
1

DPRC and Partial Reconfiguration Design Flow – Quick Start Guide

The aim of this document is to provide a quick overview and reference guide on designing a LEON3-based dynamically reconfigurable

system on Xilinx FPGAs. This guide shows how to instantiate and use the Dynamic Partial Reconfiguration Controller (DPRC) with

DMA AHB interface to perform FPGA self-dynamic partial reconfiguration through the Internal Configuration Access Port (ICAP).

The partial reconfiguration design flow is also detailed taking into account an example application, represented by a system where

designer wants to instantiate an adaptive FIR filter peripheral.

The filter is mapped on the AHB and APB, and it is able to adapt its internal structure depending on several run-time parameters (e.g.,

timing budget, power, required Msamples-per-second, data type, fault-tolerance, set of coefficients). To achieve filter adaptation the

designer has two alternatives:

1. design a complex adaptive FIR filter, including all the aforementioned characteristics that can be enabled by setting at run-

time some configuration registers;

2. design several non-adaptive FIR filters, each one including a subset of characteristics, covering all the possible real use cases.

The first solution is not efficient since, in most cases, not all the functionalities are enabled at the same time, sometimes making a

relevant part of the hardware resources useless. Instead, the second solution requires less area, since using FPGA dynamic

reconfiguration hardware resources can be time-multiplexed among different implementations of the same FIR filter. Moreover, if the

target application makes the filter inactive for long periods, it can completely erase the configuration memory area associated to the

peripheral, thus saving power, or just time-multiplex the same FPGA region with other signal processing cores.

1 Instantiating DPRC in a LEON3-based system
To enable self-dynamic partial reconfiguration through the ICAP port, DPRC must be instantiated and connected on both AHB and

APB.

If the target is a reference template design included in GRLIB, issuing make xconfig allows instantiating DPRC through a graphical

interface. The Partial Reconfiguration sub-menu can be found under Peripherals section of the LEON3MP Design Configuration GUI

(Figure 1.a-b).

(a)

(b)

 Figure 1. How to reach Partial Reconfiguration setup after issuing make xconfig.

According to Figures 2 – 5, the user can enable/disable the instantiation of DPRC in the target template design, and select one of the

three operating modes (i.e., Synchronous, Asynchronous or D2PRC).

2

Figure 2. DPRC configured in Synchronous mode.

Figure 3. DPRC configured in Asynchronous mode.

Figure 4. DPRC configured in Dependable CRC (D2PRC-CRC) mode.

3

Figure 5. DPRC configured in Dependable EDAC (D2PRC-SECDED) mode.

When configured in D2PRC-CRC mode, the user can set how many 32-bit bitstream words must be grouped in a CRC-block. Whenever

a CRC-block is completely loaded from the memory, a CRC check is performed to verify bitstream integrity before delivering data to

ICAP.

In addition, if Asynchronous or D2PRC modes are selected, user can choose the depth of the internal FIFO buffer, in terms of 32-bit

words.

Alternatively, designer can directly instantiate DPRC in the HDL description of the system as shown in following example:

library ieee;

use ieee.std_logic_1164.all;

library grlib;

use grlib.amba.all;

use grlib.devices.all;

library techmap;

use techmap.gencomp.all;

library testgrouppolito;

use testgrouppolito.dprc_pkg.all;

entity dprc_ex is

 port (

 clk : in std_ulogic;

 rstn : in std_ulogic;

 ……… -- other signals

);

end;

architecture rtl of dprc_ex is

 -- AMBA signals declarations

 . . .

begin

 -- AMBA Components are instantiated here

 . . .

4

 -- Dynamic Partial Reconfiguration Controller

 p1 : dprc

 generic map(hindex => 2, pindex => 11, paddr => 11, pirq => 11, technology => virtex4,

crc_en => 1, edac_en => 0, words_block => 50, fifo_dcm_inst => 0, fifo_depth => 9, cfg_clkmul => 2,

cfg_clkdiv => 1, raw_freq => 50000, clk_sel => 0)

 port map(rst => rstn, clk => clkm, ahbmi => ahbmi, ahbmo => ahbmo(2), apbi => apbi, apbo =>

apbo(11), rm_reset => rm_reset_sig, clkraw => clk_board, clk100 => ‘0’);

end;

This instantiation sets DPRC as Master 2 on the AHB, and Slave 11 on the APB. Moreover, D2PRC mode is selected (crc_en=’1’,

edac_en=’0’) with CRC block size equal to 50 words. A 512 32-bit words FIFO depth has been chosen (fifo_depth=9) and the 100

MHz clock for the ICAP domain is generated internally (clk_sel=’0’) by the clkgen component included in DPRC. This clock is

synthesized starting from the clk_board signal (connected to DPRC input port clkraw). Its frequency is 50 MHz (raw_freq=50000),

therefore cfg_clkmul and cfg_clkdiv are set in order to double the frequency.

5

2 Partial Reconfiguration Design Flow (ISE Design Suite 14.7)

This section describes how to build a partially reconfigurable system using ISE Design Suite 14.7 exploiting the Partial Reconfiguration

design flow. This flow can be used when dealing with Vitex-4/5/6 FPGAs. A very similar approach is also used in Vivado for 7 Series

FPGAs and will be discussed in the next section.

2.1 Design Requirements

The inputs for creating a partially reconfigurable design are represented by netlists, HDL files and constraints. Some design

requirements must be fulfilled to not incur in implementation errors.

A hierarchical design methodology is required for the modules that must be reconfigured. First, the designer must be aware of which

logic must reside in the so called “static” part of the design (i.e., not reconfigurable) and which one is allowed to be reconfigured at

run-time. Taking as example the aforementioned FIR filter peripheral with APB/AHB interfaces, one can try to minimize the amount

of logic that must be reconfigured between two versions of the filter (to limit reconfiguration overheads) by splitting the bus interface

from the actual processing core. Consequently, if the APB/AHB interface will be the same among different filter implementations, it

can reside on the static part of the design. Therefore, the reconfigurable logic will be composed of the actual filter processing core,

only. This situation is illustrated in Figure 6, where DPRC and FIR modules have been instantiated in a LEON3-based system. The

AHB/APB interface of the filter belongs to the static part of the design, while different filter core implementations, also called

reconfigurable modules (i.e., FIR V1, FIR V2, FIR Vn), can be swapped in order to time-multiplex the same hardware resources.

Figure 6. LEON3-based system including DPRC and FIR AHB/APB

The reconfigurable logic will be confined in a reconfigurable partition of the design. A reconfigurable partition must contain a super

set of all I/Os to be used by the varying reconfigurable modules implemented in that partition. Probably, this will lead to unused inputs

or outputs for some reconfigurable module versions. The unused inputs will be left dangling inside of the module and will cause the

implementation tool to issue messages that the designer may ignore. In the case of a reconfigurable module where there are unused

output ports, these outputs can be tied off to a logical constant. In other words, each reconfigurable module version must show the same

entity interface to the upper level (i.e., the entity in which it is instantiated). Then, in its internal architecture some unused outputs must

be tied to a constant value, and some inputs can be left unused.

Reconfigurable modules cannot includes some types of components. In particular, BUFG, BUFR, MMCM, PLL, DCM, I/O and I/O

related components, Serial transceivers (MGTs) and related components, individual architecture feature components (such as BSCAN,

STARTUP, XADC, etc.) must remain in the static region of the design. In addition, bidirectional interfaces between static and

reconfigurable regions are not allowed.

During Partial Reconfiguration, because the reconfigurable logic is modified while the FPGA device is operating, the static logic

connected to outputs of reconfigurable modules must ignore data from them. The reconfigurable modules will not output valid data

until Partial Reconfiguration is complete and the reconfigured logic is reset. Therefore, some decoupling logic must be inserted between

static and reconfigurable regions. A common design practice is to register all output signals (on the static side of the interface) from

the reconfigurable module. An enable signal can be used to isolate the logic until it is completely reconfigured. Moreover,

reconfigurable modules must be locally reset to ensure a known starting condition after reconfiguration. These last two requirements

can be satisfied exploiting the rm_reset DPRC output, which is asserted during a reconfiguration process, and can be used as

synchronous reset and/or enable signal for decoupling logic and reconfigurable modules.

In the chosen example, the least significant bit of rm_reset output signal has been connected to the rm_reset input port of the FIR

peripheral and it is used internally as reset for the reconfigurable modules and enable signal for the decoupling logic.

6

library ieee;

use ieee.std_logic_1164.all;

library grlib;

use grlib.amba.all;

use grlib.devices.all;

library techmap;

use techmap.gencomp.all;

library testgrouppolito;

use testgrouppolito.dprc_pkg.all;

entity leon3mp is

 port (

 clk : in std_ulogic;

 rstn : in std_ulogic;

 ……… -- other signals

);

end;

architecture rtl of leon3mp is

 -- AMBA signals declarations

 . . .

 signal rm_reset_sig : std_logic_vector(31 downto 0);

begin

 -- AMBA Components are instantiated here

 . . .

 -- Dynamic Partial Reconfiguration Controller

 p1 : dprc

 generic map(hindex => 2, pindex => 11, paddr => 11, pirq => 11, technology => virtex4,

crc_en => 1, edac_en => 0, words_block => 50, fifo_dcm_inst => 0, fifo_depth => 9, cfg_clkmul => 2,

cfg_clkdiv => 1, raw_freq => 50000, clk_sel => 0)

 port map(rst => rstn, clk => clkm, ahbmi => ahbmi, ahbmo => ahbmo(2), apbi => apbi, apbo =>

apbo(11), rm_reset => rm_reset_sig, clkraw => clk_board, clk100 => ‘0’);

 -- FIR filter

 dir_ex : fir_ahb_dma_apb

 generic map(hindex => 3, pindex => 12, paddr => 12, technology => virtex4, pmask => 16#fff#)

 port map(rstn => rstn, clk => clkm, ahbmi => ahbmi, ahbmo => ahbmo(3), apbi => apbi, apbo =>

apbo(12), rm_reset => rm_reset_sig(0));

end;

7

2.2 Netlists generation

Once DPRC and FIR modules are instantiated in the system, the synthesis project can be created (issuing make scripts if targeting a

GRLIB template). In order to synthesize the static portion of the design, the design files related to reconfigurable modules must be

removed from the synthesis project. Figure 7 shows the hierarchy of the design, where the sources associated to the fir_core instance

have been removed, while its associated interfaces (e.g., DMA2AHB and syncram components) have been left in the project.

Figure 7. Design hierarchy with the removed fir_core instance

The output of the synthesis (.ngc file) represents the netlist of the static portion of the design.

Reconfigurable modules sources must be synthesized independently from the rest of the design. For each reconfigurable module a

netlist is required. Moreover, it is important to disable I/O buffers insertion (-iobuf switch for XST) since, as aforementioned, I/Os and

I/Os related components cannot reside in reconfigurable regions (Figure 8).

Figure 8. Add I/O Buffers disabled before running synthesis

2.3 Implementation

After running synthesis for both static and reconfigurable modules, the Xilinx PlanAhead tool can be launched to setup a partial

reconfiguration project. The project can be created from the graphical user interface or using a tcl script.

When creating a new project in PlanAhead, select Post-synthesis project, since netlists are already available, and check Enable

Partial Reconfiguration switch (Figure 9).

8

Figure 9. Create a Partial Reconfiguration project using PlanAhead

User is then asked to include netlists and constraints associated to the static part of the design. If targeting Virtex-4 or Virtex-5 devices,

constraints must be also applied to the ICAP I/O signals, as suggested in the Xilinx Partial Reconfiguration User Guide. In fact, ICAP

primitive is not considered a synchronous element and paths connected to it are not included in the timing analysis. A reference

constraint file (icapv4v5.ucf) is included in <GRLIB root>/lib/testgrouppolito/pr/.

After opening the synthesized design, a warning message is prompted since tool recognizes that some modules are missing from the

imported static netlist. In fact, reconfigurable modules have not been yet included in the design (Figure 10).

Figure 10. Warning message diplayed after importing "static" netlists

Module names reported in the warning message must correspond to the entity names of the missing reconfigurable modules.

Then, a reconfigurable partition for the reconfigurable modules can be defined. This partition will be associated to all the possible

implementations of the FIR filter core. After importing the “static” netlists and constraints, the netlist hierarchy is shown (Figure 11).

Right-click on the instance associated to the reconfigurable modules, select Set Partition, and then choose “is a Reconfigurable

Partition”. The Add Reconfigurable Module window will be displayed (Figure 12). Netlists and constraints associated to the first

reconfigurable module (i.e., first version of the FIR filter) can be loaded selecting “Netlist already available for this Reconfigurable

module”. To load additional reconfigurable modules, right-click on the associated instance in the netlist hierarchy, and click on Add

Reconfigurable Module.

Figure 11. Netlist hierarchy. Highlighted the undefined instance of the reconfigurable modules

9

Figure 12. Add Reconfigurable Module window

Eventually, a Black-box, i.e., an empty, reconfigurable module can be also included in the reconfigurable partition by selecting “Add

this Reconfigurable Module as a black box without a netlist” in the Add Reconfigurable Module window (Figure 13).

Figure 13. Add a Black-box reconfigurable module

The design hierarchy should list the imported reconfigurable modules for the selected partition, as shown in Figure 14.

Figure 14. Design hierarchy showing three reconfigurable modules for the fir_ex/fir_core partition

10

In particular, the netlist hierarchy in Figure 14 shows that the instance fir_ex/fir_core includes three reconfigurable modules, i.e., it can

be implemented in three different ways (firv1, firv2 or firbb).

Afterwards, physical constraints for the reconfigurable partition must be defined. Right-click on the reconfigurable partition instance

and select Set Pblock Size. The device view will appear and a rectangle can be drawn in order to manually define the physical region

of the FPGA in which the reconfigurable partition will be implemented. The area must be sized in order to accommodate the

reconfigurable module that requires more resources with respect to the other versions. The required (estimated) resources for a

particular module version are shown in the Pblock Properties tab. As example, firv1 requires 12 DSP48 slices. This means that the area

drawn on the device window must include at least 12 DSPs, otherwise an error will be asserted during implementation (Figure 15).

Figure 15. Floorplanning the reconfigurable partition

Set Pblock Size automatically creates one or more AREA_GROUP constraints in the .ucf file:

INST "fir_ex/fir_core" AREA_GROUP = "pblock_fir_ex_fir_core";

AREA_GROUP "pblock_fir_ex_fir_core" RANGE=SLICE_X22Y336:SLICE_X27Y383;

AREA_GROUP "pblock_fir_ex_fir_core" RANGE=DSP48_X0Y84:DSP48_X0Y95;

11

Consequently, all the resources (including routing) needed by reconfigurable modules will be mapped in the resource range defined by

the AREA_GROUP constraint.

Then, the first configuration, including the static design and the first version of the FIR filter (firv1), can be implemented. At the end

of the implementation process, the tool prompts for Promoting implemented partitions. At least the static logic of the design must be

promoted, since in the following implementations its place and route information will be imported to ensure compatibility among

different configurations.

Looking at Figure 15, since the design includes a reconfigurable partition and three reconfigurable modules, two other configurations

can be implemented. The first additional configuration includes the static logic and the second version of the FIR filter (firv2), while

the second one is composed of the static logic and the black-box module (fir_bb).

To create new configurations, right-click on the Design Runs tab and select Create New Runs. In the Create New Runs window (Figure

16), select Partition Action to define the new configuration. As shown in Figure 17, static logic can be imported, while the new selected

reconfigurable module must be implemented.

Figure 16. Create New Runs window

Figure 17. New configuration setup

12

The two additional configurations can be now implemented. At the end of the implementation process, three configurations are available

(Figure 18), each one implementing a different version of the FIR filter instance.

Figure 18. Design Runs window after implementation of three different configurations

Eventually, to ensure static logic compatibility among configurations, the Verify Configuration command can be issued. Basically, it

verifies that the static logic is implemented in the same way in the three configurations.

2.4 Full and Partial Bitstreams generation

The bitstream generation process produces, for each configuration, two .bit files. The first one represents the full configuration

bitstream, while the second one, called partial bitstream, includes information needed to configure only the reconfigurable partition.

The FPGA can be initially programmed with one of the three full configuration bitstreams, while, in order to perform dynamic partial

reconfiguration, the partial bitstream associated to the actually selected reconfigurable module can be downloaded using DPRC.

To enable partial bitstreams post-processing for DPRC usage, the bitstream generation process must be launched with the -b switch

set, which produces an ASCII representation of the bitstream data (.rbt file).

Although the PlanAhead graphical user interface is fundamental to correctly floorplan the design, its usage is not mandatory. The

complete partial reconfiguration design flow can be carried out launching planAhead in batch mode and using a tcl script including all

the necessary commands, as in the following example:

planahead -mode batch -source pr_project.tcl

pr_project.tcl

#create project and add static logic netlists and constraints

create_project pr_demo /home/pascal/GRLIB_repo/grlib-dpr-1.3.9-b4150/designs/leon3-gr-cpci-xc4v/pr_demo -part xc4vlx100ff1513-10

set_property design_mode GateLvl [current_fileset]

add_files -norecurse /home/pascal/GRLIB_repo/grlib-dpr-1.3.9-b4150/designs/leon3-gr-cpci-xc4v/leon3mp.ngc

add_files -fileset constrs_1 -norecurse { /home/pascal/GRLIB_repo/grlib-dpr-1.3.9-b4150/boards/gr-cpci-xc4v/leon3mp.ucf /home/pascal/GRLIB_repo/ grlib-

dpr-1.3.9-b4150/lib/testgroup/pr/v4v5icap.ucf}

set_property name config_1 [current_run]

set_property is_partial_reconfig true [current_project]

link_design -top leon3mp -name netlist_1

#add first reconfigurable module

create_reconfig_module -name firv1 -cell fir_ex/fir_core

set_property edif_top_file /home/pascal/GRLIB_repo/grlib-dpr-1.3.9-b4150/designs/leon3-gr-cpci-xc4v/fir/firv1.ngc [get_filesets fir_ex~fir_core#firv1]

save_constraints

13

load_reconfig_modules -reconfig_modules fir_ex/fir_core:firv1

#add second reconfigurable module

create_reconfig_module -name firv2 -cell fir_ex/fir_core

set_property edif_top_file /home/pascal/GRLIB_repo/grlib-dpr-1.3.9-b4150/designs/leon3-gr-cpci-xc4v/fir/firv2.ngc [get_filesets fir_ex~fir_core#firv2]

#add third reconfigurable module

create_reconfig_module -name fir_bb -cell fir_ex/fir_core -blackbox

#define Partition constraints

resize_pblock pblock_fir_ex_fir_core -add {SLICE_X18Y336:SLICE_X27Y383 DSP48_X0Y84:DSP48_X0Y95} -locs keep_all -replace

save_constraints

#implement first configuration and promote static logic

launch_runs config_1 -jobs 8

wait_on_run config_1

open_run config_1

current_design netlist_1

promote_run -run config_1 -partition_names {leon3mp fir_ex/fir_core}

create_run config_2 -flow {ISE 14} -strategy {ISE Defaults}

#create and implement second configuration

config_partition -run config_2 -import -import_dir /home/pascal/GRLIB_repo/grlib-dpr-1.3.9-b4150/designs/leon3-gr-cpci-

xc4v/pr_demo/pr_demo.promote/Xconfig_1 -preservation routing

config_partition -run config_2 -cell fir_ex/fir_core -reconfig_module firv2 -implement

launch_runs config_2 -jobs 8

wait_on_run config_2

#create and implement third configuration

create_run config_3 -flow {ISE 14} -strategy {ISE Defaults}

config_partition -run config_3 -import -import_dir /home/pascal/GRLIB_repo/grlib-dpr-1.3.9-b4150/designs/leon3-gr-cpci-

xc4v/pr_demo/pr_demo.promote/Xconfig_1 -preservation routing

config_partition -run config_3 -cell fir_ex/fir_core -reconfig_module fir_bb -implement

launch_runs config_3 -jobs 8

wait_on_run config_3

#verify configurations

verify_config –runs {config_1 config_2 config_3} –file pr_verify.log

14

#generate full and partial bitstreams for the three configurations

set_property steps.bitgen.args.d true [get_runs config_1]

set_property steps.bitgen.args.b true [get_runs config_1]

launch_runs config_1 -to_step Bitgen -jobs 8

wait_on_run config_1

set_property steps.bitgen.args.d true [get_runs config_2]

set_property steps.bitgen.args.b true [get_runs config_2]

launch_runs config_2 -to_step Bitgen -jobs 8

wait_on_run config_2

set_property steps.bitgen.args.d true [get_runs config_3]

set_property steps.bitgen.args.b true [get_runs config_3]

launch_runs config_3 -to_step Bitgen -jobs 8

wait_on_run config_3

close_project

exit

15

3 Partial Reconfiguration Design Flow (Vivado 2015.2)

The steps required by the Partial Reconfiguration design flow shown in the previous section are also valid to implement a partially

reconfigurable system on 7-Series FPGAs using Vivado. However, the way commands are implemented differs, since Vivado supports

only the non-project mode Partial Reconfiguration design flow, through a tcl console (in this guide it is assumed that all commands are

issued using the tcl console included in the Vivado graphical user interface).

Moreover, both netlists and design checkpoints (.dcp) are supported as input files for the PR design flow.

Two classes of design checkpoints must be generated. The first one is associated to the synthesized static logic (not including the

reconfigurable module), while the second class includes a design checkpoint for each synthesized reconfigurable module.

To synthesize a reconfigurable module, I/O buffers insertion must be turned off. This can be accomplished by adding the –mode

out_of_context switch to the synth_design command, as example:

synth_design –mode out_of_context –flatten_hierarchy rebuilt –top <entity name of the reconfigurable module> -part <device part>

A design checkpoint is then created by issuing:

write_checkpoint <destination_file_name>.dcp

The first design configuration must include the static logic and the first reconfigurable module.

Assuming to have a single design checkpoint for the static logic and an associated constraints file, they can be opened and imported

as follows:

open_checkpoint <static_logic_checkpoint_filename>.dcp

read_xdc <static_logic_constraints_filename>.xdc;

The first reconfigurable module design checkpoint is then imported and linked to the static logic by issuing:

read_checkpoint –cell <reconfigurable_module_instance_name> <reconfigurable_module_checkpoint_filename>.dcp

set_property HD.RECONFIGURABLE true [get_cells <reconfigurable_module_instance_name>]

The last command tells the tool that the chosen instance is a reconfigurable partition.

Physical constraints can now be defined for the reconfigurable partition. The Pblock size can be setup through the Vivado graphical

user interface as done in PlanAhead. Right-click on the reconfigurable partition instance, then select Floorplanning and click

SetPblock size.

A limitation, with respect to the Partial Reconfiguration design flow using PlanAhead, is that left and right Pblock edges must be placed

between two resource columns and not between interconnect columns. Valid Pblock edges are placed between CLB columns, between

a CLB column and a BRAM column, or between a CLB column and a DSP column.

Moreover, partial reconfiguration on 7 Series devices offers the Reset After Reconfiguration functionality. This feature leverages the

embedded global reset lines of the FPGA to automatically assert a local reset to the reconfigurable module after reconfiguration. To

enable the Reset After Reconfiguration property, the following command can be issued:

set_property RESET_AFTER_RECONFIG true [get_pblocks <pblock_name>]

This option can be enabled only if Pblock height spans an entire clock region, as shown in Figure 19.

16

Figure 19. Pblock spanning an entire clock region

To confirm a correct Pblock placement, designer can issue the Design Rule Check, which will control for any dynamic partial

reconfiguration property violation:

report_drc –checks [get_drc_checks HDPR*]

To implement the first configuration, and generate the associated full and partial bitstreams, issue the following commands:

opt_design

place_design

route_design

write_bitstream –raw_bitfile config1

write_checkpoint config1_routed.dcp

Afterwards, in order to implement the second configuration, the static logic routing information must be locked, and the design

checkpoint associated to the second reconfigurable module can be imported:

update_design –cell <reconfigurable_module_instance_name> -black_box

lock_design –level routing

read_checkpoint –cell <reconfigurable_module_instance_name> <second_reconfigurable_module_checkpoint_filename>.dcp

opt_design

place_design

route_design

write_bitstream –raw_bitfile config2

write_checkpoint config2_routed.dcp

These steps can be repeated if design includes more than two reconfigurable modules.

To verify and confirm compatibility of the static logic between different configurations, the pr_verify tool can be exploited:

pr_verify –full_check config1_routed.dcp config2_routed.dcp –file pr_verify.log

17

4 FPGA run-time reconfiguration using DPRC in a LEON3-based system

To quickly include the partial bitstream files in a C program compiled for the LEON3, a software tool (dprc_sw) can be exploited. It is

located in <grlib root>/software/dprc/. dprc_sw takes as inputs one or more raw partial bitstream files (in .rbt format) generated by the

Xilinx PlanAhead or Vivado software tools. The raw bitfile can be generated by including the –b (PlanAhead) or –raw_bitfile (Vivado)

option when running the bitstream generation process. The output of dprc_sw is a header file. Each partial bitstream is processed and

declared in the header as a unidimensional array named bitstream<i>, where <i> represents the index of the input bitfile.

The software tool can be launched by issuing in a Unix shell:

 ./dprc_sw <path of the input bitstream file 0 (.rbt)> <path of the input bitstream file 1 (.rbt)> … <path of the input

bitstream file N (.rbt)> <Number of 32-bit words per block> <path of the output file (.h)>

The software tool can be used also when DPRC is not configured in Dependable CRC mode (see DPRC User Guide).

Either working in Synchronous, Asynchronous or D²PRC mode, DPRC shows five 32-bit registers on the APB address space. To start

a partial reconfiguration, assuming that the partial bitstream is already available in memory, the following steps must be executed:

 1. Verify if the four least significant bits of the Status Register are set to 0xF, meaning that DPRC is available and no errors

occurred during the last reconfiguration;

 2. Write in the Address Register the address of the partial bitstream to be loaded;

 3. Set the corresponding bit in the RM Reset Register in order to assert a synchronous reset to the reconfigurable module after

reconfiguration. Considering the example shown in Section 2.1, since the least significant bit of the rm_reset output is used

as reconfigurable modules reset, the RM Reset Register must be set to 0x00000001;

 4. Write the number of 32-bit words composing the partial bitstream to be loaded in the Control Register; this starts the

reconfiguration process and clears the Status Register;

 5. Wait until the Status Register signals the end of the reconfiguration process or an error (look at the 4 least significant bits).

In addition, the Timer Register stores the number of clock cycles spent for the last reconfiguration.

18

5 Demonstrating Partial Reconfiguration design flow and DPRC usage on GR-CPCI-XC4V

reference design (using ISE Design Suite 14.7)

GRLIB leon3-gr-cpci-xc4v template design includes the instantiation of DPRC and FIR filter AHB/APB peripheral. A tcl script is

also included and can be used as reference for custom user PR designs.

In particular, the template design directory contains the “dprc_fir_demo” subdirectory, which includes:

 fir_ahb_dma_apb.vhd: implements the top entity of the FIR peripheral, including bus interfaces, DMA and input/output

buffers. It does not include the actual filter core, implemented in fir_v1.vhd and fir_v2.vhd.

 fir_v1.vhd, fir_v2.vhd: include the description of two FIR filters. Both of them implement the same filtering function.

However, fir_v1.vhd uses 10 multipliers to produce a valid output value each clock cycle, while fir_v2.vhd uses only a

multiplier, thus producing 1 valid output data every 10 clock cycles. These two cores represent the two reconfigurable

modules.

 firv1.ngc, firv2.ngc: netlists associated to fir_v1.vhd and fir_v2.vhd.

 dpr_demo.tcl: script implementing the partial reconfiguration design flow in PlanAhead (v14.7), as shown in Section 2.

 pr_fir_demo.c: test program source file used to demonstrate DPRC usage in a LEON3-based system.

The leon3mp.vhd file of the target reference design includes the instantiation of DPRC and FIR components as shown in the

following statements:

--- DYNAMIC PARTIAL RECONFIGURATION ---------

 prc : if CFG_PRC = 1 generate

 p1 : dprc generic map(hindex => CFG_NCPU+CFG_AHB_UART+CFG_GRPCI2_TARGET+CFG_GRPCI2_DMA+log2x(CFG_PCI)+CFG_AHB_JTAG+

CFG_GRETH+CFG_SPW_NUM, pindex => 10+CFG_SPW_NUM, paddr => 10+CFG_SPW_NUM, pirq => 10+CFG_SPW_NUM, technology => CFG_FABTECH,

crc_en => CFG_CRC_EN, edac_en => CFG_EDAC_EN, words_block => CFG_WORDS_BLOCK, fifo_dcm_inst => CFG_DCM_FIFO,

fifo_depth => CFG_DPR_FIFO)

 port map(rstn => rstn, clkm => clkm, clkraw => lclk, clk100 => '0', ahbmi => ahbmi,

ahbmo => ahbmo(CFG_NCPU+CFG_AHB_UART+CFG_GRPCI2_TARGET+CFG_GRPCI2_DMA+log2x(CFG_PCI)+CFG_AHB_JTAG+CFG_GRETH

 +CFG_SPW_NUM), apbi => apbi, apbo => apbo(10+CFG_SPW_NUM), rm_reset => rm_reset);

 --

 -- FIR component instantiation (for dprc demo) --------

 --

 fir_ex : FIR_AHB_DMA_APB

 generic map (hindex=>CFG_NCPU+CFG_AHB_UART+CFG_GRPCI2_TARGET+CFG_GRPCI2_DMA+log2x(CFG_PCI)+

 CFG_AHB_JTAG+CFG_GRETH+CFG_SPW_NUM+CFG_PRC, pindex=>10+CFG_SPW_NUM+1, paddr=>10+CFG_SPW_NUM+1,

 pmask=>16#fff#, technology =>CFG_FABTECH)

port map (rstn=>rstn, clk=>clkm, apbi=>apbi, apbo=>apbo(10+CFG_SPW_NUM+1), ahbin=>ahbmi,

ahbout=>ahbmo(CFG_NCPU+CFG_AHB_UART+CFG_GRPCI2_TARGET+CFG_GRPCI2_DMA+log2x(CFG_PCI)+

CFG_AHB_JTAG+CFG_GRETH+CFG_SPW_NUM+CFG_PRC), rm_reset => rm_reset(0));

 end generate;

fir_ahb_dma_apb component is instantiated only for demonstration purposes, and it should be removed when implementing custom

user DPR designs.

After issuing make xconfig to setup and enable DPRC instantiation (as shown in Section 1), user can issue make dprc-demo to

synthesize the static logic and execute the entire partial reconfiguration design flow. At the end of the implementation process,

dprc_sw utility is automatically compiled (using g++) and executed to generate the header file storing partial bitstreams for the two

filter versions. In addition, the test program is compiled (using sparc-elf-gcc) in order to be run on the LEON3 processor.

Issuing make dprc-demo-prog will program the FPGA with the first implemented configuration, including the first version of the FIR

filter.

Note: make sure that paths to Xilinx tools, sparc-elf-gcc and g++ compilers are properly setup. This demo has been tested using ISE

Design Suite 14.7 running on CentOS 7 64-bit.

The test program assumes that DPRC is mapped at 0x80000B00 in the APB address space, while FIR peripheral at 0x80000C00.

Connect to the board using GRMON and load dpr_test program located in <template directory>/dpr_demo/. For each program run,

two reconfigurations are triggered. The first reconfiguration swaps the “fast” FIR (fir_v1.vhd) with the “slow” FIR (fir_v2.vhd),

while the second reconfiguration does the opposite. To notice the different behaviour of the two filter versions, look at "Elapsed

19

Clock Cycles" field, which shows the filtering execution time.

As mentioned in DPRC user guide, it is expected that the first reconfiguration (after power-on) fails with status code 0x8.

The following snippet shows an example of GRMON output.

grmon -uart /dev/ttyUSB0 -baud 460800 -u

 GRMON2 LEON debug monitor

 Copyright (C) 2014 Aeroflex Gaisler - All rights reserved.

 For latest updates, go to http://www.gaisler.com/

 Comments or bug-reports to support@gaisler.com

Parsing -uart /dev/ttyUSB0

Parsing -baud 460800

Parsing -u

 using port /dev/ttyUSB0 @ 460800 baud

 GRLIB build version: 4150

 Detected frequency: 59 MHz

 Component Vendor

 LEON3 SPARC V8 Processor Aeroflex Gaisler

 AHB Debug UART Aeroflex Gaisler

 Contributed core 1 Various contributions

 Contributed core 2 Various contributions

 LEON2 Memory Controller European Space Agency
 AHB/APB Bridge Aeroflex Gaisler

 LEON3 Debug Support Unit Aeroflex Gaisler

 Generic UART Aeroflex Gaisler

 Multi-processor Interrupt Ctrl. Aeroflex Gaisler

 Modular Timer Unit Aeroflex Gaisler

 General Purpose I/O port Aeroflex Gaisler

 Generic UART Aeroflex Gaisler

 AHB Status Register Aeroflex Gaisler

 Use command 'info sys' to print a detailed report of attached cores

grmon2> info sys

 cpu0 Aeroflex Gaisler LEON3 SPARC V8 Processor

 AHB Master 0

 ahbuart0 Aeroflex Gaisler AHB Debug UART
 AHB Master 1

 APB: 80000700 - 80000800

 Baudrate 460800, AHB frequency 59.00 MHz

 adev2 Various contributions Contributed core 1 <-------- DPRC

 AHB Master 3

 APB: 80000B00 - 80000C00

 adev3 Various contributions Contributed core 2 <-------- FIR

 AHB Master 4
 APB: 80000C00 - 80000D00

 mctrl0 European Space Agency LEON2 Memory Controller

 AHB: 00000000 - 20000000

 AHB: 20000000 - 40000000

 AHB: 40000000 - 80000000

 APB: 80000000 - 80000100

 32-bit prom @ 0x00000000

 64-bit sdram: 2 * 128 Mbyte @ 0x40000000
 col 9, cas 2, ref 7.8 us

 apbmst0 Aeroflex Gaisler AHB/APB Bridge

 AHB: 80000000 - 80100000

 dsu0 Aeroflex Gaisler LEON3 Debug Support Unit

 AHB: 90000000 - A0000000

 AHB trace: 128 lines, 32-bit bus

 CPU0: win 8, hwbp 2, itrace 128, V8 mul/div, lddel 1
 stack pointer 0x4ffffff0

 icache 2 * 16 kB, 32 B/line lrr

 dcache 2 * 4 kB, 32 B/line lrr

 uart0 Aeroflex Gaisler Generic UART

 APB: 80000100 - 80000200

 IRQ: 2

 Baudrate 38411

 irqmp0 Aeroflex Gaisler Multi-processor Interrupt Ctrl.
 APB: 80000200 - 80000300

 gptimer0 Aeroflex Gaisler Modular Timer Unit

 APB: 80000300 - 80000400

20

 IRQ: 8

 8-bit scalar, 3 * 32-bit timers, divisor 59

 gpio0 Aeroflex Gaisler General Purpose I/O port

 APB: 80000600 - 80000700

 uart1 Aeroflex Gaisler Generic UART

 APB: 80000900 - 80000A00

 IRQ: 3
 Baudrate 38411

 ahbstat0 Aeroflex Gaisler AHB Status Register

 APB: 80000F00 - 80001000

 IRQ: 1

grmon2> load dpr_demo/dpr_test

 40000000 .text 132.7kB / 132.7kB [===============>] 100%
 400212B0 .data 2.9kB / 2.9kB [===============>] 100%

 Total size: 135.54kB (375.11kbit/s)

 Entry point 0x40000000

 Image /home/pascal/v2GRLIB_repo/grlib-pascal-1.3.9-b4150/designs/leon3-gr-cpci-xc4v/dpr_demo/dpr_test loaded

grmon2> run

Starting test...

Fast FIR filter results...
825 997 1169 1341 1513 1685 1857 2029 2201 2373 2545 2717 2889 3061 3233 3405 3577 3749 3921 4093 4265 4437 4609 4781 4953 5125 5297 5469 5641

5813 5985 6157 6329 6501 6673 6845 7017 7189 7361 7533 7705 7877 8049 8221 8393 8565 8737 8909 9081 9253 9425 9597 9769 9941 10113 10285 10457

10629 10801 10973 11145 11317 11489 11661 11833 12005 12177 12349 12521 12693 12865 13037 13209 13381 13553 13725 13897 14069 14241 14413

14585 14757 14929 15101 15273 15445 15617 15789 15961 16133 16305

Elapsed clock cycles: 308

Partial Reconfiguration ended...Status:8

Partial Reconfiguration ended...Status:15
Fast FIR filter results...

825 997 1169 1341 1513 1685 1857 2029 2201 2373 2545 2717 2889 3061 3233 3405 3577 3749 3921 4093 4265 4437 4609 4781 4953 5125 5297 5469 5641

5813 5985 6157 6329 6501 6673 6845 7017 7189 7361 7533 7705 7877 8049 8221 8393 8565 8737 8909 9081 9253 9425 9597 9769 9941 10113 10285 10457

10629 10801 10973 11145 11317 11489 11661 11833 12005 12177 12349 12521 12693 12865 13037 13209 13381 13553 13725 13897 14069 14241 14413

14585 14757 14929 15101 15273 15445 15617 15789 15961 16133 16305

Elapsed clock cycles: 321

 Program exited normally.

grmon2> run

Starting test...

Fast FIR filter results...

825 997 1169 1341 1513 1685 1857 2029 2201 2373 2545 2717 2889 3061 3233 3405 3577 3749 3921 4093 4265 4437 4609 4781 4953 5125 5297 5469 5641

5813 5985 6157 6329 6501 6673 6845 7017 7189 7361 7533 7705 7877 8049 8221 8393 8565 8737 8909 9081 9253 9425 9597 9769 9941 10113 10285 10457

10629 10801 10973 11145 11317 11489 11661 11833 12005 12177 12349 12521 12693 12865 13037 13209 13381 13553 13725 13897 14069 14241 14413

14585 14757 14929 15101 15273 15445 15617 15789 15961 16133 16305
Elapsed clock cycles: 308

Partial Reconfiguration ended...Status:15

Slow FIR filter results...

825 997 1169 1341 1513 1685 1857 2029 2201 2373 2545 2717 2889 3061 3233 3405 3577 3749 3921 4093 4265 4437 4609 4781 4953 5125 5297 5469 5641

5813 5985 6157 6329 6501 6673 6845 7017 7189 7361 7533 7705 7877 8049 8221 8393 8565 8737 8909 9081 9253 9425 9597 9769 9941 10113 10285 10457

10629 10801 10973 11145 11317 11489 11661 11833 12005 12177 12349 12521 12693 12865 13037 13209 13381 13553 13725 13897 14069 14241 14413

14585 14757 14929 15101 15273 15445 15617 15789 15961 16133 16305
Elapsed clock cycles: 1230

Partial Reconfiguration ended...Status:15

Fast FIR filter results...

825 997 1169 1341 1513 1685 1857 2029 2201 2373 2545 2717 2889 3061 3233 3405 3577 3749 3921 4093 4265 4437 4609 4781 4953 5125 5297 5469 5641

5813 5985 6157 6329 6501 6673 6845 7017 7189 7361 7533 7705 7877 8049 8221 8393 8565 8737 8909 9081 9253 9425 9597 9769 9941 10113 10285 10457

10629 10801 10973 11145 11317 11489 11661 11833 12005 12177 12349 12521 12693 12865 13037 13209 13381 13553 13725 13897 14069 14241 14413

14585 14757 14929 15101 15273 15445 15617 15789 15961 16133 16305

Elapsed clock cycles: 321

 Program exited normally.

21

6 Demonstrating Partial Reconfiguration design flow and DPRC usage on DIGILENT-

NEXYS4-DDR reference design (using VIVADO 2015.2)

GRLIB leon3-digilent-nexys4ddr template design includes the instantiation of DPRC and FIR filter AHB/APB peripheral. A tcl script

is also included and can be used as reference for custom user PR designs using Vivado.

In particular, the template design directory contains the “dprc_fir_demo” subdirectory, which includes:

 fir_ahb_dma_apb.vhd: implements the top entity of the FIR peripheral, including bus interfaces, DMA and input/output

buffers. It does not include the actual filter core, implemented in fir_v1.vhd and fir_v2.vhd.

 fir_v1.vhd, fir_v2.vhd: include the description of two FIR filters. Both of them implement the same filtering function.

However, fir_v1.vhd uses 10 multipliers to produce a valid output value each clock cycle, while fir_v2.vhd uses only a

multiplier, thus producing 1 valid output data every 10 clock cycles. These two cores represent the two reconfigurable

modules.

 dpr_demo.tcl: script implementing the partial reconfiguration design flow in Vivado (v2015.2), as described in Section 3.

 pr_fir_demo.c: test program source file used to demonstrate DPRC usage in a LEON3-based system.

The leon3mp.vhd file of the target reference design includes the instantiation of DPRC and FIR components as shown in the

following statements:

--- DYNAMIC PARTIAL RECONFIGURATION ---------

 prc : if CFG_PRC = 1 generate

 p1 : dprc generic map(hindex => CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG+CFG_GRETH, pindex => 14, paddr => 14, pirq => 14, clk_sel => 1,

 technology => CFG_FABTECH, crc_en => CFG_CRC_EN, edac_en => CFG_EDAC_EN, words_block => CFG_WORDS_BLOCK,

 fifo_dcm_inst => CFG_DCM_FIFO, fifo_depth => CFG_DPR_FIFO)

 port map(rstn => rstn, clkm => clkm, clkraw => '0', clk100 => sys_clk_i, ahbmi => ahbmi,

 ahbmo => ahbmo(CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG+CFG_GRETH),

 apbi => apbi, apbo => apbo(14), rm_reset => rm_reset);

 --

 -- FIR component instantiation (for dprc demo) ---------

 --

 fir_ex : FIR_AHB_DMA_APB

 generic map (hindex=>CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG+CFG_GRETH+CFG_PRC, pindex=>13, paddr=>13,

 pmask=>16#fff#, technology =>CFG_FABTECH)

 port map (rstn=>rstn, clk=>clkm, apbi=>apbi, apbo=>apbo(13), ahbin=>ahbmi,

 ahbout=>ahbmo(CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG+CFG_GRETH+CFG_PRC), rm_reset => rm_reset(0));

 end generate;

fir_ahb_dma_apb component is instantiated only for demonstration purposes, and it should be removed when implementing custom

user DPR designs.

After issuing make xconfig to setup and enable DPRC instantiation (as shown in Section 1), user can issue make dprc-demo to

synthesize the static logic and execute the entire partial reconfiguration design flow. At the end of the implementation process,

dprc_sw utility is automatically compiled (using g++) and executed to generate the header file storing partial bitstreams for the two

filter versions. In addition, the test program is compiled (using sparc-elf-gcc) in order to be run on the LEON3 processor.

Issuing make dprc-demo-prog will program the FPGA with the first implemented full design configuration, including the first version

of the FIR filter.

Note: make sure that paths to Xilinx tools, sparc-elf-gcc and g++ compilers are properly setup. This demo has been tested using

Vivado v2015.2 running on CentOS 7 64-bit.

The test program assumes that DPRC is mapped at 0x80000E00 in the APB address space, while FIR peripheral at 0x80000D00.

Connect to the board using GRMON and load dpr_test program located in <template directory>/dpr_demo/. For each program run,

two reconfigurations are triggered. The first reconfiguration swaps the “fast” FIR (fir_v1.vhd) with the “slow” FIR (fir_v2.vhd),

while the second reconfiguration does the opposite. To notice the different behavior of the two filter versions, look at "Elapsed Clock

Cycles" field, which shows the filtering execution time.

22

The following snippet shows an example of GRMON output.

> grmon -uart /dev/ttyUSB1 -baud 460800 -u

Parsing -uart /dev/ttyUSB1

Parsing -baud 460800
Parsing -u

Commands missing help:

 bdump

 datacache

 using port /dev/ttyUSB1 @ 460800 baud
 GRLIB build version: 4151

 Detected frequency: 74 MHz

 Component Vendor

 LEON3 SPARC V8 Processor Aeroflex Gaisler

 AHB Debug UART Aeroflex Gaisler

 JTAG Debug Link Aeroflex Gaisler

 GR Ethernet MAC Aeroflex Gaisler
 Contributed core 1 Various contributions <-------- DPRC

 Contributed core 2 Various contributions <-------- FIR

 AHB/APB Bridge Aeroflex Gaisler

 LEON3 Debug Support Unit Aeroflex Gaisler

 Single-port DDR2 controller Aeroflex Gaisler

 SPI Memory Controller Aeroflex Gaisler

 Generic UART Aeroflex Gaisler

 Multi-processor Interrupt Ctrl. Aeroflex Gaisler
 Modular Timer Unit Aeroflex Gaisler

 Use command 'info sys' to print a detailed report of attached cores

grmon2> load ./dpr_demo/dpr_test

 40000000 .text 279.0kB / 279.0kB [===============>] 100%

 40045BE0 .data 2.9kB / 2.9kB [===============>] 100%
 Total size: 281.84kB (372.81kbit/s)

 Entry point 0x40000000

 Image /home/pascal/150108/grlib-pascal-1.3.9-b4151/designs/leon3-digilent-nexys4ddr/dpr_demo/dpr_test loaded

grmon2> run

Starting test...

Fast FIR filter results...

825 997 1169 1341 1513 1685 1857 2029 2201 2373 2545 2717 2889 3061 3233 3405 3577 3749 3921 4093 4265 4437 4609 4781 4953 5125 5297 5469 5641
5813 5985 6157 6329 6501 6673 6845 7017 7189 7361 7533 7705 7877 8049 8221 8393 8565 8737 8909 9081 9253 9425 9597 9769 9941 10113 10285 10457

10629 10801 10973 11145 11317 11489 11661 11833 12005 12177 12349 12521 12693 12865 13037 13209 13381 13553 13725 13897 14069 14241 14413

14585 14757 14929 15101 15273 15445 15617 15789 15961 16133 16305

Elapsed clock cycles: 470

Partial Reconfiguration ended...Status:15

Slow FIR filter results...

825 997 1169 1341 1513 1685 1857 2029 2201 2373 2545 2717 2889 3061 3233 3405 3577 3749 3921 4093 4265 4437 4609 4781 4953 5125 5297 5469 5641

5813 5985 6157 6329 6501 6673 6845 7017 7189 7361 7533 7705 7877 8049 8221 8393 8565 8737 8909 9081 9253 9425 9597 9769 9941 10113 10285 10457
10629 10801 10973 11145 11317 11489 11661 11833 12005 12177 12349 12521 12693 12865 13037 13209 13381 13553 13725 13897 14069 14241 14413

14585 14757 14929 15101 15273 15445 15617 15789 15961 16133 16305

Elapsed clock cycles: 1358

Partial Reconfiguration ended...Status:15

Fast FIR filter results...

825 997 1169 1341 1513 1685 1857 2029 2201 2373 2545 2717 2889 3061 3233 3405 3577 3749 3921 4093 4265 4437 4609 4781 4953 5125 5297 5469 5641

5813 5985 6157 6329 6501 6673 6845 7017 7189 7361 7533 7705 7877 8049 8221 8393 8565 8737 8909 9081 9253 9425 9597 9769 9941 10113 10285 10457
10629 10801 10973 11145 11317 11489 11661 11833 12005 12177 12349 12521 12693 12865 13037 13209 13381 13553 13725 13897 14069 14241 14413

14585 14757 14929 15101 15273 15445 15617 15789 15961 16133 16305

Elapsed clock cycles: 453

 Program exited normally.

23

7 Additional documents

[1] “Partial Reconfiguration User Guide – UG702(v14.5)”, April 26, 2013 – www.xilinx.com

[2] “Vivado Design Suite User Guide – Partial Reconfiguration – UG909(v2015.2)”, June 24, 2015 – www.xilinx.com

http://www.xilinx.com/
http://www.xilinx.com/

