
BCC - Bare-C Cross-Compiler User’s Manual

Version 1.0.34, June 2010

Jiri Gaisler

Copyright Aeroflex Gaisler AB, 2010.

Table of contents

1 Introduction..3
1.1 Scope ... 3

1.2 Installation... 3

1.3 Building from source... 3

1.4 Technical support .. 4

2 General development flow ...5
2.1 Overview ... 5

2.2 Gcc options.. 5

2.3 Floating-point considerations.. 5

2.4 LEON SPARC V8 instructions ... 5

2.5 Alternate register windows organization (only for GCC 3.X) .. 6

2.6 Single vector trapping ... 6

2.7 Memory organization .. 6

2.8 Making LEON boot-proms ... 6

2.9 Creating applications that run in prom.. 6

2.10 Simple examples.. 7

2.11 Newlib C-library.. 7

2.12 FreeRtos .. 11

3 Execution and debugging...12
3.1 TSIM simulator and GRMON debug monitor .. 12

3.2 Debugging with GDB.. 12

3.3 Debugging on target hardware .. 13

3.4 Using the DDD graphical front-end to GDB .. 14

3.5 Using the Insight debugger.. 14

4 MKPROM boot-prom builder..16
4.1 Introduction ... 16

4.2 Usage... 16

4.3 Creating applications that run in prom.. 17

4.4 Mkprom General Options.. 18

4.5 Mkprom options for the LEON2 memory controller .. 19

4.6 Initialization of the LEON3 DDR controller... 20

-3-

1 Introduction

1.1 Scope

BCC is a cross-compiler for LEON2 and LEON3 processors. It is based one the GNU compiler
tools and the Newlib standalone C-library. The cross-compiler system allows compilation of both
tasking and non-tasking C and C++ applications. It supports hard and soft floating-point opera-
tions, as well as SPARC V8 multiply and divide instructions. BCC can also be used to compile the
eCos kernel.

BCC consists of the following packages:

• GNU GCC C/C++ compiler v3.4.4, v4.4.2
• Newlib C-library v 1.13.1
• Low-level I/O routines for LEON2 and LEON3, including interrupt support
• uIP light-weight TCP/IP stack
• GDB debugger v6.4 with DDD and Insight Graphical front-end
• Mkprom prom-builder for LEON2/3
• Linux and Windows/Cygwin hosts

1.2 Installation

1.2.1 Linux / Cygwin

BCC is provided as a bzipped tar-file. It should be unpacked in the /opt directory of the host:
mkdir /opt
tar -C /opt -xjf sparc-elf-<version-number>.tar.bz2

After installation, add /opt/sparc-elf-<gcc-version-number>/bin to the PATH variable. This should
be done by adding the following line to the file .profile in the home directory:
export PATH=/opt/sparc-elf-<gcc-version-number>/bin:$PATH

On Cygwin hosts, all installation steps should be done in a cygwin shell window.

See http://www.cygwin.com/ for information on Cygwin.

1.2.2 Windows

BCC for Windows is provided for native Windows (MinGW) and for the Cygwin environment. For
the Cygwin version see previous section. The native version will not require any additional pack-
ages and can be run from a standard Command Prompt.

The native Windows version of BCC is packaged with zip. Use a tool like WinZip to uncompress it
to a directory, e.g., C:\opt. Note: The directory should not contain spaces (or any other non-ASCII
characters) as this will confuse the compiler.

To use the compiler the bin subdirectory, e.g., C:\opt\bin, must be added to the PATH environment
variable. This can be done from the Control Panel:

System -> Advanced -> Environment Variables...

Se http://www.mingw.org/ for more information on MinGW and the optional MSYS environment.

1.3 Building from source

The source code for BCC is available from the Gaisler homepage www.gaisler.com. To build BCC
from source you should:

• untar the source archive to <dir>
• issue “cd <dir>;make download”. This will download the original gcc, binutils and newlibc

sources.
• issue “cd <dir>; make install”. This will untar all the downloaded original archives over the

current sourcetree, preserving the LEON sprecific files.

-4-

• issue “cd <dir>; make all”. This will build the 4.4.2 and 3.4.4 toolchains. The default prefix
is /opt.

1.4 Technical support

Technical support for BCC can be obtained from Aeroflex Gaisler AB by purchasing a techni-
cal support contract. Please contact sales@gaisler.com for details.

-5-

2 General development flow

2.1 Overview

Compilation and debugging of applications is typically done in the following steps:

 1. Compile and link program with gcc

 2. Debug program on a simulator or remote target

 3. Create boot-prom for a standalone application

BCC supports both tasking and non-tasking C/C++ programs. Compiling and linking is done in
the same manner as with a host-based gcc, and will not be explained here. The produced binaries
will run on both LEON2 and LEON3 systems, without requiring any switches during compilation.

2.2 Gcc options

All gcc options are described in detail in the gcc manual. Some useful options are:

• -g generate debugging information - must be used for debugging with gdb
• -msoft-float emulate floating-point - must be used if no FPU exists in the system
• -mcpu=v8 generate SPARC V8 mul/div instructions - needs hardware multiply and divide
• -O2 or -O3 optimise code maximum performance and minimal code size
• -qsvt use the single-vector trap model
• -mtune=ut699sets UT699 specific parameters

Note that in GCC version 3.4.4 -mcpu=v8 was called -mv8 and -mflat was present:

• -mv8 generate SPARC V8 mul/div instructions - needs hardware multiply and divide
• -mflat do not use register windows (i.e. no save/restore instructions). This options is

only available in gcc-3.4.4.

Ordinary C programs can be compiled without any particular switches to the compiler driver:
sparc-elf-gcc -msoft-float -g -O2 hello.c -o hello.exe

The default link address is start of RAM, i.e. 0x40000000 for LEON. Other link addresses can be
specified through the -Ttext option (see gcc manual).

2.3 Floating-point considerations

If the targeted LEON processor has no floating-point hardware, then all applications must be com-
piled (and linked) with the -msoft-float option to enable floating-point emulation. When running
the program on the TSIM simulator, the simulator should be started with the -nfp option (no float-
ing-point) to disable the FPU.

2.4 LEON SPARC V8 instructions

Both LEON2 and LEON3 processors can be configured to implement the SPARC V8 multiply and
divide instructions. The BCC compiler does by default not issue those instructions, but emulates
them trough a library. To enable generation of mul/div instruction, use the -mcpu=v8 switch during
both compilation and linking. The v8 switch improves performance on compute-intensive applica-
tions and floating-point emulation.

LEON2 and LEON3 also supports multiply and accumulate (MAC). The compiler will never issue
those instructions, they have to be coded in assembly. Note that the BCC assembler and other util-
ities are based on a modified version of GNU binutils-2.15 that supports the LEON MAC instruc-
tions.

-6-

2.5 Alternate register windows organization (only for GCC 3.X)

The compiler normally produces binaries that assumes that the target processor has 8 register
windows. However, by compiling and linking with the-mflat switch, it is possible to produce
binaries that will run on processors with only 2 register windows.

-mflat affect performance and code size. Using -mflat, the code size will increase with ~ 10%,
and the performance will decrease with the same amount. When creating boot proms (see
below), it is essential that the same-mflat parameter is given to sparc-elf-mkprom, as was
used when the binary was compiled. Any miss-match will produce a faulty prom image.

2.6 Single vector trapping

When the vhdl model is configured to support single vector trapping (svt) the -qsvt switch can
be used with the linker to build an image that uses a dispatcher rather than a static trap table.
The saving amounts to ~4k for the trap table, however trap handling will be slower. The image
will try to enable svt on boot using %asr17.

2.7 Memory organization

The resulting executables are in elf format and have three main segments; text, data and bss.
The text segment is by default at address 0x40000000 for LEON2 and LEON3, followed
immediately by the data and bss segments. The stack starts at top-of-ram and extends down-
wards. The area between the end of bss and the bottom of the stack is used for the heap.

2.8 Making LEON boot-proms

To make a boot-prom that will run from the prom on a standalone LEON2 or LEON3 target,
use the sparc-elf-mkprom utility. It will create a compressed boot image that will load the
application to the RAM, initiate various LEON registers, and finally start the application.
sparc-elf-mkprom will set all target dependent parameters, such as memory sizes, waitstates,
baudrate, and system clock. The applications compiled with sparc-elf-gcc do not set these
parameters themselves, and thus do not need to be re-linked for different board architectures.

The example below creates a boot-prom for a system with 1 Mbyte RAM, one RAM waitstate,
3 waitstates for ROM access, and 25 MHz system clock. For more details see the mkprom
manual.

sparc-elf-mkprom -ramsize 1024 -ramws 1 -romws 3 -freq 25 hello.exe -msoft-float

Note that sparc-elf-mkprom creates ELF files. To create an SRECORD file for a prom pro-
grammer, use objcopy:

sparc-elf-objcopy -O srec hello.prom hello.srec

Note: it is essential that the same -mflat, -qsvt and -msoft-float parameters are given to sparc-
elf-mkprom, as was used when the binary was compiled. Any miss-match will produce a
faulty PROM image.

2.9 Creating applications that run in prom

BCC supports applications that run in PROM, but have data and stack in ram. A PROM appli-
cation is created in two steps:

1. Compile the application into on or more object files, but do not link:

sparc-elf-gcc -msoft-float -c -g -O2 hello.c

2. Create final prom image with mkprom, listing all object files on the command line :

sparc-elf-mkprom -freq 40 -rmw hello.o -msoft-float

A PROM application has it code (.text segment) in prom, and data (.data & .bss) in RAM. At
start-up, the .data segment is copied from the prom to the ram, and the .bss segment is cleared.

-7-

A prom application is linked to start from address 0x0. The data segment is by default linked to
0x40000000, but can be changed by giving the -Tdata=<address> option of gcc to mkprom. Note
that if no FPU is present, the -msoft-float option must also be given to mkprom in this case since it
is needed during the final linking. When debugging prom applications with GRMON or gdb, only
hardware breakpoints (hbreak command) can be used.

2.10 Simple examples

Following example compiles the famous ‘hello world’ program and creates a boot-prom in
SRECORD format:

$ sparc-elf-gcc -g -O2 hello.c -o hello -msoft-float
$ sparc-elf-mkprom hello -o hello.exe -msoft-float

MKPROM boot-prom builder v1.0

section: .text at 0x4000000, size 31040 bytes
section: .data at 0x4007940, size 1904 bytes

$ sparc-elf-objcopy -O srec hello.exe hello.srec

Several example C programs can be found insrc/examples.

2.11 Newlib C-library

2.11.1 Stdio

BCC applications uses Newlib, which is a posix compatible C-library with full math support.
However, no file or other I/O related functions will work, with the exception of I/O to stdin/stdout.
Stdin/stdout are mapped on UART A, accessible via the usual stdio functions.

2.11.2 Time functions

The LEON timers are used to generate the system time. The function clock() will return the time
expired in microseconds. The gettimeofday(), time() and times() can also be used to get the time.
Before the time functions can be used, leonbare_init_ticks() should be called to start the LEON
timers and install the timer interrupt handler:
#include <asm-leon/timer.h>
void leonbare_init_ticks();

This will initialize Timer1 and Timer2. Timer1 is used to generate ticks at 100Hz while Timer2 is
used to create high resolution timer events. Timer1 ticks can be used by installing a ticker callback
at

tickerhandler ticker_callback;

Timer2 timer events can be generated by initializing a struct timerevent structure and calling

#include <asm-leon/timer.h>
int addtimer(struct timerevent *e);

struct timerevent ’expire’ field is the timeposition at which the event should be triggered. The cur-
rent time can be retrieved using int gettimeofday(struct timeval *tv, struct timezone *tz);

-8-

2.11.3 Task switching

Task switching is supported by the functions:
#include <contextswitch.h>
int thread_setjmp(threadctx_t env, int val);
void thread_longjmp(threadctx_t env, int val);

thread_longjmp() will save the current register windows to the stack and jump to the stack pre-
viously saved by thread_setjmp() similar to clib’s setjmp and longjmp construct. You can cre-
ate your own scheduler by using a construct like:

 void sched() {
 ...
 thread_longjmp(next());
 }
 ...
 if (!thread_setjmp(self()))
 sched();
 ...

2.11.4 Simple multi-tasking

Using the task switching primitives, a simple multi-tasking environment is supported by the
functions:

#include <asm-leon/leonbare_kernel.h>
leonbare_thread_init();
leonbare_thread_create(struct leonbare_thread *thread1, char *stack1, int
sizeof_stack1);

leonbare_thread_init() initializes and starts a simple scheduler, with leonbare_thread_create()
you create and add a task to it. struct leonbare_thread’s th_func member has to be initialized
with the thread’s entry function. The scheduler is a preemptive scheduler with
LEONBARE_RUNQ_NR number of run queues. Seenewlibc/libgloss/sparc_leon/kernel.cfor
details.

2.11.5 Interrupt handling

Installing an interrupt handle is done by initializing memberhandlerof a global variablestruct
irqaction and calling:

#include <asm-leon/irq.h>
void chained_catch_interrupt (int irq, struct irqaction *a);

where irq is the irq number (1 - 15). The supplied struct irqaction will be inserted in a list and
therefore should be global.

The simple void *catch_interrupt(void func(int irq), int irq); is also supported which uses
chained_catch_interrupt internally.

The source code for libgloss (libleonbare.a) can be found in thesrc/libgloss directory.

For systems using the extended LEON3 interrupt controller with support for up to 31 inter-
rupts it is possible to use irq 1-31 with catch_interrupt() and chained_catch_interrupt().

Low-level interrupt processing takes around 40 instructions to setting up the C enviroment for
the interrupt handler, and another ~25 instruction to dispatch irq to the associated handler. If
very fast processing is required, a custom lolevel assemler irqroutine can be installed using:

#include <asm-leon/leon.h>
void lolevelirqinstall(int irqnr,void (*handler)());

This will write instructions:

-9-

 sethi %hi(handler), %l4;
 jmpl %l4 + %lo(handler), %g0;
 nop

at address traptable+0x100+(irqnr*16). The callers low-level interrupt routine has to ensure proper
enviroment setup before calling a C routine. This includes saving volatile register, checking for
invalid windows and avoiding nested irqs. An appropriate routine would be written in assembler.

In case of single (-qsvt) vector trap shemes you have to use he following funtion to insert a irq han-
dler:

 int svtlolevelirqinstall(int trap,void (*handler)())

In case of -qsvt a table is used to dispatch the traps:
 struct svt_trap_entry {
 int start,end;
 void (*func)(void);
 };
 extern struct svt_trap_entry trap_table[28];

Wherestart andendspecify the range of traps that handlerfuncshould process. The last entry in
the table should be {0,0,0}. You can modify the table by hand or use svtlolevelirqinstall to install
a interrupt handler for you. Note that the irq number is trap number + 0x10. The symbol
svt_trap_table_ext_endmarks the end of the trap dispatch table. To insert a trap handler in -qsvt
mode you can use the function

 int svtloleveltrapinstall(int trap,void (*handler)());

svtlolevelirqinstall(irq,handler) is equivalent to svtloleveltrapinstall(irq+0x10,handler).

 Trap pre-amble

 1572 400001a0 ae10200a mov 10, %l7
 1579 400001a4 a1480000 mov %psr, %l0
 1580 400001a8 108022fc ba 0x40008d98
 1581 400001ac a7500000 mov %wim, %l3

 1582 40008d98 2d000004 sethi %hi(0x1000), %l6
 1587 40008d9c a02c0016 andn %l0, %l6, %l0
 1588 40008da0 2d100023 sethi %hi(0x40008c00), %l6
 1595 40008da4 ac15a1a8 or %l6, 0x1a8, %l6
 1596 40008da8 29100025 sethi %hi(0x40009400), %l4

 etraps.s save state

 1597 40008dac 81c52170 jmp %l4 + 0x170
 1599 40008db0 932de008 sll %l7, 8, %o1
 1606 40009570 aa27a138 sub %fp, 312, %l5
 1613 40009574 c2256074 st %g1, [%l5 + 0x74]
 1616 40009578 c43d6078 std %g2, [%l5 + 0x78]
 1620 4000957c c83d6080 std %g4, [%l5 + 0x80]
 1624 40009580 cc3d6088 std %g6, [%l5 + 0x88]
 1634 40009584 15100029 sethi %hi(0x4000a400), %o2
 1635 40009588 d602a050 ld [%o2 + 0x50], %o3
 1639 4000958c d6256134 st %o3, [%l5 + 0x134]
 1644 40009590 960560b0 add %l5, 176, %o3
 1651 40009594 d622a050 st %o3, [%o2 + 0x50]

check for invalid window:

 1654 40009598 a8102001 mov 1, %l4
 1655 4000959c a92d0010 sll %l4, %l0, %l4
 1656 400095a0 808d0013 andcc %l4, %l3, %g0
 1663 400095a4 02800013 be 0x400095f0
 1664 400095a8 01000000 nop
 1665 400095f0 81c5a008 jmp %l6 + 0x8
 1673 400095f4 9c100015 mov %l5, %sp

back in irqtrap_fast.s:
check for nested_irq flag + set pil

-10-

 1674 40008db0 932de008 sll %l7, 8, %o1
 1675 40008db4 92140009 or %l0, %o1, %o1
 1676 40008db8 11100029 sethi %hi(0x4000a400), %o0
 1677 40008dbc 90122054 or %o0, 0x54, %o0
 1678 40008dc0 d0020000 ld [%o0], %o0
 1688 40008dc4 80a00008 cmp %o0
 1691 40008dc8 22800002 be,a 0x40008dd0
 1692 40008dcc 92126f00 or %o1, 0xf00, %o1
 1693 40008dd0 818a6020 mov %o1, 0x20, %psr
 1700 40008dd4 01000000 nop
 1701 40008dd8 01000000 nop
 1702 40008ddc 01000000 nop

--

call routine catch_interrupt.c: handler_irq():

 1703 40008de0 90100017 mov %l7, %o0
 1710 40008de4 40000028 call 0x40008e84
 1711 40008de8 9203a0f0 add %sp, 240, %o1
 1712 40008e84 9de3bf98 save %sp, -104, %sp
 1713 40008e88 03100029 sethi %hi(0x4000a400), %g1
 1714 40008e8c 9b2e2002 sll %i0, 2, %o5
 1715 40008e90 82106228 or %g1, 0x228, %g1
 1722 40008e94 e000400d ld [%g1 + %o5], %l0
 1723 40008e98 80a42000 cmp %l0
 1726 40008e9c 02800018 be 0x40008efc
 1727 40008ea0 a4102001 mov 1, %l2
 1734 40008ea4 10800007 ba 0x40008ec0
 1735 40008ea8 da040000 ld [%l0], %o5
 1739 40008ec0 80a36000 cmp %o5
 1748 40008ec4 02bffffa be 0x40008eac
 1749 40008ec8 23100029 sethi %hi(0x4000a400), %l1
 1750 40008ecc c2046124 ld [%l1 + 0x124], %g1
 1754 40008ed0 90100018 mov %i0, %o0
 1761 40008ed4 80a06000 cmp %g1
 1762 40008ed8 12bffff5 bne 0x40008eac
 1764 40008edc 94100019 mov %i1, %o2
 1765 40008ee0 d2042008 ld [%l0 + 0x8], %o1
 1775 40008ee4 9fc34000 call %o5
 1777 40008ee8 e4246124 st %l2, [%l1 + 0x124]

 -- installed irq handler
 1780 40001260 9de3bf98 save %sp, -104, %sp

2.11.6 Interrupt nesting

The variable

extern unsigned int nestedirq;

can be set to 1 if irq nesteing is desired.By default it is set to 0. In case of 0 the PSR’s PIL will
be set to 15 (highest) to keep the irq processing uninterrupted. If nestedirq is set to 1 the PSR’s
PIL will be set to the incoming irq’s level, therefore causing higher level irq’s to interrupt the
current irq processing.

2.11.7 Small binary

Newlib atexit() introduces a dependency to malloc() which will add ~10k extra code. If you
want to avoid this you can link against libsmall.a (-lsmall). libsmall.a’s atexit() supports only a
static 32 exit-function entries. The c library newlib atexit() function is declared weak and can
be overridden.

• -lsmall remove reference to malloc() by override Newlibc atexit().
•

-11-

2.11.8 Reentrancy

Newlibc is compiled with reentrancy. Locking is done by symbols calling
__st_pthread_mutex_xxx that are defined in as weak symbols libleonbare.a and can be overloaded
(see <newlibcsrc>/libgloss/sparc_leon/mutex.c). libleonbare.a’s symbols do nothing by default.
Users can plug in their own locking functions here. The Mutex definitions are placeholders that
should be typecasted by the desired mutex type. The user also has to set _impure_ptr on a task
switch to point to the thread locals.

2.11.9 Amba PLUG and PLAY

The options-qambappcan be given to enable PLUG and PLAY scanning for UART, timer and irq-
ctrl across AHB2AHB bridges. The default setup ony scanns the main BUS’s configuration area at
0xfff00000.

2.12 FreeRtos

The simple sheduling library FreeRtos (www.freertos.org) is included in the distribution. Please
refer to the FreeRtos documentation on the website for information on how to use the FreeRtos
API. The precompiled library libfreertos.a was compiled using the configuration file supplied in
<installdir>/sparc-elf/include/freertos/FreeRTOSConfig.h. To recompile it with another configura-
tion goto <installdir>/src/freertos/, change FreeRTOSConfig.h and type
$make recompile

You might also want to add more sources to $(LIBOBJ).

-12-

3 Execution and debugging

3.1 TSIM simulator and GRMON debug monitor

LEON applications can be debugged on either the TSIM simulator or real target hardware
through the use of the GRMON debug monitor. Both TSIM and GRMON can be connected to
the GNU debugger (sparc-elf-gdb) to perform source-level symbolic debugging.

3.1.1 Running on the TSIM simulator

To execute an application in the TSIM LEON simulator, use the load command to load the
binary, and the go command to execute the application:

$ tsim-leon3

 TSIM LEON SPARC simulator, version 2.0.3 (professional version)

Copyright (C) 2001, Gaisler Research - all rights reserved.
using 64-bit time
serial port A on stdin/stdout
allocated 4096 K RAM memory, in 1 bank(s)
allocated 2048 K ROM memory
icache: 1 * 4 kbytes, 16 bytes/line (4 kbytes total)
dcache: 1 * 4 kbytes, 16 bytes/line (4 kbytes total)

tsim> load hello.exe

section: .text at 0x40000000, size 35120 bytes
section: .data at 0x40008930, size 2080 bytes
section: .jcr at 0x400091b4, size 4 bytes

tsim> go

resuming at 0x40000000
Hello world!

Program exited normally.
grmon[sim]>

3.2 Debugging with GDB

To debug an application with gdb, start grmon with the -gdb option (or issue the gdb command
inside grmon). Note that GRMON listens on port 2222 for a gdb connection. This can be
changed to any port using the grmon -port switch at start-up.

$ tsim-leon3 -gdb

TSIM LEON SPARC simulator, version 2.0.3 (professional version)

Copyright (C) 2001, Gaisler Research - all rights reserved.
using 64-bit time
serial port A on stdin/stdout
allocated 4096 K RAM memory, in 1 bank(s)
allocated 2048 K ROM memory
icache: 1 * 4 kbytes, 16 bytes/line (4 kbytes total)
dcache: 1 * 4 kbytes, 16 bytes/line (4 kbytes total)
gdb interface: using port 1234

Then, start gdb in a separate shell, load the application to the target, add optional breakpoints,
and finally execute the application using the gdb run command:

$ sparc-elf-gdb hello.exe
GNU gdb 5.3
Copyright 2002 Free Software Foundation, Inc.

-13-

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=i686-pc-linux-gnu --target=sparc-tsim-elf"...
(gdb) tar extended-remote localhost:1234
Remote debugging using localhost:1234
0x00000000 in ?? ()
(gdb) load
Loading section .text, size 0x8930 lma 0x40000000
Loading section .data, size 0x820 lma 0x40008930
Loading section .jcr, size 0x4 lma 0x400091b4
Start address 0x40000000, load size 37204
Transfer rate: 297632 bits in <1 sec, 275 bytes/write.
(gdb) break main
Breakpoint 1 at 0x40001384: file hello.c, line 4.
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /home/jiri/samples/hello.exe

Breakpoint 1, main () at hello.c:4
4 printf("Hello world!\n");
(gdb)

To re-execute the application, first re-load it to the target using the gdbload command and the
issue run again.

3.3 Debugging on target hardware

To connect GRMON to a LEON system, start GRMON on the command line in a shell window.
By default, GRMON will connect to the processor debug support unit (DSU) using a serial port of
the host (ttyS0 or com1). See the GRMON manual for how to connect via JTAG, PCI, ethernet or
Spacewire. Once connected, the application can be downloaded and executed using the same pro-
cedure as when the simulator is used:

$ grmon -u

 GRMON - The LEON multi purpose monitor v1.0.7

 Copyright (C) 2004, Gaisler Research - all rights reserved.
 For latest updates, go to http://www.gaisler.com/
 Comments or bug-reports to grmon@gaisler.com

 using port /dev/ttyS0 @ 115200 baud

 initialising

 Component Vendor
 Leon3 SPARC V8 Processor Gaisler Research
 AHB Debug UART Gaisler Research
 Ethernet DSU interface Gaisler Research
 LEON2 Memory Controller European Space Agency
 AHB/APB Bridge Gaisler Research
 Leon3 Debug Support Unit Gaisler Research
 Generic APB UART Gaisler Research
 Multi-processor Interrupt Ctrl Gaisler Research
 Modular Timer Unit Gaisler Research

 Use command ’info sys’ to print a detailed report of attached cores

grmon[grlib]> load hello.exe
section: .text at 0x40000000, size 35120 bytes
section: .data at 0x40008930, size 2080 bytes
section: .jcr at 0x400091b4, size 4 bytes
total size: 37204 bytes (99.4 kbit/s)
read 110 symbols

-14-

entry point: 0x40000000

grmon[grlib]> run
Hello world!

Program exited normally.
grmon[grlib]>

Connecting GDB to GRMON when attached to a real LEON target is done in the same way as
when using the simulator. Note that GRMON uses port 2222 to communicate with gdb, while
TSIM uses port 1234.

3.4 Using the DDD graphical front-end to GDB

DDD is a graphical front-end to gdb, and can be used regardless of target. DDD must be
started with the --debugger switch to select the sparc debugger, rather than the native gdb:

ddd --debugger sparc-elf-gdb --attach-window

For further details on DDD operation, see the DDD home page:

http://www.gnu.org/software/ddd/

DDD has also a built-in manual under the HELP menu in the main window.

Figure 1.DDD with TSIM

Attaching to TSIM of GRMON is done in the same manner as when using sparc-elf-gdb with-
out DDD. The gdb commands are entered in the bottom command window. Remember toload
the application first, before issuing arun command. On cygwin hosts, the cygwin X-server
must first be started by issuingstartx in a cygwin terminal. This will open an Xterm window,
from which DDD should be started with the options mentioned above.

3.5 Using the Insight debugger

The Insight debugger is based on GDB-6.4 with an TCL/TK based graphical front-end. It can
be used on both linux and cygwin hosts. The debugger is started with:

sparc-elf-insight app.exe

-15-

This will create the Insight main window:

Clicking on the RUN button (or selecting Run->Connect) will open the ‘Connect to target’ menu:

To connect to TSIM, select Remote/TCP and port 1234. To connect to GRMON, select port 2222.
Enable the breakpoint on ‘main’, but disable the breakpoint on ‘exit’. Before clicking on OK,
make sure that you have started TSIM or GRMON is a separate window, and entered gdb mode.

Insight automatically downloads the application to the target when needed, so the load command
does not have to be issued manually. To restart the application, just click on the RUN button again.

NOTE: Insight can only be used with TSIM-2.0.5 and GRMON-1.1.12, or later versions.

-16-

4 MKPROM boot-prom builder

4.1 Introduction

(The successor of sparc-elf-mkprom ismkprom2that can be downloaded from the Aeroflex
Gaisler homepage).

sparc-elf-mkprom is a utility program to create boot-images for programs compiled with the
BCC cross-compiler. It encapsulates the application in a loader suitable to be placed in a boot
PROM. The application is compressed with a modified LZSS algorithm, typically achieving a
compression factor of 2. The boot loader operates in the following steps:

1. The register files of IU and FPU (if present) are initialized.

2. The memory controller, UARTs and timer unit are initialized according to the specified
options.

3. The application is decompressed and copied into RAM

4. Finally, the application is started, setting the stack pointer to the top of ram.

The created boot-prom will run on both LEON2 or LEON3 systems.

NOTE: this version of MKPROM can only generate boot proms for LEON2 and LEON3 pro-
cessors. Other SPARC processors like TSC691 or TSC695 (ERC32) are not supported.

4.2 Usage

sparc-elf-mkprom is a command line utility that takes a number of options and files to encap-
sulate:

sparc-elf-mkprom [options] files

To generate a boot-prom for a typical system, do:

sparc-elf-mkprom -v -rmw -ramsize 1024 hello

LEON3 MKPROM boot-prom builder for BCC v1.0.6
Copyright Gaisler Research 2004, all rights reserved.

loading hello:
section: .text at 0x40000000, size 15744 bytes
Uncoded stream length: 15744 bytes
Coded stream length: 7794 bytes
Compression Ratio: 2.020
section: .data at 0x40003d80, size 2016 bytes
Uncoded stream length: 2016 bytes
Coded stream length: 691 bytes
Compression Ratio: 2.918
section: .jcr at 0x400045c4, size 4 bytes
Uncoded stream length: 4 bytes
Coded stream length: 4 bytes
Compression Ratio: 1.000

creating LEON boot prom: prom.out

-17-

When executed, the PROM loader prints a configuration message at start-up:

tsim> run

 MkProm LEON boot loader v1.2
 Copyright Gaisler Research - all right reserved

 system clock : 50.0 MHz
 baud rate : 19171 baud
 prom : 512 K, (2/2) ws (r/w)
 sram : 1024 K, 1 bank(s), 0/0 ws (r/w)

 decompressing .text
 decompressing .data
 decompressing .jcr

 starting hello

Hello world!

Note: it is essential that the same -mflat, -qsvt and -msoft-float parameters are given to sparc-elf-
mkprom, as was used when the binary was compiled. Any miss-match will produce a faulty prom
image.

4.3 Creating applications that run in prom

Mkprom can also create applications that run in prom, and have data and stack in ram. A prom
application is created in two steps:

1. Compile the application into on or more object file, but do not link:

sparc-elf-gcc -msoft-float -c -g -O2 hello.c

2. Create final prom image with mkprom, listing all object files on the command line:

sparc-elf-mkprom -freq 40 -rmw hello.o -msoft-float

A prom application has it code (.text segment) in prom, and data (.data & .bss) in ram. At start-up,
the .data segment is copied from the prom to the ram, and the .bss segment is cleared. A prom
application is linked to start from address 0x0. The data segment is by default linked to
0x40000000, but can be changed by giving the -Tdata=<address> option of gcc to mkprom. Note
that if no FPU is present, the -msoft-float option must also be given to mkprom in this case since it
is needed during the final linking.

When debugging prom applications with GRMON or gdb, only hardware breakpoints (hbreak
command) can be used. Applications running from prom cannot be compressed.

-18-

4.4 Mkprom General Options

-baud baudrate

Set rate of UART A to baudrate. Default value is 19200.

-bdinit

The user can optionally call two user-defined routines, bdinit1() and bdinit2(), during the
boot process. bdinit1() is called after the LEON registers have been initialized but before
the memory has been cleared. bdinit2() is called after the memory has been initialized but
before the application is loaded. Note that when bdinit1() is called, the stack has not been
setup meaning that bdinit1() must be a leaf routine and not allocate any stack space (no
local variables). When -bdinit is used, a file called bdinit.o must exist in the current direc-
tory, containing the two routines.

-dump

The intermediate assembly code with the compressed application and the LEON register
values is put in dump.s (only for debugging of mkprom).

-freq system_clock

Defines the system clock in MHz. This value is used to calculate the divider value for the
baud rate generator and the real-time clock. Default is 50 for LEON.

-noinit

Suppress all code which initializes on-chip peripherals such as uarts, timers and memory
controllers. This option requires -bdinit to add custom initialisation code, or the boot pro-
cess will fail.

-nomsg

Suppress the boot message.

-nocomp

Don’t compress application. Decreases loading time on the expense of rom size.

-o outfile

Put the resulting image inoutfile, rather then prom.out (default).

-rstaddr addr

Sets the rom start address of the image

-stackaddr

Sets the initial stack pointer toaddr. If not specified, the stack starts at top-of-ram.

-v

Be verbose; reports compression statistics and compile commands

input_files

The input files must be in aout or elf32 format. If more than one file is specified, all files
are loaded by the loader and control is transferred to the first segment of the first file.

-19-

4.5 Mkprom options for the LEON2 memory controller

-casdelay

Set the SDRAM CAS delay. Allowed values are 2 and 3 (default is 2).

-col bits

Set the number of SDRAM column address bits. Allowed values are 8 - 11 (default is 9).

-nosram

Disables the static RAM and maps SDRAM at address 0x40000000.

-ramsizesize

Defines the total available RAM in Kbytes. Used to initialize the in the memory configuration
register(s). The default value is 2048 (2 Mbyte).

-ramcschip_selects

Set the number of ram banks tochip_selects. Default is 1.

-ramws ws

Set the number of waitstates during ram reads and writes tows. Default is 0.

-romws ws

Set the number of rom waitstates during read and write tows. Default is 2.

-rmw

Perform read-modify-write cycles during byte and halfword writes.

-sdram size

The total amount of attached SDRAM in Mbyte. 0 by default

-sdrambanksnum_banks

Set the number of populated SDRAM banks (default is 1).

-trfc delay

Set the SDRAM tRFC parameter (in ns). Default is 66 ns.

-trp delay

Set the SDRAM tRP parameter (in ns). Default is 20 ns.

-20-

-refresh delay

Set the SDRAM refresh period (in us). Default is 7.8 us, although many SDRAM actually
use 15.6 us.

4.6 Initialization of the LEON3 DDR controller

If the target LEON3 system contains a DDR memory controller (DDRCTRL core), the initial-
ization of the controllermust be made through the bdinit1 function. Below is an example of a
suitable bdinit.c file. The file should be compiled with ‘sparc-elf-gcc -O2 -c -msoft-float’, and
mkprom should be run with the -bdinit option. The register address (DDR_REG_ADDR) must
reflect the address of the DDR control register in the target system.
#define DDR_REG_ADDR 0x80000804
#define DDR_REG_INIT 0x9dc00001

void
bdinit1() {

volatile int *ddr = (volatile int *) DDR_REG_ADDR;

while (!(*ddr & 1));
*ddr = DDR_REG_INIT;
while (!(*ddr & 1));

}

void bdinit2 () {}

	BCC - Bare-C Cross-Compiler User’s Manual
	1 Introduction
	1.1 Scope
	1.2 Installation
	1.2.1 Linux / Cygwin
	1.2.2 Windows

	1.3 Building from source
	1.4 Technical support

	2 General development flow
	2.1 Overview
	2.2 Gcc options
	2.3 Floating-point considerations
	2.4 LEON SPARC V8 instructions
	2.5 Alternate register windows organization (only for GCC 3.X)
	2.6 Single vector trapping
	2.7 Memory organization
	2.8 Making LEON boot-proms
	2.9 Creating applications that run in prom
	2.10 Simple examples
	2.11 Newlib C-library
	2.11.1 Stdio
	2.11.2 Time functions
	2.11.3 Task switching
	2.11.4 Simple multi-tasking
	2.11.5 Interrupt handling
	2.11.6 Interrupt nesting
	2.11.7 Small binary
	2.11.8 Reentrancy
	2.11.9 Amba PLUG and PLAY

	2.12 FreeRtos

	3 Execution and debugging
	3.1 TSIM simulator and GRMON debug monitor
	3.1.1 Running on the TSIM simulator

	3.2 Debugging with GDB
	3.3 Debugging on target hardware
	3.4 Using the DDD graphical front-end to GDB
	Figure 1. DDD with TSIM

	3.5 Using the Insight debugger

	4 MKPROM boot-prom builder
	4.1 Introduction
	4.2 Usage
	4.3 Creating applications that run in prom
	4.4 Mkprom General Options
	4.5 Mkprom options for the LEON2 memory controller
	4.6 Initialization of the LEON3 DDR controller

