsin a buffer (atransfer) to a
GRPCI2DMA channel so that they can be processed by the DMA whenever the channel is started.
The channel isidentified by chan_i d. See Section 11.3.8.

Param |chan_i d [IN] Integer

Channel identification number. Number returned by the open function (see Section 11.3.2).
Param |dat abd [IN] Pointer

Pointer to the data descriptor buffer.

Param |bdi ndex [IN] Integer

Indicates the index of the data descriptor in the data buffer in which the range starts. This means that
i ndex >=bdi ndex.

Param |bdsi ze [IN] Integer

Indicates the number of descriptorsin the range used for the transfer. This means that the descriptors
from bdi ndex uptobdi ndex + bdsi ze - 1 arepushed intothe channel.

Return |int. GRPCI2DMA_ERR_OK when successful. Otherwise, returns anegative value if something went
wrong, as explained in Section 11.3.1.

11.3.9. Get the status of a transfer

int grpci 2dma_status(void * databd, int bdindex, int bdsize)

The driver uses this functions to check the status of arange of data descriptors in a buffer. The data descriptor
buffer is pointed by dat abd, The driver will check only bdsi ze descriptors starting from bdi ndex.

There are three possibl e states a data descriptor can be;

* GRPCI2DMA_BD_STATUS ERR - Error status. Something went wrong when performing the transfer.

* GRPCI2DMA_BD_STATUS ENABLED - Transfer enabled. The data descriptors have been prepared to be
transfered but not yet transfered.

¢ GRPCI2DMA_BD_STATUS DISABLED - Transfer disabled. The data descriptors have been disabled. It
means that the DMA finished sending this transfer.

When the status of more than one data descriptor is checked, for instance when checking the status of a transfer
composed of multiple data descriptors, the function works as follows: if at least one of the data descriptorsison
error or enabled status, the return value is error or enabled respectively. Otherwise if al of the descriptors arein
disabled status the return value is disabled.

This functions returns a negative value if something went wrong, as explained in Section 11.3.1. Otherwise, the
function returs the data descriptor status as explained before.

Table11.12. gr pci 2dma_st at us function declaration

‘Proto ‘i nt grpci 2dnma_status(void * databd, int bdindex, int bdsize)

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 67

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

About | Status of a given range of GRPCI2DMA data descriptorsin a buffer (atransfer). See Section 11.3.9.
Param |dat abd [IN] Pointer
Pointer to the data descriptor buffer.
Param |bdi ndex [IN] Integer
Indicates the index of the data descriptor in the data buffer in which the range starts. This means that
i ndex >=bdi ndex.
Param |bdsi ze [IN] Integer
Indicates the number of descriptorsin the range used for the transfer. This means that the descriptors
from bdi ndex uptobdi ndex + bdsize - 1 arepushedinto the channdl.
Return |int. When succesfull returns the status of the range of data descriptors. When the status of more than

one data descriptor is checked, the function works as follows: if at least one of the data descriptors
ison error or enabled status, the return value is error or enabled respectively. Otherwise if all of the
descriptors are in disabled status the return value is disabled. Otherwise, returns a negative value if
something went wrong, as explained in Section 11.3.1.

Value Description
GRPCI2DMA_BD_STATUS ERR Error status. Something went wrong when performing
the transfer.

GRPCI2DMA_BD_STATUS ENABLED |Transfer enabled. The data descriptors have been pre-
pared to be transfered but not yet transfered.

GRPCI2DMA_BD_STATUS DISABLED |Transfer disabled. The data descriptors have been dis-
abled. It means that the DMA finished sending this trans-
fer.

11.4. API reference

This section lists al functions part of the GRPCI2DMA driver API, and in which section(s) they are described.
The API is also documented in the source header file of the driver, see Section 11.1.2.

Table 11.13. GRPCI2DMA function reference

Prototype Section

i nt grpci2dnma_open(void * chanptr) 11.3.2

int grpci2dma_cl ose(int chan_id) 11.3.2

int grpci2dme_start(int chan_id, int options) 11.33

int grpci2dnma_stop(int chan_id) 11.3.3

int grpci2dme_isr_register(int chan_id, grpci2dnma_isr_t userisr, 11.34

voi d *userarg)

int grpci2dnma_i nterrupt _enabl e(voi d *databd, int bdindex, int bd- 11.35

max, int options)

void * grpci2dma_data_new(i nt nunber) 11.36

voi d grpci 2dna_dat a_del et e(voi d * dat abd) 11.3.6

int grpci2dnma_prepare(uint32_t pci_start, uint32_t ahb_start, int 11.3.7

dir, int endianness, int size, void * databd, int bdindex, int bd-

max, int block_size)

i nt grpci2dma_push(int chan_id, void * databd, int bdindex, int bd- [11.3.8

si ze)

int grpci2dme_status(void * databd, int bdindex, int bdsize) 11.39
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 68

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 12. GR-RASTA-ADCDAC PCI peripheral
This section describes the GR-RASTA-ADCDAC PCI peripheral driver.
The GR-RASTA-ADCDAC driver require the Driver Manager and that the PCI busis big endian.

The GR-RASTA-ADCDAC driver is a bus driver providing an AMBA Plug & Play bus. The driver first sets
up the target PCI register such as PCl Master enable and the address trandation registers. Once the PCI target
is set up the driver creates an anbapp_bus that scans the bus and assigns the appropriate drivers. This driver
provides interrupt handling and memory address translation on the internal AMBA bus so that the drivers can
function as expected.

The driver resources of the AMBA bus created by the GR-RASTA-ADCDAC driver can be assigned by calling
gr_rasta adcdac_set resource as defined by gr_rasta_adcdac.h.

Thedriver resources of the AMBA bus created by the GR-RASTA-ADCDA C driver can be assigned by overriding
the weak default bus resource array gr _r ast a_adcdac_r esour ces[] of thedriver. It contains a array of
pointersto bus resources where index=N determines the bus resources for GR-RASTA-ADCDAC[N] board. The
array isdeclared ingr_rasta_adcdac.h. Thedriver resources can be used to set up the memory parameters, configure
locations of the DMA areas and other parameters of GRCAN, GRADCDAC and all other supported cores. Please
see respective driver for available configuration options.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 69

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 13. GR-RASTA-IO PCI peripheral

This section describes the GR-RASTA-I0O PCI peripheral driver.
The GR-RASTA-IO driver require the Driver Manager and that the PCI busis big endian.

The GR-RASTA-IO driver isabusdriver providing an AMBA Plug & Play bus. The driver first sets up the target
PCI register such as PCl Master enable and the address translation registers. Once the PCI target is set up the
driver createsan ambapp_busthat scansthe bus and assignsthe appropriate drivers. Thisdriver providesinterrupt
handling and memory address tranglation on the internal AMBA bus so that the drivers can function as expected.

The driver resources of the AMBA bus created by the GR-RASTA-10 driver can be assigned by overriding the
weak default busresourcearray gr _rasta_i o_resour ces[] of thedriver. It containsaarray of pointersto
bus resources where index=N determines the bus resources for GR-RASTA-IO[N] board. The array is declared
in gr_rasta io.h. The driver resources can be used to set up the memory parameters and configure locations of
the DMA areas of 1553BRM, GRCAN, GRSPW cores. Please see respective driver for available configuration
options.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 70

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 14. GR-RASTA-TMTC PCI peripheral
This section describes the GR-RASTA-TMTC PCI peripheral driver.
The GR-RASTA-TMTC driver require the Driver Manager and that the PCI busis big endian.

The GR-RASTA-TMTC driver isabus driver providing an AMBA Plug & Play bus. The driver first sets up the
target PCI register such as PCI Master enable and the address translation registers. Oncethe PCI target is set up the
driver createsan ambapp_busthat scansthe bus and assignsthe appropriate drivers. Thisdriver providesinterrupt
handling and memory address tranglation on the internal AMBA bus so that the drivers can function as expected.

The driver resources of the AMBA bus created by the GR-RASTA-TMTC driver can be assigned by overriding
the weak default bus resource array gr _rasta_tntc_resources[] of the driver. It contains a array of
pointers to bus resources where index=N determines the bus resources for GR-RASTA-TMTC[N] board. The
array is declared in gr_rasta_tmtc.h. The driver resources can be used to set up the memory parameters and
configure locations of the DMA areas of GRTC, GRTM, GRSPW cores. Please see respective driver for available
configuration options.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 71

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 15. GR-RASTA-SPW_ROUTER PCI Peripheral
This section describes the GR-RASTA-SPW_ROUTER PCI periphera driver.
The GR-RASTA-SPW_ROUTER driver require the RTEMS Driver Manager and that the PCI bus is big endian.

The GR-RASTA-SPW-ROUTER driver isabusdriver providingan AMBA Plug & Play bus. Thedriver first sets
up the target PCI register such as PCl Master enable and the address trandation registers. Once the PCI target is
set up thedriver creates an ambapp_busthat scansthe bus and assigns the appropriate drivers. Thisdriver provides
interrupt handling and memory address trandlation on the internal AMBA bus so that the drivers can function as
expected.

The driver resources of the AMBA bus created by the GR-RASTA-SPW_ROUTER driver can be assigned by
overriding the weak default bus resource array gr_rasta_ spw_router_resourced[] of the driver. It contains a array
of pointers to bus resources where index=N determines the bus resources for GR-RASTA-SPW_ROUTERIN]
board. Thedriver resources can be used to set up the memory parametersand configurelocations of the DMA areas
of GRSPW2 AMBA port cores. Please see GRSPW driver documentation for available configuration options.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 72

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 16. GR-CPCI-LEON4-N2X PCI Peripheral
This section describes the GR-CPCI-LEON4-N2X PCI peripheral driver.
The GR-CPCI-LEON4-N2X driver require the RTEMS Driver Manager and that the PCI busis big endian.

The GR-CPCI-LEON4-N2X driver is abusdriver providing an AMBA Plug & Play bus. The driver first sets up
the target PCI register such as PClI Master enable and the address trandl ation registers. The clock gating unit is by
default set up so that al functionality is enabled. Once the PCI target is set up the driver creates an ambapp_bus
that scans the bus and assigns the appropriate drivers. Thisdriver providesinterrupt handling and memory address
trandation on the internal AMBA bus so that the drivers can function as expected.

The driver resources of the AMBA bus created by the driver can be assigned by overriding the weak default bus
resource array gr _cpci _| eon4_n2x_resour ces[] of thedriver. It contains aarray of pointersto bus re-
sources where index=N determines the bus resources for GR-CPCI-LEON4-N2X[N] board. The array is declared
ingr_cpci _| eon4_n2x. h. The driver resources can be used to set up the memory parameters and for con-
figuring other driver options such as the base DMA area address of the SpaceWire cores. Please see respective
driver for available configuration options.

16.1. Driver registration

The driver must be registered to the driver manager by adding the
CONFIGURE_DRIVER_PCI_GR_LEON4 N2X defineinthe RTEMS project configuration. This processis de-
scribed in the driver manager chapter.

16.2. Driver resource configuration

The driver can be configured using driver resources as described in the driver manager chapter. Below is a de-
scription of configurable driver parameters. The driver parametersis unique per PCI device and configured in the
PCI bus driver resources array. The parameters are al optional, the parameters only overrides the default values.
However the ambaFreq paramter istypically required.

Table 16.1. GR-CPCI-LEON4-N2X driver parameter description

Name Type Parameter Description

ahbmst2pci INT PCI base address of the 1Gbyte AMBA->PCI window. Default to RAM start ad-
dress.

ambaFreq INT Frequency in Hz of the LEON4-N2X AMBA bus. Defaults to 200MHz.

cgEnMask INT Clock gating enable/disable mask. Each bit in the mask corresponds to one bit the
the clock gate unit (one clock tree), set to 1 to enable or O to disable individual
clock trees.

bar0 INT PCI target BARO AMBA access address. Defaults to 0x00000000 (L 2-cache main
memory)

barl INT PCI target BAR1 AMBA access address. Defaults to 0xfO000000 (L 2-cache regis-
ters)

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 73

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 17. GR-CPCI-GR740 PCI Peripheral
This section describes the GR-CPCI-GR740 PCI peripheral driver.
The GR-CPCI-GR740 driver require the RTEMS Driver Manager and that the PCI bus is big endian.

The GR-CPCI-GR740 driver is a bus driver providing an AMBA Plug & Play bus. The driver first sets up the
target PCI register such as PCl Master enable and the address trandation registers. The clock gating unit is by
default set up so that al functionality is enabled. Once the PCI target is set up the driver creates an ambapp_bus
that scans the bus and assigns the appropriate drivers. Thisdriver providesinterrupt handling and memory address
trandation on the internal AMBA bus so that the drivers can function as expected.

The driver resources of the AMBA bus created by the driver can be assigned by overriding the weak default
bus resource array gr _cpci _gr 740_r esour ces[] of the driver. It contains a array of pointers to bus re-
sources where index=N determines the bus resources for GR-CPCI-GR740[N] board. The array is declared in
gr _cpci _gr 740. h. The driver resources can be used to set up the memory parameters and for configuring
other driver options such as the base DMA area address of the SpaceWire cores. Please see respective driver for
available configuration options.

17.1. Driver registration

The driver must be registered to the driver manager by adding the
CONFIGURE_DRIVER_PCI_GR_CPCI_GR740 definein the RTEMS project configuration. This processis de-
scribed in the driver manager chapter.

17.2. Driver resource configuration

The driver can be configured using driver resources as described in the driver manager chapter. Below is a de-
scription of configurable driver parameters. The driver parametersis unique per PCI device and configured in the
PCI bus driver resources array. The parameters are al optional, the parameters only overrides the default values.
However the ambaFreq paramter istypically required.

Table 17.1. GR-CPCI-GR740 driver parameter description

Name Type Parameter Description

ahbmst2pci INT PCI base address of the 1Gbyte AMBA->PCI window. Default to RAM start ad-
dress.

ambaFreq INT Frequency in Hz of the GR740 AMBA bus. Defaults to 250MHz.

cgEnMask INT Clock gating enable/disable mask. Each bit in the mask corresponds to one bit the
the clock gate unit (one clock tree), set to 1 to enable or O to disable individual
clock trees.

bar0 INT PCI target BARO AMBA access address. Defaults to 0x00000000 (L 2-cache main
memory)

barl INT PCI target BAR1 AMBA access address. Defaults to 0xfO000000 (L 2-cache regis-
ters)

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 74

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 18. GRSPW Packet driver

18.1. Introduction

This section describes the GRSPW packet driver for RTEMS The packet driver will replace the older GRSPW
driver in the future.

It is an advantage to understand the SpaceWire bus/protocols, GRSPW hardware and software driver design when
developing using the user interface in Section 18.3 and Section 18.4. The Section 18.2.1 describes the overall
software design of the driver.

18.1.1. GRSPW packet driver vs. old GRSPW driver

This driver is a complete redesign of the older GRSPW driver. The user interfaces to GRSPW devices using an
API rather than using the standard UNIX file procedures like open(), read(), ioctl() and so on. The driver uses
linked lists of packet buffersto receive and transmit SpaceWire packets. Before the user called read() or write() to
copy data into/from the GRSPW DMA buffers, where each call received or transmitted a single packet at atime.
The packet driver implements a new API that allows efficient custom data buffer handling providing zero-copy
ability, SMP support and multiple DMA channel support. The link control handling has been separated from the
DMA handling, just to name a few improvements.

18.1.2. Hardware Support

The GRSPW cores user interface are documented in the GRIP Core User's manual. Below is alist of the major
hardware features it supports:

¢ GRSPW, GRSPW2 and GRSPW2_DMA (router AMBA port)

e Multiple DMA channels

» Time Code

e Link Control

 Port Control

« RMAP Control

e SpaceWire Interrupt codes

« Interrupt handling

» Multi-processor SMP support

18.1.3. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the RTEMS source
treertems-5/c/src/lib/libbsp/sparc.

Table 18.1. Source Location

Filename Description
shar ed/ i ncl ude/ grspw _pkt. h GRSPW user interface definition
shar ed/ spw gr spw_pkt.c GRSPW driver implementation

18.1.4. Show routines

There are currently no show routines.

18.1.5. Examples

Examples are availableinthe sr ¢/ sanpl es/ spw' directory in the RCC distribution.
18.1.6. Known driver limitations

The known limitations in the GRSPW Packet driver exists listed below:

» The shutdown of the work thread when destroying the message queue may be problematic.
» The statistics counters are not atomic, clearing at the same the interrupt handler is called could cause invalid
statistics, one must disable interrupt when reading/clearing.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 75

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

» The SpaceWire Interrupt code support is not documented yet.
18.2. Software design overview
18.2.1. Overview

The driver has been implemented using the Driver Manager Framework. The driver provides a kernel function
interface, an API, rather than implementing al O system device. The APl isdesigned for multi-threadding allowing
multiple threads to operate on the link, RX and TX DMA channel interfaces independently. The driver API has
been split up in two major parts listed below:

* Deviceinterface, see Section 18.3.
« DMA channel interface, see Section 18.4.

GRSPW device parametersthat affects the GRSPW core and all DMA channels are accessed over the device API
whereas DMA specific settings and buffer handling are accessed over the per DMA channel API. A GRSPW?2
device may implement up to four DMA channels.

In order to access the driver thefirst thing is to open a GRSPW device using the device interface.

For controlling the device one must open a GRSPW deviceusing' i d = gr spw_open(dev_i ndex)' and
call appropriate device control functions. Device operations naturally affectsall DM A channels, for examplewhen
the link is disabled all DMA activity pause. However there is no connection software wise between the device
functions and DMA function, except from that the gr spw_cl ose requires that al of its DMA channels have
been closed. Closing adevicefailsif DMA channels are still open.

Packets are transferred using DMA channels. To open a DMA channel one cadls 'dma_id =
grspw_dnma_open(id, dnachan_index)' and use the appropriate transmission function with the
dma_i d to identify which DMA channel used.
18.2.2. Driver resource configuration

It is possible to configure the GRSPW driver by driver resources assigned at compile time. The resources are set
individually per GRSPW device. The table below shows all options.

Table 18.2. GRSPW packet driver resources

Name Type |Parameter description

nDma INT Number of DMA channelsto present to user. Thisisused to limit the number of DMA
channels and thereby save memory. This option does not have an effect if it islessthan
one or greater than the number of DMA channels present in the hardware.

bdDmaArea |[INT |Custom RX and TX DMA descriptor table area address. The driver always requires
0x800 Bytes memory per DMA channel. This meansthat at least (nDVA * 0x400 * 2)
Bytes must be available.

The address must be aligned to 0x400.

18.2.3. Initialization

During early initialization when the operating system boots the driver performs some basic GRSPW device and
software initialization. The following steps are performed or not performed:

¢ GRSPW device and DMA channels 1/O registers are initialized to a state where most are zero.

* DMA isstopped on all channels

» Link state and settings are not changed (RMAP may be active).

¢ RMAP settings untouched (RMAP may be active).

* Port select untouched (RMAP may be active).

« Time Codes are disabled and TC register cleared.

« IRQ generation disabled.

» Status Register cleared.

* Node address/ DMA channels node address is untouched (RMAP may be active).

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 76

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

» Hardware capabilities are read and potentially overridden by nDMA configuration option, see Section 18.2.2.
* Deviceindex determined.

18.2.4. Link control

The GRSPW link interface handles the communication on the SpaceWire network. It consists of a transmitter,
receiver, a FSM and FIFO interfaces. The current link state, status indicating past failures, parameters that affect
the link interface such as transmitter frequency for example is controlled using the GRSPW register interface.

The SpaceWire link is controlled using the software device interface. The driver initialization sequence during
boot does not affect the link parameters or state. The link is controlled separately from the DMA channels, even
though the link goes out from run-mode this does not affect the DMA interface. The DMA activity of all channels
are of course paused. It is possible to configure the driver to disable the link on certain error interrupts.

The link can be disabled when a link error is detected by the GRSPW interrupt handler. There are two options
which can be combined, either the DMA transmitter is disabled on error (disabled by hardware) or the software
interrupt handler disables the link on link error events selected by the user. When software disables the link the
work-task is informed and stops all DMA channels, thus gr spw_dna_st op() iscaled for each DMA chan-
nel by the work-task. The GRSPW interrupt handler will disable the link by writing "Link Disable" bit and clear-
ing "Link Start" bit on link errors. The user is responsible to restart the link interface again. The status register
(grspw_Il i nk_st at us()) and statistics interface can be used to determine which error(s) happened. The two
options are configured by the link control interface of the device API using function gr spw_Il i nk_ctrl ().

To make hardware disable the DMA transmitter automatically on error the option (LI NKOPTS_DI S ONERR)
is used.

To activate the GRSWP interrupt routine when any link error occurs, the bitmask option Enable Error
Link IRQ (LI NKOPTS_EI RQ) shall be set. The bhitmask options described as Disable Link on XX Error
(LI NKOPTS DI S_ON_*) areused to select which events shall actually cause link disablein the interrupt routine
and inform the work-task of a shutdown stop.

Theoptions LI NKOPTS_DI S_ON* arein effect even when the option LI NKOPTS_EI RQis disabled. Thus, an
interrupt routine invocation caused by a DMA channel interrupt event may disable the link in case any of the
conditionsin LI NKOPTS DI S _ON _* are satisfied.

Statistics about the link errors can be read from the driver, see Section 18.3.8.

It is possible to circumvent the drivers action of clearing link status events in the GRSPW status register from
the interrupt routine. This can be used for example when the user wants to detect and handle all occurrences of
aspecific link event. The functiongr spw_| i nk_ctrl () isusedto configurethisviathe st scf g parameter
withvaluesLlI NKSTS_*. If abitisset inthisconfiguration parameter, the corresponding bit in the GRSPW status
register is cleared by the interrupt routine. If the bit is not set, the interrupt routine will never clear the status
flag and the user has full control of it. The status event can then be manually read and cleared with functions
grspw_link_status() andgrspw_|ink status_clr().

Statistics counters for events which are configured to be circumvented by the driver, as described above, shall
not be relied upon.

Function names prefix: gr spw_| i nk_*() .
18.2.5. Time Code support

The GRSPW supports sending and receiving SpaceWire Time Codes. An interrupt can optionally be generated on
Time Code reception and the last Time Code can be read out from a GRSPW register.

The GRSPW core's Time Codeinterface can be controlled from the device API. One can generate Time Codesand
read out the last received or generated Time Code. An user assignable interrupt handler can be used to detect and
handle Time Code reception, the callback is called from the GRSPW interrupt routine thus from interrupt context.

Function names prefix: gr spw_tc_* ()

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 77

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

18.2.6. RMAP support

The GRSPW device has optional support for an RMAP target implemented in hardware. The target interface is
abletointerpret RMAP protocol (pr ot i d=1) requests, take the necessary actions on the AMBA busand generate
a RMAP response without the software's knowledge or interaction. The RMAP target can be disabled in order
to implement the RMAP protocol in software instead using the DMA operations. The RMAP CRC agorithm
optionally present in hardware can aso be used for checksumming the data payload.

The device interface is used to get the RMAP features supported by the hardware and configuring the below
RMAP parameters:

¢ Probeif RMAP and RMAP CRC is supported by hardware
* RMAP enable/disable
* SpaceWire DESTKEY of RMAP packets

The SpaceWire node address, which also affects the RMAP target, is controlled from the address configuration
routines, see Section 18.2.8.

Function names prefix: gr spw_r map_*()
18.2.7. Port support

The GRSPW device has optional support for two ports (two connectors), where only one port can be active at a
time. The active SpaceWire port is either forced by the user or auto selected by the hardware depending on the
link state of the SpaceWire ports at a certain condition.

The device interface is used to get information about the GRSPW hardware port support, current set up and to
control how the active port is selected.

Function names prefix: gr spw_port _*()
18.2.8. SpaceWire node address configuration

The GRSPW core supports assigning a SpaceWire node address or arange of addresses. The address affects the
received SpaceWire Packets, both to the RMAP target and to the DMA receiver. If areceived packet does not
match the node addressit isdropped and the GRSPW statusindicatesthat one or more packetswith invalid address
was received.

The GRSPW2 and GRSPW2_DMA cores that implements multiple DMA channels use the node address as a
way to determine which DMA channel areceived packet shall appear at. A unique node address or range of node
addresses per DMA channel must be configured in this case.

It is also possible to enable promiscuous mode to enable al node addresses to be accepted into the first DMA
channel, this option does not affect the RMAP target node address decoding.

The GRSPW SpaceWire node address configuration is controlled using the device interface. A specific DMA
channel's node address is thus affected by the "global" device API and not controllable using the DMA channel
interface.

If supported by hardware the node address can be removed before DMA writes the packet to memory. Thisisa
configuration option per DMA channel using the DMA channel API.

Function names prefix: gr spw_addr _*()
18.2.9. SpaceWire Interrupt Code support

The GRSPW2 has optionally support for receiving and generating SpaceWire Interrupt codes. The Interrupt Codes
implementation is based on the Time Code service but with a different Time Code Control content.

The SpaceWire Interrupt Code interface are controlled from the device interface.

Function names prefix: gr spw_i ¢c_* ()

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 78

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

18.2.10. User DMA buffer handling

The driver isdesigned with zero-copy in mind. The user isresponsible for setting up data bufferson itsown , there
isahelper library distributed together with the examples that do buffer allocation and handling . The driver uses
linked lists of packet buffers asinput and output from/to the user. It makes it possible to handle multiple packets
on asingle driver entry, which typically has a positive impact when transmitting small sized packets.

The API supports header and data buffersfor every packet, and other packet specific transmission parameters such
as generate RMAP CRC and reception indicators such asif packet was truncated.

Since the driver never reads or writes to the header or data buffers the driver does not affect the CPU cache of the
DMA buffers, it is the user's responsibility to handle potential cache effects.

Note that the UT699 does not have D-cache snooping, this means that when reading received buffers D-cache
should either beinvalidated or the load instructions should force cache miss when accessing DMA buffers (LEON
LDA instruction) .

Function names prefix: gr spw_dma_* ()
18.2.10.1. Buffer List help routines

The GRSPW packet driver internally uses linked lists routines. The linked list operations are found in the header
fileand can be used by the user aswell. The user application typically definesits own packet structures having the
same layout as struct grspw_pkt in the top and adding custom fields for the application buffer handling as needed.
For small implementations however the pkt _i d field may be enough to implement application buffer handling.
Thepkt _i d field is never accessed by the driver, instead is an optional application 32-bit data storage intended
for identifying a specific packet, which packet pool the packet buffer belongs to, or a higher level protocoal id
information for example.

Function names prefix: gr spw_Il i st _*()
18.2.11. Driver DMA buffer handling

The driver represents packets with the struct grspw_pkt packet structure, see Table 18.32. They are arranged in
linked lists that are called queues by the driver. The order of the linked lists are always maintained to ensure that
the packet transmission order is represented correctly.

next =&pl —» next=&p2
count = 3 flags flags
hlen hlen
head = & p0
—— p2 dien dien next = NULL
ail =
P data data flags
hdr hdr hlen
dlen
data
hdr

Figure 18.1. Queue example - linked list of three grspw_pkt packets
18.2.11.1. DMA Queues

The driver uses three queues per DMA channel transfer direction, thus six queues per DMA channel. The number
of packets within a queue is maintained to optimize moving packets internally between queues and to the user
which also needs this information. The different queues are listed below.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 79

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

* RX READY queue - free packet buffers provided by the user.

* RX SCHED queue - packets that have been assigned a DMA descriptor.
« RX RECV queue - packets containing a received packet.

e TX SEND queue - user provided packets ready to be sent.

e TX SCHED queue - packets that have been assigned a DMA descriptor.
e TX SENT queue - packets sent

Packet in the SCHED queues always are assigned to a DMA descriptor waiting for hardware to perform RX or
TX DMA operations. Thereisalimited number of DMA descriptor table, 64 TX or 128 RX descriptors. Naturally
this also limits the number of packets that the SCHED queues contain simultaneously. The other queues does not
have any maximum number of packets, instead it is up to the user to handle the sizing of the RX READY, RX
RECV, TX SEND and TX SENT packet queues by controlling the input and output to them. Thereby it ispossible
to queue packets within the driver. Since the driver can move queued packets itself it can makes sense to queue
up free buffersin the RX READY queue and TX SEND queue for future transmission.

The current number of packets in respective queue can be read by doing function calls using the DMA API, see
Section 18.4.7. The user can for example use this to determine to wait or continue with packet processing.

18.2.11.2. DMA Queue operations

The user can control how the RX READY and TX SEND queue is populated, by providing packet buffers. The
user can control how and when packets are moved from RX READY and TX SEND queues into the RX SCHED
or TX SCHED by enabling the work-task and interrupt driven DMA or by manually trigger the moving calling
reception and transmission routines as described in Section 18.4.6 and Section 18.4.5.

The packetsawaysflow in onedirection from RX READY ->RX SCHED ->RX RECV. Likewisethe TX packets
flow TX SEND -> TX SCHED -> TX SENT. The procedures triggering queue packet moves are listed below and
in Figure 18.2 and Figure 18.3. The interface of theses procedures are described in the DMA channel API.

¢ USER->RX READY queue - rx_prepare, Section 18.4.6.

¢ RX RECV ->USER - rx_recv, Section 18.4.6.

e USER->TX SEND - tx_send, Section 18.4.5.

e TX SEND -> USER - tx_reclaim, Section 18.4.5.

" RX PREPARE" RX READY . RX SCHED . RX RECV "RX RECV"
User input empty —»] Queue step 3 (optional) Queue step 1 (optional) Queue | | e receive
packet buffers &p10 &p7 &p6 packet buffers
&pll &p8 &p5
&pl2 &p9 &pa
&pl3 &p3
&pla

Figure 18.2. RX queue packet flow and operations

"TX SEND" TX SEND . TX SCHED . TX SENT "TX RECLAIM"
User input —» Queue step 3 (optional) Queue step 1 (optional) Queue | > User retake
packet buffers &pl0 &p7 &p6 packet buffers
&pll &p8 &p5
&pl2 &p9 &pa
&pl3 &p3

&pla

Figure 18.3. TX queue packet flow and operations

Packets which the user has provided to the driver shall be considered owned by the driver until the user takes the
packets back again. In particular, the struct grspw_pkt fields should not be accessed by the user while the packet
buffers are assigned to the driver.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 80

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

18.2.12. Polling and blocking mode

Both polling and blocking transfer modes are supported. Blocking mode is implemented using DMA interrupt
and awork-task for processing the descriptor tables to avoid loading the CPU in interrupt context. One common
work-task handles all GRSPW devices DMA handling triggered by DMA interrupt. In polling mode the user is
responsible for processing the DMA descriptor tables at a user defined interval by calling reception and transmit
routines of the driver.

DMA interrupt is generated every N received/transmitted packets or controlled individually per packet. The latter
isconfigured in the packet data structures and the former using the DM A channel configuration. See Section 18.4.3
and Section 18.4.9 for more information.

Blocking mode is implemented by letting the user setting up a condition on the RX or TX DMA queues packet
counters. The condition can optionally betimed out protected in anumber of ticks, implemented by the semaphore
service provided by the operating system. Each time after the work-task has completed processing the DMA
descriptor table the condition is evaluated. If considered true then the blocked task is woken up by signaling on
the semaphore the task is waiting for. There is only one RX and one TX condition per channel, thus only two
tasks can block at atime per channel.

Blocking function names: gr spw_dma_{t x, rx} _wai t ()
18.2.13. Interrupt and work-task

Thedriver can optionally spawn onework-task that isused to service all GRSPW devices. Thework-task execution
isresumed/triggered from the GRSPW | SR at certain user configurable events, at link errorsor DMA transmissions
completed. The ISR sends messages to the work-task using the RTEMS Message API. When the work-task has
been scheduled work for a specific device or DMA channel the ISR has turned off the specific interrupt that the
work-task handles, once the work has been completed the work-task re-enables interrupt again for the specific
event. Thisisto lower the number of interrupts.

When the work-task is used to process DMA descriptor tables the priority of the work-task must be considered.
The priority must be selected so that the work-task is allowed to execute in time. Normally a high priority should
be selected to lower the latency and for higher DMA throuhgput. When using the RX/TX DMA Wait interface
the waiting tasks will be woken first after the work-task has processed the DMA descriptor table. If the work-task
never gets CPU resources due to other higher-priority tasks always ready it may appear to dead-lock. To avoid
dead-lock or wait timeouts the priority must be set with other task priorities in mind. When the priority is set to
-1 the work-task is never created. The functionality of the ISR sending messages to the work-task, the work-task
DMA and link error handling and RX/TX DMA wait interface are not available to the user.

Thepriority iscontrolled by the user at compiletime by defining thevariablegr spw_wor k_task _priority.
Its default value is 100 declared by the driver using the aweak variable:

int grspw work_task_priority _ attribute_ ((weak)) = 100;

NOTE: The priority of the work-task is user configurable and must be assigned with the rest of the application's
task prioritiesin mind so that it is allowed to execute and wake up the waiting/blocked user task(s). Otherwise the
user task may be blocked forever or for too long.

Thework-task can also be used to automatically stop DM A operation on certain link errors. Thisfeatureisenabled
by activating the different Disable Link on XX Error (LI NKOPTS_DI S_ON_*) optionsfrom the device API link
control interface. See Section 18.2.4. For the configured link errors the GRSPW interrupt handler will trigger the
shutdown work to start which will stop all DMA channels by calling gr spw_dma_st op() .

18.2.14. Starting and stopping DMA

The driver has been designed to make it clear which functionality belongs to the device and DMA channel APIs.
The DMA API is affected by started and stopped mode, where in stopped mode means that DMA is not possible
and used to configure the DMA part of the driver. During started mode a DMA channel can accept incoming and
send packets. Each DMA channel controls its own state. Parts of the DMA API isnot available in during stopped
mode and some during stopped mode to simplify the design. The device API is not affected by this.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 81

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Typically the DMA configuration is set and user buffersareinitialized before DMA is started. The user can control
the link interface separately from the DMA channel before and during DMA starts.

When the DMA channel is stopped by calling gr spw_dna_st op() thedriver will:
e Stop DMA transfers and DMA interrupts.
 Stop accepting new packetsfor transmission and reception. However the DMA functionswill still be open for
the user to retrieve sent and unsent TX packet buffers and to retrieve received and unused RX packet buffers.
* Wake up blocked DMA threads and return to the caller. Tasks can be blocked waiting for TX/RX event by
using the TX/RX DMA wait functions.

The DMA closeroutines requiresthat the DMA channel is stopped. Similarly, the device close routine makes sure
that all DMA channels are closed to be successful. Thisisto make sure that al user tasks has return and hardware
isinagood state. It isthe user's responsibility to stop the DMA channel before closing.

DMA operational function names: gr spw_dma_{start, stop} ()
18.2.15. Thread concurrency

The driver has been designed to allow multi-threading. There are five parts that can be operated simulaneously
by different or the same thread(s):

« Device(link contral) interface.

* DMA RX channdl.

« DMA TX channel.

» work-task is a separate thread of execution.

* Interrupt Service Routine.

There may be multiple DMA channelsin a GRSPW device. DMA channels are operated independently of each
other. Each DMA channel has two semaphores to alow operations on different DMA channels simultaneously
as well as simultaneous RX and TX operations on the same DMA channel. However multiple RX and TX tasks
of the same RX or TX interface of the sasme DMA channel is possible but will temporarily lock each other out
during register and DMA descriptor table processing. The same semaphores are taken by the work-task during
DMA processing if the user has enabled it. There is a global device semaphore that manages device open/close
operations that introduce dependencies between different GRSPW device and between DMA channels on those
operations. The DMA channels and device interface share the same GRSPW 1/O registers which needs in some
cases to be protected, they are protected from each other by using interrupt disabling (or spin-locks on SMP).

Each DMA channel also has two semahpores to implement blocking on RX/TX operations. The DMA RX/TX
interrupt wakes a worker which processes the DMA RX/TX descriptor tables and signals viathe RX-WAIT and
TX-WAIT that incomming/outgoing packets processing has finished.

The table below summarises the semaphore operations of a DMA channel that the driver makes.

Table 18.3. DMA channel semaphore operations.

Function Operation Semaphore |Description
dma_open Init semaphores RX TX RX and TX semaphores areinitialized to 1.
dma_cl ose Free semaphores RX TX Both RX and TX semaphores are taken and left in

locked state or deleted on a successful close. From
this point the user can not enter other DMA func-
tionsthan drma_open.

dnma_start Init semaphores RX-WAIT | Thewait semaphores areinitialized to O (Ilocked)
TX-WAIT |state. From this point onwards the RX/TX wait in-
terface isavailable.

dma_st op Shutdown DMA RX TX RX- | The RX and TX semaphores are taken and re-
WAIT TX- |turned in sequence during stopping a DMA chan-
WAIT nel. The RX-WAIT and TX-WAIT semahpores are

signalled in order for potential locked tasks to be
worken up and return to caller with an error code
or indicating DMA stopped (1) error code.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 82

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Function Operation Semaphore | Description
dma_rx_recv RX DMA operations | RX Holds the RX semahpore while performing RX op-
dma_r x_prepare erations.
dnma_r x_count
dma_t x_send RX DMA operations | RX Holds the RX semaphore while performing TX op-
dma_tx_reclaim erations.
dma_t x_count
drme_t x_wai t Wait for TX DMA. |TX TX- Takesthe TX semaphore to initiaize the wait
WAIT structures. TX-WAIT istaken to block the calling
thread until the worker, DMA shutdown or timeout
awakens the thread again.
dnma_rx_wait Wait for RX DMA. |RX RX- Takes the RX semaphore to initialize the wait
WAIT structures. RX-WAIT is taken to block the calling
thread until the worker, DMA shutdown or timeout
awakens the thread again.
DMA work Normal DMA de- RX TX RX- |RX and TX locks taken in sequence. RX-WAIT
scriptor list process- |WAIT TX- |and TX-WAIT given on matching conditions.
ing. WAIT
DMA work error DMA AHB error RX TX DMA RX/TX AHB errorsleadsto calling
handling. gr spw_dna_st op() for one DMA channel.
The work-task does not hold any locks itself.
Link work error Link error handling. |RX TX SpaceWire link errors configured to gener-
ate interrupt may be handled by worker to call
grspw _dna_stop() foral DMA channels.

18.3. Device Interface
This section covers how the driver can be interfaced to an application to control the GRSPW hardware.
18.3.1. Opening and closing device

A GRSPW device must first be opened before any operations can be performed using the driver. The number of
devices registered to the driver can be retrieved using gr spw_dev_count . A particular device can be opened
using gr spw_open and closed gr spw_cl ose. The functions are described below.

An opened device can not be reopened unless the device is closed first. When opening a device the device is
marked opened by the driver. This procedure is thread-safe by protecting from other threads by using the GRSPW
driver's semaphore lock. The semaphore is used by all GRSPW devices on device opening, closing and DMA
channel opening and closing.

During opening of a GRSPW device the following steps are taken:

* GRSPW device /O registers are initialized to a state where most are zero.

 Descriptor tables memory for all DMA channels are allocated from the heap or from a user assigned address
and cleared. Seedriver resource configuration options described in Section 18.2.2. The descriptor tablelength
is always the maximum 0x400 Bytes for RX and TX.

« Internal resources like spin-locks and data structures are initialized.

e The GRSPW device Interrupt Service Routine (ISR) isinstalled and enabled. However hardware does not
generate interrupt until the user configures the device or DMA channel to generate interrupts.

e Thedriver is configured to clear al link status events from the ISR.

e Thedeviceis marked opened to protect the caller from other users of the same device.

The example below prints the number of GRSPW devicesto screen then opens, prints the current link settings and
closes the first GRSPW device present in the system.
int print_spw_|ink_properties()

voi d *devi ce;
int count, options, clkdiv;

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 83

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

count = grspw dev_count();
printf ("% GRSPW device present\n", count);

device = grspw_open(0);
if (!device)
return -1; /* Failure */

options = clkdiv = -1;
grspw_link_ctrl (device, &options, &clkdiv);
if (options & LI NKOPTS_AUTOSTART) {
printf("GRSPW: Link is in auto-start after start-up\n");

}
printf("GRSPW: C ock divisor reset value is %\ n", clkdiv);
grspw_cl ose(device);

return 0; /* success */

}

Table 18.4. gr spw_dev_count function declaration

Proto |i nt grspw dev_count (voi d)
About | Retrieve number of GRSPW devices registered to the driver.

Return |int. Number of GRSPW devices registered in system, zero if none.

Table 18.5. gr spw_open function declaration

Proto |void *grspw open(int dev_no)

About |Opensa GRSPW device. The GRSPW deviceisidentified by index. The returned value is used asin-
put argument to all functions operating on the device.

Param |dev_no [IN] Integer

Deviceidentification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
by gr spw_dev_count .

Return |Pointer. Status and driver's internal device identification.

NULL Indicates failure to open device. Failsif device semaphore fails or device already is
open.

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which GRSPW device.

Notes |May blocking until other GRSPW device operations complete.

Table 18.6. gr spw_cl ose function declaration

Proto |int grspw_close(void *d)

About |Closesa previously opened device. All DMA channels must have been stopped and closed
by the user prior to calling this function. See the documentation for gr spw_dnma_st op and
gr spw_dma_cl ose.

Param |d [IN] pointer
Device identifier. Returned from gr spw_open.

Return |Vaue. Description

0 Device was successfully closed, or already previously closed.
1 Failure dueto aDMA channel is open for this device.
-1 Failure due to invalid input arguments or unknown semaphore error.

18.3.2. Hardware capabilities

Thefeaturesand capabilities present in hardware might not be symmetricin asystemwith several GRSPW devices.
For example the two first GRSPW devices on the GR712RC implements RMAP whereas the others does not. The
driver can read out the hardware capabilities and present it to the user. The set of functionality are determined
at design time. In some system where two or more systems are connected together it is likely to have different
capabilities.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 84

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The capabilities are read out from the GRSPW 1/0 registers and written to the user in an easier accessible way.
See below function declarations for details.

Depending on the capabilities parts of the APl may be inactivated due to missing hardware support. See respective
section for details.

Thefunctiongr spw_r map_support and gr spw_port _count retrieves a subset of the hardware capabili-
ties. They are described in respective section.

Table 18.7. gr spw_hw_support function declaration

Proto |void grspw_hw support(void *d, struct grspw _hw sup *hw)

About | Read hardware capabilities of GRSPW device and write them in an easy to use format described by
the grspw_hw_sup data structure. The data structure is described by Table 18.8.

Param |d [IN] pointer
Device identifier. Returned from gr spw_open.
Param |hw[OUT] pointer

Address to where the driver will write the hardware capabilities. Pointer must point to memory and be
valid.

Return |None. Always success, input is not range checked.

Thegrspw_hw_sup datastructureisdescribed by the declaration and table below. It isused to describethe GRSPW
hardware capabilities.

/* Hardware Support in GRSPW Core */

struct grspw_hw sup {

char rmap; /* If RMAP in HWis available */

char rmap_crc; /* If RVAP CRC is available */

char rx_unalign; /* RX unaligned (byte boundary) access allowed*/
char nports; /* Nunber of Ports (1 or 2) */

char ndma_chans; /* Nunber of DMA Channels (1..4) */

char strip_adr; /* Hardware can strip ADR from packet data */
char strip_pid; /* Hardware can strip PID from packet data */
int hw.version; /* GRSPW Hardware Version */

char reserved[2];

b

Table 18.8. grspw_hw_sup data structure declaration

M ember Description
rmap 0 RMAP target functionality is not implemented in hardware.
1 RMAP target functionality isimplemented by hardware.
rmap_crc Non-zero if RMAP CRC isavailable in hardware.
rx_unalign Non-zero if hardware can perform RX unaligned (byte boundary) DMA accesses.
nports Number of SpaceWire portsin hardware. Values: 1 or 2.
ndma_chans Number of DMA Channelsin hardware. Values: 1,2,3 or 4.
strip_adr non-zero if GRSPW can strip ADR from packet data.
strip_pid non-zero if device can strip PID from packet data.
hw_version 27..16 The 12-bitsindicates GRLIB AMBA Plug & Play device ID of APB device.
Indicates if GRSPW, GRSPW2 or GRSPW2_DMA.
4.0 The 5 LSB bitsindicates GRLIB AMBA Plug & Play device version of APB
device. Indicates subversion of GRSPW or GRSPW?2.
reserved Not used. Reserved for future use.

18.3.3. Link Control

The SpaceWirelink is controlled and configured using the device API functions described below. The link control
functionality is described in Section 18.2.4.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 85

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 18.9. gr spw_| i nk_ct r| function declaration

Proto |void grspw_ link ctrl(void *d, int *options, int *stscfg, int *clk-
di v)

About |Read and configure link interface settings, such as clock divisor, link start and error options.
Param |d [IN] pointer

Deviceidentifier. Returned from gr spw_open.

Param |opt i ons [IO] pointer to bitmask

If opti ons pointsto -1, the link options are only read from the /O registers, otherwise they are up-
dated according to the value in memory pointed to by opt i ons. Use LINKOPTS * definesfor op-
t i on bit declarations.

Themasksfor LI NKOPTS_DI S _ON* arein effect even when the option LI NKOPTS_El RQis not

enabled.

Bitmask Description (prefixed LINKOPTS)
DISABLE Read/Set enable/disable link option.
START Read/Set start link option.

AUTOSTART | Read/Set enable/disable link auto-start option.

DIS ONERR |Read/Set disable DMA transmitters when a link error occurs option.

EIRQ Read/Set interrupt generation on link error option.

DIS ON_CE Read/Set disable link on credit error option.

DIS ON_ER Read/Set disable link on escape error option.

DIS ON_DE Read/Set disable link on disconnect error option.

DIS ON_PE Read/Set disable link on parity error option.

DIS ON_WE |Read/Set disable link on write synchronization error option (GRSPW1 only).
DIS ON_EE Read/Set disable link on early EOP/EEP error option.

Param |st scf g [IO] pointer to bitmask

If st scf g pointsto -1, the link status configuration is only read, otherwise it is updated according to
the value in memory pointer to by st scf g. Use LINKSTS * definesfor st scf g bit declarations.

The status configuration selects which link status bits to clear by the driver ISR. Bitsin the link status
register are cleared by the driver interrupt service routine if and only if the corresponding bit isset in
the st scf g parameter.

Bitmask Description (prefixed LINKSTS)

CE Read/Set clear status from ISR for credit error

ER Read/Set clear status from | SR for escape error

DE Read/Set clear status from ISR for disconnect error

PE Read/Set clear status from ISR for parity error

WE Read/Set clear status from ISR for write synchronization error (GRSPW1 only)
1A Read/Set clear status from ISR for invalid address

EE Read/Set clear status from ISR for early EOP/EEP

Param |cl kdi v [IQ] pointer to integer

If ¢l kdi v pointsto -1, the clock divisor fields are only read from the I/O registers, otherwiseit is up-
dated according to the value in memory pointed to by cl kdi v.

Return |None.

Table 18.10. gr spw_| i nk_st at e function declaration

‘Proto ‘spw_l ink state t grspw link state(void *d)

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 86

https://www.frontgrade.com/gaisler

FRONTGRADE
About |Read and return current SpaceWire link status.
Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.

Return |enum spw_link_state t. SpaceWire link status according to SpaceWire standard FSM state machine
numbering. The possible return values are listed below, all numbers must be prefixed with SPW_LS
declared by enum spw_link_state t.

Value Description.

ERRRST Error reset.

ERRWAIT Error Wait state.

READY Error Wait state.

CONNECTING Connecting state.

STARTED Stated state.

RUN Run state - link and DMA isfully operational.

Table 18.11. gr spw_I| i nk_st at us function declaration

Proto |unsigned int grspw. link status(void *d)
About |Reads and returns the current value of the GRSPW status register.

The status register bits can be cleared by calling gr spw_| i nk_st at us_cl r withreturn value as
parameter.

Param |d [IN] pointer
Device identifier. Returned from gr spw_open.
Return |unsigned int. Current value of the GRSPW Status Register.

Table 18.12. gr spw_| i nk_st at us_cl r function declaration

Proto |void grspw link status_clr(void *d, unsigned int nask)
About |Clear bitsin the GRSPW status register.

Themask can be the return value of functiongr spw_| i nk_st at us
Param |d [IN] pointer
Device identifier. Returned from gr spw_open.

Param |mask [IN] Integer
Status bitsto clear

Return |None.

18.3.4. Node address configuration

This part for the device API controls the node address configuration of the RMAP target and DMA channels. The
node address configuration functionality is described in Section 18.2.8. The data structures and functionsinvolved
in controlling the node address configuration are listed below.

struct grspw_addr_config {

/* lgnore address field and put all received packets to first
* DMA channel .
*/

int prom scuous;

/* Default Node Address and Mask */

unsi gned char def_addr;

unsi gned char def _mask;

/* DVA Channel custom Node Address and Mask */
struct {

char node_en; /* Enabl e Separate Addr */
unsi gned char node_addr; /* Node address */
unsi gned char node_nask; /* Node address nmask */

} dnme_nacfg[4];

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 87

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 18.13. grspw_addr_config data structure declaration

ous

promiscu- |Enable (1) or disable (0) promiscous mode. The GRSPW will ignore the address field and put all

received packetsto first DMA channel. See hardware manual for. Thisfield is also used to by the
driver indicate if the settings should be written and read, or only read. See function description.

def_addr GRSPW default node address.

def_mask |GRSPW default node address mask. This field shall the set to the inverse of the effective node

address mask.

dma_nacfg |DMA channel node address array configuration, see below field description. DMA channel N is

described by drma_nacf g[N] .

Field Description
node_en Enable (1) or disable (1) separate node address for DMA channel N (determined by
array index).

node addr |If separate node addressis enabled this option sets the node address for DMA chan-
nel N (determined by array index).

node_mask |If separate node addressis enabled this option sets the node address mask for DMA
channel N (determined by array index). Thisfield shall the set to the inverse of the
effective node address mask.

Table 18.14. gr spw_addr _ct r| function declaration

Proto |void grspw addr_ctrl(void *d, struct grspw addr_config *cfg)

About | Always read and optionally set the node addresses configuration. The GRSPW device is either config-
ured to have one single node address or arange of addresses by masking. The cf g input memory lay-
out is described by the grspw_addr_config data structure in Table 18.13. When using multiple DMA
channels one must assign each DMA channel a unique node address or a unique range by masking.
Each DMA channel isrepresented by theinput dma_nacf g[N .

Param |d [IN] pointer
Deviceidentifier. Returned from grspw_open.

Param |cf g [IO] pointer
Address to where the driver will read or write the address configuration from. If the pr omi scous
field is set to -1 the hardware is not written, instead the current configuration is only read and memory
content updated accordingly.

Return |None.

18.3.5. Time Code support

SpaceWire Time Code handling is controlled and configured using the device API functions described below. The
Time Code functionality is described in Section 18.2.5.

Table 18.15. gr spw_t c_ct r | function declaration

Proto |void grspw tc ctrl(void *d, int *options)

About | Always read and optionally set TimeCode settings of GRSPW device.
It is possible to enable/disable reception/transmission and interrupt generation of TimeCodes.
See TCOPTS _* definesfor available options.

Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.

Param |opt i ons [IO] pointer to bit-mask
If options pointsto -1, the TimeCode optionsis only read from the I/O registers, otherwise it is updat-
ed according to the value in memory pointed to by options. Use TCOPTS * defines for option bit dec-
larations.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 88

https://www.frontgrade.com/gaisler

FRONTGRADE
Value Description

EN_RXIRQ |When 1 enable, when zero disable TimeCode receive interrupt generation (affects TQ
and |E bit in control register).

EN_TX Enable/disable TimeCode transmission (affects TT bit in control register).
EN_RX Enable/disable TimeCode reception (affects TR bit in control register).
Return |None.

Table 18.16. gr spw_t c_t x function declaration

Proto |void grspw tc tx(void *d)

About | Generates a TimeCode Tick-1n.

Param |d [IN] pointer

Deviceidentifier. Returned from gr spw_open.

Return |None.

Table 18.17. gr spw_t c_i sr function declaration

Proto |void grspw tc_isr(void *d, void (*tcisr)(void *data, int tc), void
*dat a)
About |Assignsa Interrupt Service Routine (1SR) to handle TimeCode interrupt events. The ISR is called

from the GRSPW device's interrupt handler, thus the isr is called in interrupt context and care needs to
be taken.

The ISR is called when a Tick-Out event has happened and an interrupt has been generated. The ISR
is called with a custom argument dat a and the current value of the GRSPW TC register. The TC reg-
ister contains TimeCode control flags and counter.

The GRSPW interrupt handler always clears the GRSPW statusfield. It is performed after the ISR has
been called.

Note that even if the Tick-Out interrupt generation has not been enabled the ISR may still be called if
other GRSPW interrupts are generated and the GRSPW status indicates that a Tick-Out has been re-
celved.

Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.

Param |t ci sr [IN] pointer to function

If argument isNULL the Tick-Out ISR call is disabled. Otherwise the pointer will be used in afunc-
tion call from interrupt context when a Tick-Out event is detected.

Param |dat a [IN] pointer to custom data
Thisvalueis given asthefirst argument to the ISR.

Return |None.

Table 18.18. gr spw_t c¢_t i nme function declaration

Proto |void grspw tc_time(void *d, int *tine)

About |Optionally writes and always reads the current TimeCode control flags and counter from hardware
registers. The values are written into the address pointedto by t i ne.

Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.
Param |t i me [IO] pointer to bit-mask

If time pointsto -1, the TimeCode options are only read from the 1/0 registers. Otherwise hardware
is updated according to the value in memory pointed to by time before reading the hardware registers.
Use TCOPTS * defines for time bit declarations.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 89

https://www.frontgrade.com/gaisler

rRONTGRADE
Gaisler
bits Description
5.0 The 6 LSB bits reads/writes the time control flags.
7.6 The 2 bits reads/writes the time counter value.
Return |None.

18.3.6. Port Control

The SpaceWire port selection configuration, hardware support and current hardware status can be accessed using
thedevice API functions described below. The SpaceWire port support functionality isdescribed in Section 18.2.4.

In cases where only one SpaceWire port isimplemented this part of the API can safely be ignored. The functions
till deliver consistent information and error code failures when forcing Port1, however provides no real function-

dlity.

Table 18.19. gr spw_port _ctrl| function declaration

Proto |int grspw port ctrl(void *d, int *port)

About | Alwaysread and optionally set port control settings of GRSPW device. The configuration determines
how the hardware selects which SpaceWire port that is used. Thisis an optional feature in hardware to
support one or two SpaceWire ports. An error isreturned if operation not supported by hardware.

Param |d [IN] pointer
Device identifier. Returned from gr spw_open.

Param [port [IO] pointer to bit-mask

The port configuration isfirst written if por t does not point to -1. The port configuration is always
read from the /O registers and stored in the por t address.

Vaue |Description

-1 The current port configuration is read and stored into the por t address.
0 Force to use Port0.
1 Force to use Port1.

>1 Hardware auto select between PortO or Port1.

Return |Vaue. Description

0 Request successful.

-1 Request failed. Portl is not implemented in hardware.

Table 18.20. gr spw_port _count function declaration

Proto |int grspw port_count(void *d)

About |Reads and returns number of ports that hardware supports.
Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.

Return |int. Number of portsimplemented in hardware.
Vaue |Description

1 One SpaceWire port isimplemented in hardware. In thiscasegr spw_port _ctr!| function
has no effect and gr spw_port _act i ve alwaysreturnsO.

2 Two SpaceWire ports are implemented in hardware.

Table 18.21. gr spw_port _act i ve function declaration

Proto |int grspw port_active(void *d)
About |Reads and returns the currently actively used SpaceWire port.
Param |d [IN] pointer

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 90

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Deviceidentifier. Returned from gr spw_open.

Return |int. Currently active SpaceWire port
Vaue |Description

0 SpaceWire portO is active.

1 SpaceWire portl is active.

18.3.7. RMAP Control

The device API described below is used to configure the hardware supported RMAP target. The RMAP support
is described in Section 18.2.6.

When RMAP CRC isimplemented in hardwareit can be used to generate and append a CRC on aper packet basis.
It is controlled by the DMA packet flags. Header and data CRC can be generated individually. See Table 18.32
for more information.

Table 18.22. gr spw_r map_support function declaration

Proto |int grspw rmap_support(void *d, char *rmap, char *rnmap_crc)

About | Readsthe RMAP hardware support of a GRSPW device. It is equivaent to use the
gr spw_hw_support function to get the RMAP functionality present in hardware.

Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.

Param |r map [OUT] pointer
If not NULL the RMAP configuration is stored into the address of r map.
Vaue |Description

0 RMAP target is not implemented in hardware.

1 RMAP target isimplemented in hardware.

Param |r map_cr c [OUT] pointer

If not NULL the RMAP configuration is stored into the address of r nap.
Value |Description

0 RMAP CRC algorithm is not implemented in hardware

1 RMAP CRC agorithm isimplemented in hardware

Return |None.

Table 18.23. gr spw_r map_ct r| function declaration

Proto |int grspw rmap ctrl(void *d, int *options, int *dstkey)

About |Read and optionally write RMAP configuration and SpaceWire destination key value. This function
controls the GRSPW hardware implemented RMAP functionality.

Set opt i on to NULL not to read or write RMAP configuration. Set dst key to NULL to not read or
write RMAP destination key. Setting both to NULL results in no operation.

Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.

Param |opt i ons [IO] pointer to bit-mask

The RMAP configuration isfirst written if opt i ons does not point to -1. The RMAP configuration
isalways read from the 1/O registers and stored in the opt i ons address. See RMAPOPTS_* defini-
tionsfor bit declarations.

Bit Description
EN_RMAP |Enable (1) or Disable (0) RMAP target handling in hardware.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 91

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

EN_BUF Enable (0) or Disable (1) RMAP buffer. Disabling ensuresthat all RMAP requests
are processed in the order they arrive.

Param |dst key [IO] pointer

The SpaceWire 8-bit destination key isfirst written if dst key does not point to -1. The destination
key configuration is always read from the I/O registers and stored in the dst key address.

Return |int. Status

0 Request successful.
-1 Failed to enable RMAP handling in hardware. Not present in hardware.

18.3.8. Statistics

Thedriver counts statistics at certain events. The GRSPW device driver counters can be read out using the device
API. The number of interrupts serviced and different kinds of link error can be obtained.

Statistics related to a specific DMA channel activity can be accessed using the DMA channel API.

The read function is not protected by locks. A GRSPW interrupt could cause the statistics to be out of sync. For
exampl e the number of link parity errors may not match the number of interrupts, by one.

struct grspw core_stats {

int
int
int
int
int
int
int
int

h

irg_cnt;

err_credit;

err_eeop;

err_addr;

err_parity;

err_di sconnect;

err_escape;

err_wsync; /* only in GRSPW */

Table 18.24. grspw_core_stats data structure declaration

irg_cnt Number of interrupts serviced for this GRSPW device.

err_credit Number of credit errors experienced for this GRSPW device.

err_eeop Number of Early EOP/EEP errors experienced for this GRSPW device.

err_addr Number of invalid address errors experienced for this GRSPW device.

err_parity Number of parity errors experienced for this GRSPW device.

err_disconnect | Number of disconnect errors experienced for this GRSPW device.

err_escape Number of escape errors experienced for this GRSPW device.

err_wsync Number of write synchronization errors experienced for this GRSPW device. Thisisonly ap-

plicable for GRSPW cores.

Table 18.25. gr spw_st at s_r ead function declaration

Proto |void grspw stats read(void *d, struct grspw core stats *sts)

About |Reads the current driver statistics collected from earlier events by GRSPW device and driver usage.

The statistics are stored to the address given by the second argument. The layout and content of the
statistics are defined by the grspw_core_stats data structure described in Table 18.24.

Note that the snapshot is taken without lock protection, as a consequence the statistics may not be syn-
chronized with each other. This could be caused if the function isinterrupted by athe GRSPW inter-
rupt.

Param |d [IN] pointer

Deviceidentifier. Returned from gr spw_open.

Param |st s [OUT] pointer

If NULL no operating is performed. Otherwise a snapshot of the current driver statistics are copied to
this user provided buffer.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 92

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The layout and content of the statistics are defined by the grspw_core_stats data structure described in
Table 18.24.

Return |None.

Table 18.26. gr spw_st at s_cl r function declaration

Proto |void grspw stats clr(void *d)

About |Resetsthe driver GRSPW device statistical countersto zero.
Param |d [IN] pointer

Deviceidentifier. Returned from gr spw_open.

Return |None.

18.4. DMA interface

This section covers how the driver can be interfaced to an application to send and transmit SpaceWire packets
using the GRSPW hardware.

GRSPW2 and GRSPW2_DMA devices supports more than one DMA channel. The device channel zero isaways
present.

18.4.1. Opening and closing DMA channels

Thefirst step before any SpaceWire packets can be transferred isto open aDMA channel to be used for transmis-
sion. As described in the device API Section 18.3.1 the GRSPW device the DMA channel belongs to must be
opened and passed onto the DMA channel open routines.

The number of DMA channels of a GRSPW device can obtained by calling gr spw_hw_support .

An opened DMA channel can not be reopened unless the channel is closed first. When opening a channel the
channel is marked opened by the driver. This procedure is thread-safe by protecting from other threads by using
the GRSPW driver's semaphore lock. The semaphore is used by all GRSPW devices on device opening, closing
and DMA channel opening and closing.

During opening of a GRSPW DMA channel the following steps are taken:
* DMA channel I/O registers are initialized to a state where most are zero.
* Resources like semaphores used for the DMA channel implementation itself are allocated and initialized.
e The channel is marked opened to protect the caller from other users of the DMA channel.

Below is a partial example of how the first GRSPW device's first DMA channel is opened, link is started and a
packet can be received.

int spw_receive_one_packet ()
{
voi d *devi ce;
voi d *dmaO;
int count, options, clkdiv;
spw_link_state_t state;
struct grspw_list |st;

device = grspw_open(0);
if (!device)
return -1; /* Failure */

/* Start Link */

options = LI NKOPTS_ENABLE | LINKOPTS_START; /* Start Link */

clkdiv = (9 << 8) | 9; /* dock Divisor factor of 10 (100MHz input) */
grspw_link_ctrl (device, &options, &clkdiv);

/* wait until link is in run-state */
do {

state = grspw_|ink_state(device);

} while (state !'= SPWLS RUN);

/* Open DMA channel */
dma0 = grspw_dne_open(device, 0);
if (!dme0) {

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 93

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

grspw_cl ose(device);
return -2;

}

/* Initialize and activate DVA */
if (grspw_dma_start(dma0)) {
grspw_dne_cl ose(dma0) ;
grspw_cl ose(device);
return -3;

}
I* o0 x

/* Prepare driver with RX buffers */
grspw_dna_rx_prepare(dnma0, 1, &preinited_rx_unused_buf_list0, NPKTS);

/* Start sending a nunber of SpaceWre packets */
grspw_dma_t x_send(dma0, 1, &preinited_tx_send_buf_list);

/* Receive at |east one packet */

do {

/* Try to receive as many packets as possible */
count = -1;

grspw_dne_rx_recv(dnmaO, 0, & st, &count);

} while (count <= 0);

printf("GRSPW. DMAO: Received %l packets\n", count);
1* 0]

grspw_dma_cl ose(dma0) ;

grspw_cl ose(device);

return 0; /* success */

}

Table 18.27. gr spw_dma_open function declaration

Proto |void *grspw _dma_open(void *d, int chan_no)

About |OpensaDMA channel of a previously opened GRSPW device. The GRSPW deviceisidentified by
its device handle d and the DMA channel isidentified by index chan_no.

The returned value is used as input argument to al functions operating on the DMA channel.

Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.

Param |chan_no [IN] Integer

DMA channel identification number. DMA channels are indexed by 0, 1, 2 or 3. Other input values
cause NULL to be returned. The index must be equal or greater than zero, and smaller than the num-
ber of DMA channels reported by gr spw_hw_support .

Return |Pointer. Status and driver'sinternal device identification.
Value Description

NULL Indicates failure to DMA channel. Fails if device semaphore operation fails, DMA channel
does not exists, DMA channel already has been opened or that DMA channel resource al-
location or initialization fails.

Pointer | Pointer to internal driver structure. Should not be dereferenced by user. Input to all DMA
channel API functions, identifies which DMA channel.

Notes |May blocking until other GRSPW device operations complete.

Table 18.28. gr spw_dma_cl ose function declaration

Proto |int grspw dma_cl ose(void *c)

About |Closes apreviously opened DMA channel. The specified DMA channel must be in stopped state be-
fore calling this function.

Prior to closing the user isresponsible for calling gr spw_dma_st op to stop on-going DMA trans-
fers and interrupts, free DMA channels resources and to unblock tasks waiting for RX/TX events on
this DMA channel. Blocked tasks must have exited the device driver otherwise an error code isre-
turned.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 94

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

If threads have been blocked within DM A operations they will be woken up and
gr spw_dma_cl ose waits N ticks until they have returned to the caller with an error return value.

Param |c [IN] pointer
DMA channel identifier. Returned from gr spw_dma_open.
Return |int. Return code as indicated below.

Value Description
0 Success.
1 Failure due to DMA channel is active (started) or tasks may be blocked within the driver

by the RX/TX wait interface of this specific device.

-1 Failure due to invalid input arguments or unknown semaphore error.

18.4.2. Starting and stopping DMA operation

The start and stop operational modes are described in Section 18.2.14. The functions described below are used
to change the operational mode of a DMA channels. A summary of which DMA API functions are affected are
listed in Table 18.29, see function description for details on limitations.

Table 18.29. functions available in the two operational modes

Function Stopped Started
gr spw_dma_open N/A N/A
grspw_dma_cl ose Yes Yes
grspw_dma_start Yes No
gr spw_dna_st op No Yes
grspw_dma_rx_recv Yes, with limitations, see |Yes
Section 18.4.6

grspw_dma_r x_prepare Y es, with limitations, see |Yes
Section 18.4.6

gr spw_dma_r x_count Yes, with limitations, see |Yes
Section 18.4.7

grspw_dnma_rx_wai t No Yes

grspw_dma_t x_send Yes, with limitations, see |Yes
Section 18.4.5

grspw dma_t x_reclaim Yes, with limitations, see | Yes
Section 18.4.5

grspw_dma_t x_count Yeswith limitations, see |Yes
Section 18.4.7

grspw _dnma_t x_wai t No Yes

grspw_dma_config Yes No

grspw_dma_config_read Yes Yes
grspw _dma_stats_read Yes Yes
grspw dnma_stats _clr Yes Yes

Table 18.30. gr spw_dnma_st art function declaration

Proto |int grspw dma_start(void *c)

About |Starts DMA operational mode for the DMA channel indicated by the argument. After thisstepitis
possible to send and receive SpaceWire packets. If the DMA channel already isin started mode, no
action will be taken.

The start routine clears and initializes the following:

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 95

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

* DMA descriptor rings.

* DMA queues.

o Statistic counters.

* Interrupt counters

 1/O registersto match DMA configuration

* |Interrupt

« DMA Status

e Enablesthereceiver
Even though the receiver is enabled the user is required to prepare empty receive buffers after this
point, seegr spw_dma_r x_pr epar e. The transmitter is enabled when the user provides send
buffersthat ends up in the TX SCHED queue, seegr spw_dma_t x_send.

Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.

Return |int. Always returns zero.

Table 18.31. gr spw_dma_st op function declaration

Proto |void grspw dnma_stop(void *c)

About |Stops DMA operational mode for the DMA channel indicated by the argument. The transmitter will
abort ongoing transfers and the receiver disabled.

Blocked tasks within the DMA channel will be woken up and return to caller with an error indica-
tion. Thiswill cause the stop function to wait in N ticks until the blovked tasks have exited the driver.
When no tasks have previously been blocked this function is not blocking either.

Packetsin the RX READY, RX SCHED queues will be moved to the RX RECV queue. The
RXPKT_FLAG_RX packet flag is used to signal if the packet was received or just moved. Similar-
ly, the packets in the TX SEND and TX SCHED queues are moved to the TX SENT queue and the
TXPKT_FLAG_TX marksif the packet actually was transferred or not.

Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.

Return |None.

18.4.3. Packet buffer description

The GRSPW packet driver describes packets for both RX and TX using acommon memory layout defined by the
data structure grspw_pkt. It is described in detail below.

There are differencesin which fields and bits are used between RX and TX operations. Thebitsusedinthef | ags
field are defined different. When sending packets the user can optionally provide two different buffers, the header
and data. The header can maximally be 256Bytes due to hardware limitations and the data supports 24-bit length
fields. For RX operations hdr and hl en are not used. Instead all datareceived is put into the data area.

struct grspw_pkt {
struct grspw _pkt *next; /* Next packet in list. NULL if |ast packet */

unsi gned int pkt_id; /* User assigned ID (not touched by driver) */

unsi gned short flags; /* RX/TX Options and status */

unsi gned char reserved; /* Reserved, nust be zero */

unsi gned char hlen; /* Length of Header Buffer (only TX) */

unsi gned int dlen; /* Length of Data Buffer */

voi d *dat a; /* 4-byte or byte aligned depends on HW*/

voi d *hdr; /* 4-byte or byte aligned depends on HW (only TX) */

h

Table 18.32. grspw_pkt data structure declaration

next The packet structure can be part of alinked list. Thisfield is used to point out the next packet in the
list. Set to NULL if this packet isthelast in the list or asingle packet.

pkt_ id |User assigned ID. Thisfield is never touched by the driver. It can be used to store a pointer or other
datato help implement the user buffer handling.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 96

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

flags |RX/TX transmission options and flags indicating resulting status. The bits described below isto be
prefixed with TXPKT_FLAG_or RXPKT_FLAG_ in order to match the TX or RX options defini-
tions declared by the driver's header file.

Bits TX Description (prefixed TXPKT_FLAG)

NOCRC_MASK |Indicatesto driver how many bytes should not be part of the header CRC calcula
tion. 0 to 15 bytes can be omitted. Use NOCRC _LENN to select a specific length.

IE Enable (1) or Disable (0) IRQ generation on packet transmission completed.

HCRC Enable (1) or disable (0) Header CRC generation (if CRC isavailablein hard-
ware). Header CRC will be appended (one byte at end of header).

DCRC Enable (1) or disable (0) Data CRC generation (if CRC is available in hardware).
Data CRC will be appended (one byte at end of packet).

X I's set by the driver to indicate that the packet was transmitted. This does no signal

a successful transmission, but that transmission was attempted, the LINKERR bit
needs to be checked for error indication.

LINKERR Set if alink error was exhibited during transmission of this packet.

Bits RX Description (prefixed RXPKT_FLAG)

IE Enable (1) or Disable (0) IRQ generation on packet reception completed.
TRUNK Set if packet was truncated.

DCRC Set if data CRC error detected (only valid if RMAP CRC is enabled).
HCRC Set if header CRC error detected (only valid if RMAP CRC is enabled).
EEOP Set if an End-of-Packet error occurred during reception of this packet.
RX Marks if packet was received or not.

hlen Header length. The number of bytes hardware will transfer using DMA from the address indicated by
the hdr pointer. Thisfield is not used by RX operation.

dien Data payload length. The number of bytes hardware DMA read or written from/to the address indicat-
ed by the data pointer. On RX thisis the complete packet data received.

data Header Buffer Address. DMA will read from this. The address can be 4-byte or byte aligned depend-
ing on hardware.

hdr Header Buffer Address. DMA will read hl en bytes from this. The address can be 4-byte or byte
aligned depending on hardware. Thisfield is not used by RX operation.

18.4.4. Blocking/Waiting on DMA activity

Blocking and polling mode are described in the Section 18.2.12. The functions described bel ow are used to set up
RX or TX wait conditions and blocks the calling thread until condition evaluates true.

Table 18.33. gr spw_dma_t x_wai t function declaration

Proto |int grspw dma tx wait(void *c, int send cnt, int op, int sent_cnt,
int timeout)

About |Block until send_cnt or fewer packets are queued in TX "Send and Scheduled" queue, op (AND or
OR), sent _cnt or more packet "have been sent" (Sent Q) condition is met.

If alink error occurs and the "Disable on Link error" is defined, this function will also return to caler.
The timeout argument is used to return after t i meout ticks, regardless of the other conditions. If
timeout is zero, the function will wait forever until the condition is satisfied.

If IRQ of TX descriptors are not enabled conditions are never checked, this may hang infinitely unless
atimeout has been specified.

Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 97

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Param [send_cnt [IN] int
Sets the condition's number of packetsin TX SEND queue.

Param |op [IN] boolean

Condition operation. Set to zero for AND or one for OR.
Param |sent _cnt [IN]int

Sets the condition's number of packetsin TX SENT queue.
Param |ti nmeout [IN]int

Sets the timeout in number of system clock ticks. The operating system's semaphore service is used to
implement the timeout functionality. Set to zero to disable timeout, negative value isinvalid.

Return |Int. See return code below.

Value |Description

-1 Error.

0 Returning to caller because specified conditions are now fullfilled.
1 DMA stopped.

2 Timeout, conditions are not met.

3 Another task is already waiting. Serviceis Busy.

Table 18.34. gr spw_dna_r x_wai t function declaration

Proto |int grspw dma_rx_wait(void *c, int recv_cnt, int op, int ready_cnt,
int timeout)

About |Block until r ecv_cnt or more packets are queued in RX RECV queue, op (AND or OR),
ready_cnt or fewer packet buffers are availablein the RX "READY and Scheduled" queues, con-
dition is met.

If alink error occurs and the "Disable on Link error" is defined, this function will also return to caller,
however with an error. Thet i meout argument is used to return after t i neout number of ticks, re-
gardless of the other conditions. If timeout is zero, the function will wait forever until the condition is
satisfied.

If IRQ of RX descriptors are not enabled conditions are never checked, this may hang infinitely unless
atimeout has been specified.

Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.

Param |recv_cnt [IN]int
Sets the condition's number of packetsin RX RECV queue.

Param |op [IN] boolean
Condition operation. Set to zero for AND or one for OR.

Param |ready_cnt [IN]int
Sets the condition's number of packetsin RX READY queue.

Param |ti nmeout [IN]int

Sets the timeout in number of system clock ticks. The operating system's semaphore service is used to
implement the timeout functionality. Set to zero to disable timeout, negative valueisinvalid.

Return |Int. See return code below.
Value |Description

-1 Error.

Returning to caller because specified conditions are now fullfilled.
DMA stopped.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 98

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Timeout, conditions are not met.

Another task is aready waiting. Serviceis Busy.

18.4.5. Sending packets

Packets are sent by adding packets to the SEND queue. Depending on the driver configuration and usage the
packets eventually are put into SCHED queue where they will be assigned a DMA descriptor and scheduled for
transmission. After transmission has compl eted the packet buffers can be retrieved to view the transmission status
and to be able to reuse the packet buffers for new transfers. During the time the packet is in the driver it must
not be accessed by the user.

Transmission of SpaceWire packets are described in Section 18.2.1.

In the below example Figure 18.4 three SpaceWire packets are scheduled for transmission. The count should
be set to three. The second packet is programmed to generate an interrupt when transmission finished, GRSPW
hardware will also generate aheader CRC using the RMAP CRC algorithm resulting in a 16 byteslong SpaceWire
packet.

pkts (input)
head = & p0 </_’ next =NULL
- flags=0
tail = &p2 _ _
next = &pl next = &p2 hlen=0
flags=0 flags= dlen=4
hlen =0 FLAG_IE | DATA2 PAYLOAD
FLAG_HCRC data=&d2
dlen=5 a | b | c | d
hlen=7 hdr = NULL
data=&d0
dlen=8
hdr = NULL DATA1PAYLOAD
data=&d1
ar = &ht a[bfcfd]e]f[q]n
—
HEADER1 (without CRC)
DATAO PAYLOAD

ajelcldfe]t]o

a|b|c|d|e

Figure 18.4. TX packet description pkt s inputtogr spw_t x_dna_send
The below tables describe the functions involved in initiating and completing transmissions.

Table 18.35. gr spw_dma_t x_send function declaration

Proto |int grspw dma_tx_send(void *c, int opts, struct grspw_|ist *pkts,
int count)

About | Schedulesalist of packets for transmission at some point in future. The packets are put to the SEND
queue of the driver. Depending on the input arguments a selection of the below steps are performed:

1. Move transmitted packetsto SENT List (SCHED->SENT).
2. Add the requested packetsto the SEND List (USER->SEND)
3. Schedule as many packets as possible for transmission (SEND->SCHED)

Skipping both step 1 and 3 may be useful when IRQ is enabled, then the worker thread will be respon-
sible for handling descriptors.

The GRSPW transmitter is enabled when packets are added to the TX SCHED queue.

The fastest solution in retrieving sent TX packets and sending new framesisto call:
1. grspw_dma tx_reclaim(opts=0)
2. grspw_dma_tx_send(opts=1)

NOTE: the TXPKT_FLAG_TX flag must not be set in the packet structure.

Param |c [IN] pointer

DMA channel identifier. Returned from gr spw_dma_open.
Param |opt s [IN] Integer bit-mask

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 99

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The above steps 1 and/or 3 may be skipped by setting opt s argument according the description be-
low.

Bit Description

0 Set to 1 to skip Step 1.
1 Set to 1 to skip Step 3.
Param |pkt s [IN] pointer

A linked list of initialized SpaceWire packets. The grspw_list structure must be initialized so that
head pointsto thefirst packet andt ai | pointsto the |ast.

Call thisfunction with pkt s set to NULL to avoid step 2. Just doing step 1 and 3 as determined by
opt s isnormally performed in polling-mode.

The layout and content of the packet is defined by the grspw_pkt data structureis described in Ta-
ble 18.32. Note that TXPKT_FLAG_TX of thef | ags field must not be set.

pkt s isnot cleared by this function.

Param |count [IN] integer
Number of packetsin the packet list.
Return | Status. See return codes below

Vaue |Description

-1 Error occurred, DMA channel may not be valid.

0 Successfully added pktsto TX SEND/SCHED list.
1 DMA stopped. No operation.

Notes |Thisfunction performs no operation when the DMA channel is stopped.

Table 18.36. gr spw_dma_t x_r ecl ai mfunction declaration

Proto |int grspw dma tx reclaimvoid *c, int opts, struct grspw.|ist *pkts,
int *count)

About |Reclaim TX packet buffers that has previously been scheduled for transmission with
grspw_dma_t x_send. The packetsin the SENT queue are moved to the pkt s packet list. When
the move has been completed the packet can safely be reused again by the user. The packet structures
have been updated with transmission status to indicate transfer failures of individual packets. Depend-
ing on the input arguments a selection of the below steps are performed:

1. Move transmitted packetsto SENT List (SCHED->SENT).

2. Moveall SENT List to pktslist (SENT->USER).

3. Schedule as many packets as possible for transmission (SEND->SCHED)
Skipping both step 1 and 3 may be useful when IRQ is enabled, then the worker thread will be respon-
sible for descriptor processing. Skipping only step 2 can be useful in polling mode.

The fastest solution in retrieving sent TX packets and sending new framesisto call:
1. grspw_dma tx_reclaim(opts=0)
2. grspw_dma tx_send(opts=1)

NOTE: the TXPKT_FLAG_TX flag indicatesif the packet was transmitted.

Param |c [IN] pointer

DMA channel identifier. Returned from gr spw_dma_open.
Param |opt s [IN] Integer bit-mask

The above steps 1 and/or 3 may be skipped by setting opt s argument according the description be-
low.

Bit Description
0 Set to 1 to skip Step 1.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 100

https://www.frontgrade.com/gaisler

1 ’SettoltoskipStepS.

rRONTGRADE

Gaisler

Param |pkt s [OUT] pointer

Thelist will be initialized to contain the SpaceWire packets moved from the SENT queue to the pack-
et list. The grspw_list structure will be initialized so that head pointsto the first packet, t ai | points
to thelast and the last packet (tail) next pointer is NULL.

Call thisfunction with pkt s set to NULL to avoid step 2. Just doing step 1 and 3 as determined by
opt s isnormally performed in polling-mode.

The layout and content of the packet is defined by the grspw_pkt data structureis described in Ta-
ble 18.32. Note that TXPKT_FLAG_TX of thef | ags field indicatesif the packet was sent of not.
In case of DMA being stopped one can use this flag to see if the packet was transmitted or not. The
TXPKT_FLAG_LINKERR indicatesif alink error occurred during transmission of the packet, re-
gardlessthe TXPKT_|

FLAG_TX is set to indicate packet transmission attempt.

Param |count [IO] pointer

Number of packetsin the packet list.

Vaue |Input Description

NULL |Move al packetsfrom the SENT queue to the packet list.

-1 Move all packets from the SENT queue to the packet list.
0 No packets are moved. Same asif pktsis NULL.
>0 Move a maximum of * count' packets to the packet list.

Value |Output Description

NULL [Nothing performed.

others |™*count' is updated to reflect number of packetsin packet list.

Vaue |Description

Return | Status. See return codes below

-1 Error occurred, DMA channel may not be valid.
0 Successful. pktslist filled with all packets from sent list.
1 Indicates that DMA is stopped. Same as 0 but step 1 and 3 were never done.

Notes |Thisfunction can only do step 1 and 2 to allow read out sent packets when in stopped mode. Thisis
useful when alink goes down and the DMA activity is stopped by user of by driver automatically.

18.4.6. Receiving packets

Packets are received by adding empty/free packetsto the RX READY queue. Depending on the driver configura-
tion and usage the packets eventually are put into RX SCHED queue wherethey will be assigned aDMA descriptor
and scheduled for reception. After a packet is received into the buffer(s) the packet buffer(s) can be retrieved to
view the reception status and to be able to reuse the packet buffers for new transfers. During the time the packet
isin the driver it must not be accessed by the user.

Reception of SpaceWire packets are described in Section 18.2.1.

In the Figure 18.5 example three SpaceWire packets are received. The count parametersis set to three by the
driver to reflect the number of packets. The first packet exhibited an early end-of-packet during reception which
also resulted in header and data CRC error. All header points and header lengths have been set to zero by the user
since they are no used, however the values in those fields does not affect the RX operations. The RX flag is set
to indicate that DMA transfer was performed.

RCC-UM
Dec 2023, Version 1.3.2

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
101

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

pkts (input)
head = & p0 next = NULL
=22 _—— | flags=
next = &pl next = & p2 FLAG_RX
flags= flags= hlen =0
FLAG_RX | FLAG_RX prp—
a" =
FLAG_EEOP| hlen=0 DATA2PAYLOAD
FLAG_DCRC| data=&d2
dien=8 a|bfc]d
FLAG_HCRC hdr = NULL | | |
hlen=0 data=&d1l
dlen=5 hdr = NULL DATA1PAYLOAD
data = &d0 a|b|0|d|e|f|9|h
—»DATAOPAYLOAD
hdr = NULL

a|b|c|d|e

Figure 18.5. RX packet output fromgr spw_r x_dma_r ecv
The below tables describe the functions involved in initiating and completing transmissions.

Table 18.37. gr spw_dma_r x_pr epar e function declaration

Proto |int grspw dma_rx_prepare(void *c, int opts, struct grspw.|ist *pkts,
int count)

About |Add more RX packet buffers for future for reception. The received packets can later be read out with
gr spw_dma_r x_r ecV. The packets are put to the READY queue of the driver. Depending on the
input arguments a selection of the below steps are performed:

1. Move Received packetsto RECV List (SCHED->RECV).

2. Addthepkt packet buffersto the READY List (USER->READY).

3. Schedule as many packets as possible (READY ->SCHED).
Skipping both step 1 and 3 may be useful when IRQ is enabled, then the worker thread will be respon-
sible for handling descriptors. Skipping only step 2 can be useful in polling mode.

The fastest solution in retrieving received RX packets and preparing new packet buffers for future re-
ceive, isto cal:

1. grspw_dma rx_recv(opts=2, &recvlist) (Skip step 3)
2. grspw_dma rx_prepare(opts=1, &fredlist) (Skip step 1)
NOTE: the RXPKT_FLAG_RX flag must not be set in the packet structure.
Param |c [IN] pointer
DMA channel identifier. Returned from gr spw_dma_open.
Param |opt s [IN] Integer bit-mask

The above steps 1 and/or 3 may be skipped by setting opt s argument according the description be-
low.

Bit Description

0 Set to 1 to skip Step 1.
1 Set to 1 to skip Step 3.
Param |pkt s [IN] pointer

A linked list of initialized SpaceWire packets. The grspw_list structure must be initialized so that
head pointsto thefirst packet andt ai | pointsto thelast.

Call thisfunction with pkt s set to NULL to avoid step 2. Just doing step 1 and 3 as determined by
opt s isnormally performed in polling-mode.

The layout and content of the packet is defined by the grspw_pkt data structureis described in Ta-
ble 18.32. Note that RXPKT_FLAG_RX of thef | ags field must not be set.

pkt s isnot cleared by this function.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 102

https://www.frontgrade.com/gaisler

FRONTGRADE
Param [count [IN] integer
Number of packets in the packet list.
Return | Status. See return codes below

Value |Description

-1 Error occurred, DMA channel may not be valid.

0 Successfully added pktsto RX READY/SCHED list.
1 DMA stopped. No operation.

Notes |Thisfunction performs no operation when the DMA channel is stopped.

Table 18.38. gr spw_dma_r x_r ecv function declaration

Proto |int grspw dma_rx_recv(void *c, int opts, struct grspw.list *pkts,
int *count)

About |Get received RX packet buffers that has previously been scheduled for reception with
gr spw_dma_r x_pr epar e. The packetsin the RX RECV queue are moved to the pkt s pack-
et list. When the move has been completed the packet(s) can safely be reused again by the user. The
packet structures have been updated with reception status to indicate transfer failures of individual
packets, received packet length. The header pointer and length fields are not touched by the driver, all
dataends up in the data area. Depending on the input arguments a selection of the below steps are per-
formed:

1. Move scheduled packetsto RECV List (SCHED->RECV).

2. Moveal RECV packet to the callerslist (RECV->USER).

3. Schedule as many free packet buffers as possible (READY ->SCHED).
Skipping both step 1 and 3 may be useful when IRQ is enabled, then the worker thread will be respon-
sible for descriptor processing. Skipping only step 2 can be useful in polling mode.

The fastest solution in retrieving received RX packets and preparing new packet buffers for future re-
ceive, istocdl:

1. grspw_dma rx_recv(opts=2, &recvlist) (Skip step 3)

2. grspw_dma rx_prepare(opts=1, &freelist) (Skip step 1)
NOTE: the RXPKT_FLAG_RX flag indicatesif a packet was received, thusif the datafield contains
new valid data or not.

Param |c [IN] pointer
DMA channel identifier. Returned from gr spw_dma_open.
Param |opt s [IN] Integer bit-mask

The above steps 1 and/or 3 may be skipped by setting opt s argument according the description be-
low.

Bit Description
0 Set to 1 to skip Step 1.
1 Set to 1 to skip Step 3.
Param |pkt s [OUT] pointer

The list will beinitialized to contain the SpaceWire packets moved from the RECV queue to the pack-
et list. The grspw_list structure will be initialized so that head points to the first packet, t ai | points
to the last and the last packet (tail) next pointer isNULL.

Cdll thisfunction with pkt s set to NULL to avoid step 2. Just doing step 1 and 3 as determined by
opt s isnormally performed in polling-mode.

The layout and content of the packet is defined by the grspw_pkt data structureis described in Ta
ble 18.32. Note that RXPKT_FLAG_RX of thef | ags field indicatesif the packet was received or
not. In case of DMA being stopped one can use this flag to see if the packet was received or not. The
TRUNK, DCRC, HCRC and EEOP flags indicates if an error occurred during reception of the packet,
regardlessthe RXPKT_FLAG_RX is set to indicate packet reception attempt.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 103

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Param |count [IO] pointer
Number of packets in the packet list.
Vaue |Input Description
NULL [Moveal packetsfrom the RECV queueto the packet list.
-1 Move all packets from the RECV queue to the packet list.
0 No packets are moved. Same asif pktsisNULL.
>0 Move a maximum of "* count' packets to the packet list.
Value |Output Description
NULL [Nothing performed.
others |™count' is updated to reflect number of packetsin packet list.
Return | Status. See return codes below
Value |Description
-1 Error occurred, DMA channel may not be valid.
0 Successful. pktslist filled with all packets from recv list.
1 Indicates that DMA is stopped. Same as 0 but step 1 and 3 were never done.
Notes |Thisfunction can only do step 1 and 2 to alow read out received packets when in stopped mode. This
is useful when alink goes down and the DMA activity is stopped by user or by driver automatically.
18.4.7. Transmission queue status

The current status of send and receive transmissions can be obtained by looking at the DMA channel's packet
gueues. Notethat the queues content does not change unlessthe user callsthe driver to perform work or if thework
thread triggered via DMA interrupts is enabled. The current number of packets actually processed by hardware

can aso

be read using the functions described below.

Table 18.39. gr spw_dna_t x_count function declaration

Proto |void grspw dna tx _count(void *c, int *send, int *sched, int *sent,
int *hw)

About | Get current number of packetsin respective TX queue and current number of unhandled packets that
hardware processed (from descriptor table).

Param |c [IN] pointer
DMA channel identifier. Returned from gr spw_dna_open.

Param |send [OUT] pointer
If not NULL the TX SEND Queue count is stored into the address of send.

Param |sched [OUT] pointer
If not NULL the TX SCHED Queue count is stored into the address of sched.

Param |sent [OUT] pointer
If not NULL the TX SENT Queue count is stored into the address of sent .

Param |hw[OUT] pointer
If not NULL the number of packets completed transmitted by hardware. Thisis determined by look-
ing at the TX descriptor pointer register. The number represents how many of the SCHED queue that
actually have been transmitted by hardware but not handled by the driver yet. The number is stored in-
to the address of hw.

Return |None.

Table 18.40. gr spw_dma_r x_count function declaration

Proto |void grspw dnma rx_count(void *c, int *ready, int *sched, int *recv,
int *hw)

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 104

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

About | Get current number of packetsin respective RX queue and current number of unhandled packets that
hardware processed (from descriptor table).

Param |c [IN] pointer

DMA channel identifier. Returned from gr spw_dma_open.

Param |r eady [OUT] pointer

If not NULL the RX READY Queue count is stored into the address of r eady.
Param |sched [OUT] pointer

If not NULL the RX SCHED Queue count is stored into the address of sched.
Param |r ecv [OUT] pointer

If not NULL the RX RECV Queue count is stored into the address of r ecv.
Param |hw[OUT] pointer

If not NULL the number of packets completed received by hardware. Thisis determined by looking at
the RX descriptor pointer register. The number represents how many of the SCHED queue that actual-
ly have been received by hardware but not handled by the driver yet. The number is stored into the ad-
dress of hw.

Return |None.

18.4.8. Statistics

The driver counts statistics at certain events. The driver's DMA channel counters can be read out using the DMA
API. The number of interrupts serviced by the worker task, packet transmission statistics, packet transmission
errors and packet queue statistics can be obtained.

The read function is not protected by locks. A GRSPW interrupt or other tasks performing driver operations on
the same device could cause the statistics to be out of sync. Similar to the statistic functionality of the device API.

struct grspw dne_stats {
/* IRQ Statistics */

int irg_cnt; /* Nunber of DMA | RQs generated by channel */

/* Descriptor Statistics */

int tx_pkts; /* Nunber of Transmitted packets */

int tx_err_link; /* Nunber of Transmitted packets with Link Error*/
int rx_pkts; /* Nunber of Received packets */

int rx_err_trunk; /* Nunber of Received Truncated packets */

int rx_err_endpkt; /* Nunber of Received packets w th bad ending */

/* Diagnostics to hel p devel opers sizing their nunber buffers to avoid

* out-of-buffers or other phenonenons.

*/

nt send_cnt_m n; /* M ni mum nunber of packets in TX SEND queue */
nt send_cnt_nax; /* Maxi mum nunber of packets in TX SEND queue */
nt tx_sched_cnt_nin; /* M ni mum nunber of packets in TX SCHED queue */
nt tx_sched_cnt_nax; /* Maxi mum nunber of packets in TX SCHED queue */

nt sent_cnt_nax; /* Maxi mum nunber of packets in TX SENT queue */
nt tx_work_cnt; /* Times the work thread processed TX BDs */

nt tx_work_enabl ed; /* No. TX BDs enabl ed by work thread */

int ready_cnt_min; /* M ni mum nunber of packets in RX READY queue */
int ready_cnt_nax; /* Maxi mum nunber of packets in RX READY queue */
int rx_sched_cnt_nmin; /* M ni mum nunber of packets in RX SCHED queue */
int rx_sched_cnt_max; /* Maxi mum nunber of packets in RX SCHED queue */
int recv_cnt_nex; /* Maxi mum nunber of packets in RX RECV queue */
int rx_work_cnt; /* Times the work thread processed RX BDs */

int rx_work_enabl ed; /* No. RX BDs enabl ed by work thread */

s

Table 18.41. grspw_dma_stats data structure declaration

irg_cnt Number of interrupts serviced for this DMA channel.
tx_pkts Number of transmitted packets with link errors.
tx_err_link Number of transmitted packets with link errors.
rx_pkts Number of received packets.
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 105

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

rx_err_trunk Number of received Truncated packets.
rx_err_endpkt Number of received packets with bad ending.
send_cnt_min Minimum number of packetsin TX SEND queue.
send_cnt_max Maximum number of packetsin TX SEND queue.

tx_sched cnt_min | Minimum number of packetsin TX SCHED queue.

tx_sched cnt_max | Maximum number of packetsin TX SCHED queue.

sent_cnt_max Maximum number of packetsin TX SENT queue.
tx_work_cnt Times the work thread processed TX BDs.
tx_work_enabled Number of TX BDs enabled by work thread.

ready _cnt_min Minimum number of packetsin RX READY queue.
ready_cnt_max Maximum number of packetsin RX READY queue.

rx_sched_cnt_min |Minimum number of packetsin RX SCHED queue.

rx_sched cnt_max |Maximum number of packetsin RX SCHED queue.

recv_cnt_max Maximum number of packetsin RX RECV queue.
rx_work_cnt Times the work thread processed RX BDs.
rx_work_enabled Number of RX BDs enabled by work thread.

Table 18.42. gr spw_dna_st at s_r ead function declaration

Proto |void grspw dna_stats read(void *d, struct grspw dna _stats *sts)

About |Reads the current driver statistics collected from earlier events by aDMA channel and DMA channel
usage. The statistics are stored to the address given by the second argument. The layout and content of
the statistics are defined by the grspw_dma_stats data structure is described in Table 18.41.

Note that the snapshot is taken without lock protection, as a consequence the statistics may not be syn-
chronized with each other. This could be caused if the function isinterrupted by athe GRSPW inter-
rupt or other tasks performing driver operations on the same DMA channel.

Param |c [IN] pointer

DMA channel identifier. Returned from gr spw_dma_open.

Param |st s [OUT] pointer

A snapshot of the current driver statistics are copied to this user provided buffer.

The layout and content of the statistics are defined by the grspw_dma_stats data structure is described
in Table 18.41.

Return |None.

Table 18.43. gr spw_dma_st at s_cl r function declaration

Proto |void grspw dna_stats_clr(void *c)

About |Resets one DMA channdl's statistical counters. Most of the driver's counters are set to zero, however
some have other initial values, for examplethesend_cnt _m n.

Param |c [IN] pointer
DMA channel identifier. Returned from gr spw_dma_open.

Return |None.

18.4.9. DMA channel configuration

Various aspects of DMA transfers can be configured using the functions described in this section. The configu-
ration affects:

* DMA transfer options, no-spill, strip address/PID.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 106

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

» Receive max packet length.
o RX/TX Interrupt generation options.

struct grspw_dma_config {

int flags; /* DVA config flags, see DVAFLAG * options */
int rxmaxlen; /* RX Max Packet Length */

int rx_irg_en_cnt; /* Enable RX I RQ every cnt descriptors */

int tx_irg_en_cnt; /* Enable TX I RQ every cnt descriptors */

b

Table 18.44. grspw_dma_config data structure declaration

flags RX/TX DMA transmission options See below.
Bits Description (prefixed DMAFLAG_or DMAFLAG2)
NO_SPILL Enable (1) or Disable (0) packet spilling, flow control.

STRIP_ADR |Enable (1) or Disable (0) stripping node address byte from DMA write
transfers (packet reception). See hardware support to determine if present in
hardware. See hardware documentation about DMA CTRL SA hit.

STRIP_PID Enable (1) or disable (0) stripping PID byte from DMA write transfers
(packet reception).(if CRC is available in hardware). See hardware sup-
port to determine if present in hardware. See hardware documentation about
DMA CTRL SP hit.

TXIE Enable (1) or disable (0) DMA TX interrupts on DMA transmission. This
affectsthe DMA-CTRL TI register bit. This can be used in combination
with packet flags to allow the user to control precisely which TX Spw
bufferswill generate interrupt(s) on send completed.

RXIE Enable (1) or disable (0) DMA RX interrupts on DMA reception. This af-
fectsthe DMA-CTRL RI register bit. This can be used in combination with
packet flags to allow the user to control precisely which RX SpW buffers
will generate interrupt(s) on receive completed.

rxmaxien Max packet reception length. Longer packets with will be truncated see
RXPKT_FLAG_TRUNK flagin packet structure. This field must be set to a multiple of four.

rx_irq_en cnt | Controls RX interrupt generation. Thisinteger number enable RX DMA IRQ every ‘cnt' de-
scriptors.

tx_irq_en cnt |Controls TX interrupt generation. Thisinteger number enable TX DMA IRQ every ‘cnt' de-
scriptors.

Table 18.45. gr spw_dma_conf i g function declaration

Proto |int grspw dma_config(void *c, struct grspw dma_config *cfq)

About |Set the DMA channel configuration options as described by the input arguments. It is only possible
the change the configuration on stopped DMA channels, otherwise an error code is returned.

The hardware registers are not written directly. The settings take effect when the DMA channel is
started calling gr spw_dnma_start.

Param |c [IN] pointer
DMA channel identifier. Returned from gr spw_dma_open.

Param |cf g [IN] pointer

Address to where the driver will read or write the DMA channel configuration from. The configura-
tion options are described in Table 18.44.

Return |int. Return code as indicated below.
Value |Description

0 Success.
-1 Failure due to invalid input arguments or DMA has already been started.
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 107

https://www.frontgrade.com/gaisler

rRONTGRADE

Table 18.46. gr spw_dma_conf i g_r ead function declaration

Gaisler

Proto |void grspw dma_config read(void *c, struct grspw dma_config *cfg)

About | Copiesthe DMA channel configuration to user defined memory area.

Param |c [IN] pointer
DMA channel identifier. Returned from gr spw_dma_open.

Param |sts [OUT] pointer
The driver DMA channel configuration options are copied to this user provided buffer.

scribed in Table 18.44.

The layout and content of the statistics are defined by the grpsw_dma_config data structureis de-

Return |None.

18.5. APl reference

This section lists all functions and data structures part of the GRSPW driver API, and in which section(s) they are

described. The APl is aso documented in the source header file of the driver, see Section 18.1.3.

18.5.1. Data structures

The data structures used together with the Device and/or DMA API are summarized in the table below.

Table 18.47. Data structures reference

Data structure name Section
struct grspw_pkt 18.4.3
struct grspw_list 18.2.11
struct grspw_addr_config 18.34
struct grspw_hw_sup 18.3.2
struct grspw_core_stats 18.3.8
struct grspw_dma_config 18.4.9
struct grspw_dma_stats 18.4.8

18.5.2. Device functions

The GRSPW device API. The functions listed in the table below operates on the GRSPW common registers and

driver set up. Changes here typically affectsal DMA channels and link properties.

Table 18.48. Device function reference

Prototype Section
i nt grspw dev_count (voi d) 18.3.1
voi d *grspw_open(int dev_no) 18.3.1
void grspw_cl ose(void *d) 18.3.1
voi d grspw_hw support(void *d, struct grspw _hw sup *hw) 18.3.2
void grspw stats read(void *d, struct grspw core_stats *sts) 18.3.8
voi d grspw stats_clr(void *d) 18.3.8
void grspw addr_ctrl (void *d, struct grspw addr_config *cfQ) 18.34,
18.2.8
spw_link _state t grspw_link state(void *d) 18.3.3,
18.2.4
void grspw link ctrl(void *d, int *options, int *clkdiv) 18.3.3,
18.2.4
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 108

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Prototype Section
unsigned int grspw_|ink_status(void *d) 18.3.3,
18.24
void grspw link status clr(void *d, unsigned int nask) 18.3.3,
18.24
void grspw_tc_ctrl(void *d, int *options) 18.3.5,
18.25
void grspw_tc_tx(void *d) 18.3.5,
18.25
void grspw tc_isr(void *d, void (*tcisr)(void *data, int tc), void |18.35
*dat a) 18.2.5
void grspw tc_tinme(void *d, int *tine) 18.3.5,
18.25
int grspwrmap ctrl(void *d, int *options, int *dstkey) 18.3.7,
18.2.6
void grspw_rmap_support(void *d, char *rmap, char *rmap_crc) 18.3.7,
18.2.6,
18.3.2
int grspw port_ctrl(void *d, int *port) 18.3.6,
18.2.7
int grspw port_count(void *d) 18.3.6,
18.2.7,
18.3.2
int grspw_port_active(void *d) 18.3.6,
18.2.7

18.5.3. DMA functions

The GRSPW DMA channel API. The functions listed in the table below operates on one GRSPW DMA channel

and its driver set up. Thisinterface is used to send and receive SpaceWire packets.
GRSPW2 and GRSPW2_DMA devices supports more than one DMA channel.

Table 18.49. DMA channel function reference

Prototype Section
voi d *grspw_dna_open(void *d, int chan_no) 18.2.1,
18.4.1,
18.3.1
void grspw dma_cl ose(void *c) 18.2.1,
18.4.1,
18.3.1
int grspw dna_start(void *c) 18.4.2,
18.2.14
voi d grspw dnma_stop(void *c) 18.4.2,
18.2.14
int grspw.dma_rx recv(void *c, int opts, struct grspw. l|ist *pkts, 18.4.6,
int *count) 18.2.1
int grspw. dme_rx_prepare(void *c, int opts, struct grspw.list *pk- |[18.4.6,
ts, int count) 18.2.1
void grspw dma_rx_count(void *c, int *ready, int *sched, int *recv) |184.7,
18.2.11.1
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 109

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
Prototype Section
int grspw dma_rx _wait(void *c, int recv_cnt, int op, int ready_cnt, [184.4,
int timeout) 18.2.12
int grspw dna_tx _send(void *c, int opts, struct grspw. |ist *pkts, 18.4.5,
i nt count) 18.2.1
int grspw dnma_tx reclain(void *c, int opts, struct grspw.list *pk- [184.5,
ts, int *count) 18.2.1
void grspw dma_tx_count(void *c, int *send, int *sched, int *sent) |184.7,
18.2.11.1
int grspw dnme_tx wait(void *c, int send_cnt, int op, int sent_cnt, 18.4.4,
int timeout) 18.2.12
int grspw dnma_config(void *c, struct grspw dma_config *cfq) 18.4.9
voi d grspw_dma_config_read(void *c, struct grspw. dnma_config *cfqg) 18.4.9
void grspw dma_stats read(void *c, struct grspw dma_stats *sts) 18.4.8
void grspw dma_stats_clr(void *c) 18.4.8
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 110

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 19. GRSPW ROUTER driver

19.1. Introduction

This section describes the GRSPW ROUTER driver for SPARC/LEON processors in RTEMS. The router does
not have to be located on the same bus as the processor running RTEMS. The RTEMS driver manager abstracts
the actual location of the device allowing application software to access the router resources always using the
same API. Two different drivers, the GRSPW router driver and GRSPW driver, are needed to utilize the complete
functionality of the router.

e GRSPW router driver: The main functionality of the router is to transfer packets between the SpaceWire
ports. Thisability isfunctional after reset without any configuration. The router driver can be used to change
the configuration, enable/disable links, collect statistics, fault detection etc.

o GRSPW driver: There are three different port typesin the router: SpW ports, FIFO ports and AMBA ports.
Thedatapath of SpW and FIFO portsare not (directly) accessible from the processor. If therouter hasAMBA
ports they can be used for transferring packets. The AMBA ports have identical interfaces to the GRSPW
core so they usethe samedriver. To transfer packetsthrough an AMBA port afile handle should be opened to
it and then read and write calls can be used to receive and send packets. The driver also allows configuration
and status options in the AMBA port to be accessed.

19.1.1. Hardware Support

The GRSPW ROUTER core hardware interface is documented in the GRIP Core User's manual. Below is alist
of the magjor hardware features it supports:

e Multiple Spacewire ports.

« Multiple AMBA ports.

« Multiple FIFO ports.

* RMAP support.

« Group adaptive routing.

» Packet distribution.

e System time distribution.

 Distributed interrupts.

19.1.2. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the RTEMS source
treertens-5/c/src/lib/libbsp/sparc.

Table 19.1. GRSPW ROUTER driver source location

L ocation Description

shared/i ncl ude/ grspw_router.h GRSPW ROUTER user interface definition
...1l1ibbsp/sparc/shared/ spw GRSPW ROUTER driver implementation
grspw_router.c

19.1.3. Examples

Thereisan example avail ablethat usesthe GRSPW ROUTER driver to configure the router in a SPW performance
test. Theexampleispart of the RCC distribution, it can befound under / opt / r t ens- 5/ sr ¢/ sanpl es/ spw/
router_deno/test.c.

19.2. Software design overview

The driver has been implemented using the Driver Manager Framework. The driver provides a kernel function
interface, an AP, rather than implementing a 10 system device. The API is designed for multi-threadding, i.e.
multiple threads operating on the driver independently. The driver supports multiple routers in the system. The
driver contains lock or protection for SMP environments, see Section 19.2.3 for more information.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 111

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

19.2.1. Driver usage

Thedriver providesaset of functionsthat allow to configurethe GRSPW ROUTER. Thefollowing list summarizes
the available actions.

 Setting up the GRSPW ROUTER core (see Section 19.3.3).

 Setting up the routing table (see Section 19.3.5).

* Managing aport (see Section 19.3.7).

« Managing time codes (see Section 19.3.10).

« Managing interrupt code generation (see Section 19.3.11).

The normal use case for the GRSPW ROUTER is the following: First we should open the router we want to use
(see Section 19.3.2). Then we configure the GRSPW ROUTER with the wanted configuration (see Section 19.3.3)
and set up the routing table (see Section 19.3.5). Once the GRSPW ROUTER is configured, we can configure the
ports we are interested on (see Section 19.3.7). We can start or stop the link, and check the link status on each
port (see Section 19.3.8).

The driver provides support for port counters (see Section 19.3.9) It also offers support for timecodes (see Sec-
tion 19.3.10) and interrupt generation (see Section 19.3.11).

When dealing with errors, the driver allows to generate SpW interrupt codes for different types of interrupts and
ports (see Section 19.3.11). The driver aso allows the user to poll the port status to check if an error (or multiple)
have occurred (see Section 19.3.12).

The different errors that the GRSPW ROUTER can report are:
e SpaceWire Plug-and-Play error.
 Spill-if-not-ready.

* Run-state entry.

« Time code/distributed interrupt code tick truncation.
 Packet length truncation.

» Timeout spill.

» Auxiliary configuration port error.

* RMAPerror.

 Invalid address.

e Link error.

e Memory error.

19.2.2. Initialization

During early initialization when the operating system boots the GRSPW ROUTER driver, the driver does not
modify the hardware state of the GRSPW ROUTER apart from masking and clearing interrupts.

19.2.3. SMP Support and thread safe
The driver has been designed to be SMP and thread safe. This means that multiple tasks can configure the router

and ports at the same time. Driver data structures and interrupt handling routines are protected by a semaphore.
Each port and its data structure have its own lock.

19.3. GRSPW ROUTER user interface
19.3.1. Return values

ROUTER_ERR_OK
ROUTER_ERR_EI NVAL
ROUTER_ERR_ERRCR
ROUTER_ERR_TOOMANY
ROUTER_ERR_| MPLEMENTED

All the driver function calls return the following values when an error occurred:

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 112

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

¢ ROUTER_ERR_OK - Successful execution.

* ROUTER_ERR_EINVAL - Invalid input parameter. One of the input values checks failed.
« ROUTER_ERR_ERROR - Internal error. Can have different causes.

« ROUTER_ERR TOOMANY - Index exceeded the valid value, such an invalid port index.
* ROUTER_ERR_IMPLEMENTED - Feature not supported or implemented.

Some functions also return a positive value upon successful execution, such as the time counter.

19.3.2. Opening/closing a router

void * router_open(int dev_no)
int router_close(void * router)
int router_hwinfo_get(void * router, struct router_hw.info * hwinfo)

The driver provides the open and close functions to manage the registered GRSPW routers. All driver functions
operating on the router require the router pointer returned by the open function.

The hwinfo function returns the hardware information of the GRSPW router.
The open function returns a NULL pointer if something went wrong, otherwise it returns the router pointer. The
other functions return a negative value if something went wrong, as explained in Section 19.3.1. Otherwise, the

function returns ROUTER_ERR_OK when successful.

Table 19.2. r out er _open function declaration

Proto |void * router_open(int dev_no)

About |Opens arouter with the given dev_no index. It returns a pointer to the router when successfull. See
Section 19.3.2.

Param [dev_no [IN] Integer

Registration index of the router.

Return |void *. Router pointer when successful. Otherwise, returnsa NULL pointer.

Table 19.3. r out er _cl ose function declaration

Proto |int router_close(void * router)
About |Closesarouter. See Section 19.3.2.

Param |r out er [IN] Pointer

Pointer to the router.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

struct router_hw_info {
uint8_t nports_spw,
uint8_t nports_anba;
uint8_t nports_fifo;
int8_t timers_avail;
int8_t pnp_avail;
uint8_t ver_major;
uint8_t ver_mnor;
uint8_t ver_patch;
uint8_t iid;

s

Table 19.4. router_hw_info data structure declaration

nports_spw Number of spw ports.
nports_amba Number of amba ports.
nports_fifo Number of fifo ports.
timers_avail Indicatesif the router has support for timers, as described in the manual .
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 113

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
pnp_avail Indicatesif the router has support for SpW Plug and Play, as described in the manual.
ver_major Major version of the router.
ver_minor Minor version of the router.
ver_patch Patch number of the router.

iid Instance ID of the router.

Table 19.5. r out er _hwi nf o_get function declaration

Proto |int router_hwi nfo_get(void * router, struct router_hw.info * hw n-
f o)

About |Get the hardware info of agiven router. See Section 19.3.2.
Param |r out er [IN] Pointer

Pointer to the router.

Param |hwi nf o [IN] Pointer

Pointer to the harware info structure.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

19.3.3. Configuring the router

int router_config_set(void * router, struct router_config * cfg)
int router_config_get(void * router, struct router_config * cfg)
int router_reset(void * router)

Thedriver provides the config set and get functionsto configure the different GRSPW router registers, including:
» Configuration register.
e InstancelD.

Initial divisor.

e Timer prescaler.

e Timer reload.

Therouter_config structureisused to passthe configuration. The structure has aflags member that indicateswhich
parts of the configuration are going to be set or get.

Thedriver also providesareset function that resetsthe whole GRSPW router. Please note, that reseting the GRSPW
router, also resets the GRSPW?2 cores, including the DMA interfaces.

The driver provides an equivalent API that allow to configure each register individually as explained in Sec-
tion 19.3.4.

These functions return a negative value if something went wrong, as explained in Section 19.3.1. Otherwise, the
function returns ROUTER_ERR_OK when successful.

struct router_config {
uint32_t flags;
uint32_t config;
uint8_t iid;
uint8_t idiv;
uint32_t timer_prescaler;

I

Table 19.6. router _config data structure declaration

flags Flags that determine what configuration should be updated. All flags must be prefixed with
ROUTER_FLG_
Flag Description
CFG Set/Get router configuration register.
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 114

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

1D Set/Get router instance ID register.
IDIV Set/Get router initial divisor register.
TPRES Set/Get router timer prescaler register.
TRLD Set/Get router timer reload register.
ALL All of the above.

config Router Configuration Register.

iid Set Instance ID.

idiv SpaceWire Link Initialization Clock Divisor.

timer_prescaler Timer prescaler.

Table19.7.r out er _confi g_set function declaration

Proto |int router_config_set(void * router, struct router_config * cfg)
About | Set the configuration of a given router. See Section 19.3.3.
Param |r out er [IN] Pointer
Pointer to the router.
Param |cf g [IN] Pointer
Pointer to the router configuration structure.
Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went

wrong, as explained in Section 19.3.1.

Table19.8.r out er _confi g_get function declaration

Proto |int router _config_get(void * router, struct router_config * cfg)
About | Get the configuration of a given router. See Section 19.3.3.
Param |r out er [IN] Pointer
Pointer to the router.
Param |cf g [IN] Pointer
Pointer to the router configuration structure.
Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.
Table 19.9. r out er _r eset function declaration
Proto |int router _reset(void * router)
About |Reset agiven router. See Section 19.3.3.
Param |r out er [IN] Pointer
Pointer to the router.
Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.
19.3.4. Configuring the router registers
int router_wite_enable(void * router)
int router_wite_disable(void * router)
int router_cfgsts_set(void * router, uint32_t cfgsts)
int router_cfgsts_get(void * router, uint32_t * cfgsts)
int router_instance_set(void * router, uint8_t iid)
int router_instance_get(void * router, uint8_t * iid)
int router_idiv_set(void * router, uint8_t idiv)
int router_idiv_get(void * router, uint8_t * idiv)
int router_tpresc_set(void * router, uint32_t prescaler)
int router_tpresc_get(void * router, uint32_t * prescaler)
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 115

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The driver provides this collection of get and set functions to configure the different GRSPW router registers
individually, including:

« Configuration port write enable register.

» Configuration register.

* Instance ID.

* Initia divisor.

o Timer prescaler.

e Timer reload.

This function returns a negative value if something went wrong, as explained in Section 19.3.1. Otherwise, the
function returns ROUTER_ERR_OK when successful.

Table 19.10.r out er _wri t e_enabl e function declaration

Proto |int router wite enable(void * router)

About |Enable configuration port writes for a given router. See Section 19.3.4.
Param |r out er [IN] Pointer
Pointer to the router.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table19.11.r out er _wri t e_di sabl e function declaration

Proto |int router_wite_disable(void * router)

About |Disable configuration port writes for a given router. See Section 19.3.4.
Param |r out er [IN] Pointer
Pointer to the router.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table19.12. r out er _cf gst s_set function declaration

Proto |int router_cfgsts_set(void * router, uint32_t cfgsts)
About | Set the router configuration/status register of a given router. See Section 19.3.4.
Param |r out er [IN] Pointer

Pointer to the router.

Param |cf gst s [IN] Integer
Configuration/status value.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table19.13.r out er _cf gst s_get function declaration

Proto |int router_cfgsts_get(void * router, uint32_t * cfgsts)
About | Get the router configuration/status register of a given router. See Section 19.3.4.
Param |r out er [IN] Pointer

Pointer to the router.

Param |cf gst s [IN] Integer
Configuration/status value.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 116

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 19.14.r out er _i nst ance_set function declaration

Proto |int router_instance set(void * router, uint8_t iid)
About | Set the instance ID number of a given router. See Section 19.3.4.

Param |r out er [IN] Pointer

Pointer to the router.

Param |i i d [IN] Integer

Instance 1D number.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table 19.15. r out er _i nst ance_get function declaration

Proto |int router _instance get(void * router, uint8 t * iid)
About | Get theinstance ID number of agiven router. See Section 19.3.4.

Param |r out er [IN] Pointer

Pointer to the router.

Param |i i d [IN] Integer

Instance ID number.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table19.16. r out er _i di v_set function declaration

Proto |int router _idiv_set(void * router, uint8 t idiv)
About | Set the initialization divisor of agiven router. See Section 19.3.4.

Param |r out er [IN] Pointer

Pointer to the router.

Param |i di v [IN] Integer

Initialization divisor.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table19.17.r out er _i di v_get function declaration

Proto |int router_idiv_get(void * router, uint8 t * idiv)
About |Get theinitialization divisor of agiven router. See Section 19.3.4.

Param |r out er [IN] Pointer

Pointer to the router.

Param |i di v [IN] Integer
Initialization divisor.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table 19.18.r out er _t presc_set function declaration

Proto |int router tpresc_set(void * router, uint32 t prescaler)
About | Set the global prescaler reload value of agiven router. See Section 19.3.4.

Param |r out er [IN] Pointer

Pointer to the router.

Param |prescal er [IN] Integer

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 117

https://www.frontgrade.com/gaisler

FRONTGRADE

Timer prescaler.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table 19.19.r out er _t pr esc_get function declaration

Proto |int router_tpresc_get(void * router, uint32_t * prescaler)
About | Get the global prescaler reload value of a given router. See Section 19.3.4.

Param |r out er [IN] Pointer

Pointer to the router.

Param |prescal er [IN] Integer
Timer prescaler.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

19.3.5. Configuring the routing table

int router_routing_table_set(void * router, struct router_routing_table * cfg)
int router_routing_table_get(void * router, struct router_routing_table * cfg)

Thedriver providesthe routing table set and get functionsto configure the GRSPW routing table registers at once,
including for each route:

» Address control.

 Port mapping.

Therouter_routing_table structureisused to passthe configuration. The structure has aflags member that indicates
which parts of the configuration are going to be set or get.

This function returns a negative value if something went wrong, as explained in Section 19.3.1. Otherwise, the
function returns ROUTER_ERR_OK when successful.

struct router_route_acontrol {
uint32_t control [31];
uint32_t control _| ogical [224];
}

Table 19.20. router_route_acontrol data structure declaration

control Routing table address control for addresses 1-31.

control_logical Routing table address control for logical addresses 32-255.

struct router_route_portmap {
uint32_t pmap[31];
uint32_t pmap_| ogi cal [224];
s

Table 19.21. router_route_portmap data structure declaration

pmap Routing table port mapping for ports 1-31.

pmap_logical Routing table port mapping for logical ports 32-255.

struct router_routing_table {
uint32_t flags;
struct router_route_acontrol acontrol;
struct router_route_portmap portnmap;

}

Table 19.22. router_routing_table data structure declaration

flags Flags that determine what configuration should be updated. All flags must be prefixed with
ROUTER_ROUTE_FLG_

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 118

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Flag Description
MAP Set/Get routing table port mapping registers.
CTRL Set/Get routing table address control registers.
ALL All of the above.

acontrol Routing table address control structure.

portmap Routing table port mapping structure.

Table 19.23.rout er _routi ng_t abl e_set function declaration

Proto |int router _routing table set(void * router, struct
router _routing table * rt)

About | Set the routing table of a given router. See Section 19.3.5.
Param |r out er [IN] Pointer

Pointer to the router.

Param |rt [IN] Pointer

Pointer to the routing table structure.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table 19.24.r out er _routi ng_t abl e_get function declaration

Proto |int router _routing table get(void * router, struct
router _routing table * rt)

About | Get the routing table of a given router. See Section 19.3.5.
Param |r out er [IN] Pointer

Pointer to the router.

Param |rt [IN] Pointer

Pointer to the routing table structure.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

19.3.6. Individual route configuration

int router_route_set(void * router, struct router_route * route)
int router_route_get(void * router, struct router_route * route)

Thedriver providesthe route set and get functionsto configure each individua route of the GRSPW routing table.

The router_route structure is used to pass the configuration of the route. If contains the source address,
f rom addr ess, and the destination ports, t 0_por t , which can be severa, asindicated by the count param-
eter. The structure has an opt i ons member that indicates the configuration of the route.

This function returns a negative value if something went wrong, as explained in Section 19.3.1. Otherwise, the
function returns ROUTER_ERR_OK when successful.

struct router_route {
uint8_t from address;
uint8_t to_port[32];
int count;
int options;

I

Table 19.25. router_route data structure declaration

from_address Source address.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 119

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisle!

r

to_port Destination ports.
count Number of valid destination ports.
options Configuration of the route. All options must be prefixed with ROUTER_ROUTE _ prefix.
Default options are assumed if not specified otherwise.
Option Description
PACKETDISTRIBUTION_ENABLE Enable packet distribution for this route.
PACKETDISTRIBUTION_DISABLE Disable packet distribution for this route (de-
fault).
SPILLIFNOTREADY_ENABLE Enable spill-if-not-ready.
SPILLIFNOTREADY_DISABLE Disable spill-if-not-ready (default).
ENABLE Enable this route.
DISABLE Disable this route (default).
PRIORITY_HIGH Set high priority for thisroute.
PRIORITY_LOW Set low priority for this route (default).
HEADERDELETION_ENABLE Enable header deletion for this route.
HEADERDELETION_DISABLE Disable header deletion for this route (de-
fault).
Table 19.26. r out er _r out e_set function declaration
Proto |int router_route_set(void * router, struct router_route * route)
About | Set a specific route of agiven router. See Section 19.3.5.
Param |r out er [IN] Pointer
Pointer to the router.
Param |r out e [IN] Pointer
Pointer to the route structure.
Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.
Table 19.27.r out er _r out e_get function declaration
Proto |int router_route get(void * router, struct router _route * route)
About | Get a specific route of a given router. See Section 19.3.5.
Param |r out er [IN] Pointer
Pointer to the router.
Param |r out e [IN] Pointer
Pointer to the route structure.
Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.
19.3.7. Port configuration
int router_port_ioc(void * router, int port, struct router_port * cfg)
int router_port_ctrl_rmMvoid * router, int port, uint32_t * ol dvalue, uint32_t bitmask, uint32_t value);
int router_port_ctrl2_rmyvoid * router, int port, uint32_t * ol dvalue, uint32_t bitnmask, uint32_t value);
int router_port_ctrl_set(void * router, int port, uint32_t mask, uint32_t ctrl)
int router_port_ctrl_get(void * router, int port, uint32_t * ctrl)
int router_port_ctrl2_set(void * router, int port, uint32_t nmask, uint32_t ctrl2)
int router_port_ctrl2_get(void * router, int port, uint32_t * ctrl2)
int router_port_treload_set(void * router, int port, uint32_t reload)
int router_port_treload_get(void * router, int port, uint32_t * reload)
int router_port_maxplen_set(void * router, int port, uint32_t length)
int router_port_maxplen_get(void * router, int port, uint32_t * length)
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 120

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Thedriver providesthe port ioc function to configure each port por t of the GRSPW routing table. Thisfunction
allowsto set or get the different GRSPW router port registers, including:

 Port control.

» Port status.

« Port control 2.

e Timer reload.

* Maximum packet length.

The router_port structure is used to pass the configuration of the port. The structure has a f | ag member that
indicates which parts of the configuration are going to be set or get.

The driver also providesindividual set and get functions for each different GRSPW router port register.

These functions return a negative value if something went wrong, as explained in Section 19.3.1. Otherwise, the
function returns ROUTER_ERR_OK when successful.

struct router_port {
uint32_t flag;
uint32_t ctrl;
uint32_t sts;
uint32_t ctrl2;
uint32_t timer_rel oad;
ui nt32_t packet _| ength;

s

Table 19.28. router_port data structure declaration

flag Configuration of the port. All flags must be prefixed with ROUTER_PORT_FLG_ prefix.
Option Description
SET _CTRL Set the port control register.
GET_CTRL Get the port control register.
SET_STS Set the port status register.
GET_STS Get the port status register.
SET CTRL2 Set the port control 2 register.
GET_CTRL2 Get the port control 2 register.
SET_TIMER Set the port timer reload register.
GET_TIMER Get the port timer reload register.
SET PKTLEN Set the port packet length register.
GET_PKTLEN Get the port packet length register.

ctrl Port control register value.

sts Port status register value.

ctrl2 Port control 2 register value.

timer_reload Port timer reload register value.

packet_|length Port packet length register value.

Table 19.29.r out er _port _i oc function declaration

Proto |i nt
cfg

router_port_ioc(void * router, int port, struct router_port *

)

About | Configure agiven port of agiven router. See Section 19.3.7.

Param |r out er [IN] Pointer
Pointer to the router.

Param |port [IN] Integer
Port index.

RCC-UM

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 121

https://www.frontgrade.com/gaisler

rRONTGRADE
Gaisler
Param |cf g [IN] Pointer
Pointer to the router port configuration structure.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table 19.30.r out er _port _ctrl _r mwfunction declaration

Proto |int router_port_ctrl_rnmmM void * router, int port, uint32_t * old-
val ue, uint32_t nmask, uint32_t value)

About | Read the current value and write a new value to the control register of a given port of agiven router.
See Section 19.3.7.

Param |r out er [IN] Pointer
Pointer to the router.

Param |port [IN] Integer

Port index.

Param |ol dval ue [IN] Pointer

If anon-NULL pointer is given, the old control register valueis saved to this pointer.

Param |mask [IN] Integer

The mask that indicates which bits are set. The rest of bits are left untouched. There are defines on the
header file that help with the bit definitions. The bit definitions are the same as the hardware port con-
trol register. See the hardware manual or GRLIB manual for reference.

Param |val ue [IN] Integer

The control register value to be written. Same bit definition as the mask. Only the bits set in mask are
effective.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table19.31.rout er _port _ctrl _set function declaration

Proto |int router_port_ctrl_set(void * router, int port, uint32_t mask,
uint32_t ctrl)

About | Set the control register of agiven port of a given router. See Section 19.3.7.
Param |r out er [IN] Pointer
Pointer to the router.

Param |port [IN] Integer
Port index.
Param |mask [IN] Integer

The mask that indicates which bits are set. The rest of bits are left untouched. There are defines on the
header file that help with the bit definitions. The bit definitions are the same as the hardware port con-
trol register. See the hardware manual or GRLIB manual for reference.

Param |ctr | [IN] Integer
The control register value. Same bit definition as the mask. Only the bits set in mask are effective.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table19.32.rout er _port _ctrl _get function declaration

Proto |int router_port_ctrl _get(void * router, int port, uint32_t * ctrl)

About |Get the control register of agiven port of agiven router. See Section 19.3.7.
Param |r out er [IN] Pointer
Pointer to the router.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 122

https://www.frontgrade.com/gaisler

FRONTGRADE
Param |port [IN] Integer
Port index.
Param |ctr | [IN] Pointer
Pointer to the control value.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table19.33.r out er _port _ctrl 2_r mnwfunction declaration

Proto |int router_port _ctrl2 rmM void * router, int port, uint32_ t * old-
val ue, uint32_t nmask, uint32_t value)

About |Read the current value and write a new value to the control 2 register of agiven port of agiven router.
See Section 19.3.7.

Param |r out er [IN] Pointer
Pointer to the router.

Param |port [IN] Integer

Port index.

Param |ol dval ue [IN] Pointer

If anon-NULL pointer is given, the old control 2 register valueis saved to this pointer.

Param |mask [IN] Integer

The mask that indicates which bits are set. The rest of bits are left untouched. There are defines on the
header file that help with the bit definitions. The bit definitions are the same as the hardware port con-
trol 2 register. See the hardware manual or GRLIB manual for reference.

Param |val ue [IN] Integer

The control 2 register value to be written. Same bit definition as the mask. Only the bits set in mask
are effective.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table19.34.rout er _port _ctrl 2_set function declaration

Proto |int router _port ctrl2 set(void * router, int port, uint32_ t nask,
uint32 t ctrl2)

About | Set the control 2 register of a given port of a given router. See Section 19.3.7.
Param |r out er [IN] Pointer
Pointer to the router.

Param |port [IN] Integer
Port index.
Param |mask [IN] Integer

The mask that indicates which bits are set. The rest of bits are left untouched. There are defines on the
header file that help with the bit definitions. The bit definitions are the same as the hardware port con-
trol 2 register. See the hardware manual or GRLIB manual for reference.

Param |ctrl 2 [IN] Integer
The control 2 register value. Same bit definition as the mask. Only the bits set in mask are effective.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table19.35.rout er _port _ctrl 2_get function declaration

Proto |int router _port ctrl2 get(void * router, int port, uint32 t *
ctrl2)

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 123

https://www.frontgrade.com/gaisler

rRONTGRADL
Gaisler
About |Get the control 2 register of agiven port of a given router. See Section 19.3.7.
Param |r out er [IN] Pointer
Pointer to the router.

Param |port [IN] Integer

Port index.

Param |ctr | 2 [IN] Pointer

Pointer to the control 2 value.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table19.36.rout er _port _trel oad_set function declaration

Proto |int router _port _treload set(void * router, int port, uint32_t
rel oad)

About | Set thetimer reload register of a given port of a given router. See Section 19.3.7.
Param |r out er [IN] Pointer
Pointer to the router.

Param |port [IN] Integer
Port index.
Param |r el oad [IN] Integer

The timer reload register value.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table19.37.rout er _port _trel oad_get function declaration

Proto |int router_port _treload get(void * router, int port, uint32_t *
rel oad)

About | Get the timer reload register of a given port of agiven router. See Section 19.3.7.
Param |r out er [IN] Pointer
Pointer to the router.

Param |port [IN] Integer

Port index.

Param |r el oad [IN] Pointer

Pointer to the timer reload register value.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table19.38.r out er _port _maxpl en_set function declaration

Proto |int router_port_ maxplen_set(void * router, int port, uint32_t
| ength)

About | Set the maximum packet length of a given port of a given router. See Section 19.3.7.
Param |r out er [IN] Pointer
Pointer to the router.

Param |port [IN] Integer

Port index.

Param |l engt h [IN] Integer
The packet length value.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 124

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table 19.39. r out er _port _maxpl en_get function declaration

Proto |int router_port _maxplen_get(void * router, int port, uint32_t *
l ength)

About | Set the maximum packet length of a given port of a given router. See Section 19.3.7.
Param |r out er [IN] Pointer
Pointer to the router.

Param |port [IN] Integer

Port index.

Param |l engt h [IN] Pointer

Pointer to the packet length value.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

19.3.8. Link configuration

int router_port_enable(void * router, int port)

int router_port_disable(void * router, int port)

int router_port_link_status(void * router, int port)

int router_port_link_stop(void * router, int port)

int router_port_link_start(void * router, int port)

int router_port_link_receive_spill(void * router, int port)
int router_port_link_transmt_reset(void * router, int port)

The driver provides the link functions to operate each port por t link of the GRSPW router.

The port enable and disable functions allow to enable or disable all data transfer to and from the port.
Thelink status function is used to get the status of the link.

The link start and stop allow to enable or disable the link interface FSM.

Thelink receive spill and transmit reset clear the receive and transmit FIFO gqueues respectively.

These functions return a negative value if something went wrong, as explained in Section 19.3.1. Otherwise, the
function returns ROUTER_ERR_OK when successful.

Table 19.40. r out er _port _enabl e function declaration

Proto |int router_port_enable(void * router, int port)

About |Enable datatransfersto and from a given port of a given router. See Section 19.3.8.
Param |r out er [IN] Pointer

Pointer to the router.

Param |port [IN] Integer
Port index.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table19.41.r out er _port _di sabl e function declaration

Proto |int router port _disable(void * router, int port)

About |Disable datatransfersto and from a given port of a given router. See Section 19.3.8.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 125

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Param |r out er [IN] Pointer
Pointer to the router.

Param |port [IN] Integer
Port index.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table19.42.r out er _port | i nk_st at us function declaration

Proto |int router_port _link status(void * router, int port)
About | Get the link status from a given port of a given router. See Section 19.3.8.
Param |r out er [IN] Pointer

Pointer to the router.

Param |port [IN] Integer
Port index.

Return |int. When successful returns the link status. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Value Description
ROUTER_LINK_STATUS ERROR_RESET Error reset status.
ROUTER_LINK_STATUS ERROR_WAIT Error wait status.
ROUTER_LINK_STATUS READY Ready status.
ROUTER_LINK_STATUS STARTED Started status.
ROUTER_LINK_STATUS CONNECTING Connecting status.
ROUTER_LINK_STATUS RUN_STATE Run state status.

Table 19.43.r out er _port _st op function declaration

Proto |int router_port_stop(void * router, int port)

About | Stop link interface FSM from a given port of agiven router. See Section 19.3.8.
Param |r out er [IN] Pointer
Pointer to the router.

Param |port [IN] Integer
Port index.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table19.44.r out er _port _start function declaration

Proto |int router_port_start(void * router, int port)

About |Start link interface FSM from a given port of a given router. See Section 19.3.8.
Param |r out er [IN] Pointer
Pointer to the router.

Param |port [IN] Integer
Port index.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table19.45.r out er _port _recei ve_spi | | function declaration

‘Proto ‘int router _port _receive_ spill(void * router, int port)

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 126

https://www.frontgrade.com/gaisler

FRONTGRADE
About | Spill the receive FIFO from a given port of agiven router. See Section 19.3.8.
Param |r out er [IN] Pointer
Pointer to the router.

Param |port [IN] Integer
Port index.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table19.46.r out er _port _transmit_reset function declaration

Proto |int router_port_transmt_reset(void * router, int port)

About |Reset the transmit FIFO from a given port of agiven router. See Section 19.3.8.
Param |r out er [IN] Pointer

Pointer to the router.

Param |port [IN] Integer

Port index.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

19.3.9. Port counters

int router_port_cred_get(void * router, int port, uint32_t * cred)

The driver provides the port counter functions to get credit counters for each port por t of the GRSPW router.

This function returns a negative value if something went wrong, as explained in Section 19.3.1. Otherwise, the
function returns ROUTER_ERR_OK when successful.

Table19.47.rout er _port _cred_get function declaration

Proto |int router_port_cred get(void * router, int port, uint32_t * cred)
About | Get the credit counter from a given port of a given router. See Section 19.3.9.

Param |r out er [IN] Pointer

Pointer to the router.

Param |port [IN] Integer

Port index.

Param |cr ed [IN] Pointer
Pointer to the count value.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

19.3.10. Timecode handling

int router_tc_enable(void * router)
int router_tc_disable(void * router)
int router_tc_reset(void * router)
int router_tc_get(void * router)

The driver provides the timecode functions to enable and disable timecode, reset the timecode value and get the
current timecode.

These functions return a negative value if something went wrong, as explained in Section 19.3.1. Otherwise, the
function returns ROUTER_ERR_OK when successful.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 127

https://www.frontgrade.com/gaisler

rRONTGRADE

Table 19.48.r out er _t c_enabl e function declaration

Gaisler

Proto |int router_tc_enable(void * router)

About | Enable time-codesin agiven router. See Section 19.3.10.

Param |r out er [IN] Pointer
Pointer to the router.

wrong, as explained in Section 19.3.1.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went

Table 19.49. r out er _t ¢c_di sabl e function declaration

Proto |int router_tc_disable(void * router)

About |Disable time-codesin agiven router. See Section 19.3.10.

Param |r out er [IN] Pointer
Pointer to the router.

wrong, as explained in Section 19.3.1.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went

Table 19.50. r out er _t c_r eset function declaration

Proto |int router _tc reset(void * router)

About | Reset the time counter in a given router. See Section 19.3.10.

Param |r out er [IN] Pointer
Pointer to the router.

wrong, as explained in Section 19.3.1.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went

Table19.51. r out er _t c_get function declaration

Proto |int router_tc_get(void * router)

About | Get the time counter (with control flags) of a given router. See Section 19.3.10.

Param |r out er [IN] Pointer
Pointer to the router.

Return |int. A positive value value when successful, which is the time counter value with the time control
flags. Otherwise, returns a negative value if something went wrong, as explained in Section 19.3.1.

19.3.11. Interrupt code generation

int router_port_interrupt_mask(void * router, int port);
int router_port_interrupt_unmask(void * router, int port);
int router_interrupt_mask(void * router, int options)

int router_interrupt_unmask(void * router, int options)

int router_icodegen_enable(void * router, uint8_t intn, uint32_t aitimer,

int router_icodegen_disable(void * router)

int router_isrctimer_set(void * router, uint32_t reloadval ue)
int router_isrctimer_get(void * router, uint32_t * reloadval ue)
int router_isrtimer_set(void * router, uint32_t reloadval ue)
int router_isrtimer_get(void * router, uint32_t * reloadval ue)

int options)

The driver provides this set of functions to handle interrupts and interrupt code generation. It also provides func-
tionsto get and set the ISR change and ISR timers. There are eleven sources of interrupt in the GRSPW router:

e SpaceWire Plug-and-Play error.

 Spill-if-not-readu.

¢ Run-state entry.

« Time code/ distributed interrupt code tick truncation.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 128

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

 Packet length truncation.

o Timeout spill.

e Auxiliary configuration port error.
* RMAPerror.

* Invalid address.

e Link error.

e Memory error.

These functions return a negative value if something went wrong, as explained in Section 19.3.1. Otherwise, the
function returns ROUTER_ERR_OK when successful.

Table19.52. r out er _port _i nt errupt _mask function declaration

Proto |int router _port _interrupt_mask(void * router, int port)

About |Mask interrupts for agiven port of the given router. The por t parameter defines which port . See
Section 19.3.11.

Param |r out er [IN] Pointer
Pointer to the router.

Param |port [IN] Integer
Port index.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table19.53.rout er _port _i nt errupt_unnmask function declaration

Proto |int router_port_interrupt_unmask(void * router, int port)

About |Unmask interrupts for a given port of the given router. The por t parameter defines which port . See
Section 19.3.11.

Param |r out er [IN] Pointer
Pointer to the router.

Param |port [IN] Integer
Port index.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table 19.54. r out er _i nt er r upt _mask function declaration

Proto |int router _interrupt_mask(void * router, int options)

About |Mask certain interrupts (i.e. disable), leaving the rest in their current state. The opt i ons parameter
defines which interrupts are going to be masked. See Section 19.3.11.

Param |r out er [IN] Pointer
Pointer to the router.

Param |opti ons [IN] Integer
Interrupt mask option. Any combinations (by OR operation) of these flags is accepted.

Value Description
ROUTER_INTERRUPT_ALL Mask al interrupts.
ROUTER_INTERRUPT_SPWPNP_ERROR Mask parity error interrupts.
ROUTER_INTERRUPT_SPILLED Mask spill-if-not-ready.
ROUTER_INTERRUPT_RUNSTATE Mask run-state entry
ROUTER_INTERRUPT_TC TRUNCATION Mask time-code/distributed interrupt code
truncation.
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 129

https://www.frontgrade.com/gaisler

ROUTER_INTERRUPT_PACKET_TRUNCATION

rRONTGRADE

Gaisler

Mask packet-length truncation.

ROUTER_INTERRUPT_TIMEOUT

Mask timeout spills.

ROUTER_INTERRUPT_CFGPORT

Mask auxiliary configuration port error.

ROUTER_INTERRUPT RMAP_ERROR Mask rmap error.
ROUTER_INTERRUPT_INVALID_ADDRESS Mask invalid address error.
ROUTER_INTERRUPT_LINK_ERROR Mask link error.

ROUTER_INTERRUPT_MEMORY_ERROR

Mask memory error.

wrong, as explained in Section 19.3.1.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.
Table 19.55. r out er _i nt er r upt _unmask function declaration
Proto |int router _interrupt_unmask(void * router, int options)
About |Unmask certain interrupts (i.e. enable), leaving the rest in their current state. The opt i ons parameter
defines which interrupts are going to be unmasked. See Section 19.3.11.
Param |r out er [IN] Pointer
Pointer to the router.
Param |opti ons [IN] Integer
Interrupt mask option. Any combinations (by OR operation) of these flags is accepted.
Value Description
ROUTER_INTERRUPT_ALL Unmask all interrupts.
ROUTER_INTERRUPT_SPWPNP_ERROR Unmask parity error interrupts.
ROUTER_INTERRUPT_SPILLED Unmask spill-if-not-ready.
ROUTER_INTERRUPT_RUNSTATE Unmask run-state entry
ROUTER_INTERRUPT_TC_TRUNCATION Unmask time-code/distributed interrupt code
truncation.
ROUTER_INTERRUPT_PACKET_TRUNCATION |Unmask packet-length truncation.
ROUTER_INTERRUPT_TIMEOUT Unmask timeout spills.
ROUTER_INTERRUPT_CFGPORT Unmask auxiliary configuration port error.
ROUTER_INTERRUPT_RMAP_ERROR Unmask rmap error.
ROUTER_INTERRUPT_INVALID_ADDRESS Unmask invalid address error.
ROUTER_INTERRUPT_LINK_ERROR Unmask link error.
ROUTER_INTERRUPT_MEMORY_ERROR Unmask memory error.
Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went

Table 19.56. r out er _i codegen_enabl e function declaration

Proto

i nt

aitiner, int options)

rout er i codegen_enable(void * router,

uint8 t intn, uint32_t

About

Enable interrupt code generation in a given router. See Section 19.3.11.

Param

rout er [IN] Pointer
Pointer to the router.

Param

i nt n [IN] Integer
Interrupt number to generate.

Param

ai ti mer [IN] Integer

Interrupt acknowledgement code to interrupt code timer reload value (if enabled).

RCC-UM
Dec 2023, Version 1.3.2

130

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Param |opti ons [IN] Integer
Interrupt code generation options. Any combinations (by OR operation) of thisflagsis accepted.

Value Description
ROUTER_ICODEGEN_ITYPE_EDGE Interrupt type is edge.
ROUTER_ICODEGEN_ITYPE_LEVEL (default) Interrupt typeislevel.
ROUTER_ICODEGEN_AUTOUNACK_ENABLE |Interrupt code generation un-acknowledge

mode enable.
ROUTER_ICODEGEN_AUTOUNACK_DISABLE |Interrupt code generation un-acknowledge
(default) mode disable.
ROUTER_ICODEGEN_AUTOACK_ENABLE Interrupt acknowledgement code handling en-

able.
ROUTER_ICODEGEN_AUTOACK_DISABLE (de- |Interrupt acknowledgement code handling
fault) disable.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table 19.57.r out er _i codegen_di sabl e function declaration

Proto |int router_icodegen_disable(void * router)

About |Disable interrupt code generation in a given router. See Section 19.3.11.
Param |r out er [IN] Pointer
Pointer to the router.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table 19.58.r out er _i srcti ner _set function declaration

Proto |int router _isrctiner_set(void * router, uint32 t reload)
About | Set the interrupt code distribution ISR change timer in agiven router. See Section 19.3.11.
Param |r out er [IN] Pointer

Pointer to the router.

Param |r el oad [IN] Integer
Timer reload value.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table19.59.r out er _i srcti mer _get function declaration

Proto |int router_isrctiner_get(void * router, uint32_t * reload)
About |Get the interrupt code distribution ISR change timer in a given router. See Section 19.3.11.
Param |r out er [IN] Pointer

Pointer to the router.

Param |r el oad [IN] Pointer

Pointer to the reload value.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table19.60.r out er _i srti mer _set function declaration

Proto |int router isrtinmer_set(void * router, uint32_t reload)
About | Set the interrupt code distribution ISR timer in a given router. See Section 19.3.11.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 131

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Param |r out er [IN] Pointer
Pointer to the router.

Param |r el oad [IN] Integer
Timer reload value.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

Table19.61.rout er _i srti mer _get function declaration

Proto |int router _isrtimer_get(void * router, uint32_t * reload)
About | Get the interrupt code distribution ISR timer in a given router. See Section 19.3.11.
Param |r out er [IN] Pointer

Pointer to the router.

Param |r el oad [IN] Pointer
Pointer to the reload value.

Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

19.3.12. Polling the error status of a port

int router_port_status(void * router, int port, uint32_t * status, uint32_t clrnsk);

The driver provides this function to check the port status. It can be used to detect errors. There are eleven sources
of errorsin the GRSPW router:

e SpaceWire Plug-and-Play error.

 Spill-if-not-readu.

¢ Run-state entry.

« Time code/ distributed interrupt code tick truncation.

« Packet length truncation.

» Timeout spill.

e Auxiliary configuration port error.

« RMAPerror.

* Invalid address.

e Link error.

* Memory error.

If an error has been detected, this function can internally clear the port status register bits to be able to catch new
errors, if the clear mask has been set to clear them.

This function returns a negative value if something went wrong, as explained in Section 19.3.1. Otherwise, the
function returns ROUTER_ERR_OK when successful.

Table 19.62. r out er _port _st at us function declaration

Proto |int router_port_status(void * router, int port, uint32_t * status,
uint32_t clrmsk)

About | Get the status register of agiven port of a given router. Clears errors if detected. See Section 19.3.7.
Param |r out er [IN] Pointer
Pointer to the router.

Param |port [IN] Integer
Port index.
Param |st at us [IN] Pointer

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 132

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Pointer to the status value.
Param |cl r msk [IN] Integer
Mask of error status bitsto be cleared. Please note that port O (configuration port) is different from the
rest of ports. The following values can be ORed:
Value Description
PSTSCFG_WCLEAR |Clear dl (port 0).
PSTSCFG_EO Clear early EOP (port 0).
PSTSCFG_EE Clear early EEP (port 0).
PSTSCFG_PL Clear packet-length truncation (port 0).
PSTSCFG_TT Clear time-code/distributed interrupt code truncation error (port 0).
PSTSCFG_PT Clear packet type error (port 0).
PSTSCFG_HC Clear header CRC error (port 0).
PSTSCFG_PI Clear protocol I1D error (port 0).
PSTSCFG_CE Clear error code (port 0).
PSTSCFG_TS Clear timeout spill (port 0).
PSTSCFG_ME Clear memory error (port 0).
PSTSCFG_CP Clear SpW PnP error code (port 0).
PSTS WCLEAR Clear al.
PSTS PL Clear packet-length truncation.
PSTS TT Clear time-code/distributed interrupt code truncation.
PSTS RS Clear rmap spill.
PSTS SR Clear spill-if-not-ready.
PSTS TS Clear timeout spills.
PSTS ME Clear memory error.
PSTS 1A Clear invalid address error.
PSTS CE Clear credit error.
PSTS ER Clear escape error.
PSTS DE Clear disconnect error.
PSTS_PE Clear parity error.
Return |int. ROUTER_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 19.3.1.

19.4. API reference

This section lists al data structures and functions part of the GRSPW router driver API, and in which section(s)
they are described. The API is aso documented in the source header file of the driver, see Section 19.1.2.

19.4.1. Data structures
The data structures used together with the driver are summarized in the table below.

Table 19.63. Data structures reference

Data structure name Section

struct router_hw_info 19.3.2

struct router_config 19.3.3

struct router_route_acontrol 19.35

struct router_route_portmap 19.35
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 133

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
Data structure name Section
struct router_routing_table 19.35
struct router_route 19.3.6
struct router_port 19.3.7

19.4.2. Device functions

The GRSPW router driver API. The functions listed in the table below operates on the router common registers

and driver set up.
Table 19.64. GRSPW router function reference

Prototype Section
void * router_open(int dev_no) 19.3.2
int router_close(void * router) 19.3.2
int router_hwinfo get(void * router, struct router_hw.info * hwin- [193.2
f o)
int router_config set(void * router, struct router_config * cfq) 19.3.3
int router_config _get(void * router, struct router_config * cfqg) 19.3.3
int router_reset(void * router) 19.3.3
int router wite_enable(void * router) 19.34
int router_ wite_disable(void * router) 19.34
int router_cfgsts_set(void * router, uint32_t cfgsts) 19.34
int router_cfgsts get(void * router, uint32 t * cfgsts) 19.34
int router_instance_set(void * router, uint8_t iid) 19.34
int router_instance_get(void * router, uint8 t * iid) 19.34
int router_idiv_set(void * router, uint8_t idiv) 19.34
int router_idiv_get(void * router, uint8 t * idiv) 19.34
int router_tpresc_set(void * router, uint32 t prescaler) 19.34
int router_tpresc_get(void * router, uint32_t * prescaler) 19.34
int router_routing_ table set(void * router, struct 19.35
router_routing table * cfqg)
int router_routing table get(void * router, struct 19.35
router _routing table * cfg)
int router_route_set(void * router, struct router_route * route) 19.3.6
int router_route_get(void * router, struct router_route * route) 19.3.6
int router_port_ioc(void * router, int port, struct router_port * 19.3.7
cfg)
int router_port_ctrl_rmyvoid * router, int port, uint32_t * old- 19.3.7
val ue, uint32_t mask, uint32 t val ue)
int router_port _ctrl _set(void * router, int port, uint32_t nmask, 19.3.7
uint32_t ctrl)
int router_port_ctrl_get(void * router, int port, uint32_t * ctrl) (1937
int router_port_ctrl2_ rmmvoid * router, int port, uint32_t * old- (1937
val ue, uint32_t nmask, uint32_t val ue)
int router_port _ctrl2 set(void * router, int port, uint32_t nask, 19.3.7
uint32 t ctrl2)
int router_port _ctrl2 get(void * router, int port, uint32_t * 19.3.7
ctrl2)

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 134

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
Prototype Section
int router_port_treload_set(void * router, int port, uint32_t 19.3.7
r el oad)
int router_port _treload get(void * router, int port, uint32 t * 19.3.7
r el oad)
int router_port_maxplen_set(void * router, int port, uint32_t 19.3.7
| engt h)
int router_port_maxplen_get(void * router, int port, uint32_t * 19.3.7
| engt h)
int router_port_enable(void * router, int port) 19.38
int router_port_disable(void * router, int port) 19.3.8
int router_port link status(void * router, int port) 19.3.8
int router_port_link_start(void * router, int port) 19.3.8
int router_port_link_stop(void * router, int port) 19.38
int router_port_link receive spill(void * router, int port) 19.3.8
int router_port_link_transmit_reset(void * router, int port) 19.3.8
int router_port_cred_get(void * router, int port, uint32_t * cred) [19.39
int router_tc_enable(void * router) 19.3.10
int router_tc _disable(void * router) 19.3.10
int router _tc reset(void * router) 19.3.10
int router_tc_get(void * router) 19.3.10
int router_icodegen_enabl e(void * router, uint8_t intn, uint32_t 19.3.11
aitiner, int options)
int router_icodegen_disable(void * router) 19.3.11
int router_isrctiner_set(void * router, uint32_t rel oadval ue) 19.3.11
int router_isrctimer_get(void * router, uint32_t * rel oadval ue) 19311
int router_isrtimer_set(void * router, uint32_t rel oadval ue) 19.3.11
int router_isrtinmer_get(void * router, uint32_t * rel oadval ue) 19.3.11
int router_port _interrupt_mask(void * router, router_isr_t isr, 19.3.11
void * arg, int port)
int router_port_interrupt_unmask(void * router, int port) 19311
int router_interrupt_mask(void * router, int options) 19.3.11
int router_interrupt_unnmask(void * router, int options) 19.3.11
int router_port_status(void * router, int port, uint32_t * status, 19.3.12
ui nt 32_t cl rnsk)

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 135

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 20. SPWTDP driver

20.1. Introduction
This section describes the SPWTDP driver for SPARC/LEON processors.
20.1.1. Hardware Support

The SPWTDP core hardware interface is documented in the GRIP Core User's manual. The SPWTDP core im-
plements the Spacewire time distribution protocol.

20.1.2. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the RTEMS source
treertens-5/c/src/lib/libbsp/sparc.

Table 20.1. SPWTDP driver source location

L ocation Description
shared/ i ncl ude/ spwt dp. h SPWTDP user interface definition
...1l1ibbsp/sparc/shared/ spw spw dp. c SPWTDP driver implementation

20.1.3. Examples

There is a simple example available that uses the SPWTDP driver to measure the latency between two boards.
The example is part of the RCC distribution, it can be found under / opt / rt ens- 5/ sr ¢/ sanpl es/ spw/
spwt dp/ .

20.2. Software design overview

The driver has been implemented using the Driver Manager Framework. The driver provides a kernel function
interface, an API, rather than implementing a 10 system device. The APl is SMP safe. The driver contains a
semaphore locking mechanism for SMP environments.

20.2.1. Driver usage

The driver provides a set of functions that allow to configure and operate the SPWTDP asiinitiator or target.

First of al, weneed to open the SPWTDP device before using it. If wewant to put it at aknown state, the SPWTDP
device can be reset. See Section 20.3.2.

Once the SPWTDP is open, we need to setup the time generation. See Section 20.3.3.
After this, we can configure the SPWTDP device as either initiator or target. We can also configure the distributed
interrupt, SPW time-code synchronization, command control and time-stamping. Once the device is configured

asinitiator or target, it can be enabled to start working. See Section 20.3.4.

To check for status and/or events, we cam use the functions in Section 20.3.7, or use interrupt service routines.
See Section 20.3.6.

Once the SPWTDP device is working, we can get elapsed times and timestamps. See Section 20.3.5.

When we are finished, we can disable the initiator/target, see Section 20.3.4, and close the SPWTDP device, see
Section 20.3.2.

20.2.2. Initialization

During early initialization when the operating system boots the SPWTDP driver, the driver resets the SPWTDP
core.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 136

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

20.3. SPWTDP user interface

20.3.1. Return values

SPWIDP_ERR_OK

SPWIDP_ERR_El NVAL
SPWIDP_ERR_ERROR
SPWIDP_ERR_NOI NI T

All the driver function calls return the following values when an error occurred:
e SPWTDP _ERR_OK - Successful execution.
* SPWTDP_ERR_EINVAL - Invalid input parameter. One of the input values checks failed.
* SPWTDP_ERR_ERROR - Internal error. Can have different causes.
« SPWTDP_ERR _NOINIT - Driver not initialized.

20.3.2. Opening a SPWTDP device

void * spwtdp_open(int dev_no)
int spwtdp_close(void * spwdp)
int spwtdp_reset(void * spwdp)

Thedriver uses these functions to open/close/reset a given SPTDP device. Only previously opened devices can be
configured and used. Reseting the SPWTDP device also clears all driver state, such as previous configurations. If
an ISR isregistered, it must be unregistered prior to areset (see Section 20.3.6).

These functions return a negative value if something went wrong, as explained in Section 20.3.1. Otherwise, the
function returns SPWTDP_ERR_OK when successful.

Table 20.2. spwt dp_open function declaration

Proto |void * spwtdp_open(int dev_no)

About |Open a SPWTDP device by registration order index. A SPWTDP device can only be opened once.
The handle returned must be used as the input parameter 'spwtdp’ in the rest of the callsin the function
interface. See Section 20.3.2.

Param |dev_no [IN] Integer

Registration index of the device.
Return |void *. SPWTDP pointer when successful. Otherwise, returnsa NULL pointer.

Table 20.3. spwt dp_cl ose function declaration

Proto |int spwdp_close(void * spwdp)

About |Close apreviously opened SPWTDP device. See Section 20.3.2.
Param |spwt dp [IN] Pointer

SPWTDP pointer.

Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.4. spwt dp_r eset function declaration

Proto |int spwdp_reset(void * spwdp)

About | Reset apreviously opened SPWTDP device. See Section 20.3.2.
Param |spwt dp [IN] Pointer

SPWTDP pointer.

Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 137

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
20.3.3. Setting up the frequency and time generation

int spwdp_freqg_setup(void * spwtdp, uint32_t fsinc, uint32_t cv, uint8_t etinc)

The driver uses this functions to setup the time generation of the SPWTDP device.

These functions return a negative value if something went wrong, as explained in Section 20.3.1. Otherwise, the
function returns SPWTDP_ERR_OK when successful.

Table 20.5. spwt dp_f r eq_set up function declaration

Proto |int spwdp_freq_setup(void * spwdp, uint32_t fsinc, uint32_t cv,
uint8 t etinc)

About | Setup the frequency of a previously opened SPWTDP device. See Section 20.3.3.
Param |spwt dp [IN] Pointer

SPWTDP pointer.

Param |f si nc [IN] Integer

Frequency synthesizer (FSINC) value.

Param |cv [IN] Integer

Compensation Value (CV).

Param |eti nc [IN] Integer

Elapsed Time Increment (ETINC) value.

Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns anegative value if something went
wrong, as explained in Section 20.3.1.

20.3.4. Configuring as initiator or target

int spwtdp_initiator_conf(void * spwtdp, uint8_t mapping, uint32_t options)

int spwtdp_initiator_int_conf(void * spwtdp, uint8_t stm uint8_t inrx, uint8_t intx)
int spwtdp_initiator_cnd_et_set(void * spwtdp, spwtdp_tinme_t val)

int spwtdp_initiator_cnd_spwc_set(void * spwdp, uint8_t spwc)

int spwtdp_initiator_tstx_conf(void * spwtdp, uint8_t tstc)

int spwtdp_initiator_enable(void * spwtdp)

int spwtdp_initiator_disable(void * spwdp)

int spwtdp_target_conf(void * spwdp, uint8_t mapping, uint32_t options)

int spwtdp_target_int_conf(void * spwtdp, uint8_t inrx, uint8_t intx, uint32_t options)
int spwtdp_target_cnd_conf(void * spwtdp, uint8_t spwtc, uintl6_t cpf, uint32_t options)
int spwtdp_target_enabl e(void * spwtdp)

int spwtdp_target_disable(void * spwtdp)

The driver uses this functions to configure the SPWTDP device as initiator or target. A SPWTDP device can
only work either asinitiator or target at a given time. Before enabling an initiator/target, the SPWTDP has to be
configured as initiator/target respectively with the configuration functions.

These functions return a negative value if something went wrong, as explained in Section 20.3.1. Otherwise, the
function returns SPWTDP_ERR_OK when successful.

Table 20.6. spwt dp_i ni ti at or _conf function declaration

Proto |int spwdp_initiator_conf(void * spwtdp, uint8_t mapping, uint32_t
options)

About | Configure and set the SPWTDP asinitiator. See Section 20.3.4.
Param |spwt dp [IN] Pointer

SPWTDP pointer.

Param |mappi ng [IN] Integer

Mapping of SPW time-codes versus CCSDS time-code.

Param |opti ons [IN] Integer

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 138

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Initiator options. Any combination (by OR operation) of these flagsis accepted.
Value Description
SPWTDP_TDP_ENABLE Enable TDP.
SPWTDP_TDP_DISABLE Disable TDP (default).
SPWTDP_LATENCY_ENABLE Latency enable.
SPWTDP_LATENCY_DISABLE Latency disable (default).
SPWTDP_EXTET_INC_ENABLE Ext. ET increment enable.
SPWTDP_EXTET_INC_DISABLE Ext. ET increment disable (default).
SPWTDP_EXTET_INC_POLARITY_RISING Ext. ET increment polarity rising.
SPWTDP_EXTET_INC_POLARITY_FALLING Ext. ET increment polarity falling (default).
SPWTDP_EXTET_ENABLE Ext. ET enable.
SPWTDP_EXTET_DISABLE Ext. ET disable (default).
SPWTDP_EXTET_POLARITY_RISING Ext. ET polarity rising.
SPWTDP_EXTET_POLARITY_FALLING Ext. ET polarity falling (default).

Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.7. spwt dp_i ni ti at or _i nt _conf function declaration

Proto |int spwdp_initiator_int_conf(void * spwtdp, uint8 t stm uint8_t
inrx, uint8_t intx)

About | Configure theinitiator distributed interrupts. See Section 20.3.4.
Param |spwt dp [IN] Pointer

SPWTDP pointer.

Param |st m[IN] Integer

SPW time-code mask.

Param |i nrx [IN] Integer

Interrupt received.

Param |i nt x [IN] Integer
Interrupt transmitted.

Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns anegative value if something went
wrong, as explained in Section 20.3.1.

Table20.8.spwt dp_i niti ator_cnd_et _set function declaration

Proto |int spwtdp_initiator_cnd_et_set(void * spwtdp, spwtdp_tinme_t val)
About | Set the command elapsed time. See Section 20.3.4.

Param |spwt dp [IN] Pointer

SPWTDP pointer.

Param |val [IN] Integer

Elapsed time value.

Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns anegative value if something went
wrong, as explained in Section 20.3.1.

Table 20.9. spwt dp_i niti at or_cnd_spwt c_set function declaration

Proto |int spwtdp_initiator_cnd_spwic_set(void * spwdp, uint8_t spwc)
About |Set the SPW time-code used for initialization and synchronization. See Section 20.3.4.
Param |spwt dp [IN] Pointer

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 139

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

SPWTDP pointer.
Param |spwt c [IN] Integer

Time-code value.

Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.10. spwt dp_i ni ti at or _t st x_conf function declaration

Proto |int spwtdp_initiator_tstx conf(void * spwtdp, uint8 t tstc)

About | Configure the time-stamp SPW time-code of a previously opened SPWTDP device. See Sec-
tion 20.3.4.

Param |spwt dp [IN] Pointer
SPWTDP pointer.
Param |t st ¢ [IN] Integer

Time stamp on this time-code value.

Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.11. spwt dp_i ni ti at or _enabl e function declaration

Proto |int spwdp_initiator_enable(void * spwtdp)
About |Enabletheinitiator. See Section 20.3.4.

Param |spwt dp [IN] Pointer

SPWTDP pointer.

Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table20.12. spwt dp_i ni ti at or _di sabl e function declaration

Proto |int spwtdp_initiator_disable(void * spwdp)
About |Disabletheinitiator. See Section 20.3.4.

Param |spwt dp [IN] Pointer

SPWTDP pointer.

Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.13. spwt dp_t ar get _conf function declaration

Proto |int spwdp_target _conf(void * spwtdp, uint8 t mapping, uint32_t op-
tions)

About |Configure and set the SPWTDP as target. See Section 20.3.4.
Param |spwt dp [IN] Pointer

SPWTDP pointer.

Param |[mappi ng [IN] Integer

Mapping of SPW time-codes versus CCSDS time-code.

Param |opt i ons [IN] Integer
Target options. Any combination (by OR operation) of these flags is accepted.

Value Description
SPWTDP_TDP_ENABLE Enable TDP.
SPWTDP_TDP_DISABLE Disable TDP (defauilt).
SPWTDP_LATENCY_ENABLE Latency enable.
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 140

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

SPWTDP_LATENCY_DISABLE Latency disable (default).
SPWTDP_EXTET_INC_ENABLE Ext. ET increment enable.
SPWTDP_EXTET_INC_DISABLE Ext. ET increment disable (default).
SPWTDP_EXTET_INC_POLARITY_RISING Ext. ET increment polarity rising.
SPWTDP_EXTET_INC_POLARITY_FALLING Ext. ET increment polarity falling (default).
SPWTDP_EXTET_ENABLE Ext. ET enable.
SPWTDP_EXTET_DISABLE Ext. ET disable (default).
SPWTDP_EXTET_POLARITY_RISING Ext. ET polarity rising.
SPWTDP_EXTET_POLARITY_FALLING Ext. ET polarity faling (default).
SPWTDP_TARGET_SPWSYNC_ENABLE Enable synch. using SPW time-code.
SPWTDP_TARGET_SPWSYNC DISABLE Disable synch. using SPW time-code (de-
fault).

SPWTDP_TARGET _JITTER_ENABLE Enable jitter correction.
SPWTDP _TARGET JTTER DISABLE Disablejitter correction (default).
SPWTDP_TARGET_MITIGATION_ENABLE Enable mitigation.
SPWTDP_TARGET_MITIGATION_DISABLE Disable mitigation (default).

Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns anegative value if something went
wrong, as explained in Section 20.3.1.

Table20.14. spwt dp_t ar get _i nt _conf function declaration

Proto |int spwdp_target_int _conf(void * spwdp, uint8t inrx, uint8 t in-
tx, uint32_t options)

About | Configure the target distributed interrupts. See Section 20.3.4.

Param |spwt dp [IN] Pointer
SPWTDP pointer.

Param |i nrx [IN] Integer
Interrupt received.

Param |i nt x [IN] Integer
Interrupt transmitted.

Param |opti ons [IN] Integer
Taret options. Any combination (by OR operation) of these flags is accepted.
Value Description
SPWTDP_TARGET_DISTINT_INTACK Interrupt and Acknowledge mode.
SPWTDP_TARGET_DISTINT_INT Interrupt only mode (default).

Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.15. spwt dp_t ar get _cnd_conf function declaration

Proto |int spwdp_target_cnd_conf(void * spwdp, uint8 t spwc, uintl6_t
cpf, uint32_t options)

About | Configure the target command control. See Section 20.3.4.

Param |spwt dp [IN] Pointer
SPWTDP pointer.

Param |spwt ¢ [IN] Integer
Time-code value.

Param |cpf [IN] Integer

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 141

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
Command preamble value.
Param |opt i ons [IN] Integer
Target options. Any combination (by OR operation) of these flags is accepted.
Value Description
SPWTDP_TARGET_CTRL_NEWCOMMAND_ENABLE Enable command.
SPWTDP_TARGET_CTRL_NEWCOMMAND_DISABLE Disable command (default).
SPWTDP_TARGET_CTRL_INIT Initialization mode.
SPWTDP_TARGET_CTRL_SYNC Synchronization mode (default).
Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went

wrong, as explained in Section 20.3.1.

Table 20.16. spwt dp_t ar get _enabl e function declaration

Proto

int spwtdp_target_enable(void * spwdp)

About

Enable the target. See Section 20.3.4.

Param

spwt dp [IN] Pointer
SPWTDP pointer.

Return

int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.17. spwt dp_t ar get _di sabl e function declaration

Proto

int spwtdp_target_disable(void * spwtdp)

About

Disable the target. See Section 20.3.4.

Param

spwt dp [IN] Pointer
SPWTDP pointer.

Return

int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

20.3.5. Getting the elapsed time or timestamps

int spwtdp_dat_et_get(void *spwtdp, spwdp_tinme_t * val)
int spwtdp_tsrx_et_get(void *spwtdp, spwtdp_time_t * val)
int spwtdp_tstx_et_get(void *spwtdp, spwtdp_time_t * val)
int spwtdp_l at_et_get(void *spwtdp, spwdp_tinme_t * val)
int spwtdp_cnd_et_get(void *spwtdp, spwdp_tinme_t * val)

The driver uses these functions to get the elapsed time value or timestamp.

These functions return a negative value if something went wrong, as explained in Section 20.3.1. Otherwise, the

function returns SPWTDP_ERR_OK when successful.

struct spwtdp_time_t {
uint8_t data[SPWIDP_TI ME_DATA LENGTH] ;
uint32_t preanble;

I

Table 20.18. spwtdp_time t data structure declaration

data

Byte array with time value.

preamble Preamble field.

Table 20.19. spwt dp_dat _et get function declaration

Proto |int spwdp_dat_et _get(void * spwdp, spwdp_tine t * val)
About | Get datation elapsed time. See Section 20.3.5.
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 142

https://www.frontgrade.com/gaisler

FRONTGRADE
Param |spwt dp [IN] Pointer

SPWTDP pointer.

Param |st s [IN] Pointer

Elapsed time value pointer.

Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.20. spwt dp_t srx_et _get function declaration

Proto |int spwdp_tsrx et get(void * spwtdp, spwdp_tine_ t * val)
About | Get time-stamp RX elapsed time. See Section 20.3.5.

Param |spwt dp [IN] Pointer

SPWTDP pointer.

Param |st s [IN] Pointer

Elapsed time value pointer.

Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.21. spwt dp_t st x_et _get function declaration

Proto |int spwdp_tstx et get(void * spwtdp, spwdp tine_ t * val)
About |Get time-stamp TX elapsed time. See Section 20.3.5.

Param |spwt dp [IN] Pointer

SPWTDP pointer.

Param |st s [IN] Pointer

Elapsed time value pointer.

Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.22. spwt dp_| at _et _get function declaration

Proto |int spwdp_lat_et get(void * spwdp, spwdp_tinme_t * val)
About | Get latency elapsed time. See Section 20.3.5.

Param |spwt dp [IN] Pointer

SPWTDP pointer.

Param |st s [IN] Pointer

Elapsed time value pointer.

Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.23. spwt dp_cnd_et _get function declaration

Proto |int spwdp_cnd_et _get(void * spwdp, spwdp_time_t * val)
About | Get command elapsed time. See Section 20.3.5.

Param |spwt dp [IN] Pointer

SPWTDP pointer.

Param |st s [IN] Pointer

Elapsed time value pointer.

Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 143

https://www.frontgrade.com/gaisler

20.3.6.

rRONTGRADE

Gaisler
Handling SPWTDP AMBA interrupts

typedef void (*spwtdp_isr_t)(unsigned int ists, void *data)

int spwtdp_isr_register(void *spwtdp, spwtdp_isr_t isr, void * data)
int spwtdp_isr_unregister(void *spwtdp)

int spwtdp_interrupt_mask(void *spwtdp, uint32_t irgnask)

int spwtdp_interrupt_unmask(void *spwtdp, uint32_t irgnask)

Thedriver usesthese functionsto manageinterruptsand | SR. To enableinterrupts, register an | SR and then unmask

the want

ed sources of interrupts. To disable interrupts, mask the unwanted sources of interrupts and ultimately

unregister the ISR (all interrupts are disabled).

These fu
function

nctions return a negative value if something went wrong, as explained in Section 20.3.1. Otherwise, the
returns SPWTDP_ERR_OK when successful.

Table 20.24. spwt dp_i sr_r egi st er function declaration

Proto |int spwdp_isr_register(void * spwdp, spwdp_isr_t isr, void * da-
ta)
About |Register an interrupt handler and custom data. See Section 20.3.6.
Param |spwt dp [IN] Pointer
SPWTDP pointer.
Param |i sr [IN] Pointer
ISR function pointer.
Param |dat a [IN] Pointer
ISR user data pointer.
Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.
Table 20.25. spwt dp_i sr_unr egi st er function declaration
Proto |int spwtdp_isr_unregister(void * spwtdp)
About |Unregister an interrupt handler. See Section 20.3.6.
Param |spwt dp [IN] Pointer
SPWTDP pointer.
Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.
Table 20.26. spwt dp_i nt er r upt _nask function declaration
Proto |int spwdp_interrupt_mask(void * spwtdp, uint32_t irqgnask)
About |Mask interrupts at the interrupt controller. See Section 20.3.6.
Param |spwt dp [IN] Pointer
SPWTDP pointer.
Param |i r gmask [IN] Integer
Interrupt mask option. Any combinations (by OR operation) of these flags is accepted.
Value Description
SPWTDP_IRQ ALL Mask all interrupts.
SPWTDP_IRQ_S Mask sync interrupt.
SPWTDP IRQ TR Mask time-code received interrupt.
SPWTDP_IRQ TM Mask time message transmit interrupt.
SPWTDP_IRQ TT Mask time-code transmitted interrupt.
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 144

https://www.frontgrade.com/gaisler

SPWTDP_IRQ DIR

rRONTGRADE

Gaisler

Mask distributed interrupt received interrupt.

SPWTDP_IRQ DIT

Mask distributed interrupt transmitted inter-
rupt.

SPWTDP_IRQ EDIO

Mask external datation O interrupt.

SPWTDP_IRQ EDI1

Mask external datation 1 interrupt.

SPWTDP_IRQ_EDI2

Mask external datation 2 interrupt.

SPWTDP_IRQ_EDI3

Mask external datation 3 interrupt.

SPWTDP_IRQ_SET

Mask set ET external interrupt.

SPWTDP_IRQ_P(0-7)

Mask Pulse (0-7) interrupt.

SPWTDP_IRQ NCTC

Mask non consecutive SPW time-code re-
ceived interrupt.

wrong, as explained in Section 20.3.1.

Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went

Table 20.27. spwt dp_i nt er r upt _unmask function declaration

Proto |int spwdp_interrupt_unmask(void * spwtdp, uint32_t irgmask)

About | Unmask interrupts at the interrupt controller. See Section 20.3.6.

Param |spwt dp [IN] Pointer
SPWTDP pointer.

Param |i r gmask [IN] Integer

Interrupt mask option. Any combinations (by OR operation) of these flags is accepted.

Vaue

Description

SPWTDP_IRQ ALL

Unmask all interrupts.

SPWTDP _IRQ S

Unmask sync interrupt.

SPWTDP_IRQ TR

Unmask time-code received interrupt.

SPWTDP_IRQ_TM

Unmask time message transmit interrupt.

SPWTDP_IRQ TT

Unmask time-code transmitted interrupt.

SPWTDP_IRQ DIR

Unmask distributed interrupt received inter-
rupt.

SPWTDP_IRQ DIT

Unmask distributed interrupt transmitted in-
terrupt.

SPWTDP_IRQ_EDIO

Unmask external datation O interrupt.

SPWTDP_IRQ_EDI1

Unmask external datation 1 interrupt.

SPWTDP_IRQ_EDI2

Unmask external datation 2 interrupt.

SPWTDP_IRQ EDI3

Unmask external datation 3 interrupt.

SPWTDP_IRQ_SET

Unmask set ET external interrupt.

SPWTDP_IRQ_P(0-7)

Unmask Pulse (0-7) interrupt.

SPWTDP_IRQ NCTC

Unmask non consecutive SPW time-code re-
ceived interrupt.

wrong, as explained in Section 20.3.1.

Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went

20.3.7. Checking the SPWTDP status

int spwtdp_status(void *spwtdp, uint32_t * sts, uint32_t clrnmask)
int spwtdp_interrupt_status(void *spwtdp, uint32_t * sts, uint32_t clrmask)
int spwtdp_precision_get(void *spwtdp, uint8_t * fine, uint8_t * coarse)

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 145

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The driver uses these functions to get the SPWTDP status, interrupt status and precision. Note that the interrupt
status should not be used when an ISR is registered.

These functions return a negative value if something went wrong, as explained in Section 20.3.1. Otherwise, the
function returns SPWTDP_ERR_OK when successful.

Table 20.28. spwt dp_st at us function declaration

Proto |int spwtdp_status(void * spwtdp, uint32 t * sts, uint32_t clrnask)
About |Get and clear the SPWTDP status. See Section 20.3.7.

Param |spwt dp [IN] Pointer

SPWTDP pointer.

Param |st s [IN] Pointer

Status value pointer. If anon NULL pointer is provided, the SPWTDP status will be saved on the
pointed memory location.

Param |cl r mask [IN] Integer
Status clear option.

Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns anegative value if something went
wrong, as explained in Section 20.3.1.

Table20.29. spwt dp_i nt er rupt _st at us function declaration

Proto |int spwdp_interrupt_status(void * spwtdp, uint32 t * sts, uint32_t
cl rmask)

About |Get and clear interrupt status. See Section 20.3.7.
Param |spwt dp [IN] Pointer

SPWTDP pointer.

Param |st s [IN] Pointer

Status value pointer. If anon NULL pointer is provided, the interrupt status will be saved on the
pointed memory location.

Param |cl r mask [IN] Integer
Interrupt clear option. Any combinations (by OR operation) of these flags is accepted.

Value Description

SPWTDP_IRQ ALL Clear al interrupts.

SPWTDP_IRQ_S Clear sync interrupt.

SPWTDP_IRQ TR Clear time-code received interrupt.

SPWTDP_IRQ TM Clear time message transmit interrupt.

SPWTDP_IRQ TT Clear time-code transmitted interrupt.

SPWTDP_IRQ DIR Clear distributed interrupt received interrupt.

SPWTDP_IRQ DIT Clear distributed interrupt transmitted inter-
rupt.

SPWTDP_IRQ EDIO Clear external datation O interrupt.

SPWTDP_IRQ EDI1 Clear external datation 1 interrupt.

SPWTDP_IRQ_EDI2 Clear external datation 2 interrupt.

SPWTDP_IRQ_EDI3 Clear external datation 3 interrupt.

SPWTDP_IRQ_SET Clear set ET external interrupt.

SPWTDP_IRQ_P(0-7) Clear Pulse (0-7) interrupt.

SPWTDP_IRQ _NCTC Clear non consecutive SPW time-code re-
ceived interrupt.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 146

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

Table 20.30. spwt dp_pr eci si on_get function declaration

Proto |int spwtdp_precision_get(void * spwtdp, uint8 t * fine, uint8 t *
coarse)

About | Get the SPWTDP precision. See Section 20.3.7.

Param |spwt dp [IN] Pointer
SPWTDP pointer.

Param |f i ne [IN] Pointer
Fine precision value pointer. If anon NULL pointer is provided, the fine precision value will be saved
on the pointed memory location.

Param |coar se [IN] Pointer
Coarse precision value pointer. If anon NULL pointer is provided, the coarse precision value will be
saved on the pointed memory location.

Return |int. SPWTDP_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 20.3.1.

20.4. APl reference

This section lists al functions part of the SPWTDP driver API, and in which section(s) they are described. The
APl is also documented in the source header file of the driver, see Section 20.1.2.

Table 20.31. SPWTDP function reference

Prototype Section
void * spwtdp_open(int dev_no) 20.3.2
int spwtdp_close(void *spwt dp) 20.3.2
int spwtdp_reset(void *spw dp) 20.3.2
int spwtdp_freq_setup(void *spwdp, uint32_t fsinc, uint32_t cv, 20.3.3

uint8 t etinc)

int spwtdp_initiator_conf(void *spwdp, uint8 t mapping, uint32t 20.34

options)

int spwtdp_initiator_int_conf(void *spwdp, uint8 t stm uint8_t 20.34
inrx, uint8 t intx)

int spwtdp_initiator_cnd_et_set(void *spwdp, spwdp_tinme_t val) 20.34
int spwtdp_initiator_cnd_spwc_set(void *spwdp, uint8_ t spwc) 20.34
int spwtdp_initiator_tstx _conf(void *spwdp, uint8 t tstc) 20.34
int spwtdp_initiator_enabl e(void *spwtdp) 20.34
int spwtdp_initiator_disable(void *spwdp) 20.34

tions)

int spwtdp_target_conf(void *spwtdp, uint8 t mapping, uint32_t op- [20.34

int spwtdp_target_int_conf(void *spwdp, uint8 t inrx, uint8 t in- (2034

tx, uint32_t options)

int spwtdp_target_cnd _conf(void *spwdp, uint8 t spwc, uintl6_t 20.34
cpf, uint32_t options)

int spwtdp_target_enabl e(void *spwt dp) 20.34
int spwtdp_target_disable(void *spwt dp) 20.34
int spwtdp_dat_et get(void *spwtdp, spwdp_tine_t * val) 20.35
int spwtdp_tsrx_et _get(void *spwtdp, spwtdp_tine_t * val) 20.35

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 147

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
Prototype Section
int spwtdp_tstx_et_get(void *spwtdp, spwtdp_tine_t * val) 20.35
int spwtdp_lat_et _get(void *spwdp, spwdp_tine_t * val) 20.35
int spwtdp_cnd_et _get(void *spwdp, spwdp_tinme_t * val) 20.35

int spwtdp_isr_register(void *spwdp, spwdp_isr_t isr, void * da- [20.36
ta)

int spwdp_isr_unregister(void *spwdp) 20.3.6
int spwtdp_interrupt_mask(void *spwtdp, uint32_t irqgnask) 20.3.6
int spwtdp_interrupt_unnask(void *spwtdp, uint32_t irqgnask) 20.3.6

int spwtdp_status(void *spwdp, uint32_t * sts, uint32_t clrmask) 20.3.7

int spwtdp_interrupt_status(void *spwtdp, uint32_t * sts, uint32_t (2037
cl r mask)

int spwtdp_precision_get(void *spwtdp, uint8t * fine, uint8t * 20.3.7
coar se)
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 148

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 21. GR1553B GRLIB MIL-STD-1553B driver

21.1. Introduction

This document describesthe RTEM S5 drivers specific to the GRLIB GR1553B core. The Remote Terminal (RT),
Bus Monitor (BM and Bus Controller (BC) functionality are supported by the driver. Device discovery and re-
source sharing are commonly controlled by the GR1553B driver described in this chapter. Each 1553 mode is
supported by a separate driver, the drivers are documented in separate chapters.

All the GR1553B drivers relies on the RTEMS Driver Manager for the services: device detection, driver load-
ing/initiali zation and interrupt management. Driver Manager isresponsiblefor creating GR1553B deviceinstances
and uniting GR1553B devices with the GR1553B low-level driver.

This section gives an brief introduction to the GRLIB GR1553B device alocation driver used internally by the
BC, BM and RT devicedrivers. Thisdriver controls the GR1553B device regardless of interfaces supported (BC,
RT and/or BM). The device can be located at an on-chip AMBA or an AMBA-over-PCl bus. The driver provides
an interface for the BC, RT and BM drivers.

Since the different interfaces (BC, BM and RT) are accessed from the same register interface on one core, the
APB device must be shared among the BC, BM and RT drivers. The GR1553B driver provides an easy function
interface that allows the APB device to be shared safely between the BC, BM and RT device drivers.

Any combination of interface functionality is supported, but the RT and BC functionality cannot be used simul-
taneoudly (limited by hardware).

Theinterfacetowardsto the BC, BM and RT driversisused internally by the devicedriversand is not documented
here. See respective driver for an interface description.

21.2. GR1553B Hardware

The GRLIB GR1553B core may support up to three modes depending on configuration, Bus Controller (BC),
Remote Terminal (RT) or Bus Monitor (BM). The BC and RT functionality may not be used simultaneously, but
the BM may be used together with BC or RT or separately. All three modes are supported by the driver.

Interrupts generated from BC, BM and RT result in the same system interrupt, interrupts are shared.

21.3. Software driver

The driver provides an interface used internally by the BC, BM and RT device drivers, see respective driver for
an interface declaration. The driver sources and definitions are listed in the table below, the path is given relative
to the RTEMS SPARC BSP sourcetreec/ src/ i b/ 1i bbsp/ sparc.

Table 21.1. Source Location

Filename Description
shared/1553/gr1553h.c GR1553B Driver source
share/include/gr1553b.h GR1553B Driver interface declaration

21.4. Driver Registration

The driver must be registered to the driver manager. The registration is performed by calling the
gr 1553_regi st er () function. The driver is automatically registered from the BC, BM and the RT device
drivers registration procedure. This means that including the BC, BM and/or the RT driver will automatically
include the GR1553B (this) driver.

21.5. Examples

The RCC distribution contai ns examples demonstrating how the GR1553B drivers are used. The examples can be
foundin/ opt/rtens-5/src/ sanpl es/ 1553.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 149

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 22. GR1553B remote terminal driver

22.1. Introduction

This section describes the GRLIB GR1553B Remote Terminal (RT) device driver interface. The driver relies on
the GR1553B driver and the Driver Manager. The reader is assumed to be well acquainted with MIL-STD-1553
and the GR1553B core.

22.1.1. GR1553B Remote Terminal Hardware

The GR1553B core supportsany combination of the Bus Controller (BC), BusMonitor (BM) and Remote Terminal
(RT) functionality. This driver supportsthe RT functionality of the hardware, it can be used simultaneously with
the Bus Monitor (BM) functionality. When the BM is used together with the RT interrupts are shared between
thedrivers.

The three functions (BC, BM, RT) are accessed using the same register interface, but through separate registers.
In order to shared hardware resources between the three GR1553B drivers, the three depends on a lower level
GR1553B driver, see GR1553B driver section.

The driver supports the on-chip AMBA bus and the AMBA-over-PCI bus.
22.1.2. Examples

There is an example available that illustrates how the RT driver interface can be used to respond to 1553 BC
commands. The exampleincludes code for Interrupt handling, Event Logging, Synchronize and Synchronize With
Data mode codes, RX/TX data transfers and various driver configuration options. The RT will respond on sub
address 1,2 and 3, see comments in application and BC application. The RT example comes with a matching BC
example that generates BC transfersthat is understood by the RT. The RT application use the Eventlog to monitor
certain transfers, the transfers are written to standard ouit.

The RT example includes a BM logger which can be used for debugging the 1553 bus. All 1553 transfers can be
logged and sent to a Linux PC over a TCP/IP socket and saved to araw text file for post processing. The default
is however just to enable BM logging, for debugging one can quite easily read the raw BM log by looking at the
BM registers and memory from GRMON.

In order to run all parts of the example a board with GR1553B core with BC and BM support, and a board with
a GR1553B core with RT support is required.

The example is part of the Aeroflex Gaisler RTEMS distribution, it can be found under / opt / rt ens- 4. 10/
src/ sanpl es/ 1553/ rt ens- gr 1553rt. c.

The example can be built by running:

$ cd /opt/rtens-4. 10/ src/ sanpl es/ 1553
$ make rtens-gr1553rt

22.2. User Interface

22.2.1. Overview

The RT software driver provides accessto the RT core and help with creating memory structures accessed by the
RT core. The driver provides the serviceslist below,

» Basic RT functionality (RT address, Bus and RT Status, Enabling core, etc.)

< Event logging support

* Interrupt support (Global Errors, Data Transfers, Mode Code Transfer)

* DMA-Memory configuration

» Sub Address configuration

« Support for Mode Codes

e Transfer Descriptor List Management per RT sub address and transfer type (RX/TX)

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 150

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The driver sources and definitions are listed in the table below, the path is given relative to the RTEM S source
treec/ src/li b/l bbsp/sparc.

Table 22.1. RT driver Source location

Filename Description
shared/1553/gr1553rt.c GR1553B RT Driver source
shared/include/gr1553rt.h GR1553B RT Driver interface declaration

22.2.1.1. Accessing an RT device

In order to access an RT core, a specific core must be identified (the driver support multiple devices). The core
is opened by calling gr 1553rt _open(), the open function allocates an RT device by calling the lower level
GR1553B driver and initializes the RT by stopping al activity and disabling interrupts. After an RT has been
opened it can be configured gr 1553rt _confi g(), SA-table configured, descriptor lists assigned to SA, inter-
rupt callbacks registered, and finally communication started by calling gr 1553rt _start (). Oncethe RT is
started interrupts may be generated, data may be transferred and the event log filled. The communication can be
stopped by calling gr 1553rt _st op() .

When the application no longer needs to access the RT core, the RT is closed by calling gr 1553rt _cl ose().
22.2.1.2. Introduction to the RT Memory areas

For the RT there are four different types of memory areas. The access to the areas is much different and involve
different latency requirements. The areas are;

e Sub Address (SA) Table

» Buffer Descriptors (BD)

« Databuffers referenced from descriptors (read or written)
« Event (EV) logging buffer

The memory types are described in separate sections below. Generally three of the areas (controlled by the driver)
can bedynamically allocated by the driver or assigned to acustom location by the user. Assigning acustom address
is typically useful when for example a low-latency memory is required, or the GR1553B core is located on an
AMBA-over- PCI bus where memory accesses over the PCl bus will not satisfy the latency requirements by the
1553 bus, instead amemory local to the RT core can be used to shorten the accesstime. Note that when providing
custom addresses the alignment requirement of the GR1553B core must be obeyed, which isdifferent for different
areas and sizes. The memory areas are configured using thegr 1553rt _confi g() function.

22.2.1.3. Sub Address Table

The RT core provides the user to program different responses per sub address and transfer type through the sub
address table (SA-table) located in memory. The RT core consult the SA-table for every 1553 data transfer com-
mand on the 1553 bus. The table includes options per sub address and transfer type and a pointer to the next
descriptor that let the user control the location of the data buffer used in the transaction. See hardware manual
for a complete description.

The SA-tableisfixed size to 512 bytes.

Since the RT is required to respond to BC request within a certain time, it is vital that the RT has enough time
to lookup user configuration of atransfer, i.e. read SA-table and descriptor and possibly the data buffer as well.
The driver provides a way to let the user give a custom address to the sub address table or dynamically allocate
it for the user. The default action isto let the driver dynamically allocate the SA-table, the SA-table will then be
located in the main memory of the CPU. For RT core's located on an AMBA-over- PCI bus, the default action is
not acceptable due to the latency requirement mentioned above.

The SA-table can be configured per SA by callingthegr 1553rt _sa_set opt s() function. The mask argu-
ment makes it possible to change individual bit in the SA configuration. This function must be called to enable
transfers from/to a sub address. See hardware manual for SA configuration options. Descriptor Lists are assigned
toaSA by calinggr 1553rt _list_sa().

Theindication service can be used to determine the descriptor used in the next transfer, see Section 22.2.1.8.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 151

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

22.2.1.4. Descriptors

A GR1553B RT descriptor is located in memory and pointed to by the SA-table. The SA-table points out the
next descriptor used for a specific sub address and transfer type. The descriptor contains three input fields: Con-
trol/Status Word determines options for a specific transfer ans status of a completed transfer; Data buffer pointer,
16-bit aligned; Pointer to next descriptor within sub address and transfer type, or end-of-list marker.

All descriptors are located in the same range of memory, which the driver refers to as the BD memory. The
BD memory can by dynamically allocated (located in CPU main memory) by the driver or assigned to a custom
location by the user. From the BD memory descriptors for all sub addresses are allocated by the driver. The driver
works internally with 16-bit descriptor identifiers allowing 65k descriptor in total. A descriptor is allocated for a
specific descriptor List. Each descriptor takes 32 bytes of memory.

The user can build and initialize descriptors using the API function gr 1553rt _bd_i ni t () and update the
descriptor and/or view the status and time of a completed transfer.

Descriptors are managed by a data structure named gr 1553rt _| i st . A List is the software representation of
achain of descriptors for a specific sub address and transfer type. Thus, 60 listsin total (two lists per SA, SAO
and SA31 are for mode codes) per RT. The List simplifies the descriptor handling for the user by introducing
descriptor numbers (ent r y_no) used when referring to descriptors rather than the descriptor address. Up to 65k
descriptors are supported per List by the driver. A descriptor list is assigned to a SA and transfer type by calling
gr1553rt _list_sa().

When aList is created and configured a maximal number of descriptors are given, giving the APl a possibility to
allocate the descriptors from the descriptor memory area configured.

Circular buffers can be created by a chain of descriptors where each descriptor's data buffer is one element in
the circular buffer.

22.2.1.5. Data Buffers

Data buffers are not accessed by the driver at all, the address is only written to descriptor upon user request. It is
up to the user to provide the driver with valid addresses to data buffers of the required length.

Note that addresses given must be accessible by the hardware. If the RT coreislocated on a AMBA-over-PCl bus
for example, the address of a data buffer from the RT core's point of view is most probably not the same as the
address used by the CPU to access the buffer.

22.2.1.6. Event Logging

Transfer events (Transmission, Reception and Mode Codes) may be logged by the RT core into a memory area
for (later) processing. The events logged can be controlled by the user at a SA transfer type level and per mode
code through the Mode Code Control Register.

The driver API access the eventlog on two occasions, either when the user reads the eventlog buffer using the
gr 1553rt _evl og_read() function or from theinterrupt handler, see the interrupt section for more informa-
tion. Thegr 1553rt _evl og_read() functionis called by the user to read the eventlog, it simply copies the
current logged entriesto auser buffer. The user must empty the driver eventlog in time to avoid entriesto be over-
written. A certain descriptor or SA may be logged to help the application implement communication protocols.

Theeventlog istypically sized depending the frequency of the log input (logged transfers) and the frequency of the
log output (task reading the log). Every logged transfer is described with a 32-bit word, making it quite compact.

Thememory of the eventlog does not require astight latency requirement asthe SA-table and descriptors. However
the user still isprovided the ability to put the eventlog at acustom address, or letting the driver dynamically allocate
it. When providing a custom address the start address is given, the area must have room for the configured number
of entries and have the hardware required alignment.

Note that the alignment requirement of the eventlog varies depending on the eventlog length.
22.2.1.7. Interrupt service

The RT core can be programmed to interrupt the CPU on certain events, transfers and errors (SA-tableand DMA).
The driver divides transfers into two different types of events, mode codes and data transfers. The three types of

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 152

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

events can be assigned custom callbacks called from the driver's interrupt service routine (1SR), and custom argu-
ment can be given. The callbacks are registered per RT device using the functions gr 1553rt _irq_err (),
gr1553rt _irqg_nct(), grl1553rt_irqg_sa().Notethat thethreedifferent calbacks have different argu-
ments.

Error interrupts are discovered in the ISR by looking at the IRQ event register, they are handled first. After the
error interrupt has been handled by the user (user interaction is optional) the RT coreis stopped by the driver.

Data transfers and Mode Code transfers are logged in the eventlog. When atransfer-triggered interrupt occurs the
ISR starts processing the event log from the first event that caused the IRQ (determined by hardware register)
calling themode code or datatransfer callback for each event in thelog which hasgenerated an |RQ (determined by
the IRQSR hit). Even though both the ISR and the eventlog read functionr 1553rt _evl og_r ead() processes
the eventlog, they are completely separate processes - one does not affect the other. It is up to the user to make
sure that events that generated interrupt are not double processed. The callback functions are called in the same
order as the event was generated.

Isis possible to configure different callback routines and/or arguments for different sub addresses (1..30) and
transfer types (RX/TX). Thus, 60 different callback handlers may be registered for data transfers.

22.2.1.8. Indication service

The indication service is typically used by the user to determine how many descriptors have been processed by
the hardware for a certain SA and transfer type. The gr 1553rt _i ndi cat i on() function returns the next
descriptor number which will be used next transfer by the RT core. The indication function takes a sub address
and an RT device as input, By remembering which descriptor was processed last the caller can determine how
many and which descriptors have been accessed by the BC.

22.2.1.9. Mode Code support

The RT core anumber of registersto control and interact with mode code commands. See hardware manual which
mode codes are available. Each mode code can be disabled or enabled. Enabled mode codes can be logged and
interrupt can be generated upon transmission events. Thegr 1553rt _confi g() functionisused to configure
the af orementioned mode code options. Interrupt caused by mode code transmissions can be programmed to call
the user through an callback function, see the interrupt Section 22.2.1.7.

The mode codes " Synchronization with data’, " Transmit Bit word" and "Transmit Vector word" can be interacted
with through a register interface. The register interface can be read with the gr 1553rt _st at us() function
and selected (or al) hits of the bit word and vector word can be written using gr 1553rt _set _vecwor d()
function.

Other mode codes can interacted with using the Bus Status Register of the RT core. The register
can be read using the gr 1553rt _status() function and written selectable bit can be written using
gr 1553rt _set _bussts().

22.2.1.10. RT Time

The RT core has an internal time counter with a configurable time resolution. The finest time resolution of the
timer counter is one microsecond. The resolution is configured using the gr 1553rt _confi g() function. The
current timeisread by calling thegr 1553rt _st at us() function.

22.2.2. Application Programming Interface
The RT driver API consists of the functionsin the table below.

Table 22.2. Data structures

Protoype Description

void *gr1553rt_open(int mnor) Open an RT device by instance number. Returns a handle identifying
the specific RT device. The handleis given asinput in most func-
tions of the AP

voi d gr1553rt_cl ose(void *rt) C|0%apre\/iou§y Opened RT device
int gris553rt_config(Configure the RT device driver and allocate device memory
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 153

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Protoype

Description

void *rt,
struct gr1553rt_cfg *cfg)

int gri1553rt_start(void *rt)

Start RT communication, enables Interrupts

voi d gr1553rt_stop(void *rt)

Stop RT communication, disables interrupts

voi d gr1553rt_stat us(
void *rt,
struct gr1553rt_status *status)

Get Time, Bus/RT Status and mode code status

int gri553rt_indication(
void *rt,
int subadr,
int *txeno,
int *rxeno)

Get the next descriptor that will processed of an RT sub-address and
transfer type

int gri1553rt_evl og_read(
void *rt,
unsi gned int *dst,
int max)

Copy contents of event log to a user provided data buffer

voi d gr1553rt_set _vecwor d(
void *rt,
unsi gned int mask,
unsi gned int words)

Set all or aselection of bitsin the Vector word and Bit word used by
the "Transmit Bit word" and "Transmit Vector word" mode codes

voi d gr1553rt_set _bussts(
void *rt,
unsi gned int nask,
unsi gned int sts)

Modify a selection of bitsin the RT Bus Status register

voi d gr1553rt_sa_setopts(
void *rt,
int subadr,
unsi gned int mask,
unsi gned int options)

Configures a sub address control word located in the SA-table.

void gr1553rt_list_sa(
struct gr1553rt_list *list,
int *subadr,
int *tx)

Get the Sub address and transfer type of a scheduled list

voi d gr1553rt_sa_schedul e(
void *rt,
int subadr,
int tx,
struct gr1553rt_list *list)

Schedule aRX or TX descriptor list on a sub address of a certain
transfer type

int gr1553rt_irq_err(
void *rt,
gr1553rt_irgerr_t func,
voi d *dat a)

Assign an Error Interrupt handler callback routine and custom argu-
ment

int gr1553rt_irq_nc(
void *rt,
gr1553rt_irgnc_t func,
voi d *data)

Assign aMode Code Interrupt handler callback routine and custom
argument

int gri553rt_irqg_sa(
void *rt,
int subadr,
int tx,
gr1553rt_irqg_t func,
voi d *data)

Assign aData Transfer Interrupt handler callback routine and custom
argument to a certain sub address and transfer type

int gri553rt_list_init(
void *rt,
struct gr1553rt_list **plist,
struct gr1553rt_list_cfg *cfg)

Initialize and allocate a descriptor List according to configuration.
The List can be used for RX/TX on any sub address.

int gr1553rt_bd_init(
struct gri1553rt_list *list,
unsi gned short entry_no,
unsi gned int flags,
uint16_t *dptr,
unsi gned short next)

Initialize a Descriptor in aList identified by number.

int gri1553rt_bd_updat e(
struct gr1553rt_list *list,
int entry_no,
unsi gned int *status,
uint16_t **dptr)

Update the status and/or the data buffer pointer of a descriptor.

22.2.2.1. Data structures

Thegr 1553rt _cf g datastructureisused to configurean RT device. The configuration parametersare described

in the table below.

RCC-UM
Dec 2023, Version 1.3.2

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

154

https://www.frontgrade.com/gaisler

struct gr1553
unsi gned
unsi gned

rRONTGRADE

Gaisler

rt_cfg {
char rtaddress;
int nodecode;

unsi gned short time_res;

voi d *sat
void *evl
int evlog
int bd_co

void *bd_

s

ab_buffer;
og_buffer;

_si ze;

unt ;
buffer;

Table 22.3. gr1553rt_cfg member descriptions

M ember Description

rtaddress RT Address on 1553 bus[0..30]

modecode Mode codesenabl e/ di sabl e/ | RQ EV- Log. Each mode code has a 2-bit configura-
tion field. Mode Code Control Register in hardware manual

time res Time tag resolution in microseconds

satab_buffer Sub Address Table (SA-table) allocation setting. Can be dynamically allocated (zero) or
custom location (non-zero). If custom location of SA-tableis given, the address must be
aligned to 10-bit (1kB) boundary and at least 16* 32 bytes.

evlog_buffer Eventlog DMA buffer allocation setting. Can be dynamically allocated (zero) or cus-
tom location (non-zero). If custom location of eventlog is given, the address must be of
evl og_si ze andaignedtoevl og_si ze. See hardware manual.

evlog_size Length in bytes of Eventlog, length must be a power of 2. If set to zero event log is dis-
abled, note that enabling logging in SA-table or descriptors will cause failure when event-
log isdisabled.

bd_count Number of descriptorsfor RT device. All descriptor lists share the descriptors. Maximum
is65K descriptors.

bd_buffer Descriptor memory area all ocation setting. Can be dynamically allocated (zero) or custom
location (non-zero). If custom location of descriptorsis given, the address must be aligned
to32bytesand of (32 * bd_count) bytessize.

Thegr 1553rt _|i st _cf g datastructure hold the configuration parameters of a descriptor List.

struct gr1553rt_list_cfg {

unsi gned

}s

int bd_cnt;

Table 22.4. gr1553rt_list_cfg member descriptions

M ember Description
bd_cnt Number of descriptorsin List
The current

status of the RT core is stored in the gr 1553rt _st at us data structure by the function

gr1553rt_status(). The fields are described below.

struct gr1553rt_status {

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

}

int status;
int bus_status;

short synctine;
short syncword;
short time_res;
short tine;

Table 22.5. gr1553rt_status member descriptions

Member Description
status Current value of RT Status Register
bus_status Current value of RT Bus Status Register
synctime Time Tag when last synchronize with data was received
syncword Data of last mode code synchronize with data
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 155

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

M ember Description

time _res Time resolution in microseconds (set by config)

time Current TimeTag. (ti me_res * tine) givesthe number of microseconds since last
time overflow.

22.2.2.2. gr1553rt_open

Opens a GR1553B RT device identified by instance number, m nor . The instance number is determined by the
order in which GR1553B cores with RT functionality are found, the order of the Plug & Play.

A handle is returned identifying the opened RT device, the handle is used internally by the RT driver, it is used
as an input parameter rt to all other functions that manipulate the hardware.

Close and Stop an RT deviceidentified by input argument rt previously returned by gr 1553rt_open().
22.2.2.3. gr1553rt_close

Close and Stop an RT device identified by input argument rt previously returned by gr 1553rt_open().
22.2.2.4. gr1553rt_config

Configure and allocate memory for an RT device. The configuration parameters are stored in the location pointed
toby cf g. Thelayout of the parameters must follow thegr 1553rt _cf g datastructure, described in Table 22.3.

If memory allocation fails (in case of dynamic memory allocation) thefunction return -1, it returns-2 if the memory
isnot aligned or on success zero is returned.

22.2.2.5. grl1553rt_start

Starts RT communication by enabling the core and enabling interrupts. The user must have configured the driver
(RT address, Mode Code, SA-table, lists, descriptors, etc.) before calling this function.

After the RT has been started the configuration function can not be called.
On success this function returns zero, on failure anegative result is returned.
22.2.2.6. gr1553rt_stop

Stops RT communication by disabling the core and disabling interrupts. Further 1553 commands to the RT will
be ignored.

22.2.2.7. gr1553rt_status

Read current status of the RT core. The statusiswritten to thelocation pointed to by statusin the format determined
by thegr 1553rt _st at us structure described in Table 22.5.

22.2.2.8. gr1553rt_indication

Get the next descriptor that will be processed for a specific sub address. The descriptor number islooked up from
the descriptor address found the SA-table for the sub address specified by subadr argument.

The descriptor number of respective transfer type (RX/TX) will be written to the address given by t xeno and/or
r xeno. If end-of-list has been reached, -1 isstored intot xeno or r xeno.

If therequest issuccessful zero isreturned, otherwise anegative number isreturned (bad sub address or descriptor).
22.2.2.9. gr1553rt_evlog_read

Copy up to max number of entries from eventlog into the address specified by dst . The actual number of entries
read isreturned. It isimportant to read out the eventlog entriesin time to avoid dataloss, the eventlog can be sized
so that dataloss can be avoided.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 156

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Zero isreturned when entries are available in the log, negative on failure.
22.2.2.10. gr1553rt_set_vecword

Set a selection of bitsin the RT Vector and/or Bit word. The words are used when,

» Vector Word is used in response to " Transmit vector word" BC commands
e Bit Word is used in response to "Transmit bit word" BC commands

The argument mask determines which bits are written, and wor ds determines the value of the bits written. The
lower 16-bits are the Vect or Wor d, the higher 16-bits are the Bit Word.

22.2.2.11. gr1553rt_set_bussts

Set a selection of bits of the Bus Status Register. The bits written is determined by the mask bit-mask and the
values written is determined by st s. Operation:

bus_status_reg = (bus_status_reg & ~mask) | (sts & mask)

22.2.2.12. gr1553rt_sa_setopts

Configure individua bits of the SA Control Word in the SA-table. One may for example Enable or Disable a SA
RX and/or TX. See hardware manual for SA-Table configuration options.

Themask argument isabit-mask, it determineswhich bitsarewritten and opt i ons determinesthevaluewritten.
Thesubadr argument selects which sub address is configured.

Note that SA-table is all zero after configuration, every SA used must be configured using this function.
22.2.2.13. gr1553rt_list_sa

This function looks up the SA and the transfer type of the descriptor list given by | i st . The SA is stored into
subadr , the transfer typeiswritteninto t x (TX=1, RX=0).

22.2.2.14. gr1553rt_sa_schedule

This function associates a descriptor list with a sub address (given by subadr) and atransfer type (given by t x).
Thefirst descriptor in the descriptor list iswritten to the SA-table entry of the SA.

22.2.2.15. gr1553rt_irq_err

his function registers an interrupt callback handler of the Error Interrupt. The handler f unc is called with the
argument data when a DMA error or SA-table access error occurs. The callback must follow the prototype of
gr1553rt _irqgerr _t

typedef void (*gr1553rt_irqerr_t)(int err, void *data);

Whereer r isthevalue of the GR1553B IRQ register at thetimethe error was detected, it can be used to determine
what kind of error occurred.

22.2.2.16. gr1553rt_irq_mc

This function registers an interrupt callback handler for Logged Mode Code transmission Interrupts. The han-
dler f unc is called with the argument data when a Mode Code transmission event occurs, note that inter-
rupts must be enabled per Mode Code using gr1553rt_config(). The callback must follow the prototype of
gr1553rt _irqgnc_t:
typedef void (*gr1553rt_irqgnc_t)(

int ncode,

unsigned int entry,
void *data

)i
Where ntode is the mode code causing the interrupt, entry isthe raw event log entry.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 157

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

22.2.2.17. gr1553rt_irq_sa

Register aninterrupt callback handler for datatransfer triggered Interrupts, it is possibleto assign aunique function
and/or datafor every SA (given by subadr) and transfer type (given by t x). The handler f unc iscalled with the
argument dat a when a data transfer interrupt event occurs. Interrupts is configured on a descriptor or SA basis.
The callback routine must follow the prototype of gri553rt_irq t:
typedef void (*gri553rt_irqg_t)(

struct gr1553rt_list *list,

unsigned int entry,

int bd_next,

voi d *data

)
Wherel i st indicates which descriptor list (Sub Address, transfer type) caused theinterrupt event, ent r y isthe
raw event log entry, bd_next isthe next descriptor that will be processed by the RT for the next transfer of the
same sub address and transfer type.

22.2.2.18. gr1553rt_list_init

Allocate and configure alist structure according to configuration givenin cf g, seethegr 1553rt _| i st _cfg
data structure in Table 22.4. Assign the list to an RT device, however not to a sub address yet. Thert handle
is stored within list.

The resulting descriptor list iswritten to the location indicated by the pl i st argument.

Note that descriptor are allocated from the RT device, so the RT device itself must be configured using
gr 1553rt _confi g() before caling thisfunction.

A negative number is returned on failure, on success zero is returned.
22.2.2.19. gr1553rt_bd_init

Initialize a descriptor entry in alist. Thisistypically done prior to scheduling the list. The descriptor and the next
descriptor is given by descriptor indexesrelativetothelist (ent ry_no and next), seetable below for options
onnext . Set bit 30 of theargument f | ags in order to set the IRQEN bit of the descriptor's Control/Status Word.
The argument dpt r iswritten to the descriptor's Data Buffer Pointer Word.

Notethat the data pointer is accessed by the GR1553B core and must therefore be avalid addressfor the core. This
isonly anissueif the GR1553B coreislocated on a AMBA- over-PCl bus, the address may need to be translated
from CPU accessible address to hardware accessible address.

Table 22.6. gr1553rt_bd_init next argument description

Values of next Description

Oxffff Indicate to hardware that thisis the last entry in the list, the next descriptor is set to end-
of-list mark (0x3).

Oxfffe Next descriptor (entry_no+1) or O islast descriptor in list.

other The index of the next descriptor.

A negative number is returned on failure, on success a zero is returned.

22.2.2.20. gr1553rt_bd_update

Manipulate and read the Control/Status and Data Pointer words of a descriptor.

If st at us isnon-zero, the Control/Status word is swapped with the content pointed to by st at us.
If dpt r isnon-zero, the Data Pointer word is swapped with the content pointed to by dpt r .

A negative number is returned on failure, on success a zero is returned.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 158

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 23. GR1553B bus monitor driver
23.1. Introduction

This section describes the GRLIB GR1553B Bus Monitor (BM) device driver interface. The driver relies on the
GR1553B driver and the driver manager. The reader is assumed to be well acquainted with MIL-STD-1553 and
the GR1553B core.

23.1.1. GR1553B Remote Terminal Hardware

The GR1553B core supportsany combination of the Bus Controller (BC), BusMonitor (BM) and Remote Terminal
(RT) functionality. This driver supports the BM functionality of the hardware, it can be used simultaneously
with the RT or BC functionality, but not both simultaneously. When the BM is used together with the RT or BC
interrupts are shared between the drivers.

The three functions (BC, BM, RT) are accessed using the same register interface, but through separate registers.
In order to shared hardware resources between the three GR1553B drivers, the three depends on a lower level
GR1553B driver, see GR1553B driver section.

The driver supports the on-chip AMBA bus and the AMBA-over-PCI bus.
23.1.2. Examples

There is an example available that illustrates how the BM driver interface can be used to log transfers seen on
the 1553 bus. All 1553 transfersis be logged, by configuring the conf i g_bm h file the logger application can
"compress' the log and send it to a Linux PC over a TCP/IP socket. The Linux application save the log to araw
text file for post processing.

The default BM example behaviour ishowever just to enable BM logging, for debugging one can quite easily read
the raw BM log by looking at the BM registers and memory from GRMON.

The BM logger application can be run separately or together with the BC or RT examples.

In order to run al parts of the example a board with GR1553B core with BC and BM support, and a board with
a GR1553B core with RT support is required.

The example is part of the Aeroflex Gaider RTEMS distribution, it can be found under /opt/
rtems-4. 10/ src/ sanpl es/ 1553 namedrt ens- gr 1553bm ¢, rt ens- gr 1553bcbm c orrt ens-
gr 1553rt bm c.

The example can be built by running:
$ cd /opt/rtens-4.10/src/sanpl es/ 1553
$ make rtens-gr1553bm

23.2. User Interface

23.2.1. Overview

The BM software driver provides access to the BM core and help with accessing the BM log memory buffer. The
driver provides the serviceslist below,

e Basic BM functionality (Enabling/Disabling, etc.)

« Filtering options

* Interrupt support (DMA Error, Timer Overflow)

¢ 1553 Timer handling

* Read BM log

The driver sources and interface definitions are listed in the table below, the path is given relative to the RTEMS
sourcetreec/ src/lib/libbsp/sparc.

Table 23.1. BM driver Source location

Filename Description
shared/1553/gr1553bm.c GR1553B BM Driver source
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 159

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Filename Description
shared/include/gr1553bm.h GR1553B BM Driver interface declaration

23.2.1.1. Accessing a BM device

In order to access a BM core a specific core must be identified (the driver support multiple devices). The core
is opened by calling gr 1553bm _open() , the open function allocates a BM device by calling the lower level
GR1553B driver and initializes the BM by stopping al activity and disabling interrupts. After a BM has been
opened it can be configured gr 1553bm confi g() and then started by calling gr 1553bm st art () . Once
the BM is started the log is filled by hardware and interrupts may be generated. The logging can be stopped by
calinggr 1553bm st op() .

When the application no longer needs to access the BM driver services, the BM is closed by calling
gr 1553bm cl ose() .

23.2.1.2. BM Log memory

The BM log memory is written by the BM hardware when transfers matching the filters are detected. Each com-
mand, Status and Data 16-bit word takes 64-hits of space in the log, into the first 32-bits the current 24-bit 1553
timer is written and to the second 32-bit word status, word type, Bus and the 16-bit datais written. See hardware
manual.

The BM log DMA-area can be dynamically allocated by the driver or assigned to a custom location by the user.
Assigning a custom address is typically useful when the GR1553B core is located on an AMBA-over-PCl bus
where memory accesses over the PCl bus will not satisfy the latency requirements by the 1553 bus, instead a
memory local to the BM core can be used to shorten the access time. Note that when providing custom addresses
the 8-byte alignment requirement of the GR1553B BM core must be obeyed. The memory areas are configured
using the gr 1553bm confi g() function.

23.2.1.3. Accessing the BM Log memory

The BM Log is filled as transfers are detected on the 1553 bus, if the log is not emptied in time the log may
overflow and data loss will occur. The BM log can be accessed with the functions listed below.

e gr1553bm_available()

e gr1553bm_read()

A custom handler responsible for copying the BM log can be assigned in the configuration of the driver. The
custom routine can be used to optimize the BM log read, for example one may not perhaps not want to copy all
entries, search the log for a specific event or compress the log before storing to another location.

23.2.1.4. Time

Th BM core has a 24-bit time counter with a programmable resolution through the gr 1553bm confi g()
function. The finest resolution is a microsecond. The BM driver maintains a 64-bit 1553 time. The time can be
used by an application that needsto be ableto log for along time. The driver must detect every overflow in order
maintain the correct 64-bit time, thedriver givesuserstwo different approaches. Either the timer overflow interrupt
isused or the user must guaranteeto call thegr 1553bm t i ne() function at least once before the second time
overflow happens. The timer overflow interrupt can be enabled from the gr 1553bm conf i g() function.

The current 64-bit time can be read by calling gr 1553bm ti me() .

The application can determine the 64-bit time of every log entry by emptying the complete log at least once per
timer overflow.

23.2.1.5. Filtering

The BM core has support for filtering 1553 transfers. The filter options can be controlled by fields in the config-
uration structure givento gr 1553bm confi g() .

23.2.1.6. Interrupt service

The BM core can interrupt the CPU on DMA errors and on Timer overflow. The DMA error is unmasked by
the driver and the Timer overflow interrupt is configurable. For the DMA error interrupt a custom handler may

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 160

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

beinstalled through thegr 1553bm confi g() function. On DMA error the BM logging will automatically be
stopped by acall togr 1553bm st op() from within the ISR of the driver.

23.2.2. Application Programming Interface
The BM driver API consists of the functions in the table below.

Table 23.2. function prototypes

Prototype Description

voi d *gr1553bmopen(int ninor) |Open aBM device by instance number. Returns a handle identifying the
specific BM device opened. The handle is given asinput parameter bmin
all other functions of the AP

voi d gr1553bm cl ose(void *bm C|Oseapreviougy Openaj BM device

int 3;}3532:1_00““ o Configure the BM device driver and allocate BM log DMA-memory
struct gri1553bmcfg *cfg)

int gri553bmstart(void *bm Start BM logging, enables Interrupts

void gr1553bm st op(voi d *bm Stop BM logging, disables interrupts

voi dvgif 35?3?7{“*‘ i me(Get 1553 64-bit Time maintained by the driver. The lowest 24-bits are tak-

en directly from the BM timer register, the most significant 40-bits are tak-
en from a software counter.

uint64_t *tine)

int 3;?35322_3\@ I abl e(The current number of entriesin thelog isstored intonent ri es.
int *nentries)

int 3;12532? ead(Copy contents a maximum number (max) of entries from the BM ng to
struct gr1553bmentry *dst, |@Uuser provided data buffer (dst). The actual number of entries copied is

int *max) stored into max.

23.2.2.1. Data structures

Thegr 1553bm cf g datastructureis used to configure the BM device and driver. The configuration parameters
are described in the table below.

struct gr1553bm config {
uint8_t time_resolution;
int time_ovf_irq;
unsigned int filt_error_options;
unsigned int filt_rtadr;
unsigned int filt_subadr;
unsigned int filt_nt;
unsigned int buffer_size;
voi d *buffer_custom
brncopy_func_t copy_func;
voi d *copy_func_arg;
bmi sr_func_t dma_error_isr;
void *dnma_error_arg;

s
Table 23.3. gr1553bm_config member descriptions.

M ember Description

time_resolution 8-bit time resolution, the BM will update the time according to this setting. 0 will make
the time tag be of highest resolution (no division), 1 will make the BM increment the time
tag once for two time ticks (div with 2), etc.

time_ovf_irq Enable Time Overflow IRQ handling. Setting thisto 1 makes the driver to update the 64-
bit time by it self, it will use time overflow IRQ to detect when the 64-bit time counter
must be incremented. If set to zero, the driver expect the user to call gri553bm_time()
regularly, it must be called more often than the time overflows to avoid an incorrect time.

filt_error_options |Buserror log options:

bit0,4-31 = reserved, set to zero Bitl = Enables logging of Invalid mode code errors Bit2
= Enables logging of Unexpected Data errors Bit3 = Enables logging of Manchester/pari-
tyerrors

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 161

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

M ember Description
filt_rtadr RT Subaddress filtering bit mask, bit definition:

31: Enableslogging of mode commands on subadr 31 1..30: BitN enables/disables |og-
ging of RT subadr N 0: Enables logging of mode commands on subadr 0

filt_mc Mode code Filter, iswritten into "BM RT Mode code filter" register, please see hardware
manual for bit declarations.

buffer_size Size of buffer in bytes, must be aligned to 8-byte boundary.

buffer_custom Custom BM log buffer location, must be aligned to 8-byte and be of buffer_size length. If
NULL dynamic memory alocation is used.

copy_func Custom Copy function, may be used to implement a more effective/ custom way of copy-
ing the DMA buffer. For example the DMA log may need to processed at the same time
when copying.

copy_func_arg Optional Custom Data passed onto copy_f unc()

dma error_isr Custom DMA error function, note that this function is called from Interrupt Context. Set
to NULL to disable this callback.
dma_error_arg COptiona Custom Datapassed ontodne_error _i sr()

struct gri553bmentry {
uint32_t tinme;
uint32_t data;

}s

Table 23.4. gr1553bm _entry member descriptions.

Member Description
time Time of word transfer entry. Bit31=1, bit 30..24=0, bit 23..0=time
data Transfer status and data word
Bits Description
31 Zero
30.20 |Zero
19 0=BusA, 1=BusB
18..17 |Word Status: 00=0k, 01=Manchester error, 10=Parity error
16 Word type: 0=Data, 1=Command/ Status
15..0 16-bit Data on detected on bus

23.2.2.2. gr1553bm_open

Opens a GR1553B BM device identified by instance number, mi nor . The instance number is determined by the
order in which GR1553B cores with BM functionality are found, the order of the Plug & Play.

A handleis returned identifying the opened BM device, the handleis used internally by the driver, it is used asan
input parameter bmto all other functions that manipulate the hardware.

Thisfunction initializes the BM hardware to a stopped/disable level.

23.2.2.3. gr1553bm_close

Close and Stop a BM device identified by input argument bm previoudly returned by gr 1553bm open() .
23.2.2.4. gr1553bm_config

Configure and allocate the log DMA-memory for a BM device. The configuration parameters are stored in the
location pointed to by cf g. The layout of the parameters must follow the gr 1553bm conf i g data structure,
described in Table 23.3.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 162

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

If BM deviceis started or memory alocation fails (in case of dynamic memory alocation) the function returns -1,
it returns -2 if the memory is not aligned or on success zero is returned.

23.2.2.5. gr1553bm_start

Starts 1553 logging by enabling the core and enabling interrupts. The user must have configured the driver (log
buffer, timer, filtering, etc.) before calling this function.

After the BM has been started the configuration function can not be called.

On success this function returns zero, on failure anegative result is returned.

23.2.2.6. gr1553bm_stop

Stops 1553 logging by disabling the core and disabling interrupts. Further 1553 transfers will be ignored.
23.2.2.7. gr1553bm_time

This function reads the driver's internal 64-bit 1553 Time. The low 24-bit time is acquired from BM hardware,
the MSB is taken from a software counter internal to the driver. The counter is incremented every time the Time
overflows by:
e using "Time overflow" IRQ if enabled in user configuration
by checking "Time overflow" IRQ flag (IRQ is disabled), it is required that user calls this function before
the next timer overflow. The software can not distinguish between one or two timer overflows. Thisfunction
will check the overflow flag and increment the driver internal time if overflow has occurred since last call.

This function update software time counters and store the current time into the address indicated by the argument
time.

23.2.2.8. gr1553bm_available

Copy up to max number of entries from BM log into the address specified by dst . The actual number of entries
read is returned in the location of max (zero when no entries available). The nmax argument isthusin/out. It is
important to read out thelog entriesin timeto avoid dataloss, thelog can be sized so that dataloss can be avoided.

Zerois returned on success, on failure a negative number is returned.
23.2.2.9. gr1553bm_read

Copy up to max number of entries from BM log into the address specified by dst. The actual number of entries
read is returned in the location of max (zero when no entries available). The max argument is thus in/out. It is
important to read out thelog entriesin timeto avoid dataloss, thelog can be sized so that dataloss can be avoided.

Zerois returned on success, on failure a negative number is returned.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 163

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 24. GR1553B bus controller driver

24.1. Introduction

This section describes the GRLIB GR1553B Bus Controller (BC) device driver interface. The driver relies on the
GR1553B driver and the driver manager. The reader is assumed to be well acquainted with MIL-STD-1553 and
the GR1553B core.

24.1.1. GR1553B Bus Controller Hardware

The GR1553B core supportsany combination of the Bus Controller (BC), BusMonitor (BM) and Remote Terminal
(RT) functionality. This driver supports the BC functionality of the hardware, it can be used simultaneously with
the Bus Monitor (BM) functionality. When the BM is used together with the BC, interrupts are shared between
thedrivers.

The three functions (BC, BM, RT) are accessed using the same register interface, but through separate registers.
In order to share hardware resources between the three GR1553B drivers, the three depends on a lower level
GR1553B driver, see Chapter 21.

The driver supports the on-chip AMBA bus and the AMBA-over-PCI bus.
24.1.2. Software driver

The BC driver is split in two parts, one where the driver access the hardware device and one part where the
descriptors are managed. The two parts are described in two separate sections below.

Transfer and conditional descriptors are collected into a descriptor list. A descriptor list consists of a set of Major
Frames, which consist of a set of Minor Frames which in turn consists of up to 32 descriptors (also called Slots).
Thecomposition of Mgjor/Minor Framesand slotsisconfigured by theuser, andishighly dependent of application.

The Mgjor/Minor/Slot construction can be seen as a tree, the tree does not have to be symmetrically, i.e. Maor
frames may contain different numbers of Minor Frames and Minor Frames may contain different numbers of Slot.

GR1553B BC descriptor lists are generated by the list APl availableingr 1553bc_1i st. h.

The driver provides the following services:
e Start, Stop, Pause and Resume descriptor list execution
» Synchronous and asynchronous descriptor list management
* Interrupt handling
e BC status
« Magor/Minor Frame and Slot (descriptor) model of communication
e Current Descriptor (Mg or/Minor/Slot) Execution Indication
« Software Externa Trigger generation, used mainly for debugging or custom time synchronization
* Magjor/Minor Frame and Slot/Message ID
¢ Minor Frame time slot management

The driver sources and definitions are listed in the table below, the path is given relative to the RTEMS SPARC
BSP sourcetreec/ src/li b/ i bbsp/ sparc.

Table 24.1. BC driver Source location

Filename Description

shared/1553/gr1553bc.c GR1553B BC Driver source
shared/1553/gr1553bc list.c GR1553B BC List handling source
shared/include/gr1553bc.h GR1553B BC Driver interface declaration
shared/include/gr1553bc list.h |GR1553B BC List handling interface declaration

24.1.3. Examples

There is an example available that illustrates how the BC driver interface can be used to communicate with one
or more RTs. The descriptor list includes both transfer and conditional descriptors, time slot allocation, interrupt

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 164

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

demonstration, read BC hardware currently executing descriptor by the indication service. The BC example does
not require an RT to respond on the 1553 transfers, however it will be stuck ininitialization mode of the 1553 bus.
The BC example comes with amatching RT example that responds to the BC transfers.

The BC example includes a BM logger which can be used for debugging the 1553 bus. All 1553 transfers can be
logged and sent to a Linux PC over a TCP/IP socket and saved to araw text file for post processing.

In order to run all parts of the example a board with GR1553B core with BC and BM support, and a board with
a GR1553B core with RT support is required.

The exampleis part of the Aeroflex Gaisler RTEM S distribution, it can be found under / opt / rt ens- 5/ sr ¢/
sanpl es/ 1553/ rt ens- gr 1553bcbm c.

The example can be built by running:

$ cd /opt/rtens-4.10/src/sanpl es/ 1553
$ make rtens-gr1553bcbhm

24.2. BC Device Handling

The BC device driver's main purpose is to start, stop, pause and resume the execution of descriptor lists. Lists are
described in the Descriptor List section. In this section services related to direct access of BC hardware registers
and Interrupt are described. The function API isdeclared ingr 1553bc. h.

24.2.1. Device API

The device API consists of the functions in the table below.

Table 24.2. Device API function prototyper

Prototype Description

void *gr1553bc_open(int ninor) Open a BC device by minor number. Private handle re-
turned used in all other device API functions.

voi d gr1553bc_cl ose(voi d *bc) Close aprevious opened BC device.

int gri553bc_start(void *bc, Schedule a synchronous and/or a asynchronous BC

struct gr1553bc_list *list,

struct gr1553bc_list *list async) descriptor Lists for execution. Thiswill unmask BC

interrupts and start executing the first descriptor in
respective List. Thisfunction can be called multiple

times.
int gri1553bc_pause(void *bc) Pause the synchronous List execution.
int gril553bc_restart(void *bc) Restart the synchronous List execution.
int gri553bc_stop(void *bc, int options) Stop Synchronous and/or asynchronous list.
int grtl553b§),i ndi cation(void *bc, int async, Get the current BC hardware execution position (MID)
int *m .
of the synchronous or asynchronous list.
voi d gr1553bc_status(void *bc, Get the BC hardware status and time.
struct gr1553bc_status *status)
void gr1553bc_ext _trig(void *bc, int trig) Trigger an external trigger by writing to the BC action
register.
int gri1553bc_irq_setup(void *bc, Generic interrupt handler configuration. Handler will

bci f tf , id *dat - .
ctra_tune_t fune. vol ata) be called in interrupt context on errors and interrupts

generated by transfer descriptors.

24.2.1.1. Data Structures

The gr1553bc_st atus data structure contains the BC hardware status sampled by the function
gr 1553bc_stat us().

struct gr1553bc_status {

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 165

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

unsi gned int status;
unsigned int tineg;

s

Table 24.3. gr1553bc_status member descriptions

Member Description
status BC status register
time BC Timer register

24.2.1.2. gr1553bc_open

OpensaGR1553B BC device by deviceinstanceindex. Theminor number relatesto the order in which aGR1553B
BC deviceisfound in the Plug& Play information. A GR1553B core which lacks BC functionality does not affect
the minor number.

If a BC device is successfully opened a pointer is returned. The pointer is used internally by the GR1553B BC
driver, it is used asthe input parameter bc to al other device API functions.

If the driver failed to open the device, NULL isreturned.
24.2.1.3. gr1553bc_close

Closes a previously opened BC device. This action will stop the BC hardware from processing descriptors/lists,
disable BC interrupts, and free dynamically memory allocated by the driver.

24.2.1.4. gr1553bc_start
Calling this function starts the BC execution of the synchronous list and/or the asynchronous list. At least onelist
pointer must be non-zero to affect BC operation. The BC communication is enabled dependson list, and Interrupts

are enabled.

This function can be called multiple times. If alist (of the same type) is already executing it will be replaced
with the new list.

24.2.1.5. gr1553bc_pause
Pause the synchronous list. It may be resumed by gr 1553bc_r esune() . See hardware documentation.
24.2.1.6. gr1553bc_resume

Resume the synchronous list, must have been previously paused by gr 1553bc_pause() . See hardware doc-
umentation.

24.2.1.7. gr1553bc_stop

Stop synchronous and/or asynchronous list execution. The second argument is a 2-bit bit-mask which determines
the lists to stop, see table below for a description.

Table 24.4. gr1553bc_stop second argument

M ember Description

Bit 0 Set to one to stop the synchronous list.

Bit 1 Set to one to stop the asynchronous list.

24.2.1.8. gr1553bc_indication

Retrieves the current Major/Minor/Slot (MID) position executing into the location indicated by m d. The async
argument determines which type of list is queried, the Synchronous (async=0) list or the Asynchronous
(async=1).

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 166

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Note that since the List API internally adds descriptors the indication may seem to be out of bounds.
24.2.1.9. gr1553bc_status

This function retrieves the current BC hardware status. Second argument determine where the hardware status
is stored, the layout of the data stored follows the gr 1553bc_st at us data structure. The data structure is
described in Table 24.3.

24.2.1.10. gr1553bc_ext_trig

The BC supports an external trigger signal input which can be used to synchronize 1553 transfers. If used, the
external trigger isnormally generated by somekind of TimeMaster. A message slot may be programmed to wait for
an external trigger before being executed, this feature allows the user to accurate send time synchronize messages
to RTs. However, during debugging or when software needs to control the time synchronization behaviour the
external trigger pulse can be generated from the BC core itself by writing the BC Action register.

This function sets the external trigger memory to one by writing the BC action register.
24.2.1.11. gr1553bc_irg_setup

Install ageneric handler for BC deviceinterrupts. The handler will be called on Errors (DMA errors etc.) resulting
in interrupts or transfer descriptors resulting in interrupts. The handler is not called when an IRQ is generated by
a condition descriptor. Condition descriptors have their own custom handler.

Condition descriptors are inserted into the list by user, each condition may have a custom function and data as-
signed to it, see gr 1553bc_sl ot i rqg_prepar e() . Interrupts generated by condition descriptors are not
handled by this function.

The third argument is custom data which will be given to the handler on interrupt.

24.3. Descriptor List Handling

The BC devicedriver can schedule synchronous and asynchronouslists of descriptors. Thelist containsadescriptor
table and a software description to make certain operations possible, for example trand ate descriptor address into
descriptor number (MID).

The BC stops execution of alist when a END-OF-LIST (EOL) marker isfound. Lists may be configured to jump
to the start of the list (the first descriptor) by inserting an unconditional jump descriptor. Once a descriptor list is
setup the hardware may process the list without the need of software intervention. Time distribution may also be
handled completely in hardware, by setting the "Wait for External Trigger" flag in a transfer descriptor the BC
will wait until the external trigger is received or proceed directly if already received. See hardware manual.

24.3.1. Overview

This section describes the Descriptor List Application Programming Interface (API). It provides functionaity to
create and manage BC descriptor lists.

A listisbuilt up by the following building blocks:

e Magjor Frame (Consists of N Minor Frames)
* Minor Frame (Consists of up to 32 1553 Slots)
« Slot (Transfer/Condition BC descriptor), also called Message Slot

Theuser can configurelistswith different number of Major Frames, Minor Framesand slotswithin aMinor Frame.
The List manages a strait descriptor table and a Major/Minor/Slot tree in order to easily find it's way through all
descriptor created.

Each Minor frame consist of up to 32 slot and two extra slots for time management and descriptor find operations,
see figure below. In the figure there are three Minor frames with three different number of slots 32, 8 and 4. The
List manage time slot allocation per Minor frame, for example a minor frame may be programmed to take 8ms
and when the user allocate a message slot within that Minor frame the time specified will be subtracted from the
8ms, and when the message slot is freed the time will be returned to the Minor frame again.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 167

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Major 2 0|1 sLoT 31 -:' d
Minor 7 o Im |)
270 | 274 MID a1 | E E/
Major 3 (0 1 sLOT 7 | l.j
Minor0O ~ | YRRY)
3,00 | 301 MID 307 E F:/
MEIJOI' 3 (r 0 1 sLOT 3 | l.j
Minor1 % | | . YRRY
310 | 311 MID a1a| E P

Figure 24.1. Three consecutive Minor Frames

A specific Slot [Major, Minor, Slot] isidentified using aMID (Message-ID). The MID consist of three numbers
Major Frame number, Minor Frame number and Slot Number. The MID is a way for the user to avoid using
descriptor pointers to talk with the list API. For example a condition Slot that should jump to a message Slot can
be created by knowing "MID and Jump-To-MID". When allocating a Slot (with or without time) in a List the user
may specify acertain Slot or aMinor frame, when aMinor frameis given then the APl will find thefirst free Slot
as early in the Minor Frame as possible and return it to the user.

A MID can aso be used to identify a certain Major Frame by setting the Minor Frame and Slot number to Oxff.
A Minor Frame can be identified by setting Slot Number to Oxff.

A MID can be created using the macrosin the table below.

Table 24.5. Macros for creating MID

MACRO Name Description
GR1553BC_ID(major,minor,slot) ID of aSLOT
GR1553BC_MINOR_ID(mgjor,minor) ID of aMINOR (Slot=0xff)
GR1553BC_MAJOR_ID(major) ID of aMajor (Minor=0xff,Slot=0xff)

24.3.2. Example: steps for creating a list

Thetypical approach when creating lists and executing it:
e gris53bc _list_alloc(&list, MAJOR_CNT)
e gr1553bc list config(list, &listcfg)
¢ Create all Major Frames and Minor frame, for each major frame:
1. gr1553bc_major_alloc_skel(&major, &major_minor_cfg)
2. gr1553bc_list_set_major(list, &major, MAJOR_NUM)
 Link last and first Major Frames together:
1. gr1553bc list set major(&major7, & major0)
e gr1553bc list table aloc() (Allocate Descriptor Table)
» gr1553bc list_table build() (Build Descriptor Table from Majors/Minors)
» Allocate and initialize Descriptors pre defined before starting:

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 168

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

1. gr1553bc_dot_aloc(list, &MID, TIME_REQUIRED, ..)
2. gr1553bc _dot_transfer(MID, ..)
¢ START BC HARDWARE BY SCHDULING ABOVE LIST
» Application operate on executing List

24.3.3. Major Frame

Consists of multiple Minor frames. A Major frame may be connected/linked with another Major frame, this will
result in a Jump Slot from last Minor frame in the first Mgjor to the first Minor in the second Magjor.

24.3.4. Minor Frame

Consists of up to 32 Message Slots. The services available for Minor Frames are Time-Management and Slot
allocation.

Time-Management is optional and can be enabled per Minor frame. A Minor frame can be assigned atime in
microseconds. The BC will not continue to the next Minor frame until the time specified has passed, the time
includesthe 1553 bustransfers. Seethe BC hardware documentation. Timeis managed by adding an extra Dummy
Message Slot with the time assigned to the Minor Frame. Every time a message Slot is allocated (with a certain
time: Slot-Time) the Slot-Time will be subtracted from the assigned time of the Minor Frame's Dummy Message
Slot. Thus, the sum of the Message Slotswill always sum up to the assigned time of the Minor Frame, as configured
by the user. When a Message Slot is freed, the Dummy Message Slot's Slot-Time is incremented with the freed
Slot-Time. Seefigure below for an example where 6 Message Slots has been allocated Slot-Timeinal ms Time-
Managed Minor Frame. Note that in the example the Slot-Time for Slot 2 is set to zero in order for Slot 3 to
execute directly after Slot 2.

Major 3 0|12 |3|4|5|6|7| TIME | J
Minor O ,.ljl
200 60 0 220 120 free 120 free DUMMY
us us us us us Ous us Ous 280us P

Figure 24.2. Time-Managed Minor Frame of 1ms
Thetotal time of al Minor Framesin aMajor Frame determines how long time the Mg or Frame isto be executed.

Slot allocation can be performed in two ways. A Message Slot can be allocated by identifying a specific free Slot
(MID identifiesa Slot) or by letting the API allocate thefirst free Slot in the Minor Frame (MID identifiesaMinor
Frame by setting Slot-1D to 0xff).

24.3.5. Slot (Descriptor)

The GR1553B BC core supports two Slot (Descriptor) Types.

« Transfer descriptor (also called Message Slot)
« Condition descriptor (Jump, unconditional-IRQ)

See the hardware manual for a detail description of a descriptor (Slot).

The BC Core is unaware of lists, it steps through executing each descriptor as the encountered, in a sequential
order. Conditions resulting in jumps gives the user the ability to create more complex arrangements of buffer
descriptors (BD) which is called lists here.

Transfer Descriptors (TBD) may have atime ot assigned, the BC core will wait until the time has expired before
executing the next descriptor. Time slots are managed by Minor frames in the list. See Minor Frame section. A
Message Slot generating a data transmission on the 1553 bus must have avalid data pointer, pointing to alocation
from which the BC will read or write data.

A Slotisallocatedusingthegr 1553bc_sl ot _al | oc() function, and configured by calling one of thefunction
described in the table below. A Slot may be reconfigured later. Note that a conditional descriptor does not have a
time slot, allocating atime for a conditional times slot will lead to an incorrect total time of the Minor Frame.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 169

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 24.6. Sot configuration

Function Name Description

gr1553bc_dlot_irg_prepare |Unconditional IRQ slot

gr1553bc_slot_jump Unconditional jump

gr1553bc_slot_exttrig Dummy transfer, wait for EXTERNAL-TRIGGER
gr1553bc_dlot_transfer Transfer descriptor

gr1553bc_slot_empty Create Dummy Transfer descriptor
gr1553bc_slot_raw Custom Descriptor handling

Existing configured Slots can be manipulated with the following functions.

Table 24.7. Sot manipulation

Function Name Description

gr1553bc_slot_ dummy Set existing Transfer descriptor to Dummy. No 1553 bus transfer will be per-
formed.

gr1553bc_slot_update Update Data Pointer and/or Status of a TBD

24.3.6. Changing a scheduled BC list (during BC-runtime)

Changing a descriptor that is being executed by the BC may result in a race between hardware and software. One
of the problemsisthat a descriptor contains multiple words, which can not be written simultaneously by the CPU.
To avoid the problem one can usethe INDICATION serviceto avoid modifying adescriptor currently in use by the
BC core. The indication service tells the user which Major/Minor/ Slot is currently being executed by hardware,
from that information an knowing the list layout and time slots the user may safely select which slot to modify
or wait until hardware is finished.

In most casesone can do descriptor initialization in several stepsto avoid race conditions. By initializing (allocating
and configuring) a Slot before starting the execution of the list, one may change parts of the descriptor which
are ignored by the hardware. Below is an example approach that will avoid potential races between software and
hardware:

1. Initialize Descriptor as Dummy and allocated time (often done before starting/ scheduling list)

2. Thelistis started, as aresult descriptorsin the list are executed by the BC

3. Modify transfer options and data-pointers, but maintain the Dummy bit.

4. Clear the Dummy bit in one atomic data store.

24.3.7. Custom Memory Setup

For designs where dynamically memory is not an option, or the driver is used on an AMBA-over-PCl bus (where
mal | oc() doesnot work), the API allowsthe user to provide custom addresses for the descriptor table and object
descriptions (lists, major frames, minor frames).

Being ableto configure a custom descriptor table may for example be used to save space or put the descriptor table
in on-chip memory. The descriptor tableissetup using thefunctiongr 1553bc_|i st _tabl e_al l oc(li st,
CUSTOM ADDRESS) .

Object descriptions are normally allocated during initialization procedure by providing the API with an object
configuration, for example a Magjor Frame configuration enables the API to dynamically allocate the software
description of the Major Frame and with all it's Minor frames. Custom object allocation requires internal under-
standing of the List management parts of the driver, it is not described in this document.

24.3.8. Interrupt handling

Therearedifferent typesof interrupts, Error IRQs, transfer IRQsand conditional IRQs. Error and transfer Interrupts
are handled by the general callback function of the device driver. Conditional descriptors that cause Interrupts
may be associated with a custom interrupt routine and argument.

Transfer Descriptors can be programmed to generate interrupt, and condition descriptors can be programmed to
generateinterrupt unconditionally (there exists other conditional typesaswell). When a Transfer descriptor causes

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 170

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

interrupt the general 1SR callback of the BC driver iscalled to let the user handle the interrupt. Transfers descriptor
IRQ is enabled by configuring the descriptor.

When a condition descriptor causes an interrupt a custom IRQ handler is called (if assigned) with a custom ar-
gument and the descriptor address. The descriptor address my be used to lookup the MID of the descriptor. The
API provides functions for placing unconditional IRQ points anywhere in the list. Below is an pseudo example

of adding an unconditional IRQ point to alist:

voi d funcSetup()

{
int MD;

/* Allocate Slot for IRQ Point */
gr1553bc_sl ot _alloc(& D, TIME=0, ..);

/* Prepare unconditional IRQ at allocated SLOT */
gr1553bc_slot_irq_prepare(MD, funcl SR data);

/* Enabling the I RQ may be done later during |ist

* execution */
gr1553bc_sl ot _irq_enabl e(MD);

}
voi d funcl SR(*bd, *data)

{
/* HANDLE ONE OR MULTI PLE DESCRI PTORS
*(MULTI PLE I N THI' S EXAMPLE) :
int MD;
/* Lookup M D from descriptor address */
gr 1553bc_mi d_from bd(bd, & D, NULL);
/* Print M D which caused the Interrupt */
printk("I RQ ON %96x\n", MD);

}

24.3.9. List API

Table 24.8. List API function prototypes

Prototype

Description

int gr1553bc_list_alloc(
struct gr1553bc_list **list,
int max_maj or)

Allocate a List description structure. First step in creating a descrip-
tor list.

voi d gr1553bc_list_free(
struct gr1553bc_list *list)

Free aList previously allocated using
gr1553bc_list_alloc().

int gri1553bc_list_config(
struct gr1553bc_list *list,

voi d *bc)

struct gr1553bc_list_cfg *cfg,

Configure List parameters and associate it with a BC device that will
execute the list later on. List parameters are used when generating
descriptors.

voi d gr1553bc_list_link_major(
struct gr1553bc_naj or *mgj or,
struct gr1553bc_maj or *next)

Linkstwo Major frames together, the Major frame indicated by next
will be executed after the Mgjor frame indicated by major. A uncon-
ditional jump isinserted to implement the linking.

int gr1553bc_|ist_set_major(
struct gr1553bc_list *list,
struct gr1553bc_nasj or *nmgj or,
int no)

Assign aMagjor Frame a Major Frame number in alist. Thiswill link
Magjor (no-1) and Magjor (no+1) with the Major frame, the linking
can be changed by calling gr 1553bc_I| i st _|i nk_maj or () af-
ter all major frames have been assigned a number.

int gri1553bc_m nor_table_size(
struct gr1553bc_m nor *minor)

Calculate the size required in the descriptor table by one minor
frame.

int gr1553bc_list_table_size(
struct gr1553bc_list *list)

Calculate the size reguired for the complete descriptor list.

int gr1553bc_|ist_table_alloc(
struct gr1553bc_list *list,
voi d *bdtab_custom

Allocate and initialize a descriptor list. The bdt ab_cust omargu-
ment can be used to assign a custom address of the descriptor list.

voi d gr1553bc_list_table_free(
struct gr1553bc_list *list)

Free descriptor list memory previously allocated by
gr1553bc_list _table alloc().

int gri553bc_list_table_build(
struct gr1553bc_list *list)

Build all descriptorsin adescriptor list. Unused descriptors will be
initialized as empty dummy descriptors. After this call descriptors
can beinitialized by user.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2

171

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Prototype

Description

int gr1553bc_nwmj or_al |l oc_skel (
struct gr1553bc_naj or **mmj or,
struct gr1553bc_naj or_cfg *cfg)

Allocate and initialize a software description skeleton of aMajor
Frame and it's Minor Frames.

int gr1553bc_list_freetime(
struct gr1553bc_list *list,
int nid)

Get total unused slot time of aMinor Frame. Only available if time
management has been enabled for the Minor Frame.

int gri1553bc_slot_all oc(
struct gr1553bc_list *list,
int *md,
int tineslot,
uni on gr1553bc_bd **bd)

Allocate a Slot from a Minor Frame. The Slot location isidentified
by MID. If the MID identifies a Minor frame thefirst freeslot isal-
|ocated within the minor frame.

int gri1553bc_slot_free(
struct gr1553bc_list *list,
int md)

Return a previously allocated Slot to a Minor Frame. The dlot-timeis
also returned.

int gr1553bc_m d_from bd(
uni on gr1553bc_bd *bd,
int *mid,
int *async)

Get Slot/Message |D from descriptor address.

uni on gr1553bc_bd *gr1553bc_sl ot _bd(
struct gr1553bc_list *list,
int nid)

Get descriptor address from MID.

nt gr1553bc_sl ot _irq_prepare(
struct gr1553bc_list *list,
int md,
bcirg_func_t func,
voi d *data)

Prepare a condition Slot for generating interrupt. Interrupt is dis-
abled. A custom callback function and datais assigned to Slot.

int gri1553bc_slot_irqg_enabl e(
struct gr1553bc_list *list,
int md)

Enable interrupt of a previously interrupt-prepared Slot.

int gr1553bc_slot_irq_disable(
struct gr1553bc_list *list,
int md)

Disable interrupt of a previoudly interrupt-prepared Slot.

int gri1553bc_slot_jump(
struct gr1553bc_list *list,
int md,
uint32_t condition,
int to_nmid)

Initialize an allocated Slot, the descriptor isinitialized as a condi-
tional Jump Slot. The conditional is controlled by the third argu-
ment. The Slot jJumped to is determined by the fourth argument.

int gri1553bc_slot_exttrig(
struct gr1553bc_list *list,
int mid)

Create adummy transfer with the "Wait for external trigger” bit set.

int gri1553bc_slot_transfer(
struct gr1553bc_list *list,
int md,
int options,
int tt,
uint16_t *dptr)

Create atransfer descriptor.

int gri1553bc_sl ot _dummy(
struct gr1553bc_list *list,
int nmd,
unsi gned int *dummy)

Manipulate the DUMMY bit of atransfer descriptor. Can be used to
enable or disable atransfer descriptor.

int gri1553bc_slot_enpty(
struct gr1553bc_list *list,
int nid)

Create an empty transfer descriptor, with the DUMMY bit set. The
time- dot previously allocated is preserved.

int gri1553bc_sl ot _updat e(
struct gr1553bc_list *list,
int md,
uintl16_t *dptr,
unsigned int *stat)

Update atransfer descriptors data pointer and/or status field.

int gri1553bc_slot_raw
struct gr1553bc_list *list,
int md,
unsi gned int flags,
ui nt 32_t wordo,
uint32_t wordl,
uint32_t word2,
uint32_t word3)

Custom descriptor initialization. Note that a bad initialization may
break the BC driver.

voi d gr1553bc_show_| i st (
struct gr1553bc_list *list,
int options)

Print information about a descriptor list to standard out. Used for de-
bugging.

RCC-UM
Dec 2023, Version 1.3.2

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

172

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

24.3.9.1. Data structures

Thegr 1553bc_rmmaj or _cf g datastructure hold the configuration parametersof aMajor frameand al it'sMinor
frames. Thegr 1553bc_ri nor _cf g data structure contain the configuration parameters of one Minor Frame.

struct gr1553bc_minor_cfg {
int slot_cnt;
int tineslot;

}s

struct gr1553bc_mmjor_cfg {
int mnor_cnt;
struct gr1553bc_minor_cfg m nor_cfgs[1];

¥
Table 24.9. gr1553bc_minor_cfg member descriptions.

Member Description
dlot_cnt Number of Slotsin Minor Frame
timeslot Total time-slot of Minor Frame [us]

Table 24.10. gr1553bc_major_cfg member descriptions.

Member Description

minor_cnt Number of Minor Framesin Mgjor Frame.

minor_cfgs Array of Minor Frame configurations. The length of the array is determined by
minor_cnt.

Thegr 1553bc_| i st _cf g datastructure hold the configuration parameters of adescriptor List. The Mgjor and
Minor Frames are configured separately. The configuration parameters are used when generating descriptor.

struct gr1553bc_list_cfg {
unsi gned char rt_tinmeout[31];
unsi gned char bc_ti neout;
int tropt_irg_on_err;
int tropt_pause_on_err;
int async_list;

s
Table 24.11. gr1553bc _list_cfg member descriptions.

M ember Description

rt_timeout Number of us timeout tolerance per RT address. The BC has a resolution of 4us.
bc_timeout Number of us timeout tolerance of broadcast transfers

tropt_irq_on_err Determinesif transfer descriptors should generate IRQ on transfer errors
tropt_pause on_err Determinesif the list should be paused on transfer error

async _list Set to non-zero if asynchronous list

24.3.9.2. gr1553bc_list_alloc

Dynamically allocates a List structure (no descriptors) with a maximum number of Major frames supported. The
first argument isapointer to where the newly allocated list pointer will be stored. The second argument determines
the maximum number of major frames the List will be able to support.

Thelist isinitialized according to the default configuration.

If thelist alocation fails, a negative result will be returned.

24.3.9.3. gr1553bc_list_free

Free aList that has been previoudly allocated with gr 1553bc_1i st _al | oc().
24.3.9.4. gr1553bc_list_config

This function configures List parameters and associate the list with a BC device. The BC device may be used to
trandate addresses from CPU address to addresses the GR1553B core understand, therefore the list must not be
scheduled on another BC device.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 173

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Some of the List parameters are used when generating descriptors, as global descriptor parameters. For example
al transfer descriptors to a specific RT result in the same time out settings.

Thefirst argument points to alist that is configure. The second argument points to the configuration description,
the third argument identifies the BC device that the list will be scheduled on. The layout of the list configuration
isdescribed in Table 24.11.

24.3.9.5. gr1553bc_list_link_major

At the end of aMajor Frame a unconditional jump to the next Major Frame is inserted by the List API. The List
API assumes that a Magjor Frame should jump to the following Major Frame, however for the last Major Frame
the user must tell the API which frame to jump to. The user may also connect Major frames in a more complex
way, for example Major Frame 0 and 1 is executed only once so the last Major frame jumps to Major Frame 2.

The Mgjor frame indicated by next will be executed after the Major frame indicated by major. A unconditional
jump isinserted to implement the linking.

24.3.9.6. gr1553bc_list_set_major

Major Frames are associated with anumber, aMajor Frame Number. Thisfunction creates an association between
aFrame and a Number, all Mgjor Frames must be assigned a number within aList.

The function will link Major[no-1] and Major[no+1] with the Major frame, the linking can be changed by calling
gr 1553bc_li st _|ink_major () after al maor frames have been assigned a number.

24.3.9.7. gr1553bc_minor_table_size

Thisfunctionisused internally by the List API, however it can also be used in an application to calcul ate the space
required by descriptors of a Minor Frame.

The total size of all descriptorsin one Minor Frame (in number of bytes) is returned. Descriptors added internally
by the List API are also counted.

24.3.9.8. gr1553bc_list_table size

Thisfunction isused internally by the List API, however it can also be used in an application to calcul ate the total
space required by all descriptors of aList.

The total descriptor size of all Major/Minor Frames of thelist (in number of bytes) is returned.
24.3.9.9. gr1553bc_list_table_alloc

Thisfunction allocates all descriptors needed by aList, either dynamically or by auser provided address. The List
isinitialized with the new descriptor table, i.e. the software'sinternal representation isinitialized. The descriptors
themselves are not initialized.

The second argument bdt ab_cust omdeterminesthe alocation method. If NULL the APl will alocate memory
usingmal | oc() , if non-zero the value will be taken as the base descriptor address. If bit zero is set the address
is assumed to be readable by the GR1553B core, if bit zero is cleared the address is assumed to be readable by
the CPU and translated for the GR1553B core. Bit zero makes sense to use on a GR1553B core located on a
AMBA-over-PCl bus.

If memory allocation fails (in case of dynamic memory allocation) thefunction return -1, it returns-2 if the memory
isnot aligned or on success zero is returned.

24.3.9.10. gr1553bc_list_table free
Free previously allocated descriptor table memory.
24.3.9.11. gr1553bc_list_table_build

This function builds all descriptors in a descriptor list. Unused descriptors will be initialized as empty dummy
descriptors. Jumps between Minor and Major Frames will be created according to user configuration.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 174

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

After this call descriptors can beinitialized by user.

24.3.9.12. gr1553bc_major_alloc_skel

Allocate aMajor Frame and it's Minor Frames according to the configuration pointed to by the second argument.
The pointer to the allocated Major Frame is stored into the location pointed to by the major argument.

The configuration of the Major Frame is determined by the gri553bc_major_cfg structure, described in Ta
ble 24.10.

On success zero is returned, on failure a negative value is returned.
24.3.9.13. gr1553bc_list_freetime

Minor Frames can be configured to handle time dlot allocation. This function returns the number of microseconds
that is left/unused. The second argument mid determines which Minor Frame.

24.3.9.14. gr1553bc_slot_alloc

Allocate a Slot from a Minor Frame. The Slot location isidentified by ni d. If the MID identifies a Minor frame
thefirst free dot is allocated within the minor frame.

The resulting MID of the Slot is stored back to mi d, the MID can be used in other function call when setting up
the Slot. Themi d argument is thus of in and out type.

Thethird argument, t i mesl ot , determinesthetime slot that should be allocated to the Slot. If time management
isnot configured for the Minor Frame atime can still be assigned to the Slat. If the Slot should step to the next Slot
directly when finished (no assigned time-dlot), the argument must be set to zero. If time management isenabled for
the Minor Frame and the requested time-slot is longer than the free time, the call will result in an error (negative
result).

The fourth and last argument can optionally be used to get the address of the descriptor used.
24.3.9.15. gr1553bc_slot_free

Return Slot and timeslot allocated from the Minor Frame.

24.3.9.16. gr1553bc_mid_from_bd

Looks up the Slot/Message ID (MID) from a descriptor address. This function may be useful in the interrupt
handler, where the address of the descriptor is given.

24.3.9.17. gr1553bc_slot_bd
L ooks up descriptor address from MID.
24.3.9.18. gr1553bc_slot_irq_prepare

Prepares a condition descriptor to generate interrupt. Interrupt will not be enabled until
gr 1553bc_sl ot _irqg_enabl e() is called. The descriptor will be initialized as an unconditional jump to
the next descriptor. The Slot can be associated with a custom callback function and an argument. The callback
function and argument is stored in the unused fields of the descriptor.

Once enabled and interrupt is generated by the Slot, the callback routine will be called from interrupt context.
The function returns a negative result if failure, otherwise zero is returned.
24.3.9.19. gr1553bc_slot_irq_enable

Enables interrupt of a previously prepared unconditional jump Slot. The Slot is expected to be initialized with
gr 1553bc_sl ot _irqg_prepare() . Thedescriptor is changed to do a unconditional jump with interrupt.

The function returns a negative result if failure, otherwise zero is returned.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 175

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

24.3.9.20. gr1553bc_slot_irg_disable

Disable unconditional IRQ point, the descriptor is changed to unconditional JUMP to the following descriptor,
without generating interrupt. After disabling the Slot it can be enabled again, or freed.

The function returns a negative result if failure, otherwise zero is returned.
24.3.9.21. gr1553bc_slot_jump
Initialize a Slot with a custom jump condition. The arguments are declared in the table below.

Table 24.12. gr1553bc _list_cfg member descriptions.

Argument Description

list List that the Slot islocated at.

mid Slot Identification.

condition Custom condition written to descriptor. See hardware documentation for options.
to_mid Slot Identification of the Slot that the descriptor will be jumping to.

Returns zero on success.
24.3.9.22. gr1553bc_slot_exttrig

The BC supports an external trigger signal input which can be used to synchronize 1553 transfers. If used, the
external trigger is normally generated by some kind of Time Master. A message slot may be programmed to
wait for an external trigger before being executed, this feature allows the user to accurate send time synchronize
messages to RTs.

Thisfunction initializes a Slot to a dummy transfer with the "Wait for external trigger" bit set.
Returns zero on success.
24.3.9.23. gr1553bc_slot_transfer

Initializes a descriptor to atransfer descriptor. The descriptor isinitialized according to the function arguments an
theglobal List configuration parameters. The settingsthat are controlled on aglobal level (and not by thisfunction):
* |RQ after transfer error
« |IRQ after transfer (not supported, insert separate IRQ slot after this)
* Pause schedule after transfer error
 Pause schedule after transfer (not supported)
» Slot time optional (set when MID allocated), otherwise O
(OPTIONAL) Dummy Bit, set using slot_empty() or ... TT_DUMMY
¢ RT time out tolerance (managed per RT)

The arguments are declared in the table below.

Table 24.13. gr1553bc_dlot_transfer argument descriptions.

Argument Description
list List that the Slot islocated at
mid Slot Identification
options Options:
* Retry Mode

e Number of retires
» Busselection (A or B)
e Dummy bit

tt Transfer options, see BC transfer type macros in header file:
* transfer type

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 176

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Argument Description

* RT src/dst address
* RT subaddress

« word count

* mode code

dptr Descriptor Data Pointer. Used by Hardware to read or write datato the 1553 bus. If bit zero is
set the addressis translated by the driver into an address which the hardware can access(may
be the case if BC deviceislocated on an AMBA-over-PCl bus), if cleared it is assumed that
no tranglation is required(typical case)

Returns zero on success.
24.3.9.24. gr1553bc_slot_dummy
Manipulate the DUMMY hit of atransfer descriptor. Can be used to enable or disable atransfer descriptor.

The dummy argument points to an area used as input and output, as input bit 31 iswritten to the dummy bit of the
descriptor, as output the old value of the descriptor's dummy bit is written.

Returns zero on success.

24.3.9.25. gr1553bc_slot_empty

Create an empty transfer descriptor, with the DUMMY bit set. The time-slot previously allocated is preserved.
Returns zero on success.

24.3.9.26. gr1553bc_slot_update

Thisfunction will update a transfer descriptor's status and/or update the data pointer.

If the dpt r pointer is non-zero the Data Pointer word of the descriptor will be updated with the value of dpt r .
If bit zero is set the driver will translate the data pointer address into an address accessible by the BC hardware.
Trandation is an option only for AMBA-over-PCl.

If thest at pointer isnon-zero the Statusword of the descriptor will be updated according to the content of st at .
The old Status will be stored into st at . The lower 24-bits of the current Status word may be cleared, and the
dummy bit may be set:

bd->status = *stat & (bd->status Oxffffff) | (*stat & 0x80000000);

Note that the status word is not written (only read) when value pointed to by st at iszero.
Returns zero on success.

24.3.9.27. gr1553bc_slot_raw

Custom descriptor initialization. Note that a bad initialization may break the BC driver.
The arguments are declared in the table below.

Table 24.14. gr1553bc_dlot_transfer argument descriptions.

Argument Description
list List that the Slot islocated at
mid Slot Identification
flags Determine which words are updated. If bit N is set wordN is written into descriptor wordN, if
bit N is zero the descriptor wordN is not modified.

word0 32-bit Word written to descriptor address 0x00
wordl 32-bit Word written to descriptor address 0x04

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 177

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Argument Description
word2 32-bit Word written to descriptor address 0x08
word3 32-bit Word written to descriptor address 0x0C

Returns zero on success.

24.3.9.28. gr1553bc_show_list

Print information about a List to standard out. Each Major Frame's first descriptor for example is printed. This
function is used for debugging only.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 178

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 25. B1553BRM GRLIB Actel Corel553BRM driver

25.1. Introduction

This document is intended as an aid in getting started developing with GRLIB B1553BRM core using the driver
described in thisdocument. It briefly takes the reader through some of the most important stepsin using the driver
such as setting up a connection, configuring the driver, reading and writing messages between Bus Controllers
(BC), Remote Terminals (RT) and Bus Monitors (BM). The reader is assumed to be well acquainted with MIL-
STD-1553 and RTEMS.

The B1553BRM driver require the RTEMS Driver Manager.
25.1.1. BRM Hardware

The BRM hardware can operate in one of three modes, Bus Controller (BC), Remote Terminal (RT) or Bus
Monitor (BM). All three modes are supported by the driver. The software interface of the BRM-RT is similar to
the B1553RT software interface to simplify software development.

The B1553BRM core is present in GR712RC. In many newer systems the GR1553B IP core replaces the
B1553BRM which has a different software interface documented in the Chapter 21.

25.1.2. Software Driver

The driver provides means for processes and threads to send, receive and monitor messages.
* BusController
* Remote Terminal
e Busmonitor

25.1.3. Supported OS

Thereisasimple example availableit illustrates how to set up a connection between aBC and a RT monitored by
aBM. The BC sends the RT receive and transmit messages for a number of different sub addresses. The BM is
set up to print messages from the BC and the RT. To be able to run the example one must have at |east two boards
connected together viathe B1553BRM interfaces. To fully run the example three BRM boards is needed.

The example is part of the Gaisler RTEMS distribution, it can be found under / opt / rt ens- 5/ src/ sam
ples/rtems-brmc,brmlib.candbrmlib. h.

The example can be built by running:

cd /opt/rtems-5/src/sanpl es nake clean rtems-brmrt rtems-brmbc rtens-brmbm
25.2. User Intrerface

The RTEMS MIL-STD-1553B BRM driver supports standard accesses to file descriptors such as read, write
and ioctl. User applicationsinclude the [brm] driver's header file which contains definitions of all necessary data
structures and bit masks used when accessing the driver. An example application using the driver is provided in
the examples directory.

Thedriver for the MIL-STD-1553 B BRM has three different operating modes, Remote Terminal, Bus Controller
or Bus Monitor. It defaults to Remote Terminal (RT) with address 1, MIL- STD-1553 B standard, both buses
enabled, and broadcasts enabled. The operating mode and settings can be changed with ioctl calls as described
later.

25.2.1. Driver registration
The registration of the driver is crucial for threads and processes to be able to access the driver using stan-

dard means, such as open. The RTEMS 1/O driver registration is performed automatically by the driver when
B1553BRM hardware is found for the first time. The driver is called from the driver manager to handle detected

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 179

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

B1553BRM hardware. In order for the driver manager to unite the B1553BRM driver with the B1553BRM hard-
ware one must register the driver to the driver manager. This process is described in the driver manager chapter.

25.2.2. Driver resource configuration

Thedriver can be configured using driver resources as described in the driver manager chapter. Below isadescrip-
tion of configurable driver parameters. The driver parameters is unique per B1553BRM device. The parameters
are al optional, the parameters only overrides the default values.

Table 25.1. B1553BRM driver parameter description

Name Type Parameter description

clkSel INT Selects clock source (input value to the clock MUX)

clkDiv INT Selects clock prescaler, may not be available for al clock sources

coreFreq INT Theinput clock frequency to the BRM core. 0 = 12MHz, 1 = 16MHz, 2=
20MHz, 3 = 24MHz.

dmaArea INT Custom DMA area address. See note below.

25.2.2.1. Custom DMA area parameter

The DMA area can be configured to be located at a custom address. The standard configuration is to leave it up
to the driver to do dynamic allocation of the areas. However in some cases it may be required to locate the DMA
area on a custom location, the driver will not allocate memory but will assume that enough memory is available
and that the alignment needs of the core on the address given is fulfilled. The memory required is either 16K or
128K hytes depending on how the driver has been compiled.

For some systems it may be convenient to give the addresses as seen by the B1553BRM core. This can be done
by setting the LSB bit in the address to one. For example a GR-RASTA-10 board with aB1553BRM core doesn't
read from the same address as the CPU in order to access the same data. Thisis dependent on the PCI mappings.
Tranglation between CPU and B1553BRM addresses must be done. The B1553BRM driver automatically trans-
lates the DMA base address. This requires the bus driver, in this case the GR- RASTA-10 driver, to set up trans-
lation addresses correctly.

25.2.3. Opening the device

Opening the device enables the user to access the hardware of a certain BRM device. The driver is used for al
BRM devices available. The devices is separated by assigning each device a unique name and a number called
[minor]. The nameis passed during the opening of the driver. Some example device names are printed out below.

Table 25.2. Device number to device name conversion

Device number Filesystem name L ocation

0 /dev/b1553brm0 On-Chip Bus

1 /dev/b1553brm1 On-Chip Bus

2 /dev/b1553brm?2 On-Chip Bus
Depends on system configuration /dev/rastaio0/b1553brm0 GR-RASTA-IO

An example of an RTEM S open call is shown below.

fd = open("/dev/bl553brn0", O RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as indicated in table Ta-
ble 25.3.

Table 25.3. Open errno values

Errno Description
ENODEV Illegal device name or not available
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 180

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Errno Description
EBUSY Device already opened

25.2.4. Closing the device

The deviceisclosed using the close call. An exampleis shown below.
res = close(fd)

Close aways returns 0 (success) for the [brm] driver.
25.2.5. 1/0 Control interface

Changing the behaviour of thedriver for adeviceisdoneviathe standard system call ioctl. Most operating systems
support at least two argumentstoioctl, thefirst being an integer which selectsioctl function and secondly a pointer
to data that may be interpreted uniquely for each function. A typical ioctl call definition:

int ioctl(int fd, int cmd, void *arg);
The return value is 0 on success and -1 on failure and the global [errno] variable is set accordingly.
All supported commands and their data structures are defined in the BRM driver's header file [brm.h]. In functions

where only one argument is needed the pointer (...,void *arg) may be converted to an integer and interpreted
directly, thus simplifying the code.

25.2.5.1. Data structures
25.2.5.1.1. Remote Terminal operating mode

The structure below is used for RT operating mode for all received events as well as to put data in the transmit
buffer.

struct rt_nsg {
unsi gned short mw;
unsi gned short tine;
unsi gned short datal 32];
unsi gned short desc;

¥
Table 25.4. rt_msg member descriptions.

M ember Description

miw - —
Bit(s) Description

15-11 Word count / mode code - For subaddresses this is the number of
received words. For mode codes it is the receive/transmit mode
code.

10 -
A/B - 1if message receive on bus A, O if received on bus B.

RTRT - 1if messageis part of an RT to RT transfer

ME - 1if an error was encountered during message processing. Bit
4-0 gives the details of the error.

6-5 -
ILL - 1if received command isillegalized.

3 TO - If set, the number of received words was less than the amount
specified by the word count.

2 OVR - If set, the number of received words was more than amount
specified by the word count.

PRTY - 1if the RT detected a parity error in the received data.

MAN - 1 if aManchester decoding error was detected during data
reception.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 181

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
M ember Description
time Time Tag - Contains the value of the internal timer register when the message was re-
ceived.
data An array of 32 16 bit words. The word count specifies how many data words that are
valid. For receive mode codes with data the first dataword isvalid.
desc Bit 6-0 is the descriptor used.

Thelast variable in the [struct rt_msg] shows which descriptor (i.e rx subaddress, tx subaddress, rx mode code or
tx mode code) that the message was for. They are defined as shown in the table below:

Table 25.5. Descriptor table

Descriptor |Description

0 Reserved for RX mode codes
1-30 Receive subaddress 1-30

31 Reserved for RX mode codes
32 Reserved for TX mode codes
33-62 Transmit subaddress 1-30

63 Reserved for TX mode codes
64-95 Receive mode code

96-127 Transmit mode code

If there has occurred an event queue overrun bit 15 of thisvariable will be set inthefirst event read out. All events
received when the queue isfull are lost.

25.2.5.1.2. Bus Controller operating mode

When operating as BC the command list that the BC is to process is described in an array of BC messages as
defined by the struct [bc_msqg].

struct bc_msg {
unsi gned char rtaddr[2];
unsi gned char subaddr[2];
unsi gned short wc;
unsi gned short ctrl;
unsi gned short tsw 2];
unsi gned short data[32];

s
Table 25.6. struct bc_msg member description

Member Description

rtaddr Remote terminal address - For non RT to RT message only rtaddr[0] is used. It specifies
the address of the remote terminal to which the message should be sent. For RT to RT
messages rtaddr[0] specifies the receive address and rtaddr[1] the transmit address.

subaddr The subaddr array works in the same manner as rtaddr but for the subaddresses.
wc Word Count - Specifies the word count, or mode code if subaddressisO or 31.
ctrl - —
Bit(s) Description
15 Message Error. Set by BRM whiletraversing list if protocol error is de-
tected.
14-6 -
5 END. Indicates end of list
4-3 Retry, Number of retries, 0=4, 1=1, 2=2, 3=3. BC will alternate buses dur-
ing retries.
AB,1-BusB,0-BusA
1RT to RT, 0 normal

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 182

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

M ember Description

Bit(s) Description

0 0 RT Transmit, 1 RT receive (ignored for RT to RT)
tsw Status words
data Datain message, not used for RT receive (ctrl.0 = 1).

25.2.5.1.3. Bus Monitor operating mode

The structure below is used for BM operating mode for all received events as well as to put data in the transmit

buffer.

struct bmnsg {

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

I

short
short
short
short
short
short
short

m w,

cwl;

cwW2;

swil;

SW2;
tinme;

dat a[32] ;

Table 25.7. struct bm_msg member description

M ember Description
mi
q Bit(s) Description
15 Overrun- Indicates that the monitor message queue has been overrun.
14-10 -
9 Channel A/B -1 if message captured on bus A, 0 if captured on bus B.
8 RT to RT transfer - 1 if messageis part of an RT to RT transfer
7 Message Error - 1 if an error was encountered during message processing.
Bit 4-0 gives the details of the error.
6 Mode code without data - 1 if a mode code without data word was cap-
tured.
5 Broadcast - 1 if a broadcast message was captured.
3 Time out - If set, the number of captured data words was less than the
amount specified by the word count.
2 Overrun -If set, the number of captured data words was more than amount
specified by the word count.
Parity- 1 if the BM detected a parity error in the received data.
Manchester error - 1 if aManchester decoding error was detected during
data reception.
cwl 1553 Command word 1
cw2 1553 Command word 2, only used for RT to RT transfers and then holds the transmit
command.
swl 1553 Status word 1
sw2 1553 Statusword 2, is only used for RT to RT transfers and then holds the status word
from the transmitting RT.
time Time tag (time) Contains the value of the internal timer register when the message was
captured.
data An array of 32 16 bit words. The command word specifies how many data words that are
valid. For receive mode codes with data the first dataword isvalid.
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 183

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

25.2.6. Configuration

The BRM core and driver are configured using ioctl calls. The Table 25.9 below lists all supported ioctl calls.
BRM__ should be concatenated with the call number from the table to get the actual constant used in the code.
Return valuesfor all callsare O for success and -1 on failure. Errno is set after afailure asindicated in Table 25.8.
An example is shown below where the operating mode is set to Bus Controller (BC) by using anioctl call:

unsi gned int nmode = BRM MODE_BC;
result = ioctl(fd, BRM SET_MODE, &node);

Table 25.8. ERRNO values for ioctl calls.

ERRNO Description
EINVAL Null pointer or an out of range value was given as the argument.
EBUSY The BRM hardware is not in the correct state to accept this command.
Errnois set to EBUSY whenissuingaBRM_DO_LIST before the last
BRM_DO_LIST command has finished its execution.
ENOMEM Not enough memory for driver to complete request.
Table 25.9. ioctlcalls supported by the BRM driver.
Call Number Description ERRNO
SET_MODE Set operating mode (0=BC, 1=RT, 2=BM) EINVAL, ENOMEM
SET_BUS Enable/disable buses
SET_MSGTO Set message timeout
SET RT_ADDR Get Remote Terminal address
SET_STD Get bus standard
SET BCE Enable/disable broadcasts
TX_BLOCK Set blocking/non-blocking mode for RT write calsand BC
DO_LIST commands.
RX_BLOCK Set blocking/non-blocking mode for RT and BM read calls
CLR_STATUS Clear status flag
GET_STATUS Read status flag EINVAL
SET_EVENTID Set event id
DO _LIST Execute list (BC mode) EINVAL, EBUSY
LIST_DONE Wait for list to finish execution (BC mode) EINVAL, EBUSY

All ioctl requests takes as parameter the address to an unsigned int where data will be read from or written to
depending on the request.

There are two more ioctl requests but they are not for configuration and are described later in Bus Controller
Operation.

25.2.6.1. SET_MODE

Sets the operating mode of the BRM. Data should be O for BC, 1 for RT and 2 for BM.
25.2.6.2. SET_BUS

For RT mode only. Sets which buses that are enabled.

0-none, 1-busB, 2 - busA and 3 both bus A and B.

25.2.6.3. SET_MSGTO

For BC and BM mode. Sets the RT no response time out. If in MIL-STD-1553 B mode it is either 14 us or 30
us. In MIL-STD-1553 A mode either 9 usor 21 us.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 184

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

25.2.6.4. SET_RT_ADDR

Sets the remote address for the RT. 0 - 30 if broadcasts enabled, O - 31 otherwise.
25.2.6.5.BRM_SET_STD

Sets the bus standard. O for MIL-STD-1553 B, 1 for MIL-STD-1553 A.
25.2.6.6. BRM_SET_BCE

Enabl e/disable broadcasts. 1 enables them, O disables.

25.2.6.7. BRM_TX_BLOCK

Set blocking/non blocking mode for RT write calls and BC ioctls. Blocking is default.
25.2.6.8. BRM_RX_BLOCK

Set blocking/non blocking mode for RT read calls. Blocking is default.

25.2.6.9. BRM_CLR_STATUS

Clears status bit mask. No input is needed it always succeeds.

25.2.6.10. BRM_GET_STATUS

Reads the status bit mask. The status bit mask is modified when an error interrupt is received. Thisioctl command
can be used to poll the error status by setting the argument to an [unsigned int] pointer.

Table 25.10. Satus bit mask

Bit(s) Description Modes
31-16 The last descriptor that caused an error. Is not set for hardware |BC, RT
errors.

BRM_DMAF_IRQ DMA Fail all
BRM_WRAPF_IRQ Wrap Fail BC, RT
BRM_TAPF_IRQ Terminal Address Parity Fail RT
BRM_MERR_IRQ Message Error all
BRM_RT_ILLCMD_IRQ [llegal Command RT
BRM_BC_ILLCMD_IRQ Illogical Command BC
BRM_ILLOP_IRQ Illogical Opcode BC

25.2.6.11. BRM_EST_EVENTID

Setsthe event id to an event id external to the driver. It is possible to stop the event signalling by setting the event
id to zero.

When the driver notifies the user (using the event id) the bit mask that caused the interrupt is sent along as an
argument. Note that it may be different from the status mask read with BRM_GET_STATUS since previous
error interrupts may have changed the status mask. Thus there is no need to clear the status mask after an event
notification if only the notification argument is read.

See table Table 25.10 for the description of the notification argument.
25.2.7. Remote Terminal operation
When operating as Remote Terminal (RT) the driver maintains a receive event queue. All events such asreceive

commands, transmit commands, broadcasts, and mode codes are put into the event queue. Each event is described
usingastruct rt_nsg asdefined earlier in the data structure subsection.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 185

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The events are read of the queue using the read() call. The buffer should point to the beginning of one or several
struct rt_nsg. The number of eventsthat can be received is specified with the length argument. E.g:

struct rt_nsg nsg[2];

n = read(brmfd, msg, 2);

The above call will return the number of events actually placed in msg. If in non- blocking mode -1 will bereturned
if the receive queue is empty and errno set to EBUSY. Note that it is possible also in blocking mode that not all
events specified will be received by one call since the read call will cease to block as soon as there is one event
available.

What kind of event that was received can be determined by looking at the [desc] member of art _nsg. It should
be interpreted according to Table 25.8. How the rest of the fields should be interpreted depends on what kind of
event it was, e.g if the event was areception to subaddress 1 to 30 the word count field in the message information
word gives the number of received words and the data array contains the received data words.

To place data in the transmit buffers the write() call is used. The buffer should point to the beginning of one or
several struct rt_nsg. The number of messagesis specified with the length argument. E.g:

struct rt_msg nsg;

meg.desc = 33; /* transnmt for subaddress 1 */

nmeg. mMw = (16 << 11) | (1 << 9) /* 16 words on bus A */
meg. data[0] = 0x1234;

.m.:‘..g. data[15] = OXAABB;

n=wite(brmfd, msg, 1);

The number of messages actually placed in the transmit queue is returned. If the device is in blocking mode it
will block until there is room for at least one message. When the buffer is full and the device is in non-blocking
mode -1 will be returned and [errno] set to EBUSY. Note that it is possible also in blocking mode that not all
messages specified will be transmitted by one call since the write call will cease to block as soon asthereisroom
for one message.

Each subaddress has its own set of buffers used for transmission. The transmit buffers are implemented as a
circular buffer with room for 8 messages with 32 datawords each. Eachwr i t e() call appends a message to the
circular buffer of the subaddress specified by the arguments. The order in which the messages are actually sent is
determined by the order of the 1553 commands sent by the BC. RT-to-BC or RT-to-RT commands trigger the RT
to send the buffered messages. As aresult of the DMA buffer implementationwr i t e() could fail writing to one
subaddress being out of buffers but succeed when writing to another subaddress which has free buffers.

25.2.8. Bus Controller operation

To use the BRM as Bus Controller one first hasto use anioctl() call to set BC mode. Command lists that the BC
should process are then built using arraysof st r uct bc_nmsg described earlier in the data structure subsection.
To start the list processing the ioctl() request BRM_DO_LIST isused. Theioctl() request BRM_LIST DONE is
used to check when thelist processing isdone. It returns 1 in the supplied argument if operation hasfinished. Note
that BRM_LIST _DONE must be called before traversing the list to check results since this operation also copies
theresultsinto the array. Errnois set to EBUSY whenissuingaBRM_DO_LIST beforethelast BRM_DO_LIST
command has finished its execution.

Example use:

struct bc_msg nsg[2] ;
int done, data, k;
data = 0;
ioctl (brmfd, BRM SET_MODE, &data); /* set BC node */
bc_msg[0].rtaddr[0] = 1;
bc_msg[0] . subaddr[0] = 1;
bc_msg[0] . wc = 32;
bc_msg[0].ctrl = BC BUSA;, /* rt receive on bus a */
for (k = 0; k < 32; k++)
bc_msg[0] . data[k] = k;
bc_msg[1].ctrl |= BC_ EQL; /* end of list */
ioctl (brmfd, BRM DO LI ST, bc_nsg);
ioctl (brmfd, BRM LI ST_DONE, &done);

If in blocking mode the BRM_LIST_DONE ioctl will block until the BC has processed the list. When the BC
is finished and BRM_LIST_DONE has returned 1 in the argument the status words and received data can be
interpreted by the application. During blocking mode BRM_LIST_DONE may set errnoto EINVAL if anillogical
opcode or anillogical command is detected by the hardware during the list execution.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 186

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

25.2.9. Bus monitor operation

When operating as Bus Monitor (BM) the driver maintains a capture event queue. All events such as receive
commands, transmit commands, broadcasts, and mode codes are put into the event queue. Each event is described
usingastruct bm nsg asdefined in the data structure subsection.

The events are read of the queue using the read() call. The buffer should point to the beginning of one or severa
struct bm nsg. The number of eventsthat can be received is specified with the length argument. E.g:

struct bmmsg nsg[2];

n = read(brmfd, nmsg, 2);

The above call will return the number of events actually placed in [msg]. If in non- blocking mode -1 will be
returned if the receive queue is empty and [errno] set to EBUSY. Note that it is possible aso in blocking mode
that not all events specified will be received by one call since the read call will cease to block as soon as there
is one event available.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 187

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 26. B1553RT GRLIB Actel Corel553 RT driver

26.1. Introduction

This section describes the B1553RT Remote Terminal driver available for RTEMS. The reader is assumed to be
well acquainted with MIL-STD-1553 and RTEMS.

The B1553RT driver require the RTEMS Driver Manager.
26.1.1. RT Hardware

The B1553RT core operate at the same frequency asthe bus, it must be 12, 16, 20 or 24MHz. It requires a4KByte
DMA buffer areathat must be aligned properly.

26.1.2. 1.1.2 Examples

There is a simple example available, it illustrates how to set up RT for reception and transmission of messages
sent by aBC. Received messages are handled by updating the transmission DMA Areafor respective sub address.
The example collects statistics for received mode codes that the BC can read at sub address 30.

The example is part of the Gaisler RTEMS distribution, it can be found under / opt/ rt ens- 5/ src/ sam
pl es/rtemnms-b1553rt.c.

26.2. User interface

The RTEMS MIL-STD-1553B RT driver supports standard accesses to file descriptors such as read, write and
ioctl. User applicationsincludethert driver's header file which contains definitions of all necessary datastructures
and bit masks used when accessing the driver. An example application using the driver is provided in the examples
directory.

26.2.1. Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver using standard
means, such asopen. The RTEMSI/O driver registration is performed automatically by the driver when B1553RT
hardware is found for the first time. The driver is called from the driver manager to handle detected B1553RT
hardware. In order for the driver manager to unite the B1553RT driver with the B1553RT hardware one must
register the driver to the driver manager. This processis described in the driver manager chapter.

26.2.2. Driver resource configuration

The driver can be configured using driver resources as described in the driver manager chapter. Below is a de-
scription of configurable driver parameters. The driver parametersis unique per B1553RT device. The parameters
are al optional, the parameters only overrides the default values.

Table 26.1. B1553RT driver parameter description

Name Type Parameter description

coreFreq INT Theinput clock frequency to the RT core. 0 = 12MHz, 1 = 16MHz, 2= 20MHz,

3 =24MHz. The default is 24MHz. The driver auto detect the bus frequency and
override the default if the bus frequency is 20MHz, 16MHz or 12MHz. This pa-
rameter override the default and the auto detected value.

dmaBaseAdr INT Custom DMA area address. See note below.

26.2.2.1. Custom DMA area parameter

The DMA area can be configured to be located at a custom address. The standard configuration is to leave it up
to the driver to do dynamic allocation of the areas. However in some cases it may be required to locate the DMA
area on a custom location, the driver will not allocate memory but will assume that enough memory is available
and that the alignment needs of the core on the address given isfulfilled. The memory required is either 4K bytes.

For some systems it may be convenient to give the addresses as seen by the B1553RT core. This can be done by
setting the LSB bit in the address to one. For example a PCI Target board with a AMBA bus with a B1553RT

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 188

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

core doesn't read from the same address as the CPU in order to access the same data. Thisis dependent on the PCI
mappings. Translation between CPU and B1553RT addresses must be done. The B1553RT driver automatically
trandlatesthe DMA base address. Thisrequiresthe busdriver, inthiscasethe PCI Target driver, to set up translation
addresses correctly.

26.2.3. Opening the device

Opening the device enables the user to access the hardware of a certain RT device. The driver isused for all RT
devices available. The devicesis separated by assigning each device a unique name and a number called [minor].
The name is passed during the opening of the driver. Some example device names are printed out below.

Table 26.2. Device number to device name conversion.

Device number Filesystem name L ocation

0 /dev/b1553rt0 On-Chip Bus
1 /dev/b1553rt1l On-Chip Bus
2 /dev/b1553rt2 On-Chip Bus

An example of an RTEMS open call is shown below.
fd = open("/dev/b1l553rt 0", O RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set asindicated in Table 26.3.

Table 26.3. Open[errno] values.

Errno Description
ENODEV Illegal device name or not available
EBUSY Device aready opened

26.2.4. Closing the device

The deviceis closed using the close call. An exampleis shown below.
res = close(fd)

Close always returns 0 (success) for the rt driver.
26.2.5. 1/0 Control interface

Changing the behaviour of thedriver for adeviceisdoneviathe standard system call ioctl. Most operating systems
support at least two argumentstoioctl, thefirst being an integer which selectsioct! function and secondly a pointer
to data that may be interpreted uniquely for each function. A typical ioctl call definition:

int ioctl(int fd, int cmd, void *arg);

Thereturn value is 0 on success and -1 on failure and the global [errno] variable is set accordingly.

All supported commands and their data structures are defined in the RT driver's header fileb1553rt . h.
26.2.5.1. Data structures

26.2.5.1.1. Remote Terminal operating mode

The structure below is used for all received events as well asto put datain the transmit buffer.

struct rt_msg {
unsi gned short mw
unsi gned short timne;
unsi gned short data[32];
unsi gned short desc;

I
Table 26.4. [rt_msg] member descriptions.

M ember Description

miw Message Information Word.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 189

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

M ember Description

Bit(s) Description

15-11 Word count / mode code - For sub addresses thisis the number of received words.
For mode codes it is the receive/transmit mode code.

10 -
A/B - 1if message receive on bus A, O if received on bus B.
reserved
ME - 1if an error was encountered during message processing. Bit 4-0 gives the
details of the error.

6-5 -

4 ILL - 1if received command isillegalized.

3 reserved

2 reserved

1 PRTY - 1if the RT detected a parity error in the received data.

0 MAN - 1 if aManchester decoding error was detected during data reception.
time Time Tag - Contains the value of the internal timer register when the message was received.
data An array of 32 16 bit words. The word count specifies how many data words that are valid. For

receive mode codes with data the first dataword is valid.
desc Bit 6-0 is the descriptor used. Bit 15 indicates software buffer overrun when set, the messages

was not read out in time which lead to the driver needed to skip at least one received message.

The last variable in the struct rt_msg shows which descriptor (i.e rx subaddress, tx subaddress, rx mode code or
tx mode code) that the message was for. They are defined as shown in the table bel ow:

Table 26.5. Descriptor table

Descriptor |Description

0 Reserved for RX mode codes
1-30 Receive subaddress 1-30

31 Reserved for RX mode codes
32 Reserved for TX mode codes
33-62 Transmit subaddress 1-30

63 Reserved for TX mode codes
64-95 Receive mode code

96-127 Transmit mode code

If there has occurred an event queue overrun bit 15 of thisvariable will be set in thefirst event read out. All events
received when the queue isfull are lost.

The RT core and driver are configured using ioctl calls. The table Table 26.7 below lists all supported ioctl calls.
RT_should be concatenated with the call number from the table to get the actual constant used in the code. Return
valuesfor al callsare 0 for success and -1 on failure. Errno is set after afailure asindicated in Table 26.6.

An example is shown below where the Remote Terminal Addressis set to one by using anioct! call:

Table 26.6. ERRNO values for ioctl calls.

ERRNO Description
EINVAL Null pointer or an out of range value was given as the argument.
ENOSY S Invalid request, now such ioctl command.
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2

190

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 26.7. ERRNO values for ioctl calls.

Call Number Description ERRNO
SET_ADDR Set Remote Terminal address
SET BCE Enable/disable broadcast

SET VECTORW Set VECTOR WORD register in RT core
SET_EXTMDATA Set/Clear EXTMDATA bit in RT core

RX_BLOCK Set blocking/non-blocking mode for read calls

CLR_STATUS Reset status flag

GET_STATUS Read status flag EINVAL
SET_EVENTID Set event id used to signal detected errors with

All ioctl requests takes as parameter the address to [an unsigned int] where data will be read from or written to
depending on the request.

26.2.6.1. RT_SET_ADDR

Sets the remote address for the RT. 0 - 30 if broadcasts enabled, O - 31 otherwise.
26.2.6.2. RT_SET_BCE

Enabl e/disable broadcasts. 1 enables them, O disables.

26.2.6.3. RT_SET_VECTORW

Set the vector word register in the RT core. This might not have an effect depending on how the RT core register
have been set up.

26.2.6.4. RT_RX_BLOCK
Set blocking/non blocking mode for RT read calls. Blocking is default.
26.2.6.5. RT_SET_EXTMDATA

Set or clear the EXTMDATA bit of the RT core. The input is a pointer to ainteger which determines the EXTM-
DATA hit.

26.2.6.6. RT_SET _STATUS
Clears status bit mask. No input is needed it always succeeds.
26.2.6.7. RT_GET_STATUS

Reads the status bit mask. The status bit mask is modified when an error interrupt isreceived. Thisioctl command
can be used to poll the error status by setting the argument to an unsi gned i nt pointer.

Table 26.8. Satus bit mask

Bit(s) Description

31-16 The last descriptor that caused an error. Is not set for hardware errors.

RT_DMAF_IRQ DMA Fail, AHB error from AMBA wrapper or Memory failure indicated by the RT
Core.

RT_MERR_IRQ Message Error

RT_ILLCMD_IRQ [llegal Command

26.2.6.8. RT_SET_EVENTID

Setsthe event id to an event id external to the driver. It is possible to stop the event signalling by setting the event
id to zero.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 191

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

When the driver notifies the user (using the event id) the bit mask that caused the interrupt is sent along as an
argument. Note that it may be different from the status mask read with RT_GET_STATUS since previous error
interrupts may have changed the status mask. Thus there is no need to clear the status mask after an event notifi-
cation if only the notification argument is read.

Seetable Table 26.8 for the description of the notification argument.
26.2.7. Remote Terminal operation

The Remote Terminal (RT) driver maintains areceive event queue. All events such as receive commands, transmit
commands, broadcasts, and mode codes are put into the event queue. Each event is described using a st r uct
rt _nmeg asdefined earlier in the data structure subsection.

The events are read of the queue using the read() call. The buffer should point to the beginning of one or severa
struct r t _nsg. The number of events that can be received is specified with the length argument. E.g:

struct rt_mnsg nsg[2];

n = read(rt_fd, nmsg, 2);

Theabove call will return the number of events actually placed in msg. If in non-blocking mode -1 will be returned
if the receive queue is empty and errno set to EBUSY. Note that it is possible also in blocking mode that not all

events specified will be received by one call since the read call will cease to block as soon as there is one event
available.

What kind of event that was received can be determined by looking at the [desc] member of art _nsg. It should
be interpreted according to table 8. How the rest of the fields should be interpreted depends on what kind of event
it was, e.g if the event was areception to subaddress 1 to 30 the word count field in the message information word
gives the number of received words and the data array contains the received data words.

To place data in the transmit sub addressesthewr i t e() call is used. The buffer should point to the beginning
of onestruct rt_msg. The number of messagesis specified with the length argument, it must be specified
to one. E.g:

struct rt_nsg nsg;

meg.desc = 33; /* transmt for subaddress 1 */

msg. mw = (16 << 11); /* 16 words */
meg. data[0] = 0x1234;

nmeg. dat a[15] = OxAABB;
n=wite(rt_fd, nmsg, 1);

Regardless of the blocking mode the message will be copied directly into the RT DMA area and the write call
will return directly.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 192

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 27. GRCAN CAN driver

27.1. Introduction

The RTEMS GRCAN driver is accessed with afunction based interface defined by the header filegr can. h and
this document.

The GRCAN driver requiresthe RTEMS Driver Manager.

27.1.1. Driver registration

The registration of the driver is crucia for threads and processes to be able to access the driver. The driver is
called from the driver manager to handle detected GRCAN hardware. In order for the driver manager to unite the

GRCAN driver with the GRCAN hardware one must register the driver to the driver manager. This process is
described in the driver manager chapter.

27.1.2. Driver resource configuration
The driver can be configured using driver resources as described in the driver manager chapter. Below is a de-
scription of configurable driver parameters. The driver parameters are unique to a CAN device. Each parameters

is optional and overrides the default value.

Table 27.1. GRCAN driver parameter description

Name Type Parameter description

txBufSize INT Length of TX DMA area. Must be a multiple of 64 bytes, four messages.
rxBufSize INT Length of RX DMA area. Must be a multiple of 64 bytes, four messages.
txBufAdr INT Custom TX DMA area address. See note below.

rxBufAdr INT Custom RX DMA area address. See note below.

27.1.2.1. Custom DMA area parameters

The DMA area can be configured to be located at a custom address. The standard configuration is to leave it up
to the driver to do dynamic allocation of the areas. However in some cases it may be required to locate the DMA
area on a custom location, the driver will not allocate memory but will assume that enough memory is available
and that the alignment needs of the core on the address given is fulfilled.

For some systemsit may be convenient to give the addresses as seen by the CAN core. This can be done by setting
the LSB bit in the address to one. For example a GR- RASTA-10 board with a CAN core doesn't read from the
same address as the CPU in order to access the same data. This is dependent on the PCl mappings. Trandation
between CPU and CAN addresses must be done. The CAN driver automatically trand ates the required addresses.
This requires the bus driver, in this case the GR-RASTA-1O driver, to set up translation addresses correctly.

27.2. User Interface
This section covers how the driver can be interfaced to an application to control the GRCAN hardware.

Controlling the driver and device is done with functions provided by the driver prefixed with gr can_. All driver
functions take a device handle returned by gr can_open as the first parameter. All supported commands and
their data structures are defined in the CAN driver's header filegr can. h.

27.2.1. Opening and closing device

A GRCAN device must first be opened before any operations can be performed using the driver. The number of
devicesregistered to thedriver can beretrieved usinggr can_dev_count . A particular device can be opened by
index using gr can_open, opened by nameusing gr can_open_by_name and closed using gr can_cl ose.
The functions are described below.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 193

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

An opened device can not be reopened unless the device is closed first. When opening a device the device is
marked opened by the driver. This procedure isthread-safe by protecting from other threads by using the GRCAN
driver's semaphore lock. The semaphore is used by all GRCAN devices on device opening and closing.

The example below printsthe number of GRCAN devicesto screen then opens and closesthefirst GRCAN device
present in the system.

int print_grcan_devices()
{
voi d *devi ce;
int count, options, clkdiv;

count = grcan_dev_count();
printf ("% GRCAN device(s) present\n", count);

devi ce = grcan_open(0);
if (!device)
return -1; /* Failure */

grcan_cl ose(device);

return 0; /* success */

}

Table 27.2. gr can_dev_count function declaration

Proto |int grcan_dev_count (voi d)
About |Retrieve number of GRCAN devices registered to the driver.
Return |int. Number of GRCAN devices registered in system, zero if none.

Table 27.3. gr can_open function declaration

Proto |void *grcan_open(int dev_no)

About |OpensaGRCAN device. The GRCAN deviceisidentified by index. The returned valueis used asin-
put argument to all functions operating on the device.

Param |dev_no [IN] Integer

Deviceidentification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
by gr can_dev_count .

Return |Pointer. Status and driver'sinternal device identification.

NULL Indicates failure to open device. Failsif device semaphore fails or device already is
open.

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which GRCAN device.

Notes |May blocking until other GRCAN device operations complete.

Table 27.4. gr can_open_by_nane function declaration

Proto |void *grcan_open_by nane(char *name, int *dev_no)

About |OpensaGRCAN device. The GRCAN deviceisidentified by a string. This function finds the device
index and then callsgr can_open(i ndex) . Thereturned value is used as input argument to all
functions operating on the device.

Param |nane [IN] Pointer
Device name to open. For example gr canO.
Param |dev_no [OUT] Pointer

Device number matching name. Will be set if deviceisfound anddev_no ! = NULL.
Return |Pointer. Status and driver'sinternal device identification.
NULL Indicates failure to open device. Failsif device semaphore fails or device already is
open.
Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which GRCAN device.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 194

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

’ Notes ‘ May blocking until other GRCAN device operations complete. ’

Table 27.5. gr can_cl ose function declaration

Proto |int grcan_cl ose(void *d)

About |Closes apreviously opened device.
Param |d [IN] pointer
Deviceidentifier. Returned from gr can_open.

Return |int. Thisfunction always returns O (success)

27.2.2. Operation mode

Thedriver always operatesin one of four modes: STATE_STARTED, STATE_STOPPED, STATE_BUSOFF or
STATE_AHBERR. In STATE_STOPPED mode, the DMA is disabled and the user is allowed to configure the
device and driver. In STATE_STARTED mode, the receive and transmit DMA can be active and only alimited
number of configuration operations are possible.

Thedriver entersSTATE_BUSOFF modeif abus-off conditionisdetected and STATE_AHBERR if an AHB error
is caused by the GRCAN DMA. When any of these two modes are entered, the user should call gr can_st op()
followd by gr can_st art () to put thedriverin STATE_STARTED again.

Transitions between started and stopped mode are normally caused by the users interaction with the driver API
functions. In somesituations, such CAN bus-off or DMA AHB error condition, thedriver itself makesthetransition
from started to stopped.

27.2.2.1. Starting and stopping

Thegr can_start () function placesthe CAN corein STATE_STARTED mode. Configuration set by previous
driver function calls are committed to hardware before started mode enters. It is necessary to enter started modeto
be able to receive and transmit messages on the CAN bus. Thegr can_st ar t () function call will fail if receive
or transmit buffers are not correctly alocated or if the CAN coreisaready isin started mode.

Thefunctiongr can_st op() makesthe CAN coreleavethe previousmode and enter STATE_STOPPED mode.
After caling this function, further callsto grcan_read() or grcan_write() will fail. It is necessary to
enter stopped mode to change operating parameters of the CAN core such as the baud rate and for the driver
to safely change configuration such as FIFO buffer lengths. The function will fail if the CAN core already isin
stopped mode.

Functiongr can_get _st at e() isused to determine the driver operation mode.

Table 27.6. gr can_get _st at e function declaration

Proto |int grcan_get state(void *d)
About |Get current GRCAN software state

If STATE_BUSOFF or STATE_AHBERRis returned then the function gr can_st op() shal be
called before continue using the driver.

Param |d [IN] Pointer
Deviceidentifier. Returned by gr can_open.
Return |int. Status

Value Description
STATE_STOPPED Stopped
STATE_STARTED Started
STATE_BUSOFF Bus-off has been detected
STATE_AHBERR AHB error has been detected
GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB error.
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 195

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

grcan_fl ush() blocksthe caling thread until all messages in the driver's buffers has been processed by the
CAN hardware. This function may fail if the mode is changed, the driver is closed, or an error is detected by
hardware. Non-zero is returned in such case.

27.2.3. Configuration

The CAN core and driver are configured using function calls. Return values for most functions are O for success
and non-zero on failure.

The function gr can_set _si | ent () setsthe SI LENT bit in the configuration register of the CAN hardware
the next time the driver is started. If the SI LENT bit is set the CAN core operates in listen only mode where
grcan_wite() calsfal andgr can_read() callsproceed. Thisfunction failsand returnsnonzero if called
in started mode.

grcan_set abort () setsthe ABORT bit inthe configuration register of the CAN hardware. The ABORT bhitis
used to cause the hardwareto stop the receiver and transmitter when an AMBA AHB error isdetected by hardware.
This function fails and returns nonzero if called in started mode.

27.2.3.1. Channel selection

grcan_set _sel ection() selects active channel used during communication. The function takes a second
argument, a pointer to a grcan_selection data structure described below. This function fails and returns nonzero
if caled in started mode.

The grcan_selection data structure is used to select active channel. Each channel has one transceiver that can be
activated or deactivated using this data structure. The hardware can however be configured active low or active
high making it impossiblefor the driver to know how to set the configuration register in order to select apredefined
channel.
struct grcan_sel ection {
int selection;

int enabl e0;
int enablel;

s

Table 27.7. grcan_selection member description

M ember Description

selection Select receiver input and transmitter output.
enable0 Set value of output 1 enable

enablel Set value of output 1 enable

27.2.3.2. Timing parameters

grcan_set _btrs() setsthetiming registers manually. See the CAN hardware documentation for a detailed
description of the timing parameters. The function takes a pointer to a grcan_timing data structure containing all
available timing parameters. The grcan_timing data structure is described below. This function fails and returns
nonzero if called in started mode.

The grcan_timing data structure is used when setting GRCAN timing configuration registers manually. The pa-
rameters are used when hardware generates the baud rate and sampling points.

struct grcan_timng {
unsi gned char scal er;
unsi gned char psi;
unsi gned char ps2;
unsigned int rsj;
unsi gned char bpr;

s
Table 27.8. grcan_timing member description

M ember Description
scaler Prescaler
psl Phase segment 1
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 196

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

M ember Description

ps2 Phase segment 2

ry Resynchronization jumps, 1..4

bpr Value Baud rate
0 system clock / (scaler+1) / 1
1 system clock / (scaler+1) / 2
2 system clock / (scaler+1) / 4
3 system clock / (scaler+1) / 8

27.2.3.3. Blocking mode

grcan_set rxbl ock() changesthebehaviour of gr can_r ead() callsto blocking or non-blocking mode.
When in blocking mode the calling thread will be blocked until there is data available to read. It may return
after any number of CAN messages have been read. Use gr can_set _r xconpl et e() to control the driver's
blocking mode behaviour further. For non-blocking mode the calling thread will never be blocked returning azero
length of data. gr can_set _r xconpl et e() has no effect in non-blocking mode. This function can be called
in any mode and never fails.

grcan_set _t xbl ock() changesthebehaviour of gr can_wr i t e() callstoblocking or non-blocking mode.
When in blocking mode the calling thread will be blocked until at |east one message can be written to the driver's
circular buffer. It may return after any number of messages hasbeenwritten. Usegr can_set _t xconpl et e()
to control the driver's blocking mode behaviour further. For non-blocking mode the calling thread will never be
blocked which may resultingr can_wr i t e() returning azero length when the driver'sinternal buffersarefull.
grcan_set _t xconpl et e() has no effect in non-blocking mode. This function can be called in any mode
and never fails.

grcan_set _t xconpl et e() disablesor enablesgr can_writ e() toblock until all messages specified by
the caller are copied to driver'sinternal buffers before returning. Thisoptionisonly relevant in TX blocking mode.
This function can be called in any mode and never fails.

grcan_set _rxconpl et e() disables or enablesgr can_r ead() to block until all messages specified by
the caller are read into the user specified buffer. This optionisonly relevant in RX blocking mode. This function
can be called in any mode and never fails.

27.2.4. Receive filters
27.2.4.1. Data structures

Thegrcan_filter structureis used when changing acceptancefilter of the CAN receiver and the SYNC Rx/Tx Filter
usingthefunctionsgr can_set _afilter andgrcan_set sfilter.Thisdatastructureisused differently
for different driver functions.

struct grcan_filter {
unsi gned | ong | ong mask;
unsi gned | ong | ong code;

b

Table 27.9. grcan_filter member description

Member Description
mask Selects what bitsin code will be used or not. A set bit isinterpreted as don't care.
code Specifies the pattern to match, only the unmasked bits are used in the filter.

27.2.4.2. Acceptance filter

grcan_set _afilter () setsacceptance filter which is matched for each meassge received. Let the second
argument point to a grcan_filter data structure or NULL to disable filtering and let all messages pass the filter.
M essages matching the condition below are passed and possible to read from user space:

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 197

https://www.frontgrade.com/gaisler

FRONTGRADE

(id XOR code) AND nmask = 0

grcan_set _afilter() canbecalledinany modeand never fails.
27.2.4.3. Sync filter

grcan_set _sfilter () setsRx/Tx SYNC filter which ismatched by receiver for each message received. Let
the second argument point to a grcan_filter data structure or NULL to disable filtering and let all messages pass
the filter. Messages matching the condition below are treated as SY NC messages:

(id XOR code) AND mask = 0

grcan_set _sfilter() canbecalledinany modeand never fails.
27.2.5. Driver statistics

grcan_get _st at s() copiesthedriver'sinternal countersto auser provided dataarea. The format of the data
written is described below (grcan_stats). The function will fail if the user pointer isSNULL.

grcan_clr_stats() clearsthedriver's collected statistics. This function never fails.

The grcan_stats data structure contains various statistics gathered by the CAN hardware.

struct grcan_stats {

unsi gned int passive_cnt;
unsi gned int overrun_cnt;
unsigned int rxsync_cnt;
unsigned int txsync_cnt;
unsigned int ints;

b

Table 27.10. grcan_stats member description

M ember Description

passive cnt Number of error passive mode detected.

overrun_cnt Number of reception over runs.

rxsync_cnt Number of received SY NC messages (matching SY NC filter)
txsync_cnt Number of transmitted SY NC messages (matching SY NC filter)
txloss_cnt Number of times transmission arbitration has been lost
ahberr_cnt Number of DMA AHB errors

ints Number of times the interrupt handler has been invoked.
busoff_cnt Number of bus-off conditions

27.2.6. Device status

grcan_get status() storesthe current status of the CAN core to the location pointed to by the second
argument. This function istypically used to determine the error state of the CAN core. The 32-bit status word can
be matched against the bit masks in the table below.

Table 27.11. Device status word bit masks

M ask Description

GRCAN_STAT _PASS Error-passive condition
GRCAN_STAT_OFF Bus-off condition
GRCAN_STAT_OR Overrun during reception
GRCAN_STAT_AHBERR AMBA AHB error
GRCAN_STAT_ACTIVE Transmission ongoing
GRCAN_STAT _RXERRCNT Reception error counter, 8-hit
GRCAN_STAT_TXERRCNT Transmission error counter, 8-bit

grcan_get st at us() failsif the user pointer isNULL.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 198

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

27.2.7. CAN bus transfers
27.2.7.1. Data structures

The CANMsg type is used when transmitting and receiving CAN messages. The structure describes the drivers
view of a CAN message. See the transmission and reception section for more information.

typedef struct {
char extended;
char rtr;
char unused,;
unsi gned char |en;
unsi gned char data[8];
unsigned int id;

} CANMsg;

Table 27.12. CANMsg member description

M ember Description

extended Indicates whether the CAN message has 29 or 11 bits ID tag. Extended or Stan-
dard frame.

rtr Remote Transmission Request bit.

len Length of dat a.

data CAN message data, dat a[0] isthe most significant byte — the first byte.

id The ID field of the CAN message. An extended frame has 29 bits whereas a stan-
dard frame has only 11-bits. The most significant bits are not used.

27.2.7.2. Transmission

Messages are transmitted using thegr can_wr i t e() function. Itispossibleto transmit multiple CAN messages
in one call. An example transmission is shown below:

result = grcan_wite(d, & x_nsgs[0], msgcnt));

On successthe number of CAN messages transmitted isreturned and on failurea GRCAN_RET _ valueisreturned.
The parameter t x_nsgs points to the beginning of a CANMsg structure which includes data, length and trans-
mission parameters. The last function parameter specifies the total number of CAN messages to be transmitted.

The transmit operation can be configured to block when the driver software FIFO is full. In non-blocking mode,
grcan_write() will returnimmediately either with GRCAN_RET _TI MEQUT indicating that no messageswere
scheduled or the number CAN messages schedul ed.

Each message has an individual set of parameters controlled by the CANMsg type.

NOTE: The user is responsible for checking the number of messages actually sent when in non-blocking mode.
A 3 message transmission requests may end up in only 2 transmitted messages for example.

Table27.13. gr can_wr i t e function declaration

Proto |int grcan_wite(void *d, CANMsg *neg, sSize_t count)

About | Transmit CAN messages

Multiple CAN messages can be transmitted in one call.
Param |d [IN] Pointer

Deviceidentifier. Returned by gr can_open.

Param |nsg [IN] Pointer

First CAN messages to transmit

Param |count [IN] Integer
Total number of CAN messages to transmit.
Return |int. Status

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 199

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Value Description

>=0 Number of CAN messages transmitted. This can be less than the
count parameter.

GRCAN_RET_INVARG Invalid argument: count parameter islessthan one or the msg pa
rameter isSNULL.

GRCAN_RET_NOTSTARTED |Driver is not in started mode or device is configured as silent. Noth-

ing done.

GRCAN_RET_TIMEOUT Timeout in non-blocking mode.

GRCAN_RET_BUSOFF A write was interrupted by a bus-off error. Device has |eft started
mode.

GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB error.

27.2.7.3. Reception

CAN messages are received using thegr can_r ead() function. An example is shown below:

enum { NUM MSG = 5 };
CANMsg rx_msgs[NUM_MSQ ;

len = grcan_read(d, rx_msgs, NUM MSG);
The requested number of CAN messages to be read is given in the third argument and messages are stored in
rXx_mnsegs.

The actual number of CAN messages received is returned by the function on success. The function will fail and
return a GRCAN_RET_ value if a NULL buffer pointer is passed, buffer length isinvalid or if the CAN coreis
not started.

The blocking behaviour can be set using functions described in Section 27.2.3. In blocking mode the function will
block until at least one message has been received. In non-blocking mode, the function will return immediately
and if no message was available GRCAN_RET_TI MEQUT is returned.

Table 27.14. gr can_r ead function declaration

Proto |int grcan_read(void *d, CANMsg *nsg, size_t count)

About |Receive CAN messages

Multiple CAN messages can be received in one call.
Param |d [IN] Pointer

Deviceidentifier. Returned by gr can_open.
Param |msg [IN] Pointer

Buffer for received messages

Param |count [IN] Integer
Number of CAN messagesto receive.
Return |int. Status

Value Description

>=0 Number of CAN messages received. This can be less than the
count parameter.

GRCAN_RET_INVARG Invalid argument: count parameter islessthan one or the msg pa-
rameter iSNULL.

GRCAN_RET_NOTSTARTED |Driver is not in started mode. Nothing done.
GRCAN_RET_TIMEOUT Timeout in non-blocking mode (no space available in driver receive

FIFO).
GRCAN_RET_BUSOFF A read was interrupted by a bus-off error. Device has left started
mode.
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 200

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

] \ GRCAN_RET_AHBERR \ Similar to BUSOFF, but was caused by AHB Error.]

27.2.7.4. Bus-off recovery

If either grcan_write() orgrcan_read() returns GRCAN_RET_ BUSOFF, then a bus-off condition was
detected and the driver has entered STATE_BUSOFF mode. To continue using the drirver, the user shall call
grcan_st op() followed by gr can_st art () to enter started mode. It must be ensured that no other task is
calling the driver when recovering with gr can_start () .

27.2.7.5. AHB error recovery

Similar to the bus-off condition, an AHB error condition can be caused by the GRCAN DMA. The driver will
enter STATE_AHBERR and the recovery procedure is the same as for bus-off.

27.2.8. Multitasking support

The functionsgrcan_write() andgrcan_read() can be caled on the same device handle concurrently
from different tasks, potentially executing on different processorsin an SMP system.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 201

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 28. CAN_OC GRLIB Opencores CAN driver

28.1. Introduction

This document isintended as an aid in getting started developing with GRLIB wrapper for Opencores CAN core
using the driver described in this document. It briefly takes the reader through some of the most important stepsin
using the driver such as setting up a connection, configuring the driver, reading and writing CAN messages. The
reader is assumed to be well acquainted with CAN and RTEMS.

The OC_CAN driver require the RTEMS Driver Manager.
28.1.1. CAN Hardware

The OC_CAN core can operate in different modes providing the same register interfaces as other well known
CAN cores. The OC_CAN driver supports PeliCAN mode only.

28.1.2. Software Driver

The driver provides means for processes and threads to send and receive messages. Errors can be detected by
polling the status flags of the driver. Bus off errors cancels the ongoing transfersto let the caller handle the error.

The driver supports filtering received messages id fields by means of acceptance filters, runtime timing register
calculation given a baud rate. However not al baud rates may be available for a given system frequency. The
system frequency is hard coded and must be set in the driver.

28.1.3. Examples

Thereisasimple example available, it illustrates how to set up a connection, reading and writing messages using
the OC_CAN driver. It is made up of two tasks communicating with each other through two OC_CAN devices.
To be ableto run the example one must have two OC_CAN devices externally connected together on the different
or the same board.

The example is part of the Gaisler RTEMS distribution, it can be found under / opt / rt ens- 5/ sr c/ exam
pl es/ sanpl es/rtenms-occan.c, occan_lib.c and occan_lib.h .

The example can be built by running:

cd /opt/rtems-4.10/src/exanpl es/ sanpl es
meke clean rtens-occan rtenms-occan_tXx rtems-occan_rx

Where rtems-occan is intended for boards with two OC_CAN cores and rtems-occan_* is for set ups including
two boards with one OC_CAN core each.

28.2. User interface

The RTEMSOC_CAN driver supportsthe standard accessesto file descriptors such asread, writeand ioctl. User
applications include the occan driver's header file which contains definitions of all necessary data structures and
bit masks used when accessing the driver. An example application using the driver is provided in the examples
directory.

28.2.1. Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver using standard
means, such as open. The RTEMS 1/O driver registration is performed automatically by the driver when CAN
hardwareisfound for thefirst time. Thedriver iscalled from the driver manager to handle detected CAN hardware.
In order for the driver manager to unite the CAN driver with the CAN hardware one must register the driver to
the driver manager. This process is described in the driver manager chapter.

28.2.2. Driver resource configuration

This driver does not have any configurable resources. All configuration can be made though the ioctl interface.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 202

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

28.2.3. Opening the device

Opening the device enables the user to access the hardware of a certain OC_CAN device. The driver is used for
all OC_CAN devices available. The devices is separated by assigning each device a unique name and a number
called [minor]. The name is passed during the opening of the driver. The first 3 names are printed out:

Table 28.1. Device number to device name conversion.

Device number Filename name
0 /dev/occan0
1 /dev/occanl
2 /dev/occan2

An example of an RTEMS open call is shown below.
fd = open("/dev/occan0", O RDWR)

A file descriptor isreturned on success and -1 otherwise. In the latter case errno is set asindicated in Table 28.1.

Table 28.2. Open ERRNO values.

ERRNO Description
ENODEV |lllega device name or not available
EBUSY Device already opened

ENOMEM | Driver failed to allocate necessary mem-
ory.

28.2.4. Closing the device

The deviceis closed using the close call. An exampleis shown below.
res = close(fd)

Close always returns 0 (success) for the occan driver.
28.2.5. 1/0 Control interface

Changing the behaviour of thedriver for adeviceisdoneviathe standard system call ioctl. Most operating systems
support at least two argumentstoioctl, thefirst being an integer which selectsioctl function and secondly a pointer
to data that may be interpreted uniquely for each function. A typical ioctl call definition:

int ioctl(int fd, int cmd, void *arg);
Thereturn value is 0 on success and -1 on failure and the global errno variable is set accordingly.
All supported commands and their data structures are defined in the OC_CAN driver's header fileoccan. h. In

functionswhere only one argument isneeded the pointer (void * arg) may be converted to aninteger and interpreted
directly, thus simplifying the code.

28.2.5.1. Data structures

The occan_&filter struct is used when changing acceptance filter of the OC_CAN receiver.

struct occan_afilter {
unsi gned int code[4];
unsi gned i nt mask[4];
int single_node;

h

Table 28.3. occan_afilter member descriptions.

M ember Description
code Specifies the pattern to match, only the unmasked bits are used in the filter.
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 203

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

M ember Description
mask Selects what bitsin code will be used or not. A set bit isinterpreted as don't care.
single_mode Set to none-zero for asingle filter - single filter mode, zero selects dual filter mode.

The CANMsg struct is used when reading and writing messages. The structure describes the driver's view of a
CAN message. The structure is used for writing and reading. The sshot fields lacks meaning during reading and
should be ignored. See the transmission and reception section for more information.

typedef struct {
char extended;
char rtr;
char sshot;
unsi gned char |en;
unsi gned char data[8];
unsigned int id;

} CANMsg;

Table 28.4. CANMsg member descriptions.

M ember Description

extended Indicates whether message has 29 or 11 bits ID tag. Extended or Standard frame.

rtr Remote Transmission Request bit.

sshot Single Shot. Setting this bit will make the hardware skip resending the message on trans-
mission error.

len Length of data.

data Message data, data] 0] is the most significant byte — the first byte.

Id The ID field of the message. An extended frame has 29 bits whereas a standard frame has
only 11-bits. The most significant bits are not used.

The occan_stats struct contains various statistics gathered from the OC_CAN hardware.

typedef struct {
/[* tx/rx stats */
unsi gned int rx_mnsgs;
unsi gned int tx_mnsgs;

/* Error Interrupt counters */
unsi gned int err_warn;
unsi gned int err_dovr;
unsigned int err_errp;
unsigned int err_arb;
unsi gned int err_bus;

/* ALC 4-0 */
unsi gned int err_arb_bitnuni32];

/* ECC 7-6 */

unsigned int err_bus_bit; /* Bit error */
unsigned int err_bus_form /* FormError */
unsigned int err_bus_stuff; /* Stuff Error */
unsigned int err_bus_other; /* OQther Error */

/* ECC 5 */
unsi gned int err_bus_rx;
unsi gned int err_bus_tx;

/* ECC 4:0 */
unsigned int err_bus_segs[32];

/* total nunber of interrupts */
unsigned int ints;

/* software nonitoring hw errors */

unsigned int tx_buf_error;
} occan_stats;

Table 28.5. occan_stats member descriptions.

M ember Description
rx_msgs Number of CAN messages received.
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 204

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

M ember Description

tx_msgs Number of CAN messages transmitted.

err_warn Number of error warning interrupts.

err_dovr Number of data overrun interrupts.

err_errp Number of error passive interrupts.

err_arb Number of times arbitration has been lost.

err_bus Number of bus errors interrupts.

err_arb_bitnum Array of counters, err_arb_bitnum[index] is incremented when arbitration islost at bit in-
dex.

err_bus hit Number of bus errors that was caused by abit error.

err_bus form Number of bus errors that was caused by aform error.

err_bus_stuff Number of bus errors that was caused by a stuff error.

err_bus other Number of bus errors that was not caused by abit, form or stuff error.

err_bus tx Number of bus errors detected that was due to transmission.

err_bus rx Number of bus errors detected that was due to reception.

err_bus segs Array of 32 countersthat can be used to see where the frame transmission often fails. See

hardware documentation and header file for details on how to interpret the counters.

ints Number of times the interrupt handler has been invoked.

28.2.5.2. Configuration

The OC_CAN core and driver are configured using ioctl calls. The Table 28.4 below lists all supportedioctl calls.
OCCAN_IOC _ should be concatenated with the call number from the table to get the actual constant used in the
code. Return values for al calls are 0 for success and -1 on failure. Errno is set after a failure as indicated in
Table 28.3.

An exampleis shown bel ow where the receive and transmit buffers are set to 32 respective 8 by using anioctl call:

result = ioctl(fd, OCCAN_|OC SET_BUFLEN, (8<<16) | 32);

Table 28.6. ERRNO values for ioctlcalls.

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

EBUSY The CAN hardware is not in the correct state. Many ioctl calls need the CAN de-
vice to bein reset mode. One can switch state by calling START or STOP.

ENOMEM Not enough memory to complete operation. This may cause other ioctl commands
to fail.

Table 28.7. ioctl calls supported by the OC_CAN driver.

Call Number Call Mode Description
START Reset Exit reset mode, brings up the link. Enablesread and write.
STOP Running Exit operating mode, enter reset mode. Most of the settings
can only be set when in reset mode.
GET_STATS Don't care Get Stats.
GET_STATUS Don't care Get status of device. Bus off can be read out.
GET_SPEED Reset Set baud rate.
GET_BLK_MODE Don't Care Set blocking or non-blocking mode for read and write.
GET_BUFLEN Reset Set receive and transmit buffer length.
GET_BTRS Reset Set timing registers manually.
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 205

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

28.2.5.2.1. START

Thisioctl command placesthe CAN corein operating mode. Settings previously set by other ioctl commands are
written to hardware just before leaving reset mode. It is necessary to enter operating mode to be able to read or
write messages on the CAN bus.

The command will fail if receive or transmit buffers are not correctly allocated or if the CAN core already isin
operating mode.

28.2.5.2.2. STOP

This call makes the CAN core leave operating mode and enter reset mode. After calling STOP further calls to
read and writewill result in errors.

It is necessary to enter reset mode to change operating parameters of the CAN core such as the baud rate and for
the driver to safely change configuration such as FIFO buffer lengths.

The command will fail if the CAN core already isin reset mode.
28.2.5.2.3. GET_STATS

Thiscall copiesthedriver'sinternal countersto auser provided dataarea. Theformat of the datawrittenisdescribed
in the data structure subsection. Seethe occan_st at s data structure.

The call will fail if the pointer to the dataisinvalid.
28.2.5.2.4. GET_STATUS

This call storesthe current status of the CAN core to the address pointed to by the argument given toioctl. This
call istypicaly used to determine the error state of the CAN core. The 4 byte status bit mask can be interpreted
asin Table 28.2 above.

Table 28.8. Satus bit mask.

Mask Description

OCCAN_STATUS RESET Coreisin reset mode
OCCAN_STATUS OVERRUN Dataoverrun

OCCAN_STATUS WARN Has passed the error warning limit (96)

OCCAN_STATUS ERR_PASSIVE Has passed the error Passive limit (127)
OCCAN_STATUS ERR_BUSOFF Coreisin reset mode due to a bus off (255)

Thiscall never fail.
28.2.5.2.5. SET_SPEED

The SET_SPEED ioctl call is used to set the baud rate of the CAN bus. The timing register values are calculated
for the given baud rate. The baud rate is given in Hertz. For the baud rate calculations to function properly one
must define SYS FREQ to the system frequency. It islocated in the driver sourceoccan. c.

If the timing register values could not be calculated -1 is returned and the errno valueis set to EINVAL.
28.2.5.2.6. SET_BTRS

This call setsthe timing registers manually. It is encouraged to use this function over the SET_SPEED.
Thiscal fail if CAN coreisin operating mode, in that case errno will be set to EBUSY .

28.2.5.2.7. SET_BLK_MODE

Thiscall setsblocking modefor receiveand transmit operations, i.e. read and write. Input isabit mask as described
in the table below.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 206

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 28.9. SET BLK_MODE ioctl arguments

Bit number Description

OCCAN_BLK_MODE_RX Set this bit to make read block when no messages can be read.

OCCAN_BLK_MODE_TX Set this bit to make write block until all messages has been sent or put info
software fifo.

This cal never fail.
28.2.5.2.8. SET_BUFLEN

This call setsthe buffer length of the receive and transmit software FIFOs. To set the FIFO length the core needs
to bein reset mode. In the table below the input to the ioctl/ command is described.

Table 28.10. SET_BLK_MODE ioctl arguments

M ask Description
0x0000ffff Receive buffer length in number of CANVs g structures.
Oxffff0000 Transmit buffer length in number of CANMs g structures.

Errno will be set to ENOMEM when the driver was not able to get the requested memory amount. EBUSY is set
when the core isin operating mode.

28.2.5.2.9. Transmission

Transmitting messages are done with thewritecall. It is possible to write multiple packetsin one call. An example
of awrite call is shown below:

result = wite(fd, & x_nsgs[0], sizeof(CANMsg)*nsgcnt))

On success the number of transmitted bytes is returned and -1 on failure. Errno is also set in the latter case.
Tx_msgs points to the beginning of the CANMsg structure which includes id, type of message, data and data
length. The last parameter sets the number of CAN messages that will be transmitted it must be a multiple of
CANMgg structure size.

The call will fail if the user tries to send more bytes than is allocated for a single packet (this can be changed with
the SET_PACKETSIZE ioctl call) or if aNULL pointer is passed.

The write call can be configured to block when the software fifo is full. In non-blocking mode write will immedi-
ately return either return -1 indicating that no messages was written or the total number of bytes written (always
amultiple of CANMsg structure size). Note that 3 message write request may end up in only 2 written, the caller
is responsible to check the number of messages actually written in non-blocking mode.

If no resources are available in non-blocking mode the call will return with an error. The errno variable is set
according to the table given below.

Table 28.11. ERRNO values for write

ERRNO Description

EINVAL Aninvalid argument was passed. The buffer length was less than a single CANMsg struc-
ture size.

EBUSY Thelink is not in operating mode, but in reset mode. Nothing done.

ETIMEDOUT In non-blocking mode.

EIO Calling task was woken up from blocking mode by a bus off error. The CAN core has en-
tered reset mode. Further callsto read or write will fail until theioctl command START
isissued again.

Each Message has an individual set of options controlled in the CANMsg structure. See the data structure subsec-
tion for structure member descriptions.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 207

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

28.2.6. Reception

Reception is done using the read call. An example is shown below:

CANMsg rx_mnsgs[5];
len = read(fd, rx_nsgs, sizeof(rx_nsgs));

The requested number of bytesto be read is given in the third argument. The messages will be stored in rx_msgs.
The actual number of received bytes (a multiple of sizeof(CANMsQ)) is returned by the function on success and
-1 onfailure. In the latter case errnois also set.

The CANMsg data structure is described in the data structure subsection.

The call will fail if anull pointer is passed, invalid buffer length, the CAN core isin reset mode or due to a bus
off error in blocking mode.

The blocking behaviour can be set using ioctl calls. In blocking mode the call will block until at least one packet
has been received. In non-blocking mode, the call will return immediately and if no packet was available -1 is
returned and errno set appropriately. The table below shows the different errno valuesis returned.

Table 28.12. ERRNO values for readcalls.

ERRNO Description
EINVAL AA NULL pointer was passed as the data pointer or the length wasiillegal.
EBUSY CAN coreisin reset mode. Swtich to operating mode by issuing a START ioctl
command.
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 208

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 29. SatCAN driver (SatCAN)
29.1. Introduction

This document is intended as an aid in getting started developing with the GRLIB wrapper for the SatCAN core
using the driver described in this document. It briefly takes the reader through some of the most important stepsin
using the driver such as setting up a connection, configuring the driver, reading and writing CAN messages. The
reader is assumed to be well acquainted with the operation of the SatCAN core and RTEMS.

29.1.1. SatCAN Hardware Wrapper
See the SatCAN wrapper manual.
29.1.2. Software Driver

Thedriver provides meansfor processes and threads to send and receive messages and provides callback functions
for SatCAN wrapper interrupts.

All core registers can be accessed via | nput/Output-control (ioctl) calls.
29.1.3. Examples

Thereis asimple example available, it illustrates how to set up a connection, reading and writing messages using
the SATCAN driver. It is made up of two tasks communicating with each other where one task usesthe OC_CAN
driver and the other the SatCAN driver. To be ableto run the example one must have the cores connected together.
The current example istailored for with a configuration matching GR712RC and also initializesthe CAN_MUX
RTEMS driver which is described in a separate document.

The example can be found under the samples directory and consists of the filessanpl es/ rt ens- occan. c,
occan_l i b.candoccan_lib. h.

29.2. User interface

The RTEMS SATCAN driver supports the standard accesses to file descriptors such as read, write and ioctl.
User applications should include the SATCAN driver's header file, sat can. h, which contains definitions of al
necessary data structures and defines used when accessing the driver. An example application using the driver is
provided in the samples directory.

29.2.1. Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver using standard
means, such as open. Thefunction sat can_r egi st er whose prototypeisprovidedinsat can. h isused for
registering the driver. It returns 0 on success and 1 on failure. A typical register call from the LEONS Init task:

if (satcan_register(&satcan_conf))
printf(“Sat CAN register Failed\n");

The second argument to the function is the SatCAN configuration structure. The contents of this structure is
described below:

typedef struct {
i nt nodeno;
int dps;
void (*ahb_irq_cal |l back)(void);
void (*pps_irq_call back)(void);
void (*nb_irq_call back) (void);
void (*md_irq_call back) (void);
void (*nmB_irq_call back) (void);
void (*nm2_irq_call back) (void);
void (*ml_irq_call back)(void);
void (*sync_irg_call back) (void);
void (*can_irq_cal |l back) (unsigned int fifo);
} satcan_config;

Table 29.1. Membersin satcan_config structure

M ember Description

nodeno Integer containing the writeable bits if the node number. The four least significant
bits of this member are written to the writeable part of the node number.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 209

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

M ember Description
dps Set to O if coreis DPS, set to 1 of coreisnon-DPSi.e. dave.
ahb _irq_callback Function pointer to function called when the core issues an interrupt and the wrap-

per interrupt pending register has the AHB bit set.

pps_irq_callback Function pointer to function called when the core issues an interrupt and the wrap-
per interrupt pending register has the PPS bit set.

mb5_irg_callback Function pointer to function called when the core issues an interrupt and the wrap-
per interrupt pending register has the M5 bit set.

m4_irq_callback Function pointer to function called when the core issues an interrupt and the wrap-
per interrupt pending register has the M4 bit set.

m3_irq_callback Function pointer to function called when the core issues an interrupt and the wrap-
per interrupt pending register has the M3 bit set.

m2_irq_callback Function pointer to function called when the core issues an interrupt and the wrap-
per interrupt pending register has the M2 bit set.

m1_irq_callback Function pointer to function called when the core issues an interrupt and the wrap-
per interrupt pending register hasthe M1 bit set.

sync_irq_callback Function pointer to function called when the core issues an interrupt and the wrap-
per interrupt pending register has the sync bit set.

can_irq_callback Function pointer to function called when the core issues an interrupt and the wrap-
per interrupt pending register has the can bit set.

The last callback function, can_i r g_cal | back, is called with an unsigned integer as argument. This integer
contains the value of the SatCAN FIFO register read in the interrupt handler.

Each callback function is called whenever the corresponding status bit in the wrapper interrupt pending register
is set, regardless of whether or not the interrupt is masked in the wrapper interrupt mask register. If the the user
does not want to use a callback function the corresponding member in the sat can_conf i g structure must be
set to NULL. After thecall to sat can_r egi st er (. .) hasreturned the structure can be deall ocated.

When the driver is registered the driver allocates its internal configuration structures and registers the name /
dev/ sat can with RTEMS. The SatCAN wrapper isinitialized with the node number and DPS setting specified
in the configuration structure and the core isreset. After the core has come out of reset the registers containing the
memory address of the newly allocated 2K DMA memory area are initialized.

29.2.2. Opening the device

Opening the device enables the user to access the hardware of the SatCAN device. An example of an RTEMS
open call is shown below.
fd = open("/dev/satcan", O RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set asindicated in Table 29.1.

Table 29.2. Open ERRNO values.

ERRNO Description

ENODEV Illegal device name or not available
EBUSY Device aready opened

ENOMEM Driver failed to allocate necessary memory.

When the deviceis opened the driver enablesthe AHB and CAN interruptsin the SatCAN wrapper [ogic. Interrupts
EOD1, EOD2 and CAN Ciritical areenabledinthe SatCAN FPGA core. The SatCAN FPGA coreisalso configured
to use “CAN?" interrupt for interrupt #0 (CAN_TODnN_Int_sel is set to '1") and RX together with the RX DMA
channel is enabled.

29.2.3. Closing the device

The deviceis closed using the close call. An exampleis shown below.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 210

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

res = close(fd)

When the device is closed the SatCAN wrapper and SatCAN FPGA interrupt mask registers are cleared. CAN
RX and all DMA channels are disabled. The driver's interna state is initialized to default values. Close aways
returns O (success) for the SATCAN driver.

29.2.4. Reading from the device

After the device has been successfully opened it can be accessed viacallstor ead(. . .) . Read expects apointer
to asat can_nsg structure, or list of structures, and only accepts a multiple of the size of satcan_msg as the
number of bytesto read. The sat can_nsg structure, defined in sat can. h, and a description of its members
is given below:
typedef struct {
unsi gned char header [SATCAN_HEADER Sl ZE] ;

unsi gned char payl oad[SATCAN_PAYLQOAD Sl ZE] ;
} satcan_nsg;

Table 29.3. Membersin satcan_msg structure

M ember Description

header Header of SatCAN message as described in SatCAN FPGA documentation. The default
value of the define SATCAN_HEADER_SIZE is 4.

payload Payload of SatCAN message as described in SatCAN FPGA documentation. The default
value of the define SATCAN_HEADER_SIZE is8.

The driver does not buffer received SatCAN messages but provides direct access to the SatCAN FPGA DMA
area. Therefore the caller must specify which CAN ID the message should be read from. An example call reading
amessage received with ID 0x0040 looks like:
int i, size;
sat can_msg nsg;
msg. header [0] = 0x40;
msg. header[1] = 0;
if ((size = read(fd, &mrsg, sizeof(satcan_nsg))) !=

si zeof (sat can_nsg))

printf("ERROR read() returned %\ n", size);
The driver usesthe value of msg. header [1: 0] together with the current DMA setting (2K or 8K messages)
determine where in the DMA areathe message should befetched. All elementsinthesat can_nsg structure are
overwritten with data fetched from the DMA area. This includes the initialized members msg.header[1:0] which
should keep their original valuewhenther ead(. .) cal returns. Ther ead function returns sizeof (satcan_msg)
on success and -1 on failure. In the latter case errnois also set.

Table 29.4. ERRNO values for read calls.

ERRNO Description
EINVAL A NULL pointer was passed as the data pointer or the length wasillegal.

29.2.5. Writing to the device

Transmission of messages are performed with the write call. It is possible to write one or several messagesin each
call. The driver copies the messages to be sent from the specified sat can_nsg structures to the DMA area.

A call towrite(..) has different behavior depending on the DMA mode of the driver. The DMA modeis set using
an Input/Output Control call described later in this document.

When the driver isin SATCAN_DMA_MODE_SYSTEM a cal to write(..) will block until the core signals
that it has completed DMA. When the driver isin SATCAN_DMA_MODE_USER acall to write(..) will return
immediately after the data has been placed in the DMA area. The driver will not activate any of the DMA TX
channels and start of DMA transfers are left to the user using Input/Output Control calls.

Onsuccessthewrite(..) call returns number of transmitted bytesand -1 onfailure. Errnoisalso setinthelatter case.

An example call sending a Enable Override message is shown below:

int i, ret;
sat can_nsg nsg;

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 211

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
nsg. header[0] = OxEOQ;
nsg. header[1] = 0;
nsg. header[2] = 0x81;
nsg. header[3] = OxFF;
nsg. payl oad[0] = 15;
for (i =1; i < SATCAN_PAYLOAD SI ZE; i ++)
nsg. payl oad[i] = 0;
ret = wite(fd, &rsg, sizeof(satcan_nsg));
if (ret != sizeof(satcan_nsg))
printf("Wite of override nsg failed\n");
Table 29.5. ERRNO values for write
ERRNO Description
EINVAL An invalid argument was passed. The buffer length was not equal to the satcan_msg
structure size or no DMA channel is enabled.
EIO Transmit DMA is activated. The driver requires that the write(..) call exclusively controls
the DMA TX channels.

29.2.6. I/O Control interface

Changing the behaviour of thedriver for adeviceisdoneviathe standard system call ioctl. Most operating systems
support at least two argumentstoioctl, thefirst being an integer which selectsioct! function and secondly a pointer
to data that may be interpreted uniquely for each function. A typical ioctl call definition:

int ioctl(int fd, int cmd, void *arg);

Thereturn value is 0 on success and -1 on failure and the global errno variable is set accordingly. All supported
commands and their data structures are defined in the SatCAN driver's header file sat can. h.

29.2.6.1. Data structures

The satcan_regmod structure shown below is used to read and modify core registers.

typedef struct {
unsigned int reg;
unsigned int val;
} satcan_regnod;

Table 29.6. Member in satcan_regmod structure

M ember Description

reg Register to be read or modify. The allowed values for this member are listed further down
in this document.

va When reading a register this member is utilized to return the register value. When modify-
ing aregister this member should be initialized with the new register value or mask.

29.2.6.2. Configuration

The SatCAN core and driver are configured using ioctl calls. The table Table 29.3 below lists all supported ioctl
calls. SATCAN_IOC _should be concatenated with the call number from the table to get the actual constant used
in the code. Return values for al calls are O for success and -1 on failure. Errno is set after afailure as indicated
in Table 29.2.

Table 29.7. ioctl calls supported by the SatCAN FPGA driver.

Call Number Description
DMA_2K Instructs driver and core to use 2K DMA mode. Default setting.
DMA_8K Instructs driver and core to use 8K DMA mode.
GET_REG Provides direct read accessto all core registers.
OR_REG Writes register with current register value logical or specified value.
AND_REG Writes register with current register value masked with a specified value.
EN_TX1 DIS TX2 Changesinternal driver stateto enable DMA TX channel 1, Disable DMA TX
channel 2.
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 212

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Call Number

Description

EN_TX1 DIS TX1

Changesinternal driver state to enable DMA TX channel 1, Disable DMA TX
channel 2.

GET_DMA_MODE

Returns the current DMA transmit mode.

SET_DMA_MODE

Setsthe DMA transmit mode.

ACTIVATE_DMA

Activates a specified DMA channel.

DEACTIVATE_DMA

Deactivates a specified DMA channel.

GET_DOFFSET Gets the data offset used for writing TX DMA messages.
SET_DOFFSET Sets the data offset used for writing TX DMA messages.
GET_TIMEOUT Get time out value used when waiting for DMA TX completion.
SET_TIMEOUT Set time out value used when waiting for DMA TX completion.

29.2.6.2.1. DMA_2K

Thisioctl command instructs the SatCAN core and driver to use a DMA areawith room for 2048 messages. The
driver isinitialized in this state by default. This call disablesthe RX DMA channel and allocates a new memory
area. After the new memory area has been successfully allocated the RX DMA channél is re-enabled.

29.2.6.2.2. DMA_8K

This ioctl command instructs the SatCAN core and driver to use a DMA area with room for 8192 messages.
This call disablesthe RX DMA channel and allocates a new memory area. After the new memory area has been
successfully allocated the RX DMA channel is re-enabled. The drivers default setting isto use aDMA areawith
room for 2K messages. The example below shows how to instruct the driver to use an 8K DMA area:

if (ioctl(fd, SATCAN_|OC DVA 8K)) {
printf("ERROR Failed to enable 8K DVA area\n");
}

29.2.6.2.3. GET_REG

Thiscall provides read accessto all the core's registers. Note that reading aregister may affect the hardware state
and may impact the correct function of the driver. The GET_REG call takes an register and an return pointer as
additional arguments. Valid register values arelisted in table 1.9. Note that some of theregisterslisted in the table
awrite only and a SATCAN_IOC_GET_REG call will return the read register that occupies the corresponding
address. An example of reading the SatCAN CmdRegl:

sat can_r egnod regnod;

regnod. reg = SATCAN_CMD1;

if (ioctl(fd, SATCAN_ | OC GET_REG, ®nod))
printf("Failed to read CMDL register\n");

printf("CVMDl regi ster value: 0x%08x\n", regnod.val);

The contents of the sat can_r egnod structure has been previously described. The reg member is initialized
with avalue from table 1.9. The contents of the specified register is returned in the structure's val member.

Table 29.8. Values used together with GET_REG and SET_REG

Register constant

Register name

SATCAN_SWRES Software reset
SATCAN_INT_EN Interrupt enable
SATCAN_FIFO FIFO read
SATCAN_FIFO_RES FIFO reset

SATCAN_TSTAMP

Current time stamp

SATCAN_CMDO

Command register 0

SATCAN_CMD1

Command register 1

RCC-UM
Dec 2023, Version 1.3.2

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

213

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Register constant

Register name

SATCAN_START_CTC

Start cycle time counter

SATCAN_RAM_BASE

RAM offset address

SATCAN_STOP CTC

Stop cycle time counter

SATCAN_DPS ACT DPS active status
SATCAN_PLL_RST DPLL reset
SATCAN _PLL_CMD DPLL command
SATCAN_PLL_STAT DPLL status
SATCAN_PLL_OFF DPLL offset

SATCAN_DMA

DMA channel enable

SATCAN_DMA_TX_1 CUR

DMA channel 1 TX current address

SATCAN_DMA_TX_1 END

DMA channel 1 TX end address

SATCAN_DMA_TX_2 CUR

DMA channel 2 TX current address

SATCAN_DMA_TX_2 END

DMA channel 2 TX end address

SATCAN_RX CAN RX enable
SATCAN_FILTER_START Filter start ID
SATCAN_FILTER_SETUP Filter setup
SATCAN_FILTER_STOP Filter stop ID

SATCAN_WCTRL

Wrapper status/control register

SATCAN_WIPEND

Wrapper interrupt pending register

SATCAN_WIMASK

Wrapper interrupt mask register

SATCAN_WAHADDR

Wrapper AHB address register

29.2.6.2.4. SET_REG

This call writes a given value to a specified register. Note that assigning a register may interfere with the correct
operation of the driver software. An example of writing aregister is given below:
printf("Reset PLL\n");
regnod. reg = SATCAN_PLL_RST;
regnod. val = 1;
if (ioctl(fd, SATCAN |OC SET_REG & egnod))
printf("Reset PLL failed\n"):

29.2.6.2.5. SET_REG

This call modifies aspecified register by performing abitwiselogical or operation with the specified value and the
current register value. Note that assigning aregister may interfere with the correct operation of the driver software.
An example of masking in avalue to aregister is given below:

printf("Enabl e sync pul se and sync nessage\n");

regnod. reg = SATCAN_CMDL;

regnod. val = 0x30;

if (ioctl(fd, SATCAN_|OC_OR REG ®nod))
printf("Failed to enable sync pul se sync msg\n");

29.2.6.2.6. AND_REG

This call modifies a specified register by performing a bitwise logical and operation with the specified value and
the current register value. Note that assigning a register may interfere with the correct operation of the driver
software. The use of this call follows the same syntax asthe OR_REG call, described above.

29.2.6.2.7. AND_REG

Thiscall enablestransmit DMA channel 1 and disabled transmit DMA channel 2. It does not immediately modify
the hardware registers. The DMA channels are only enabled during a call to write. Thisioctl call only modifies
theinternal state of the driver. The example below shows how to enable DMA TX channel 1:

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 214

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

if (ioctl(fd, SATCAN_IOC EN TX1_DI'S TX2)) {
printf("Failed to enable DVA TX channel 1\n");
}

29.2.6.2.8. EN_TX2_DIS_TX1

This call enablestransmit DMA channel 2 and disablestransmit DMA channel 1. It does not immediately modify
the hardware registers. The DMA channels are only enabled during a call to write. Thisioctl call only modifies
theinternal state of the driver.

29.2.6.2.9. GET_DMA_MODE

This call returns the current DMA mode of the driver. The driver has two modes for DMA operation. User mode
(SATCAN_DMA_MODE_USER) and system mode (SATCAN_DMA_MODE_SY STEM). In user mode calls
towite(..) will place the messages in the DMA area bit will not activate any of the DMA TX channels
and return immediately. In system mode the driver will activate the selected DMA TX channel and the call to
write(..) will block until the core signalsthat it has completed the DMA operation.

29.2.6.2.10. SET_DMA_MODE

This call sets the driver DMA mode. Available values are [SATCAN_DMA_MODE USER] and
[SATCAN_DMA_MODE_SY STEM]. See the previous description of GET_DMA_MODE and the description
of thewrite(..) cal for more information about the modes. An example call using [SET_DMA_MODE] is
shown below:

int val;

val = SATCAN_DVA_ MODE_USER;

if (ioctl(fd, SATCAN_|OC_SET_DMA MODE, &val))
printf("Failed to set DVA node\n");

29.2.6.2.11. ACTIVATE_DMA

This call activates one of the DMA TX channels when the driver is set to user DMA mode. The user can not
activate a DMA channel using this call if the driver isin system DMA mode. An example call activating DMA
TX channel 2 is shown below:

int val;

val = SATCAN DVA ENABLE TX2;

if (ioctl(fd, SATCAN_| OC_ACTI VATE_DMA, &val))
printf("Taskl: Could not enable DMA TX channel 2\n");

29.2.6.2.12. DEACTIVATE_DMA

This call deactivates one of the DMA TX channels when the driver is set to user DMA mode. The user can not
deactivate a DMA channel using this call if the driver is in system DMA mode. An example call deactivating
DMA TX channel 2 is shown below:

int val;

val = SATCAN_DMA_ENABLE TX2;

if (ioctl(fd, SATCAN | OC_DEACTI VATE DVA, &val))
printf("Could not disable DMA TX channel 2\n");

29.2.6.2.13. GET_DOFFSET

Thiscall setsthe offset used when writing TX messagesviacalstowr i t e(..).TX DMA messages are written
at start of DMA buffer + data offset. The argument to this call is a pointer to the integer containing the offset.

29.2.6.2.14. SET_DOFFSET

This call returns the offset used when writing TX messages viacalstowite(..). TX DMA messages are
written at start of DMA buffer + data offset. The argument to this call is a pointer to an integer. The integer is
assigned the current offset.

29.2.6.2.15. GET_TIMEOUT

This call returns the time out value that thewr i t e(. .) call uses when waiting for TX DMA completion. The
argument is a pointer to an [rtems_interval] type.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 215

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

29.2.6.2.16. SET_TIMEOUT

This call sets the time out value that thewr it e(..) cal uses when waiting for TX DMA completion. The
argument is a pointer to an [rtems_interval] type.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 216

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 30. CAN_MUX driver (CAN_MUX)

30.1. Introduction

This document isintended as an aid in getting started developing with GRLIB CAN_MUX core using the driver
described in this document. It briefly takes the reader through some of the most important stepsin using the driver
such as configuring the driver and using Input/Output-control calls to modify the hardware state. The reader is
assumed to be well acquainted with the operation of the CAN_MUX core and RTEMS.

30.1.1. CAN_MUX Hardware

See the GR712RC or CAN_MUX core documentation.

30.1.2. Software Driver

The driver provides means for setting the CAN_MUX MUX control register.
30.1.3. Examples

The rtems-satcan example uses the CAN_MUX driver.

30.2. User interface

The RTEMS CAN_MUX driver supports the standard accesses to file descriptors such as read, write and ioctl.
The implementation of read and write calls are dummy functions. The driver is controlled exclusively viaioctl.
User applications should include the CAN_MUX driver's header file, canrux. h, which contains definitions of
all necessary values and functions used when accessing the driver.

30.2.1. Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver using standard
means, such as open. The function canmux_r egi st er whose prototypeisprovided in cannux. h isused for
registering the driver. The function returns 0 on success. A typical register call from the LEON3 Init task:

if (canmux_register(&anba_conf))
printf(“CAN_MJX register failed\n”);

30.2.2. Opening the device

Opening the device enables the user to access the hardware of the CAN_MUX core. An example of an RTEMS
open cal is shown below.
fd = open("/dev/canmux", O RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set asindicated in Table 30.1.

Table 30.1. Open errno values.

ERRNO Description
ENODEV |lllegal device name or not available
EBUSY Device aready opened

30.2.3. Closing the device

The deviceis closed using the close call. An exampleis shown below.
res = close(fd)

Close always returns 0 (success) for the CAN_MUX driver.
30.2.4. 1/0O Control interface

The driver and hardware is controlled via the standard system call ioctl. Most operating systems support at least
two arguments to ioctl, the first being an integer which selectsioctl function and secondly a pointer to data that
may be interpreted uniquely for each function. A typical ioctl call definition:

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 217

https://www.frontgrade.com/gaisler

FRONTGRADE

int ioctl(int fd, int crd, void *arg);

Thereturn valueis 0 on success and -1 on failure and the global errno variableis set accordingly. The CAN_MUX
driver doesnot use any additonal dataexcept for theinteger that selectstheioctl function. All supported commands
are defined in the CAN_MUX driver's header file cannmux. h and are described further down in this document.

30.2.4.1. Configuration

The CAN_MUX coreand driver iscontrolled using ioctl calls. The Table 30.3 below listsall supportedioct! calls.
OCCAN_IOC__should be concatenated with the call name from the tabl e to get the actual constant used in the code.
Return valuesfor al callsare 0 for success and -1 on failure. Errno is set after afailure asindicated in Table 30.2.

Table 30.2. ERRNO values for ioctl calls.

ERRNO Description
EINVAL Null pointer or an out of range value was given as the argument.

Table 30.3. ioctl calls supported by the CAN_MUX driver.

Call Number Description
BUSA_SATCAN Routes bus A to SatCAN core
BUSA_ OCCAN1 Routes bus A to OC-CAN 1 core
BUSB_SATCAN Routes bus B to SatCAN core
BUSB_OCCAN2 Routes bus B to OC-CAN 2 core
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 218

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 31. GRASCS driver

31.1. Introduction

This document isintended as an introduction to the RTEM S driver for the Gaisler ASCS core. It is recommended
that the reader also has access to the GRASCS I P core documentation when reading this document.

31.1.1. Software driver

The driver allows the developer of application software to communicate with the GRASCS core. It supplies the
functionsto initialize the core, send and receive data, start and stop synchronization etc. The complete user inter-
faceisdescribed in more detail in Section 31.2 below. Thedriver isthread safe with the following two exceptions:
ASCS etr_select, ASCS TC sync_start, and ASCS_TC _sync_stop can not be called from different threads, and
ASCS_start and ASCS_stop can not be called from different threads. The driver supports al the different config-
urations of the GRASCS core that is mentioned in the GRASCS I P core documentation.

31.1.2. Examples
A demonstration software which shows how to use the driver interfaceis distributed together with the driver. The
software initialize the core, start the serial and synchronization interfaces, perform data writes and data reads and

then stops the interfaces again. The software has been developed for pure demonstration purposes and the effects
of the transactions performed on areal ASCS slave are unknown.

31.2. User interface

In Table 31.1 &l the functions of the GRASCS driver interface are listed. To gain access to the functions a user
application should include the GRASCS driver's header file.

Table 31.1. GRASCSdriver interface

Function name Described in Short description

ASCS init Section 31.2.1 Initializes driver and GRASCS core
ASCS input_select Section 31.2.2 Selects save

ASCS etr_select Section 31.2.3 Select source for synchronization pulse
ASCS _start Section 31.2.4 Starts seria interface

ASCS stop Section 31.2.5 Stops serial interface

ASCS iface status Section 31.2.6 Report status of serial and synchronization interfaces
ASCS TC send Section 31.2.7 Performs a data write (TC)

ASCS _TC_send_block Section 31.2.8 Performs a number of TCs

ASCS TC_sync_start Section 31.2.9 Starts synchronization interface

ASCS TC_sync_stop Section 31.2.10 Stops synchronization interface

ASCS TM_recv Section 31.2.11 Performs adataread (TM)
ASCS_TM_recv_block Section 31.2.12 Performs a number of TMs

31.2.1. ASCS_init

Prototype int ASCS init()

Argument This function does not take any arguments

Return value: 0 on success, -1 on failure

Description: This function must be called before any other functionsin the ASCS driver are called.

ASCS init initializes the driver and resets the core. When the function returns al of the
cores registers will have their default values, which means that both the seria interface
and synchronization interface are stopped.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 219

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

31.2.2. ASCS_input_select

Prototype int ASCS _input_select(int slave)

Argument slave

Description The number of the slave the core should listen to duringa TM

Return value: 0 on success, -GRASCS ERROR_CAPFAULT if davevaueisinvalid, -
GRASCS_ERROR_TRANSACTIVEif aTM isin progress

Description: This function sets the bits in the core's command register that control which slave datain-

put isvalid during a TM. Valid range of the input 0 — (nslaves-1), where ndavesisthe
number of slaves the core has been configured to communicate with (nslaves generic).

31.2.3. ASCS_etr_select

Prototype int ASCS etr_select(int etr, int freq)

Argument Description

etr The source for the etr signal, valid range 0 - 6

freg The ETR frequency in Hz

Return value: 0 on success, -GRASCS ERROR_CAPFAULT if arguments have invalid values, -
GRASCS ERROR_STARTSTORP if synchronization interface is running

Description: This function need to be called if the source of the ETR synchronization pulse should

be changed. The etr input specifies which source to use, where 0 means internal counter
and 1 — 6 means external time marker 1 - 6. The freq input specifies the frequency of

the etr signal. If etr is not 0 then the freq argument need to be the same as the frequen-

cy of the external time marker that is used. The core can not generate an ETR pulse of
one frequency from an external time marker of a different frequency. This function,
ASCS TC sync_start and ASCS TC_sync_stop can not be called from different threads.

31.2.4. ASCS_start

Prototype int ASCS_start()

Argument This function does not take any arguments

Return value: None

Description: A call to thisfunction starts the core's serial interface and the core is then ready to per-

form transactions. This function and ASCS_stop can not be called from different threads.

31.2.5. ASCS_stop

Prototype int ASCS _stop()

Argument This function does not take any arguments

Return value: None

Description: A call to this function stops the core's serial interface. This function will block un-

til any possible call to ASCS TC send, ASCS TC send_block, ASCS TM_recv or
ASCS_TM_recv_block has returned. This function and ASCS_start can not be called
from different threads.

31.2.6. ASCS iface_status

Prototype int ASCS iface_status()
Argument This function does not take any arguments
Return value: 0 if both seria interface and synchronization interface are stopped, 1 if serial interfaceis
running and synchronization interface is stopped, 2 if serial interface is stopped and syn-
chronization interface is running, 3 if both interfaces are running.
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 220

https://www.frontgrade.com/gaisler

Description:

rRONTGRADE

Gaisler

Usesthe internal driver status and the value of the core's status register to report if seria
and synchronization interfaces are running or stopped.

31.2.7. ASCS _TC send

Prototype int ASCS_TC_send(int *word)

Argument Description

word Pointer to data that should be sent as a telecommands. The argument is handled asa

ntrans point erto ashort int if the coreis configured to send 16-bit words, or a char pointer for
8-bit words.
The number of telecommands that should be sent

Return value: 0 on success, -GRASCS ERROR_TRANSACTIVE if TC could not be started because
some other transaction isin progress, - GRASCS_ERROR_STARTSTOP if TC could not
be started because serial interface is stopped.

Description: Sends a telecommand with the data pointed to by the word argument. If the TC is started

the function blocks until the transaction is complete. If the TC can not be started the func-
tion returns with an error code. This function is thread safe.

31.2.8. ASCS_TC_send_block

Prototype int ASCS TC send block(int *block,int ntrans)

Argument Description

blcok Pointer to the start a block of data that should be sent as a number of telecommands. The

nirans block argument is handled as a point erto ablock of short int if the coreis configured to
send 16-bit words, or achar pointer for 8-bit words.
The number of telecommands that should be sent

Return value: 0 on success, -GRASCS ERROR_TRANSACTIVE if TC could not be started because
some other transaction isin progress, - GRASCS ERROR_STARTSTOP if TC could not
be started because seria interfaceis stopped.

Description: Sends a number of telecommands with the data pointed to be the block argument. If the

first TC is started the function blocks until all the transaction are complete. If the first TC
can not be started the function returns with an error code. This function is thread safe.

31.2.9. ASCS_TC_sync_start

Prototype int ASCS TC sync_start(void)

Argument This function does not take any arguments

Return value: None

Description: Starts the synchronization interface. There might be a delay between the time this func-

tionis called and the time the interface is actually started, depending on whether aTM is
active or not. Software can poll ASCS iface statusto find out when interface is running.
Thefirst pulse on the synchronization interface might be delay with up to one period de-
pending on the source used for the ETR signal. Thisfunction, ASCS_TC_sync_stop and
ASCS etr_select can not be called from different threads.

31.2.10. ASCS_TC _sync_stop

Prototype int ASCS TC _sync_stop(void)
Argument this function does not take any arguments
Return value: None
Description: Stops the synchronization interface. In order not to prematurely abort a ETR pulse there
might be a delay between the time this function is called and the time the interface is ac-
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 221

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

tually stopped. Software can poll ASCS iface status to find out when theinterfaceis
stopped. Thisfunction, ASCS TC_sync_start and ASCS _etr_select can not be called
from different threads.

31.2.11. ASCS_TM_recv

Prototype int ASCS _TM_recv(int *word)

Argument Description

word Pointer to where data received in a TM should be stored. The argument is handled as a
short int pointer if the coreis configured to send 16-bit words, or a char pointer for 8-hit
words.

Return value: 0 on success, -GRASCS ERROR_TRANSACTIVE if TM could not be started because
some other transaction isin progress, -GRASCS ERROR_STARTSTOP if TM could not
be started because serial interfaceis stopped.

Description: Startsa TM and stores the incoming data at the address word points to. If the TM can not
be started the function returns with an error code otherwise it blocks until the transaction
iscomplete. This function is thread safe.

31.2.12. ASCS_TM_recv_block

Prototype int ASCS TM_recv_block(int *block, int ntrans)

Argument Description

block Pointer to the start of a block where data received in a number of TMs should be stored.

ntrans The block argument is handled as a point erto a block of short int if the core is config-

ured to send 16- bit words, or a char pointer for 8-bit words.
The number of TMs that should be sent

Return value: 0 on success, -GRASCS ERROR_TRANSACTIVE if TM could not be started because
some other transaction isin progress, -GRASCS ERROR_STARTSTOP if TM could not
be started because serial interface is stopped.

Description: Starts a number of TMs and stores the incoming data with the beginning of the address
that block pointsto. If thefirst TM can not be started the function returns with an error
code otherwise it blocks until al the transactions are complete. This function is thread
safe.

31.3. Examples code

To use the GRASCS driver its header file should be included:
#incl ude <grascs. h>
The driver must first beinitialized, and the return value must be checked to see that the initialization went well:
status = ASCS init();
if(status < 0) {
printf("ERROR Failed to initialize ASCS driver\n");
exit(0);
}
printf("Successfully intialized ASCS driver\n");

When the ASCS init function has been called the application can start calling the other functions as well. Below
isan example of how to call ASCS TC send hlock and send ten TCs.

retval = ASCS_TC_send_bl ock((i nt*)bl ock, 10);

if(retval < 0) {

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 222

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
if(retval == - GRASCS_ERROR_STARTSTOP)
printf("ERROR Failed to start TC because serial interface never
started\n");
else if(retval == - GRASCS_ERROR_TRANSACTI VE)
printf("ERROR Failed to start TC because a transaction is in
progress\n");
}
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 223

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 32. APBUART console driver

32.1. Introduction

The RTEMS Driver Manager APBUART console driver isimplemented using the RTEMS POSIX Termios sup-
port. POSIX Termiosisdefinedby | EEE Std 1003. 1- 2008 (PGSl X. 1- 2008) which provides an oper-
ating system independent interface to terminal devices. The RTEM Skernel provides the Termios specific parts of
the interface, while the APBUART console driver implements the low-level hardware access.

Even though the APBUART driver isreferred to asaconsoledriver, and the Termiosinterfaceisageneral terminal
interface, the driver can also be used as ageneral purpose UART driver.

32.1.1. Functioning mode

A device attached to the APBUART console driver can operate in one of three different functioning modes.
* Polled Mode (default)
* Interrupt Driven Mode
» Task Driven Mode

Polled mode is used by default and will leave calling tasks in a poll loop to wait for the requested operation to
complete. Interrupt driven mode uses the APBUART interrupt and FIFO functionality to prevent blocking the
task using the driver. In task driven mode, the RTEMS Termios layer creates daemon tasks which are activated
on APBUART interrupt and carries out the processing in task context.

The functioning mode is set at compile time using driver manager resources and can not be changed afterwards.
For more information on the operating modes, see the document RTEMS BSP and Device Driver Development
Guide. Note that Task Driven Mode is not supported in SMP environments.

32.1.2. Hardware support

APBUART devices are available in different hardware configurations with different capabilities. This driver uses
the following capababilities, if their presence is detected by the driver.

* RX/TX interrupt (depending on functioning mode as described below)

« RX/TX FIFO

* Delayed RX interrupt

32.2. User interface

The driver supports the standard accesses to file descriptors such asread(), wite() and to Termios con-
trol functionssuch ast cgetattr(),tcsetattr() andcfseti speed() . User applications include the
Termios header file <t er m os. h> which provides prototypes and definitions of all necessary data structures
and hit masks used when accessing a Termiosfile.

User operations specific to the APBUART driver are documented here, while common Termios operations are
documentedin| EEE Std 1003. 1- 2008 (POSI X. 1-2008) .

The APBUART console driver require the RTEMS Driver Manager.
32.2.1. Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver using standard
means, such as open. The RTEMS I/O driver registration is performed automatically by the driver when UART
hardware is found for the first time. The driver is called from the driver manager to handle detected UART hard-
ware. In order for the driver manager to unite the UART driver with the UART hardware one must register the
driver to the driver manager. This processis described in the driver manager chapter.

32.2.2. Driver resource configuration

The driver can be configured at compile tile using driver resources as described in the driver manager chapter.
Below isadescription of configurable driver parameters. The driver parametersare unique per APBUART device.
The parameters are all optional, the parameters only overrides the default values.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 224

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 32.1. APBUART console driver resources

Name Type |Parameter description

syscon INT Suggest system console

System console is by default assigned to the first APBUART in the system. The user
can override this default behaviour by setting the syscon parameter to 0 on the first
APBUART to force it to not be the system console and 1 on another to suggest it as
system console.

node INT Functioning mode

* 0O: Polled Mode (default)
» 1: Interrupt Driven Mode
e 2: Task Driven Mode

NOTE: Task Driven Modeis not supported in SMP environments.

32.2.3. Opening the device

Opening the device enables the user to access the hardware of aAPBUART device. Devicesareidentified by afile
name which is constructed based on device buslocation and order of discovery. Thefile nameis used for opening
adevice. Some example file names are given in the following table.

Table 32.2. Example APBUART file names

Device number Filesystem name L ocation

0 / dev/ consol e On-Chip Bus

1 / dev/ console_b On-Chip Bus

2 / dev/ consol e_c On-Chip Bus
Depends on system configuration / dev/ rast ai 00/ apbuart 0 GR-RASTA-I1O
Depends on system configuration / dev/ rast ai 00/ apbuartl GR-RASTA-IO

An example of an RTEMS open() call is shown below.
fd = open("/dev/consol e_b", O RDWR)

A filedescriptor isreturned on successand -1 otherwise. Inthelatter caseer r no isalso set asdefined by open() .
32.2.4. Closing the device

The deviceisclosed using thecl ose() function. An example is shown below.

res = close(fd)
32.2.5. Control interface

Changing the behaviour of the driver for a device is done via the Termios terminal parameter access functions
defined by <t er mi 0s. h>,suchastcsetattr().

Table 32.3 describesthest ruct term os fieldc_cf | ag for hardware control supported by the APBUART
console driver.

Table 32.3. Supported control modes

Mask nhame Description
CLOCAL Enable/disable flow control
CSl ZE Only 8 bit data per character is supported (CS8)
PARENB Parity enabled if set, else disabled.
PARCDD Odd parity if set, else even. The parameter is qualified by PARENB
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 225

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The device always sends one stop hit after the optional parity bit.

APBUART BAUD can be set to all values defined by <t er ni 0s. h>, ranging from B50 to B460800. The
driver calculatesasuitable APBUART scaler register value using the APBUART corefrequency and the requested
BAUD. Note that the target BAUD and its precision may be limited by the APBUART scaler in combination with
the bus frequency. See documentation of the APBUART SCALER register in the GRLIB IP Core User's Manual.

The following example sets the APBUART BAUD to 9600, 8 bits per character and disables parity:

struct term os options;

tcgetattr(fd, &options);
cfsetispeed(&options, B9600);

cf set ospeed(&opti ons, B9600);
options.c_cflag & ~CSI ZE;
options.c_cflag | = CS8;
options.c_cflag & ~PARENB;
tcsetattr(fd, TCSANOW &options);

32.2.6. Startup-parameter inheritance

When the APBUART device configured with the syscon parameter set to 1 is opened by the user, its present
hardware attributes are preserved. The preserved attributesarethe oneslisted in Table 32.3. Thisallowsfor the user
to configure the console settings in a boot loader without the need to synchronize the settings in the application.
For APBUART devices other than the system console, the user should configure the device with the Termios
interface after open.

Thefile/ dev/ consol e isopened automatically as part of the RTEM S initialization and is associated with the
streams st di n, st dout andst derr.

32.2.7. Transmission
Transmitting characters to the UART serial line can be done with thewr i t e() function. It is possible to write
multiple bytesin one call. An example of awr i t e() isshown below:

result = wite(fd, &buffer[0], sizeof(buffer));

On success the number of transmitted bytes is returned and -1 on failure. er r no is also set in the latter case.
buf f er points to the beginning of the character byte array. The last parameter sets the number of bytes taken
from buf f er that will be transmitted.

32.2.8. Reception
Reception of charactersfrom the UART serial line can bedoneusing ther ead() function. An exampleisshown
below:

char buffer[16];

len = read(fd, buffer, 16);

The requested number of bytes to be read is given in the third argument. The received bytes will be stored in
buf f er. The actual number of received bytes is returned by the function on success and -1 on failure. In the
latter case er r no isalso set.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 226

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 33. SPICTRL GRLIB SPI master driver

33.1. Introduction

This section describes the SPICTRL Master driver available for RTEMS. The SPICTRL driver provides the nec-
essary functions needed by the RTEMS |2C Library. The RTEMSI2C Library is used for both 12C and SPI. The
RTEMS12C Library is not documented here.

The SPICTRL driver require the RTEMS Driver Manager.
33.1.1. SPI Hardware
The SPICTRL core is documented in the GR-IP core's manual. The driver supports multiple SPI cores.

33.1.2. Examples

There are two examples available, one that read and write data to a standard SPI FLASH and one that access a
SD Card FAT file system. The SPI driver initialize the 12C Library when a SPI core is found and the application
initialize the higher level drivers.

The examples are part of the Gaisler RTEM S distribution, it can be found under / opt / rt ens- 5/ src/ sam
pl es/rtems-spi.c and rtens-spi-sdcard. c.

33.2. User interface

The RTEMS SPICTRL SPI driver supports the RTEMS |2C Library operations and the simultaneous read/write
operation available using the ioctl interface. The driver is united with SPICTRL cores by the driver manager
as SPICTRL cores are found. During driver initialization the SPI driver initializes the RTEMS 12C Library and
registersthe driver. The driver isregistered with the name/ dev/ spi 1,/ dev/ spi 2 and so on.

An example application using the driver is provided in the samples directory distributed with the tool chain.
33.2.1. Driver registration

The registration of the driver is needed in order for the RTEMS 12C Library to know about the SPI hardware
driver. The RTEMS 12C driver registration is performed automatically by the driver when SPICTRL hardware
is found for the first time. The driver is called from the driver manager to handle detected SPICTRL hardware.
In order for the driver manager to unite the SPICTRL driver with the SPICTRL hardware one must register the
driver to the driver manager. This process is described in the driver manager chapter.

33.2.2. Accessing the SPI bus

The SPI bus can be accessed direct in RAW mode or by using aso called high level driver. The high level drivers
must be connected with the SPICTRL driver by using the rtems libi2c register_drv function. The SD Card
higher level driver does this automatically where asthe memory driver needs the user to do this before initializing
the memory driver. Thelocation of the higher level driversand the RTEMSI2C Library isindicated in Table 33.1.
All paths are given relative the RTEM S kernel source root.

Table 33.1. SPI source location

Sour ce description L ocation

12C Library cpukit/libi2c

High level drivers c/src/libchipl/i2c

SPICTRL driver c/src/lib/libbsp/sparc/shared/spi

When accessing the driver in RAW mode a device node must be created manually in the file system by calling
rtems_fil esystem make_dev_t and mknod with the correct major and minor number identifying the
SPICTRL driver. The major number must be the same as the RTEMS I2C Library 1/0O driver major number,
the minor number identify the SPICTRL driver. The macro RTEMS LIBI2C_MAKE_MINOR can be used to
generate avalid minor number.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 227

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

After adevice nodeis created either manually for the RAW mode or by 12C Library for the higher level driver the
device node can be accessed using standard means such as open, close, read, write and ioctl.

33.2.3. Extensions to the standard RTEMS interface

The SPICTRL core supports automated periodic transfersif enabled in the hardware design. The driver provides
means for accessing the extra features that the SPICTRL core implements through the ioctl interface. The addi-
tional features are optional, when ignored the driver operates as a standard RTEMS SPI driver.

Theextraioctl commands supported are listed in the table below. In periodic modethe SPI coreis setup to execute
one SPI request multiple times, each transfer is started on a constant interval or when an external trigger pulseis
detected. In normal operation read and writes are done simultaneously, however in the automated (AM) periodic
transfer mode multipletransfers are executed. Once the core has been set up to operatein periodic mode (via CON-
FIG),libi2c_write() andi bi 2c_read() arereplaced with callsto PERIOD_READ/PERIOD WRITE
i octl (). Inperiodic mode the TX/RX FIFO can not be read, instead receive and transmit registers let us peek
into the FIFO. Up to four mask registers controls which TX/RX registers are part of the transfers. Please see the
SPICTRL hardware document for an overview of the AM periodic mode.

Table 33.2. Additional ioctl commands

Command Description

PERIOD_START Start periodic transfers

PERIOD_STOP Stop periodic transfers

PERIOD _READ Read receive registers and mask registers, in periodic mode only
PERIOD_WRITE Write receive registers and mask registers, in periodic mode only
CONFIG Configure periodic and non periodic transfers

STATUS Return the current status, the event register of the core

Below is an example of the steps that can be used when accessing the driver in periodic mode.

libi2c_send start()

libi2c_ioctl(SET_TRFMODE)

lib2ic_send_address()

libi2c_ioctl(CONFIG, & config) Enable periodic mode, configure SPICTRL periodic transfer options

libi2c_ioctl(PERIOD_WRITE, & period_io) Fills TX Registers and set MASK registers, note that this has

some constraints. The content written here will be transmitted over and over again, according to the MASK

register.

6. lib2ic_ioctl(PERIOD_START) Starts the periodic transmission of the content in the TX Registers selected
by the MASK register

7. lib2ic_ioctl(PERIOD_READ, & period_io) Read oneresponse of the transmitted data. It will hang until data
isavailable. If hangingisnot an option uselib2ic_ioctl(STATUS) to determine on beforehand if it will hang.

8. OPTIONAL.: libi2c ioctl(PERIOD_WRITE, &period_io) The transmitted data on the SPI wires can be
changed by calling the PERIOD_WRITE, note that this method requires that TX registers beeing used are
not overwritten.

9. Go back to 7. to read the content of one more transfer, stop by stepping to 10.

10. libi2¢_ioctl(STOP) Stop to set up a new periodic or normal transfer.

11. libi2c_stop()

a bk owbdpE

33.2.3.1. PERIOD_START

Start previously configured automatic periodic transfers. Starting periodic transfers can only be done after CON-
FIG has been called enabling automated periodic transfers, and after PERIOD_WRITE has been called to set up
the MASK and TX registers. Once the transfers has been started STATUS can be called to indicate the current
transfer status and PERIOD_READ can be called to read the current content of the receive registers.

33.2.3.2. PERIOD_STOP

Stops any ongoing period transfer by writing zero to the AM configuration register.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 228

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

33.2.3.3. CONFIG

Configures the SPICTRL core in hormal operation or in periodic operation. If periodic mode is enabled driver
configure the periodic mode options by looking at the user provided argument, the argument is assumed to be a
pointertospi ctrl _i oct| _confi g datastructure with the layout and properties indicated below.

/* SPICTRL_I OCTL_CONFI G ar gunent */

struct spictrl_ioctl_config {
int cl ock_gap;
unsigned int flags;
int peri odi c_node;

unsi gned int period,;
unsi gned int period_flags;
unsi gned int period_slvsel;

}s

Table 33.3. spictrl_ioctl_config field description

Field Description

clock_gap Clock GAP on SPI bus between words, the FIFO word size is dependent on the
software configuration

flags Hardware options, such as enable Clock GAP and TAC mode

periodic_mode non-zero enables automated periodic transfers

period The period that might be used in periodic transfers

period_flags AM Configuration register content. ACT bit has no effect. This controls the be-
haviour of libi2c_read().

period_slvsel Slave chip select when no transfer is active.

33.2.3.4. STATUS
Copies the Event register of the SPICTRL core to a user provided buffer.
33.2.3.5. STATUS

Configures the SPICTRL TX and MASK registers. The registers are only used in periodic mode. The command
may be called before or during periodic transfers are ongoing. The MASK register selects which registerswill be
used in the transfer process. Please see the SPI core hardware documentation how periodic modeis used.

Notethat changing TX registersusedin current transfers may createinvalid SPI commands. One can make surethis
does not happen by only changing content of unused TX registers, or by stopping the ongoing periodic transfers
with PERIOD_STOP.

The command takes one argument, the argument is assumed to be a pointer toaspi ctrl _peri od_i o data
structure with the layout and properties indicated below.

The transmit register [N* 32+M] corresponds to bit: maskg[N] & (1<<M) .

/* SPI CTRL_I OCTL_PERI OD_READ and SPI CTRL_| OCTL_PERI OD WRI TE ar gunent */

struct spictrl_period_io {
int options;
unsi gned int masks|[4] ;
voi d *dat a;

}

Table 33.4. spictrl_period_io field description

Field Description

options Selects operation performed by command
READ |BITO |1=Read Mask registers into masks[].

BIT1 | 1=Read receive registers and store into data array. Only the registers speci-

fied by maskg[] will be read. Note that the received registers are read after the
maskq[] registers has been updated, which if BITO will result in the active regis-
terswill be read into data.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 229

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Field Description

WRITE |BITO | 1=Write Mask registers with content of masks[]. Note that the MASK registers
will be updated after the Transmit registers has been written.

BIT1 | 1=Write transmit registers with values taken from data array. Only the registers
specified by masks[] will be written/updated.

masks An array of 4 32-bit words. Each bit corresponds to a Transmit or a Receive register. The masks
array can beread from MASK registers or stored to MASK registers (if BITO is set), or only used
to indicate which Transmit/Receive registers that should be Written/Read (if BITO is zero).

data Pointer to data array read (PERIOD_WRITE) or written (PERIOD_READ). The element size of
the array depends on the configured word size (see CONFIG). The element sizeis either 8, 16 or
32-hits, the smallest possible that still fits the data words.

The data pointer points to data in the format of an array with the same element size as the transfer bit-length
configured. For example a 8-bit config will result in data being interpreted as an array of bytes, a 12-bit configin
an array of 16-bit words etc. The order of the elements will be determined by: the lowest bit set in the mask will
be the first, the second lowest the second in the array etc.

33.2.3.6. PERIOD_READ

This command Read the MASK registers and/or reads the Receive registers. The behaviour is controlled
with ioctl() the argument provided by the user. The argument is a pointer to a data structure of the format
spictrl _period_i odescribedin Table 33.2.

By setting options to 0x3 will make the command read the receive registers activated only. The receive register
[N*32+M] corresponds to bit: masks[N] & (1<<M).

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 230

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 34. [2CMST GRLIB 12C Master driver

34.1. Introduction

This section describes the 12C Master driver available for RTEMS. The I2CMST driver provides the necessary
functions needed by the RTEM S 12C Library. The RTEMS 12C Library is not documented here.

The I2CMST driver require the RTEMS Driver Manager.

34.1.1. 12C Hardware

The I2CM ST core is documented in the GR-IP core's manual. The driver supports multiple 12C cores.
34.1.2. Examples

There is an example available, it illustrates how to set up the 12C driver, initiaize the 12C Library and access an
I12C EEPROM. The EEPROM can be accessed with on of two different methods, either RAW mode or by using
the high level driver.

The example is part of the Gaisler RTEMS distribution, it can be found under / opt / rt ens- 5/ src/ sam
pl es/rtems-i 2cnst . C.

34.2. User interface

The RTEMS I2CMST 12C driver supports the RTEMS 12C Library operations. The driver must be registered
before it can be used. During driver registration the 12C driver initializes the RTEMS I2C Library and registers
the driver. The driver is registered with the name /dev/i2cl, /dev/i2c2 and so on.

An example application using the driver is provided in the samples directory distributed with the tool chain.
34.2.1. Driver registration

The registration of the driver is needed in order for the RTEM S 12C Library to know about the 2CM ST hardware
driver. The RTEMS I12C driver registration is performed automatically by the driver when I2CMST hardware is
found for the first time. The driver is called from the driver manager to handle detected I2CM ST hardware. In
order for the driver manager to unite the I2CM ST driver with the I2CM ST hardware one must register the driver
to the driver manager. This processis described in the driver manager chapter.

34.2.2. Accessing the 12C bus

The 12C bus can be accessed direct in RAW mode or by using aso called high level driver. The high level drivers
must be connected with the I2CMST driver by usingthert ens_| i bi 2c_r egi st er _dr v function. The lo-
cation of the higher level driversand the RTEM S 12C Library isindicated in table 132. All paths are given relative
the RTEMS kernel source root.

Table 34.1. 12C source location

Sour ce description L ocation

12C Library cpukit/libi2c

High level drivers c/sre/libehipli2c

I2CMST driver c/src/lib/libbsp/sparc/shared/i2c

When accessing the driver in RAW mode a device node must be created manually in the file system by calling
rtems_fil esystem make _dev_t and mknod with the correct magjor and minor number identifying the
[2CMST driver. The magjor number must be the same as the RTEMS 12C Library I/O driver major number, the
minor number identify the I2CM ST driver. Themacro RTEMS LIBI2C_MAKE_MINOR can be used to generate
avalid minor number.

After adevice nodeis created either manually for the RAW mode or by 12C Library for the higher level driver the
device node can be accessed using standard means such as open, close, read, write and ioctl.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 231

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 35. GPIO Library
35.1. Introduction

This section describes the GPIO Library available for RTEMS. The GPIO Library implements a ssmple function
interface that can be used to access individual GPIO ports. The GPIO Library provides means to control and
connect an interrupt handler for aparticular GPIO port. Thelibrary itself does not access the hardware directly but
through aGPIO driver, for examplethe GRGPIO driver. A driver must implement a couple of function operations
to satisfy the GPIO Library. The drivers can register GPIO ports during runtime.

Thetwo interfacesthe GPIO Library implements can befound in the gpiolib header file(gpi ol i b. h), it contains
definitions of all necessary data structures, bit masks, procedures and functions used when accessing the hardware
and for the drivers implement GPIO ports.

This document describes the user interface rather than the driver interface.
35.1.1. Examples

Thereisan example available in the Gaisler RTEM S distribution, it can be found under / opt / rt enms- 5/ sr ¢/
sanpl es/ rast a- adcdac/ gpi o- denp. c.

35.2. Driver interface

The driver interface is not described in this document.

35.3. User interface

The GPIO Library provides the user with a function interface per GPIO port. The interface is declared in
gpi ol i b. h. GPIO ports are registered by GPIO drivers during runtime, depending on the registration order the
GPIO port are assigned a port number. The port number can be used to identify a GPIO port. A GPIO port can
also be referenced by a name, the name is assigned by the GPIO driver and is therefore driver dependent and not
documented here.

GPIO ports which does not support a particular feature, for example interrupt generation, return error codes when
tried to be accessed.

Thelocation of the GPIO Library isindicated in Table 35.1. All paths are given relative the RTEM S kernel source
root.

Table 35.1. GPIOLIB source location

Sour ce description L ocation
Interface implementation c/src/lib/libbsp/sparc/shared/gpio/gpiolib.c
Interface declaration c/src/lib/libbsp/sparc/shared/include/gpiolib.h

35.3.1. Accessing a GPIO port

The interface for one particular GPIO port is initialized by calling gpi ol i b_open with a port humber or
gpi ol i b_open_by_nane with the device name identifying one port. The functions returns a pointer used
when calling other functions identifying the opened GPIO port. If the device name can not be resolved to a GPIO
port the open function return NULL. The prototypes of the initialization routines are shown below:

voi d *gpiolib_open(int port)
voi d *gpiolib_open_by_nane(char *devNane)

Note that this function must be called first before accessing other functionsin the interface.
Note that the port naming is dependent of the GPIO driver used to access the underlying hardware.
35.3.2. Interrupt handler registration

Interrupt handlers can be installed to handle events as a result to GPIO pin states or state changes. Depending
on the functions supported by the GPIO driver four interrupt modes are available, edge triggered on falling or
rising edge and level triggered on low or high level. It is possible to register a handler per GPIO port by calling

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 232

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

gpiolib_irqg_register setting the arguments correctly as described in Table 35.2. Below is the prototype
for the IRQ handler (ISR) install function.

int gpiolib_irqg_register(
voi d *handl e,
voi d *func,
void *arg

)
The function takes three arguments described in the table below.

Table 35.2. gpiolib_irq_register argument description

Name Description

handle Handle used internally by the function interface, it is
returned by the open function.

func Pointer to interrupt service routine which will be called
every time an interrupt is generated by the GPIO hard-
ware.

arg Argument passed to thef unc | SRfunction when

called as the second argument.

To enableinterrupt, the hardware needsto beinitialized correctly, see functions described in the function prototype
section. Also the interrupts needs to be unmasked.

35.3.3. Data structures

Thedata structure used to access the hardware directly is described below. Thedatastructuregpi ol i b_confi g
isdefinedingpi ol i b. h.

struct gpiolib_config {
char mask;
char irq_l evel;
char irqg_polarity;

}
Table 35.3. gpiolib_config members

Member Description

mask Mask controlling GPIO port interrupt generation

0 Mask interrupt
1 Unmask interrupt

irq_level Level or Edge triggered interrupt

0 Edge triggered interrupt

1 Level triggered interrupt

irq_polarity Polarity of edge or level

0 Low level or Falling edge

1 High level or Rising edge

35.3.4. Function prototype description
35.3.4.1. GPIO Library functions
A short summary to the functions are presented in the prototype lists below.

Table 35.4. GPIO per port functions

Prototype Name

void gpiolib_close(void * cookie)

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 233

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Prototype Name

int grpiolib_set_config (void * cookie, struct gpiolib_config *cfg)
int gpiolib_set (void *handle, int dir, int val)
int gpiolib_get(void *handle, int *inval)

int gpiolib_irq_clear(void * handl€)

int gpiolib_irg_enable(void *handle)
gpiolib_irg_disable(void *handl€)
int gpiolib_irq_force(void *handle)

int gpiolib_irq_register (void *handle, void *func, void *arg)

void gpiolib_show(int port, void *handl€)

All functions takes a handle to a opened GPIO port by the argument handle. The handle is returned by the
gpiolib_open or gpiolib_open_by name function.

If a GPIO port does not support a particular operation, a negative valueis returned. On success a zero is returned.
35.3.4.1.1. grpiolib_set_config

Configures one GPIO port according to thethe gpi ol i b_conf i g data structure.

Thegpi ol i b_confi g structureis described in Table 35.3.

35.3.4.1.2. grpiolib_set

Set one GPIO port in output or input mode and set the GPIO Pin value. The third argument may not be used when
[dir] indicated input. The direction of the GPIO port is controlled by the [dir] argument, 1 indicates output and O
indicates input. The value driven by the GPIO port may be low by setting [val] to O or high by setting [val] to 1.

35.3.4.1.3. grpiolib_get
Get the input value of a GPIO port. The valueis stored into the address indicated by the argument [inval].
35.3.4.1.4. grpiolib_irq_clear

Acknowledge any interrupt at the interrupt controller that the GPIO port is attached to. This may be needed in
level sensitive interrupt mode.

35.3.4.1.5. grpiolib_irg_force
Force an interrupt by writing to the interrupt controller that the GPIO port is attached to.
35.3.4.1.6. grpiolib_irq_enable

Unmask GPIO port interrupt on theinterrupt controller the GPIO port is attached to. This enables GPIO interrupts
to pass though to the interrupt controller.

35.3.4.1.7. grpiolib_irg_disable

Mask GPIO port interrupt on the interrupt controller the GPIO port is attached to. Thisdisableinterrupt generation
at the interrupt controller.

35.3.4.1.8. grpiolib_irg_register

Attaches ainterrupt service routine to a GPIO port. Described separately above.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 234

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 36. GRGPIO GRLIB GPIO driver

36.1. Introduction

This section describes the GRGPIO driver available for RTEMS. The GRGPIO driver provides the necessary
functions needed by the GPIO Library. The GPIO Library is documented in Chapter 35.

The GRGPIO driver require the RTEMS Driver Manager.
36.1.1. GPIO Hardware
The GRGPIO core is documented in the GR-1P Core User's manual. The driver supports multiple GPIO cores.

The hardware may be configured to support interrupt generation on any combination of GPIO ports. The driver
will fail with areturn code when an interrupt is unmasked but the GPIO port does not support interrupt generation.

GRGPIOi r ggen functionality issupported by thedriver. If the core hastheinterrupt map functionality (i r ggen
> 1), then the driver will look in the map before registering an interrupt handler. For this to work correctly, the
GPIO interrupt mapping for aparticular 1/0 pin should be configured before registering the user interrupt handler,
and should remain unchanged as long as the handler is registered. Note that the driver will never change the
interrupt mapping.

Whenthe GRGPIOi f | ag functionality isavailable, thenit will be used to determineif the user interrupt handler
shall be called at interrupt time. If thei f | ag functionality is not available in the GRGPIO controller, then an
user interrupt handler registered with the GRPIO Library may be called also for other unrelated interrupts which
use the same shared interrupt number.

36.1.2. Examples

Thereisan example available in the Gaisler RTEM S distribution, it can be found under / opt / rt ens- 5/ sr ¢/
sanpl es/ rtens-gpi 0. c.

36.2. User interface

The RTEMS GRGPIO GPIO driver supports the GPIO Library operations. The driver is united with GRGPIO
cores by the driver manager as GRGPIO cores are found. During driver initialization the GPIO driver initializes
the GPIO Library and registers the driver. Each GPIO port is handled separately using the GPIO Library.

An example application using the driver is provided in the samples directory distributed with the tool chain.
36.2.1. Driver registration

The registration of the driver is needed in order for the GPIO Library to know about the GPIO hardware driver.
The GPIO driver registration is performed automatically by the driver when GRGPIO hardware is found for the
first time. The driver is called from the driver manager to handle detected GRGPIO hardware. In order for the
driver manager to unite the GRGPIO driver with the GRGPIO hardware one must register the driver to the driver
manager. This processis described in the driver manager chapter.

36.2.2. Driver resource configuration

The driver can be configured using driver resources as described in the driver manager chapter. Below is a de-
scription of configurable driver parameters. The driver parametersis unique per GRPWM device. The parameters
are al optional, the parameters only overrides the default values or behaviour.

Table 36.1. GRGPIO driver parameter description

Name Type Parameter description

nBits INT Tells the driver how many GPIO ports are available on this device, normal-
ly the driver auto detect the number of GPIO ports. The OUTPUT register
of the GRGPIO core must be written in order to auto detect the number of
GPIO ports, this can be a problem in some cases when the GPIO ports has
already been initialized by the boot |oader.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 235

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Name

Type

Parameter description

bypass

INT

This parameter specifies the BY PASS register content. If not available zero
iswritten into the BY PASS register during driver initialization.

36.2.3. Accessing GPIO ports

The GPIO ports are accessed using the GPIO Library. Each GPIO port has a unique number which is assigned
in the order the GPIO ports are registered. The GRGPIO GPIO ports are registered core wise, the first core in
AMBA Plug & Play isregistered first starting with PIO[0] to PIO[N], then all GPIO ports of the next GRGPIO
core. Seetable below for an example.

Table 36.2. GRGPIO registration order

GRGPIO Core GRGPIO I/O port Registration order
0 PIO[O] 0
0 PIO[1] 1
0 PIO[2] 2
0 PIO[3] 3
0 PIO[4] 4
0 PIO[5] 5
0 PIO[6] 6
0 PIO[7] 7
1 PIO[O] 8
1 PIO[1] 9
1 PIO[2] 10
1 PIO[3] 11
1 PIO[4] 12
1 PIO[5] 13
1 PIO[6] 14
1 PIO[7] 15
2 PIO[O] 16
2 PIO[1] 17
2 PIO[2] 18
2 PIO[3] 19
2 PIO[4] 20
2 PIO[5] 21
2 PIO[6] 22
2 PIO[7] 23

The ports can aso be referenced by using their names. The GRGPIO driver name the GPIO ports according to

the following string,

"/ dev/ [SYSTEM PREFI X] gr gpi o[SYSTEM CORE_NR] / [PORT_NR] "

Table 36.3. GRGPIO registration order

MACRO

Description

SYSTEM_PREFIX

In systems where multiple AMBA buses existsit is convenient to reference a partic-
ular AMBA bus by aname. SYSTEM_PREFIX is substituted with the AMBA bus
name that the GPIO core is attached to, for example on a GR-RASTA-10 PCI Target
the AMBA busis called rastaioN.

RCC-UM
Dec 2023, Version 1.3.2

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
236

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

MACRO Description
SYSTEM_CORE_NR |The core number on a particular AMBA system
PORT_NR The port number on a particular GPIO core

The location of the GRGPIO drivers and the GPIO Library isindicated in table 137. All paths are given relative
the RTEM S kernel source root.

Table 36.4. GRGPIO registration order

Sour ce description L ocation
GPIO Library c/src/lib/libbsp/sparc/shared/gpio/gpiolib.c
GRGPIO driver c/src/lib/libbsp/sparc/shared/gpio/grgpio.c
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 237

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 37. GRADCDAC GRLIB ADC/DAC driver

37.1. Introduction

Thissection describesthe GRADCDAC driver availablefor RTEM S. The GRADCDAC driver providesafunction
interface to the user with the ability to access the hardware directly. User applications include the gr adcdac
header file (gr adcdac. h) which contains definitions of all necessary data structures, bit masks, procedures and
functions used when accessing the hardware.

The GRADCDAC driver require the RTEMS Driver Manager.
37.1.1. ADC/DAC Hardware

The GRADCDAC core is documented in the GR-IP Core User's manual. The driver supports multiple GRADC-
DAC cores.

The GRADCADOC core has two different IRQs, one ADC interrupt and one DAC interrupt.
37.1.2. Examples

Thereisan example available in the Gaisler RTEM S distribution, it can be found under / opt / rt ens- 5/ sr ¢/
sanpl es/ rast a- adcdac/ gr adcdac- deno. c.

37.2. User interface

The RTEMS GRADCDAC ADC/DAC driver providesthe user with afunction interface. Theinterfaceis declared
ingr adcdac. h. Thedriver isunited with GRADCDAC cores by the driver manager as GRADCDAC cores are
found. During driver initialization the ADCDAC driver initializes the ADC/DAC hardwareto an initia state, for
that point and onwards the function interface can be used to access the ADC/DAC hardware registers.

An example application using the driver is provided in the sanpl es/ r ast a- adcdac directory distributed
with the toolchain.

The location of the GRADCDAC driver isindicated in Table 37.1. All paths are given relative the RTEM S kernel
source root.

Table 37.1. GRGPIO registration order

Sour ce description L ocation
GREDCDAC driver c/src/lib/libbsp/sparc/shared/anal og/gradcdac.c
Driver Interface c/src/lib/libbsp/sparc/shared/include/gradedac.h

37.2.1. Driver registration

The GRADCDAC isregistered to the Driver Manager layer by setting the correct define in the project set up, see
Driver Manager section.

The driver does not implement a I/O driver interface so the GRADCDAC does not register itself asal/O driver,
it implements a custom function interface that is available to the user.

37.2.2. Driver resource configuration

The driver does not support configurable resource parameters.

37.2.3. Accessing ADC/DAC

TheInterfacefor one particular ADC/DAC coreisinitialized by calling gr adcdac_open with the device name
identifying one core. Thefunction returns a pointer used when calling other functionsidentifying the opened ADC/

DAC core. If the device name can not be resolved to a ADC/DAC core the open function return NULL. The
prototype of the initialization routine is shown below:

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 238

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

voi d *gradcdac_open(char *devnane)

Note that this function must be called first before accessing other functions in the interface.

The GRADCDAC coresare bereferenced by using their names, the names are generated according to thefollowing
string,

"/ dev/ [SYSTEM PREFI X] gr adcdac[SYSTEM CORE_NR] "

Table 37.2. GRADCDAC core naming

MACRO Description

SYSTEM_PREFIX In systems where multiple AMBA buses existsiit is convenient to reference a
particular AMBA bus by aname. SYSTEM_PREFIX is substituted with the
AMBA bus name that the ADC/DAC core is attached to, for example on a GR-
RASTA-ADCDAC PCI Target the AMBA busis called rastaadcdacN. This
string is empty when the GRADCDAC is on the system AMBA bus.

SYSTEM_CORE_NR The core number on a particular AMBA system.

37.2.4. Interrupt handler registration

Interrupt handlers can be installed to handle events as a result to AD/DA conversions. It is possible to register
a handler for AD and or DA conversions by setting the adc argument appropriately as described in Table 37.3.
Below is the prototype for the IRQ handler (1SR) install function.

int gradcdac_install _irqg_handl er(
voi d *cooki e,
int adc,
void (*isr)(int irqg, void *arg),
void *arg

)
The function takes three arguments described in the table below.

Table 37.3. gradcdac _install_irq_handler argument description

Name Description
cookie Handle used internally by the function interface, it is returned by the open function.
ade Value Function
1 Register handler to ADC interrupt
2 Register handler to DAC interrupt
3 Register to both ADC and DAC interrupts
isr Pointer to interrupt service routine which will be called every time an interrupt is generated
by the ADC/DAC hardware.
arg Argument passed to the isr function when called as the second argument.

To enableinterrupt the hardware needs to beinitialized correctly see functions described in the function prototype
section. Also the AD and or DA interrupts needs to be unmasked.

37.2.5. Data structures

The data structure used to access the hardware directly is described below. The data structuregr adcdac_r egs
isdefinedingr adcdac. h.

struct gradcdac_regs {
vol atile unsigned int config;
vol atile unsigned int status;
int unusedO[2];
vol atile unsigned int adc_din;
vol atile unsigned int dac_dout;
int unusedl[2];
vol atil e unsi gned

int adrin;

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 239

https://www.frontgrade.com/gaisler

}

vol atile unsigned int
vol atile unsigned int
int unused2[1];

vol atile unsigned int
vol atile unsigned int
vol atile unsigned int

adrout ;
adrdir;

data_in;
data_out;
data_dir;

rRONTGRADE

Gaisler

Thegradcdac_confi g data structure is used to read and write the ADC/DAC controllers configuration reg-

ster.

struct gradcdac_config {

unsi gned char dac_ws;
char wr_pol ;

unsi gned char dac_dw;
unsi gned char adc_ws;
char rc_pol;

unsi gned char cs_node;
char cs_pol;

char ready_node;

char ready_pol;

char trigg_pol;

unsi gned char trigg_node;

unsi gned char adc_dw;

b

Table 37.4. gradcdac_config member and ADCONF reg definition

M ember

Member type

ADCONEF Bit start

Description

dac ws

5-bit int

19

Number of DAC wait
states.

wr_pol

Boolean

18

Polarity of DAC write
strobe

0 Active low

1 Active High

dac_dw

2-bit selection

16

DAC datawidth

0 none

1 |8-hit ADDATA
[0:7]

2 16-bit ADDATA
[0:15]

3 none/spare

adc_ws

5-bitint

11

Number of DAC wait
states.

rc_pol

Boolean

10

Polarity of ADC read con-
vert

0 Active low read

1 Active high read

cs_mode

2-bit selection

Mode of ADC chip select
asserted ...

0 during conversion
and read phases

1 during conversion
phase

during read phase

continuously dur-
ing both phases

RCC-UM
Dec 2023, Version 1.3.2

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
240

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Member Member type ADCONF Bit start Description
cs pol Boolean 7 Polarity of ADC chip se-
lect
0 Active low
1 Active high
ready _mode Boolean 6 Mode of ADC ready
0 Falling edge
1 Rising edge
ready pol Boolean 5 Polarity of ADC ready
0 unused, open-
loop
1 used, with time-
out
trigg_pol Boolean 4 Polarity of ADC triggers
0 falling edge
1 rising edge
trigg_mode 2-bit selection 2 ADC trigger source
0 none
1 ADTrig
2 32-bit Timer 1
3 32-bit Timer 2
adc _dw 2-hit selection 0 ADC datawidth
0 none
1 8-bit ADDA-
TA[7:0]
2 16-bit ADDA-
TA[15:0]
3 none/spare

37.2.6. Function prototype description
37.2.6.1. General ADC/DAC functions
A short summary to the functions are presented in the prototype lists below.

Table 37.5. General ADC/DAC functions

Prototype Name

void gradcdac_set_config (void *cookie, struct gradcdac_config * cfg)

void gradcdac_get_config (void * cookie, struct gradcdac_config * cfg)

void gradcdac_set_cfg (void *cookie, unsigned int config)

unsigned int gradcdac_get_cfg(void * cookie)

unsigned int gradcdac_get_status(void * cookie)

void gradcdac_adc_convert_start(void * cookie)

RCC-UM
Dec 2023, Version 1.3.2 241

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Prototype Name

unsigned int gradcdac_get_adrinput (void * cookie)

unsigned int gradcdac_get_adroutput (void * cookie)

void gradcdac_set_adroutput (void * cookie, unsigned int output)

unsigned int gradcdac_get_adrdir(void * cookie)

void gradcdac_set_adrdir (void * cookie, unsigned int dir)

unsigned int gradcdac_get_datainput (void * cookie, void)

unsigned int gradcdac_get_dataoutput (void * cookie, void)

void gradcdac_set_dataoutput (void * cookie, unsigned int output)

unsigned int gradcdac_get_datadir (void * cookie, void)
void gradcdac_set_datadir (void *cookie, unsigned int dir)

All functions takes a handle to the ADC/DAC core by the argument cookie. The handle is returned by the
gradcdac_open function.

37.2.6.1.1. gradcdac_set_config

Writes the configuration register of the ADC / DAC controller from thegr adcdac_conf i g datastructure.
Thegr adcdac_confi g structureisdescribed in Table 37.4.

37.2.6.1.2. gradcdac_get_config

Reads the configuration from the controller's configuration register and converts into the data structure
gradcdac_conf i g pointed to by the user provided [cfg] argument.

Thegr adcdac_confi g structureisdescribed in Table 37.4.

37.2.6.1.3. gradcdac_set_cfg

Sets the configuration register directly.

The bits of the ADCONF configuration register are described in Table 37.4.
37.2.6.1.4. gradcdac_get_cfg

Returns the current configuration register value asit is.

The bits of the ADCONF configuration register are described in Table 37.4.
37.2.6.1.5. gradcdac_get_status

Returns the current ADC / DAC controller's status register value.
37.2.6.1.6. gradcdac_get_adrinput

Returns the current address input register value.

37.2.6.1.7. gradcdac_get_adroutput

Returns the current address output register value.

37.2.6.1.8. gradcdac_set_adroutput

Sets the controller's address output register to the argument [output].
37.2.6.1.9. gradcdac_get_adrdir

Returns the current address direction register value.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 242

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

37.2.6.1.10. gradcdac_set_adrdir

Sets the controller's address direction register to the argument [dir].
37.2.6.1.11. gradcdac_get_datainput

Returns the current data input register value.

37.2.6.1.12. gradcdac_get_dataioutput

Returns the current data output register value.

37.2.6.1.13. gradcdac_set_dataioutput

Sets the controller's data output register to the argument [output].
37.2.6.1.14. gradcdac_get_datadir

Returns the current data direction register value.

37.2.6.1.15. gradcdac_set_datadir

Sets the controller's data direction register to the argument [dir].
37.2.6.2. Status interpretation help function

A short summary to the functions are presented in the prototype lists below. Functions to help the interpretation
of the status read with gr adcdac_get _st at us are described in Table 37.5. The functions does not actually
read or write any ADC/DAC register therefore the handle (cookie) is omitted.

Table 37.6. Satus interpretation help functions

Prototypes Non-zero return meaning

int gradcdac DAC_RegRej(unsigned int status) DAC conversion request rejected
int gradcdac DAC_isCompleted (unsigned int status) |DAC conversion complete

int gradcdac_DAC_isOngoing (unsigned int status) DAC conversion isongoing

int gradcdac ADC_isTimeouted (unsigned int status) |ADC sample timed out

int gradcdac ADC_RegRej(unsigned int status) ADC sample request rejected

int gradcdac_ ADC_isCompleted (unsigned int status) |ADC conversion is completed
int gradcdac_ ADC_isOngoing (unsigned int status) ADC conversion is ongoing

37.2.6.3. ADC functions
A short summary to the functions are presented in the prototype lists below.

Table 37.7. ADC functions

Operating on all ports

void gradcdac_adc_convert_start(void)

int gradcdac_adc_convert_try (unsigned short *digital_value)

int gradcdac_adc_convert (unsigned short *digital_value)

37.2.6.3.1. gradcdac_adc_convert_start

Make the ADC circuitry initialize an analogue to digital conversion. The result can be read out by
gradcdac_adc_convert _try or gradcdac_adc_convert.

37.2.6.3.2. gradcdac_adc_convert_try

Triesto read the conversionresult previoudy startedwithgr adcdac_adc_convert _st art . If thecircuitryis
busy converting the function returns anon-zero value, if the conversion has successfully finished zero is returned.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 243

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 37.8. gradcdac_adc_convert_try return code

Return Code Description

zero ADC conversion complete, digital_value contain current conversion result.
Positive ADC busy, digital value contain previous conversion result.

Negative ADC conversion request failed.

37.2.6.3.3. gradcdac_adc_convert

Waits until the ADC circuity has finished adigital to analogue conversion. The waiting isimplemented as a busy
loop utilizing 100% CPU load. This function returns zero on success and a negative value on failure, a positive
result is never returned. See Table 37.2 for a description of the return values.

37.2.6.4. DAC functions
A short summary to the functions are presented in the prototype lists below.

Table 37.9. DAC functions

Operateson a single port
int gradcdac_dac_convert_try (unsigned short digital_value)
void gradcdac_dac_convert (unsigned short digital_value)

For a more detailed description see each function's respective sub section.

37.2.6.4.1. grandcdac_dac_convert_try

Try to make the DAC circuitry initialize a digital to analogue conversion. The digital value to be converted is
taken as the argument digital_value. If the circuitry is busy by a previous conversion the function returns a non-
zero value, if the conversion is successfully initialized the function returns zero.

37.2.6.4.2. grandcdac_dac_convert

Initializes adigital to analogue conversion by waiting until any previous conversion isfinished before proceeding
with the conversion. The digital value to be converted is taken as the argument [digital_value]. The waiting is
implemented as a busy loop utilizing 100% CPU load.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 244

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 38. GRTC GRLIB CCSDS Telecommand driver
38.1. INTRODUCTION

This document isintended as an aid in getting started developing with Aeroflex Gaisler GRLIB GRTC Telecom-
mand (TC) core using the driver described in this document. It describes accessing GRTC in aon-chip system and
over PCI and SpaceWire. It briefly takes the reader through some of the most important steps in using the driver
such as starting TC communication, configuring the driver and receiving TC frames. The reader is assumed to be
well acquainted with TC and RTEMS.

38.1.1. TC Hardware
See the GRTC core manual. When the GRTC coreis accessed over SpaceWire RMAP is used.

38.1.2. Software Driver

The driver provides means for threads to receive TC frames using standard /O operations. There are two drivers,
onethat supports GRTC on an on-chip AMBA busand an AMBA busaccessed over PCI (onaGR-RASTA-TMTC
board for example) and one driver that supports accessing the GRTC over SpaceWire.

38.1.2.1. GRTC over SpaceWire

The SpaceWire capable GRTC driver introduces some limitations listed below:

1. RAW modeis not supported (the read call)

2. The GRTC DMA area accessed over SpaceWire is cached in RAM close to the CPU. The cached DMA
areais egual in length to the GRTC DMA area. The cache is synchronized every time the user enters the
receive function.

3. Afieldnameddma_partiti on hasbeenaddedtothegrtc_i oc_buf par ans structureidentifying
the partition used when allocating the DMA memory onthe SpaceWirenode. Thecust om buf f er option
isdtill available, it determines where the cached areaiis located.

38.2. User interface

The RTEMS GRTC driver supports the standard accesses to file descriptors such as open, read and ioctl. User
applications include the grtc driver's header file which contains definitions of all necessary data structures and
bit masks used when accessing the driver.

Thedriver enablesthe user to configure the hardware and to receive TC frames. The driver can be operated in two
different modes either in RAW mode giving the user the possibility to read the DMA area it self using the read
call or in FRAME mode where the driver handles basic frame parsing by looking at the header length field and the
control bytes from the TC core. In the FRAME mode the allocation of TC framesis handled by the user, empty
frames are given to the driver that puts data and header of received TC frames into the user allocated framesin
atwo step process. In the first step the user provides the driver with unused frames queued in an driver internal
gueue, the second step is when the user retrieve the frames containing a complete received frame, filler is not
copied in FRAME mode.

Note that RAW mode is not supported when operating the GRTC over SpaceWire.

38.2.1. Driver registration

The registration of the driver is crucial for threads to be able to access the driver using standard means, such as
open. Thefunctiongrt c_r egi st er whose prototypeis provided in grtc.h is used for registering the driver. It
returns 0 on success and 1 on failure. A typical register call from the LEON3 Init task:

if (grtc_register(&nba_conf))
printf(“GRTC register Failed\n");

38.2.2. Opening the device

Opening the device enables the user to access the hardware of a certain GRTC device. The driver is used for all
GRTC coresavailable. The cores are separated by assigning each core aunique name and anumber called [minor].
The name is given during the opening of the driver. The first three names are printed out:

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 245

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 38.1. Core number to device name conversion.

Core number Filesystem name

0 /dev/grtcO

1 /dev/grtcl

2 /dev/grtc2

0 /dev/rastatmtcO/grtcO
0 /devirmap_fe/grtcO

An example of an RTEMS [open] call is shown below.
fd = open("/dev/grtc0", O RDWR)

A file descriptor isreturned on success and -1 otherwise. In the latter case errno is set asindicated in Table 38.1.

Table 38.2. Open er r no values.

ERRNO Description

ENODEV Illegal device name or not available
EBUSY Device already opened

ENOMEM Driver failed to allocate necessary memory.

38.2.3. Closing the device

The deviceis closed using the close call. An exampleis shown below.
res = close(fd)

Close dways returns O (success) for thegr t ¢ driver.
38.2.4. 1/0 Control interface

The behaviour of thedriver and hardware can be changed viathe standard system call ioctl. M ost operating systems
support at least two argumentstoioctl, thefirst being an integer which selectsioctl function and secondly a pointer
to data that may be interpreted uniquely for each function. A typical ioctl call definition:

int ioctl(int fd, int cmd, void *arg);

Thereturn value is 0 on success and -1 on failure and the global errno variable is set accordingly.

All supported commands and their data structures are defined in the GRTC driver's header filegr t c. h. Infunc-
tions where only one argument is needed the pointer (void *arg) may be converted to an integer and interpreted
directly, thus simplifying the code.

38.2.4.1. Data structures

Thegrtc_ioc_buf_params struct is used for configuring the DMA area of the TC core and driver.

struct grtc_ioc_buf_paranms {

unsi gned int | engt h;
voi d *cust om buffer;
int dma_partition;

}

Table 38.3. grtc_ioc_buf_params member descriptions.

Member Description

length Length of custom buffer or length of DMA buffer requested to be allocated by
driver.

custom_buffer When custom_buffer is zero, aDMA buffer will be allocate using malloc() by

the driver. Set this option to a non-zero buffer pointer to indicate that the buffer
is allocated by the user (user custom buffer). custom_buffer isinterpreted as

the new DMA buffer address that the driver must use. Note that there are align-
ment requirements that need to be met, see the hardware documentation. When

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 246

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

M ember

Description

the least significant bit is set to one the custom addressis interpreted as an ad-
dresslocal to the GRTC core. The GRTC driver will trandate this addressto an
address that the CPU can read. Thisis useful when the GRTC coreisnot on the
same bus as the CPU and translation is needed.

dma_partition

SpaceWire driver version only. This option select which partition the DMA
area on the SpaceWire node is alocated from. The AMBA RMAP bus driv-

er provides custom functions for allocating memory on the remote target, the
memory is split into multiple partitions. Note that memory allocated cannot be
returned/freed, this means that a memory leak may be created when configur-
ing the memory more than once.

The grtc_ioc_config struct is used for configuring the driver and the TC core.

struct grtc_ioc_config {

int psr_enabl e;

int nrzm enabl e;

int pss_enabl e;

int crc_cal c;

int ski p_chk_filler;

b

Table 38.4. grtc_ioc_config member descriptions.

M ember Description

psr_enable Enable Pseudo-De-Randomizer in the TC core. See hardware manual for more
information.

nrzm_enable Enable Non-Return-to-Zero Mark Decoder. See hardware manual for more in-
formation.

pss_enable Enable ESA/PSS. See hardware manual for more information.

crc_calc Reserved, set thisto zero

skip_chk_filler Set to non-zero to disable checking of filler data. Otherwise the default is that
the filler must match 0x55. Thisistypically used when frame is randomized by
TC sender but filler is not randomized.

The grtc_ioc_hw_status data structure is used to store the register values of some of the GRTC core's registers.
See hardware manual for more information.

struct grtc_ioc_hw status {

unsi gned i nt sir;
unsi gned int far;
unsi gned int clcwl;
unsi gned i nt clcwe;
unsi gned int phir;
unsi gned int str;

}

Table 38.5. grtc_ioc_hw_status member descriptions.

Member Description

Sir Spacecraft |dentifier register

far Frame A cceptance Report Register
clewl CLCW Register 1

clew2 CLCW Register 2

phir Physical Interface Register

str Status Register

The grtc_frame structure is used for adding unused frames as buffers to the TC driver and retrieving received
frames, it is the driver's representation of a TC frame. A TC frame structure can be chained together using the
next fieldingrtc_frame. The dat a field is only 3 bytes in the structure but when used the data field goes past

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 247

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

thegrt c_fr ame boundary making different sized frames possible. The frame structure may be allocated with
the size [sizeof(struct grtc_frame) +DATA_LEN-3].

struct grtc_frame {
struct grtc_frame *next ;
unsi gned short l en;
unsi gned short reserved;
struct grtc_frame_pool *pool;

/* The Frane content */
struct grtc_hdr hdr;
unsi gned char data[3] ;

}

Table 38.6. grtc_frame member descriptions.

M ember Description

next Points to next TC framein TC frame chain, NULL if last framein chain. This
field is used to make driver process multiple TC Frames at the sametime,
avoiding multiple ioctl calls.

len Length of received TC Frame.

reserved Reserved by the driver.

pool Field internally used by driver, must not be changed by user.

hdr Header of aTC Frame.

data Start of TC Frame payload.

The grtc_list structure represents alinked list, a chain, of TC frames. The data structure holds the first frame and
last frame in chain.

struct grtc_list {
struct grtc_frame *head;
struct grtc_frame *tail;
int cnt;

}

Table 38.7. grtc_list member descriptions.

Member Description

head First TC framein chain

tail Last TC framein chain, last framein list must have it's next field set to NULL
cnt Number of framesin list

Thegrtc_ioc_pools_setup structure represents the set up of al frame pools used by the driver to select the shortest
frame to put incoming TC frames into. The size of the data structure depends on the pool_cnt field, the size can
be calculated as [sizeof (struct grtc_ioc_pools_setup) - 4 + 4*pool_cnt].
struct grtc_ioc_pools_setup {

unsi gned int pool _cnt;

unsi gned int pool _frame_len[1];

}

Table 38.8. grtc_ioc_pools_setup member descriptions.

Member Description

pool_cnt Number of frame poolsin this setup

Array of frame lengths, one length per pool. Pool one has frame length
pool_frame_len[Q], Pool 2 pool_frame len[1] and so on.

pool_frame len

The grtc_ioc_assign_frm_pool structure hold a chain of frames all with the same minimum length, the length is
specified by thef r ame_| en field and the frame chain is pointed to by the field f r ames. This data structureis
used by the driver to assign acommon pool for al framesin the chain. Thisisto make the frameto pool insertion
faster for unused frames.

struct grtc_ioc_assign_frmpool {
unsi gned i nt frame_| en;

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 248

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

struct grtc_frane *franes;

s

Table 38.9. grtc_ioc_assign_frm_pool member descriptions.

M ember Description
frame_len Minimum length of all TC framesin the framesfield
frames Linked list of frames that will be assigned a pool by the driver

Thegrtc_ioc_stats structure contain statistics collected by the driver in FRAME mode.

struct grtc_ioc_stats {
unsi gned | ong | ong

frames_recy;

/* Errors related to incomng data */

unsi gned i nt
unsi gned i nt
unsi gned i nt
unsi gned i nt
unsi gned i nt

err;
err_hdr;
err_payl oad;
err_endi ng;
err_abandoned;

/* Errors related to the handling of incom ng frames */

unsi gned i nt
unsi gned i nt
unsi gned i nt

s

dr opped;
dr opped_no_buf;
dr opped_t oo_| ong;

Table 38.10. grtc_ioc_stats member descriptions.

Member Description

frames _recv Number of frames successfully received by the TC core.

err Total number of errors related to incoming data, due to too early frame end-
ing or abandoned frame.

err_hdr Number of errors encountered during frame header processing.

err_payload Number of errors encountered during frame payload processing.

err_ending Number of errors encountered during filler and end of frame processing.

err_abandoned reserved for future use, NOT IMPLEMENTED.

dropped Number of dropped frames due to not the correct buffers were available
when processing the frame.

dropped_no_buf Number of frames dropped because no empty frames of this frame length
were available upon reception.

dropped too_long Number of frames dropped because frame length too long to match any of
the configured frame pools.

38.2.4.2. Configuration

The TC core and driver are configured using ioctl calls. The Table 38.4 below lists all supported ioctl calls.
GRTC_10C_ must be concatenated with the call number from the table to get the actual constant used in the code.
Return valuesfor all callsare 0 for success and -1 on failure. Errno is set after afailure asindicated in Table 38.3.

An exampleis shown below where the statistics of the driver is copied to the user buffer statsby usinganioctl call:

struct grtc_ioc_stats stats;

result = ioctl(fd, GRTC_|OC GET_STATS, &stats);

Table 38.11. ERRNO values of ioctl calls.

ERRNO Description
EINVAL Null pointer or an out of range value was given as the argument.
EBUSY The TC hardware is not in the correct state. Many ioctl calls need the TC
core to be in stopped or started mode. One can switch state by calling
START or STOP.
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2

249

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

ERRNO Description

ENOMEM Not enough memory to complete operation. This may cause other ioctl
commandsto fail.

EIO Writing to hardware failed. Feature not available in hardware.

Table 38.12. ioctl calls supported by the GRTC driver.

Call Number Status Mode Description
START Stopped Both Exit stopped mode, start the receiver.
STOP Started Both Exit started mode, enter stopped mode.

This stops the receiver. Most of the set-
tings can only be set when in stopped

mode.

ISSTARTED Both Both Indicates operating status, started or
stopped.

SET BLOCKING_MODE Both RAW Set blocking or non-blocking mode for
read calls.

SET TIMEOUT Both RAW Set time out value used in blocking

mode to wake up blocked task if read
reguest takes too long time to compl ete.

SET_MODE Stopped Both Select operating mode, RAW or
FRAME mode. RAW is defaullt.
SET_BUF_PARAM Stopped Both Set DMA buffer parameters.
SET_CONFIG Stopped Both Configure hardware and driver.
GET_CONFIG Both Both Get current configuration previously set
with SET_CONFIG or the driver de-
faults.
GET_BUF_PARAM Both Both Get current DMA buffer parameters.
GET_BUF_STATUS Both Both Get current GRTC hardware status.
GET_CLCW_ADR Both Both Returns the address of the CLCWRx1

register, it can be used to get the current
CLCW fields from hardware. For exam-
ple can the no-RF and the No-Bit-Lock
bit be read from this address. See hard-

ware manual.

GET_STATS Both FRAME Get statistics collected by driver.

CLR_STATS Both FRAME Reset driver statistics.

POOLS SETUP Stopped FRAME Set up frame pool configuration.

ASSIGN_FRM_POOL Both FRAME Assigns a chain of TC frame structures
to aframe pool internal used by driver.

ADD_BUFF Started FRAME Add achain of free TC framesto the
frame poolsinternal to the GRTC driv-
er.

RECV Both FRAME Get all complete processed TC frames
from the ready queue internal to the
GRTC driver.

38.2.4.2.1. START

Thisioctl command enablesthe TC receiver and changesthe driver'soperating statusto started. Settings previously
set by other ioctl commands are written to hardware just before starting reception. It is necessary to enter started
mode to be able to receive TC frames using the ioctl command GRTC_IOC_RECYV or to read the DMA data area
by callingr ead() .

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 250

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The command will fail if the receiver is unable to be brought up, the driver or hardware configuration isinvalid
or if the TC core aready is started. In case of failure the return code is negative and errno will be set to EIO or
EINVAL, see Table 38.3.

38.2.4.2.2. STOP

Thiscall makesthe TC coreleave started mode and enter stopped mode. Thereceiver is stopped and no frames will
be received. After calling STOP further calls to read and to ioctl using command such as ADD_BUFF, RECV,
ISSTARTED, STOP will behave differently or result in error.

It is necessary to enter stopped mode to change major operating parameters of the TC core and driver. See
SET_CONFIG for more details.

The command will fail if the TC driver already isin stopped mode.
38.2.4.2.3. ISSTARTED

Determines if driver and hardware is in started mode. Errno will be set to EBUSY in stopped mode and return
successfully in started mode.

38.2.4.2.4. SET_BLOCKING_MODE

Changes the driver's read behaviour in RAW mode. This call has no effect for FRAME mode, FRAME mode is
always non-blocking. Two modes are available blocking mode and polling mode, in polling mode the r ead()
call always returns directly even when no DMA datais available. In blocking mode the task calling r ead() is
blocked until at least one byte is available, it is aso possible to make the blocked task time out after some time
setting the timeout value using the SET_TIMEOUT ioctl command.

Input is set as as described in the table below.

Table 38.13. SET_BLOCKING_MODE ioctl arguments

Bit number Description
GRTC_BLKMODE_POLL Enables polling mode
GRTC BLKMODE BLK Enables blocking mode

The driver's default is polling mode.

Note that the blocking mode isimplemented using the CLTU stored interrupt.
This command never fail.

38.2.4.2.5. SET_TIMEOUT

Sets the blocking mode time out value, instead of blocking for eternity the task will be woken up af-
ter this time out expires. The time out value specifies the input to the RTEMS take semaphore operation
rtems_semaphor e_obt ai n() . See the RTEMS documentation for more information how to set the time
out value.

Note that this option has no effect in polling mode.
This command never fail.
38.2.4.2.6. SET_MODE

Select RAW of FRAME mode. Argument must be either GRTC_MODE_RAW for RAW mode or
GRTC_MODE_FRAME for FRAME mode. See the section Operating mode for more information about the
modes.

The driver defaults to RAW mode.

This calsfailsif driver isin started mode or due to anillegal input argument.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 251

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

38.2.4.2.7. SET_BUF_PARAM

Thiscommand is used to configure the DMA buffer area of the TC core. The argument isapointer to aniinitialized
grtc_ioc_buf params data structure described in the data structures section. The DMA buffer may be set to a
custom location and length, or the driver may be requested to allocate a DMA buffer with the specified size. If
the custom location Isb is set to one the addressis interpreted as a remote address as viewed from the GRTC core,
not the CPU. This can be useful for GRTC cores found on ancther bus than the CPU, for example for a GRTX
core on aGR-RASTA-TMTC PCI board.

When GRTC is operated over SpaceWire an additional optionisavailable, thedma_parti ti on field, selecting
from which memory partition the DMA areais alocated from. See AMBA Plug& Play SpaceWire bus driver for
an description of memory allocation. The custom option described above is till available, however it identifies
the cached memory arearather than the GRTC DMA area.

Trying to configure the DMA buffer area in started mode result in failure, and errno set to EBUSY. Aninvalid
argument result in failure and errno set to EINVAL. The command will fail and errno set to ENOMEM when
the driver isrequested to allocate a buffer too large to be alocated by mal | oc() .

38.2.4.2.8. SET_CONFIG

Configures the driver and core. This call updates the configuration that will be used by the driver during the
START command and during operation. Enabling features not implemented by the TC core will result in EIO
error when starting the TC driver.

Theinput isa pointer to aninitialized grtc_ioc_config structure described in Section 38.2.2.

This call fail if the TC coreisin started mode, in that case errno will be set to EBUSY, or if aNULL pointer is
given as argument, in that case errno will be set to EINVAL.

38.2.4.2.9. GET_CONFIG

Return the current configuration of the driver and hardware. The current configuration is either the driver and
hardware defaults or the configuration previously set by the SET_CONFIG command.

Theinput to thisioctl command is a pointer to adataareaof at least thesizeof agrt ¢_i oc_confi g structure.
The dataareawill be stored accordingtothegrt c_i oc_conf i g datastructure described in Section 38.2.2.

This command only fail if the pointer argument isinvalid.
38.2.4.2.10. GET_BUF_PARAM

Get the current DMA buffer configuration. The argument isa pointer to an uninitialized grtc_ioc_buf_paramsdata
structure described in the data structures section.

This command will fail if the input argument isinvalid, errno will be set to EINVAL in such cases.
38.2.4.2.11. GET_HW_STATUS

Read current TC hardware state, the argument is a pointer to a data area where the hardware status will be stored.
The statusis stored using the layout of thegrt ¢_i oc_hw_st at us described in the data structures section.

This command only fail if the pointer argument isinvalid.
38.2.4.2.12. GET_CLCW_ADR

The address of the GRTC register "GRTC CLCW Register 1" is stored into a user provided location. The register
address may be used to access the current CLCW fields from the GRTC hardware. For example can the no-RF
and the No-Bit-Lock bit be read from this address. See the hardware manual.

This command only fail if the pointer argument isinvalid.
38.2.4.2.13. GET_STATS

This command copies the driver'sinternal statistics countersto a user provided data area. The format of the data
written is described in the data structure subsection. Seethegrt c_i oc_st at s datastructure.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 252

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Note that the statistics only is available for the FRAME mode since it is only the FRAME mode that generate
statistics such as number of frames received and errorsin header, in RAW mode the datais never processed just
copied to a user provided buffer.

The call will fail if the pointer to the dataisinvalid.
38.2.4.2.14. CLR_STATS

This command reset the driver's internal statistics counters.
This command never fail.

38.2.4.2.15. POOLS_SETUP

This command set up the frame pools internal to the driver. The frame pools must be configured before starting
thereceiver in FRAME mode. For more information about frame pools see section Operating mode. The poolsare
configured by the input argument pointing to aniinitializedgrt c_i oc_pool s_set up datastructure described
in the data structure subsection.

Note that the frame length must be sorted with the first frame pool having the shortest frame length.
The call will fail if the pointer to the dataisinvalid or if in RAW mode.
38.2.4.2.16. ASSIGN_FRM_POOL

Assigns a linked list of frames to a frame pool. The input argument is a pointer to a
grtc_i oc_assign_frm pool data structure containing the frame length identifying a pool and a linked
list of frames that will be assign to the matching pool. All frames must be assigned to a frame pool before
added to the driver's frame pools using the command ADD_BUF. For more information about frame pools and
assigning a frame to a frame pool see section Operating mode. See section data structures for a description of
grtc_i oc_assign_frm pool .

The frame pools, using POOLS SETUP, must be set up before assigning frames to a frame pool.

This command fail and errno set to EINVAL isthe input argument isinvalid, the driver isin RAW mode or no
matching frame pool was found.

38.2.4.2.17. ADD_BUF

Adds a chain of frames to their respective frame pool for later use by the driver. The driver will use the added
frameswhen frames arereceived. Theinput argument isapointer toagr t ¢_f r ane datastructure, thefirst frame
in the chain, see the data section for adescription of thegrt c_f r ame structure.

Note, that the frame structure and any data pointed to by the frame added to the driver must not be accessed until
the frame has been received using the ioctl command RECV.

The call will fail if the pointer to the dataisinvalid or if in RAW mode.
38.2.4.2.18. RECV

Thiscommand isused to processthe DMA areaand retrieve alinked list of successfully processed received frames.
Theinput argument to RECV isapointertoagrt c_| i st datastructure, described in the data structure section.
All currently processed frames will be put into data structure, head will point to the first and tail to the last frame
in the chain, cnt will hold the number of framesin the list.

38.2.5. Operating mode

In RAW mode the user can read out the raw data from the TC DMA buffer set up by the driver using the standard
read() call. Thisenables the user to do custom processing of incoming frames. All TC DMA data is read one
control data byte for each frame data byte, for more information how to handle the data see the GRTC hardware
manual. If the DMA buffer isn't read in time overflow may occur and data will be lost forcing the driver to stop
the receiver.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 253

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

When thedriver isoperated in FRAME modethedriver isresponsible to determine the start and end of each frame.
It does so by looking at the TC frame length field and the GRTC control bytes provided for each frame data byte.
The header and datais copied into afree frame taken from aframe pool interna to the driver, see next section for
information about frame pools, an put at the end of alinked list with received frames that can be read by the user
using the ioctl command GRTC_IOC_RECV. After the user has processed the frame the frame is added again
to the driver's frame pools using the ioctl command GRTC_IOC_ADD_BUFF. It is the users responsibility to
make sure that there always is frames available for the TC driver to copy frames into, otherwise the TC driver
will drop frames.

38.2.5.1. Driver frame pools

In FRAME mode aframe pool concept is used to group frames of equal frame length. Using multiple pools make
it possible for the driver to select aframe with aframe length as short as possible that still fit the incoming frame
data and header. The driver is configured with multiple pools with different frame lengths, the more frame pools
the smaller is the difference of the incoming frame length to the taken buffer the driver selects. The pools are set
up using theioctl command GRTC_IOC_POOLS SETUP.

Every time aframeis added to one of the driver's pool, using the GRTC _10C_ADD_BUFF command, the correct
frame pool must be found to put it in. To simplify and make the frame pool detection faster each frame must be
assigned to a frame pool once before use, assigning a frame with a pool must done by using the ioctl command
GRTC_IOC_ASSIGN_FRM_POOL.

38.2.6. Reception in FRAME mode

Receiving frames are done with the ioctl call using the command ADD_BUF and RECV. It is possible to receive
multiple frames in one call, the frames are provided to the driver using a linked list of frames. See the ioctl
command RECV and ADD_BUF for more information.

38.2.7. Reception using RAW mode

Reception is done using the read call. An exampleis shown below:
unsi gned char tc_rx_buf[512];
len = read(fd, tc_rx_buf, sizeof(tc_rx_buf));

The requested number of bytesto be read isgiven in the third argument. The messageswill be stored intc_rx_buf.
The actual number of received bytes is returned by the function on success and -1 on failure. In the latter case
errnoisalso set.

The data formatting is described in the hardware manual .

The call will fail if anull pointer is given, invalid buffer length, the TC core isin stopped mode, no data available
in non-blocking mode or due to atime out in blocking mode.

The blocking behaviour can be set using ioctl calls. In blocking mode the call will block until at least one byte has
been received, unless atime out has been given and that time has expired causesthe driver to return ETIMEDOUT.
In non-blocking mode, the call will return immediately and if no data was available -1 is returned and errno set
appropriately. The table below shows the different errno valuesis returned.

Table 38.14. ERRNO values for read calls.

ERRNO Description

EINVAL A NULL pointer was passed as the data pointer or the length wasillegal.

EBUSY TC coreisin stopped mode. Switch to started mode by issuing a START ioctl
command.

ETIMEDOUT In non-blocking mode no data were available in the DMA area, or in blocking
mode and the time out has expired and still no datain DMA area.

ENODEV A blocking read was interrupted by the TC receiver has been stopped. Further calls
toread will fail until theioctl command START isissued again.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 254

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 39. GRTM GRLIB CCSDS Telemetry Driver
39.1. Introduction

Thisdocument isintended as an aid in getting started devel oping with Aeroflex Gaiser GRLIB GRTM Telemetry
(TM) core using the driver described in this document. It describes accessing GRTM in a on- chip system and
over PCI and SpaceWire. It briefly takes the reader through some of the most important steps in using the driver
such as starting TM communi cation, configuring the driver and sending TM frames. The reader is assumed to be
well acquainted with TM and RTEMS.

39.1.1. TM Hardware

See the GRTM core manual. When the GRTM core is accessed over SpaceWire RMAP is used.
39.1.2. Software Driver

The driver provides means for threads to send TM frames using standard 1/0 operations.

There are two drivers, one that supports GRTM on an on-chip AMBA bus and an AMBA bus accessed over PCI
(onaGR-RASTA-TMTC board for example) and one driver that supports accessing the GRTM over SpaceWire.

39.1.2.1. GRTM over SpaceWire

There are some differences when the GRTM core is operated over SpaceWire, see below list for a summary.

* The GRTM driver manages one buffer per descriptor used to copy frame payload into. The payload is copied
over SpaceWire by the GRTM driver. The maximal frame length must be given in order for the driver to
know how much buffer space to allocate. It is controlled through the max Fr ameLengt h driver resource.

» The driver has three new driver resources. maxFr ameLengt h (maximal length of frames, used when al-
locating buffer space), bdAl | ocPartiti on (partition used when allocating descriptor table, sce AMBA
RMAP bus driver documentation) and f r aneAl | ocParti ti on (partition used when allocating buffer
space, see AMBA RMAP bus driver documentation).

* TM frames has an additional option COPY_DATA, it determines if the payload is to be copied to the
descriptor's buffer or if the address of the payload is an address that the GRTM core can read directly, for
example the payload may aready reside on the SpaceWire node's memory ready to be transmitted. In the
latter case only the descriptor address pointer is written.

e The Frame options TRANSLATE and TRANSLATE_AND_REMEMBER has no effect.

39.2. User interface

The RTEMS GRTM driver supports the standard accesses to file descriptors such as open, close and ioctl. User
applications include the grtm driver's header file which contains definitions of all necessary data structures and
bit masks used when accessing the driver.

The driver enables the user to configure the hardware and to transmit TM frames. The alocation of TM frames
is handled by the user and free frames are given to the driver that processes the frames for transmission in atwo
step process. In the first step the driver schedules frames for transmission using the DMA descriptors or they
are put into an internal queue when all descriptors are in use, in the second step all sent frames are put into a
second queue that is emptied when the user reclaims the sent frames. The reclaimed frames can be reused in new
transmissions later on.

39.2.1. Driver registration

The registration of the driver is crucial for threads to be able to access the driver using standard means, such as
open. Thefunctiongrt m r egi st er whose prototypeis provided in grtm.h is used for registering the driver. It
returns 0 on success and 1 on failure. A typical register call from the LEON3 Init task:

if (grtmregister(&nba_conf))
printf(“GRTMregister Failed\n");

39.2.2. Opening the device

Opening the device enables the user to access the hardware of a certain GRTM device. The driver is used for
all GRTM cores available. The cores are separated by assigning each core a unique name and a number called
[minor]. The nameis given during the opening of the driver. The first three names are printed out:

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 255

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 39.1. Core number to device name conversion.

Corenumber Filesystem name L ocation

0 /dev/grtmO On Chip AMBA bus

1 /dev/grtml On Chip AMBA bus

2 /dev/grtm2 On Chip AMBA bus

0 [/dev/rastatmtcO/grtm0 GR-RASTA-TMTC PCI Target

0 /devirmap_fe/grtmO SpaceWire node with destination address Oxfe.
2 /dev/rmap_la/grtm2 SpaceWire node with destination address Ox1a.

An example of an RTEMS open call is shown below.
fd = open("/dev/grtnd", O RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set asindicated in Table 39.1.

Table 39.2. Open errno values.

ERRNO Description

ENODEV Illegal device name or not available.
EBUSY Device already opened.

ENOMEM Driver failed to allocate necessary memory.

39.2.3. Closing the device

The deviceis closed using the close call. An exampleis shown below.
res = close(fd)

Close always returns 0 (success) for the [grtm] driver.
39.2.4. 1/O Control interface

Thebehaviour of thedriver and hardware can be changed viathe standard system call ioctl. M ost operating systems
support at least two argumentstoioctl, thefirst being an integer which selectsioctl function and secondly a pointer
to data that may be interpreted uniquely for each function. A typical ioctl call definition:

int ioctl(int fd, int cmd, void *arg);

Thereturn value is 0 on success and -1 on failure and the global errno variable is set accordingly.

All supported commands and their data structures are defined in the GRTM driver's header file grt m h. In
functionswhere only one argument is needed the pointer (void * arg) may be converted to aninteger and interpreted
directly, thus simplifying the code.

39.2.4.1. Data structures

The grt m i oc_hw data structure indicates what features the TM hardware supports and how it has been con-
figured.

struct grtm.ioc_hw {

char cs;

char sp;

char ce;

char nrz;

char psr;

char te;

unsi gned char rsdep;
unsi gned char rs;
char aasm

char fecf;

char ocf;

char evc;

char idle;

char fsh;
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 256

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

char ncg;

char iz;

char f hec;

char aos;

unsi gned short bl k_si ze;
unsi gned short fifo_size;

s

Table 39.3. grtm_ioc_hw member descriptions.

Member Description

cs Indicatesif Sub Carrier (SC) modulation isimplemented

P Indicatesif Split-Phase Level (SP) modulation isimplemented

ce Indicatesif Convolutional Encoding (CE) isimplemented

nrz Indicates if Non-Return-to-Zero (NRZ) mark encoding isimplemented

psr Indicatesif Pseudo-Randomizer (PSR) isimplemented

te Indicatesif Turbo Encoder (TE) isimplemented

rsdep Reed-Solomon interleave Depth (RSDEPTH) implemented (3-bit)

rs Indicates what Reed-Solomon encoders are implemented (O=None, 1=E16, 2=ES,
3=Both)

aasm Indicatesif Alternative ASM (AASM) implemented

fecf Indicatesif Transfer frame control field CRC isimplemented

ocf Indicates if Operational Control Field (OCF) isimplemented

eve Indicatesif Extended Virtual Channel Counter isimplemented

idle Indicatesif Idle Frame generation isimplemented

fsh Indicatesif Frame secondary header isimplemented

mcg Indicatesif Master Channel counter generation isimplemented

iz Indicatesif Insert Zone (1Z) isimplemented

fhec Indicatesif Frame Header Error Control (FHEC) isimplemented

aons Indicatesif AOS transfer frame generation isimplemented

blk_size TM core DMA Block size in number of bytes

fifo_size TM core FIFO size in number of bytes

The grtm_ioc_config struct is used for configuring the driver and the TM core.

struct grtm.ioc_config {

unsi gned char node;

unsi gned short frame_| ength;
unsi gned short limt;

unsi gned i nt as_mar ker;

/* Physical |ayer options */

unsi gned short phy_subrate;
unsi gned short phy_synbol rat e;
unsi gned char phy_opts;

/* Coding sub-1ayer Options */
unsi gned char code_r sdep;

unsi gned char code_ce_rate;
unsi gned char code_csel ;

unsi gned i nt code_opts;

/* Al Franes Generation */

unsi gned char all _izlen;
unsi gned char al | _opts;

/* Master Frame Generation */
unsi gned char nf_opts;

/* Idle frame Generation */

unsi gned short idle_scid;
unsi gned char idle_vcid;
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2

257

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

unsi gned char idle_opts;

/* Interrupt options */

unsi gned i nt enabl e_cnt;
int i sr_desc_proc;
int bl ocki ng;
rtems_i nterval ti meout;

s

Table 39.4. grtm_ioc_config member descriptions.

M ember Description

mode Select mode hardware will operate in, TM=0, AOS=1

frame_length Frame Length in bytes

limit Number of data bytes fetched by TM DMA engine before transmission starts. Set-

ting limit to zero will make GRTM driver to calculate the limit value from frame
length and the block size of the hardware.

as_marker Set custom Attached Synchronization Marker (ASM)

phy_subrate Sub Carrier rate division factor - 1

phy_symbolrate Symbol Rate division factor - 1

phy_opts Physical layer options, mask of GRTM_IOC_PHY _XXXX

code _rsdep Coding sub-layer Reed-Solomon interleave depth (3-bit)

code ce rate Convolutional encoding rate, select one of GRTM_CERATE 00 ...
GRTM_CERATE_07

code csel External TM clock source selection, 2-hit (application specific)

code opts Coding sub-layer options, mask of GRTM_IOC_CODE_XXXX

al_izlen All frame generation FSH (TM) or Insert Zone (AOS) length in bytes

al_opts All frame generation options, mask of GRTM_10C_ALL_XXXX

mf_opts Master channel frame generation, mask of GRTM_|OC_MF_XXXX

idle_scid Idle frame spacecraft ID, 10-bit

idle_vcid Idle frame virtual channel 1D, 6-bit

idle_opts Idle frame generation options, mask of GRTM_1OC_IDLE_XXXX

enable cnt Number of frames between interrupts are generated, zero disables interrupt. Al-
lows user to fine grain interrupt generation

isr_dec_proc Allow TM interrupt service routine (1SR) to process descriptors

blocking Blocking mode select, GRTM_BLKMODE_POLL for polling mode or
GRTM_BLMODE_BLK for blocking mode

timeout Blocking mode time out

The grtm_frame structure is used in for transmitting TM frames and retrieving sent frames, it is the driver's rep-
resentation of a TM frame. A TM frame structure can be chained together using the [next] field in grtm_frame.

struct grtmframe {

unsi gned int fl ags;
struct grtmframe *next;
unsi gned int *payl oad;

}

Table 39.5. grtm_frame member descriptions.

M ember Description

flags Mask indicating options, transmission state and errors for the frame.
GRTM_FLAGS XXX. See Table 39.5

next Points to next TM frame. Thisfield is used to make driver process multiple TM
Frames at the same time, avoiding multipleioctl calls.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 258

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

M ember Description

payload Points to a data area holding the complete TM frame. The area include fields such
as header, payload, OCF, CRC.

Table 39.6. Frame flags descriptions.

Flag

Description

GRTM_FLAGS_SENT

Indicates whether the frame has been transmitted or not

GRTM_FLAGS_ERR

Indicatesif errors has been experienced during transmission of the
frame

GRTM_FLAGS TS

Generate Time Strobe (TS) for the frame

GRTM_FLAGS MCB

Bypass the TM core's Master Channel Counter generation

GRTM_FLAGS FSHB

Bypass the TM core's Frame Secondary Header (FSH) generation

GRTM_FLAGS OCFB

Bypassthe TM core's Operational Control Field (OCF) generation

GRTM_FLAGS _FHECB

Bypass the TM core's Frame Header Error Control (FHEC) generation

GRTM_FLAGS_|ZB

Bypassthe TM core's Insert Zone (1Z) generation

GRTM_FLAGS FECFB

Bypassthe TM core's Frame Error Control Field (FECF) generation

COPY_DATA

This option has effect only on the SpaceWire version of the driver. In-

dicatesif the TM frame payload should be copied into the assigned
descriptor's buffer or not. If this option is not set then the payload ad-
dress is assumed to be readable by the GRTM core and the descriptor
address pointer iswritten with the address of the payload directly.

TRANSLATE Trandlate frame payload address from CPU address to remote bus (the
bus GRTM isresident on). Thisis useful when dealing with buffers on
remote buses, for example when GRTM ison a AMBA bus accessed

over PCI. Thisisthe case for GR-RASTA-TMTC.

TRANSLATE AND_REMEMBER |AsTRANSLATE, however if the trandated payload address equals the
payload addressthe TRANSLATE_AND_REMEMBER hit is cleared
and the TRANSLATE bit is set. Not used in SpaceWire version of driv-
er.

The grtm_list structure represents alinked list, a chain of TM frames. The data structure holds the first frame and
last frame in chain.
struct grtmlist {

struct grtmfrane *head;
struct grtmfrane *tail;

I

Table 39.7. grtm _list member descriptions.

Member Description

head First TM framein chain

tail Last TM framein chain, last framein list must have it's next field set to
NULL

The grtm_ioc_stats structure contain statistics collected by the driver.

struct grtmioc_stats {
unsi gned | ong | ong franmes_sent;
unsi gned int err_underrun;

b

Table 39.8. grtm _ioc_stats member descriptions.

M ember Description
frames_sent Number of frames successfully sent by the TM core
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 259

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

M ember Description

err_underrun Number of AMBA underrun errors

39.2.4.2. Configuration

The GRTM core and driver are configured usingioctl calls. Table 39.7 listsall supportedioctl calls. GRTM_10C _
must be concatenated with the call number from the table to get the actual constant used in the code. Return values
for all callsare 0 for success and -1 on failure. Errno is set after afailure asindicated in Table 39.6.

An exampleis shown below wherethe statistics of thedriver iscopied to the user buffer statsby using anioct! call:

struct grtmioc_stats stats;

result = ioctl(fd, GRTM|OC_GET_STATS, &stats);

Table 39.9. ERRNO values for ioctl calls.

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

EBUSY The TM hardware is not in the correct state. Many ioctl calls need the
TM core to be in stopped or started mode. One can switch state by calling
START or STOP.

ENOMEM Not enough memory to complete operation. This may cause other ioctl
commandsto fail.

EIO Writing to hardware failed. Feature not available in hardware.

ENODEV Operation aborted due to transmitter being stopped.

Table 39.10. ioctl calls supported by the GRTM driver.

Call Number Call Description

START Stopped Exit stopped mode, start the receiver.

STOP Started Exit started mode, enter stopped mode. Most of the settings
can only be set when in stopped mode.

ISSTARTED Both Indicates operating status, started or stopped.

SET_BLOCKING_MODE Both Set blocking or non-blocking mode for RECLAIM.

SET _TIMEOUT Both Set time out value used in blocking mode to wake up blocked
task if request takes too long time to compl ete.

SET_CONFIG Stopped Configure hardware and software driver.

GET_CONFIG Both Get current configuration previously set with SET_CONFIG
or the driver defaullts.

GET_STATS Both Get statistics collected by driver.

CLR_STATS Both Reset driver statistics.

GET_HW_IMPL Both Returns the features and implemented by the TM core.

GET_OCFREG Both Returns the address of the OCF/CLCW register, it can be
used to update the transmitted OCF/CLCW.

RECLAIM Both Returnsall TM frames sent since last call to RECLAIM, the
frames are linked in a chain.

SEND Started Add achain of TM frames to the transmission queue of the
GRTM driver.

39.2.4.2.1. START

Thisioctl command enables the TM transmitter and changes the driver's operating status to started. Settings pre-
viously set by other ioctl commands are written to hardware just before starting transmission. It is necessary to
enter started mode to be able to send TM frames using the ioctl command GRTM_IOC_SEND.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 260

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The command will fail if the transmitter is unable to be brought up, the driver or hardware configuration isinvalid
or if the TM core aready is started. In case of failure the return code is negative and errno will be set to EIO or
EINVAL, see Table 39.6.

39.2.4.2.2. STOP

Thiscall makesthe TM core leave started mode and enter stopped mode. The transmitter is stopped and no frames
will be sent. After calling STOP further ioctl commands such as SEND, RECLAIM, ISSTARTED, STOP will
behave differently or result in error.

It is necessary to enter stopped mode to change major operating parameters of the TM core and driver. See
SET_CONFIG for more details.

The command will fail if the TM driver aready isin stopped mode.
39.2.4.2.3. ISSTARTED

Determines if driver and hardware is in started mode. Errno will be set to EBUSY in stopped mode and return
successfully in started mode.

39.2.4.2.4. SET_BLOCKING_MODE

Changesthe driver's GRTM_IOC_RECLAIM command behaviour. Two modes are avail able blocking mode and
polling mode, in polling mode the ioctl command RECLAIM always return directly even when no frames are
available. In blocking mode the task calling RECLAIM is blocked until at least one frame can be reclaimed, it is
also possible to make the blocked task time out after some time setting the timeout value using the SET_CONFIG
or SET_TIMEOUT ioctl commands.

The argument is set as as described in the table below.

Table 39.11. SET_BLOCKING_MODE ioctl arguments

Bit Number Description
GRTM_BLKMODE_POLL Enables polling mode
GRTM_BLKMODE_BLK Enables blocking mode

The driver's default is polling mode.

Note that the blocking mode is implemented using the DMA transmit frame interrupt, changing the
i sr_desc_proc parameter of the SET_CONFIG command effects the blocking mode characteristics. For ex-
ample, enabling interrupt generation every tenth TM frame will cause the blocked task to be woken up after max-
imum ten frames when going into blocked mode.

This command never fail.
39.2.4.2.5. SET_TIMEOUT

Sets the blocking mode time out value, instead of blocking for eternity the task will be woken up af-
ter this time out expires. The time out value specifies the input to the RTEMS take semaphore operation
rtens_senmaphor e_obt ai n() . See the RTEMS documentation for more information how to set the time
out value.

Note that this option has no effect in polling mode.
Note that this option is also set by SET_CONFIG.
39.2.4.2.6. SET_CONFIG

Configuresthedriver and core. Thiscall updatesthe configuration that will be used by thedriver duringthe START
command and during operation. Enabling features not implemented by the TM core will result in EIO error when
starting the TM driver. The hardware features available can be obtained by the GET_HW_IMPL command.

Theinput isapointer to aninitialized grt m_ i oc_conf i g structure described in section Section 39.2.4.1.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 261

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Note that the time out value and blocking mode can aso be set with SET_TIMEOUT and
SET_BLOCKING_MODE.

Thiscall fail if the TM coreisin started mode, in that case errno will be set to EBUSY, or if aNULL pointer is
given as argument, in that case errno will be set to EINVAL.

39.2.4.2.7. GET_CONFIG

Returns the current configuration of the driver and hardware. The current configuration is either the driver and
hardware defaults or the configuration previously set by the SET _CONFIG command.

Theinput to thisioctl command is apointer to a data area of at least thesizeof agrt m_i oc_conf i g structure.
The dataareawill be updated according to thegr t m i oc_conf i g datastructure described in Section 39.2.4.1.

This command only fail if the pointer argument isinvalid.
39.2.4.2.8. GET_STATS

This command copies the driver'sinternal statistics countersto a user provided data area. The format of the data
written is described in the data structure subsection. Seethegrt m i oc_st at s data structure.

The call will fail if the pointer to the dataisinvalid.
39.2.4.2.9. CLR_STATS

This command reset the driver's internal statistics counters.
This command never fail.

39.2.4.2.10. GET_HW_IMPL

This command copies the TM core's features implemented to a user provided data area. The format of the data
written is described in the data structure subsection. Seethegr t m_ i oc_ hwdata structure.

Knowing the features supported by hardware can be used to make software run on multiple implementations of
the TM core.

39.2.4.2.11. GET_OCFREG

The address of the GRTM register "GRTM Operational Control Field Register” is stored into a user provided
location. The register address may be used to updated the CLCW or OCF value transmitted in TM frames to
ground without using an ioctl command to perform the request. This address is typically used by Telecommand
(TC) software to tell ground of the current FARM/COP state.

Note that OCF/ CLCW istransmitted only in started mode.
This command never fail.
39.2.4.2.12. RECLAIM

Returns processed TM framesto user. All framesreturned has been provided by theuser in previouscallsto SEND,
and need not all to have been successfully sent. RECLAIM can be configured to operate in polling mode, blocking
mode and blocking mode with a time out. In polling mode the task always returns with or without processed
frames, in blocking mode the task is blocked until at least one frame has been processed. See theioctl command
SET_CONFIG and SET_BLOCKING_MODE to change mode of the RECLAIM command.

RECLAIM stores a linked list of processed TM frames into the data area pointed to by the user argument. The
format for the stored data follows the layout of the grt m | i st structure described in Section 39.2.2. The
grtm | i st structure holds the first and last TM frame processed by the driver. The flags field indicates if the
frame was sent or if errors were experienced during transmission of this frame. See Table 39.6 for flags details.

In started mode, this command enables scheduled TM frames for transmission as descriptors become free during
the processing of received TM frames.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 262

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The call will fail if the pointer to the data area is invalid (EINVAL), the RECLAIM call operates in blocking
mode and the time out expires (ETIMEDOUT) or the driver was stopped during the calling task was blocked
(ENODEV). Seetable below.

Table 39.12. ERRNO values for RECLAIM

ERRNO Description

EINVAL Aninvalid argument.

ETIMEDOUT | The blocked task was timed out and still no frames was transmitted.

ENODEV The calling task was woken up from blocking mode by the transmitter being stopped. The
TM driver has has entered stopped mode. Further callsto RECLAIM will retrieve sent and
unsent frames.

39.2.4.2.13. SEND

Scheduling ready TM frames for transmission is done with the ioctl command SEND. Theinput isalinked list of
TM frames to be scheduled. When all TM DMA descriptors are active, enabled and linked to aframe to transmit,
the remaining frames are queued internally by thedriver. The TM coreis capable of generating parts of the header,
the CRC and OCF/CLCW depending on the implementation and configuration of the TM core. The implemented
features are selected by setting generics in the VHDL model, the implemented features can be read using the
GET_HW_IMPL command. The features enabled is controlled by the SET_CONFIG command. For features
available see the hardware manual for the TM core. The hardware generated parts may be overridden by setting
the flags of the input TM frame structure accordingly.

Every call to SEND will trigger scheduled TM frames for transmission, calling SEND with the argument set to
NULL will thustrigger previously scheduled TM framesfor transmission. This might be necessary when interrupts
arenot used to process descriptors or when interrupt generation for TM frames are disabled, see Section 39.2.4.2.7.

Theinput to SEND isapointertoagrt m | i st datastructure described in Section 39.2.4.1. The head and tail
fields of the datastructure pointsto thefirst and thelast TM frameto be scheduled for transmission. The TM frame
structure, gr t m_f r ane, used isdescribed in Section 39.2.2. The data arealength pointed to by the payload field
isassumedto be at |east framelength long. Theframelengthisset by the SET_CONFIG command. The hardware
generated parts may be overridden by setting the flags field of the TM frame structure accordingly.

Note, that the frame structure and any data pointed to by the frame scheduled for transmission must not be accessed
until the frame has been reclaimed using theioctl command RECLAIM.

SEND will fail if theinput frame list isincorrectly set up, errno will be set to EINVAL in such cases.
39.2.5. Transmission

Transmitting frames are done with theioctl call using the command SEND and RECLAIM. It is possible to send
multiple frames in one call, the frames are provided to the driver using a linked list of frames. See the ioctl
commands SEND and RECLAIM for more information.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 263

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 40. GRCTM driver

40.1. Introduction

This section describes the GRLIB GRCTM (CCSDS Time Manager) device driver interface. The driver imple-
ments a simple interface to read and write registers of the core and interrupt handling. The driver supports the
on-chip AMBA and the AMBA-over-PCI bus. It relies on the driver manager for device discovery and interrupt
handling.

The GRCTM driver require the Driver Manager.

In order to usethe driver interface the user must be well acquainted with GRCTM hardware, see hardware manual.
40.1.1. Examples

There is an example available that illustrates how the GRCTM driver interface can be used to configure the
GRCTM core. The example application can be configured as a Time-Master or Time- Slave demonstrating both
sending and receiving time over TimeWire and how it can be connected to the SPWCUC for time-codes and send-
ing time-packets according to CCSDS Unsegmented Code Transfer Protocol using the RTEMS GRSPW driver.
Note that the example may need to be configured, seethe TIME_SYNC _* options.

The example can be built by running:

$ cd /opt/rtens-4.10/src/sanpl es/ 1553
$ nmake rtens-gr1553bchm

40.1.2. User interface
40.1.2.1. Overview

The GRCTM software driver provides access to the GRCTM core's registers and helps with device detection,
driver loading and interrupt handling.

The driver sources and interface definitions are listed in the table below, the path is given relative to the SPARC
BSP sourcesc/ src/lib/libbsp/sparc.

Table 40.1. GRCTM driver Source location

Filename Description
shared/time/grctm.c GRCTM Driver source
shared/include/grctm.h GRCTM Driver interface declaration

40.1.2.1.1. Accessing the GRCTM core

A GRCTM core is accessed by first opening a specific GRCTM device by caling
gr ct m open(| NSTANCE _NUMBER) , after successfully opening adevice thereturned value of gr ct m open
can be used as input other functions in the GRCTM driver interface. Registers can be accessed and interrupts
enabled.

40.1.2.1.2. Interrupt service

The GRCTM core can be programmed to interrupt the CPU on certain events, see hardware manual. All interrupts
causesthedriver'sinterrupt serviceroutine (ISR) to be called, it gathers statisticsand call the optional user assigned
callback. The callback isregistered using the functiongr ct m_i nt _regi ster ().

40.1.2.2. Application Programming Interface

The GRCTM driver API consists of the functions in the table bel ow.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 264

https://www.frontgrade.com/gaisler

Table 40.2. function prototypes

rRONTGRADE

Gaisler

Prototype

Description

voi d *grctm open(int mnor)

Open a GRCTM device by instance number, the num-

ber is determined by the order in which the coreis found
(Plug& Play order). The function returns a handle to GRCTM
driver used internally, it must be given to al functionsin the
API.

void grctmcl ose(void *grctm

Close apreviously opened GRCTM driver.

int spwcuc_reset(void *grctm

Reset the GRCTM core by writing to the GRR (Global Reset
Register) register of the core.

void grctmint_register(
void *grctm
grctmisr_t func,
voi d *data)

Register (optional) interrupt callback routine with custom ar-
gument. Called from the driver's ISR.

void grctm.int_enabl e(void *grctm

Enable/unmask GRCTM interrupt on global interrupt con-
troller.

void grctm.int_disable(void
*grctm

Disable/unmask GRCTM interrupt on global interrupt con-
troller.

void grctmcl ear_irgs(
void *grctm
int irgs)

Clear pending interrupts by writing to the PICR register. The
input is a bit-mask of which interrupt flags to clear.

voi d grctmenabl e_irqgs(
void *grctm
int irgs)

Enable/unmask and/or disable/mask interrupt sources from
the GRCTM core by writing the IMR register. The [irgs] ar-
gument is a bit-mask written unmodified to the register.

void grctmecelr_stats
(void *grctm

Clear statistics gathered by driver.

void grctmget_stats(
void *grctm
struct grctmstats *stats)

Copy driver's current statistics counters to a custom location
given by stats.

voi d grctm enabl e_ext_sync
(void *grctm

Enable external synchronisation (from SPWCUC)

voi d grct mdisabl e_ext _sync
(void *grctm

Disable external synchronisation (from SPWCUC)

voi d grctmenabl e_tw sync
(void *grctm

Enable TimeWire synchronisation

voi d grctmdisable_tw sync
(void *grctm

Disable TimeWire synchronisation

void grctmdisable_fs
(void *grctm

Disable frequency synthesizer from driving ET

void grctmenable_fs
(void *grctm

Enable frequency synthesizer to driving ET

unsigned int grctmget_et_coarse
(void *grctm

Return elapsed coarse time

unsigned int grctmget_et_fine
(void *grctm

Return elapsed fine time

unsi gned | ong |l ong grctmget_et
(void *grctm

Return elapsed time (coarse and fine)

int grctmis_dat_latched
(void *grctm int dat)

Return 1 if specified datation has been latched

voi d grctm set _dat _edge(void *grctm
int dat, int edge)

Set triggering edge of datation input

unsi gned int grctmget_dat_coarse
(void *grctm int dat)

Return latched datation coarse time

unsigned int grctmget_dat_fine
(void *grctm int dat)

Return latched datation fine time

unsi gned | ong | ong
grctmget _dat_et(void *grctm int dat)

Return latched datation ET

unsigned int grctmget_pul se_reg
(void *grctm int pul se)

Return current pulse configuration

void grctmset_pul se_reg Set pulse register

(void *grctm int pulse,

unsi gned int val)
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 265

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
Prototype Description
}/oit d glrct m_Gf?_pU' se(void *gretm Configure pulse: pp = period, pw = width, pl =level, en=en-
int pulse, int pp,
int pw, int pl, int en) able
void grctm enabl e_pul se Enable pulseoutput
(void *grctm int pulse)
voi d grctmdisabl e_pul se Disable pulse output
(void *grctm int pul se)
void gretmregister(void) Register the GRCTM driver to Driver Manager

40.1.2.2.1. Data structures

The grctm stats data structure holds statistics gathered by the driver. It can be read by the
grctm get _stat s() function.

struct grctmstats {
unsigned int nirgs;
unsi gned int pul se[8];

s

Table 40.3. grctm_status member descriptions.

M ember Description
nirgs Total number of interrupts handled by driver

pulse Number of interrupts generated by each pulse channel (maximum 8 channels). pulse[N] repre-
sents pulse channel N.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 266

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 41. SPWCUC driver

41.1. Introduction

This section describesthe GRLIB SPWCUC (SpaceWire— CCSDS Unsegmented Code Transfer Protocol) device
driver interface. Thedriver implementsasimpleinterfaceto read and writeregisters of the core, interrupt handling.
The driver supports the on-chip AMBA and the AMBA-over-PCl bus. It relies on the driver manager for device
discovery and interrupt handling.

The SPWCUC driver require the Driver Manager.

In order to usethedriver interfacethe user must bewell acquainted with SPWCUC hardware, see hardware manual.
41.1.1. Examples

There is an example available that illustrates how the SPWCUC driver interface can be used to configure the
SPWCUC core and manage interrupts. The example application can be configured as a Time-Master or Time-
Slave demonstrating both sending and receiving SpaceWire time-codes and sending time-packets according to
CCSDS Unsegmented Code Transfer Protocol using the RTEM S GRSPW driver.

Note that the example may need to be configured, seethe TIME_SYNC _* options.

The example can be built by running:

$ cd /opt/rtems-4.10/src/sanpl es/ 1553
$ make rtems-gri1553bcbm

41.2. User interface
41.2.1. Overview

The SPWCUC software driver provides access to the SPWCUC core's registers and hel ps with device detection,
driver loading and interrupt handling.

The driver sources and interface definitions are listed in the table below, the path is given relative to the SPARC
BSPsourcesc/ src/lib/1ibbsp/sparc.

Table 41.1. SPWCUC driver Source location

Filename Description
shared/time/spwcuc.c SPWCUC Driver source
shared/include/spwcuc.h SPWCUC Driver interface declaration

41.2.1.1. Accessing the SPWCUC core

A SPWCUC core is accessed by first opening a specific SPWCUC device by caling
spwcuc_open(| NSTANCE_NUMBER), after successfully opening a device the returned value of
spwcuc_open can be used asinput other functionsin the SPWCUC driver interface. Registers can be accessed
and interrupts can be enabled.

41.2.1.2. Interrupt service

The SPWCUC core can be programmed to interrupt the CPU on certain events, see hardware manual. All interrupts
causesthedriver'sinterrupt serviceroutine (ISR) to be called, it gathers statisticsand call the optional user assigned
callback. The callback isregistered using the function spwcuc_i nt _regi ster ().

41.2.2. Application Programming Interface

The SPWCUC driver API consists of the functions in the table below.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 267

https://www.frontgrade.com/gaisler

Table 41.2. function prototypes

rRONTGRADE

Gaisler

Prototype

Description

voi d *spwcuc_open(int mnor)

Open a SPWCUC device by instance number, the
number is determined by the order in which the coreis
found (Plug& Play order). The function returns a han-
dle to SPWCUC driver used internally, it must be giv-
ento al functionsin the API.

voi d spwcuc_cl ose(void *spwcuc)

Close a previously opened SPWCUC driver.

int spwcuc_reset(void *spwcuc)

Reset the SPWCUC core by writing to the CONTROL
register of the core. Thisfunction also clears pending
interrupts by writing PICR.

voi d spwecuc_confi g(
voi d *spwcuc
struct spwcuc_cfg *cfg)

Configure SPWCUC registers according to [cfg] argu-
ment. See the data structure description of.

voi d spweuc_i nt _regi ster(
voi d *spwcuc
spweuc_i sr_t func
voi d *data)

Register (optional) interrupt callback routine with cus-
tom argument. Called from the driver's ISR.

voi d spwecuc_i nt _enabl e(voi d *spwcuc)

Enable/unmask SPWCUC interrupt on global interrupt
controller

voi d spwcuc_i nt _di sabl e(void *spwcuc)

Disable/mask SPWCUC interrupt on global interrupt
controller

voi d spweuc_cl ear _i rqs(
voi d *spwcuc
int irgs)

Clear pending interrupts by writing to the PICR regis-
ter. The input is a bit-mask of which interrupt flagsto
clear.

voi d spwecuc_enabl e_i rgs(
voi d *spwcuc
int irgs)

Enable/unmask and/or disable/mask interrupt sources
from the SPWCUC core by writing the IMR register.

The[irgs] argument is a bit-mask written unmodified
to the register.

voi d spwcuc_cl r_stats(void *spwcuc)

Clear statistics gathered by driver.

voi d spwcuc_get _stat s(
voi d *spwcuc
struct spwcuc_stats *stats)

Copy driver's current statistics counters to a custom lo-
cation given by [stats].

unsi gned int spwcuc_get_et_coarse(
voi d *spwcuc)

Returns 32-bit received elapsed coarse time, the value
istaken from the 'T-Field Coarse Time Packet Regis-

ter'.

unsi gned int spwcuc_get_et_fine(
voi d *spwcuc)

Returns 24-bit received elapsed fine time, the valueis
taken from the 'T-Field Fine Time Packet Register' and
shifted down 8 times.

unsi gned | ong | ong spwcuc_get_et (void
*spwecuc)

Return 56-bit received elapsed time (ET), a combina-
tion of Coarse and Finetime.

unsi gned int
spwcuc_get _next _et _coarse(void
*spwecuc)

Return next 32-bit Elapsed Coarse Time.

unsi gned int
spwecuc_get _next _et _fine(void *spwcuc)

Return next 24-bit Elapsed Fine Time.

unsi gned | ong | ong
spwcuc_get _next _et (void *spwcuc)

Return next 56-bit elapsed time (combination of next
Coarse and Fine Time), this time can be used when
generating SpaceWire Time-Packets.

voi d spwcuc_force_et(void *spwcuc
unsi gned long long tine)

Force/Set the elapsed time (coarse 32-bit and fine 24-
bit) by writing the T-Field Time Packet Registers and
set the FORCE hit.

unsi gned int spwcuc_get_tp_et_coarse(
voi d *spwcuc)

Return received 32-hit Elapsed Coarse Time.

unsigned int spweuc_get_tp_et_fine(
voi d *spwcuc)

Return received 24-bit Elapsed Fine Time.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
268

Dec 2023, Version 1.3.2

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Prototype

Description

unsi gned ngg I'ong s§)wcuc_get_t p_et(Return received 56-bit Elapsed Time (a combination
voi d *spwcuc

of coarse and fine).

41.2.2.1. Data structures

Thespwcuc_cf g datastructureisused to configurea SPWCUC device and driver. The configuration parameters
are described in the table below.

struct spweuc_cfg {

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

char
char
char
char
char
char
char
char
char
char
char
char
char
char
char

sel _out
sel _in;
mappi ng;
tol erance
tid;

ctf;

cp

t xen;
rxen;

pkt syncen;
pktiniten;
pktrxen;
dl a;

dl a_mask
pi d;

unsi gned int of fset;

s

Table 41.3. spwecuc_cfg member descriptions.

Member Description

sel_out Bits 3-0 enable time code transmission on respective output
sel_in Select SpW to receive time codes on, 0-3

mapping Define mapping of time code time info into T-field, 0-31
tolerance Define SpaceWire time code reception tolerance, 0-31

tid Define CUC P-Field time code identification, 1 = Level 1, 2 = Level 2
ctf If 1 check time code flags to be all zero

cp If 1 check P-Field time code id against tid

txen Enable SpaceWire time code transmission

pktsyncen Enable SpaceWire time CUC packet sync

pktiniten Enable SpaceWire time CUC packet init

pktrxen Enable SpaceWire time CUC packet

dia SpaceWire destination logical address

dla_mask SpaceWire destination logical address

pid SpaceWire protocol ID

offset Packet reception offset

The spwcuc_stats data structure holds statistics gathered by the driver. It can be read by the
spwcuc_get _stat s() function.

struct spwcuc_stats {

unsi gned int nirgs;

unsigned int tick_tx;

unsigned int tick_tx_w ap;

unsigned int tick_rx;

unsigned int tick_rx_wap

unsigned int tick_rx_error

unsigned int tolerr;

unsi gned int sync

unsi gned int syncerr

unsi gned int wap;

unsi gned int waperr;

unsi gned int pkt_rx;

unsi gned int pkt_err;

unsi gned int pkt_init;
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 269

https://www.frontgrade.com/gaisler

s

Table 41.4. spwcuc_cfg member descriptions.

rRONTGRADE

Gaisler

Member Description
nirgs Total number of interrupts handled by driver
tick_tx Number of TickTx interrupts
tick_tx_wrap Number of TickTxWrap interrupts
tick_rx Number of TickRx interrupts
tick_rx_wrap Number of TickRxWrap interrupts
tick_rx_error Number of TickRxWrap interrupts
tolerr Number of Tolerance Error interrupts
sync Number of Sync interrupts
syncerr Number of Sync Error interrupts
wrap Number of Wrap interrupts
wraperr Number of Wrap Error interrupts
pkt_rx Number of Packet Rx interrupts
pkt_err Number of Packet Error interrupts
pkt_init Number of Packet init interrupts
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2

270

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 42. GRPWRX GRLIB PacketWire Receiver driver

42.1. Introduction

This document is intended as an aid in getting started developing with Aeroflex Gaisler GRLIB PACKETWIRE
RX (GRPWRX) core using the driver described in this document. It describes accessing GRPWRX in a on-chip
system and over PCI. It briefly takes the reader through some of the most important steps in using the driver
such as starting GRPWRX communication, configuring the driver and receiving GRPWRX packets. The reader
is assumed to be well acquainted with GRPWRX and RTEMS.

42.1.1. Software Driver

The driver provides means for threads to receive GRPWRX packets using standard 1/O operations.

42.2. User interface

The RTEMS grpwrx driver supports the standard accesses to file descriptors such as open, close and ioctl. User
applications include the grpwrx driver's header file which contains definitions of all necessary data structures and
bit masks used when accessing the driver.

The driver enables the user to configure the hardware and to receive GRPWRX packets. The allocation of GRP-
WRX packetsishandled by the user and free packets are given to the driver that processesthe packetsfor reception
in atwo step process. In the first step the driver schedules packets for reception using the DMA descriptors or
they are put into an internal queue when all descriptors are in use, in the second step all received packets are put
into a second queue that is emptied when the user reclaims the received packets. The reclaimed packets can then
be reused in new reception later on.

42.2.1. Driver registration

The registration of the driver is crucial for threads to be able to access the driver using standard means, such as
open. The function gr pwr x_r egi st er _dr v whose prototype is provided in grpwrx.h is used for registering
thedriver:

grpw x_register_drv();
42.2.2. Opening the device

Opening the device enables the user to access the hardware of a certain grpwrx device. The driver is used for
all grpwrx cores available. The cores are separated by assigning each core a unique name and a number called
[minor]. The name is given during the opening of the driver. The first three names are printed out:

Table 42.1. Core number to device name conversion.

Corenumber Filesystem L ocation

0 /dev/grpwrx0 On Chip AMBA bus

1 /dev/grpwrx1 On Chip AMBA bus

2 /dev/grpwrx2 On Chip AMBA bus

0 /dev/rastatmtcO/grpwrx0 GR-RASTA-TMTC PCI Target

An example of an RTEMS open call is shown below.
fd = open("/dev/grpwx0", O RDWR)

A file descriptor isreturned on success and -1 otherwise. In the latter case errno is set asindicated in Table 42.1.

Table 42.2. Open errno values.

ERRNO Description

ENODEV |lllegd device name or not
available.

EBUSY Device already opened.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 271

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

ERRNO Description

ENOMEM |Driver failed to allocate
necessary memory.

42.2.3. Closing the device

The deviceis closed using the close call. An exampleis shown below.

res = close(fd)

Close always returns O (success) for the gr pwr x driver.
42.2.4.1/0 Control interface

Thebehaviour of thedriver and hardware can be changed viathe standard system call ioctl. M ost operating systems
support at least two argumentstoioctl, thefirst being an integer which selectsioct! function and secondly a pointer
to data that may be interpreted uniquely for each function. A typical ioctl call definition:

int ioctl(int fd, int cmd, void *arg);

he return value is 0 on success and -1 on failure and the global errno variable is set accordingly.

All supported commands and their data structures are defined in the grpwrx driver's header file gr pwr x. h. In
functionswhere only one argument is needed the pointer (void * arg) may be converted to aninteger and interpreted
directly, thus simplifying the code.

42.2.4.1. Data structures

The gr pw x_i oc_hw data structure indicates what features the GRPWRX hardware supports and how it has
been configured.

struct grpw x_i oc_hw {

unsi gned short fifo_size;
unsi gned short node;
unsi gned short cl kdi vi de;

}

Table 42.3. grpwrx_ioc_hw member descriptions.

M ember Description

fifo_size GRPWRX core FIFO size in number of bytes

mode GRPWRX core mode, 1=framing mode, 0 = packet mode
clkdivide GRPWRX physical layer clock divider used

The grpwrx_ioc_config struct is used for configuring the driver and the GRPWRX core.

struct grpw x_ioc_config {

int fram ng;

/* Physical |ayer options */
unsi gned short phy_cl kri se;
unsi gned short phy_val i dpos;
unsi gned short phy_r eadypos;
unsi gned short phy_busypos;
/* Interrupt options */

unsi gned i nt enabl e_cnt;

int i sr_desc_proc;

int bl ocki ng;
rtens_interval timeout;

s

Table 42.4. grpwrx_ioc_config member descriptions.

Member Description
framing Enable framing mode (1)
phy_clkrise Rising clock edge coinciding with serial bit change
phy_validpos Positive polarity of valid output signal
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 272

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

M ember Description

phy_readypos Positive polarity of ready input signal

phy_busypos Positive polarity of busy input signal

enable cnt Number of packets between interrupts are generated, zero disables interrupt. Al-
lows user to fine grain interrupt generation

isr_desc_proc Allow interrupt service routine (ISR) to process descriptors

blocking Blocking mode select, grpwrx_BLKMODE_POLL for polling mode or
grpwrx_BLMODE_BLK for blocking mode

timeout Blocking mode time out

The grpwrx_packet structure is used in for receiving GRPWRX packets and retrieving received packets, it is the
driver's representation of a GRPWRX packet. A GRPWRX packet structure can be chained together using the
[next] field in grpwrx_packet.

struct grpw x_packet {

unsi gned int fl ags;

struct grpw x_packet *next ;
int length;

unsi gned int *payl oad;

I
Table 42.5. grpwrx_ioc_packet member descriptions.

M ember Description

flags Mask indicating options, transmission state and errors for the packet.
GRPWRX_FLAGS XXX. See Table Table 42.5

next Points to next GRPWRX packet. Thisfield is used to make driver process multiple
GRPWRX packets at the same time, avoiding multipleioctl calls.

Length The length of the receive packet in framing mode.

payload Points to a data area holding the complete GRPWRX packet. The areainclude
fields such as header, payload, OCF, CRC.

Table 42.6. grpwrx_packet flags descriptions.

Flags Description

GRPWRX_FLAGS RECEIVED |Indicates whether the packet has been transmitted or not
GRPWRX_FLAGS ERR Indicatesif errors has been experienced during transmission of the packet
GRPWRX_FLAGS FHP Indicates weather to set the First Header Pointer (FPH) flag of the GRP-

WRX buffer descriptor's word 0. The length of the packet should be 2 and
the payload field should point to the location of the CCSDS frame's first
header pointer field.

TRANSLATE Tranglate packet payload address from CPU address to remote bus (the bus
grpwrx isresident on). Thisis useful when dealing with buffers on remote
buses, for example when grpwrx is on a AMBA bus accessed over PCI.
Thisisthe case for GR-RASTA-TMTC.

The grpwrx_list structure represents alinked list, achain of GRPWRX packets. The data structure holds the first
packet and last packet in chain.
struct grpwx_list {

struct grpw x_packet *head;
struct grpw x_packet *tail;

}
Table 42.7. grpwrx_list member descriptions.

M ember Description
head First GRPWRX packet in chain
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 273

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

M ember Description
tail Last GRPWRX packet in chain, last packet in list must have it's next field
set to NULL

The grpwrx_ioc_stats structure contain statistics collected by the driver.

struct grpwx_ioc_stats {
unsi gned | ong | ong packet s_recei ved;
unsi gned int err_underrun;

}

Table 42.8. grpwrx_ioc_stats member descriptions.

Member Description
packet_recieved Number of packets successfully received by the GRPWRX core
err_underrun Number of AMBA underrun errors

42.2.4.2. Configuration

The grpwrx core and driver are configured using ioctl calls. The Table 42.7 below lists all supported ioctl calls.
grpwrx_lOC_must be concatenated with the call number from the table to get the actual constant used in the code.
Return valuesfor al callsare 0 for success and -1 on failure. Errno is set after afailure asindicated in Table 42.6.
An exampleis shown below where the statistics of the driver is copied to the user buffer statsby using anioctl call:
struct grpw X_i oc_stats stats;

result = ioctl(fd, grpwx_| OC GET_STATS, &stats);

Table 42.9. ERRNO values for ioctl calls.

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

EBUSY The GRPWRX hardware is not in the correct state. Many ioctl calls need the GRP-
WRX coreto bein stopped or started mode. One can switch state by calling START
or STOP.

ENOMEM Not enough memory to complete operation. This may cause other ioctl commands to
fail.

EIO Writing to hardware failed. Feature not available in hardware.

ENODEV Operation aborted due to transmitter being stopped.

Table 42.10. ioctl calls supported by the grpwrx driver.

Call Number Call Mode |Description

START Stopped Exit stopped mode, start the receiver.

STOP Started Exit started mode, enter stopped mode. Most of the settings can
only be set when in stopped mode.

ISSTARTED Both Indicates operating status, started or stopped.

SET_BLOCKING_MODE Both Set blocking or non-blocking mode for RECLAIM.

SET_TIMEOUT Both Set time out value used in blocking mode to wake up blocked
task if request takes too long time to compl ete.

SET_CONFIG Stopped Configure hardware and software driver.

GET_CONFIG Both Get current configuration previously set with SET_CONFIG or
the driver defaults.

GET_STATS Both Get statistics collected by driver.

CLR_STATS Both Reset driver statistics.

GET_HW_IMPL Both Returns the features and implemented by the GRPWRX core.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 274

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Call Number Call Mode |Description

GET_OCFREG Both Returns the address of the OCF/CLCW register, it can be used to
update the transmitted OCF/CLCW.

RECLAIM Both Returns all GRPWRX packets received since last call to RE-
CLAIM, the packets are linked in a chain.

RECV Started Add achain of GRPWRX packets to the reception queue of the
grpwrx driver.

42.2.4.2.1. START

Thisioctl command enables the GRPWRX receiver and changes the driver's operating status to started. Settings
previously set by other ioctl commands are written to hardware just before starting reception. It is necessary to
enter started mode to be able to receive GRPWRX packets using the ioct! command grpwrx_|OC_RECV

The command will fail if the receiver is unable to be brought up, the driver or hardware configuration isinvalid
or if the GRPWRX core aready is started. In case of failure the return code is negative and errno will be set to
EIO or EINVAL, see Table 42.6.

42.2.4.2.2. STOP

This call makes the GRPWRX core |leave started mode and enter stopped mode. The receiver is stopped and no
packets will be received. After calling STOP further ioctl commands such as RECV, RECLAIM, ISSTARTED,
STOP will behave differently or result in error.

The command will fail if the GRPWRX driver already isin stopped mode.
42.2.4.2.3. ISSTARTED

Determines if driver and hardware is in started mode. Errno will be set to EBUSY in stopped mode and return
successfully in started mode.

42.2.4.2.4. SET_BLOCKING_MODE

Changes the driver's GRPWRX_IOC_RECLAIM command behaviour. Two modes are available blocking mode
and polling mode, in polling mode theioctl command RECLAIM awaysreturn directly even when no packetsare
available. In blocking mode the task calling RECLAIM is blocked until at least one packet can be reclaimed, it is
also possible to make the blocked task time out after some time setting the timeout value using the SET_CONFIG
or SET_TIMEOUT ioctl commands.

The argument is set as as described in the table below.

Table42.11. SET_BLOCKING_MODE ioctl arguments

Bit number Description
GRPWRX_BLKMODE_POLL |Enables polling mode
GRPWRX_BLKMODE_BLK Enables blocking mode

The driver's default is polling mode.

Note that the blocking mode is implemented using the DMA transmit packe interrupt, changing the
i sr_desc_proc parameter of the SET_CONFIG command effects the blocking mode characteristics. For ex-
ample, enabling interrupt generation every tenth GRPWRX packet will cause the blocked task to be woken up
after maximum ten packets when going into blocked mode.

This command never fail.
42.2.4.2.5. SET_TIMEOUT

Sets the blocking mode time out value, instead of blocking for eternity the task will be woken up af-
ter this time out expires. The time out value specifies the input to the RTEMS take semaphore operation

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 275

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

rtens_semaphor e_obt ai n() . See the RTEMS documentation for more information how to set the time
out value.

Note that this option has no effect in polling mode.
Note that thisoption is also set by SET_CONFIG.
This command never fail.

42.2.4.2.6. SET_CONFIG

Configuresthedriver and core. Thiscall updatesthe configuration that will be used by thedriver duringthe START
command and during operation. Enabling features not implemented by the GRPWRX corewill result in EIO error
when starting the GRPWRX driver. The hardware features available can be obtained by the GET_HW_IMPL
command.

Theinput isapointer to aninitialized gr pw X_i oc_conf i g structure described in Section 42.2.4.1.

Note that the time out value and blocking mode can aso be set with SET TIMEOUT and
SET_BLOCKING_MODE.

This cadl fail if the GRPWRX core is in started mode, in that case errno will be set to EBUSY, or if a NULL
pointer is given as argument, in that case errno will be set to EINVAL.

42.2.4.2.7. GET_CONFIG

Returns the current configuration of the driver and hardware. The current configuration is either the driver and
hardware defaults or the configuration previously set by the SET_CONFIG command.

The input to this ioctl command is a pointer to a data area of at least the size of a gr pwr x_i oc_confi g
structure. The data area will be updated according to the gr pwr x_i oc_confi g data structure described in
Section 42.2.4.1

This command only fail if the pointer argument isinvalid.
42.2.4.2.8. GET_STATS

This command copies the driver's internal statistics counters to a user provided data area. The format of the data
written is described in the data structure subsection. Seethe gr pwr x_i oc_st at s data structure.

The call will fail if the pointer to the dataiisinvalid.
42.2.4.2.9. CLR_STATS

This command reset the driver'sinternal statistics counters.
This command never fail.

42.2.4.2.10. GET_HW_IMPL

This command copies the GRPWRX core's features implemented to a user provided data area. The format of the
data written is described in the data structure subsection. See the gr pwr x_i oc_hwdata structure.

Knowing the features supported by hardware can be used to make software run on multiple implementations of
the GRPWRX core.

The call will fail if the pointer to the dataisinvalid.
42.2.4.2.11. RECLAIM

Returns processed GRPWRX oacketsto user. All packets returned has been provided by the user in previous calls
to RECV, and need not all to have been successfully received. RECLAIM can be configured to operatein polling
mode, blocking mode and blocking mode with atime out. In polling mode the task always returns with or without

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 276

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

processed packets, in blocking mode the task is blocked until at least one packet has been processed. Seetheioctl
command SET_CONFIG and SET_BLOCKING_MODE to change mode of the RECLAIM command.

RECLAIM storesalinked list of processed GRPWRX packets into the data area pointed to by the user argument.
The format for the stored data follows the layout of the grpwrx_list structure described in Section 42.2.2. The
grpwrx_list structure holds the first and last GRPWRX packet processed by the driver. The flags field indicates
if the packet was received or if errors were experienced during transmission of this packet. See Table 42.5 for
flags details.

In started mode, this command enables scheduled GRPWRX packet for transmission as descriptors become free
during the processing of received GRPWRX packet.

The call will fail if the pointer to the data area is invalid (EINVAL), the RECLAIM call operates in blocking
mode and the time out expires (ETIMEDOUT) or the driver was stopped during the calling task was blocked
(ENODEV). See table below.

Table 42.12. ERRNO values for RECLAIM

ERRNO Description

EINVAL Aninvalid argument.

ETIMEDOUT The blocked task was timed out and still no packets was transmitted.

ENODEV The calling task was woken up from blocking mode by the transmitter being stopped. The
GRPWRX driver has has entered stopped mode. Further callsto RECLAIM will retrieve
received packet.

42.2.4.2.12. RECV

Scheduling reception of packets is done with the ioctl command RECV. The input is a linked list of GRPWRX
packets to be scheduled. When all GRPWRX DMA descriptors are active, enabled and linked to a packet to
transmit, the remaining packets are queued internally by the driver.

Every call to RECV will trigger scheduled GRPWRX packets for reception, calling RECV with the argument set
to NULL will thus trigger previously scheduled GRPWRX packets for reception. This might be necessary when
interrupts are not used to process descriptors or when interrupt generation for GRPWRX packets are disabled,
see SET_CONFIG.

The input to RECV is a pointer to agr pwr x_| i st data structure described in section Section 42.2.4.1. The
head and tail fields of the data structure points to the first and the last GRPWRX packet to be scheduled for
transmission. The GRPWRX packet structure, gr pwr X_packet , used is described in section Section 42.2.2.
The data area to store the received packet is designated by the payload field. In packet mode it has to be at lease
64k, in framing mode it has to be the size indicated by the length field.

Note, that the packet structure and any data pointed to by the packet scheduled for reception must not be accessed
until the packet has been reclaimed using the ioctl command RECLAIM.

RECV will fail if the input packet list isincorrectly set up, errno will be set to EINVAL in such cases.
42.2.5. Reception
Receiving packets are done with theioctl call using the command RECV and RECLAIM. It ispossible to receive

multiple packets in one call, the packets are provided to the driver using a linked list of packets. See the ioctl
commands RECV and RECLAIM for more information.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 277

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 43. GRAES GRLIB AES DMA driver

43.1. Introduction

This document is intended as an aid in getting started developing with Aeroflex Gaisler GRLIB AES DMA
(GRAEY) core using the driver described in this document. It describes accessing GRAES in a on- chip system
and over PCI. It briefly takes the reader through some of the most important steps in using the driver such as
starting the GRAES driver, configuring the driver and en/decrypt AES packets. The reader is assumed to be well
acquainted with GRAES, AES and RTEMS.

43.1.1. Software Driver

The driver provides means for threads to receive GRAES packets using standard 1/0 operations.

43.2. User interface

The RTEMS graes driver supports the standard accesses to file descriptors such as open, close and ioctl. User
applications include the graes driver's header file which contains definitions of all necessary data structures and
bit masks used when accessing the driver.

Thedriver enablesthe user to configure the hardware and to de/encode AES packets. The allocation of AES blocks
is handled by the user and blocks are given to the driver that processes the blocks in atwo step process. In the first
step the driver schedules blocks for de/encryption using the DM A descriptors or they are put into an internal queue
when all descriptorsarein use, in the second step all processed packets are put into a second queue that is emptied
when the user reclaims the received blocks. The reclaimed blocks can then be reused in new processing later on.

43.2.1. Driver registration

The registration of the driver is crucial for threads to be able to access the driver using standard means, such as
open. The function gr aes_r egi st er _dr v whose prototype is provided in gr aes. h is used for registering
thedriver:

grpaes_regi ster_drv();
43.2.2. Opening the device

Opening the device enables the user to access the hardware of a certain graes device. The driver is used for al
graes cores available. The cores are separated by assigning each core a unique name and a number called [minor].
The name is given during the opening of the driver. The first three names are printed out:

Table 43.1. Core number to device name conversion

Core number Filesystem name L ocation

0 /dev/graes0 On Chip AMBA bus

1 /dev/graesl On Chip AMBA bus

2 /dev/graes2 On Chip AMBA bus

0 /dev/rastatmtc0/graesO GR-RASTA-GRAESTC PCI Target

An example of an RTEMS open call is shown below.
fd = open("/dev/graes0", O RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set asindicated in Table 43.1.

Table 43.2. Open ERRNO values.

ERRNO Description
ENODEV I1legal device name or not available
EBUSY Device already opened
ENOMEM Driver failed to allocate necessary memory.
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 278

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

43.2.3. Closing the device

The deviceis closed using the close call. An exampleis shown below.
res = close(fd)

Close always returns 0 (success) for the gr aes driver.
43.2.4. 1/0 Control interface

Thebehaviour of thedriver and hardware can be changed viathe standard system call ioctl. M ost operating systems
support at least two argumentstoioctl, thefirst being an integer which selectsioct! function and secondly a pointer
to data that may be interpreted uniquely for each function. A typical ioctl call definition:

int ioctl(int fd, int cmd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly.
Thereturn value is 0 on success and -1 on failure and the global errno variable is set accordingly.

All supported commands and their data structures are defined in the graes driver's header filegr aes. h. In func-
tions where only one argument is needed the pointer (void *arg) may be converted to an integer and interpreted
directly, thus simplifying the code.

43.2.4.1. Data structures

The graes ioc_hw data structure indicates what features the GRAES hardware supports and how it has been con-
figured.

struct graes_ioc_hw {
unsi gned short keysi ze;

b

Table 43.3. graes_ioc_hw member descriptions.

M ember Description
keysize GRAES core key size, fixed 256

The graes ioc_config struct is used for configuring the driver and the GRAES core.
struct graes_ioc_config {

/* Interrupt options */

unsi gned int enabl e_cnt ;
int i sr_desc_proc;

int bl ocki ng;

rtems_i nterval tineout;

}

Table 43.4. graes_ioc_config member descriptions.

Member Description

enable_cnt Number of blocks between interrupts are generated, zero disables interrupt. Allows
user to fine grain interrupt generation

isr_desc_proc Allow GRAES interrupt service routine (ISR) to process descriptors

blocking Blocking mode select, graes BLKMODE_POLL for polling mode or
graes BLMODE_BLK for blocking mode

timeout Blocking mode time out

The graes block structure is used in for queueing GRAES blocks and retriving processed blocks, it is the driver's
representation of a GRAES block. A GRAES block structure can be chained together using the next field in
graes_block.

struct graes_block {

unsi gned i nt flags;
struct graes_bl ock *next ;
int | engt h;
unsi gned char *key;
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 279

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
unsi gned char *jv;
unsi gned char *payl oad; /* in */
unsi gned char *out; /* out */
s
Table 43.5. graes_block member descriptions.
M ember Description
flags Mask indicating options, Processing state and errors for the block. GRAES FLAGS XXX.
See Table 43.5
next Points to next GRAES block. Thisfield is used to make driver process multiple GRAES
blocks at the same time, avoiding multipleioctl calls.
length Length of the block to de/encrypt
key Pointer to IAES-2256 key or null
iv Pointer to initialization vector or null
payload Pointer to Plaintext/Ciphertext
Out Pointer to output buffer or null
Table 43.6. graes _block flags descriptions.
Flag Description
GRAES BD _ED When set encryption will be performed otherwise decryption
GRAES FLAGS PROCESSED Indicates whether the block has been processed or not
GRAES FLAGS ERR Indicatesif errors has been experienced during processing of the block
TRANSLATE Trandate bllock payload addresses from CPU address to remote bus
(the bus graesisresident on). Thisis useful when dealing with buffers
on remote buses, for example when graesison a AMBA bus accessed
over PCI. Thisisthe case for GR-RASTA-GRAESTC.
TRANSLATE_AND_REMEMBER | Trandate bllock payload addresses from CPU address to remote bus
(the bus graesisresident on). Thisis useful when dealing with buffers
on remote buses, for example when graesis on a AMBA bus accessed
over PCI. Thisisthe case for GR-RASTA-GRAESTC.

The graes list structure represents alinked list, achain of GRAES blocks. The data structure holds the first block
and last block in chain.
struct graes_list {

struct graes_bl ock *head;
struct graes_block *tail;

b

Table 43.7. graes list member descriptions.

Member Description

head First GRAES block in chain

tail Last GRAES block in chain, last block in list must have it's next field set to
NULL

The graes ioc_stats structure contain statistics collected by the driver.

struct graes_ioc_stats {
unsi gned | ong | ong bl ocks_processed;
unsi gned i nt err_underrun;

b
Table 43.8. graes_ioc_stats member descriptions.

M ember Description
blocks processed Number of blocks successfully processed by the GRAES core
err_underrun Number of AMBA underrun errors
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 280

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

43.2.4.2. Configuration

The graes core and driver are configured using ioctl calls. The Table 43.7 below lists all supported ioctl calls.
graes 10C_ must be concatenated with the call number from the table to get the actual constant used in the code.
Return valuesfor al callsare 0 for success and -1 on failure. Errno is set after afailure asindicated in Table 43.6.

An exampleis shown below where the statistics of thedriver iscopied to the user buffer statsby usinganioctl call:

struct graes_ioc_stats stats;

result = ioctl(fd, graes_| OC_GET_STATS, &stats);

Table 43.9. ERRNO values for ioctl calls.

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

EBUSY The GRAES hardware is not in the correct state. Many ioctl calls need the GRAES core

to be in stopped or started mode. One can switch state by calling START or STOP.

ENOMEM Not enough memory to complete operation. This may cause other ioctl commandsto fail.

EIO Writing to hardware failed. Feature not available in hardware.

ENODEV Operation aborted due to GRAES being stopped.

Table 43.10. ioctl calls supported by the graes driver.

Call Number Call mode Description

START Stopped Exit stopped mode, start the receiver.

STOP Started Exit started mode, enter stopped mode.
Most of the settings can only be set
when in stopped mode.

ISSTARTED Both Indicates operating status, started or
stopped.

SET BLOCKING_MODE Both Set blocking or non-blocking mode for
RECLAIM.

SET_TIMEOUT Both Set time out value used in blocking
mode to wake up blocked task if re-
guest takes too long time to complete.

SET_CONFIG Stopped Configure hardware and software driv-
er.

GET_CONFIG Both Get current configuration previously
set with SET_CONFIG or the driver
defaults

GET_STATS Both Get statistics collected by driver

CLR_STATS Both Reset driver statistics

GET_HW_IMPL Both Returns the features and implemented
by the GRAES core.

RECLAIM Both Returns all GRAES blocks processed
sincelast call to RECLAIM, the
blocks are linked in a chain.

ENCRYPT Started Add achain of GRAES blocksto the
en/decryption queue of the GRAES
driver.

43.2.4.2.1. START

Thisioctl command enables the GRAES core and changes the driver's operating status to started. Settings previ-
ousdly set by other ioctl commands are written to hardware just before starting processing.

RCC-UM

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 281

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

43.2.4.2.2. STOP

This call makes the GRAES core leave started mode and enter stopped mode. After calling STOP further ioctl
commands such as ENCRY PT, RECLAIM, ISSTARTED, STOP will behave differently or result in error.

The command will fail if the GRAES driver aready isin stopped mode.
43.2.4.2.3. ISSTARTED

Determines if driver and hardware is in started mode. Errno will be set to EBUSY in stopped mode and return
successfully in started mode.

43.2.4.2.4. SET_BLOCKING_MODE

Changesthedriver's GRAES |0C_RECLAIM command behaviour. Two modes are avail able blocking mode and
polling mode, in polling mode the ioctl command RECLAIM aways return directly even when no blocks are
available. In blocking mode the task calling RECLAIM is blocked until at least one block can be reclaimed, it is
also possible to make the blocked task time out after sometime setting the timeout value using the SET_CONFIG
or SET_TIMEOUT ioctl commands.

The argument is set as as described in the table below.

Table 43.11. SET_BLOCKING_MODE ioctl arguments

Bit number Description
GRAES BLKMODE_POLL Enables polling mode
GRAES BLKMODE BLK Enables blocking mode

The driver's default is polling mode.

Note that the blocking mode is implemented using the DMA de/encrypt block interrupt, changing the
i sr_desc_proc parameter of the SET_CONFIG command effects the blocking mode characteristics. For ex-
ample, enabling interrupt generation every tenth GRAES block will cause the blocked task to be woken up after
maximum ten blocks when going into blocked mode.

This command never fail.
43.2.4.2.5. SET_TIMEOUT

Sets the blocking mode time out value, instead of blocking for eternity the task will be woken up af-
ter this time out expires. The time out value specifies the input to the RTEMS take semaphore operation
rtems_semaphor e_obt ai n() . See the RTEMS documentation for more information how to set the time
out value.

Note that this option has no effect in polling mode.
Note that this option is also set by SET_CONFIG.
This command never fail.

43.2.4.2.6. SET_CONFIG

Configures the driver and core. This call updates the configuration that will be used by the driver during the
START command and during operation. Enabling features not implemented by the GRAES corewill result in EIO
error when starting the GRAES driver. The hardware features available can be obtained by the GET_HW_IMPL
command.

Theinput isapointer to aninitialized gr aes_i oc_conf i g structure described in Section 43.2.4.2.1.

Note that the time out value and blocking mode can also be set with SET_TIMEOUT and
SET_BLOCKING_MODE.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 282

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Thiscall fail if the GRAES coreisin started mode, in that case errno will be set to EBUSY, or if aNULL pointer
isgiven as argument, in that case errno will be set to EINVAL.

43.2.4.2.7. GET_CONFIG

Returns the current configuration of the driver and hardware. The current configuration is either the driver and
hardware defaults or the configuration previously set by the SET_CONFIG command.

The input to thisioctl command is a pointer to a data area of at least the size of agr aes_i oc_confi g struc-
ture. The data area will be updated according to the gr aes_i oc_conf i g data structure described in Sec-
tion 43.2.4.2.1.

This command only fail if the pointer argument isinvalid.
43.2.4.2.8. GET_STATS

This command copies the driver'sinternal statistics countersto a user provided data area. The format of the data
written is described in the data structure subsection. Seethegr aes_i oc_st at s data structure.

The call will fail if the pointer to the dataisinvalid.
43.2.4.2.9. CLR_STATS

This command reset the driver'sinternal statistics counters.
This command never fail.

43.2.4.2.10. GET_HW_IMPL

This command copies the GRAES core's features implemented to a user provided data area. The format of the
datawritten is described in the data structure subsection. See the gr aes_i oc_hwdata structure.

Knowing the features supported by hardware can be used to make software run on multiple implementations of
the GRAES core.

The call will fail if the pointer to the dataisinvalid.
43.2.4.2.11. RECLAIM

Returns processed GRAES block to user. All blocks returned has been provided by the user in previous calls to
ENCRY PT, and need not all to have been successfully defencrypted. RECLAIM can be configured to operatein
polling mode, blocking mode and blocking mode with atime out. In polling mode the task always returns with or
without processed packets, in blocking mode the task is blocked until at least one packet has been processed. See
theioctl command SET_CONFIG and SET_BLOCKING_MODE to change mode of the RECLAIM command.

RECLAIM stores a linked list of processed GRAES blocks into the data area pointed to by the user argument.
The format for the stored data follows the layout of thegr aes_| i st structure described in Section 43.2.2. The
graes_|i st structure holdsthefirst and last GRAES block processed by the driver. Thef | ags field indicates
if the block wasreceived or if errorswere experienced during processing of thispacket. See Table 43.6 for f | ags
details.

In started mode, this command enables scheduled GRAES block for de/encryption as descriptors become free
during the processing of GRAES blocks.

The call will fail if the pointer to the data area is invalid (EINVAL), the RECLAIM call operates in blocking
mode and the time out expires (ETIMEDOUT) or the driver was stopped during the calling task was blocked
(ENODEV). See table below.

Table 43.12. ERRNO values for RECLAIM

ERRNO Description
EINVAL Aninvalid argument.
ETIMEDOUT The blocked task was timed out and still no blocks was processed.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 283

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

ERRNO Description

ENODEV The calling task was woken up from blocking mode by the GRAES code being stopped.
The GRAES driver has has entered stopped mode. Further callsto RECLAIM will re-
trieve processed packet.

43.2.4.2.12. ENCRYPT

Scheduling de/encryption of block isdonewith theioctl command ENCRY PT. Theinputisalinked list of GRAES
blocksto be scheduled. When all GRAES DMA descriptorsare active, enabled and linked to ablock, theremaining
blocks are queued internally by the driver.

Every call to ENCRYPT will trigger scheduled GRAES blocks for de/encryption, calling PROCESS with the
argument set to NULL will thus trigger previously scheduled GRAES blocks for de/encryption. This might be
necessary when interrupts are not used to process descriptors or when interrupt generation for GRAES blocks are
disabled, see SET_CONFIG.

Theinput to ENCRYPT isapointer toagr aes_| i st datastructure described in Section 43.2.4.2.1. The head
and tail fields of the data structure points to the first and the last GRAES block to be scheduled for de/encryption.
The GRAES block structure, gr aes_bl ock, used is described in Section 43.2.2, the data field corresponding
to the GRAES buffer descriptor fields.

Note, that the block structure and any data pointed to by the block scheduled for de/encryption must not be accessed
until the block has been reclaimed using theioctl command RECLAIM.

ENCRY PT will fail if theinput block list isincorrectly set up, errno will be set to EINVAL in such cases.
43.2.5. Delencryption

Delencrypting blocks is done with the ioctl call using the command ENCRY PT and RECLAIM. It is possible to
de/encrypt multiple blocks in one call, the blocks are provided to the driver using a linked list of blocks. See the
ioctl commands ENCRY PT and RECLAIM for more information.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 284

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 44. AHB Status register driver

44.1. Overview

This section describes the GRLIB AHBSTAT device driver that is available in the RCC distribution.

44.2. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the RTEMS source
treertems-5/c/src/lib/libbsp/sparc.

Table 44.1. Source Location

Filename Description
shar ed/ i ncl ude/ ahbstat . h AHBSTAT user interface definition
shar ed/ anba/ ahbstat. c AHBSTAT driver implementation

44.3. Driver registration

The function ahbst at _r egi st er _dr v whose prototype is provided in ahbstat.h is used for registering the
driver:

ahbstat _register_drv();

44.4. Operation

The AHBSTAT device can generate an interrupt on AHB error responses and other access errors (correctable
errors for example) by monitoring AMBA AHB bus signals. The signals are generated from FT-cores at the time
the correctable AMBA access takes place. The software may through interrupt and by looking at the AHBSTAT
registers determine what type of error happened and the address accessed.

Thisdriver initializesthe AHBSTAT and enablesinterrupt handling oninitialization. A default interrupt handler is
installed which prints detected access error to the system console using pr i nt k() . Thedefault interrupt handler
also reenables AHB bus monitoring in order to detect the next error. The user may override the default interrupt
handler to do custom handling and some function exists to make accesses to the AHBSTAT easier.

44 .5. User interface

The driver provides the ability to assign a custom interrupt error handler and through a simple function interface
read the last error that occurred which as been sampled at the last interrupt.

44.5.1. Assigning a custom interrupt handler

A custom interrupt handler can beinstalled to handle events as aresult of AMBA errors detected. The AHBSTAT
driver has aweak function pointer which can be overridden at compile time or at runtime. Below is the prototype
for the user interrupt handler.

int (*ahbstat_error)(
int mnor,
struct ahbstat_regs *regs,
uint32_t status,
uint32_t failing_address

)

The function is called from the AHBSTAT Interrupt Service Routine (ISR). The AHBSTAT driver will provide
the custom function with four arguments described in the table below. The return value is interpreted as a 2-hit
bit-mask, where bit zero turns on or off the default printout and the second bit controls whether the AHBSTAT
isto be reenabled or not.

Table 44.2. ahbstat_error ISR handler argument description

Argument Name Description
minor AHBSTAT device index

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 285

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Argument Name

Description

regs Base address of AHBSTAT registers

status STATUS register sampled by the AHBSTAT driver ISR. This tells the custom interrupt
handler what error just occurred.

failing_address FAILING ADDRESS register sampled by the AHBSTAT driver ISR. Thistellsthe custom

interrupt handler at what address the error occurred.

44.5.2. Get the last AHB error occurred

The AHBSTAT driver recordsthelast error into atemporary variablein memory on every error interrupt. Thevalue
may be read with the function ahbst at _| ast _err or, the prototype is listed below. The argument [minor]
determines which AHBSTAT device to request the information from. The second ([status]) and third ([address])
arguments are pointers to memory where the function will store the recorded information to.

int ahbstat_|ast_error(

int mnor,

uint32_t *status,
uint32_t *address)

44.5.3. AHBSTAT device registers

The registers can be accessed directly in order to support custom handling. The base address of the registers are
returned by the ahbst at _get _r egs function. The argument [minor] determines which AHBSTAT device. If
no AHBSTAT matching the [minor] number isfound, NULL isreturned.

struct ahbstat_regs *ahbstat_get_regs(int mnor)

RCC-UM

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 286

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 45. L2CACHE driver

45.1. Introduction
This section describes the L2CACHE driver for SPARC/LEON processors.
45.1.1. Hardware Support

The L2CACHE core hardware interface is documented in the GRIP Core User's manual. Below is alist of the
major hardware featuresit supports:
« EDAC.
» Hardware scrubber.
« Split transactions.
* Interrupt generation.
* Locked ways.
« Memory Type Range Registers.
e Multiple write policies.
« Multiple replacement policies.
« Multiple flushing operations.

45.1.2. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the RTEMS source
treertens-5/c/src/lib/libbsp/sparc.

Table 45.1. L2ZCACHE driver source location

L ocation Description
shared/i nclude/l 2c. h L2CACHE user interface definition
.../libbsp/sparc/shared/|2c/l|2c.c L2CACHE driver implementation

45.1.3. Examples

Thereisasimple example available that usesthe L2CACHE to set the M TRR register for apci transfer. The exam-
pleispart of the RCC distribution, it can befoundunder / opt / rt ens- 5/ sr ¢/ sanpl es/ pci / pci _deno/
test.c.

45.2. Software design overview

The driver has been implemented using the Driver Manager Framework. The driver provides a kernel function
interface, an AP, rather than implementing alO system device. The API is not designed for multi-threadding, i.e.
multiple threads operating on the driver independently. Changing the L2 cache configuration is not intended to
be done extensively at runtime or independently of the rest of the system, since it usually has a big impact on the
rest of the system. Therefore the user must take care of any impact that the different actions might have on other
parts of the system (such asthreads, CPUs, DMAS, ...).

All acceses to the L2C registers performed by this driver are serialized with spin locks to avoid concurrent access
to the L2C registers by multiple processors. All write accesses to the flush registers are performed using atomic
writes (swap instruction on SPARC/LEON processors).

45.2.1. Driver usage

The driver provides a set of functions that allow to configure the L2 cache. The following list summarizes the
available actions.

Enable/disable the L2 cache (see Section 45.3.3).

Enable/disable EDAC (see Section 45.3.4).

Using the hardware scrubber (see Section 45.3.5).

Enable/disable split transactions (see Section 45.3.6).

L]

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 287

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

» Change write policy (see Section 45.3.7).

» Change replacement policy (see Section 45.3.8).

* Lock ways of the L2 cache (see Section 45.3.9).

« Set up Memory Type Range Registers (MTRR) (see Section 45.3.10).
Check L2 cache configuration status (see Section 45.3.11).

The driver also provides a set of functions to flush the cache (see Section 45.3.2). These functions can flush an
address range, a cache line, a cache way or the whole cache. Each flush operation is defined by the different
optionsin Section 45.2.2.

When dealing with errors, the drivers provides two different interfaces:
* Interrupts (see Section 45.3.12): Allows the user to install an Interrupt Service Routine (ISR) that will be
executed whenever an error occurs
 Polling (see Section 45.3.13): Allows the user to poll the error status to check if an error (or multiple) have
occurred.

Only one of these interfaces can be used at agiven time.

The different errors that the L2 cache can report are:
* Backend AHB error.
» Write protection hit.
¢ Uncorrectable EDAC error.
¢ Correctable EDAC error.

45.2.2. Flush operations
There are three types of flush operations:

« Invalidate contents: Set valid bit to 0. This means that any contents will be removed and therefore any new
access to that contents will result in a cache miss. If any of the contents was in dirty state, that information
will be lost.

« Writeback contents: Write all dirty contents to the memory. This meansthat any content in dirty state will be
writen back to memory, therefore consistency between memory and cache contentsis achieved.

* Invalidate and Writeback contents: Writeback contents and then invalidate them.

45.2.3. Initialization

During early initialization when the operating system boots the L2ZCACHE driver, the driver does not modify the
hardware state of the L2 cache.

45.3. L2ZCACHE user interface

45.3.1. Return values

L2CACHE_ERR OK
L2CACHE_ERR_El NVAL
L2CACHE_ERR NO NI T
L2CACHE_ERR_TOOMANY
L2CACHE_ERR_ERROR

All the driver function calls return the following values when an error occurred:
 L2CACHE_ERR_OK - Successful execution.

L2CACHE_ERR_EINVAL - Invalid input parameter. One of the input values checks failed.

L2CACHE_ERR_NOINIT - Driver not initialized.

L2CACHE_ERR_TOOMANY - Maximum index exceeded.

L2CACHE_ERR_ERROR - Internal error. Can have different causes.

Some functions also return a positive value upon successful execution, such as the status of the cache or the error
register.

45.3.2. Flushing the L2 cache

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 288

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

int |2cache_flush(int flush);

int |2cache_flush_address(uint32_t addr, int size, int flush);
int |2cache_flush_line(int way, int index, int flush);

int |2cache_flush_way(int way, int flush);

The driver provides this set of functions to flush the cache contents. There are four options available:
* Flush the whole cache contents.
« Flush an address range: The driver will issue multiple consecutive flush operations, one for each cache line

that contains an address in the range. Each flush operation will only have an effect if the address is present
on the cache.

» Fush a specific cache line.
* Flush a specific way: All the cache linesin that way will be flushed.

Each flush operation can be defined by the different optionsin Section 45.2.2.

This function returns a negative value if something went wrong, as explained in Section 45.3.1. Otherwise, the
function returns L2ZCACHE_ERR_OK when successful.

Table 45.2.1 2cache_f | ush function declaration

Proto |int | 2cache_flush(int flush)
About |Flush the whole L2 cache. See Section 45.3.2.
Param |f | ush [IN] Integer

Flush option.

Value Description
L2CACHE_OPTIONS_FLUSH_NONE Don't flush.

L2CACHE_OPTIONS FLUSH_INVALIDATE Invalidate cache contents.
L2CACHE_OPTIONS FLUSH_WRITEBACK Writeback cache contents.
L2CACHE_OPTIONS_FLUSH_INV_WBACK Invalidate and Writeback cache contents.

Return |int. L2ZCACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 45.3.1.

Table45.3.1 2cache_f | ush_addr ess function declaration

Proto |int | 2cache_flush_address(uint32_t addr, int size, int flush)
About |Flush an address range if present on the L2 cache. See Section 45.3.2.

Param |addr [IN] Integer

Starting byte address.

Param |si ze [IN] Integer

Size in bytes of the address range (>0).
Param |f | ush [IN] Integer

Flush option.

Value Description

L2CACHE_OPTIONS FLUSH_NONE Don't flush.
L2CACHE_OPTIONS_FLUSH_INVALIDATE Invalidate cache contents.
L2CACHE_OPTIONS FLUSH_WRITEBACK Writeback cache contents.
L2CACHE_OPTIONS FLUSH_INV_WBACK Invalidate and Writeback cache contents.

Return |int. L2ZCACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 45.3.1.

Table45.4.1 2cache_f | ush_I i ne function declaration

‘Proto ‘i nt | 2cache flush line(int way, int index, int flush)

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 289

https://www.frontgrade.com/gaisler

FRONTGRADE
About |Flush asingle cacheline of the L2 cache. See Section 45.3.2.
Param |way [IN] Integer
Way of the cacheline.

Param |i ndex [IN] Integer
Index of the cacheline.

Param |f | ush [IN] Integer

Flush option.

Value Description

L2CACHE_OPTIONS FLUSH_NONE Don't flush.

L2CACHE_OPTIONS FLUSH_INVALIDATE Invalidate cache contents.
L2CACHE_OPTIONS FLUSH_WRITEBACK Writeback cache contents.
L2CACHE_OPTIONS _FLUSH_INV_WBACK Invalidate and Writeback cache contents.

Return |int. L2ZCACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 45.3.1.

Table 45.5.1 2cache_f | ush_way function declaration

Proto |int |2cache_flush_way(int way, int flush)
About |Flush asingle way of the L2 cache. See Section 45.3.2.

Param |way [IN] Integer

Way of the cache to flush.

Param |f | ush [IN] Integer

Flush option.

Value Description
L2CACHE_OPTIONS_FLUSH_NONE Don't flush.

L2CACHE_OPTIONS FLUSH_INVALIDATE Invalidate cache contents.
L2CACHE_OPTIONS FLUSH WRITEBACK Writeback cache contents.
L2CACHE_OPTIONS_FLUSH_INV_WBACK Invalidate and Writeback cache contents.

Return |int. L2ZCACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 45.3.1.

45.3.3. Enabling/disabing the L2 cache

int |2cache_enable(int flush)
int |2cache_disable(int flush)

The driver uses these functions to enable or disable the L2 cache. If aflush optionsis selected, it will be executed
regardless of the state of the cache.

These functions return a negative value if something went wrong, as explained in Section 45.3.1. Otherwise, the
function returns L2ZCACHE_ERR_OK when successful.

Table 45.6.1 2cache_enabl e function declaration

Proto |int | 2cache_enable(int flush)
About |Enable L2 cache. Optionally flush the contents. See Section 45.3.3.
Param |f | ush [IN] Integer

Flush option.
Value Description
L2CACHE_OPTIONS FLUSH_NONE Don't flush.
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 290

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

L2CACHE_OPTIONS FLUSH_INVALIDATE Invalidate cache contents.
L2CACHE_OPTIONS FLUSH_WRITEBACK Writeback cache contents.
L2CACHE_OPTIONS FLUSH_INV_WBACK Invalidate and Writeback cache contents.

Return |int. L2ZCACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 45.3.1.

Table 45.7.1 2cache_di sabl e function declaration

Proto |int |2cache_disable(int flush)
About |Disable L2 cache. Optionally flush the contents. See Section 45.3.3.
Param |f | ush [IN] Integer

Flush option.

Value Description

L2CACHE_OPTIONS FLUSH_NONE Don't flush.

L2CACHE_OPTIONS FLUSH_INVALIDATE Invalidate cache contents.
L2CACHE_OPTIONS FLUSH WRITEBACK Writeback cache contents.
L2CACHE_OPTIONS FLUSH_INV_WBACK Invalidate and Writeback cache contents.

Return |int. L2ZCACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 45.3.1.

45.3.4. Enabling/disabing EDAC

int |2cache_edac_enable(int flush)
int |2cache_edac_disable(int flush)

The driver uses these functions to enable or disable EDAC. If the L2 cache design is not fault tolerant (doesn't
support EDAC), these functions return L2ZCACHE_ERR_ERROR. To enable/disable EDAC these functions first
disable the L2 cache, passing the flush parameter to the disable function. If aflush options is selected, it will be
executed regardless of the state of the cache. After executing, they leave the cache in the same state that it was
before calling the function, i.e. if it was enabled they will re-enable the cache, otherwise it will remain disabled.
They both reset the error status register.

These functions return a negative value if something went wrong, as explained in Section 45.3.1. Otherwise, the
function returns L2ZCACHE_ERR_OK when successful.

Table45.8.1 2cache_edac_enabl e function declaration

Proto |int | 2cache_edac_enable(int flush)
About |Enable L2 cache EDAC (if supported). Optionally flush the contents. See Section 45.3.4.
Param |f | ush [IN] Integer

Flush option.

Value Description
L2CACHE_OPTIONS_FLUSH_NONE Don't flush.

L2CACHE_OPTIONS FLUSH_INVALIDATE Invalidate cache contents.
L2CACHE_OPTIONS FLUSH_WRITEBACK Writeback cache contents.
L2CACHE_OPTIONS FLUSH_INV_WBACK Invalidate and Writeback cache contents.

Return |int. L2ZCACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 45.3.1.

Table 45.9.1 2cache_edac_di sabl e function declaration

‘Proto ‘i nt | 2cache_edac_di sabl e(int flush)

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 291

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

About |Disable L2 cache EDAC (if supported). Optionally flush the contents. See Section 45.3.4.
Param |f | ush [IN] Integer

Flush option.

Value Description

L2CACHE_OPTIONS FLUSH_NONE Don't flush.

L2CACHE_OPTIONS FLUSH_INVALIDATE Invalidate cache contents.
L2CACHE_OPTIONS FLUSH WRITEBACK Writeback cache contents.
L2CACHE_OPTIONS _FLUSH_INV_WBACK Invalidate and Writeback cache contents.

Return |int. L2ZCACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 45.3.1.

45.3.5. Using the hardware scrubber

int |2cache_scrub_enabl e(int delay)
int |2cache_scrub_disable(void)
int |2cache_scrub_line(int way, int index)

The driver uses these functions to enable or disable the hardware scrubber. If the L2 cache design is not fault
tolerant (doesn't support EDAC), these functions return LZCACHE_ERR_ERROR. The hardware scrubber can
be used in two different ways:
¢ Automatic scrubbing: Use the enable and disable functions to start the hardware scrubber that will continu-
oudly loop through each cacheline. The del ay parameter defines the amount of clock cycles between each
cache line scrub operation.
» Manual scrubbing: Usethe scrub line function to scrub an specific cache ling, identified by way and i ndex.

Note that only one of the methods can be used at a given time.

These functions return a negative value if something went wrong, as explained in Section 45.3.1. Otherwise, the
function returns L2ZCACHE_ERR_OK when successful.

Table 45.10.1 2cache_scr ub_enabl e function declaration

Proto |int | 2cache_scrub_enable(int delay)

About |Enable L2 cache scrubber with a given delay. See Section 45.3.5.
Param |del ay [IN] Integer

Scrubber delay (from 0 to 65535).

Return |int. L2ZCACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 45.3.1.

Table 45.11. 1 2cache_scr ub_di sabl e function declaration

Proto |int | 2cache_scrub_di sable(void)
About |Disable L2 cache scrubber. See Section 45.3.5.

Return |int. L2ZCACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 45.3.1.

Table45.12.1 2cache_scr ub_I i ne function declaration

Proto |int | 2cache_scrub_line(int way, int index)
About |Scrub asingle L2 cache line (if supported). Only allowed if the scrubber is off. See Section 45.3.5.
Param |way [IN] Integer

Way of the cache line.

Param |i ndex [IN] Integer

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 292

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Index of the cacheline.

Return |int. L2ZCACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 45.3.1.

45.3.6. Enabling/disabling split transactions

int |2cache_split_enable(void)
int |2cache_split_disable(void)

The driver uses these functions to enable or disable split transactions. If the L2 cache does not support split trans-
actions, these functions return L2ZCACHE_ERR_ERROR.

These functions return a negative value if something went wrong, as explained in Section 45.3.1. Otherwise, the
function returns L2ZCACHE_ERR_OK when successful.

Table45.13.1 2cache_spl i t _enabl e function declaration

Proto |int | 2cache_split_enable(void)
About |Enable split response on L2 cache (if supported). See Section 45.3.6.

Return |int. L2ZCACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 45.3.1.

Table45.14.1 2cache_spl i t _di sabl e function declaration

Proto |int | 2cache_split_disable(void)
About |Disable split response on L2 cache (if supported). See Section 45.3.6.

Return |int. L2ZCACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 45.3.1.

45.3.7. Changing the write policy

int |2cache_writethrough(int flush)
int |2cache_writeback(int flush)

Thedriver uses these functions to set the write policy of the L2 cache to writethrough or writeback. To change the
write policy EDAC these functionsfirst disable the L2 cache, passing the flush parameter to the disable function.
If aflush options is selected, it will be executed regardless of the state of the cache. After executing, they leave
the cache in the same state that it was before calling the function, i.e. if it was enabled they will re-enable the
cache, otherwise it will remain disabled.

These functions return a negative value if something went wrong, as explained in Section 45.3.1. Otherwise, the
function returns LZCACHE_ERR_OK when successful.

Table45.15.1 2cache_wri t et hr ough function declaration

Proto |int | 2cache writethrough(int flush)

About | Set L2 cache write policy to writethrough. Optionally flush the contents. See Section 45.3.7.

Param |f | ush [IN] Integer
Flush option.
Vaue Description
L2CACHE_OPTIONS FLUSH NONE Don't flush.
L2CACHE_OPTIONS FLUSH_INVALIDATE Invalidate cache contents.
L2CACHE_OPTIONS FLUSH_WRITEBACK Writeback cache contents.
L2CACHE_OPTIONS FLUSH_INV_WBACK Invalidate and Writeback cache contents.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 293

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Return |int. L2ZCACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 45.3.1.

Table 45.16.1 2cache_wr i t eback function declaration

Proto |int |2cache_witeback(int flush)
About | Set L2 cache write policy to writeback. Optionally flush the contents. See Section 45.3.7.
Param |f | ush [IN] Integer

Flush option.

Value Description

L2CACHE_OPTIONS FLUSH_NONE Don't flush.

L2CACHE_OPTIONS FLUSH_INVALIDATE Invalidate cache contents.
L2CACHE_OPTIONS FLUSH_WRITEBACK Writeback cache contents.
L2CACHE_OPTIONS _FLUSH_INV_WBACK Invalidate and Writeback cache contents.

Return |int. L2ZCACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 45.3.1.

45.3.8. Changing the replacement policy

int |2cache_replacenent(int policy, int flush)

The driver uses this function to set the replacement policy of the L2 cache to one of the following options:
* LRU.
¢ (Pseudo-) random.
« Master-index using the index-replace field. In this policy the way used for the index-replace field is passed
as part of the options.
* Master-index using the modulus function.

To changethereplacement policy thisfunctionfirst disablesthe L2 cache, passing theflush parameter to the disable
function. If aflush options is selected, it will be executed regardless of the state of the cache. After executing, it
leaves the cache in the same state that it was before calling the function, i.e. if it was enabled they will re-enable
the cache, otherwise it will remain disabled.

This function returns a negative value if something went wrong, as explained in Section 45.3.1. Otherwise, the
function returns LZCACHE_ERR_OK when successful.

Table45.17.1 2cache_r epl acenent function declaration

Proto |int | 2cache_replacenment(int options, int flush)
About | Set L2 cache replacement policy. Optionally flush the contents. See Section 45.3.8.
Param |opt i ons [IN] Integer

Replacement options.

Value Description
L2CACHE_OPTIONS REPL_MASTERIDX_MOD Master-index using the modulus func-
tion.

L2CACHE_OPTIONS REPL_MASTERIDX_IDX | (way |Master-index using the index-replace
<< L2CACHE_OPTIONS REPL_INDEX_WAY _BIT) field, which is set toway .

L2CACHE_OPTIONS REPL_RANDOM (Pseudo-) random.
L2CACHE_OPTIONS REPL_LRU LRU.
Param |f | ush [IN] Integer
Flush option.
Value Description
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 294

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

L2CACHE_OPTIONS FLUSH_NONE Don't flush.
L2CACHE_OPTIONS FLUSH_INVALIDATE Invalidate cache contents.
L2CACHE_OPTIONS FLUSH WRITEBACK Writeback cache contents.
L2CACHE_OPTIONS _FLUSH_INV_WBACK Invalidate and Writeback cache con-
tents.
Return |int. L2ZCACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 45.3.1.

45.3.9. Locking ways of the L2 cache

int |2cache_|l ock_way(uint32_t tag, int options, int flush, int enable)
int |2cache_unl ock(void)

The driver uses the lock way function to lock away of the L2 cache with the given tag and options. The options
include fetching (or not) the data from memory and setting (or not) the valid and dirty bits. If no unlocked ways
are available the function returns L2ZCACHE_ERR_TOOMANY. A locked way cannot be replaced or flushed
(unlessaway flush isissued). To lock away, the function first disables the L2 cache, passing the flush parameter
to the disable function. If aflush optionsis selected, it will be executed regardless of the state of the cache. After
locking theway, theenabl e parameter definesif the cache should be enabled or disabled, otherwise the function
leaves the cache in the same state that it was before calling the function, i.e. if it was enabled they will re-enable
the cache, otherwise it will remain disabled.

The unlock function, unlocks all ways of the cache, therefore enabling replacement and flushing on all ways. It
does not perform any other action.

These functions return a negative value if something went wrong, as explained in Section 45.3.1. Otherwise, the
function returns LZCACHE_ERR_OK when successful.

Please note that a complete flush of the L2 cache is recommended when locking away to avoid having an address
on the locked way and in another part of the cache. This situation will lead to an incorrect behavior.

Please note that when locking away, if another entity (core, DMA, ...) in the system writes to the memory region
being fetch on the locked way, before enabling the L2 cache, it will result into an inconsistent memory state. The
enabl e parameter allowsto enablethe L2 cacheinmediately after locking theway, however, thisdoes not remove
all therisk sincethere arefew cyclesin which we are at risk due to hardware limitations. Therefore we recommend
to avoid having any other entity on the system running while locking the ways of the L2 cache. Locking the L2
cache ways should be done at startup, when no other entity in the system is performing work.

Please note that when unlocking the cache, al ways are unlocked which can affect other parts of the system.
For instance, assume an AMP configuration with two software systems. The boot code sets 2 out of 4 ways
locked for the other software system. This means that our software can lock up to 2 ways. However, if our system
unlocks the ways, it will also unlock the ways of the other software system. Special care needs to be taken in
such configurations.

Table 45.18.1 2cache_| ock_way function declaration

Proto |int | 2cache | ock way(uint32_t tag, int options, int flush, int en-
abl e)

About |Lock asingle cache way of the L2 cache with the given tag and options. See Section 45.3.9.

Param |t ag [IN] Integer
Tag to put on the locked way. Only bits [31:10] are used.
Param |opti ons [IN] Integer

Lock options. Set any of these flags independently (by ORing between them).

Flag Description

L2CACHE_OPTIONS FETCH Fetch data from memory. If thisflag is not
set, the locked way will not contain the data
from memory.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 295

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

L2CACHE_OPTIONS VALID Set valid bit. If thisflag is not set, the valid
bitisO.

L2CACHE_OPTIONS DIRTY Set dirty bit. If thisflag is not set, the dirty bit
isO.

Param |f | ush [IN] Integer

Flush option.

Value Description

L2CACHE_OPTIONS_FLUSH_NONE Don't flush.

L2CACHE_OPTIONS FLUSH_INVALIDATE Invalidate cache contents.

L2CACHE_OPTIONS FLUSH_WRITEBACK Writeback cache contents.

L2CACHE_OPTIONS FLUSH_ INV_WBACK Invalidate and Writeback cache contents.

Param |enabl e [IN] Integer
Enable option. Choose what to do with the L2cache after locking the way

Value Description

L2CACHE_OPTIONS NONE Leave the cache in the previous state.
L2CACHE_OPTIONS ENABLE Enable the cache.
L2CACHE_OPTIONS DISABLE Disable the cache.

Return |int. L2ZCACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 45.3.1.

Table45.19.1 2cache_unl ock function declaration

Proto |int | 2cache_unl ock(void)
About |Unlock all L2 cache ways. See Section 45.3.9.

Return |int. L2ZCACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 45.3.1.

45.3.10. Setting up Memory Type Range Register (MTRR)

int |2cache_ntrr_enable(int id, uint32_t addr, uint32_t mask, int options, int flush)
int |2cache_ntrr_disable(int id)

The driver uses the enable function to set up aMTRR register with the given addr, mask and options. The options
include writethrough or uncached and write protection. The MTRR register isidentified by thei d parameter. If no
MTRR register is available the function returns L2ZCACHE_ERR_TOOMANY . To enable aMTRR, the function
first disablesthe L2 cache, passing the flush parameter to the disable function. If aflush optionsis selected, it will
be executed regardless of the state of the cache. After setting up the MTRR, the function leaves the cache in the
same state that it was before calling the function, i.e. if it was enabled they will re-enable the cache, otherwise
it will remain disabled.

The disable function disables agiven MTRR. It does not perform any other action.

These functions return a negative value if something went wrong, as explained in Section 45.3.1. Otherwise, the
function returns L2ZCACHE_ERR_OK when successful.

Please note that a compl ete flush of the L2 cacheis required when enabling MTRR to avoid having an address on
the MTRR and in another part of the cache. This situation will lead to an incorrect behavior.

Table45.20.1 2cache_nt rr _enabl e function declaration

Proto |int | 2cache ntrr_enable(int id, uint32_t addr, uint32_t mask, int
options, int flush)

About |Enable agiven MTRR of the L2 cache with the given address, mask and options. See Section 45.3.10.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 296

https://www.frontgrade.com/gaisler

FRONTGRADE
Param |i d [IN] Integer
Indicates the index of the MTRR.
Param |addr [IN] Integer
Address to put on the MTRR. Only bits [31:18] are used.
Param |mask [IN] Integer
Mask to put on the MTRR. Only bits [31:18] are used.
Param |opti ons [IN] Integer

Lock options. Set two of these flags independently (by ORing between them). Y ou need to choose be-
tween writethrough and uncached (only one) and write protection enabled or not.

Flag Description

L2CACHE_OPTIONS MTRR_ACCESS WRITETHROUGH)| Set region to writethrough. If thisflag
isnot set, the region will be set to un-
cached.

L2CACHE_OPTIONS MTRR_ACCESS UNCACHED Set region to uncached.

L2CACHE_OPTIONS MTRR_WRITEPROT_ENABLE Enable write protection. If thisflag
isnot set, the write protection isdis-
abled.

L2CACHE_OPTIONS MTRR_WRITEPROT_DISABLE Disable write protection.
Param |f | ush [IN] Integer

Flush option.

Value Description

L2CACHE_OPTIONS FLUSH_NONE Don't flush.

L2CACHE_OPTIONS_FLUSH_INVALIDATE Invalidate cache contents.

L2CACHE_OPTIONS _FLUSH_WRITEBACK Writeback cache contents.

L2CACHE_OPTIONS FLUSH_INV_WBACK Invalidate and Writeback cache con-
tents.

Return |int. L2ZCACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 45.3.1.

Table45.21.1 2cache_nt rr _di sabl e function declaration

Proto |int | 2cache_ntrr_disable(int id)
About |Disable agiven MTRR. See Section 45.3.10.
Param |i d [IN] Integer

Indicates the index of the MTRR.

Return |int. L2ZCACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 45.3.1.

45.3.11. Checking the L2 cache configuration status

int |2cache_status(void)

The driver provides this function to return the configuration of the L2 cache, including:
 Enabled/disabled.
e Split status.
* EDAC status.
* Scrubber status.
« Replacement palicy.
« Write policy.
» Locked ways.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 297

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

* Interrupt mask status.

The driver header file contains helper macros that allow to easily check any of these configurations based on the
value returned by the status function.

This function returns a negative value if something went wrong, as explained in Section 45.3.1. Otherwise, the
function returns LZCACHE_ERR_OK when successful.

Table45.22. | 2cache_st at us function declaration

Proto |int | 2cache_status(void)
About |Returnsthe status of the L2 cache. See Section 45.3.11.

Return |int. A positive value indicating the status when successful. Otherwise, returns a negative vaue if
something went wrong, as explained in Section 45.3.1.

45.3.12. Interrupts on the L2 cache

typedef void (*l2cache_isr_t)(void *arg, uint32_t addr, uint32_t status);
int |2cache_isr_register(|2cache_isr_t isr, void * arg, int options);
int |2cache_interrupt_mask(int options);

int |2cache_interrupt_unmask(int options);

The driver provides this set of functions to handle interrupts. There are four sources of interrupt in the L2 cache:
» Backend AHB error.
» Write protection hit
* Uncorrectable EDAC error.
¢ Correctable EDAC error.

The first thing to do is to register an ISR using theisr_register function. This function takes the user ISR and its
argument, that will be passed when the ISR is called, and an options parameter that defines which interrupts will
be unmasked, i.e. activated.

Once an ISR has been registered, the user can mask or unmask any specific interrupt source with the provided
functions.

The driver alows to register a new ISR again, which will effectively replace the previously registered ISR. It is
only possible to have one ISR registered at a given time.

This function returns a negative value if something went wrong, as explained in Section 45.3.1. Otherwise, the
function returns L2ZCACHE_ERR_OK when successful.

Table45.23.1 2cache_i sr_r egi st er function declaration

Proto |int |2cache_isr_register(|2cache_isr_t isr, void * arg, int op-
tions)

About |Registersan ISR for the L2 cache. The opt i ons parameter defines which interrupts are going to be
unmasked (i.e. enabled). See Section 45.3.12.

Param |i sr [IN] Pointer

The ISR function pointer.
Param |ar g [IN] Pointer

The ISR argument pointer.

Param |opti ons [IN] Integer
Interrupt mask option. Any combinations (by OR operation) of thisflagsis accepted.

Value Description
L2CACHE_INTERRUPT_ALL Unmask all interrupts.
L2CACHE_INTERRUPT_BACKENDERROR Unmask backend AHB error interrupts.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 298

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

L2CACHE_INTERRUPT_WPROTHIT Unmask write-protection hit interrupts.
L2CACHE_INTERRUPT_UNCORRERROR Unmask uncorrectable error interrupts.
L2CACHE_INTERRUPT_CORRERROR Unmask correctable error interrupts.
Return |int. L2ZCACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 45.3.1.
Table45.24.1 2cache_i nt er r upt _mask function declaration
Proto |int | 2cache_interrupt_mask(int options)
About |Mask certain interrupts (i.e. disable), leaving the rest in their current state (only availableif an ISR has
been register before). The opt i ons parameter defines which interrupts are going to be masked. See
Section 45.3.12.
Param |opt i ons [IN] Integer
Interrupt mask option. Any combinations (by OR operation) of thisflagsis accepted.
Value Description
L2CACHE_INTERRUPT_ALL Mask al interrupts.
L2CACHE_INTERRUPT_BACKENDERROR Mask backend AHB error interrupts.
L2CACHE_INTERRUPT_WPROTHIT Mask write-protection hit interrupts.
L2CACHE_INTERRUPT_UNCORRERROR Mask uncorrectable error interrupts.
L2CACHE_INTERRUPT_CORRERROR Mask correctable error interrupts.
Return |int. L2ZCACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 45.3.1.
Table 45.25.1 2cache_i nt errupt _unmask function declaration
Proto |int | 2cache_interrupt_unmask(int options)
About |Unmask certain interrupts (i.e. enable), leaving the rest in their current state (only availableif an
ISR has been register before). The opt i ons parameter defines which interrupts are going to be un-
masked. See Section 45.3.12.
Param |opti ons [IN] Integer
Interrupt mask option. Any combinations (by OR operation) of thisflagsis accepted.
Value Description
L2CACHE_INTERRUPT_ALL Unmask all interrupts.
L2CACHE_INTERRUPT _BACKENDERROR Unmask backend AHB error interrupts.
L2CACHE_INTERRUPT_WPROTHIT Unmask write-protection hit interrupts.
L2CACHE_INTERRUPT_UNCORRERROR Unmask uncorrectable error interrupts.
L2CACHE_INTERRUPT_CORRERROR Unmask correctable error interrupts.
Return |int. L2ZCACHE_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 45.3.1.

45.3.13. Polling the error status of the L2 cache

int |2cache_error_status(uint32_t * addr, uint32_t * status);

The driver provides this function to handle errors as an aternative to interrupts. There are four sources of errors
inthe L2 cache:

» Backend AHB error.

* Write protection hit

¢ Uncorrectable EDAC error.

¢ Correctable EDAC error.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 299

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

This function will return if aerror has occurred (or multiple). If it isthe case, then it will copy the address of the
cacheline that generated the error in the value pointed by addr (if avalid pointer is given), and the value of the

error status register on the value pointed by st at us (if avalid pointer is given).

If an error has been detected, thisfunction will internally reset the error statusregister to be ableto catch new errors.

Please note that this function should not be used when interrupts are being used.

This function returns a negative value if something went wrong, as explained in Section 45.3.1. Otherwise, the

function returns the error status when successful.

Table45.26. | 2cache_err or _st at us function declaration

Proto

int |2cache_error_status(uint32_t * addr, uint32_t * status)

About

Poll the state of the error status register. Returnsif aerror (or multiple) have been detected or not. Op-
tionally can provide the error address and the error status contents for the first error detected (even if
multiple errors happened). See Section 45.3.13.

Param

addr [OUT] Pointer

If anon NULL pointer is given, and in the case of new errors, the value pointed will be updated with
the error address. Note that this address only reflects the state of the first error detected. If multiple er-
rors are detected, this address still represents the first one.

Param

st at us [OUT] Pointer

If anon NULL pointer is given, and in the case of new errors, the value pointed will be updated with
the error status register content. Note that this value only reflects the state of the first error detected. If
multiple errors are detected, this value till represents the first one.

Return

int. A positive value indicating the status when successful. Otherwise, returns a negative value if
something went wrong, as explained in Section 45.3.1. The values can be:

Vaue Description

L2CACHE_STATUS NOERROR (or 0) No error.

L2CACHE_STATUS NEWERROR (>0) One new error detected.

L2CACHE_STATUS MULTIPLEERRORS (>0) More than one error detected.

45 4. APl reference

This section lists al functions part of the L2ZCACHE driver API, and in which section(s) they are described. The
APl isaso documented in the source header file of the driver, see Section 45.1.2.

Table 45.27. L2ZCACHE function reference

Prototype Section
int |2cache_flush(int flush) 45.3.2
int |2cache_flush_address(uint32_t addr, int size, int flush) 45.3.2
int |2cache_flush_line(int way, int index, int flush) 45.3.2
int |2cache_flush_way(int way, int flush) 45.3.2
int |2cache_enabl e(int flush) 45.3.3
int | 2cache_disable(int flush) 45.3.3
int |2cache_edac_enable(int flush) 45.3.4
int |2cache_edac_disable(int flush) 4534
int |2cache_scrub_enable(int delay) 45.3.5
int | 2cache_scrub_di sable(void) 45.3.5
int |2cache_scrub_line(int way, int index) 45.35
int |2cache_split_enable(void) 45.3.6
int |2cache_split_disable(void) 45.3.6
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2

300

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Prototype Section
int | 2cache_witethrough(int flush) 45.3.7
int |2cache_witeback(int flush) 45.3.7
int | 2cache_replacenent(int policy, int flush) 45.3.8
int |2cache_|ock way(uint32_t tag, int options, int flush, int en- [453.9
abl e)

i nt |2cache_unl ock(void) 45.3.9

int |2cache_nmrr_enable(int id, uint32_t addr, uint32_t nask, int [453.10
options, int flush)

int | 2cache_ntrr_disable(int id) 45.3.10
int | 2cache_status(void) 45.3.11
int |2cache_isr_register(|2cache_isr_t isr, void * arg, int op- 45.3.12
tions)

int |2cache_interrupt_mask(int options) 45.3.12
int | 2cache_interrupt_unmask(int options) 45.3.12
int |2cache_error_status(uint32_t * addr, uint32_t * status) 45.3.13

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2

301

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 46. GRIOMMU driver

46.1. Introduction
This section describes the GRIOMMU driver for SPARC/LEON processors.
46.1.1. Hardware Support

The GRIOMMU core hardware interface is documented in the GRIP Core User's manual. Below is alist of the
major hardware features it supports:

« Multibus bridge operation.

 Access protection based on Access Protection Vector (APV) functionality.

 Access protection and address translation based on IOMMU functionality.

« Group access control.

* APV cache/TLB.

* Interrupt generation.

46.1.2. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the RTEMS source
treertens-5/c/src/lib/libbsp/sparc.

Table 46.1. GRIOMMU driver source location

L ocation Description

shar ed/ i ncl ude/ gri omru. h GRIOMMU user interface definition

...11ibbsp/sparc/shared/ionmru/grionmmu. c |GRIOMMU driver implementation

46.1.3. Examples

There is a simple example available that uses the GRIOMMU to route the DMA master for a PCI transfer.
The example is part of the RCC distribution, it can be found under / opt / rt ens- 5/ sr c/ sanpl es/ pci /
pci _deno/test.c.

46.2. Software design overview

The driver has been implemented using the Driver Manager Framework. The driver provides a kernel function
interface, an API, rather than implementing a 10 system device. The API is not designed for multi-threadding,
i.e. multiple threads operating on the driver independently. The driver does not contain any lock or protection for
SMP environments. Changing the GRIOMMU configuration is not intended to be done extensively at runtime
or independently of the rest of the system, since it usually has a big impact on the rest of the system. Therefore
the user must take care on any impact that the different actions might have on other parts of the system (such as
threads, CPUs, DMAs, ...).

46.2.1. Driver usage

The driver provides a set of functions that allow to configure the GRIOMMU. The following list summarizes the
available actions.
¢ Setting up the GRIOMMU core (see Section 46.3.2).
Enable/disable the access protection (see Section 46.3.3).
Finding and configuring a master (see Section 46.3.4).
« Configuring agroup (see Section 46.3.6).
« Managing the APV of agroup (see Section 46.3.5).

The normal use case for the IOMMU is the following: First we should setup the GRIOMMU with the wanted
configuration and pagesize (see Section 46.3.2). Once the IOMMU is configured, we can find the masters we are
interested on and configure their respective groups and routing (see Section 46.3.4).

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 302

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

After the masters are configured and assigned to groups, if we plan to use the APV to control the access of the
groups, we need to set it up. Thefirst thing to do isto allocateit, using the hel per functions provided by the driver
or by other means. Please note the size and alignment requirements of the APV. Once the APV is allocated, we
caninitailize it and then set different addresses or pages to match our needs. All thisis covered in Section 46.3.5).

Now we can setup the groups, assigning their APV if necessary (see Section 46.3.6). After GRIOMMU, masters
and groups are properly setup, the access control can be enabled (see Section 46.3.3).

When dealing with errors, the driver provides two different interfaces:
 Interrupts (see Section 46.3.7): Allows the user to install an Interrupt Service Routine (ISR) that will be
executed whenever an error occurs
» Polling (see Section 46.3.8): Allows the user to poll the error status to check if an error (or multiple) have
occurred.

Only one of these interfaces can be used at agiven time.

The different errors that the GRIOMMU can report are;
* Parity error.
* Flush started.
¢ Fush completed.
e Access denied.
e Trandation error.

46.2.2. Initialization

During early initialization when the operating system boots the GRIOMMU driver, the driver does not modify
the hardware state of the GRIOMMU.

46.3. GRIOMMU user interface
46.3.1. Return values

GRI OWU_ERR_OK

GRI OWU_ERR_EI NVAL
GRI OWU_ERR NOINI T
GRI OMWMU_ERR_ERRCR

All the driver function calls return the following values when an error occurred:
¢ GRIOMMU_ERR_OK - Successful execution.
* GRIOMMU_ERR_EINVAL - Invalid input parameter. One of the input values checks failed.
¢ GRIOMMU_ERR_NOINIT - Driver not initialized.
* GRIOMMU_ERR_ERROR - Internal error. Can have different causes.

Some functions also return a positive value upon successful execution, such as the status of the cache or the error
register.

46.3.2. Configuring the GRIOMMU core

int griommu_setup(int options)
int griommu_status(void)

The driver provides the setup function to configure the GRIOMMU, including:

e Lookup bus.

* APV cache.

¢ APV cache group addressing.

» Write protection only.

* Always update AHB failing access.
* Pagesize.

* Prefetch.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 303

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The status function returns the value of the GRIOMMU control register, which represents the configuration status.

This function returns a negative value if something went wrong, as explained in Section 46.3.1. Otherwise, the
function returns GRIOMMU_ERR_OK when successful.

Table 46.2. gr i onmru_set up function declaration

Proto |int griomu_setup(int options)
About | Setup the [OMMU cache with the given options. See Section 46.3.2.
Param |nmode [IN] Integer
Mode option. Select between different flags by ORing them. If avalue of apair is not selected, the de-
fault will be chosen.
Fag Description
GRIOMMU_OPTIONS LOOKUPBUS BUSO Select primary bus for lookup bus (de-
fault).
GRIOMMU_OPTIONS L OOKUPBUS BUSO Select secondary bus for lookup bus.
Flag Description
GRIOMMU_OPTIONS_CACHE_DISABLE Disable APV cache (default).
GRIOMMU_OPTIONS_CACHE_ENABLE Enable APV cache.
Flag Description
GRIOMMU_OPTIONS_GROUPADDRESSING_DISABLE |Disable APV cache group addressing
(default).
GRIOMMU_OPTIONS_GROUPADDRESSING_ENABLE |Enable APV cache group addressing.
Flag Description
GRIOMMU_OPTIONS WPROTONLY _DISABLE Disable write protection only (default).
GRIOMMU_OPTIONS WPROTONLY_ENABLE Enable write protection only.
Fag Description
GRIOMMU_OPTIONS_AHBUPDATE_DISABLE Disable update always AHB status (de-
fault).
GRIOMMU_OPTIONS AHBUPDATE_ENABLE Enable update always AHB status.
Flag Description
GRIOMMU_OPTIONS_PREFECTH_ENABLE Enable prefetching (default).
GRIOMMU_OPTIONS_PREFETCH_DISABLE Disable prefetching.
Flag Description
GRIOMMU_OPTIONS_PAGESIZE_4KIB Pagesize 4 KiB (default).
GRIOMMU_OPTIONS_PAGESIZE_8KIB Pagesize 8 KiB.
GRIOMMU_OPTIONS_PAGESIZE _16KIB Pagesize 16 KiB.
GRIOMMU_OPTIONS PAGESIZE_32KIB Pagesize 32 KiB.
GRIOMMU_OPTIONS_PAGESIZE_64KIB Pagesize 64 KiB.
GRIOMMU_OPTIONS_PAGESIZE_128KIB Pagesize 128 KiB.
GRIOMMU_OPTIONS_PAGESIZE_256KIB Pagesize 256 KiB.
GRIOMMU_OPTIONS PAGESIZE 512KIB Pagesize 512 KiB.
Return |int. GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.
Table 46.3. gr i onmru_st at us function declaration
Proto |int griomu_status(void)
About | Return the configuration status of the IOMMU. See Section 46.3.2.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 304

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Return |int. Contents of GRIOMMU control register when successful. Otherwise, returns a negative value if

something went wrong, as explained in Section 46.3.1.

46.3.3. Enabling/disabing the access protection

int griomm_enable(int node)
int griommu_disable(void)

Thedriver usesthese functionsto enable or disable the GRIOMMU. The mode options decides which modeto use:

¢ |IOMMU mode.
e Group/APV mode.

These functions return a negative value if something went wrong, as explained in Section 46.3.1. Otherwise, the
function returns GRIOMMU_ERR_OK when successful.

Table 46.4. gr i onru_enabl e function declaration

Proto |int grionmmu_enabl e(int node)
About | Enable the IOMMU. See Section 46.3.3.
Param |nmode [IN] Integer

Mode option.

Value Description

GRIOMMU_MODE_IOMMU IOMMU mode. Not supported by current driver.
GRIOMMU_MODE_GROUPAPV Group/APV protection mode.

Return |int. GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

Table 46.5. gr i onmru_di sabl e function declaration

Proto |int griomu_disable(void)
About |Disable the IOMMU. See Section 46.3.3.

Return |int. GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.

46.3.4. Finding and configuring a master

int griommu_master_find(int vendor, int device, int instance)
int griommu_master_setup (int master, int group, int options)
int griommu_master_info(int master, uint32_t * info)

The driver uses the find function to find a specific instance of a device. The deviceisidentified by vendor and
devi ce number ids. Thei nst ance parameter defines the instance index of the device (starting at 0), to be
able to differentiate then when there are multiple devices. When a device is found, a non-negative master index
isreturned, otherwise GRIOMMU_ERR_NOTFOUND is returned.

The setup function usesthe mast er index to setup the group and routing of a master.
Theinfo function copiesthe master configuration register contentsto the value pointed by thei nf o input pointer.

These functions return a negative value if something went wrong, as explained in Section 46.3.1. Otherwise, the
function returns GRIOMMU_ERR_OK when successful.

Table 46.6. gr i onmru_rast er _f i nd function declaration

Proto |int griommu_naster find(int vendor, int device, int instance)

About |Find a specific instance of a master on the IOMMU. The master is defined by the vendor and device
id numbers. The function returns the master index when successfull. See Section 46.3.4.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 305

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Param [vendor [IN] Integer
Vendor id number.

Param |devi ce [IN] Integer
Deviceid number.

Return |int. Returns the master index when successful. Otherwise, returns GRIOMMU_ERR_NOTFOUND or
anegative value if something went wrong, as explained in Section 46.3.1.

Table 46.7. gr i onru_rmast er _set up function declaration

Proto |int griommu_naster_setup(int master, int group, int options)

About | Setup a specific master with group index gr oup and given options. The master is identified by the
mast er index. See Section 46.3.4.

Param |mast er [IN] Integer

Master index number.

Param |gr oup [IN] Integer
Group index number.

Param |opti ons [IN] Integer

Options.

Value Description
GRIOMMU_OPTIONS_BUSO Route master in primary bus.
GRIOMMU_OPTIONS BUS1 Route master in secondary bus.

Return |int. Returns GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something
went wrong, as explained in Section 46.3.1.

Table 46.8. gr i onmru_rmast er _i nf o function declaration

Proto |int griommu_naster_info(int master, uint32_t * info)
About | Get info from a specific master. The master isidentified by the mast er index. See Section 46.3.4.
Param |mast er [IN] Integer

Master index number.
Param |i nf o [IN] Pointer
Pointer to where the info will be written.

Return |int. Returns GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something
went wrong, as explained in Section 46.3.1.

46.3.5. Managing the APV

void * griommu_apv_new(void)

voi d griommu_apv_del ete(void * apv)

int griommu_apv_init(void * apv, int options)

int griommu_apv_address_set(void * apv, uint32_t addr, int size, int options)
int griommu_apv_page_set(void * apv, int index, int size, int options)

int griommu_apv_flush(void)

All thesefunctionswork withtheapv pointer. The pointer needsto have 1 bit per pagefor al 4 GiB memory space.
To simplify the calculation, the alocated size should be GRI OMMU_APV_SI ZE/ pagesi ze and it should be
aligned to 16 bytesor GRI OVMMUJ_APV_ALI GN. The new and delete functions take care of the size and alignment
internally to provide allocation and deallocation of APV.

Theinit, address_set and page_set functions do conceptually the same, they all set a certain range of pagesto the
following access control:

o Allowed.

* Not allowed.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 306

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The init function initializes all pages of the APV. The page_set function only initializes a range of pages. The
address_set function takes an input range of addresses and trandates it to a page range and then initializesiit.

The flush function flushes the whole APV cache in case it is enabled. Note that this is required if some APV
that might be on the cache is modified. Flushing the whole APV cache might affect other masters or groups. If
group addressing is enabled, the group functions offer an alternative to flush only an specific group, as explained
in Section 46.3.6.

Except new and delete, these functions return a negative value if something went wrong, as explained in Sec-
tion 46.3.1. Otherwise, the function returns GRIOMMU_ERR_OK when successful.

Table 46.9. gr i onmu_apv__new function declaration

Proto |void * griommu_apv_new void)
About |Allocates an APV vector using the configured page sizein the driver. See Section 46.3.5.
Return |void *. Pointer to the allocated APV. If aNULL pointer is returned, something went wrong.

Table 46.10. gr i onmru_apv_del et e function declaration

Proto |void griommu_apv_delete(void * apv)
About |Deallocates an APV vector. See Section 46.3.5.

Param |apv [IN] Pointer

Pointer to the allocated APV.

Return |None.

Table46.11. gri onmu_apv_i ni t function declaration

Proto |int griomu_apv_init(void * apv, int options)

About |Initialize the given APV. The driver assumes the pagesize configured in the GRIOMMU (with
griommu_setup). This function will not take care of the APV cache flush. The user has to flush the
APV cacheisthe APV migth be contained on the cache. See Section 46.3.5.

Param |apv [IN] Pointer

APV pointer. Has to meet the alignment requirements explained in Section 46.3.5.

Param |opti ons [IN] Integer
Initialize options.

Value Description
GRIOMMU_OPTIONS _APV_ALLOW Set all pagesto alow access.
GRIOMMU_OPTIONS APV_DONTALLOW Set all pagesto not alow access.

Return |int. Returns GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something
went wrong, as explained in Section 46.3.1.

Table 46.12. gri ommmu_apv_page_set function declaration

Proto |int griomu_apv_page_set(void * apv, int index, int size, int op-
tions)

About | Set a specific range of pages with the given optionsin the given APV. Therange is defined by i ndex
and si ze. Thefirst page of therangeisi ndex andthelasti ndex + size - 1.Thedriveras
sumes the pagesize configured in the GRIOMMU (with griommu_setup). This function will not take
care of the APV cache flush. The user hasto flush the APV cache isthe APV migth be contained on
the cache. See Section 46.3.5.

Param |apv [IN] Pointer
APV pointer. Has to meet the alignment requirements explained in Section 46.3.5.

Param |i ndex [IN] Integer
Starting page of the range.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 307

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Param |si ze [IN] Integer
Size of the pages range (>0).

Param |opti ons [IN] Integer
Initialize options.

Value Description
GRIOMMU_OPTIONS_APV_ALLOW Set pages to alow access.
GRIOMMU_OPTIONS_APV_DONTALLOW Set pages to not allow access.

Return |int. Returns GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something
went wrong, as explained in Section 46.3.1.

Table 46.13. gri onmu_apv_addr ess_set function declaration

Proto |int griommu_apv_address_set(void * apv, uint32_t addr, int size,
int options)

About | Set a specific range of pages defined by a range of addresses with the given options in the given APV.
The rangeis defined by addr and si ze. Thefirst address of therangeisaddr and thelast addr +
size - 1. All the pagesthat include any of the addressesin this range will be affected. The driv-

er assumes the pagesize configured in the GRIOMMU (with griommu_setup). This function will not
take care of the APV cache flush. The user has to flush the APV cache isthe APV migth be contained
on the cache. See Section 46.3.5.

Param |apv [IN] Pointer

APV pointer. Has to meet the alignment requirements explained in Section 46.3.5.

Param |addr [IN] Integer

Starting address of the range.

Param |si ze [IN] Integer
Size of the address range (>0).

Param |opti ons [IN] Integer
Initialize options.

Value Description
GRIOMMU_OPTIONS APV_ALLOW Set pages to allow access.
GRIOMMU_OPTIONS APV_DONTALLOW Set pages to not allow access.

Return |int. Returns GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something
went wrong, as explained in Section 46.3.1.

Table 46.14. gri ommu_apv_f | ush function declaration

Proto |int griommu_apv_flush(void)
About |Flush the APV cache. See Section 46.3.5.

Return |int. Returns GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something
went wrong, as explained in Section 46.3.1.

46.3.6. Configuring a group

int griomm_group_setup(int group, void * apv, int options)

int griomm_group_info(int group, uint32_t * info)

int griommu_group_apv_init(int group, int options)

int griommu_group_apv_address_set(int group, uint32_t addr, int size, int options)
int griomm_group_apv_page_set(int group, int index, int size, int options)

int griomm_group_flush(void)

The setup function uses the gr oup index to setup the group. The group access control can be:
» Disabled (all accesses blocked).
» Enabled (requires providing avalid APV). In this case, the APV will be check for access protection.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 308

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

» Pass-through (all accesses alowed).

The setup function aways assigns the provided apv to the selected group. However, it only requires avalid apv
when enabling a group access control. The provided apv will be assigned to the group, so that APV managing
functions can be executed. Allocating and deallocating the APV can be done through helper functions provided
by the driver. See Section 46.3.5 for more details on how to manage the APV.

Theinfo function copies the group configuration register contents to the value pointed by thei nf o input pointer.
The apv functions do the same functionality as the one shown in Section 46.3.5, using the gr oup index to get
the assigned APV of the group. They all require that the user has configured before an APV for the group. These
functions take care internally of flushing the APV cache.

Theflush function flushesthe group APV cache contentsin case group addressing is enabled. Otherwisethewhole
APV cacheis flushed. Note that thisis required if some APV that might be on the cache is modified, however,
the above mentioned functions take care of it.

These functions return a negative value if something went wrong, as explained in Section 46.3.1. Otherwise, the
function returns GRIOMMU_ERR_OK when successful.

Table 46.15. gr i ommu_gr oup_set up function declaration

Proto |int griommu_group_setup(int group, void * apv, int options)

About | Setup a specific group with given options. The group is identified by the gr oup index. See Sec-
tion 46.3.6.

Param |gr oup [IN] Integer

Group index number.

Param |apv [IN] Pointer

Pointer to an allocated APV vector. Only used if the group is enabled .
Param |opti ons [IN] Integer

Choose the group options.

Value Description
GRIOMMU_OPTIONS GROUP_ENABLE Enable the group access control.
GRIOMMU_OPTIONS GROUP_DISABLE Disable the group access.
GRIOMMU_OPTIONS _GROUP_PASSTHROUGH | Enable Pass-through group access.

Return |int. Returns GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something
went wrong, as explained in Section 46.3.1.

Table 46.16. gr i ommmu_gr oup_i nf o function declaration

Proto |int griommu_group_info(int group, uint32_t * info)
About | Get info from a specific group. The group isidentified by the gr oup index. See Section 46.3.6.
Param |gr oup [IN] Integer

Group index number.
Param |i nf o [IN] Pointer
Pointer to where the info will be written.

Return |int. Returns GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something
went wrong, as explained in Section 46.3.1.

Table 46.17. gri ommu_gr oup_apv_i ni t function declaration

Proto |int griommu_group_apv_init(int group, int options)

About |Initialize the APV of a specific group. The group isidentified by the gr oup index. If the APV cache
is enabled, this function will call the group flush internally. See Section 46.3.5.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 309

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Param |gr oup [IN] Integer
Group index number.

Param |opti ons [IN] Integer
Initialize options.

Value Description
GRIOMMU_OPTIONS_APV_ALLOW Set all pages to allow access.
GRIOMMU_OPTIONS_APV_DONTALLOW Set al pages to not alow access.

Return |int. Returns GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something
went wrong, as explained in Section 46.3.1.

Table 46.18. gri ommu_gr oup_apv_page_set function declaration

Proto |int griommu_group_apv_page_set(int group, int index, int size, int
options)

About | Set a specific range of pages with the given optionsin the APV of a specific group. Therangeis de-
fined by i ndex and si ze. Thefirst page of therangeisi ndex and thelasti ndex + size - 1.
The group isidentified by the gr oup index. If the APV cacheis enabled, this function will call the
group flush internally. See Section 46.3.5.

Param |gr oup [IN] Integer

Group index number.

Param |i ndex [IN] Integer
Starting page of the range.

Param |si ze [IN] Integer
Size of the pages range (>0).

Param |opti ons [IN] Integer
Initialize options.

Value Description
GRIOMMU_OPTIONS _APV_ALLOW Set pages to allow access.
GRIOMMU_OPTIONS APV_DONTALLOW Set pages to not allow access.

Return |int. Returns GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something
went wrong, as explained in Section 46.3.1.

Table 46.19. gri onmu_gr oup_apv_addr ess_set function declaration

Proto |int griomu_group_apv_address_set(int group, uint32_t addr, int
size, int options)

About |Set a specific range of pages defined by a range of addresses with the given optionsin the APV of a
specific group. The range is defined by addr and si ze. Thefirst address of the rangeisaddr and
thelast addr + si ze - 1. All the pagesthat include any of the addresses in this range will be af-
fected. The group isidentified by the gr oup index. If the APV cacheis enabled, this function will
call the group flush internally. See Section 46.3.5.

Param |gr oup [IN] Integer

Group index number.
Param |addr [IN] Integer
Starting address of the range.

Param |[si ze [IN] Integer
Size of the address range (>0).

Param |opti ons [IN] Integer
Initialize options.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 310

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Value Description
GRIOMMU_OPTIONS _APV_ALLOW Set pages to allow access.
GRIOMMU_OPTIONS APV_DONTALLOW Set pages to not allow access.

Return |int. Returns GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something
went wrong, as explained in Section 46.3.1.

Table 46.20. gr i ommu_gr oup_apv_f I ush function declaration

Proto |int griomu_group_apv_flush(int group)

About |Flush the APV cache. If group addressing is being used, the function will only flush the group cache
given by gr oup. See Section 46.3.6.

Param |gr oup [IN] Integer

Group index number.

Return |int. Returns GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something
went wrong, as explained in Section 46.3.1.

46.3.7. Interrupts on the GRIOMMU

typedef void (*griomu_isr_t)(void *arg, uint32_t access, uint32_t status);
int griommu_isr_register(griomm_isr_t isr, void * arg, int options);

int griomm_interrupt_mask(int options);

int griomm_interrupt_unmask(int options);

Thedriver providesthis set of functionsto handleinterrupts. There arefive sources of interrupt in the GRIOMMU:
 Parity error.
¢ Flush started.
¢ Flush completed.
* Accessdenied.
» Trandation error.

The first thing to do is to register an ISR using the isr_register function. This function takes the user ISR and its
argument, that will be passed when the ISR is called, and an options parameter that defines which interrupts will
be unmasked, i.e. activated.

Once an ISR has been registered, the user can mask or unmask any specific interrupt source with the provided
functions.

The driver alows to register a new ISR again, which will effectively replace the previously registered ISR. It is
only possible to have one ISR registered at a given time.

This function returns a negative value if something went wrong, as explained in Section 46.3.1. Otherwise, the
function returns GRIOMMU_ERR_OK when successful.

Table46.21. gri ommu_i sr_r egi st er function declaration

Proto |int griommu_isr_register(griommu_isr_t isr, void * arg, int op-
tions)

About |Registersan ISR for the IOMMU. Theopt i ons parameter defines which interrupts are going to be
unmasked (i.e. enabled). See Section 46.3.7.

Param |i sr [IN] Pointer

The ISR function pointer.
Param |ar g [IN] Pointer

The ISR argument pointer.

Param |opti ons [IN] Integer
Interrupt mask option. Any combinations (by OR operation) of thisflagsis accepted.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 311

https://www.frontgrade.com/gaisler

Vaue

rRONTGRADE

Gaisler

Description

GRIOMMU_INTERRUPT_ALL

Unmask all interrupts.

GRIOMMU_INTERRUPT_PARITY_ERROR

Unmask parity error interrupts.

GRIOMMU_INTERRUPT_FLUSH_COMPLETED

Unmask flush completed interrupts.

GRIOMMU_INTERRUPT_FLUSH_STARTED

Unmask flush started interrupts.

GRIOMMU_INTERRUPT_ACCESS_DENIED

Unmask access denied interrupts.

GRIOMMU_INTERRUPT_TRANSLATION_ERROR

Unmask trandation error interrupts.

Return

int. GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something went

wrong, as explained in Section 46.3.1.

Table 46

.22.gri onmu_i nt er rupt _nmask function declaration

Proto

int griommu_interrupt_mask(int options)

About

Mask certain interrupts (i.e. disable), leaving the rest in their current state (only available if an ISR has
been register before). The opt i ons parameter defines which interrupts are going to be masked. See

Section 46.3.7.

Param

opti ons [IN] Integer

Interrupt mask option. Any combinations (by OR operation) of thisflagsis accepted.

Vaue

Description

GRIOMMU_INTERRUPT_ALL

Mask all interrupts.

GRIOMMU_INTERRUPT_PARITY_ERROR

Mask parity error interrupts.

GRIOMMU_INTERRUPT_FLUSH_COMPLETED

Mask flush completed interrupts.

GRIOMMU_INTERRUPT_FLUSH_STARTED

Mask flush started interrupts.

GRIOMMU_INTERRUPT_ACCESS_DENIED

Mask access denied interrupts.

GRIOMMU_INTERRUPT_TRANSLATION_ERROR

Mask trandlation error interrupts.

Return

int. GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something went

wrong, as explained in Section 45.3.1.

Table 46.23. gri onmmmu_i nt er r upt _unnask function declaration

Proto |int griommu_interrupt_unmask(int options)
About |Unmask certain interrupts (i.e. enable), leaving the rest in their current state (only availableif an
ISR has been register before). The opt i ons parameter defines which interrupts are going to be un-
masked. See Section 46.3.7.
Param |opti ons [IN] Integer
Interrupt mask option. Any combinations (by OR operation) of thisflagsis accepted.
Value Description
GRIOMMU_INTERRUPT_ALL Unmask all interrupts.
GRIOMMU_INTERRUPT_PARITY_ERROR Unmask parity error interrupts.
GRIOMMU_INTERRUPT_FLUSH_COMPLETED |Unmask flush completed interrupts.
GRIOMMU_INTERRUPT_FLUSH_STARTED Unmask flush started interrupts.
GRIOMMU_INTERRUPT_ACCESS_DENIED Unmask access denied interrupts.
GRIOMMU_INTERRUPT_TRANSLATION_ERROR|Unmask trandation error interrupts.
Return |int. GRIOMMU_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 46.3.1.
46.3.8. Polling the error status of the GRIOMMU
int griommu_error_status(uint32_t * access);
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2

312

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Thedriver providesthis function to handle errors as an alternative to interrupts. There are five sources of interrupt
in the GRIOMMU:
o Parity error.
Flush started.
¢ Flush completed.
» Access denied.
« Trandation error.

This function will return the status register contents if a error has occurred. If it is the case, then it will copy the
AHB failing access register to the value pointed by access (if avalid pointer isgiven).

If an error has been detected, thisfunction will internally reset the error statusregister to be ableto catch new errors.
Please note that this function should not be used when interrupts are being used.

This function returns a negative value if something went wrong, as explained in Section 46.3.1. Otherwise, the
function returns the error status when successful.

Table 46.24. gr i ommu_er r or _st at us function declaration

Proto |int | 2cache_error_status(uint32_t * access)

About |Poll the state of the error status register. Returns the status register value if an error have been detect-
ed. Also thisfunction clears the hardware error flagsif an error has been detected. Optionally can pro-
vide the AHB failing access register content. See Section 46.3.8.

Param |access [OUT] Pointer

If anon NULL pointer is given, and in the case of an errors, the value pointed will be updated with the
AHB failing accessregister.

Return |int. A positive value indicating the status register value when succesful. Otherwise, returns a negative
value if something went wrong, as explained in Section 46.3.1.

46.4. APl reference

This section lists all functions part of the GRIOMMU driver API, and in which section(s) they are described. The
API is also documented in the source header file of the driver, see Section 46.1.2.

Table 46.25. GRIOMMU function reference

Prototype Section
int griomu_setup(int options) 46.3.2
int griommu_status(void) 46.3.2
int griommu_enabl e(int node) 46.3.3
int griomu_disable(void) 46.3.3
int griommu_nmaster _find(int vendor, int device, int instance) 46.3.4
int griommu_naster_setup(int master, int group, int options) 46.3.4
int griommu_master_info(int master, uint32_t * info) 46.3.4
void * griomu_apv_new(void) 46.3.5
void grionmmu_apv_del ete(void * apv) 46.3.5
int griommu_apv_init(void * apv, int options) 46.3.5
int griommu_apv_address_set(void * apv, uint32_t addr, int size, 46.3.5
int options)
int griomu_apv_page_set(void * apv, int index, int size, int op- |46.35
tions)
int griommu_apv_flush(void) 46.3.5
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 313

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
Prototype Section
int griommu_group_setup(int group, void * apv, int options) 46.3.6
int griommu_group_info(int group, uint32_t * info) 46.3.6
int griommu_group_apv_init(int group, int options) 46.3.6
int griommu_group_apv_address_set(int group, uint32_t addr, int 46.3.6

size, int options)

int griommu_group_apv_page_set(int group, int index, int size, int [46.3.6
options)

int grionmmu_group_apv_flush(int group) 46.3.6

int griommu_isr _register(griomu_isr_t isr, void * arg, int op- 46.3.7

tions)

int grionmu_interrupt_mask(int options) 46.3.7

int griommu_interrupt_unmask(int options) 46.3.7

int grionmmu_error_status(uint32_t * access) 46.3.8
RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 314

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 47. LASTAT/L3STAT driver

47.1. Introduction

This section describes the LASTAT driver for SPARC/LEON processors. This driver is aso compatible with the
L3STAT core. Everything explained in the next sections is also applicable to the L3STAT core.

47.1.1. Hardware Support

The LASTAT core hardware interface is documented in the GRIP Core User's manual. The LASTAT coreisused
to count eventsin the LEON4 processor and the AHB bus in order to create performance statistics.

47.1.2. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the RTEMS source
treertens-5/c/src/lib/libbsp/sparc.

Table 47.1. LASTAT driver source location

L ocation Description
shared/include/l 4stat.h LASTAT user interface definition
.../libbsp/sparc/shared/stat/l4stat.c LASTAT driver implementation

47.1.3. Examples

Thereisasimple example available that usesthe LASTAT driver to poll the execution time counter every second.
The exampleispart of the RCC distribution, it canbefound under/ opt / rt ens- 5/ sr ¢/ sanpl es/ | 4st at/
test.c.

47.2. Software design overview

The driver has been implemented using the Driver Manager Framework. The driver provides a kernel function
interface, an API, rather than implementing al O system device. The APl is SMP safe. The driver does not contain
any locking mechanism on SMP environments.

47.2.1. Driver usage

The driver provides aset of functions that alow to configure and operate each of the available LASTAT counters
independently. The following list summarizes the available actions.

» Enable/disable a counter (see Section 47.3.2).

o Get/set/clear a counter (see Section 47.3.3).

* Get/set max counter value (see Section 47.3.4).

o Get/set timestamp (see Section 47.3.5).

47.2.2. Initialization

During early initialization when the operating system boots the LASTAT driver, the driver does not modify the
hardware state of the LASTAT.

47.3. LASTAT user interface

47.3.1. Return values

LASTAT_ERR OK
LASTAT_ERR_El NVAL
L4ASTAT_ERR_TOOMANY
L4ASTAT_ERR ERRCR

All the driver function calls return the following values when an error occurred:
e LASTAT ERR OK - Successful execution.
e LASTAT_ERR_EINVAL - Invalid input parameter. One of the input values checks failed.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 315

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

¢ LASTAT _ERR TOOMANY - Maximum index exceeded.
¢ LASTAT_ERR _ERROR - Interna error. Can have different causes.

47.3.2. Enabling/disabing a counter

int |4stat_counter_enabl e(unsigned int counter, int event, int cpu, int options)
int |4stat_counter_di sabl e(unsigned int counter)

The driver uses these functions to enable or disable aLASTAT counter identified by the count er parameter.

These functions return a negative value if something went wrong, as explained in Section 47.3.1. Otherwise, the
function returns LASTAT_ERR_OK when successful.

Table47.2.1 4st at _count er _enabl e function declaration

Proto |int |4stat_counter_enabl e(unsigned int counter, int event, int cpu,
int options)

About |Enable aL4STAT counter. See Section 47.3.2.
Param |count er [IN] Integer

Index of the counter.

Param |event [IN] Integer
Event ID to be counted.

Param |cpu [IN] Integer
CPU or AHB master to monitor (if applicable to the counted event).

Param |opti ons [IN] Integer
Options of the counter.

Value Description

L4STAT_OPTIONS EVENT_LEVEL ENABLE Enable event level.

L4STAT_OPTIONS EVENT_LEVEL_DISABLE Disable event level (defaullt).

LASTAT_OPTIONS MAXIMUM_DURATION Maximum value mode.

LASTAT_OPTIONS_SUPERVISOR_MODE_FILTER Only count supervisor mode events (if applies
to the counted event).

LASTAT_OPTIONS USER MODE FILTER Only count user mode events (if applies to the
counted event).

L4STAT_OPTIONS NO _FILTER Count al events (default).

LASTAT_OPTIONS CLEAR_ON_READ Clear counter value when read.

Return |int. LASTAT_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 47.3.1.

Table47.3.1 4st at _count er _di sabl e function declaration

Proto |int |4stat _counter _enabl e(unsigned int counter)
About |DisableaL4STAT counter. See Section 47.3.2.
Param |count er [IN] Integer

Index of the counter.

Return |int. LASTAT_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 47.3.1.

47.3.3. Getting/setting/clearing a counter

int |4stat_counter_get(unsigned int counter, uint32_t *val)
int |4stat_counter_set(unsigned int counter, uint32_t val)
int |4stat_counter_clear(unsigned int counter)

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 316

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The driver uses these functions to get or set the value of a counter identified by the count er parameter. The
clear function is equivalent to setting a counter to value 0.

These functions return a negative value if something went wrong, as explained in Section 47.3.1. Otherwise, the
function returns L4ASTAT_ERR_OK when successful.

Table47.4.1 4st at _count er _get function declaration

Proto |int |4stat_counter_get(unsigned int counter, uint32_t *val)
About |Get the value of aLASTAT counter. See Section 47.3.3.
Param |count er [IN] Integer

Index of the counter.
Param |val [IN] Pointer
Pointer to 32-bit value.

Return |int. LASTAT_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 47.3.1.

Table47.5.1 4st at _count er _set function declaration

Proto |int |4stat_counter_set(unsigned int counter, uint32_t val)
About | Set the value of aL4STAT counter. See Section 47.3.3.
Param |count er [IN] Integer

Index of the counter.

Param |val [IN] Integer
32-bit value.

Return |int. L4ASTAT _ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 47.3.1.

Table47.6.1 4st at _count er _cl ear function declaration

Proto |int |4stat_counter _clear(unsigned int counter)
About |Clear thevalue of aL4STAT counter. See Section 47.3.3.
Param |count er [IN] Integer

Index of the counter.

Return |int. LASTAT_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 47.3.1.

47.3.4. Getting/setting the maximum value of a counter

int |4stat_counter_max_get(unsigned int counter, uint32_t *val)
int |4stat_counter_max_set(unsigned int counter, uint32_t val)

Thedriver usesthese functionsto get or set the maximum value of acounter identified by thecount er parameter.
Note that this maximum value only appliesif certain options are enabled (see Section 47.3.2).

These functions return a negative value if something went wrong, as explained in Section 47.3.1. Otherwise, the
function returns L4STAT_ERR_OK when successful.

Table47.7.1 4st at _count er _nmax_get function declaration

Proto |int |4stat_counter_max_get(unsigned int counter, uint32_t *val)
About |Get the maximum value of a LASTAT counter. See Section 47.3.4.
Param |count er [IN] Integer

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 317

https://www.frontgrade.com/gaisler

FRONTGRADE
Index of the counter.
Param |val [IN] Pointer
Pointer to 32-bit value.

Return |int. LASTAT_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 47.3.1.

Table47.8.1 4st at _count er _max_set function declaration

Proto |int |4stat_counter max_set(unsigned int counter, uint32_t val)
About | Set the maximum value of aL4STAT counter. See Section 47.3.4.
Param |count er [IN] Integer

Index of the counter.

Param |val [IN] Integer
32-bit value.

Return |int. LASTAT_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 47.3.1.

47.3.5. Getting/setting the timestamp

int |l4stat_tstanp_get(uint32_t *val)
int |4stat_tstanp_set(uint32_t val)

The driver uses these functions to get or set the value of the timestamp register.

These functions return a negative value if something went wrong, as explained in Section 47.3.1. Otherwise, the
function returns L4STAT_ERR_OK when successful.

Table47.9.1 4st at _t st anp_get function declaration

Proto |int |4stat _tstanp_get(uint32_t *val)

About |Get the value of the LASTAT timestamp register. See Section 47.3.5.
Param |val [IN] Pointer

Pointer to 32-bit value.

Return |int. L4STAT_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 47.3.1.

Table 47.10.1 4st at _t st anp_set function declaration

Proto |int |4stat_tstanmp_set(uint32_t val)

About | Set the value of the LASTAT timestamp register. See Section 47.3.5.
Param |val [IN] Integer

32-bit value.

Return |int. LASTAT_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 47.3.1.

47.4. APl reference

This section lists all functions part of the LASTAT driver API, and in which section(s) they are described. The
API is also documented in the source header file of the driver, see Section 47.1.2.

Table 47.11. LASTAT function reference

Prototype Section

int |4stat_counter_enabl e(unsigned int counter, int event, int cpu, (4732
i nt options)

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 318

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
Prototype Section
int |4stat_counter_di sabl e(unsigned int counter) 47.3.2
int |4stat_counter_get(unsigned int counter, uint32_t val) 47.3.3
int |4stat _counter_set(unsigned int counter, uint32_t *val) 47.3.3
int |4stat_counter_cl ear(unsigned int counter) 47.3.3
int |4stat_counter_max_get(unsigned int counter, uint32_t val) 47.34
int |4stat_counter_nax_set(unsigned int counter, uint32_t *val) 47.3.4
int |4stat_tstanp _get(uint32_t val) 47.35
int |4stat_tstanp_set(uint32_t *val) 47.3.5

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Dec 2023, Version 1.3.2 319

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Chapter 48. Memory Scrubber driver

48.1. Introduction
This section describes the Memory Scrubber (MEM SCRUB) driver for SPARC/LEON processors.
48.1.1. Hardware Support

The MEMSCRUB core hardware interface is documented in the GRIP Core User's manual. The MEMSCRUB
core is used to monitor the memory AHB bus and can be programmed to scrub a memory area.

48.1.2. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the RTEMS source
treertens-5/c/src/lib/libbsp/sparc.

Table 48.1. MEMSCRUB driver source location

L ocation Description

shar ed/ i ncl ude/ menscrub. h MEMSCRUB user interface definition
...1l1ibbsp/sparc/shared/scrub/ MEMSCRUB driver implementation
menscrub. c

48.1.3. Examples

There is a simple example available that uses the MEMSCRUB driver to scrub a memory area and log the dif-
ferent events. The exampleis part of the RCC distribution, it can be found under / opt / r t ems- 5/ src/ sam
pl es/ nenscrub/test.c.

48.2. Software design overview

The driver has been implemented using the Driver Manager Framework. The driver provides a kernel function
interface, an API, rather than implementing alO system device.

The API is not designed for multi-threadding, i.e. multiple threads operating on the driver independently. The
driver does not contain any lock or protection for SMP environments. Changing the MEM SCRUB configuration
is not intended to be done extensively at runtime or independently of the rest of the system, since it usualy has
a system-level impact. Therefore the user must take care of any impact that the different actions might have on
other parts of the system (such as threads, CPUs, DMAS, ...).

All accesesto the MEM SCRUB registersperformed by thisdriver are serialized with spin locksto avoid concurrent
access to the MEM SCRUB registers by multiple processors.

48.2.1. Driver usage

The driver provides aset of functions that allow to start and stop the scrubber in different modes. Thefirst stepis
to setup the memory range (or memory ranges) in which the scrubber is going to act (see Section 48.3.2).

After setting up the range we can start the scrubber in one of the three modes available (see Section 48.3.3):
« Init mode: Initialize the memory area.
e Scrub mode: Scrub the memory area.

« Regen mode: Regenerate the memory area. Similar to scrub mode, but has an optimized access pattern for
correcting many errors.

Note that scrub and regen mode can be changed on the fly.
The driver provides functions to check if the scrubber is active and to stop it (see Section 48.3.3).

When dealing with errors, the drivers provides two different interfaces:

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 320

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

* Interrupts (see Section 48.3.5): Allowsthe user to install an Interrupt Service Routine (1SR) that will be exe-
cuted whenever an error exceeds its corresponding threshold. Also the MEM SCRUB core allows to generate
an interrupt when its done.

* Polling (see Section 48.3.6): Allows the user to poll the error status to check if an error have occurred.
Only one of these interfaces can be used at a given time.

The different errors that the MEM SCRUB can report are:
* AHB correctable error.
« AHB uncorrectable error.
* Scrubber run count errors.
* Scrubber block count errors.

There are functions that allow to configure the error count thresholds for each type of error individualy (see
Section 48.3.4). When the error count for a certain type exceeds the threshold, the error status is updated and an
interrupt is generated. If athreshold is disabled, the error status is not updated and no interrupt is generated.
48.2.2. Initialization

During early initialization when the operating system boots the MEM SCRUB driver, the driver does not modify
the hardware state of the MEM SCRUB, apart from clearing the error and interrupt status.

48.3. Memory scrubber user interface

48.3.1. Return values

MEMBCRUB_ERR_OK
MEMBCRUB_ERR_El NVAL
MEMBCRUB_ERR_ERROR

All the driver function calls return the following values when an error occurred:
* MEMSCRUB_ERR_OK - Successful execution.
¢ MEMSCRUB_ERR_EINVAL - Invalid input parameter. One of the input values checks failed.
« MEMSCRUB_ERR _ERROR - Internal error. Can have different causes.

48.3.2. Configuring the memory range

int menscrub_range_set(uint32_t start, uint32_t end)

int menscrub_range_get(uint32_t * start, uint32_t * end)

int menscrub_secondary_range_set(uint32_t start, uint32_t end)

int menscrub_secondary_range_get(uint32_t * start, uint32_t * end)

int menscrub_scrub_position(uint32_t * position)

Thedriver uses these functions to setup the primary and secondary memory ranges of the MEM SCRUB core. The
scrubber will act on the range from address st art to end, both inclusive.

The position function shows the actual position of the MEMSCRUB whithin the memory range.

These functions return a negative value if something went wrong, as explained in Section 48.3.1. Otherwise, the
function returns MEM SCRUB_ERR_OK when successful.

Table48.2. mrenscr ub_r ange_set function declaration

Proto |int nenmscrub_range _set(uint32_ t start, uint32_t end)

About | Set the primary memory range for the MEMSCRUB core. The range is defined by the memory ad-
dressesst art and end, both inclusive. See Section 48.3.2.

Param |start [IN] Integer
32-hit start address. The address hits below the burst size alignment are constant ‘0'.
Param |end [IN] Integer

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 321

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

32-hit end address. The address bits below the burst size alignment are constant ‘1’.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 48.3.1.

Table 48.3. menscr ub_r ange_get function declaration

Proto |int nemscrub_range_get(uint32_t * start, uint32_t * end)

About | Get the primary memory range for the MEM SCRUB core. The range is defined by the memory ad-
dressesst art and end, both inclusive. See Section 48.3.2.

Param |st art [IN] Pointer

Pointer to the 32-bit start address. The address bits below the burst size alignment are constant ‘0'.
Param |end [IN] Pointer

Pointer to the 32-bit end address. The address bits below the burst size alignment are constant *1'.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 48.3.1.

Table48.4. renscr ub_secondary_range_set function declaration

Proto |int nemscrub_secondary_range_set(uint32_t start, uint32_t end)

About | Set the primary memory range for the MEM SCRUB core. The range is defined by the memory ad-
dressesst art and end, both inclusive. See Section 48.3.2.

Param (st art [IN] Integer

32-hit start address. The address bits below the burst size alignment are constant ‘0’.
Param |end [IN] Integer

32-bit end address. The address bits bel ow the burst size alignment are constant ‘1.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 48.3.1.

Table48.5. mrenscr ub_secondary_range_get function declaration

Proto |int nemscrub_secondary range get(uint32 t * start, uint32 t * end)

About | Get the secondary memory range for the MEMSCRUB core. The range is defined by the memory ad-
dressesst art and end, both inclusive. See Section 48.3.2.

Param |st art [IN] Pointer

Pointer to the 32-bit start address. The address bits below the burst size alignment are constant ‘0'.
Param |end [IN] Pointer

Pointer to the 32-bit end address. The address bits below the burst size alignment are constant *1'.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 48.3.1.

Table 48.6. menscr ub_scrub_posi ti on function declaration

Proto |i nt menscrub_scrub_position(uint32_t * position)

About | Get the position of the scrubber within the memory range. See Section 48.3.2.
Param |posi ti on [IN] Pointer
Pointer to the 32-bit position address.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 48.3.1.

48.3.3. Starting/stoping different modes.

int menscrub_init_start(uint32_t value, uint8_t delay, int options)

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 322

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

int menscrub_scrub_start(uint8_t delay, int options)
int menscrub_regen_start(uint8_t delay, int options)
int menscrub_stop()

int menscrub_active()

The driver uses these functions to start or stop the different modes of the MEM SCRUB core:
« Init mode: Initialize the memory area.
¢ Scrub mode: Scrub the memory area.

* Regen mode: Regenerate the memory area. Similar to scrub mode, but has an optimized access pattern for
correcting many errors.

All the modes act on the configured memory range (see Section 48.3.2).
The active functions checks if the scrubber is currently running.

These functions return a negative value if something went wrong, as explained in Section 48.3.1. Otherwise, the
function returns MEM SCRUB_ERR_OK when successful.

Table48.7. menscrub_init_start function declaration

Proto |int nmemscrub_init_start(uint32_t value, uint8_ t delay, int op-
tions)

About |Start the initialization mode of the scrubber. See Section 48.3.3.
Param |val ue [IN] Integer

32-hit value to be written into each memory position.

Param |del ay [IN] Integer
8-bit delay value. Processor cycles delay time between processed blocks.

Param |opti ons [IN] Integer

Options.
Vaue Description
MEMSCRUB_OPTIONS INTERRUPTDONE_ENABLE Enable interrupt when done.
MEMSCRUB_OPTIONS_INTERRUPTDONE_DISABLE Disable interrupt when done
(default).
MEMSCRUB_OPTIONS _EXTERNALSTART_ENABLE Enable external start.
MEMSCRUB_OPTIONS _EXTERNALSTART_DISABLE Disable external start (de-
fault).
MEMSCRUB_OPTIONS LOOPMODE_ENABLE Enable loop mode.
MEMSCRUB_OPTIONS _LOOPMODE_DISABLE Disable loop mode (default).
MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_ENABLE |Enable secondary memory
range.
MEMSCRUB_OPTIONS SECONDARY_MEMRANGE _DISABLE |Disable secondary memory
range (default).

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 48.3.1.

Table 48.8. renscr ub_scrub_st art function declaration

Proto |int nemscrub_scrub_start(uint8_t delay, int options)
About | Start the scrubbing mode of the scrubber. See Section 48.3.3.
Param |del ay [IN] Integer

8-bit delay value. Processor cycles delay time between processed blocks.

Param |opt i ons [IN] Integer
Options.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 323

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Value Description
MEMSCRUB_OPTIONS_INTERRUPTDONE_ENABLE Enable interrupt when done.
MEMSCRUB_OPTIONS_INTERRUPTDONE_DISABLE Disable interrupt when done
(default).
MEMSCRUB_OPTIONS _EXTERNALSTART_ENABLE Enable external start.
MEMSCRUB_OPTIONS _EXTERNALSTART_DISABLE Disable external start (de-
fault).
MEMSCRUB_OPTIONS_LOOPMODE_ENABLE Enable loop mode.
MEMSCRUB_OPTIONS LOOPMODE_DISABLE Disable loop mode (default).
MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_ENABLE |Enable secondary memory
range.
MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_DISABLE |Disable secondary memory
range (default).
Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 48.3.1.

Table 48.9. menmscr ub_r egen_st art function declaration

Proto |int nemscrub_regen_start(uint8_t delay, int options)
About | Start the regeneration mode of the scrubber. See Section 48.3.3.
Param |del ay [IN] Integer

8-bit delay value. Processor cycles delay time between processed blocks.

Param |opti ons [IN] Integer

Options.
Value Description
MEMSCRUB_OPTIONS_INTERRUPTDONE_ENABLE Enable interrupt when done.
MEMSCRUB_OPTIONS_INTERRUPTDONE_DISABLE Disable interrupt when done
(default).
MEMSCRUB_OPTIONS _EXTERNALSTART_ENABLE Enable external start.
MEMSCRUB_OPTIONS _EXTERNALSTART_DISABLE Disable external start (de-
fault).
MEMSCRUB_OPTIONS_LOOPMODE_ENABLE Enable loop mode.
MEMSCRUB_OPTIONS_LOOPMODE_DISABLE Disable loop mode (default).
MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_ENABLE |Enable secondary memory
range.
MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_DISABLE |Disable secondary memory
range (default).

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 48.3.1.

Table 48.10. menscr ub_st op function declaration

Proto |int nemscrub_stop(void)
About | Stop the scrubber. See Section 48.3.3.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 48.3.1.

Table 48.11. menscr ub_act i ve function declaration

‘Proto ‘i nt menscrub_active(void)

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 324

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

About | Returnsthe active status of the scrubber. When the scrubber is active, it returns a non-zero positive
value. When the scrubber is stopped, it returns zero. See Section 48.3.3.

Return |int. Positive value when successful. Otherwise, returns a negative value if something went wrong, as
explained in Section 48.3.1.

48.3.4. Setting up error thresholds

int menscrub_ahberror_setup(int uethres, int cethres, int options)
int menscrub_scruberror_setup(int blkthres, int runthres, int options)

The driver uses these functions to setup the thresholds for ahb and scrub errors respectively. The following thresh-
olds can be enabled or disabled:

* AHB correctable error.

¢ AHB uncorrectable error.

¢ Scrubber run count errors.

« Scrubber block count errors.

If athreshold is disabled, no error status or interrupt will be generated for that type of error. If athreshold is
enabled, the error status or interrupt will be triggered when the error count exceeds the threshold value.

These functions return a negative value if something went wrong, as explained in Section 48.3.1. Otherwise, the
function returns MEMSCRUB_ERR_OK when successful.

Table 48.12. nenscr ub_ahber r or _set up function declaration

Proto |int nmenmscrub_ahberror_setup(int uethres, int cethres, int options)

About | Setup the AHB correctable and uncorrectable error thresholds for the MEM SCRUB core. See Sec-
tion 48.3.4.

Param |uet hr es [IN] Integer

AHB uncorrectable error threshold value (only 8 LSB used).
Param |cet hr es [IN] Integer

AHB correctable error threshold value (only 10 LSB used).
Param [opti ons [IN] Integer

Options.

Value Description

MEMSCRUB_OPTIONS AHBERROR_CORTHRES ENABLE Enable AHB correctable er-
ror threshold.

MEMSCRUB_OPTIONS AHBERROR_CORTHRES DISABLE Disable AHB correctable
error threshold (default).

MEMSCRUB_OPTIONS AHBERROR_UNCORTHRES ENABLE |Enable AHB uncorrectable
error threshold.

MEMSCRUB_OPTIONS_ AHBERROR_UNCORTHRES DISABLE |Disable AHB uncorrectable
error threshold (default).

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 48.3.1.

Table 48.13. nenscr ub_scr uberror _set up function declaration

Proto |int nmemscrub_scruberror_setup(int blkthres, int runthres, int op-
tions)

About | Setup the scrubber run and block count error thresholds for the MEM SCRUB core. See Sec-
tion 48.3.4.

Param |bl kt hr es [IN] Integer
Block count error threshold value (only 8 LSB used).

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 325

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
Param |r unt hr es [IN] Integer
Run count error threshold value (only 10 LSB used).
Param |opti ons [IN] Integer
Options.
Value Description
MEMSCRUB_OPTIONS_SCRUBERROR_RUNTHRES ENABLE Enable run count error
threshold.
MEMSCRUB_OPTIONS _SCRUBERROR_RUNTHRES DISABLE Disable run count error
threshold (default).
MEMSCRUB_OPTIONS_SCRUBERROR_BLOCKTHRES ENABLE |Enable block count error
threshold.
MEMSCRUB_OPTIONS _SCRUBERROR_BLOCKTHRES DISABLE |Disable block count error
threshold (default).
Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 48.3.1.

48.3.5. Registering an ISR

typedef void (*menscrub_isr_t) (void *arg, uint32_t ahbaccess, uint32_t ahbstatus, uint32_t scrubstatus)
int menscrub_isr_register(menmscrub_isr_t isr, void * data)
int menscrub_isr_unregister()

The driver uses these functions to register and unregister an I SR for error interrupts. When registering an ISR, in-
terrupts are enabled. To set the error thresholdsthat trigger interrupts use the functions described in Section 48.3.4.

These functions return a negative value if something went wrong, as explained in Section 48.3.1. Otherwise, the
function returns MEM SCRUB_ERR_OK when successful.

Table 48.14. menscr ub_i sr_regi st er function declaration

Proto |int nmenmscrub_isr_register(nmenscrub_isr t isr, void * arg)
About |Registersan ISR for the MEM SCRUB core. See Section 48.3.5.

Param |i sr [IN] Pointer

The ISR function pointer.

Param |ar g [IN] Pointer

The ISR argument pointer.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 48.3.1.

Table 48.15. menscr ub_i sr_unr egi st er function declaration

Proto |int nmemscrub_isr_unregister()
About |Unregistersan ISR for the MEM SCRUB core. See Section 48.3.5.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 48.3.1.

48.3.6. Polling the error status

int memscrub_error_status(uint32_t * ahbaccess, uint32_t * ahbstatus, uint32_t * scrubstatus)

The driver uses this function to poll the error status and clear the error status in case an error is found. To set the
error thresholds that trigger error status use the functions described in Section 48.3.4.

This function returns a negative value if something went wrong, as explained in Section 48.3.1. Otherwise, the
function returns MEM SCRUB_ERR_OK when successful.

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 326

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
Table 48.16. nenscr ub_error st at us function declaration
Proto |int nemscrub_error_status(uint32_t * ahbaccess, uint32_t * ahbsta-
tus, uint32_t * scrubstatus)
About |Poll the state of the error status registers. Returns the status registers and the AHB failing access reg-
ister. If aerror has been detected the function automatically clears the status in order to catch new er-
rors. See Section 48.3.6.
Param |ahbaccess [OUT] Pointer
The value pointed will be updated with the AHB failing access.
Param |ahbst at us [OUT] Pointer
The value pointed will be updated with the AHB error status register content.
Param |scrubst at us [OUT] Pointer
The value pointed will be updated with the scrub error status register content.
Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 48.3.1.

48.4. APl reference

This section lists all functions part of the MEMSCRUB driver API, and in which section(s) they are described.

The API is also documented in the source header file of the driver, see Section 48.1.2.

Table 48.17. MEMSCRUB function reference

Prototype Section
int nenscrub_range _get(uint32 t *start, uint32_t *end) 48.3.2
int nmenscrub_range_set(uint32_t start, uint32_t end) 48.3.2
i nt menscrub_secondary_range_get (uint32_t *start, uint32_t *end) 48.3.2
i nt nenscrub_secondary_range_set (uint32_t start, uint32_t end) 48.3.2
int nenscrub_scrub_position(uint32_t *position) 48.3.2
int menscrub_init_start(uint32_t value, uint8 t delay, int options) (4833
int nmenscrub_scrub_start(uint8_t delay, int options) 48.3.3
int nenscrub_regen_start(uint8 t delay, int options) 48.3.3
i nt nenscrub_stop() 48.3.3
int menmscrub_active() 48.3.3
i nt nmenscrub_ahberror_setup(int uethres, int cethres, int options) [48.34
i nt nmenscrub_scruberror_setup(int blkthres, int runthres, int op- 48.3.4
tions)

int nmenscrub_isr_register(menscrub_isr_t isr, void * data) 48.3.5
int menmscrub_isr_unregister() 48.3.5
int menscrub_error_status(uint32_t *ahbaccess, uint32_t *ahbstatus, [48.3.6

ui nt 32_t *scrubst at us)

RCC-UM

Dec 2023, Version 1.3.2 327

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Frontgrade Gaisler AB
Kungsgatan 12

411 19 Goteborg
Sweden
frontgrade.com/gaisler
sales@gaisler.com

T: +46 31 7758650

F: +46 31 421407

Frontgrade Gaisler AB, reserves the right to make changes to any products and services described herein at any time without
notice. Consult the company or an authorized sales representative to verify that the information in this document is current before
using this product. The company does not assume any responsibility or liability arising out of the application or use of any product
or service described herein, except as expressly agreed to in writing by the company; nor does the purchase, lease, or use of
a product or service from the company convey a license under any patent rights, copyrights, trademark rights, or any other of
the intellectual rights of the company or of third parties. All information is provided as is. There is no warranty that it is correct or

suitable for any purpose, neither implicit nor explicit.

Copyright © 2023 Frontgrade Gaisler AB

RCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Dec 2023, Version 1.3.2 328

https://www.frontgrade.com/gaisler
https://www.frontgrade.com/gaisler

	
	Table of Contents
	Chapter 1. Introduction
	1.1. General
	1.2. Installation on host platform
	1.2.1. Host requirements
	1.2.2. Installing RCC on Windows platforms
	1.2.2.1. Installing MSYS
	1.2.2.2. Building Newlib from sources
	1.2.2.3. Installing RTEMS source
	1.2.2.4. Building RTEMS from source

	1.2.3. Installing on Linux platform
	1.2.3.1. Building Newlib from sources
	1.2.3.2. Installing RTEMS source
	1.2.3.3. Building RTEMS from sources

	1.3. Contents of /opt/rcc-1.3.2
	1.4. RCC tools
	1.5. Documentation
	1.6. RCC source Git access
	1.7. Changes since RCC-1.2
	1.8. Known limitations in this release
	1.9. Support

	Chapter 2. Using RCC
	2.1. General development flow
	2.2. Compiler toolchain
	2.2.1. sparc-gaisler-rtems5 toolchain BSP selection
	2.2.2. Common compiler options
	2.2.3. GNU GCC toolchain
	2.2.3.1. sparc-gaisler-rtems5-gcc specific options
	2.2.3.2. LEON target GNU GCC compiler options
	2.2.3.3. GCC multi-libs

	2.2.4. LLVM Clang toolchain
	2.2.4.1. Overview
	2.2.4.2. sparc-gaisler-rtems5-clang specific options
	2.2.4.3. LEON target LLVM Clang compiler options
	2.2.4.4. Clang multi-libs

	2.2.5. Floating-point considerations
	2.2.6. SPARC V8 instructions
	2.2.7. LEON CASA instruction
	2.2.8. LEON UMAC/SMAC instructions
	2.2.9. LEON3/4/5 CPU counter
	2.2.10. Enabling/Disabling Interrupt by use of Write Partial PSR instruction

	2.3. RTEMS applications
	2.4. Memory organisation
	2.5. Board-support packages (BSPs)
	2.5.1. LEON3 BSP
	2.5.1.1. Multi processing (ASMP and SMP) configurations

	2.5.2. GR740 BSP
	2.5.3. GR712RC BSP
	2.5.4. UT699 BSP
	2.5.5. UT699E/UT700 BSP
	2.5.6. AT697F BSP

	2.6. Driver Manager
	2.6.1. Initialization
	2.6.2. Configuration
	2.6.3. Driver configuration
	2.6.4. drvmgr command

	2.7. Network configuration
	2.8. PCI
	2.9. LEON3 BSP multiprocessing configurations
	2.9.1. Memory and device resource sharing
	2.9.2. Interrupt considerations
	2.9.2.1. Interrupt Controller IRQ(A)MP
	2.9.2.2. Inter processor interrupt (IPI)
	2.9.2.3. Interrupt affinity (SMP only)

	2.9.3. Symmetric multiprocessing (SMP) configuration
	2.9.3.1. Processor selection

	2.9.4. Asymmetric multiprocessing (AMP) configuration
	2.9.4.1. MP testsuite

	2.9.5. RTEMS SMP AMP example

	2.10. Making boot-proms

	Chapter 3. Examples
	3.1. Overview
	3.2. Building

	Chapter 4. Execution and debugging
	4.1. TSIM
	4.2. GRMON
	4.3. GDB with GRMON and TSIM
	4.4. Using DDD graphical front-end to gdb

	Device drivers reference
	Chapter 5. GRLIB AMBA Plug&Play bus
	5.1. Introduction
	5.1.1. AMBA Plug&Play terms and names
	5.1.2. Sources

	5.2. Overview
	5.3. Initialization
	5.4. Finding AMBAPP devices by Plug&Play
	5.5. Allocating a device structure
	5.6. Name database
	5.7. Frequency of a device

	Chapter 6. Driver Manager
	6.1. Introduction
	6.1.1. Driver manager terms and names
	6.1.2. Sources

	6.2. Overview
	6.2.1. Bus and bus driver
	6.2.1.1. Bus specific device information

	6.2.2. Root driver
	6.2.3. Device driver
	6.2.4. Device
	6.2.5. Driver resources
	6.2.6. Driver interface

	6.3. Configuration
	6.3.1. Available LEON drivers

	6.4. Initialization
	6.4.1. LEON3/4 BSP

	6.5. Interrupt
	6.6. Address translation
	6.7. Function Interface

	Chapter 7. RMAP Stack
	7.1. Introduction
	7.1.1. Examples

	7.2. Driver Interface
	7.3. Logical and Path addressing
	7.4. Zero-copy implementation
	7.5. RMAP GRSPW driver
	7.6. Thread-safe
	7.7. User interface
	7.7.1. Data structures
	7.7.2. Function interface description
	7.7.2.1. rmap_init
	7.7.2.2. rmap_ioctl
	7.7.2.3. rmap_send
	7.7.2.4. rmap_crc_calc
	7.7.2.5. rmap_write and rmap_read

	Chapter 8. SpaceWire Network model
	8.1. Introduction
	8.2. Overview
	8.3. Requirements
	8.4. Node Description
	8.4.1. The Node ID

	8.5. Read and write operation
	8.6. Interrupt handling
	8.7. Using the spacewire bus driver

	Chapter 9. AMBA over SpaceWire
	9.1. Introduction
	9.2. Overview
	9.3. Requirements
	9.4. Interrupt handling
	9.5. Memory allocation on target
	9.6. Differences between on-chip AMBA drivers

	Chapter 10. LEON PCI host bridge drivers
	10.1. Introduction
	10.1.1. Examples

	10.2. Sources
	10.3. Configuration
	10.3.1. GRPCI
	10.3.2. GRPCI2
	10.3.3. AT697

	10.4. User interface
	10.4.1. PCI address space
	10.4.2. PCI interrupt
	10.4.3. PCI endianess

	Chapter 11. GRPCI2 DMA driver
	11.1. Introduction
	11.1.1. Hardware Support
	11.1.2. Driver sources
	11.1.3. Examples

	11.2. Software design overview
	11.2.1. Driver usage
	11.2.2. Driver resource configuration
	11.2.3. Initialization
	11.2.4. DMA control
	11.2.5. DMA buffer handling
	11.2.6. SMP Support

	11.3. DMA user interface
	11.3.1. Return values
	11.3.2. Opening/closing a channel
	11.3.3. Starting/stopping a channel
	11.3.4. Registering an ISR for a channel
	11.3.5. Enabling interrupts for data descriptors
	11.3.6. Allocating data descriptors
	11.3.7. Prepare a transfer
	11.3.8. Push a transfer into a channel
	11.3.9. Get the status of a transfer

	11.4. API reference

	Chapter 12. GR-RASTA-ADCDAC PCI peripheral
	Chapter 13. GR-RASTA-IO PCI peripheral
	Chapter 14. GR-RASTA-TMTC PCI peripheral
	Chapter 15. GR-RASTA-SPW_ROUTER PCI Peripheral
	Chapter 16. GR-CPCI-LEON4-N2X PCI Peripheral
	16.1. Driver registration
	16.2. Driver resource configuration

	Chapter 17. GR-CPCI-GR740 PCI Peripheral
	17.1. Driver registration
	17.2. Driver resource configuration

	Chapter 18. GRSPW Packet driver
	18.1. Introduction
	18.1.1. GRSPW packet driver vs. old GRSPW driver
	18.1.2. Hardware Support
	18.1.3. Driver sources
	18.1.4. Show routines
	18.1.5. Examples
	18.1.6. Known driver limitations

	18.2. Software design overview
	18.2.1. Overview
	18.2.2. Driver resource configuration
	18.2.3. Initialization
	18.2.4. Link control
	18.2.5. Time Code support
	18.2.6. RMAP support
	18.2.7. Port support
	18.2.8. SpaceWire node address configuration
	18.2.9. SpaceWire Interrupt Code support
	18.2.10. User DMA buffer handling
	18.2.10.1. Buffer List help routines

	18.2.11. Driver DMA buffer handling
	18.2.11.1. DMA Queues
	18.2.11.2. DMA Queue operations

	18.2.12. Polling and blocking mode
	18.2.13. Interrupt and work-task
	18.2.14. Starting and stopping DMA
	18.2.15. Thread concurrency

	18.3. Device Interface
	18.3.1. Opening and closing device
	18.3.2. Hardware capabilities
	18.3.3. Link Control
	18.3.4. Node address configuration
	18.3.5. Time Code support
	18.3.6. Port Control
	18.3.7. RMAP Control
	18.3.8. Statistics

	18.4. DMA interface
	18.4.1. Opening and closing DMA channels
	18.4.2. Starting and stopping DMA operation
	18.4.3. Packet buffer description
	18.4.4. Blocking/Waiting on DMA activity
	18.4.5. Sending packets
	18.4.6. Receiving packets
	18.4.7. Transmission queue status
	18.4.8. Statistics
	18.4.9. DMA channel configuration

	18.5. API reference
	18.5.1. Data structures
	18.5.2. Device functions
	18.5.3. DMA functions

	Chapter 19. GRSPW ROUTER driver
	19.1. Introduction
	19.1.1. Hardware Support
	19.1.2. Driver sources
	19.1.3. Examples

	19.2. Software design overview
	19.2.1. Driver usage
	19.2.2. Initialization
	19.2.3. SMP Support and thread safe

	19.3. GRSPW ROUTER user interface
	19.3.1. Return values
	19.3.2. Opening/closing a router
	19.3.3. Configuring the router
	19.3.4. Configuring the router registers
	19.3.5. Configuring the routing table
	19.3.6. Individual route configuration
	19.3.7. Port configuration
	19.3.8. Link configuration
	19.3.9. Port counters
	19.3.10. Timecode handling
	19.3.11. Interrupt code generation
	19.3.12. Polling the error status of a port

	19.4. API reference
	19.4.1. Data structures
	19.4.2. Device functions

	Chapter 20. SPWTDP driver
	20.1. Introduction
	20.1.1. Hardware Support
	20.1.2. Driver sources
	20.1.3. Examples

	20.2. Software design overview
	20.2.1. Driver usage
	20.2.2. Initialization

	20.3. SPWTDP user interface
	20.3.1. Return values
	20.3.2. Opening a SPWTDP device
	20.3.3. Setting up the frequency and time generation
	20.3.4. Configuring as initiator or target
	20.3.5. Getting the elapsed time or timestamps
	20.3.6. Handling SPWTDP AMBA interrupts
	20.3.7. Checking the SPWTDP status

	20.4. API reference

	Chapter 21. GR1553B GRLIB MIL-STD-1553B driver
	21.1. Introduction
	21.2. GR1553B Hardware
	21.3. Software driver
	21.4. Driver Registration
	21.5. Examples

	Chapter 22. GR1553B remote terminal driver
	22.1. Introduction
	22.1.1. GR1553B Remote Terminal Hardware
	22.1.2. Examples

	22.2. User Interface
	22.2.1. Overview
	22.2.1.1. Accessing an RT device
	22.2.1.2. Introduction to the RT Memory areas
	22.2.1.3. Sub Address Table
	22.2.1.4. Descriptors
	22.2.1.5. Data Buffers
	22.2.1.6. Event Logging
	22.2.1.7. Interrupt service
	22.2.1.8. Indication service
	22.2.1.9. Mode Code support
	22.2.1.10. RT Time

	22.2.2. Application Programming Interface
	22.2.2.1. Data structures
	22.2.2.2. gr1553rt_open
	22.2.2.3. gr1553rt_close
	22.2.2.4. gr1553rt_config
	22.2.2.5. gr1553rt_start
	22.2.2.6. gr1553rt_stop
	22.2.2.7. gr1553rt_status
	22.2.2.8. gr1553rt_indication
	22.2.2.9. gr1553rt_evlog_read
	22.2.2.10. gr1553rt_set_vecword
	22.2.2.11. gr1553rt_set_bussts
	22.2.2.12. gr1553rt_sa_setopts
	22.2.2.13. gr1553rt_list_sa
	22.2.2.14. gr1553rt_sa_schedule
	22.2.2.15. gr1553rt_irq_err
	22.2.2.16. gr1553rt_irq_mc
	22.2.2.17. gr1553rt_irq_sa
	22.2.2.18. gr1553rt_list_init
	22.2.2.19. gr1553rt_bd_init
	22.2.2.20. gr1553rt_bd_update

	Chapter 23. GR1553B bus monitor driver
	23.1. Introduction
	23.1.1. GR1553B Remote Terminal Hardware
	23.1.2. Examples

	23.2. User Interface
	23.2.1. Overview
	23.2.1.1. Accessing a BM device
	23.2.1.2. BM Log memory
	23.2.1.3. Accessing the BM Log memory
	23.2.1.4. Time
	23.2.1.5. Filtering
	23.2.1.6. Interrupt service

	23.2.2. Application Programming Interface
	23.2.2.1. Data structures
	23.2.2.2. gr1553bm_open
	23.2.2.3. gr1553bm_close
	23.2.2.4. gr1553bm_config
	23.2.2.5. gr1553bm_start
	23.2.2.6. gr1553bm_stop
	23.2.2.7. gr1553bm_time
	23.2.2.8. gr1553bm_available
	23.2.2.9. gr1553bm_read

	Chapter 24. GR1553B bus controller driver
	24.1. Introduction
	24.1.1. GR1553B Bus Controller Hardware
	24.1.2. Software driver
	24.1.3. Examples

	24.2. BC Device Handling
	24.2.1. Device API
	24.2.1.1. Data Structures
	24.2.1.2. gr1553bc_open
	24.2.1.3. gr1553bc_close
	24.2.1.4. gr1553bc_start
	24.2.1.5. gr1553bc_pause
	24.2.1.6. gr1553bc_resume
	24.2.1.7. gr1553bc_stop
	24.2.1.8. gr1553bc_indication
	24.2.1.9. gr1553bc_status
	24.2.1.10. gr1553bc_ext_trig
	24.2.1.11. gr1553bc_irq_setup

	24.3. Descriptor List Handling
	24.3.1. Overview
	24.3.2. Example: steps for creating a list
	24.3.3. Major Frame
	24.3.4. Minor Frame
	24.3.5. Slot (Descriptor)
	24.3.6. Changing a scheduled BC list (during BC-runtime)
	24.3.7. Custom Memory Setup
	24.3.8. Interrupt handling
	24.3.9. List API
	24.3.9.1. Data structures
	24.3.9.2. gr1553bc_list_alloc
	24.3.9.3. gr1553bc_list_free
	24.3.9.4. gr1553bc_list_config
	24.3.9.5. gr1553bc_list_link_major
	24.3.9.6. gr1553bc_list_set_major
	24.3.9.7. gr1553bc_minor_table_size
	24.3.9.8. gr1553bc_list_table_size
	24.3.9.9. gr1553bc_list_table_alloc
	24.3.9.10. gr1553bc_list_table_free
	24.3.9.11. gr1553bc_list_table_build
	24.3.9.12. gr1553bc_major_alloc_skel
	24.3.9.13. gr1553bc_list_freetime
	24.3.9.14. gr1553bc_slot_alloc
	24.3.9.15. gr1553bc_slot_free
	24.3.9.16. gr1553bc_mid_from_bd
	24.3.9.17. gr1553bc_slot_bd
	24.3.9.18. gr1553bc_slot_irq_prepare
	24.3.9.19. gr1553bc_slot_irq_enable
	24.3.9.20. gr1553bc_slot_irq_disable
	24.3.9.21. gr1553bc_slot_jump
	24.3.9.22. gr1553bc_slot_exttrig
	24.3.9.23. gr1553bc_slot_transfer
	24.3.9.24. gr1553bc_slot_dummy
	24.3.9.25. gr1553bc_slot_empty
	24.3.9.26. gr1553bc_slot_update
	24.3.9.27. gr1553bc_slot_raw
	24.3.9.28. gr1553bc_show_list

	Chapter 25. B1553BRM GRLIB Actel Core1553BRM driver
	25.1. Introduction
	25.1.1. BRM Hardware
	25.1.2. Software Driver
	25.1.3. Supported OS

	25.2. User Intrerface
	25.2.1. Driver registration
	25.2.2. Driver resource configuration
	25.2.2.1. Custom DMA area parameter

	25.2.3. Opening the device
	25.2.4. Closing the device
	25.2.5. I/O Control interface
	25.2.5.1. Data structures
	25.2.5.1.1. Remote Terminal operating mode
	25.2.5.1.2. Bus Controller operating mode
	25.2.5.1.3. Bus Monitor operating mode

	25.2.6. Configuration
	25.2.6.1. SET_MODE
	25.2.6.2. SET_BUS
	25.2.6.3. SET_MSGTO
	25.2.6.4. SET_RT_ADDR
	25.2.6.5. BRM_SET_STD
	25.2.6.6. BRM_SET_BCE
	25.2.6.7. BRM_TX_BLOCK
	25.2.6.8. BRM_RX_BLOCK
	25.2.6.9. BRM_CLR_STATUS
	25.2.6.10. BRM_GET_STATUS
	25.2.6.11. BRM_EST_EVENTID

	25.2.7. Remote Terminal operation
	25.2.8. Bus Controller operation
	25.2.9. Bus monitor operation

	Chapter 26. B1553RT GRLIB Actel Core1553 RT driver
	26.1. Introduction
	26.1.1. RT Hardware
	26.1.2. 1.1.2 Examples

	26.2. User interface
	26.2.1. Driver registration
	26.2.2. Driver resource configuration
	26.2.2.1. Custom DMA area parameter

	26.2.3. Opening the device
	26.2.4. Closing the device
	26.2.5. I/O Control interface
	26.2.5.1. Data structures
	26.2.5.1.1. Remote Terminal operating mode

	26.2.6.
	26.2.6.1. RT_SET_ADDR
	26.2.6.2. RT_SET_BCE
	26.2.6.3. RT_SET_VECTORW
	26.2.6.4. RT_RX_BLOCK
	26.2.6.5. RT_SET_EXTMDATA
	26.2.6.6. RT_SET_STATUS
	26.2.6.7. RT_GET_STATUS
	26.2.6.8. RT_SET_EVENTID

	26.2.7. Remote Terminal operation

	Chapter 27. GRCAN CAN driver
	27.1. Introduction
	27.1.1. Driver registration
	27.1.2. Driver resource configuration
	27.1.2.1. Custom DMA area parameters

	27.2. User Interface
	27.2.1. Opening and closing device
	27.2.2. Operation mode
	27.2.2.1. Starting and stopping

	27.2.3. Configuration
	27.2.3.1. Channel selection
	27.2.3.2. Timing parameters
	27.2.3.3. Blocking mode

	27.2.4. Receive filters
	27.2.4.1. Data structures
	27.2.4.2. Acceptance filter
	27.2.4.3. Sync filter

	27.2.5. Driver statistics
	27.2.6. Device status
	27.2.7. CAN bus transfers
	27.2.7.1. Data structures
	27.2.7.2. Transmission
	27.2.7.3. Reception
	27.2.7.4. Bus-off recovery
	27.2.7.5. AHB error recovery

	27.2.8. Multitasking support

	Chapter 28. CAN_OC GRLIB Opencores CAN driver
	28.1. Introduction
	28.1.1. CAN Hardware
	28.1.2. Software Driver
	28.1.3. Examples

	28.2. User interface
	28.2.1. Driver registration
	28.2.2. Driver resource configuration
	28.2.3. Opening the device
	28.2.4. Closing the device
	28.2.5. I/O Control interface
	28.2.5.1. Data structures
	28.2.5.2. Configuration
	28.2.5.2.1. START
	28.2.5.2.2. STOP
	28.2.5.2.3. GET_STATS
	28.2.5.2.4. GET_STATUS
	28.2.5.2.5. SET_SPEED
	28.2.5.2.6. SET_BTRS
	28.2.5.2.7. SET_BLK_MODE
	28.2.5.2.8. SET_BUFLEN
	28.2.5.2.9. Transmission

	28.2.6. Reception

	Chapter 29. SatCAN driver (SatCAN)
	29.1. Introduction
	29.1.1. SatCAN Hardware Wrapper
	29.1.2. Software Driver
	29.1.3. Examples

	29.2. User interface
	29.2.1. Driver registration
	29.2.2. Opening the device
	29.2.3. Closing the device
	29.2.4. Reading from the device
	29.2.5. Writing to the device
	29.2.6. I/O Control interface
	29.2.6.1. Data structures
	29.2.6.2. Configuration
	29.2.6.2.1. DMA_2K
	29.2.6.2.2. DMA_8K
	29.2.6.2.3. GET_REG
	29.2.6.2.4. SET_REG
	29.2.6.2.5. SET_REG
	29.2.6.2.6. AND_REG
	29.2.6.2.7. AND_REG
	29.2.6.2.8. EN_TX2_DIS_TX1
	29.2.6.2.9. GET_DMA_MODE
	29.2.6.2.10. SET_DMA_MODE
	29.2.6.2.11. ACTIVATE_DMA
	29.2.6.2.12. DEACTIVATE_DMA
	29.2.6.2.13. GET_DOFFSET
	29.2.6.2.14. SET_DOFFSET
	29.2.6.2.15. GET_TIMEOUT
	29.2.6.2.16. SET_TIMEOUT

	Chapter 30. CAN_MUX driver (CAN_MUX)
	30.1. Introduction
	30.1.1. CAN_MUX Hardware
	30.1.2. Software Driver
	30.1.3. Examples

	30.2. User interface
	30.2.1. Driver registration
	30.2.2. Opening the device
	30.2.3. Closing the device
	30.2.4. I/O Control interface
	30.2.4.1. Configuration

	Chapter 31. GRASCS driver
	31.1. Introduction
	31.1.1. Software driver
	31.1.2. Examples

	31.2. User interface
	31.2.1. ASCS_init
	31.2.2. ASCS_input_select
	31.2.3. ASCS_etr_select
	31.2.4. ASCS_start
	31.2.5. ASCS_stop
	31.2.6. ASCS_iface_status
	31.2.7. ASCS_TC_send
	31.2.8. ASCS_TC_send_block
	31.2.9. ASCS_TC_sync_start
	31.2.10. ASCS_TC_sync_stop
	31.2.11. ASCS_TM_recv
	31.2.12. ASCS_TM_recv_block

	31.3. Examples code

	Chapter 32. APBUART console driver
	32.1. Introduction
	32.1.1. Functioning mode
	32.1.2. Hardware support

	32.2. User interface
	32.2.1. Driver registration
	32.2.2. Driver resource configuration
	32.2.3. Opening the device
	32.2.4. Closing the device
	32.2.5. Control interface
	32.2.6. Startup-parameter inheritance
	32.2.7. Transmission
	32.2.8. Reception

	Chapter 33. SPICTRL GRLIB SPI master driver
	33.1. Introduction
	33.1.1. SPI Hardware
	33.1.2. Examples

	33.2. User interface
	33.2.1. Driver registration
	33.2.2. Accessing the SPI bus
	33.2.3. Extensions to the standard RTEMS interface
	33.2.3.1. PERIOD_START
	33.2.3.2. PERIOD_STOP
	33.2.3.3. CONFIG
	33.2.3.4. STATUS
	33.2.3.5. STATUS
	33.2.3.6. PERIOD_READ

	Chapter 34. I2CMST GRLIB I2C Master driver
	34.1. Introduction
	34.1.1. I2C Hardware
	34.1.2. Examples

	34.2. User interface
	34.2.1. Driver registration
	34.2.2. Accessing the I2C bus

	Chapter 35. GPIO Library
	35.1. Introduction
	35.1.1. Examples

	35.2. Driver interface
	35.3. User interface
	35.3.1. Accessing a GPIO port
	35.3.2. Interrupt handler registration
	35.3.3. Data structures
	35.3.4. Function prototype description
	35.3.4.1. GPIO Library functions
	35.3.4.1.1. grpiolib_set_config
	35.3.4.1.2. grpiolib_set
	35.3.4.1.3. grpiolib_get
	35.3.4.1.4. grpiolib_irq_clear
	35.3.4.1.5. grpiolib_irq_force
	35.3.4.1.6. grpiolib_irq_enable
	35.3.4.1.7. grpiolib_irq_disable
	35.3.4.1.8. grpiolib_irq_register

	Chapter 36. GRGPIO GRLIB GPIO driver
	36.1. Introduction
	36.1.1. GPIO Hardware
	36.1.2. Examples

	36.2. User interface
	36.2.1. Driver registration
	36.2.2. Driver resource configuration
	36.2.3. Accessing GPIO ports

	Chapter 37. GRADCDAC GRLIB ADC/DAC driver
	37.1. Introduction
	37.1.1. ADC/DAC Hardware
	37.1.2. Examples

	37.2. User interface
	37.2.1. Driver registration
	37.2.2. Driver resource configuration
	37.2.3. Accessing ADC/DAC
	37.2.4. Interrupt handler registration
	37.2.5. Data structures
	37.2.6. Function prototype description
	37.2.6.1. General ADC/DAC functions
	37.2.6.1.1. gradcdac_set_config
	37.2.6.1.2. gradcdac_get_config
	37.2.6.1.3. gradcdac_set_cfg
	37.2.6.1.4. gradcdac_get_cfg
	37.2.6.1.5. gradcdac_get_status
	37.2.6.1.6. gradcdac_get_adrinput
	37.2.6.1.7. gradcdac_get_adroutput
	37.2.6.1.8. gradcdac_set_adroutput
	37.2.6.1.9. gradcdac_get_adrdir
	37.2.6.1.10. gradcdac_set_adrdir
	37.2.6.1.11. gradcdac_get_datainput
	37.2.6.1.12. gradcdac_get_dataioutput
	37.2.6.1.13. gradcdac_set_dataioutput
	37.2.6.1.14. gradcdac_get_datadir
	37.2.6.1.15. gradcdac_set_datadir

	37.2.6.2. Status interpretation help function
	37.2.6.3. ADC functions
	37.2.6.3.1. gradcdac_adc_convert_start
	37.2.6.3.2. gradcdac_adc_convert_try
	37.2.6.3.3. gradcdac_adc_convert

	37.2.6.4. DAC functions
	37.2.6.4.1. grandcdac_dac_convert_try
	37.2.6.4.2. grandcdac_dac_convert

	Chapter 38. GRTC GRLIB CCSDS Telecommand driver
	38.1. INTRODUCTION
	38.1.1. TC Hardware
	38.1.2. Software Driver
	38.1.2.1. GRTC over SpaceWire

	38.2. User interface
	38.2.1. Driver registration
	38.2.2. Opening the device
	38.2.3. Closing the device
	38.2.4. I/O Control interface
	38.2.4.1. Data structures
	38.2.4.2. Configuration
	38.2.4.2.1. START
	38.2.4.2.2. STOP
	38.2.4.2.3. ISSTARTED
	38.2.4.2.4. SET_BLOCKING_MODE
	38.2.4.2.5. SET_TIMEOUT
	38.2.4.2.6. SET_MODE
	38.2.4.2.7. SET_BUF_PARAM
	38.2.4.2.8. SET_CONFIG
	38.2.4.2.9. GET_CONFIG
	38.2.4.2.10. GET_BUF_PARAM
	38.2.4.2.11. GET_HW_STATUS
	38.2.4.2.12. GET_CLCW_ADR
	38.2.4.2.13. GET_STATS
	38.2.4.2.14. CLR_STATS
	38.2.4.2.15. POOLS_SETUP
	38.2.4.2.16. ASSIGN_FRM_POOL
	38.2.4.2.17. ADD_BUF
	38.2.4.2.18. RECV

	38.2.5. Operating mode
	38.2.5.1. Driver frame pools

	38.2.6. Reception in FRAME mode
	38.2.7. Reception using RAW mode

	Chapter 39. GRTM GRLIB CCSDS Telemetry Driver
	39.1. Introduction
	39.1.1. TM Hardware
	39.1.2. Software Driver
	39.1.2.1. GRTM over SpaceWire

	39.2. User interface
	39.2.1. Driver registration
	39.2.2. Opening the device
	39.2.3. Closing the device
	39.2.4. I/O Control interface
	39.2.4.1. Data structures
	39.2.4.2. Configuration
	39.2.4.2.1. START
	39.2.4.2.2. STOP
	39.2.4.2.3. ISSTARTED
	39.2.4.2.4. SET_BLOCKING_MODE
	39.2.4.2.5. SET_TIMEOUT
	39.2.4.2.6. SET_CONFIG
	39.2.4.2.7. GET_CONFIG
	39.2.4.2.8. GET_STATS
	39.2.4.2.9. CLR_STATS
	39.2.4.2.10. GET_HW_IMPL
	39.2.4.2.11. GET_OCFREG
	39.2.4.2.12. RECLAIM
	39.2.4.2.13. SEND

	39.2.5. Transmission

	Chapter 40. GRCTM driver
	40.1. Introduction
	40.1.1. Examples
	40.1.2. User interface
	40.1.2.1. Overview
	40.1.2.1.1. Accessing the GRCTM core
	40.1.2.1.2. Interrupt service

	40.1.2.2. Application Programming Interface
	40.1.2.2.1. Data structures

	Chapter 41. SPWCUC driver
	41.1. Introduction
	41.1.1. Examples

	41.2. User interface
	41.2.1. Overview
	41.2.1.1. Accessing the SPWCUC core
	41.2.1.2. Interrupt service

	41.2.2. Application Programming Interface
	41.2.2.1. Data structures

	Chapter 42. GRPWRX GRLIB PacketWire Receiver driver
	42.1. Introduction
	42.1.1. Software Driver

	42.2. User interface
	42.2.1. Driver registration
	42.2.2. Opening the device
	42.2.3. Closing the device
	42.2.4. I/O Control interface
	42.2.4.1. Data structures
	42.2.4.2. Configuration
	42.2.4.2.1. START
	42.2.4.2.2. STOP
	42.2.4.2.3. ISSTARTED
	42.2.4.2.4. SET_BLOCKING_MODE
	42.2.4.2.5. SET_TIMEOUT
	42.2.4.2.6. SET_CONFIG
	42.2.4.2.7. GET_CONFIG
	42.2.4.2.8. GET_STATS
	42.2.4.2.9. CLR_STATS
	42.2.4.2.10. GET_HW_IMPL
	42.2.4.2.11. RECLAIM
	42.2.4.2.12. RECV

	42.2.5. Reception

	Chapter 43. GRAES GRLIB AES DMA driver
	43.1. Introduction
	43.1.1. Software Driver

	43.2. User interface
	43.2.1. Driver registration
	43.2.2. Opening the device
	43.2.3. Closing the device
	43.2.4. I/O Control interface
	43.2.4.1. Data structures
	43.2.4.2. Configuration
	43.2.4.2.1. START
	43.2.4.2.2. STOP
	43.2.4.2.3. ISSTARTED
	43.2.4.2.4. SET_BLOCKING_MODE
	43.2.4.2.5. SET_TIMEOUT
	43.2.4.2.6. SET_CONFIG
	43.2.4.2.7. GET_CONFIG
	43.2.4.2.8. GET_STATS
	43.2.4.2.9. CLR_STATS
	43.2.4.2.10. GET_HW_IMPL
	43.2.4.2.11. RECLAIM
	43.2.4.2.12. ENCRYPT

	43.2.5. De/encryption

	Chapter 44. AHB Status register driver
	44.1. Overview
	44.2. Driver sources
	44.3. Driver registration
	44.4. Operation
	44.5. User interface
	44.5.1. Assigning a custom interrupt handler
	44.5.2. Get the last AHB error occurred
	44.5.3. AHBSTAT device registers

	Chapter 45. L2CACHE driver
	45.1. Introduction
	45.1.1. Hardware Support
	45.1.2. Driver sources
	45.1.3. Examples

	45.2. Software design overview
	45.2.1. Driver usage
	45.2.2. Flush operations
	45.2.3. Initialization

	45.3. L2CACHE user interface
	45.3.1. Return values
	45.3.2. Flushing the L2 cache
	45.3.3. Enabling/disabing the L2 cache
	45.3.4. Enabling/disabing EDAC
	45.3.5. Using the hardware scrubber
	45.3.6. Enabling/disabling split transactions
	45.3.7. Changing the write policy
	45.3.8. Changing the replacement policy
	45.3.9. Locking ways of the L2 cache
	45.3.10. Setting up Memory Type Range Register (MTRR)
	45.3.11. Checking the L2 cache configuration status
	45.3.12. Interrupts on the L2 cache
	45.3.13. Polling the error status of the L2 cache

	45.4. API reference

	Chapter 46. GRIOMMU driver
	46.1. Introduction
	46.1.1. Hardware Support
	46.1.2. Driver sources
	46.1.3. Examples

	46.2. Software design overview
	46.2.1. Driver usage
	46.2.2. Initialization

	46.3. GRIOMMU user interface
	46.3.1. Return values
	46.3.2. Configuring the GRIOMMU core
	46.3.3. Enabling/disabing the access protection
	46.3.4. Finding and configuring a master
	46.3.5. Managing the APV
	46.3.6. Configuring a group
	46.3.7. Interrupts on the GRIOMMU
	46.3.8. Polling the error status of the GRIOMMU

	46.4. API reference

	Chapter 47. L4STAT/L3STAT driver
	47.1. Introduction
	47.1.1. Hardware Support
	47.1.2. Driver sources
	47.1.3. Examples

	47.2. Software design overview
	47.2.1. Driver usage
	47.2.2. Initialization

	47.3. L4STAT user interface
	47.3.1. Return values
	47.3.2. Enabling/disabing a counter
	47.3.3. Getting/setting/clearing a counter
	47.3.4. Getting/setting the maximum value of a counter
	47.3.5. Getting/setting the timestamp

	47.4. API reference

	Chapter 48. Memory Scrubber driver
	48.1. Introduction
	48.1.1. Hardware Support
	48.1.2. Driver sources
	48.1.3. Examples

	48.2. Software design overview
	48.2.1. Driver usage
	48.2.2. Initialization

	48.3. Memory scrubber user interface
	48.3.1. Return values
	48.3.2. Configuring the memory range
	48.3.3. Starting/stoping different modes.
	48.3.4. Setting up error thresholds
	48.3.5. Registering an ISR
	48.3.6. Polling the error status

	48.4. API reference

