RCC

RTEMS Cross Compiler (RCC)

2020 User's Manual

The most important thing we build is trust

RCC User's Manual

RCC-UM 1 www.cobham.com/gaisler

June 2020, Version 1.2.25

Table of Contents

OO 1 oo [0 1o T SO UPPPRTRSPPPIN: 3
R €1 o 1= - | PSPt 3

1.2. Installation on host Platformooe i 3
O I o oS o (0T = 0.1 4] £ N 3

1.2.2. Installing RCC on Windows platformsccoceuieiiiiiiiii e 3

1.2.3. Installing on LinuxX platformoeeiiii e e e e e 5

1.3. Contents Of /OPU/IEMS-4.10ccovniieii e e e e e e e e et e e et r e et e e e e eaanas 5

R (O O (o) OSSP 5

ST B o oW 47 g1 = o] PP 6

1.6, RCC SOUICE Gt BECESS .v.ueieitiieeitti ettt e e ettt s e e e eett e e e et b e e e eete s e e e eete e e e eetenaeeentnneeeeetnaeaenes 7

O oo S 7

228 £ o (S 8
2.1. General devealopmeENt fIOWcieeiii e 8

2.2, SPAIC-IEMS-GCC OPLIONS ...ieunieeiiiiiii et e e e e et e e et e e e e e e e et e e et e e e e e e ta e e et e e aa e eetn e eaneernnas 8

PG T o I = IS o] o= 1o g 9

2.4. Floating-point CONSIAEIELIONSuiiieiieeieeeiiee e e e e e e e e e et e e e e et e et e e e e e et e e e e eeaneeeen 9

2.5. LEON SPARC V8 INSLIUCLIONSuiiiiiiiiieiiiiiiee et e et e et e et a e ettt e e e et e e e et e e e eaa s 9

A IV aaTe VAo o = g TE= o) o 9

2.7. Board-support packages (BSPS) ..vuiieiiiiiicii e 10
270 LEONS BSP .eiiiiiiti ettt et e e 10

2.7.2. NGMP BSP .o 10

T B T (A= g\ - 0 =o = 10
2.8. L INITAHZAIHON ... 11

PR @ o o |1 = (o) o N 11

2.8.3. Driver CONfIQUIBLIONcuuieiii i et eeaaeaannaees 11

2.8.4. drvmgr COMMENGuiiiieii e e e e e e e e e e e et e e et e e eat e e aaeeaanaes 13

2.9. NetWOrk CONFIQUIALIONiiie i e e e e e e e e e e e e e e e et e e eaneeeanees 14

120 L0 = O PSSP 14
2250 IV =T o T oo o) o (o 1 1 15

2.12. SIMPIE EXAMPIES ...niiieiii et e e e 15

80 G T Y U] o] ot o S 16

P2 T T Y 1 o (=== (= U] (= OSSPSR 17

I S'(= o: 11 o 0 =10 Je U= o0 o] oo NS 18
135 I 10 PRSP 18

I] Y @ PP 18

3.3. GDB With GRMON @0 TSIM ..ottt e e s 19

3.4. Using DDD graphical front-end to gdbcoiiiiiiiiii 20
RCC-UM 2 www.cobham.com/gaisler

June 2020, Version 1.2.25

COBHAM

1. Introduction

1.1. General

This document describes the RTEMS LEON/ERC32 GNU cross-compiler system (RCC). Discussions are pro-
vided for the following topics:

« installing RCC

« contents and directory structure of RCC

« compiling and linking LEON and ERC32 RTEM S applications

 usage of GRMON

« debugging application with GDB

RCC is a multi-platform development system based on the GNU family of freely available tools with additional
tools developed by Cygnus, OAR and Aeroflex Gaisler. RCC consists of the following packages:

¢ GCC-4.4.6 C/C++ compiler

¢ GNU binary utilities 2.20.1 with support for LEON CASA/UMAC/SMAC instructions

* RTEMS-4.10.2 C/C++ rea-time kernel with LEON2, LEON3, LEON4 and ERC32 support

« Newlib-1.18.0 standalone C-library

« GDB-6.8 SPARC cross-debugger

1.2. Installation on host platform

1.2.1. Host requirements

RCC is provided for two host platforms: linux/x86 and MS Windows. The following are the platform system
requirements:

Linux; Linux-2.6.x, glibc-2.11.1 (or higher)
Windows: MSY S-1.0.10 (or higher)

In order to recompile the RTEMS kerndl sources automake-1.11.1 and autoconf-2.68 is required. MSYS-
DTK-1.0.1 is needed on Windows platforms to build autoconf and automake. The sources of automake and auto-
conf can be found on the GNU ftp server:

« ftp://ftp.gnu.org/gnu/autoconf/
« ftp://ftp.gnu.org/gnu/automake/

MSY S and MSYS-DTK can be found at http://www.mingw.org.
1.2.2. Installing RCC on Windows platforms

Thetoolchaininstallation zip file (sparc-rtems-4.10-gcc-4.4.x-1.2.x-mingw.zip) must beextractedto C: \ opt cre-
ating thedirectory C:\opt\rtems-4.10-mingw. Thetoolchain executabl es can beinvoked from the command prompt
by adding the executable directory to the PATH environment variable. The directory C. \ opt\rt ens- 4. 10-
m ngw\ bi n can be added to the PATH variable by selecting "My Computer->Properties->Advanced->Environ-
ment Variables'. Development often requires some basic utilities such as make, but is not required to compile, on
Windows platforms the MSY S Base system can be installed to get abasic UNIX like development environment
(including make). The RTEM S sourcesrely on the autoconf and automake utilitiesto create Makefiles. TheMSY S
Base system doesn't include the required version of autoconf and automake, instead they can be compiled from
sources as described below.

1.2.2.1. Installing MSYS

The MSY S package can be freely downloaded from http://www.mingw.org, it comes as an self extracting instal-
lation application (MSY S-1.0.10.exe). The following text assumes the MSY S has been successfully installed to
C:. \ nmsys. Thedirectory where thetoolchainisinstalled (C. \ opt\ rt ens- 4. 10- mi ngw) must be found in
/opt/rtens-4.10- nm ngwfrom the MSY S environment, this can done by adding an mount entry similar to
one of the examplesbelow to the/ et ¢/ f st ab filein the MSY S environment.

C:/opt/rtems-4.10-m ngw /opt/rtemns-4.10-nm ngw

RCC-UM 3 www.cobham.com/gaisler
June 2020, Version 1.2.25

COBHAM

or
C./opt /opt

The path to the toolchain binaries (C: \ opt \ rt ens- 4. 10- ni ngw bi n) must added to the MSYS PATH
environment variable. Below is an example of how to change the PATH variable in the MSY S shell.

export PATH=/opt/rtens-4.10-m ngw bi n: $PATH
The toolchain installation can be tested by compiling the samples included in the tool chain,

$ cd /opt/rtems-4.10-ni ngw src/ sanpl es
$ make

1.2.2.2. Installing RTEMS source

Installing the RTEMS kernel sources are optional but recommended when debugging applications. The tool-
chain libraries are built with debugging symbols making it possible for GDB to find the source files. The
RCC RTEMS sources is assumed to be located in C:\opt\rtens-4. 10- m ngw src\rtens-4. 10.
The RTEMS sources (sparc-rtems-4.10-1.2.x-src.tar.bz2) can be installed by extracting the source distribu-
tionto C:\opt\rtens-4. 10- m ngw src creating the directory C. \ opt\rtens-4. 10- mi ngw src
\rtens-4.10.

Alternatively the sources can be obtained from the Git repository, see Section 1.6.
1.2.2.3. Building RTEMS from source

The RTEMS build environment can be set up by following the Windows instructions available www.rtems.org,
the environment requires MSY S-DTK-1.0.1, autoconf-2.68 and automake-1.11.1. This section describes how to
install MSY S-DTK, autoconf, automake and building RTEMS SPARC BSPS from source.

MSYS-DTK can be downloaded from www.mingw.org, it comes as an self extracting installation application
(nmsysDTK- 1. 0. 1. exe) . The following text assumes that MSYS-DTK has been installed successfully into
the MSY S environment.

Autoconf and automake can be downloaded from ft p: //ftp. gnu. or g/ gnu/ aut oconf and ftp://
ftp. gnu. or g/ gnu/ aut o- make. Below is a example of how to build and install the required tools.

nkdir /src

cd /src

< ... downl oad autoconf and autonake to /src ... >
tar -jxf autoconf-2.68.tar.bz2

nkdir autoconf-2.68/build

cd autoconf-2.68/build

../configure --prefix=/usr

nmake

make install

< ...autoconf-2.68 has been installed ... >

cd /src

tar -jxf automake-1.11.1.tar.bz2

nkdir aut omake-1.11.1/build

cd automake-1.11.1/build

../configure --prefix=/usr

make

make install

< ... autonmeke-1.11.1 has been installed ... >
$ exit

After installing automake and autoconf it may be required to restart the MSY S shell.

B OO OB B ©O OO BB ©

Once the tools required by RTEMS source tree has been installed and the MSY'S shell has been restarted
the installed RTEMS sources can be built manually or using the prepared Makefile available at C: \ opt
\rtems-4. 10- m ngwh src\ Makef i | e. See Section 2.2 for details on how to set the compiler options used
when building aBSP. The build processis divided in four steps, in thefirst step the make scripts are generated this
step is called bootstrap. The bootstrapping can be done with the make target boot as the examples shows below.
The bootstrap step is only needed to be rerun when adding or removing files from the source tree.

$ cd /opt/rtems-4.10-m ngw src
$ neke bootstrap

The second step configures a build environment in/ opt / rt ens- 4. 10- mi ngw/ src/ bui | d,

RCC-UM 4 www.cobham.com/gaisler
June 2020, Version 1.2.25

COBHAM

$ make configure
The third and fourth steps compile and install the new kernel to/ opt / rt ens- 4. 10- mi ngw/ sparc-rtens

$ make conpile
$ make install

1.2.3. Installing on Linux platform

The RCC directory tree is compiled to reside in the/ opt / rt ens- 4. 10 directory on al platforms. After ob-
taining the bzipped tarfile with the binary distribution, uncompress and untar it in asuitable location - if thisis not
/opt/rtens-4. 10 thenalink haveto be created to point to the location of the RCC directory. The distribution
can be installed with the following commands:

$ cd /opt
$ bunzip2 -c sparc-rtens-4.10-gcc-4.4.x-1.2. x-linux.tar.bz2 | tar xf -

After the compiler is installed, add / opt/ rt enms- 4. 10/ bi n to the executables search path and / opt /
rtens- 4. 10/ man to the man path.

1.2.3.1. Installing RTEMS source

The RTEMS sources used to compile the SPARC BSPS included in RCC is prepared to be installed into / opt /
rtens-4. 10/ src, it can be done asfollows.

$ cd /opt/rtenms-4.10/src
$ tar -jxf /path/to/sparc-rtens-4.10-1.2.x.tar.bz2

1.2.3.2. Building RTEMS from sources

The RTEMS libraries found in / opt / rt ens- 4. 10/ spar c- r t ens/ BSP can be built from the sources us-
ing the Makefile found in /opt/rtems-4.10/src. The RTEMS build environment assumes that autoconf-2.68 and
automake-1.11.1 are installed. Documentation on how to install autoconf and automake isincluded in respective
source and an example can be found above in Section 1.2.2.3.

See Section 2.2 for details on how to set the BSP compiler options prior to building RTEMS.
Alternatively the sources can be obtained from the Git repository, see Section 1.6.
1.3. Contents of /opt/rtems-4.10

The created rtems directory has the following sub-directories:

bin Executables

doc RCC and GNU documentation

include Host includes

lib Host libraries

make RTEM S make scripts

man Man pages for GNU tools

sparc-rtems Sparc target libraries

src Various sources, examples and make scripts used to build kernel from source
1.4. RCC tools

The following tools areincluded in RCC:

sparc-rtems-addr2line Convert addressto C/C++ line number

sparc-rtems-ar Library archiver
sparc-rtems-as Cross-assembler
sparc-rtems-c++ C++ cross-compiler
sparc-rtems-c++filt Utility to demangle C++ symbols
RCC-UM 5 www.cobham.com/gaisler

June 2020, Version 1.2.25

sparc-rtems-cpp
sparc-rtems-g++
sparc-rtems-gcc
sparc-rtems-gcov
sparc-rtems-gdb
sparc-rtems-gprof
sparc-rtems-ld
Sparc-rtems-nm
sparc-rtems-objcopy
sparc-rtems-objdump
sparc-rtems-ranlib
sparc-rtems-readel f
sparc-rtems-size
sparc-rtems-strings
sparc-rtems-strip

1.5. Documentation

COBHAM

The C preprocessor

Same as sparc-rtems-c++

C/C++ cross-compiler

Coverage testing tool

GNU GDB C/C++ level Debugger
Profiling utility

GNU linker

Utility to print symbol table

Utility to convert between binary formats
Utility to dump various parts of executables
Library sorter

ELF file information utility

Utility to display segment sizes

Utility to dump strings from executables
Utility to remove symbol table

The RCC and GNU documentation are distributed together with the toolchain, it consists of RTEMS manuals

and GNU tools manuals localt
develops outside the official
rtens-4. 10/ doc.

GNU manudls:

as. pdf

bi nutil s. pdf
cpp. pdf

gcc. pdf

gdb. pdf
gpr of . pdf

| d. pdf

Newlib C library:
I i bc. pdf
i bm pdf

RTEMS manuals:

bsp_how o. pdf
c_user. pdf
cpu_suppl enent . pdf
devel env. pdf

fil esystem pdf

i tron. pdf

net wor ki ng. pdf
new_chapt ers. pdf
porting. pdf

posi x1003- 1. pdf

ed in the doc/ directory of the toolchain. The GRLIB drivers that Cobham Gaisler
repository are documented in a separate drivers document found under / opt /

Using as - the GNU assembler
The GNU binary utilities

The C Preprocessor

Using and porting GCC
Debugging with GDB

the GNU profiling utility

The GNU linker

Newlib C Library
Newlib Math Library

BSP and Device Driver Development Guide
RTEMS C User's Guide (thisis the one you want!)
RTEMS SPARC CPU Application Supplement
RTEMS Development environment guide
RTEMS Filesystem Design Guide
RTEMSITRON 3.0 User's Guide

RTEMS Network Supplement

RTEMS Newly added features

RTEMS Porting Guide

RTEMS POSIX 1003.1 Compliance Guide

RCC-UM
June 2020, Version 1.2.25

6 www.cobham.com/gaisler

COBHAM

posi x_users. pdf RTEMS POSIX API User's Guide
rel not es. pdf RTEMS Release Notes
start ed. pdf Getting Started with RTEM S for C/C++ Users

The documents are all provided in PDF format, with searchable indexes.

1.6. RCC source Git access

The RCC RTEMSkernel sourcesisdistributed from Cobham Gaisler homepagein atar-file, the latest patches are
also available using Git revision control system. It is possible to browse the code at http:/git.rtems.org/danielh/
rcc.git or checkout the repositoy issuing the below commands. The RCC sources are found in the rce-1.2 branch.

$ git clone git://git.rtems.org/danielh/rcc.git
1.7. Support

The RCC compiler system is provided freely without any warranties. Technical support can be obtained from
Aeroflex Gaisler through the purchase of atechnical support contract. See www.gaisler.com for more details.

RCC-UM 7 www.cobham.com/gaisler
June 2020, Version 1.2.25

http://git.rtems.org/danielh/rcc.git
http://git.rtems.org/danielh/rcc.git

COBHAM

2. Using RCC

2.1. General development flow

Compilation and debugging of applicationsistypically done in the following steps:
1. Compile and link program with gcc
2. Debug program using a simulator (gdb connected to TSIM/GRSIM)
3. Debug program on remote target (gdb connected to GRMON)
4. Create boot-prom for a standal one application with mkprom?2

RCC supports multi-tasking real-time C/C++ programs based on the RTEMS kernel. Compiling and linking is
done in much the same manner as with a host-based gcc.

2.2. sparc-rtems-gcc options

The gcc compiler has been modified to support the following addtional options:

-ql eon2 generate LEON2 executable (without driver manager startup initialization).

-tsc691 generate ERC32 executable.

-ql eon3 generate LEON3/4 executable (default if no other option given).

-ql eon3std generate LEON3/4 executable without driver manager startup initialization.

- gl eon3np generate LEON3/4 Multiprocessor executable (AMP).

- gqngnp use NGMP linker script instead of default. Can be used in conjunction with -
gl eon3, - gl eon3str and - gl eon3np. The RAM addressis set to 0 instead
of 0x40000000.

The prebuilt LEON3 BSPs are built for LEON3-FT compatibility with ISA and all errata work arounds in mind
starting with version RCC-1.2.20b. The compiler flags used are SPARCv7 UT699/GR712RC/UT699E/UT700
non-FPU systems (- ntpu=cypress -nsoft-float -mune=ut699 -nfix-gr712rc -nfix-
ut 700). This causes larger executables and lower performance on the RTEMS libraries than neccessary on most
systems. However the RTEM S kernel libraries can be rebuilt by the user.

To achive better performance it is recommended to set target specific compiler optimizations and enable only the
erratawork aroundsthat affectsthetarget devicewhen builing the RTEM Skernel/BSP and during linking with pre-
built libgcc/newlib libraries. The RTEMS kernel and BSP compiler flags are set by updating thec/ src/ | i b/

| i bbsp/ spar c/ BSP/ make/ cust om BSP. cf g located relative the RTEMS source tree. See Section 1.2
for installation and build instructions.

Common and SPARC/LEON specific options are:

-g generate debugging information - must be used for debugging with gdb.

-nsoft-fl oat emulate floating-point - must be used if no FPU existsin the system.

-ncpu=v8 generate SPARC V8 mul/div instructions- only for LEON with hardware multi-
ply and divide configured.

- m une=ut 699 sets UT699 specific parameters.

-nfix-gr712rc sets GR712RC specific parameters.

-nfix-ut 700 sets UT700/UT699e specific parameters.

-nfix-b2bst Enables B2BST Erratawork around. __ FIX_B2BST is predefined by the prepro-

cessor. Thework around is automatically activated when using -mtune=ut699,
-mfix-gr712rc and -mfix-ut700 therefore this option shall not be used together
with those options.

-nfix-tn0013 Enables GRLIB-TN-0013 Errata work around. The work around is automatical-
ly activated when using -mtune=ut699, -mfix-gr712rc and -mfix-ut700 therefore
this option shall not be used together with those options.

RCC-UM 8 www.cobham.com/gaisler
June 2020, Version 1.2.25

COBHAM

-2 optimize code - should be used for optimum performance and combination of
small code size.

-Gs optimize code for size - should be used for minimum code size.
Other GNU GCC options are explained in the gcc manual (gcc. pdf), see Section 1.5.
2.3. RTEMS applications

To compile and link an RTEM S application, use spar c-rtems-gcc:
$ sparc-rtens-gcc -g -2 rtens-hello.c -0 rtenms-hello

RCC creates executables for LEON3/4 by default. To generate executables for LEON2 or ERC32 add -gleon2 or
-tsc691 switches during both compile and link stages. The default load addressis start of RAM, i.e. 0x40000000
for LEON2/3/4 and 0x2000000 for ERC32. Other load addresses can be specified through the use of the -Ttext
option (see gcc manual). See -gngmp option above for systemswith RAM at address 0.

RCC uses the sources of RTEM S-4.10.2 with additional patches, and allows recompilation if a modification has
been madeto absp or thekernel. Install the RTEM S sourcesin /opt/rtems-4.10/src, and re-compileand install with:
$ cd /opt/rtens-4.10/src
$ make install

2.4. Floating-point considerations

If the targeted processor has no floating-point hardware, then all applications must be compiled (and linked)
with the - nsof t - f | oat option to enable floating-point emulation. When running the program on the TSIM
simulator, the simulator should be started with the -nfp option (no floating-point) to disable the FPU.

2.5. LEON SPARC V8 instructions

LEON2, LEON3 and LEON4 processors can be configured to implement the SPARC V8 multiply and divide
instructions. The RCC compiler does by default NOT issue those instructions, but emulates them trough alibrary.
To enable generation of mul/div instruction, use the - ntc pu=v8 switch during both compilation and linking. The
- ntpu=v8 switch improves performance on compute-intensive applications and fl oating-point emulation.

LEON2/3/4 model also supports multiply and accumulate (MAC) if enabled in HW. The compiler will never issue
those instructions, they have to be coded in assembly. Note that the RCC assembler and other utilities are based
on amodified version of GNU binutils-2.20.1 that supports the LEON MAC instructions.

Please see Section 2.2 for details on default compiler flags used for the pre-compiled BSPs.

2.6. Memory organisation

The resulting RTEMS executables are in elf format and has three main segments; text, data and bss. The text
segment is by default at address 0x40000000 for LEON2/3/4 and 0x2000000 for ERC32, followed immediately
by the data and bss segments. The LEON4 NGMP designs has RAM at 0x00000000, the -gngmp compiler switch
selects correct linker script for NGMP systems. The stack starts at top-of-ram and extends downwards.

Standalone App

Top-Of-RAM

Startup Stack

Heap

Data

Text

0X40000000

Figure 2.1. RCC RAM applications memory map

RCC-UM 9 www.cobham.com/gaisler
June 2020, Version 1.2.25

COBHAM

The SPARC trap table always occupies the first 4 Kbytes of the . t ext segment.

The LEON BSPs auto-detects end-of-ram by looking at the stack pointer provided by the bootloader or GRMON
at early boot. Hence the heap will be sized by the loader.

2.7. Board-support packages (BSPs)

RCC includes board-support packages for LEON2, LEON3 and ERC32. LEON4 is supported by the LEON3
BSP. BSPs provide interface between RTEMS and target hardware through initialization code specific to target
processor and a number of device drivers. Console and timer drivers are supported for al processors.

LEONZ2 and ERC32 BSPs assume a default system resource configuration such as memory mapping of on-chip
devices and usage of interrupt resources. LEON3/4 systems are based on GRLIB Plug & Play configuration, and
are thereby highly configurable regarding memory mapping and interrupt routing. At start-up, the LEON3 BSP
scans the system bus to obtain system configuration information. Device drivers support a number of devices
which are automatically recognized, initiated and handled by the device drivers.

Starting with version RCC-1.2.20b the pre-compiled RTEM S LEON3 BSPs are built using compiler switches for
compatibility (ISA and erratawork arounds enabled). See Section 1.2 for more information on how to build from
sources and Section 2.2. for default GCC options used.

2.7.1. LEON3 BSP

The LEON3 BSPincludestwo different console and timer drivers, standard (official RTEMS) drivers (-gleon3std)
and drivers which rely on the driver manager. The latter drivers are possible to configure from the project config-
uration using standard driver manager configuration options, for example which APBUART device is mapped to
/ dev/ consol e and which timer is used as system clock one needs to configure for AMP systems.

The console drivers supports APBUARTS. The first UART is registered under name / dev/ consol e, second
and third UARTSs get names / dev/ consol e_b and dev/ consol e_c and so on. LEON3 BSP requires at
least one APBUART.

The timer driver uses General Purpose Timer (GPT). The driver handles GPT timer 0 and the lowest interrupt
request line used by GPT. GPT timer 0 and lowest request line should never be used by an RTEMS application.
If an application needs to use more timers GPT should be configured to have two or more timers using separate
request lines. Timer O interrupt can not be shared with other devices or GPT timers 1-6.

For more information on how to configure a system based on GRLIB see GRLIB IP Library User's Manual.
2.7.2. NGMP BSP

NGMP systems are supported by the LEON3 BSP and a custom linker script. The NGMP linker script is selected
using the -gngmp flag to the gcc during compiling and linking.

2.8. Driver Manager

The LEON3 BSP uses an optional Driver Manger that handles drivers and devices on the AMBA and PCI Plug
& Play buses. The drivers are automatically assigned with one or more hardware devices. The Driver Manager is
either initilized by the user from the Init() thread after RTEMS as started up, or during startup of RTEMS. The
LEON3 BSP has by default (-gleon3 and -gleon3mp) the driver manager enabled (--drvmgr was given to configure
during compiletime) that means that no extra initialization calls from Init() is needed, however which drivers to
be included must be configured uniquely per project. One can use -gleon3std to avoid using the driver manager.
In most cases the GPTIMER and the APBUART drivers are required to boot.

If the driver manager was configured to be initialized by the BSP, the RTEMS DRVMGR_STARTUP defineis
defined. If not configured the define is not set and the user can choose to initialize the driver manager manually
from for example the Init() task or not useit at all.

LEONZ2 systems are divided into two different systems, standard LEON2 systems and GRLIB-LEON2 systems
where the AMBA Plug & Play busis available. Both systems can use the LEON2 hardcoded bus with the Driver

RCC-UM 10 www.cobham.com/gaisler
June 2020, Version 1.2.25

COBHAM

Manager, however it's primary intention is to provide a root bus for a second bus supporting Plug & Play. For
examplea GRLIB-LEON2 system has hardcoded peripherals (the standard LEON2 peripherals) and GRLIB cores
attached available from the AMBA Plug & Play information, the setup for a system like that would be a LEON2
hardcoded bus and a LEON2 AMBA Plug & Play sub bus. Once the AMBA Plug & Play busisinitialized all
device and their drivers can be used the same way asin LEON3/4 systems.

For AT697 PCI systems the driver manager can be used to scan the PCI bus.
The ERC32 BSP does not support the driver manager.
2.8.1. Initialization

Regardless when the manager isinitialized the following steps must be taken, however RTEM S and the BSP takes
all steps during startup for us when --drvmgr was passed to configure.

Before the driver manager is initialized one must register a root bus driver so that the driver manager
knows which bus to start search for devices at. The driver manager itself must aso be initialized by calling
drvngr _i nit () before any driver supporting the driver manager can be accessed. The manager replaces the
DRI VER regi st er () calsusedin previousreleases of RTEMS to register drivers.

2.8.2. Configuration

The driver manager is configured by defining the array dr virgr _dri ver s, it contains one function pointer
per driver that is responsible to register one or more drivers. The drvmgr_drivers can be set up by defining
CONFIGURE_INIT, selecting the appropriatedriversand including dr virgr / dr vihgr _conf def s. h. Theap-
proach is similar to configuring a standard RTEMS project using r t ens/ conf def s. h. Below is an example
how to select drivers.

#i ncl ude <rtens. h>
#define CONFI GURE_INIT
#i ncl ude <bsp. h>

/* Standard RTEMS setup */

#def i ne CONFI GURE_APPLI CATI ON_NEEDS_CONSOLE_DRI VER
#def i ne CONFI GURE_APPLI CATI ON_NEEDS_CLOCK_DRI VER
#def i ne CONFI GURE_RTEMS_|I NI T_TASKS_TABLE

#def i ne CONFI GURE_MAXI MUM DRI VERS

#i ncl ude <rtens/confdefs. h> 32

/* Driver nanager setup */
#if defi ned(RTEMS_DRVMGR_STARTUP)
/* if --drvngr was given to configure (-qleon3, -qleon3np) include GPTI MER and APBUART drivers
* that rely on the driver manager
*/
#def i ne CONFI GURE_DRI VER_AMBAPP_GAI SLER_GPTI MER
#def i ne CONFI GURE_DRI VER_AMBAPP_GAI SLER_APBUART
#endi f

#def i ne CONFI GURE_DRI VER_AMBAPP_GAI SLER GRETH
#def i ne CONFI GURE_DRI VER_AMBAPP_GAI SLER_GRSPW
#def i ne CONFI GURE_DRI VER_AMBAPP_GAI SLER_GRCAN
#def i ne CONFI GURE_DRI VER_AMBAPP_GAI SLER_OCCAN
#def i ne CONFI GURE_DRI VER_AVBAPP_MCTRL

#def i ne CONFI GURE_DRI VER_AMBAPP_GAI SLER PClI F
#def i ne CONFI GURE_DRI VER_AMBAPP_GAI SLER_GRPCI
#def i ne CONFI GURE_DRI VER_PCl _GR RASTA | O

#def i ne CONFI GURE_DRI VER_PCl _GR_RASTA_TMIC
#def i ne CONFI GURE_DRI VER _PCl _GR 701
#i ncl ude <drvngr/drvngr_confdefs. h>

The timer and console driver must be included when the driver manager is initialized on startup, whereas the
standard drivers are included automatically by the standard (-gleon3std) BSP setup.

2.8.3. Driver configuration

In the past the driver resources were often a string interpreted by the driver passed into the
DRI VER _r egi st er () function. Since the register functions have been replaced the driver resource format has
also been changed, it is now described by an array of different datatypes which are assigned namesfor flexibility.
The name is searched for by the driver once started, if found the value replaces the default value internal to the

RCC-UM 11 www.cobham.com/gaisler
June 2020, Version 1.2.25

COBHAM

driver. The driver uses adriver resource API to easily extract the information. The resources are provided by the
bus driver, it is up to the bus driver how the resources are assigned to the bus, the LEON bus drivers use a default
weak array that can be overridden by the project configuration. The driver parameters are documented separately
for each driver in the driver manual. The example below sets up GRSPWO0 and GRSPW1 descriptor count driver
resources for the AMBA Plug & Play bus on two different GR-RASTA-10 PCI boards and the root bus.

/* ROOT AMBA PnP Bus: GRSPW) and GRSPWL. resources */
struct drvngr_key grlib_grspwol_res[] =

{"txDesc", KEY_TYPE_INT, {(unsigned int)32}},
{"rxDesc", KEY_TYPE_INT, {(unsigned int)32}},
KEY_EMPTY

s

/* 1 f RTEMS_DRVMGR STARTUP is defined we override the "weak defaults" that
* is defined by the LEON3 BSP.

*/
struct drvngr_bus_res grlib_drv_resources =
{
.next = NULL,
.resource = {
{ DRI VER_AMBAPP_GAI SLER GRSPW I D, 0, &grlib_grspwol_res[O0]},
{ DRI VER_AMBAPP_GAI SLER GRSPW I D, 1, &grlib_grspwol_res[O0]},
RES_EMPTY
I
s

#i f ndef RTEMS_DRVMGR_STARTUP

struct grlib_config grlib_bus_config = {
&anmbapp_pl b, /* AMBAPP bus setup */
&yrlib_drv_resources,/* Driver configuration */

I
#endi f

/* GR-RASTA-10 0: GRSPW resources */

struct drvngr_key rastai o0_grspwo_res[] = {
{"txDesc", KEY_TYPE_INT, {(unsigned int)8}},
{"rxDesc", KEY_TYPE_INT, {(unsigned int)32}},
KEY_EMPTY

s

/* GR-RASTA-10 1: GRSPWL resources */

struct drvngr_key rastai o0_grspwo_res[] = {
{"txDesc", KEY_TYPE_INT, {(unsigned int)16}},
{"rxDesc", KEY_TYPE_INT, {(unsigned int)16}},
KEY_EMPTY
s

/* GR-RASTA-10 1. GRSPW) and GRPSWL. resources use sane configuration */
struct drvngr_key rastaiol_grspwol_res[] = {

{"txDesc", KEY_TYPE_INT, {(unsigned int)16}},

{"rxDesc", KEY_TYPE_INT, {(unsigned int)64}},

KEY_EMPTY

s

/*** Driver resources for GR-RASTA-10 0 AMBA PnP bus ***/
struct drvngr_bus_res gr_rasta_ioO_res = {
.next = NULL,
.resource = {
{ DRI VER_AMBAPP_GAI SLER GRSPW I D, 0, &rastaio0_grspwo_res[O0]},
{ DRI VER_AMBAPP_GAI SLER GRSPW I D, 1, &rastaio0_grspwl_res[O0]},
RES_EMPTY
I
s

/*** Driver resources for GR-RASTA-10 1 AMBA PnP bus ***/
struct drvngr_bus_res gr_rasta_iol_res = {
.next = NULL,
.resource = {
{ DRI VER_AMBAPP_GAI SLER GRSPW I D, 0, &rastaiol_grspw0l_res[0]},
{ DRI VER_AMBAPP_GAI SLER GRSPW I D, 1, &rastaiol_grspw0l_res[0]},
RES_EMPTY
I

Tell CGR-RASTA-10O driver about the bus resources.
Resources for one GR-RASTA-10 board are avail abl e.
AMBAPP- >PCl - >CR- RASTA- | O >AMBAPP bus resources

The resources will be used by the drivers for the
cores found on the GR RASTA-| O >AMBAPP bus.

RCC-UM 12 www.cobham.com/gaisler
June 2020, Version 1.2.25

COBHAM

*

* The "weak defaults" are overriden here.

*/

struct drvngr_bus_res *gr_rasta_i o_resources[] = {
&gr_rasta_io0_res,/* GR-RASTA-10 board 1 resources */
&gr_rasta_iol_res,/* GR- RASTA-10O board 2 resources */
NULL, /* End of table */

s
rtems_task Init(rtems_task_argunment argunent)

/* Manual driver nmanager initialization only required when driver nanager not initialized during
* startup (-qleon2, -qleon3std)
*/
#i f ndef RTEMS_DRVMGR_STARTUP
/* Register GRLIB root bus (LEON3/4) */
anmbapp_grlib_root_register(&grlib_bus_config);

/* Initialize Driver Manager */
drvimgr_init();
#endi f

2.8.4. drvmgr command

The RTEMS shell comes with a number of commands, the drvmgr command can be used to extract information
about the current setup and hardware. Please seether t ens- shel | . ¢ sample application that comeswith RCC.
The rtems-shell on a GR712RC ASIC:

Creating /etc/passwd and group with three useabl e accounts
root/pwd , test/pwd, rtenms/NO PASSWORD

RTEMS SHELL (Ver. 1.0-FRC):dev/console. Cct 3 2011. 'help’ to |ist commands.
[/] # drvmgr --help

usage:
drvigr buses Li st bus specfic information on all buses
drvigr devs Li st general and driver specfic information
about all devices
drvmgr drvs Li st driver specfic information on all drivers
drvimgr info [ID] Li st general and driver specfic information
about all devices or one device, bus or driver
drvmgr mem Dynami cal |y nenory usage
drvmgr parent |D Short info about parent bus of a device
drvmgr renove | D Renove a device or a bus
drvimgr res ID Li st Resources of a device or bus
drvmgr short [1D] Short info about all devices/buses or one
devi ce/ bus
drvigr topo Show bus topology with all devices

drvimgr tr I D OPT ADR Translate hw(0)/cpu(1) (OPT bit0) address ADR
down(0)/up(1l) streanms (OPT bitl) for device
drvimgr --help

[/] # drvmgr topo

--- BUS TOPOLOGY ---

| -> DEV 0x400f d3a0 GRLI B AMBA PnP

| -> DEV 0x400f d450 GAl SLER_LEON3FT

DEV 0x400f d4a8 GAlI SLER LEON3FT
DEV 0x400f d500 GAlI SLER_AHBITAG
DEV 0x400f d558 GAlI SLER_ETHVAC
DEV 0x400f d5b0 GAlI SLER_SATCAN
DEV 0x400f d608 GAlI SLER_SPW2
DEV 0x400f d660 GAlI SLER_SPW2
DEV 0x400f d6b8 GAlI SLER_SPW2
DEV 0x400f d710 GAlI SLER_SPW2
DEV 0x400f d768 GAlI SLER_SPW2
DEV 0x400f d7c0 GAlI SLER_SPW2
DEV 0x400f d818 GAl SLER B1553BRM
DEV 0x400f d870 GAlI SLER GRTC
DEV 0x400f d8c8 GAlI SLER_GRTM
DEV 0x400fd920 GAI SLER SLI NK
DEV 0x400f d978 GAI SLER FTMCTRL
DEV 0x400f d9d0 GAlI SLER_APBMST
DEV 0x400f d928 GAlI SLER LEON3DSU
DEV 0x400f d980 GAlI SLER APBMST
DEV 0x400f db30 GAlI SLER_CANAHB
DEV 0x400f dad8 GAlI SLER_CANAHB
DEV 0x400f db88 GAlI SLER_FTAHBRAM
DEV 0x400f dbe0 GAlI SLER_APBUART
DEV 0x400f dc38 GAI SLER | RQW
DEV 0x400f dc90 GAlI SLER GPTI MER

VVVVVVVVVVVVVVVVVVVVYVYVYVYV

RCC-UM 13 www.cobham.com/gaisler
June 2020, Version 1.2.25

[T T S S S S S S S T T Y
VVVVVVVVVVVYVYVYVYV

DEV 0x400f dce8
DEV 0x400f dd40
DEV 0x400f dd98
DEV 0x400f ddf 0
DEV 0x400f de48
DEV 0x400f dea0O
DEV 0x400f def 8
DEV 0x400f df 50
DEV 0x400f df a8
DEV 0x400f e000
DEV 0x400f e058
DEV 0x400f e0b0
DEV 0x400f e108
DEV 0x400f e160
DEV 0x400f e1b8

GAI SLER_SPI CTRL
GAI SLER_CANMUX
NO_NAVE

GAl SLER_ASCS

GAI SLER GPI O
GAI SLER GPI O
GAI SLER | 2CVST
GAl SLER_CLKGATE
GAl SLER_AHBSTAT
GAl SLER_APBUART
GAl SLER_APBUART
GAl SLER_APBUART
GAl SLER_APBUART
GAl SLER_APBUART
GAl SLER_GRTI MER

COBHAM

[/]1 # drvmgr info 0x400fdbe0
-- DEVI CE 0x400f dbe0 - -
PARENT BUS: 0x400f d408

NAME: GAl SLER_APBUART
STATE: 0x00000100

INIT LEVEL: 4

ERROR: 0

M NOR BUS: 0
M NOR DRV: 0
DRI VER: 0x400a2198 (APBUART_DRV)
PRI VATE: 0x400f e210

- DEVI CE | NFO FROM BUS DRI VER - - -
AMBA PnP DEVI CE
VENDOR | D: 0x0001 (VENDOR_GAIl SLER)
DEVI CE | D 0x000c (GAI SLER_APBUART)
I RQ 2
VERSI ON: 0x1
anmbapp_core: 0x400fdclc
interfaces: APBSLV
APBSLV FREQ 80000kHz

apb: 0x80000100- 0x800001f f

- DEVI CE | NFO FROM DEVI CE DRI VER ---
UART Mode: TERM OS_POLLED
STATUS REG 0x100082
CTRL REG 0x80000803
SCALER REG 0x103 baud rate 38610

2.9. Network configuration

The LEON2/3 BSPs support two network devices: the Aeroflex Gaiser GRETH MAC and the LAN91C111.
The GRETH driver comes in two editions, one that needs the driver manager (in libbsp) to oper-
ate and the standard driver (in libchip). The driver manager dependent GRETH driver adds the net-
work interface automatically to the rtens_bsdnet confi g network interface configuration using
networ k_i nterface_add() function. The LAN91C111 chip cannot be found by Plug & Play so it has
to be manually set up by either hardcoding an entry inthert ens_bsdnet _confi g interface list or dynam-
icaly registered by calling net wor k_i nt erface_add(). The LAN91C111 attach routine is defined by
RTEMS BSP_NETWORK_DRIVER_ATTACH_SMC91111 in bsp.h. The standard GRETH device is setup in
asimilar way, seebsp. h.

Seesrc/ sanpl es/rtenms-ttcp. ¢ for sample anetworking application.
2.10. PCI

Aeroflex Gaider provides a PCI Library together with RTEMS located in cpukit/libpci in the soruces. The doc-
umentation for the PCI Library is located in the RTEMS documentation doc/ usr/ | i bpci .t and available
prebuilt into PDF named c_user . pdf , see Section 1.5.

The RTEMS shell has been extended with a pci command can be used to extract information about the current
setup and hardware. Please see the [rtems-shell.c] sample application that comes with RCC. A non-PCl system:

reating /etc/passwd and group with three useabl e accounts
root/pwd , test/pwd, rtenms/NO PASSWORD

RTEMS SHELL (Ver.1.0-FRC):dev/console. Cct 3 2011. 'help’ to |ist commands.
[/] # pci --help
usage:
pci |s [bus:dev:fun|PClID] Li st one or all devices
pci r{8| 16| 32} bus:dev:fun OFS Configuration space read
pci r{8| 16|32} PClID OFS Configuration space read

RCC-UM 14
June 2020, Version 1.2.25

www.cobham.com/gaisler

COBHAM

access by PCIID
pci wW{8| 16| 32} bus:dev:fun OFS D Configuration space wite

pci wW{8| 16|32} PCIID OFS D Configuration space wite
access by PCIID
pci pciid bus:dev:fun Print PCI 1D for bus:dev:fun
pci pciid PClID Print bus:dev:fun for PCIID
pci pcfg Print current PCl config for
static configuration library
pci getdev {PCl|D bus:dev:fun} Get PCl Device fromRAM tree
pci infodev DEV_ADR Info about a PCl RAM Devi ce
pci --help
[/]1 # pci
SYSTEM UNKNOMWN / UNI NI TI ALI ZED
CFG LI BRARY: AUTO
NO. PCl BUSES: 0 buses
PCI ENDI AN: Little
MACHI NE ENDI AN: Bi g

2.11. Making boot-proms

RTEMS applications are linked to run from beginning of RAM. To make a boot-PROM that will run from the
PROM on a standalone target, use the mkprom2 utility freely available from www.gaisler.com. The mkprom
utility is documented in a separate document that is distributed together with the mkprom2 utility. Mkprom will
create a compressed boot image that will load the application into RAM, initiate various processor registers, and
finally start the application. Mkprom will set al target dependent parameters, such as memory sizes, wait-states,
baudrate, and system clock. The applications do not set these parameters themselves, and thus do not need to be
re-linked for different board architectures.

The example below creates a LEON3 boot-prom for a system with 1 Mbyte RAM, one waitstate during write, 3
walitstates for rom access, and 40 MHz system clock. For more details see the mkprom manual

$ nkpron2 -ramsz 1024 -rammws 1 -romws 3 hello.exe -freq 40 hello. exe

Note that mkprom creates binaries for LEON2/3 and for ERC32, select processor type with the mkprom options
-leon3, -leon2 or -erc32 flag. To create an SRECORD file for a prom programmer, use objcopy:

$ sparc-rtens-objcopy -O srec rtens-hello rtens-hello.srec

2.12. Simple examples

Following example compiles the famous "hello world" program and creates a boot-prom in SRECORD format:
bash-2.04% sparc-rtems-gcc -ntpu=v8 -nsoft-float -2 rtens-hello.c -o rtems-hello

bash-2.04% nkpron2 -leon3 -freq 40 -dunp -baud 38400 -ransize 1024 -rmw rtens-hello
bash-2. 04$% sparc-rtens-objcopy -O srec rtens-hello rtenms-hello.srec
bash- 2. 04$

Severa example C programs can befoundin/ opt / rt ens- 4. 10/ src/ sanpl es. Thisfolder alsoincludesa
Makefile that can be used to build the examples. Building the examples for a predefined cpu configuration is done
by callingnmake <cpu-t ar get >. Cadling nake (without atarget) will compilethe examplesfor al the generic
leon3 and leon2 cpu-targets. The executables will be stored bi n/ <cpu-t ar get >. Valid cpu-targets are leon2,
leon2fp, leon2v8, leon2v8fp, leon3, leon3fp, leon3v8, leon3v8fp, erc32, gr712, ut699, ngmp

bash-2. 04$ make gr712

make OUTDI R="bi n/gr712/" CPU=gr712 build build_|l eon3 build_|l eon3np

make[1] : Entering directory “/hone/arvid/reps/rtens-4.10/src/sanpl es'

nkdir -p bin/gr712/

sparc-rtems-gcc -Wall -g -2 -ncpu=v8 - DREAD TEST_ONLY rtens-ttcp.c -0 bin/gr712/rtens-ttcp

sparc-rtems-gcc -Vall -g -2 -ncpu=v8 rtems-hello.c -0 bin/gr712/rtems-hello

sparc-rtems-c++ -Vall -g -2 -ncpu=v8 rtenms-cdtest.cc -0 bin/gr712/rtens-cdtest

sparc-rtems-gcc -Wall -g -2 -ncpu=v8 rtems-tasks.c -0 bin/gr712/rtemns-tasks

make[1] : Leaving directory “/hone/arvid/reps/rtens-4.10/src/sanpl es’

It is also possible to build a single example by caling make <exanpl e> or to build a prom image by calling
make <exanpl e>. nkpr om The executables will be stored in the root samples directory. When building
individual examplesit is possible to control the behaviour by setting the following variables.

CPU
By setting the CPU variable to one of the cpu-targets, then the hardware specific flags for that cpu-target
will be added when compiling.

RCC-UM 15 www.cobham.com/gaisler
June 2020, Version 1.2.25

COBHAM

CFLAGS

Override common compilation flags
CPUFLAGS

Override the hardware specific compilation flags
MKPROMFLAGS

Override mkprom2 flags

bash-2.04%$ make CPU=gr 712 CFLAGS="-Q0 -g" rtems-hello
sparc-rtens-gcc -Q0 -g -ncpu=v8 rtenms-hello.c -o rtens-hello

2.13. Multiprocessing

RTEMS supports asymmetric multiprocessing (AMP), the LEON3 BSP supports AMP in two different setups.
Either the RTEM Skernel is compiled with multiprocessing support (-gleon3mp) or the user setup custom resource
sharing with driver manager resources (-gleon3), the difference is that RTEMS provide multiprocessing objects
and communication channelsin theformer case and in the latter case the user isresponsiblefor all synchronization
itself which in many cases are sufficient. All nodes in a asymmetric multiprocessor system executes thier own
program image. M essages are passed between the nodes contai ning synchronization information, for exampl e take
global semaphore A. Messages are sent over memory using the Shared Memory Support Driver in the LEON3
BSP, and interrupts are used to aert the receiving CPU.

The kernel must be compiled with multiprocessing support in order for the RTEMS AMP support to be available,
the toolchain includes a precompiled LEON3 MPkernel inr t ens- 4. 10/ spar c-rt ens/ | eon3np, itisthe
LEON3 BSP compiled with multiprocessing support. The MP kernel is selected when the [-gleon3mp] argument
is given to sparc-rtems-gcc.

Since each CPU executesits own program image, amemory areahasto be allocated for each CPU's program image
and stack. Thisis achieved by linking each CPU's RTEMS program at the start addresses of the CPU's memory
area and setting stack pointer to the top of the memory area. E.g. for two CPU system, the application running
on CPU 0 could run in memory area 0x40100000 - 0x401fffff, while CPU 1 runs in memory area 0x4020000 -
0x402fffff. Shared Memory Support Driver allocates 4 KB buffer at address 0x40000000 for message passing
(this area can not be used for applications).

Each CPU requiresits own set of standard peripherals such as UARTs and timers. In an MP system the BSP will
automatically allocate UART 1 and GPT O timer 1 to CPU 0, UART 2 and GPT 0 timer 2 to CPU 1 and so on.
When the default configuration does not meet the requirements or hardware setup a custom resource alocation
can be setup using the driver manager, see below.

The shared memory driver'sdefault memory layout configuration can be overidden without recompiling thekernel.
The default settings are set in the variable weak variable BSP_shm cf gt bl , it can be overridden by defining
BSP_shm cf gt bl oncein the project asin the below example. The parameters that has an effect in changing
isthe fields base and length.
/* COverride default SHM configuration */
shm config_tabl e BSP_shmcfgthl = {
. base = (void *)0x40000000,

.length = 0x00010000
}s

Hardware resource allocation is done by the BSP for UART, IRQ controller and System Clock Timer. Devices
which hasadriver that isimplemented using the driver manager can beignored by a specific CPU by assigning the
keysvalue NULL in the driver resouces. The driver manager simply ignores the device when aNULL resourceis
detect. An example is given below where CPUO is assigned GRGPIO0 and CPU1 GRGPIO1. GPTIMER driver
have options that limit number of timers and which timer is used for system clock, the system console and debug
output can be selected to a specific UART with the APBUART driver.

CPUO Application:

struct rtens_drvngr_drv_res grlib_drv_resources[] =

{ DRI VER_AMBAPP_GAI SLER GRGPI O ID, 1, NULL} /* Used by CPUL */
s

CPU1 Application:

RCC-UM 16 www.cobham.com/gaisler
June 2020, Version 1.2.25

COBHAM

struct rtems_drvngr_drv_res grlib_drv_resources[] =

{ DRI VER_AMBAPP_GAI SLER GRGPIO_I D, 0, NULL}, /* Used by CPUWO */
{ DRI VER_AMBAPP_GAI SLER GRGPIO_ID, 1, &grlib_drv_res_grgpi 0l[0]}
s

Following example shows how to run RTEMS MP application on a two CPU system using GRMON. CPU 0
executes image nodel.exe in address space 0x6000000 - 0x600fffff while CPU 1 executes image node2.exe in
address space 0x60100000 - Ox601fffff.

GRMON LEON debug rmonitor v1.1.22

Copyright (C) 2004,2005 Gaisler Research - all rights reserved.
For latest updates, go to http://wwm. gaisler.com
Comments or bug-reports to support @aisler.com

grlib> 10 nodel. exe

section: .text at Ox60000000, size 143616 bytes
section: .data at 0x60023100, size 3200 bytes
total size: 146816 bytes (174.4 kbit/s)

read 852 synbols

entry point: 0x60000000

grlib> 10 node2. exe

section: .text at 0x60100000, size 143616 bytes
section: .data at 0x60123100, size 3200 bytes
total size: 146816 bytes (172.7 kbit/s)

read 852 synbols

entry point: 0x60100000

grlib> cpu act 0

active cpu: O

grlib> ep 0x60000000

entry point: 0x60000000

grlib> stack 0x600fff00

stack pointer: 0x600fff00

grlib> cpu act 1

active cpu: 1

grlib> ep 0x60100000

entry point: 0x60100000

grlib> stack 0x601fff00

stack pointer: O0x601fff00

grlib> cpu act 0

active cpu: O

grlib> run

RTEMS MP applications can not be run directly in GRSIM (using load and r un commands). Instead aboot image
containing several RTEM S MP applications should be created and simulated.

2.13.1. MP testsuite

The MP testsuite islocated in the sources under testsuite/mptests, it requires modifications to the make scriptsin
order to select a unique image RAM location. The default shared memory areais at 0x40000000-0x40000fff, the
two images for nodel and node2 needs to be located on a unique address and the heap/stack must also fit. The
argument -WI,- Ttext,0x40001000 for nodel and -WI,-Ttext,0x40200000 for node2 can be added to the link stage,
and the entry point (0x40001000 and 0x40200000) and stacks (0x401ffffO and 0x403ffff0) must also be set by
the loader (GRMON or mkprom for example). Depending on where the RAM memory is located and how much
memory is available the paramters may vary.

RCC-UM 17 www.cobham.com/gaisler
June 2020, Version 1.2.25

COBHAM

3. Execution and debugging

Applications built by RCC can be debugged on the TSIM LEON/ERC32 simulator, or on target hardware using
the GRMON debug monitor (LEON only). Both TSIM and GRMON can be connected to the GNU debugger
(gdb) for full source-level debugging.

3.1. TSIM

The TSIM simulator can emulate afull ERC32 and LEON2/3 system with on-chip peripherals and external mem-
ories. For full details on how to use TSIM, see the TSIM User's Manual. Below is a simple example that shows
how the ‘hello world” program is run in the simulator:

$ tsimleon3 rtens-hello
TSI M LEON3 SPARC sinmul ator, version 2.0.4a (professional version)

Copyright (C) 2001, Gaisler Research - all rights reserved.
For | atest updates, go to http://ww. gaisler.con
Comments or bug-reports to support @ai sl er.com

using 64-bit time

serial port A on stdin/stdout

al | ocated 4096 K RAM nenory, in 1 bank(s)

al | ocat ed 2048 K ROM nenory

icache: 1 * 4 kbytes, 16 bytes/line (4 kbytes total)
dcache: 1 * 4 kbytes, 16 bytes/line (4 kbytes total)
section: .text, addr: 0x40000000, size 92096 bytes
section: .data, addr: 0x400167c0, size 2752 bytes
read 463 synbol s

tsinmk go

resum ng at 0x40000000

Hello World

Program exi ted nornally.
tsim

3.2. GRMON

GRMON isused to download, run and debug L EON2/3 software on target hardware. For full details on how to use
GRMON, see the GRMON User' Manual. Below is a simple example that shows how the "hello world" program
is downloaded and run:

$ grmon -u -jtag

GRMON LEON debug nonitor v1.1.11

Copyright (C) 2004, 2005 Gai sl er Research - all rights reserved.
For |atest updates, go to http://ww gaisler.com

Comments or bug-reports to support @ai sl er.com

usi ng JTAG cabl e on parallel port
JTAG chai n: xc3s1500 xcf04s xcf04s

initialising
detected frequency: 41 Mtz
GRLI B buil d version: 1347

Conponent Aerof | ex Gai sl er
LEON3 SPARC V8 Processor Aerof | ex Gaisler
AHB Debug UART Aerof | ex Gai sl er
AHB Debug JTAG TAP Aerof | ex Gai sl er
GR Et hernet MAC Aerof | ex Gaisler
LEON2 Menory Control |l er Eur opean Space Agency
AHB/ APB Bri dge Aerof | ex Gai sl er
LEON3 Debug Support Unit Aerof | ex Gai sl er
Nuhori zons Spartan3 I/ O interfac Aeroflex Gaisler
OC CAN controller Aerof | ex Gaisler
Generic APB UART Aerof | ex Gaisler
Mul ti-processor Interrupt Ctrl Aerof | ex Gai sl er
Modul ar Timer Uni t Aerof | ex Gaisler

Use conmmand 'info sys’ to print a detailed report of attached cores

grlib> 1o rtems-hello
section: .text at 0x40000000, size 92096 bytes
section: .data at 0x400167c0, size 2752 bytes

RCC-UM 18 www.cobham.com/gaisler
June 2020, Version 1.2.25

COBHAM

total size: 94848 bytes (339.7 kbit/s)
read 463 synbol s

entry point: 0x40000000

grlib> run

Hello World

grlib>

Note that the program was started from address 0x40000000, the default start address.

GRMON can aso be used to program the boot-PROM image created by sparc-rtems-mkprom into the target’s
flash PROM.

grmon[grlib]> flash unlock all
grmon[grlib]> flash erase all
Erase in progress

Bl ock @ 0x00000000 : code
Bl ock @ 0x00004000 : code

0x00800080 K
0x00800080 K

grmon[grlib]> flash | oad prom out
section: .text at OxO, size 54272 bytes
total size: 54272 bytes (93.2 kbit/s)
read 45 synbol s

grmon[grlib]> flash | ock all

When boot-PROM isrun (i.e. after reset) it will initialize various LEON registers, unpack the application to the
RAM and start the application. The output on console when running “hello world” from PROM is shown below:

McProm LEON3 boot | oader v1.2
Copyright Gaisler Research - all right reserved

system cl ock : 40.0 MHz

baud rate : 38352 baud

prom 512 K, (2/2) ws (r/w

sram 11024 K, 1 bank(s), 0/0 ws (r/w

deconpressing .text
deconpressing .data

starting rtems-hello

Hello World

The application must be re-loaded with the load command before it is possible to re-executeit.

When running multiple RTEM S programs on a multiprocessing system, entry point and stack pointer have to be
set up individually for each CPU. E.g. when running appl.exe (link address 0x40100000) on CPUO and app2.exe
(link address 0x40200000) on CPU1:

grlib> 10 appl. exe
grlib> 10 appl. exe
grlib> cpu act 0

grlib> ep 0x40100000
grlib> stack 0x401fff00
grlib> cpu act 1

grlib> ep 0x40200000
grlib> stack 0x402fff00
grlib> cpu act 0
grlib>run

3.3. GDB with GRMON and TSIM

To perform source-level debugging with gdb, start TSIM or GRMON with -gdb or enter the gdb command at the
prompt. Then, attach gdb by giving command "tar extended-remote localhost:2222" to gdb when connecting to
GRMON or "tar extended-remote localhost:1234" when connecting to TSIM. Note that RTEM S applications do
not have auser-defined main() function necessarily asordinary C-programs. Instead, put abreakpointonl ni t (),
which is the default user-defined start-up function.

jupiter> sparc-rtenms-gdb rtens-hello

G\U gdb 6.7.1

Copyright (C) 2007 Free Software Foundation, Inc.

Li cense GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.htm >
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permtted by |law. Type "show copyi ng"

and "show warranty" for details.

This CGDB was configured as "--host=i 686-pc-1inux-gnu --target=sparc-rtens".
(gdb) tar extended-renote |ocal host: 2222

Renot e debuggi ng using | ocal host: 2222

RCC-UM 19 www.cobham.com/gaisler
June 2020, Version 1.2.25

COBHAM

(gdb) | oad

Loadi ng section .text, size 0x164e0 | ma 0x40000000
Loadi ng section .jcr, size 0x4 | ma 0x400164e0

Loadi ng section .data, size Oxaa8 | ma 0x400164e8
Start address 0x40000000, | oad size 94092

Transfer rate: 57902 bits/sec, 277 bytes/wite.
(gdb) break Init

Breakpoint 2 at 0x400011f8: file rtems-hello.c, line 33.
(gdb) run

The program bei ng debugged has been started al ready.
Start it fromthe beginning? (y or n) y

Starting program /opt/rtens-4.10/src/sanples/rtenms-hello

Breakpoint 2, Init (ignored=0) at rtemns-hello.c:33
33 printf("Hello World\n");

(gdb) cont

Conti nui ng.

Hello World

Programexited with code 0363.

The application must be re-loaded with the load command before it is possible to re-execute it.

3.4. Using DDD graphical front-end to gdb

DDD isagraphical front-end to gdb, and can be used regardless of target. The DDD graphical debugger isfreely
available from http://www.gnu.org/software/ddd. To start DDD with the sparc-rtems-gdb debugger do:

ddd --debugger sparc-rtens-gdb

The required gdb commands to connect to a target can be entered in the command window. See the GDB and
DDD manuals for how to set the default settings. If you have problems with getting DDD to run, run it with --
check-configuration to probe for necessary libraries etc. DDD has many advanced features, see the on-line manual
under the 'Help' menu.

On windows/cygwin hosts, DDD must be started from an xterm shell. First launch the cygwin X-server by issuing
'startx’ in a cygwin shell, and the launch DDD in the newly created xterm shell.

RCC-UM 20 www.cobham.com/gaisler
June 2020, Version 1.2.25

COBHAM

Cobham Gaisler AB
Kungsgatan 12

411 19 Gothenburg
Sweden
www.cobham.com/gaisler
sales@gaisler.com

T: +46 31 7758650

F: +46 31 421407

Cobham Gaisler AB, reserves the right to make changes to any products and services described
herein at any time without notice. Consult Cobham or an authorized sales representative to verify that
the information in this document is current before using this product. Cobham does not assume any
responsibility or liability arising out of the application or use of any product or service described herein,
except as expressly agreed to in writing by Cobham; nor does the purchase, lease, or use of a product
or service from Cobham convey a license under any patent rights, copyrights, trademark rights, or any
other of the intellectual rights of Cobham or of third parties. All information is provided as is. There is no
warranty that it is correct or suitable for any purpose, neither implicit nor explicit.

Copyright © 2015 Cobham Gaisler AB

RCC-UM 21 www.cobham.com/gaisler
June 2020, Version 1.2.25

	
	Table of Contents
	1. Introduction
	1.1. General
	1.2. Installation on host platform
	1.2.1. Host requirements
	1.2.2. Installing RCC on Windows platforms
	1.2.2.1. Installing MSYS
	1.2.2.2. Installing RTEMS source
	1.2.2.3. Building RTEMS from source

	1.2.3. Installing on Linux platform
	1.2.3.1. Installing RTEMS source
	1.2.3.2. Building RTEMS from sources

	1.3. Contents of /opt/rtems-4.10
	1.4. RCC tools
	1.5. Documentation
	1.6. RCC source Git access
	1.7. Support

	2. Using RCC
	2.1. General development flow
	2.2. sparc-rtems-gcc options
	2.3. RTEMS applications
	2.4. Floating-point considerations
	2.5. LEON SPARC V8 instructions
	2.6. Memory organisation
	2.7. Board-support packages (BSPs)
	2.7.1. LEON3 BSP
	2.7.2. NGMP BSP

	2.8. Driver Manager
	2.8.1. Initialization
	2.8.2. Configuration
	2.8.3. Driver configuration
	2.8.4. drvmgr command

	2.9. Network configuration
	2.10. PCI
	2.11. Making boot-proms
	2.12. Simple examples
	2.13. Multiprocessing
	2.13.1. MP testsuite

	3. Execution and debugging
	3.1. TSIM
	3.2. GRMON
	3.3. GDB with GRMON and TSIM
	3.4. Using DDD graphical front-end to gdb

