

GAISLER

Copyright © Aeroflex Gaisler AB TSIM2 January 2014, Version 2.0.30

TSIM2 Simulator User’s Manual

Authors: Jiri Gaisler, Konrad Eisele, Andreas Larsson

ERC32/LEON2/LEON3/LEON4

GAISLER 2

Copyright © Aeroflex Gaisler AB TSIM2 January 2014, Version 2.0.30

Table of Contents

Copyright © Aeroflex Gaisler AB TSIM2

1 Introduction.. 7

1.1 General... 7

1.2 Supported platforms and system requirements.. 7

1.3 Obtaining TSIM... 7

1.4 Problem reports.. 7

2 Installation ... 8

2.1 General... 8

2.2 License installation .. 8

3 Operation ... 9

3.1 Overview.. 9

3.2 Starting TSIM .. 9

3.3 Standalone mode commands ... 12

3.4 Symbolic debug information ... 14

3.5 Breakpoints and watchpoints ... 15

3.6 Profiling ... 15

3.7 Code coverage.. 17

3.8 Check-pointing... 18

3.9 Performance ... 18

3.10 Backtrace ... 18

3.11 Connecting to gdb.. 19

3.12 Thread support ... 20

3.12.1 TSIM thread commands... 20

3.12.2 GDB thread commands.. 21

4 Emulation characteristics ... 23

4.1 Common behaviour.. 23

4.1.1 Timing.. 23

4.1.2 UARTs ... 23

4.1.3 Floating point unit (FPU)... 23

4.1.4 Delayed write to special registers .. 23

4.1.5 Idle-loop optimisation.. 23

4.1.6 Custom instruction emulation.. 23

4.2 ERC32 specific emulation ... 25

4.2.1 Processor emulation... 25

4.2.2 MEC emulation.. 25

4.2.3 Interrupt controller ... 26

4.2.4 Watchdog ... 26

4.2.5 Power-down mode ... 26

4.2.6 Memory emulation... 26

4.2.7 EDAC operation .. 26

4.2.8 Extended RAM and I/O areas.. 27

4.2.9 SYSAV signal.. 27

4.2.10 EXTINTACK signal .. 27

4.2.11 IWDE signal .. 27

4.3 LEON2 specific emulation .. 28

4.3.1 Processor.. 28

4.3.2 Cache memories... 28

Table of Contents

Copyright © Aeroflex Gaisler AB TSIM2

4.3.3 LEON peripherals registers ... 28

4.3.4 Interrupt controller ... 28

4.3.5 Power-down mode ... 28

4.3.6 Memory emulation... 28

4.3.7 SPARC V8 MUL/DIV/MAC instructions... 28

4.3.8 DSU and hardware breakpoints ... 28

4.4 LEON3 specific emulation .. 29

4.4.1 General... 29

4.4.2 Processor.. 29

4.4.3 Cache memories... 29

4.4.4 Power-down mode ... 29

4.4.5 LEON3 peripherals registers ... 29

4.4.6 Interrupt controller ... 29

4.4.7 Memory emulation... 29

4.4.8 CASA instruction... 30

4.4.9 SPARC V8 MUL/DIV/MAC instructions... 30

4.4.10 DSU and hardware breakpoints ... 30

4.5 LEON4 specific emulation .. 31

4.5.1 General... 31

4.5.2 Processor.. 31

4.5.3 L1 Cache memories ... 31

4.5.4 L2 Cache memory.. 31

4.5.5 Power-down mode ... 31

4.5.6 LEON4 peripherals registers ... 31

4.5.7 Interrupt controller ... 31

4.5.8 Memory emulation... 31

4.5.9 CASA instruction... 32

4.5.10 SPARC V8 MUL/DIV/MAC instructions... 32

4.5.11 GRFPU emulation.. 32

4.5.12 DSU and hardware breakpoints ... 32

5 Loadable modules .. 33

5.1 TSIM I/O emulation interface.. 33

5.1.1 simif structure .. 33

5.1.2 ioif structure... 35

5.1.3 Structure to be provided by I/O device.. 35

5.1.4 Cygwin specific io_init() ... 37

5.2 LEON AHB emulation interface ... 38

5.2.1 procif structure... 38

5.2.2 Structure to be provided by AHB module ... 40

5.2.3 Big versus little endianess.. 42

5.3 TSIM/LEON co-processor emulation.. 43

5.3.1 FPU/CP interface ... 43

5.3.2 Structure elements.. 43

5.3.3 Attaching the FPU and CP... 44

5.3.4 Big versus little endianess.. 45

5.3.5 Additional TSIM commands ... 45

5.3.6 Example FPU... 45

Table of Contents

Copyright © Aeroflex Gaisler AB TSIM2

6 TSIM library (TLIB).. 46

6.1 Introduction.. 46

6.2 Function interface .. 46

6.3 AHB modules .. 48

6.4 I/O interface ... 48

6.5 UART handling.. 48

6.6 Linking a TLIB application ... 48

6.7 Limitations ... 49

7 Aeroflex UT699/UT699e AHB module .. 50

7.1 Overview.. 50

7.2 Loading the module ... 50

7.3 UT699e .. 51

7.4 Debugging.. 51

7.5 10/100 Mbps Ethernet Media Access Controller interface.............................. 52

7.5.1 Start up options .. 52

7.5.2 Commands ... 52

7.5.3 Debug flags .. 52

7.5.4 Ethernet packet server.. 53

7.5.5 Ethernet packet server protocol ... 53

7.6 SpaceWire interface with RMAP support ... 54

7.6.1 Start up options .. 54

7.6.2 Commands ... 54

7.6.3 Debug flags .. 54

7.6.4 SpaceWire packet server.. 55

7.6.5 SpaceWire packet server protocol ... 55

7.7 PCI initiator/target and GPIO interface ... 58

7.7.1 Commands ... 58

7.7.2 Debug flags .. 58

7.7.3 User supplied dynamic library... 59

7.7.4 PCI bus model API .. 60

7.7.5 GPIO model API.. 61

7.8 CAN interface .. 62

7.8.1 Start up options .. 62

7.8.2 Commands ... 62

7.8.3 Debug flags .. 62

7.8.4 Packet server .. 63

7.8.5 CAN packet server protocol .. 63

8 Aeroflex UT700 AHB module .. 65

8.1 Overview.. 65

8.2 Loading the module ... 65

8.3 SPI bus model API... 66

9 Aeroflex Gaisler GR712 AHB module.. 67

9.1 Loading the module ... 67

9.2 CAN interface .. 68

9.2.1 Start up options .. 68

9.2.2 Commands ... 68

Table of Contents

Copyright © Aeroflex Gaisler AB TSIM2

9.2.3 Debug flags .. 68

9.2.4 Packet server .. 69

9.2.5 CAN packet server protocol .. 69

9.3 10/100 Mbps Ethernet Media Access Controller interface.............................. 72

9.3.1 Start up options .. 72

9.3.2 Commands ... 72

9.3.3 Debug flags .. 72

9.3.4 Ethernet packet server.. 73

9.3.5 Ethernet packet server protocol ... 73

9.4 SpaceWire interface with RMAP support ... 74

9.4.1 Start up options .. 74

9.4.2 Commands ... 74

9.4.3 Debug flags .. 74

9.4.4 SpaceWire packet server.. 75

9.4.5 SpaceWire packet server protocol ... 75

9.5 SPI and GPIO user modules .. 77

9.5.1 SPI bus model API... 78

9.5.2 GPIO model API.. 79

10 Atmel AT697 PCI emulation... 80

10.1 Loading the module ... 80

10.2 AT697 initiator mode... 81

10.3 AT697 target mode .. 81

10.4 Definitions ... 81

10.4.1 PCI command table.. 81

10.5 Read/write function installed by PCI module.. 81

10.6 Read/write function installed by AT697 module... 82

10.7 Registers... 83

10.8 Debug flags .. 84

10.9 Commands ... 84

Installing HASP Device Driver 85

Installing HASP Device Driver 85

On a Windows NT/2000/XP host 85

On a Linux host 85

TSIM2 7

Copyright © Aeroflex Gaisler AB TSIM2

1 Introduction

1.1 General

TSIM is a generic SPARC* architecture simulator capable of emulating ERC32- and LEON-based computer
systems.

TSIM provides several unique features:

• Accurate and cycle-true emulation of ERC32 and LEON2/3/4 processors

• Superior performance: +30 MIPS on high-end PC (AMD64@2.4 GHz)

• Accelerated simulation during processor standby mode

• Standalone operation or remote connection to GNU debugger (gdb)

• 64-bit time for unlimited simulation periods

• Instruction trace buffer

• EDAC emulation (ERC32)

• MMU emulation (LEON2/3/4)

• SDRAM emulation (LEON2/3/4)

• Local scratch-pad RAM (LEON3/4)

• Loadable modules to include user-defined I/O devices

• Non-intrusive execution time profiling

• Code coverage monitoring

• Dual-processor synchronisation

• Stack backtrace with symbolic information

• Check-pointing capability to save and restore complete simulator state

• Also provided as library to be included in larger simulator frameworks

• Pre-defined simulation modules for AT697, UT699, and AT7913 can be provided separately

1.2 Supported platforms and system requirements

TSIM supports the following platforms: solaris-2.8, linux, linux-x64, Windows 2K/XP, and Windows 2K/XP
with Cygwin unix emulation.

1.3 Obtaining TSIM

The primary site for TSIM is http://www.gaisler.com/, where the latest version of TSIM can be ordered and
evaluation versions downloaded.

1.4 Problem reports

Please send problem reports or comments to support@gaisler.com.

*. SPARC is a registered trademark of SPARC International

TSIM2 8

Copyright © Aeroflex Gaisler AB TSIM2

2 Installation

2.1 General

TSIM is distributed as a tar-file (e.g. tsim-erc32-2.0.13.tar.gz) with the following contents:

doc TSIM documentation
samples Sample programs
iomod Example I/O module
tsim/cygwin TSIM binary for cygwin
tsim/linux TSIM binary for linux
tsim/linux-x64 TSIM binary for linux-x64
tsim/solaris TSIM binary for solaris
tsim/win32 TSIM binary for native windows
tlib/cygwin TSIM library for cygwin
tlib/linux TSIM library for linux
tlib/linux-x64 TSIM library for linux-x64
tlib/solaris TSIM library for solaris
tlib/win32 TSIM library for native windows

The tar-file can be installed at any location with the following command:

gunzip -c tsim-erc32-2.0.21.tar.gz | tar xf -

2.2 License installation

TSIM is licensed using a HASP USB hardware key. Before use, a device driver for the key must be installed.
The latest drivers can be found at www.aladdin.com or www.gaisler.com. See appendix A for installation of
device drivers under Windows and Linux platforms.

TSIM2 9

Copyright © Aeroflex Gaisler AB TSIM2

3 Operation

3.1 Overview

TSIM can operate in two modes: standalone and attached to gdb. In standalone mode, ERC32 or LEON appli-
cations can be loaded and simulated using a command line interface. A number of commands are available to
examine data, insert breakpoints and advance simulation. When attached to gdb, TSIM acts as a remote gdb
target, and applications are loaded and debugged through gdb (or a gdb front-end such as ddd).

3.2 Starting TSIM

TSIM is started as follows on a command line:

tsim-erc32 [options] [input_files]

tsim-leon [options] [input_files]

tsim-leon3 [options] [input_files]

tsim-leon4 [options] [input_files]

The following command line options are supported by TSIM:

-ahbm ahb_module

Use ahb_module as loadable AHB module rather than the default ahb.so (LEON only). If

multiple -ahbm switches are specified up to 16 AHB modules can be loaded. The enviro-

mental variable TSIM_MODULE_PATH can be set to a ‘:’ separated (‘;’ in WIN32) list of

search paths.

-at697e Configure caches according to the Atmel AT697E device (LEON2 only).

-banks ram_banks

Sets how many ram banks (1 - 4) the ram is divided on. Default is 1. (LEON only).

-bopt Enables idle-loop optimisation (see text).

-bp Enables emulation of LEON3/4 branch prediction

-c file Reads commands from file and executes them at startup.

-cfg file Reads extra configuration options from file.

-cfgreg_and and_mask, -cfgreg_or or_mask

LEON2 only: Patch the Leon Configuration Register (0x80000024). The new value will be:

(reg & and_mask) | or_mask.

-cpm cp_module

Use cp_module as loadable co-processor module file name (LEON). The enviromental var-

iable TSIM_MODULE_PATH can be set to a ‘:’ separated (‘;’ in WIN32) list of search

paths.

-cas

When running a VXWORKS SMP image the SPARCV9 “casa” instruction is used. The

option -cas enables this instruction (LEON3/4 only).

-dcsize size Defines the set-size (kbytes) of the LEON dcache. Allowed values are 1 - 64 in binary steps.

Default is 4 kbytes.

-dlock Enable data cache line locking. Default is disabled. (LEON only).

-dlram addr size

Allocates size Kbytes of local dcache scratchpad memory at address addr. (LEON3/4)

TSIM2 10

Copyright © Aeroflex Gaisler AB TSIM2

-dlsize size Sets the line size of the LEON data cache (in bytes). Allowed values are 8, 16 or 32. Default

is 16.

-drepl repl Sets the replacement algorithm for the LEON data cache. Allowed values are rnd (default)

for random replacement, lru for the least-recently-used replacement algorithm and lrr for

least-recently-replaced replacement algorithm.

-dsets sets Defines the number of sets in the LEON data cache. Allowed values are 1 - 4.

-exc2b Issue 0x2b memory exception on memory write store error (LEON2 only)

-ext nr Enable extended irq ctrl with extended irq number nr (LEON3/4 only)

-fast_uart Run UARTs at infinite speed, rather than with correct (slow) baud rate.

-fpm fp_module

Use fp_module as loadable FPU module rather than the default fp.so (LEON only). The

enviromental variable TSIM_MODULE_PATH can be set to a ‘:’ separated (‘;’ in WIN32)

list of search paths.

-freq system_clock

Sets the simulated system clock (MHz). Will affect UART timing and performance statis-

tics. Default is 14 for ERC32 and 50 for LEON.

-gdb Listen for GDB connection directly at start-up.

-gr702rc Set cache parameters to emulate the GR702RC device.

-grfpu Emulate the GRFPU floating point unit, rather then Meiko or GRFPU-lite (LEON only).

-hwbp Use TSIM hardware breakpoints for gdb breakpoints.

-icsize size Defines the set-size (kbytes) of the LEON icache. Allowed values are 1 - 64 in binary steps.

-ift Generate illegal instruction trap on IFLUSH. Emulates the IFT input on the ERC32 proces-

sor.

-ilock Enable instruction cache line locking. Default is disabled.

-ilram addr size

Allocates size bytes of local icache scratchpad memory at address addr. (LEON3/4)

-ilsize size Sets the line size of the LEON instruction cache (in bytes). Allowed values are 8, 16 or 32.

-iom io_module

Use io_module as loadable I/O module rather than the default io.so. The enviromental vari-

able TSIM_MODULE_PATH can be set to a ‘:’ separated (‘;’ in WIN32) list of search

paths.

-irepl repl Sets the replacement algorithm for the LEON instruction cache. Allowed values are rnd

(default) for random replacement, lru for the least-recently-used replacement algorithm and

lrr for least-recently-replaced replacement algorithm.

-isets sets Defines the number of sets in the LEON instruction cache. Allowed values are 1(default) -

4.

-iwde Set the IWDE input to 1. Default is 0. (TSC695E only)

-l2wsize size Enable emulation of L2 cache (LEON3/4 only) with size Kbytes. The size must be binary

aligned (e.g. 16, 32, 64 ...).

-logfile filename

Logs the console output to filename. If filename is preceded by ‘+’ output is append.

-mflat This switch should be used when the application software has been compiled with the gcc -

mflat option, and debugging with gdb is done.

TSIM2 11

Copyright © Aeroflex Gaisler AB TSIM2

-mmu Adds MMU support (LEON only).

-nb Do not break on error exeptions when debugging through GDB

-nfp Disables the FPU to emulate system without FP hardware. Any FP instruction will generate

an FP disabled trap.

-nomac Disable LEON MAC instruction. (LEON only).

-noreadline Disable loading and use of libreadline.(so|dll).

-nosram Disable sram on startup. SDRAM will appear at 0x40000000 (LEON only).

-nothreads Disable threads support.

-notimers Disable the LEON timer unit.

-nouart Disable emulation of UARTs. All access to UART registers will be routed to the I/O mod-

ule.

-nov8 Disable SPARC V8 MUL/DIV instructions (LEON only).

-nrtimersval Adds upport for more than 2 timers. Value val can be in the range of 2 - 8. See also switch -

sametimerirq. Default: 2 (LEON3/4 only).

-nwin win Defines the number of register windows in the processor. The default is 8. Only applicabale

to LEON3/4.

-port portnum

Use portnum for gdb communication (port 1234 is default)

-pr Enable profiling.

-ram ram_size

Sets the amount of simulated RAM (kbyte). Default is 4096.

-rest file_name

Restore saved state from file_name.tss. See section 3.8 - Check-pointing

-rom rom_size

Sets the amount of simulated ROM (kbyte). Default is 2048.

-rom8, -rom16

By default, the prom area at reset time is considered to be 32-bit. Specifying -rom8 or -

rom16 will initialise the memory width field in the memory configuration register to 8- or

16-bits. The only visible difference is in the instruction timing.

-rtems ver Override autodetected RTEMS version for thread support. ver should be 46, 48, 48-edisoft

or 410.

-sametimerirq

Force all timer irq to be 8. Works together with switch -nrtimers. Default: seperate irqs for

each timer starting from 8. (LEON3/4 only)

-sdram sdram_size

Sets the amount of simulated SDRAM (mbyte). Default is 0. (LEON only)

-sdbanks [1|2]

Sets the sdram banks. This parameter is used to calculate the used sdram in conjunction

with the mcfg2.sdramsize field. The actually used sdram at runtime is

sdbanks*mcfg2.sdramsize. Default:1 (LEON only)

-sym file Read symbols from file. Useful for self-extracting applications

-timer32 Use 32 bit timers instead of 24 bit. (LEON2 only)

TSIM2 12

Copyright © Aeroflex Gaisler AB TSIM2

-tsc691 Emulate the TSC691 device, rather than TSC695

-tsc695e Obsolete. TSIM/ERC32 now always emulates the TSC695 device rather that the early

ERC32 chip-set.

-uart[1,2] device

By default, UART1 is connected to stdin/stdout and UART2 is disconnected. This switch

can be used to connect the uarts to other devices. E.g., ‘-uart1 /dev/ptypc’ will attach

UART1 to ptypc. On linux ‘-uart1 /dev/ptmx‘ can be used in which case the pseudo termi-

nal slave’s name to use will be printed. If you use minicom to connect to the uart then use

minicom’s -p <pseudo terminal> option. On windows use //./com1, //./com2 etc. to access

the serial ports. The serial port settings can be adjusted by doubleclicking the “Ports (COM

and LPT)” entry in controlpanel->system->hardware->devicemanager. Use the “Port Set-

ting” tab in the dialog that pops up.

-ut699 Set parameters to emulate the UT699 device.

-wdfreqfreq Specify the frequency of the watchdog clock. (ERC32 only)

input_files Executable files to be loaded into memory. The input file is loaded into the emulated mem-

ory according to the entry point for each segment. Recognized formats are elf32, aout and

srecords.

Command line options can also be specified in the file .tsimcfg in the home directory. This file will be read at
startup and the contents will be appended to the command line.

3.3 Standalone mode commands

TSIM dynamically loads libreadline.so if available on the host system, this will provide command history and
completion with the tab-key. If libreadline.so is not found a simpler commandline will be used with no history
and poor editing capabilities.

If the file .tsimrc exists in the home directory, it will be used as a batch file and the commands in it will be exe-
cuted at startup.

Below is a description of commands that are recognized by the simulator when used in standalone mode:

batch file Execute a batch file of TSIM commands.

+bp, break address

Adds an breakpoint at address.

bp, break Prints all breakpoints and watchpoints

-bp, del[num]

Deletes breakpoint/watchpoint num. If num is omitted, all breakpoints and watchpoints are

deleted.

bt Print backtrace

cont [count/time]

Continue execution at present position. See the go command for how to specify count or

time.

coverage [enable | disable | gcc | save [file_name] | print address <len>]

Code coverage control. Coverage can be enabled, disabled, saved to a file or printed to the

console.

dis [addr] [count]

Disassemble [count] instructions at address [addr]. Default values for count is 16 and addr

is the program counter address.

TSIM2 13

Copyright © Aeroflex Gaisler AB TSIM2

echo string Print <string> to the simulator window.

edac [clear | cerr | merr <address>]

Insert EDAC errors, or clear EDAC checksums (ERC32 only)

event Print events in the event queue. Only user-inserted events are printed.

flush [all | icache | dcache | addr]

Flush the LEON caches. Specifying all will flush both the icache and dcache. Specifying

icache or dcache will flush the respective cache. Specifying addr will flush the correspond-

ing line in both caches.

float Prints the FPU registers

gdb Listen for gdb connection.

go [address] [count/time]

The go command will set pc to address and npc to address + 4, and resume execution. No

other initialisation will be done. If address is not given, the default load address will be

assumed. If a count is specified, execution will stop after the specified number of instruc-

tions. If a time is given, execution will continue until time is reached (relative to the current

time). The time can be given in micro-seconds, milliseconds, seconds, minutes, hours or

days by adding ‘us’, ‘ms’, ‘s’, ‘min’, ‘h’ or ‘d’ to the time expression. Example: go

0x40000000 400 ms. Note: for the go command, if the count/time parameter is given,

address must be specified.

help Print a small help menu for the TSIM commands.

hist [length] Enable the instruction trace buffer. The length last executed instructions will be placed in

the trace buffer. A hist command without length will display the trace buffer. Specifying a

zero trace length will disable the trace buffer. See the inst command for displaying only a

part of the instruction trace buffer.

icache, dcache

Dumps the contents of tag and data cache memories (LEON only).

inc time Increment simulator time without executing instructions. Time is given in the same format

as for the go command. Event queue is evaluated during the advancement of time.

inst [length] Display the latest length (default 30) instructions in the instruction trace buffer. See the hist

command for how to enable the instruction trace buffer.

leon Display LEON peripherals registers.

load files Load files into simulator memory.

l2cache Display contents of L2 cache

mp <1|2> Synchronize two TSIM instances. See manual for details.

mec Display ERC32 MEC registers.

mem [addr] [count]

Display memory at addr for count bytes. Same default values as for dis. Unimplemented

registers are displayed as zero.

vmem [vaddr] [count]

Same as mem but does a MMU translation on vaddr first (LEON only).

mmu Display the MMU registers (LEON only).

quit Exits the simulator.

TSIM2 14

Copyright © Aeroflex Gaisler AB TSIM2

perf [reset] The perf command will display various execution statistics. A ‘perf reset’ command will

reset the statistics. This can be used if statistics shall be calculated only over a part of the

program. The run and reset command also resets the statistic information.

prof [0|1] [stime]

Enable (‘prof 1’) or disable (‘prof 0’) profiling. Without parameters, profiling information is

printed. Default sampling period is 1000 clock cycles, but can be changed by specifying

stime.

reg [reg_name value]

Prints and sets the IU registers in the current register window. reg without parameters prints

the IU registers. reg reg_name value sets the corresponding register to value. Valid register

names are psr, tbr, wim, y, g1-g7, o0-o7 and l0-l7. To view the other register windows, use

reg wn, where n is 0 - 7.

reset Performs a power-on reset. This command is equal to run 0.

restore file Restore simulator state from file.

run [addr] [count/time]

Resets the simulator and starts execution from address addr, the default is 0. The event

queue is emptied but any set breakpoints remain. See the go command on how to specify the

time or count.

save <file> Save simulator state file.

step Equal to trace 1.

sym [file] Load symbol table from file. If file is omitted, prints current (.text) symbols.

version Prints the TSIM version and build date.

walk address [iswrite|isid|issu]*

If the MMU is enabled printout a table walk for the given address. The flags iswrite, isid

and issu are specifying the context: iswrite for a write access (default read), isid for a icache

access (default dcache), issu for a supervisor access (default user).

watch address

Adds a watchpoint at address.

wmem, wmemh, wmemb<address> <value>

Write a word, half-word or byte directly to simulated memory.

xwmem <asi> address> <value>

Write a word to simulated memory using ASI=asi. Applicable to LEON3/4.

Typing a ‘Ctrl-C’ will interrupt a running simulator. Short forms of the commands are allowed, e.g c, co, or
con, are all interpreted as cont.

3.4 Symbolic debug information

TSIM will automatically extract (.text) symbol information from elf-files. The symbols can be used where an
address is expected:

tsim> bre main
breakpoint 3 at 0x020012f0: main
tsim> dis strcmp 5
02002c04 84120009 or %o0, %o1, %g2
02002c08 8088a003 andcc %g2, 0x3, %g0
02002c0c 3280001a bne,a 0x02002c74
02002c10 c64a0000 ldsb [%o0], %g3
02002c14 c6020000 ld [%o0], %g3

TSIM2 15

Copyright © Aeroflex Gaisler AB TSIM2

The sym command can be used to display all symbols, or to read in symbols from an alternate (elf) file:

tsim> sym /opt/rtems/src/examples/samples/dhry
read 234 symbols
tsim> sym
0x02000000 L _text_start
0x02000000 L _trap_table
0x02000000 L text_start
0x02000000 L start
0x0200102c L _window_overflow
0x02001084 L _window_underflow
0x020010dc L _fpdis
0x02001a4c T Proc_3

Reading symbols from alternate files is necessary when debugging self-extracting applications, such as boot-
proms created with mkprom or linux/uClinux.

3.5 Breakpoints and watchpoints

TSIM supports execution breakpoints and write data watchpoints. In standalone mode, hardware breakpoints
are always used and no instrumentation of memory is made. When using the gdb interface, the gdb ‘break’
command normally uses software breakpoints by overwriting the breakpoint address with a ‘ta 1’ instruction.
Hardware breakpoints can be inserted by using the gdb ‘hbreak’ command or by starting tsim with -hwbp,
which will force the use of hardware breakpoints also for the gdb ‘break’ command. Data write watchpoints
are inserted using the ‘watch’ command. A watchpoint can only cover one word address, block watchpoints
are not available.

3.6 Profiling

The profiling function calculates the amount of execution time spent in each subroutine of the simulated pro-
gram. This is made without intervention or instrumentation of the code by periodically sample the execution
point and the associated call tree. Cycles in the call graph are properly handled, as well as sections of the code
where no stack is available (e.g. trap handlers). The profiling information is printed as a list sorted on highest
execution time ration. Profiling is enabled through the prof 1 command. The sampling period is by default
1000 clocks which typically provides the best compromise between accuracy and performance. Other sam-
pling periods can also be set through the prof 1 n command. Profiling can be disabled through the prof 0
command. Below is an example profiling the dhrystone benchmark:

bash$tsim-erc32 /opt/rtems/src/examples/samples/dhry
tsim> pro 1
profiling enabled, sample period 1000
tsim> go
resuming at 0x02000000
Execution starts, 200000 runs through Dhrystone
Stopped at time 23375862 (1.670e+00 s)
tsim> pro

function samples ratio(%)
start 36144 100.00
_start 36144 100.00
main 36134 99.97
Proc_1 10476 28.98
Func_2 9885 27.34
strcmp 8161 22.57
Proc_8 2641 7.30
.div 2097 5.80
Proc_6 1412 3.90
Proc_3 1321 3.65
Proc_2 1187 3.28
.umul 1092 3.02
Func_1 777 2.14
Proc_7 772 2.13

TSIM2 16

Copyright © Aeroflex Gaisler AB TSIM2

Proc_4 731 2.02
Proc_5 453 1.25
Func_3 227 0.62
printf 8 0.02
vfprintf 8 0.02
_vfprintf_r 8 0.02

tsim>

TSIM2 17

Copyright © Aeroflex Gaisler AB TSIM2

3.7 Code coverage

To aid software verification, the professional version of TSIM includes support for code coverage. When
enabled, code coverage keeps a record for each 32-bit word in the emulated memory and monitors whether the
location has been read, written or executed. The coverage function is controlled by the coverage command:

coverage enable enable coverage
coverage disable disable coverage
coverage save [filename] write coverage data to file (file name optional)
coverage print address [len] print coverage data to console, starting at address
coverage gcc exec-file [src-file]print source code with back-annotated coverage information
coverage clear reset coverage data

The coverage data for each 32-bit word of memory consists of a 5-bit field, with bit0 (lsb) indicating that the
word has been executed, bit1 indicating that the word has been written, and bit2 that the word has been read.
Bit3 and bit4 indicates the presence of a branch instruction; if bit3 is set then the branch was taken while bit4
is set if the branch was not taken.

As an example, a coverage data of 0x6 would indicate that the word has been read and written, while 0x1
would indicate that the word has been executed. When the coverage data is printed to the console or save to a
file, it is presented for one block of 32 words (128 bytes) per line:

tsim> cov print start
02000000 : 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
02000080 : 0
02000100 : 0
02000180 : 0

When the code coverage is saved to file, only blocks with at least one coverage field set are written to the file.
Block that have all the coverage fields set to zero are not saved in order to decrease the file size. Note that only
the internally emulated memory (prom and ram) are subject for code coverage, any memory emulated in the
user’s I/O module must be handled by a user-defined coverage function.

When coverage is enabled, disassembly will include an extra column after the address, indicating the coverage
data. This makes it easier to analyse which instructions has not been executed:

tsim> di start

 02000000 1 a0100000 clr %l0
 02000004 1 29008004 sethi %hi(0x2001000), %l4
 02000008 1 81c52000 jmp %l4
 0200000c 1 01000000 nop
 02000010 0 91d02000 ta 0x0
 02000014 0 01000000 nop
 02000018 0 01000000 nop

The coverage data is not saved or restored during check-pointing operations. When enabled, the coverage
function reduces the simulation performance of about 30%. When disabled, the coverage function does not
impact simulation performance. Individual coverage fields can be read and written using the TSIM function
interface using the tsim_coverage() call (see “Function interface” on page 46). Enabling and disabling the
coverage functionality from the function interface should be done using tsim_cmd().

Coverage information can also be back-annotated to the source code of applications compiled with gcc (sparc-
rtems-gcc). The command ‘coverage gcc exec-file src-file’ will produce a file called src-file.cov where each
executable line is either marked with the line number (if it has been executed), or ‘#####’ if it has not been
executed. The exec-file is the binary file which has been executed by TSIM, while the src-file is (one of) the
source files. Note that the binary file must have been compiled by sparc-rtems-gcc with debugging enabled in
STABS format (-gstabs). Also, the RCC cross-compiler must be installed on the host and in the execution
path. TSIM uses the RCC tools (sparc-rtems-objdump) to exctract the debug information from the binary.

TSIM2 18

Copyright © Aeroflex Gaisler AB TSIM2

The example below shows and example of the command and annotated source code:

tsim> coverage gcc stanford stanford.c
coverage for stanford.c: 95.4%
tsim> q
$ cat stanford.c.cov
.
.

642 kount = 0;
643 if (Fit (0, m))
644 n = Place (0, m);

 else
printf ("Error1 in Puzzle\n");
647 if (!Trial (n))
printf ("Error2 in Puzzle.\n");
649 else if (kount != 2005)
printf ("Error3 in Puzzle.\n");

};

The example above shows that there are three executable lines which has not been executed. Note when the
code is compiled with optimisation (-O or O2), some lines which seem to have executable code might be
marked as not executable. This is beacause the optimisation process has either removed them or merged them
with other lines.

3.8 Check-pointing

The professional version of TSIM can save and restore its complete state, allowing to resume simulation from
a saved check-point. Saving the state is done with the save command:

tsim> save file_name

The state is save to file_name.tss. To restore the state, use the restore command:

tsim> restore file_name

The state will be restored from file_name.tss. Restore directly at startup can be performed with the ‘-rest
file_name’ command line switch.

Note that TSIM command line options are not stored (such as alternate UART devices, etc.).

Note that AT697, UT699, UT700 and GR712 simulation modules do not support check-pointing.

3.9 Performance

TSIM is highly optimised, and capable of simulating ERC32 systems faster than realtime. On high-end Ath-
lon processors, TSIM achieves more than 1 MIPS / 100 MHz (cpu frequency of host). Enabling various
debugging features such as watchpoints, profiling and code coverage can however reduce the simulation per-
formance with up to 40%.

3.10 Backtrace

The bt command will display the current call backtrace and associated stack pointer;
tsim> bt

%pc %sp
#0 0x0200190c 0x023ffcc8 Proc_1 + 0xf0
#1 0x02001520 0x023ffd38 main + 0x230
#2 0x02001208 0x023ffe00 _start + 0x60
#3 0x02001014 0x023ffe40 start + 0x1014

TSIM2 19

Copyright © Aeroflex Gaisler AB TSIM2

3.11 Connecting to gdb

TSIM can act as a remote target for gdb, allowing symbolic debugging of target applications. To initiate gdb
communication, start the simulator with the -gdb switch or use the TSIM gdb command:

bash-2.04$./tsim -gdb

TSIM/LEON - remote SPARC simulator, build 2001.01.10 (demo version)
serial port A on stdin/stdout
allocated 4096 K RAM memory
allocated 2048 K ROM memory
gdb interface: using port 1234

Then, start gdb in a different window and connect to TSIM using the extended-remote protocol:

bash-2.04$ sparc-rtems-gdb t4.exe

(gdb) tar extended-remote localhost:1234

Remote debugging using localhost:1234
0x0 in ?? ()
(gdb)

To load and start the application, use the gdb load and cont command.

(gdb) load

Loading section .text, size 0x14e50 lma 0x40000000
Start address 0x40000000 , load size 87184
Transfer rate: 697472 bits/sec, 278 bytes/write.
(gdb) cont

Continuing

To interrupt simulation, Ctrl-C can be typed in both gdb and TSIM windows. The program can be restarted
using the gdb run command but a load has first to be executed to reload the program image into the simulator:

(gdb) load

Loading section .text, size 0x14e50 lma 0x40000000
Loading section .data, size 0x640 lma 0x40014e50
Start address 0x40000000 , load size 87184
Transfer rate: 697472 bits/sec, 278 bytes/write.
(gdb) run

The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /home/jgais/src/gnc/t4.exe

If gdb is detached using the detach command, the simulator returns to the command prompt, and the program
can be debugged using the standard TSIM commands. The simulator can also be re-attached to gdb by issuing
the gdb command to the simulator (and the target command to gdb). While attached, normal TSIM com-
mands can be executed using the gdb monitor command. Output from the TSIM commands is then displayed
in the gdb console.

TSIM translates SPARC traps into (unix) signals which are properly communicated to gdb. If the application
encounters a fatal trap, simulation will be stopped exactly on the failing instruction. The target memory and
register values can then be examined in gdb to determine the error cause.

Profiling an application executed from gdb is possible if the symbol table is loaded in TSIM before execution
is started. gdb does not download the symbol information to TSIM, so the symbol table should be loaded
using the monitor command:

(gdb) monitor sym t4.exe
read 158 symbols

When an application that has been compiled using the gcc -mflat option is debugged through gdb, TSIM
should be started with -mflat in order to generate the correct stack frames to gdb.

TSIM2 20

Copyright © Aeroflex Gaisler AB TSIM2

3.12 Thread support

TSIM has thread support for the RTEMS operating system. Additional OS support will be added to future ver-
sions. The GDB interface of TSIM is also thread aware and the related GDB commands are described later.

3.12.1 TSIM thread commands

thread info - lists all known threads. The currently running thread is marked with an asterisk.

grlib> thread info

 Name | Type | Id | Prio | Ticks | Entry point | PC | State

 Int. | internal | 0x09010001 | 255 | 138 | _CPU_Thread_Idle_body | 0x4002f760 _Thread_Dispatch + 0x11c | READY
--
 UI1 | classic | 0x0a010001 | 120 | 290 | Init | 0x4002f760 _Thread_Dispatch + 0x11c | READY

 ntwk | classic | 0x0a010002 | 100 | 11 | rtems_bsdnet_schedneti | 0x4002f760 _Thread_Dispatch + 0x11c | READY

 DCrx | classic | 0x0a010003 | 100 | 2 | rtems_bsdnet_schedneti | 0x4002f760 _Thread_Dispatch + 0x11c | Wevnt

 DCtx | classic | 0x0a010004 | 100 | 4 | rtems_bsdnet_schedneti | 0x4002f760 _Thread_Dispatch + 0x11c | Wevnt

 FTPa | classic | 0x0a010005 | 10 | 1 | split_command | 0x4002f760 _Thread_Dispatch + 0x11c | Wevnt

 FTPD | classic | 0x0a010006 | 10 | 1 | split_command | 0x4002f760 _Thread_Dispatch + 0x11c | Wevnt

* HTPD | classic | 0x0a010007 | 40 | 79 | rtems_initialize_webse | 0x40001b60 console_outbyte_polled + 0x34 | READY

thread bt <id> - do a backtrace of a thread.

Backtrace of inactive thread:

grlib> thread bt 0x0a010003

 %pc
#0 0x4002f760 _Thread_Dispatch + 0x11c
#1 0x40013ed8 rtems_event_receive + 0x88
#2 0x40027824 rtems_bsdnet_event_receive + 0x18
#3 0x4000b664 websFooter + 0x484
#4 0x40027708 rtems_bsdnet_schednetisr + 0x158

A backtrace of the current thread (equivalent to normal bt command):

grlib> thread bt 0x0a010007

 %pc %sp
#0 0x40001b60 0x43fea130 console_outbyte_polled + 0x34
#1 0x400017fc 0x43fea130 console_write_support + 0x18
#2 0x4002dde8 0x43fea198 rtems_termios_puts + 0x128
#3 0x4002df60 0x43fea200 rtems_termios_puts + 0x2a0
#4 0x4002dfe8 0x43fea270 rtems_termios_write + 0x70
#5 0x400180a4 0x43fea2d8 rtems_io_write + 0x48
#6 0x4004eb98 0x43fea340 device_write + 0x2c
#7 0x40036ee4 0x43fea3c0 write + 0x90
#8 0x4001118c 0x43fea428 trace + 0x38
#9 0x4000518c 0x43fea498 websOpenListen + 0x108
#10 0x40004fb4 0x43fea500 websOpenServer + 0xc0
#11 0x40004b0c 0x43fea578 rtems_initialize_webserver + 0x204
#12 0x40004978 0x43fea770 rtems_initialize_webserver + 0x70
#13 0x40053380 0x43fea7d8 _Thread_Handler + 0x10c
#14 0x40053268 0x43fea840 __res_mkquery + 0x2c8

TSIM2 21

Copyright © Aeroflex Gaisler AB TSIM2

3.12.2 GDB thread commands

TSIM needs the symbolic information of the image that is being debugged to be able to check for thread infor-
mation. Therefore the symbols needs to be read from the image using the sym command before issuing the
gdb command.
When a program running in GDB stops TSIM reports which thread it is in. The command info threads can
be used in GDB to list all known threads.

Program received signal SIGINT, Interrupt.
[Switching to Thread 167837703]

0x40001b5c in console_outbyte_polled (port=0, ch=113 ’q’) at ../../../../../../../../../rtems-
4.6.5/c/src/lib/libbsp/sparc/leon3/console/debugputs.c:38
38 while ((LEON3_Console_Uart[LEON3_Cpu_Index+port]->status & LEON_REG_UART_STATUS_THE)
== 0);

(gdb) info threads

 8 Thread 167837702 (FTPD Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
 7 Thread 167837701 (FTPa Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
 6 Thread 167837700 (DCtx Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
 5 Thread 167837699 (DCrx Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
 4 Thread 167837698 (ntwk ready) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
 3 Thread 167837697 (UI1 ready) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
 2 Thread 151060481 (Int. ready) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
* 1 Thread 167837703 (HTPD ready) 0x40001b5c in console_outbyte_polled (port=0, ch=113 ’q’)

at ../../../../../../../../../rtems-4.6.5/c/src/lib/libbsp/sparc/leon3/console/debugputs.c:38

Using the thread command a specified thread can be selected:

(gdb) thread 8

[Switching to thread 8 (Thread 167837702)]#0 0x4002f760 in _Thread_Dispatch () at ../../../../
../../rtems-4.6.5/cpukit/score/src/threaddispatch.c:109
109 _Context_Switch(&executing->Registers, &heir->Registers);

Then a backtrace of the selected thread can be printed using the bt command:

(gdb) bt

#0 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-4.6.5/cpukit/score/src/thread-
dispatch.c:109
#1 0x40013ee0 in rtems_event_receive (event_in=33554432, option_set=0, ticks=0,
event_out=0x43fecc14)
 at ../../../../leon3/lib/include/rtems/score/thread.inl:205
#2 0x4002782c in rtems_bsdnet_event_receive (event_in=33554432, option_set=2, ticks=0,
event_out=0x43fecc14)
 at ../../../../../../rtems-4.6.5/cpukit/libnetworking/rtems/rtems_glue.c:641
#3 0x40027548 in soconnsleep (so=0x43f0cd70) at ../../../../../../rtems-4.6.5/cpukit/libnetwork-
ing/rtems/rtems_glue.c:465
#4 0x40029118 in accept (s=3, name=0x43feccf0, namelen=0x43feccec) at ../../../../../../rtems-
4.6.5/cpukit/libnetworking/rtems/rtems_syscall.c:215
#5 0x40004028 in daemon () at ../../../../../../rtems-4.6.5/c/src/libnetworking/rtems_servers/
ftpd.c:1925
#6 0x40053388 in _Thread_Handler () at ../../../../../../rtems-4.6.5/cpukit/score/src/threadhan-
dler.c:123
#7 0x40053270 in __res_mkquery (op=0, dname=0x0, class=0, type=0, data=0x0, datalen=0,
newrr_in=0x0, buf=0x0, buflen=0)
 at ../../../../../../../rtems-4.6.5/cpukit/libnetworking/libc/res_mkquery.c:199

TSIM2 22

Copyright © Aeroflex Gaisler AB TSIM2

It is possible to use the frame command to select a stack frame of interest and examine the registers using the
info registers command. Note that the info registers command only can see the following registers for an
inactive task: g0-g7, l0-l7, i0-i7, o0-o7, pc and psr. The other registers will be displayed as 0:

(gdb) frame 5

#5 0x40004028 in daemon () at ../../../../../../rtems-4.6.5/c/src/libnetworking/rtems_servers/
ftpd.c:1925
1925 ss = accept(s, (struct sockaddr *)&addr, &addrLen);

(gdb) info reg

g0 0x0 0
g1 0x0 0
g2 0xffffffff -1
g3 0x0 0
g4 0x0 0
g5 0x0 0
g6 0x0 0
g7 0x0 0
o0 0x3 3
o1 0x43feccf0 1140772080
o2 0x43feccec 1140772076
o3 0x0 0
o4 0xf34000e4 -213909276
o5 0x4007cc00 1074252800
sp 0x43fecc88 0x43fecc88
o7 0x40004020 1073758240
l0 0x4007ce88 1074253448
l1 0x4007ce88 1074253448
l2 0x400048fc 1073760508
l3 0x43feccf0 1140772080
l4 0x3 3
l5 0x1 1
l6 0x0 0
l7 0x0 0
i0 0x0 0
i1 0x40003f94 1073758100
i2 0x0 0
i3 0x43ffafc8 1140830152
i4 0x0 0
i5 0x4007cd40 1074253120
fp 0x43fecd08 0x43fecd08
i7 0x40053380 1074082688
y 0x0 0
psr 0xf34000e0 -213909280
wim 0x0 0
tbr 0x0 0
pc 0x40004028 0x40004028 <daemon+148>
npc 0x4000402c 0x4000402c <daemon+152>
fsr 0x0 0
csr 0x0 0

It is not supported to set thread specific breakpoints. All breakpoints are global and stops the execution of all
threads. It is not possible to change the value of registers other than those of the current thread.

TSIM2 23

Copyright © Aeroflex Gaisler AB TSIM2

4 Emulation characteristics

4.1 Common behaviour

4.1.1 Timing

The TSIM simulator is cycle-true, i.e a simulator time is maintained and incremented according processor
instruction timing and memory latency. Tracing using the trace command will display the current simulator
time in the left column. This time indicates when the instruction is fetched. Cache misses, waitstates or data
dependencies will delay the following fetch according to the incurred delay.

4.1.2 UARTs

If the baudrate register is written by the application software, the UARTs will operate with correct timing. If
the baudrate is left at the default value, or if the -fast_uart switch was used, the UARTs operate at infinite
speed. This means that the transmitter holding register always is empty and a transmitter empty interrupt is
generated directly after each write to the transmitter data register. The receivers can never overflow or gener-
ate errors.

Note that with correct UART timing, it is possible that the last character of a program is not displayed on the
console. This can happen if the program forces the processor in error mode, thereby terminating the simula-
tion, before the last character has been shifted out from the transmitter shift register. To avoid this, an applica-
tion should poll the UART status register and not force the processor in error mode before the transmitter shift
registers are empty. The real hardware does not exhibit this problem since the UARTs continue to operate
even when the processor is halted.

4.1.3 Floating point unit (FPU)

The simulator maps floating-point operations on the hosts floating point capabilities. This means that accuracy
and generation of IEEE exceptions is host dependent and will not always be identical to the actual ERC32/
LEON hardware. The simulator implements (to some extent) data-dependant execution timing as in the real
MEKIO FPU (ERC32/LEON2). For LEON3/4, the -grfpu switch will enable emulation of the GRFPU
instruction timing.

4.1.4 Delayed write to special registers

The SPARC architecture defines that a write to the special registers (%psr, %wim, %tbr, %fsr, %y) may have
up to 3 delay cycles, meaning that up to 3 of the instructions following a special register write might not ‘see’
the newly written value due to pipeline effects. While ERC32 and LEON have between 2 and 3 delay cycles,
TSIM has 0. This does not affect simulation accuracy or timing as long as the SPARC ABI recommendations
are followed that each special register write must always be followed by three NOP. If the three NOP are left
out, the software might fail on real hardware while still executing ‘correctly’ on the simulator.

4.1.5 Idle-loop optimisation

To minimise power consumption, LEON and ERC32 applications will typically place the processor in power-
down mode when the idle task is scheduled in the operation system. In power-down mode, TSIM increments
the event queue without executing any instructions, thereby significantly improving simulation performance.
However, some (poorly written) code might use a busy loop (BA 0) instead of triggering power-down mode.
The -bopt switch will enable a detection mechanism which will identify such behaviour and optimise the sim-
ulation as if the power-down mode was entered.

4.1.6 Custom instruction emulation

TSIM/LEON allows the emulation of custom (non-SPARC) instructions. A handler for non-standard instruc-
tion can be installed using the tsim_ext_ins() callback function (see “Function interface” on page 46). The
function handler is called each time an instruction is encountered that would cause an unimplemented instruc-

TSIM2 24

Copyright © Aeroflex Gaisler AB TSIM2

tion trap. The handler is passed the opcode and all processor registers in a pointer, allowing it to decode and
emulate a custom instruction, and update the processor state.

The definition for the custom instruction handler is:

int myhandler (struct ins_interface *r);

The pointer *r is a structure containing the current instruction opcode and processor state:

 struct ins_interface {
 uint32 psr; /* Processor status registers */
 uint32 tbr; /* Trap base register */
 uint32 wim; /* Window maks register */
 uint32 g[8]; /* Global registers */
 uint32 r[128];/* Windowed register file */
 uint32 y; /* Y register */
 uint32 pc; /* Program counter *
 uint32 npc; /* Next program counter */
 uint32 inst;/* Current instruction */
 uint32 icnt;/* Clock cycles in curr inst */
 uint32 asr17;
 uint32 asr18;
};

SPARC uses an overlapping windowed register file, and accessing registers must be done using the current
window pointer (%psr[4:0]). To access registers %r8 - %r31 in the current window, use:

cwp = r->psr & 7;
regval = r->r[((cwp << 4) + RS1) % (nwindows * 16)];

Note that global registers (%r0 - %r7) should always be accessed by r->g[RS1];

The return value of the custom handler indicates which trap the emulated instruction has generated, or 0 if no
trap was caused. If the handler could not decode the instruction, 2 should be returned to cause an unimple-
mented instruction trap.

The number of clocks consumed by the instruction should be returned in r->icnt; This value is by default 1,
which corresponds to a fully pipelined instruction without data interlock. The handler should not increment
the %pc or %npc registers, as this is done by TSIM.

TSIM2 25

Copyright © Aeroflex Gaisler AB TSIM2

4.2 ERC32 specific emulation

4.2.1 Processor emulation

TSIM/ERC32 emulates the behaviour of the TSC695 processor from Atmel by default. The parallel execution
between the IU and FPU is modelled, as well as stalls due to operand dependencies (IU & FPU). Starting
TSIM with the -tsc691 will enable TSC691 emulation (3-chip ERC32).

4.2.2 MEC emulation

The following list outlines the implemented MEC registers:

Register Address Status

MEC control register 0x01f80000 implemented

Software reset register 0x01f80004 implemented

Power-down register 0x01f80008 implemented

Memory configuration register 0x01f80010 partly implemented

IO configuration register 0x01f80014 implemented

Waitstate configuration register 0x01f80018 implemented

Access protection base register 1 0x01f80020 implemented

Access protection end register 1 0x01f80024 implemented

Access protection base register 2 0x01f80028 implemented

Access protection end register 2 0x01f8002c implemented

Interrupt shape register 0x01f80044 implemented

Interrupt pending register 0x01f80048 implemented

Interrupt mask register 0x01f8004c implemented

Interrupt clear register 0x01f80050 implemented

Interrupt force register 0x01f80054 implemented

Watchdog acknowledge register 0x01f80060 implemented

Watchdog trap door register 0x01f80064 implemented

RTC counter register 0x01f80080 implemented

RTC counter program register 0x01f80080 implemented

RTC scaler register 0x01f80084 implemented

RTC scaler program register 0x01f80084 implemented

GPT counter register 0x01f80088 implemented

GPT counter program register 0x01f80088 implemented

GPT scaler register 0x01f8008c implemented

GPT scaler program register 0x01f8008c implemented

Timer control register 0x01f80098 implemented

System fault status register 0x01f800A0 implemented

First failing address register 0x01f800A4 implemented

GPI configuration register 0x01f800A8 I/O module callback

GPI data register 0x01f800AC I/O module callback

Error and reset status register 0x01f800B0 implemented

Test control register 0x01f800D0 implemented

UART A RX/TX register 0x01f800E0 implemented

UART B RX/TX register 0x01f800E4 implemented

UART status register 0x01f800E8 implemented

The MEC registers can be displayed with the mec command, or using mem (‘mem 0x1f80000 256’). The reg-
isters can also be written using wmem (e.g. ‘wmem 0x1f80000 0x1234’). When written, care has to be taken
not to write an unimplemented register bit with ‘1’, or a MEC parity error will occur.

TSIM2 26

Copyright © Aeroflex Gaisler AB TSIM2

4.2.3 Interrupt controller

Internal interrupts are generated as defined in the MEC specification. All 15 interrupts can be tested via the
interrupt force register. External interrupts can be generated through loadable modules.

4.2.4 Watchdog

The watchdog timer operate as defined in the MEC specification. The frequency of the watchdog clock can be
specified using the -wdfreq switch. The frequency is specified in MHz.

4.2.5 Power-down mode

The power-down register (0x01f800008) is implemented as in the specification. A Ctrl-C in the simulator
window will exit the power-down mode. In power-down mode, the simulator skips time until the next event in
the event queue, thereby significantly increasing the simulation speed.

4.2.6 Memory emulation

The amount of simulated memory is configured through the -ram and -rom switches. The ram size can be
between 256 kbytes and 32 Mbyte, the rom size between 128 kbyte and 4 Mbyte. Access to unimplemented
MEC registers or non-existing memory will result in a memory exception trap.

The memory configuration register is used to decode the simulated memory. The fields RSIZ and PSIZ are
used to set RAM and ROM size, the remaining fields are not used. NOTE: after reset, the MEC is set to
decode 128 kbytes of ROM and 256 kbytes of RAM. The memory configuration register has to be updated to
reflect the available memory. The waitstate configuration register is used to generate waitstates. This register
must also be updated with the correct configuration after reset.

4.2.7 EDAC operation

The EDAC operation of ERC32 is implemented on the simulated RAM area (0x2000000 - 0x2FFFFFF). The
ERC32 Test Control Register can be used to enable the EDAC test mode and insert EDAC errors to test the
operation of the EDAC. The edac command can be used to monitor the number of errors in the memory, to
insert new errors, or clear all errors. To see the current memory status, use the edac command without param-
eters:

tsim> edac

ram error count : 2
 0x20000000 : MERR
 0x20000040 : CERR

TSIM keeps track of the number of errors currently present, and reports the total error count, the address of
each error, and its type. The errors can either be correctable (CERR) or non-correctable (MERR). To insert an
error using the edac command, do ‘edac cerr addr’ or ‘edac merr addr’ :

tsim> edac cerr 0x2000000
correctable error at 0x02000000
tsim> edac
ram error count : 1
 0x20000000 : CERR

To remove all injected errors, do edac clear. When accessing a location with an EDAC error, the behaviour of
TSIM is identical to the real hardware. A correctable error will trigger interrupt 1, while un-correctable errors
will cause a memory exception. The operation of the FSFR and FAR registers are fully implemented.

NOTE: the EDAC operation affect simulator peformance when there are inserted errors in the memory. To
obtain maximum simulation performance, any diagnostic software should remove all inserted errors aftter
having performed an EDAC test.

TSIM2 27

Copyright © Aeroflex Gaisler AB TSIM2

4.2.8 Extended RAM and I/O areas

TSIM allows emulation of user defined I/O devices through loadable modules. EDAC emulation of exteanded
RAM areas is not supported.

4.2.9 SYSAV signal

TSIM emulates changes in the SYSAV output by calling the command() callback in the I/O module with
either “sysav 0” or “sysav 1” on each changes of SYSAV.

4.2.10 EXTINTACK signal

TSIM emulates assertion of the EXTINTACK output by calling the command() callback in the I/O module
with “extintack” on each assertion. Note that EXTINTACK is only asserted for one external interrupt as pro-
grammed in the MEC interrupt shape register.

4.2.11 IWDE signal

The TSC695E processor input signal can be controlled by the -iwde switch at start-up. If the switch is given,
the IWDE signal will be high, and the internal watchdog enabled. If -iwde is not given, IWDE will be low and
the internal watchdog will be disabled. Note that the simulator must started in TSC695E-mode using the -
tsc695e switch, for this option to take effect.

TSIM2 28

Copyright © Aeroflex Gaisler AB TSIM2

4.3 LEON2 specific emulation

4.3.1 Processor

The LEON2 version of TSIM emulates the behavior of the LEON2 VHDL model. The (optional) MMU can
be emulated using the -mmu switch.

4.3.2 Cache memories

The evaluation version of LEON implements 2*4kbyte caches, with 16 bytes per line. The commercial TSIM
version can emulate any permissible cache configuration using the -icsize, -ilsize, -dcsize and -dlsize options.
Allowed sizes are 1 - 64 kbyte with 8 - 32 bytes/line. The characteristics of the leon multi-set caches (as of
leon2-1.0.8) can be emulated using the -isets, -dsets, -irepl, -drelp, -ilock and -dlock options. Diagnostic cache
reads/writes are implemented. The simulator commands icache and dcache can be used to display cache con-
tents. Starting TSIM with -at697e will configure that caches according to the Atmel AT697E device.

4.3.3 LEON peripherals registers

The LEON peripherals registers can be displayed with the leon command, or using mem (‘mem 0x80000000
256’). The registers can also be written using wmem (e.g. ‘wmem 0x80000000 0x1234’).

4.3.4 Interrupt controller

External interrupts are not implemented, so the I/O port interrupt register has no function. Internal interrupts
are generated as defined in the LEON specification. All 15 interrupts can also be generated from the user-
defined I/O module using the set_irq() callback.

4.3.5 Power-down mode

The power-down register 0x80000018) is implemented as in the specification. A Ctrl-C in the simulator win-
dow will exit the power-down mode. In power-down mode, the simulator skips time until the next event in the
event queue, thereby significantly increasing the simulation speed.

4.3.6 Memory emulation

The memory configuration registers 1/2 are used to decode the simulated memory. The memory configuration
registers has to be programmed by software to reflect the available memory, and the number and size of the
memory banks. The waitstates fields must also be programmed with the correct configuration after reset. Both
SRAM and SDRAM can be emulated.

Using the -banks option, it is possible to set over how many ram banks the external SRAM is divided in. Note
that software compiled with BCC/RCC, and not run through mkprom must not use this option. For mkprom
encapsulated programs, it is essential that the same ram size and bank number setting is used for both
mkprom and TSIM.

The memory EDAC of LEON2-FT is not implemented.

4.3.7 SPARC V8 MUL/DIV/MAC instructions

TSIM/LEON optionally supports the SPARC V8 multiply, divide and MAC instruction. To correctly emulate
LEON systems which do not implement these instructions, use the -nomac to disable the MAC instruction
and/or -nov8 to disable multiply and divide instructions.

4.3.8 DSU and hardware breakpoints

The LEON debug support unit (DSU) and the hardware watchpoints (%asr24 - %asr31) are not emulated.

TSIM2 29

Copyright © Aeroflex Gaisler AB TSIM2

4.4 LEON3 specific emulation

4.4.1 General

The LEON3 version of TSIM emulates the behavior of the LEON3MP template VHDL model distributed in
the GRLIB-1.0 IP library. The system includes the following modules: LEON3 processor, APB bridge,
IRQMP interrupt controller, LEON2 memory controller, GPTIMER timer unit with two 32-bit timers, two
APBUART uarts. The AHB/APB plug&play information is provided at address 0xFFFFF000 - 0xFFFFFFFF
(AHB) and 0x800FF000 - 0x800FFFFF (APB).

4.4.2 Processor

The instruction timing of the emulated LEON3 processor is modelled after LEON3 VHDL model in GRLIB
IP library. The processor can be configured with 2 - 32 register windows using the -nwin switch. The MMU
can be emulated using the -mmu switch. Local scratch pad ram can be added with the -ilram and -dlram
switches.

4.4.3 Cache memories

The evaluation version of TSIM/LEON3 implements 2*4kbyte caches, with 16 bytes per line. The commer-
cial TSIM version can emulate any permissible cache configuration using the -icsize, -ilsize, -dcsize and -
dlsize options. Allowed sizes are 1 - 64 kbyte with 8 - 32 bytes/line. The characteristics of the leon multi-way
caches can be emulated using the -isets, -dsets, -irepl, -drelp, -ilock and -dlock options. Diagnostic cache
reads/writes are implemented. The simulator commands icache and dcache can be used to display cache con-
tents.

4.4.4 Power-down mode

The LEON3 power-down function is implemented as in the specification. A Ctrl-C in the simulator window
will exit the power-down mode. In power-down mode, the simulator skips time until the next event in the
event queue, thereby significantly increasing the simulation speed.

4.4.5 LEON3 peripherals registers

The LEON3 peripherals registers can be displayed with the leon command, or using mem (‘mem
0x80000000 256’). The registers can also be written using wmem (e.g. ‘wmem 0x80000000 0x1234’).

4.4.6 Interrupt controller

The IRQMP interrupt controller is fully emulated as described in the GRLIB IP Manual. The IRQMP regis-
ters are mapped at address 0x80000200. All 15 interrupts can also be generated from the user-defined I/O
module using the set_irq() callback.

4.4.7 Memory emulation

The LEON2 memory controller is emulated in the LEON3 version of TSIM. The memory configuration regis-
ters 1/2 are used to decode the simulated memory. The memory configuration registers has to be programmed
by software to reflect the available memory, and the number and size of the memory banks. The waitstates
fields must also be programmed with the correct configuration after reset. Both SRAM and SDRAM can be
emulated.

Using the -banks option, it is possible to set over how many ram banks the external SRAM is divided in. Note
that software compiled with BCC/RCC, and not run through mkprom must not use this option. For mkprom
encapsulated programs, it is essential that the same ram size and bank number setting is used for both
mkprom and TSIM.

TSIM2 30

Copyright © Aeroflex Gaisler AB TSIM2

4.4.8 CASA instruction

The SPARCV9 “casa” command is implemented if the -cas switch is given. The “casa” instruction is used in
VXWORKS SMP multiprocessing to synchronize using a lock free protocol.

4.4.9 SPARC V8 MUL/DIV/MAC instructions

TSIM/LEON3 optionally supports the SPARC V8 multiply, divide and MAC instruction. To correctly emulate
LEON systems which do not implement these instructions, use the -nomac to disable the MAC instruction
and/or -nov8 to disable multiply and divide instructions.

4.4.10 DSU and hardware breakpoints

The LEON debug support unit (DSU) and the hardware watchpoints (%asr24 - %asr31) are not emulated.

TSIM2 31

Copyright © Aeroflex Gaisler AB TSIM2

4.5 LEON4 specific emulation

4.5.1 General

The LEON4 version of TSIM emulates the behavior of the LEON4MP template VHDL model distributed in
the GRLIB-1.0.x IP library. The system includes the following modules: LEON4 processor, APB bridge,
IRQMP interrupt controller, LEON2 memory controller, L2 cache, GPTIMER timer unit with two 32-bit tim-
ers, two APBUART uarts. The AHB/APB plug&play information is provided at address 0xFFFFF000 -
0xFFFFFFFF (AHB) and 0x800FF000 - 0x800FFFFF (APB).

4.5.2 Processor

The instruction timing of the emulated LEON4 processor is modelled after LEON4 VHDL model in GRLIB
IP library. The processor can be configured with 2 - 32 register windows using the -nwin switch. The MMU
can be emulated using the -mmu switch. Local scratch pad ram can be added with the -ilram and -dlram
switches.

4.5.3 L1 Cache memories

The evaluation version of TSIM/LEON4 implements 2*4kbyte caches, with 16 bytes per line. The commer-
cial TSIM version can emulate any permissible cache configuration using the -icsize, -ilsize, -dcsize and -
dlsize options. Allowed sizes are 1 - 64 kbyte with 8 - 32 bytes/line. The characteristics of the leon multi-set
caches can be emulated using the -isets, -dsets, -irepl, -drelp, -ilock and -dlock options. Diagnostic cache
reads/writes are implemented. The simulator commands icache and dcache can be used to display cache con-
tents.

4.5.4 L2 Cache memory

The LEON4 L2 cache is emulated, and placed between the memory controller and AHB bus. Both the PROM
and SRAM/SDRAM areas are cached in the L2. The size of the L2 cache is default 64 Kbyte, but can be con-
figured to any (binary aligned) size using the -l2wsize switch at start-up. Setting the size to 0 will disable the
L2 cache. The L2 cache is implemented with one way and 32 bytes/line. The contents of the L2 cache can be
displayed with the l2cache command.

4.5.5 Power-down mode

The LEON4 power-down function is implemented as in the specification. A Ctrl-C in the simulator window
will exit the power-down mode. In power-down mode, the simulator skips time until the next event in the
event queue, thereby significantly increasing the simulation speed.

4.5.6 LEON4 peripherals registers

The LEON4 peripherals registers can be displayed with the leon command, or using mem (‘mem
0x80000000 256’). The registers can also be written using wmem (e.g. ‘wmem 0x80000000 0x1234’).

4.5.7 Interrupt controller

The IRQMP interrupt controller is fully emulated as described in the GRLIB IP Manual. The IRQMP regis-
ters are mapped at address 0x80000200. All 15 interrupts can also be generated from the user-defined I/O
module using the set_irq() callback.

4.5.8 Memory emulation

The LEON2 memory controller is emulated in the LEON4 version of TSIM. The memory configuration regis-
ters 1/2 are used to decode the simulated memory. The memory configuration registers has to be programmed
by software to reflect the available memory, and the number and size of the memory banks. The waitstates
fields must also be programmed with the correct configuration after reset. Both SRAM and SDRAM can be
emulated.

TSIM2 32

Copyright © Aeroflex Gaisler AB TSIM2

Using the -banks option, it is possible to set over how many ram banks the external SRAM is divided in. Note
that software compiled with BCC/RCC, and not run through mkprom must not use this option. For mkprom
encapsulated programs, it is essential that the same ram size and bank number setting is used for both
mkprom and TSIM.

4.5.9 CASA instruction

The SPARCV9 “casa” command is implemented if the -cas switch is given. The “casa” instruction is used in
VXWORKS SMP multiprocessing to synchronize using a lock free protocol.

4.5.10 SPARC V8 MUL/DIV/MAC instructions

TSIM/LEON4 optionally supports the SPARC V8 multiply, divide and MAC instruction. To correctly emulate
LEON systems which do not implement these instructions, use the -nomac to disable the MAC instruction
and/or -nov8 to disable multiply and divide instructions.

4.5.11 GRFPU emulation

By default, TSIM-LEON4 emulates the GRFPU-Lite FPU. If the simulator is started with -grfpu, the fully
pipelined GRFPU is emulated. Due to the complexity of the GRFPU, the instruction timing is approximated
and might show some discrepancies compared to the real hardware.

4.5.12 DSU and hardware breakpoints

The LEON debug support unit (DSU) and the hardware watchpoints (%asr24 - %asr31) are not emulated.

TSIM2 33

Copyright © Aeroflex Gaisler AB TSIM2

5 Loadable modules

5.1 TSIM I/O emulation interface

User-defined I/O devices can be loaded into the simulator through the use of loadable modules. As the real
processor, the simulator primarily interacts with the emulated device through read and write requests, while
the emulated device can optionally generate interrupts and DMA requests. This is implemented through the
module interface described below. The interface is made up of two parts; one that is exported by TSIM and
defines TSIM functions and data structures that can be used by the I/O device; and one that is exported by the
I/O device and allows TSIM to access the I/O device. Address decoding of the I/O devices is straight-forward:
all access that do not map on the internally emulated memory and control registers are forwarded to the I/O
module.

TSIM exports two structures: simif and ioif. The simif structure defines functions and data structures belong-
ing to the simulator core, while ioif defines functions provided by system (ERC32/LEON) emulation. At start-
up, TSIM searches for ‘io.so’ in the current directory, but the location of the module can be specified using the
-iom switch. Note that the module must be compiled to be position-independent, i.e. with the -fPIC switch
(gcc). The win32 version of TSIM loads io.dll instead of io.so. See the iomod directory in the TSIM distribu-
tion for an example io.c and how to build the .so and .dll modules. The enviromental variable
TSIM_MODULE_PATH can be set to a ‘:’ separated (‘;’ in WIN32) list of search paths.

5.1.1 simif structure

The simif structure is defined in sim.h:

struct sim_options {
int phys_ram;
int phys_sdram;
int phys_rom;
double freq;
double wdfreq;

};
struct sim_interface {

struct sim_options *options; /* tsim command-line options */
uint64 *simtime; /* current simulator time */
void (*event)(void (*cfunc)(), uint32 arg, uint64 offset);
void (*stop_event)(void (*cfunc)());
int *irl; /* interrup request level */
void (*sys_reset)(); /* reset processor */
void (*sim_stop)(); /* stop simulation */
char *args; /* concaterated argv */
void (*stop_event_arg)(void (*cfunc)(),int arg,int op);

/* Restorable events */
unsigned short (*reg_revent)(void (*cfunc) (unsigned long arg));
unsigned short (*reg_revent_prearg)(void (*cfunc) (unsigned long arg),

 unsigned long arg);
int (*revent)(unsigned short index, unsigned long arg, uint64 offset);
int (*revent_prearg)(unsigned short index, uint64 offset);
void (*stop_revent)(unsigned short index);

};
struct sim_interface simif; /* exported simulator functions */

The elements in the structure has the following meaning:

struct sim_options *options;

Contains some tsim startup options. options.freq defines the clock frequency of the emulated processor and
can be used to correlate the simulator time to the real time.

uint64 *simtime;

Contains the current simulator time. Time is counted in clock cycles since start of simulation. To calculate the
elapsed real time, divide simtime with options.freq.

TSIM2 34

Copyright © Aeroflex Gaisler AB TSIM2

void (*event)(void (*cfunc)(), int arg, uint64 offset);

TSIM maintains an event queue to emulate time-dependant functions. The event() function inserts an event in
the event queue. An event consists of a function to be called when the event expires, an argument with which
the function is called, and an offset (relative the current time) defining when the event should expire. NOTE:
the event() function may NOT be called from a signal handler installed by the I/O module, but only from event
callbacks or at start of simulation. The event queue can hold a maximum of 2048 events. NOTE: for save and
restore support, restorable events should be used instead.

void (*stop_event)(void (*cfunc)());

stop_event() will remove all events from the event queue which has the calling function equal to cfunc().
NOTE: the stop_event() function may NOT be called from a signal handler installed by the I/O module.

int *irl;

Current IU interrupt level. Should not be used by I/O functions unless they explicitly monitor theses lines.

void (*sys_reset)();

Performs a system reset. Should only be used if the I/O device is capable of driving the reset input.

void (*sim_stop)();

Stops current simulation. Can be used for debugging purposes if manual intervention is needed after a certain
event.

char *args;

Arguments supplied when starting tsim. The arguments are concaterated as a single string.

void (*stop_event_arg)(void (*cfunc)(),int arg,int op);

Similar to stop_event() but differentiates between 2 events with same cfunc but with different arg given when
inserted into the event queue via event(). Used when simulating multiple instances of an entity. Parameter op
should be 1 to enable the arg check.

unsigned short (*reg_revent)(void (*cfunc) (unsigned long arg));

Registers a restorable event that will use cfunc as callback. The returned index should be used when calling
revent(). The event argument is supplied when calling revent(). The call to reg_revent() should be done once
at I/O or AHB module initialization.

unsigned short (*reg_revent_prearg)(void (*cfunc) (unsigned long arg),
unsigned long arg);

Registers a restorable event that will use cfunc as callback and arg as argument. This can be used to register an
argument that is a pointer to a data structure. The returned index should be used when calling revent_prearg().
The call to reg_revent_prearg() should be done once at I/O or AHB module initialization.

int (*revent)(unsigned short index, unsigned long arg, uint64 offset);

This inserts an event registered by reg_revent() into the event queue with the registered cfunc for the given
index. Multiple events with the same index can be in the event queue at the same time. The arg and offset argu-
ments are the same as for the event() function. NOTE: see the description of event() for limitations on number
of events and from which contexts events can be added.

int (*revent_prearg)(unsigned short index, uint64 offset);

TSIM2 35

Copyright © Aeroflex Gaisler AB TSIM2

This inserts an event registered by reg_revent_prearg() into the event queue with the registered cfunc and arg
for the given index. Multiple events with the same index can be in the event queue at the same time. The offset
argument is the same as for the event() function. NOTE: see the description of event() for limitations on num-
ber of events and from which contexts events can be added.

void (*stop_revent)(unsigned short index);

This removes all events from the event queue that has been entered by revent() or revent_prearg() using the
given index. NOTE: the stop_revent() function may NOT be called from a signal handler installed by the I/O
module.

5.1.2 ioif structure

ioif is defined in sim.h:

structio_interface {
void (*set_irq)(int irq, int level);
int (*dma_read)(uint32 addr, uint32 *data, int num);
int (*dma_write)(uint32 addr, uint32 *data, int num);

};
extern struct io_interface ioif; /* exported processor interface */

The elements of the structure have the following meaning:

void (*set_irq)(int irq, int level);

ERC32 use: drive the external MEC interrupt signal. Valid interrupts are 0 - 5 (corresponding to MEC external
interrupt 0 - 4, and EWDINT) and valid levels are 0 or 1. Note that the MEC interrupt shape register controls
how and when processor interrupts are actually generated. When -nouart has been used, MEC interrupts 4, 5
and 7 can be generated by calling set_irq() with irq 6, 7 and 9 (level is not used in this case).

LEON use: set the interrupt pending bit for interrupt irq. Valid values on irq is 1 - 15. Care should be taken not
to set interrupts used by the LEON emulated peripherals. Note that the LEON interrupt control register con-
trols how and when processor interrupts are actually generated. Note that level is not used with LEON.

int (*dma_read)(uint32 addr, uint32 *data, int num);
int (*dma_write)(uint32 addr, uint32 *data, int num);

Performs DMA transactions to/from the emulated processor memory. Only 32-bit word transfers are allowed,
and the address must be word aligned. On bus error, 1 is returned, otherwise 0. For ERC32, the DMA transfer
uses the external DMA interface. For LEON, DMA takes place on the AMBA AHB bus.

5.1.3 Structure to be provided by I/O device

io.h defines the structure to be provided by the emulated I/O device:

struct io_subsystem {
void (*io_init)(struct sim_interface sif, struct io_interface iif);/* start-up */
void (*io_exit)(); /* called once on exit */
void (*io_reset)(); /* called on processor reset */
void (*io_restart)(); /* called on simulator restart */
int (*io_read)(unsigned int addr, int *data, int *ws);
int (*io_write)(unsigned int addr, int *data, int *ws, int size);
char *(*get_io_ptr)(unsigned int addr, int size);
void (*command)(char * cmd);/* I/O specific commands */
void (*sigio)();/* called when SIGIO occurs */
void (*save)(char *fname);/* save simulation state */
void (*restore)(char *fname);/* restore simulation state */

};
extern struct io_subsystem *iosystem; /* imported I/O emulation functions */

The elements of the structure have the following meanings:

void (*io_init)(struct sim_interface sif, struct io_interface iif);

TSIM2 36

Copyright © Aeroflex Gaisler AB TSIM2

Called once on simulator startup. Set to NULL if unused.

void (*io_exit)();

Called once on simulator exit. Set to NULL if unused.

void (*io_reset)();

Called every time the processor is reset (i.e also startup). Set to NULL if unused.

void (*io_restart)();

Called every time the simulator is restarted (simtime set to zero). Set to NULL if unused.

int (*io_read)(unsigned int addr, int *data, int *ws);

Processor read call. The processor always reads one full 32-bit word from addr. The data should be returned in
*data, the number of waitstates should be returned in *ws. If the access would fail (illegal address etc.), 1
should be returned, on success 0.

int (*io_write)(unsigned int addr, int *data, int *ws, int size);

Processor write call. The size of the written data is indicated in size: 0 = byte, 1 = half-word, 2 = word, 3 =
doubleword. The address is provided in addr, and is always aligned with respect to the size of the written data.
The number of waitstates should be returned in *ws. If the access would fail (illegal address etc.), 1 should be
returned, on success 0.

char * (*get_io_ptr)(unsigned int addr, int size);

TSIM can access emulated memory in the I/O device in two ways: either through the io_read/io_write func-
tions or directly through a memory pointer. get_io_ptr() is called with the target address and transfer size (in
bytes), and should return a character pointer to the emulated memory array if the address and size is within the
range of the emulated memory. If outside the range, -1 should be returned. Set to NULL if not used.

int (*command)(char * cmd);

The I/O module can optionally receive command-line commands. A command is first sent to the AHB and I/
O modules, and if not recognised, the to TSIM. command() is called with the full command string in *cmd.
Should return 1 if the command is recognized, otherwise 0. TSIM/ERC32 also calls this callback when the
SYSAV bit in the ERSR register changes. The commands “sysav 0” and “sysav 1” are then issued. When
TSIM commands are issued through the gdb ‘monitor’ command, a return value of 0 or 1 will result in an
‘OK’ response to the gdb command. A return value > 1 will send the value itself as the gdb response. A return
value < 1 will truncate the lsb 8 bits and send them back as a gdb error response: ‘Enn’.

void (*sigio)();

Not used as of tsim-1.2, kept for compatibility reasons.

void (*save)(char *fname);

The save() function is called when save command is issued in the simulator. The I/O module should save any
required state which is needed to completely restore the state at a later stage. *fname points to the base file
name which is used by TSIM. TSIM saves its internal state to fname.tss. It is suggested that the I/O module
save its state to fname.ios. Note that any events placed in the event queue by the I/O module will be saved (and
restored) by TSIM.

void (*restore)(char *fname);

The restore() function is called when restore command is issued in the simulator. The I/O module should
restore any required state to resume operation from a saved check-point. *fname points to the base file name
which is used by TSIM. TSIM restores its internal state from fname.tss.

TSIM2 37

Copyright © Aeroflex Gaisler AB TSIM2

5.1.4 Cygwin specific io_init()

Due to problems of resolving cross-referenced symbols in the module loading when using Cygwin, the
io_init() routine in the I/O module must initialise a local copy of simif and ioif. This is done by providing the
following io_init() routine:

static void io_init(struct sim_interface sif, struct io_interface iif)
{
#ifdef __CYGWIN32__
/* Do not remove, needed when compiling on Cygwin! */

simif = sif;
ioif = iif;

#endif
/* additional init code goes here */
};

The same method is also used in the AHB and FPU/CP modules.

TSIM2 38

Copyright © Aeroflex Gaisler AB TSIM2

5.2 LEON AHB emulation interface

In addition to the above described I/O modules, TSIM also allows emulation of the LEON2/3/4 processor core
with a completely user-defined memory and I/O architecture. This is in other words not applicable to ERC32.
By loading an AHB module (ahb.so), the internal memory emulation is disabled. The emulated processor core
communicates with the AHB module using an interface similar to the AHB master interface in the real LEON
VHDL model. The AHB module can then emulate the complete AHB bus and all attached units.

The AHB module interface is made up of two parts; one that is exported by TSIM and defines TSIM functions
and data structures that can be used by the AHB module; and one that is exported by the AHB module and
allows TSIM to access the emulated AHB devices.

At start-up, TSIM searches for ‘ahb.so’ in the current directory, but the location of the module can be specified
using the -ahbm switch. Note that the module must be compiled to be position-independent, i.e. with the -
fPIC switch (gcc). The win32 version of TSIM loads ahb.dll instead of ahb.so. See the iomod directory in the
TSIM distribution for an example ahb.c and how to build the .so /.dll modules. The enviromental variable
TSIM_MODULE_PATH can be set to a ‘:’ separated (‘;’ in WIN32) list of search paths.

5.2.1 procif structure

TSIM exports one structure for AHB emulation: procif. The procif structure defines a few functions giving
access to the processor emulation and cache behaviour. The procif structure is defined in tsim.h:

struct proc_interface {
void (*set_irl)(int level); /* generate external interrupt */
void (*cache_snoop)(uint32 addr);
void (*cctrl)(uint32 *data, uint32 read);
void (*power_down)();
void (*set_irq_level)(int level, int set);
void (*set_irq)(uint32 irq, uint32 level); /* generate external interrupt */

};
extern struct proc_interface procif;

The elements in the structure have the following meaning:

void (*set_irl)(int level);

Set the current interrupt level (iui.irl in VHDL model). Allowed values are 0 - 15, with 0 meaning no pending
interrupt. Once the interrupt level is set, it will remain until it is changed by a new call to set_irl(). The mod-
ules interrupt callback routine should typically reset the interrupt level to avoid new interrupts.

void (*cache_snoop)(uint32 addr);

The cache_snoop() function emulates the data cache snooping of the processor. The tags to the given address
will be checked, and if a match is detected the corresponding cacheline will be flushed (= the tag will be
cleared).

void (*cctrl)(uint32 *data, uint32 read);

Read and write the cache control register (CCR). The CCR is attached to the APB bus in the LEON2 VHDL
model, and this function can be called by the AHB module to read and write the register. If read = 1, the CCR
value is returned in *data, else the value of *data is written to the CCR. The cctrl() function is only needed for
LEON2 emulation, since LEON3/4 accesses the cache controller through a separate ASI load/store instruc-
tion.

void (*power_down)();

The LEON processor enters power down-mode when called.

TSIM2 39

Copyright © Aeroflex Gaisler AB TSIM2

void (*set_irq_level)(int level, int set);

Callback set_irq_level can be used to emulate level triggered interrupts. Parameter set should be 1 to activate
the interupt level specified in parameter level or 0 to reset it. The interrupt level will remain active after it is
set until it is reset again. Multiple calls can be made with different level parameters in which case the highest
level is used.

void (*set_irq)(uint32 irq, uint32 level);

Set the interrupt pending bit for interrupt irq. Valid values on irq is 1 - 15. Care should be taken not to set
interrupts used by the LEON emulated peripherals. Note that the LEON interrupt control register controls how
and when processor interrupts are actually generated.

TSIM2 40

Copyright © Aeroflex Gaisler AB TSIM2

5.2.2 Structure to be provided by AHB module

tsim.h defines the structure to be provided by the emulated AHB module:

struct ahb_access {
uint32 address;
uint32 *data;
uint32 ws;
uint32 rnum;
uint32 wsize;
uint32 cache;

};
struct pp_amba {

int is_apb;
unsigned int vendor, device, version, irq;
struct {

unsigned int addr, p, c, mask, type;
} bars[4];

};
struct ahb_subsystem {

void (*init)(); /* called once on start-up */
void (*exit)(); /* called once on exit */
void (*reset)(); /* called on processor reset */
void (*restart)(); /* called on simulator restart */
int (*read)(struct ahb_access *access);
int (*write)(struct ahb_access *access);
char *(*get_io_ptr)(unsigned int addr, int size);
int (*command)(char * cmd); /* I/O specific commands */
int (*sigio)(); /* called when SIGIO occurs */
void (*save)(char * fname); /* save state */
void (*restore)(char * fname); /* restore state */
int (*intack)(int level); /* interrupt acknowledge */
int (*plugandplay)(struct pp_amba **); /* LEON3/4: get plug & play information */
void (*intpend)(unsigned int pend); /* LEON3/4 only: interrupt pending change */
int meminit; /* tell tsim weather to initialize mem */
struct sim_interface *simif; /* initialized by tsim */
unsigned char *(*get_mem_ptr_ws)(); /* initialized if meminit was set */
void (*snoop) (unsigned int addr); /* initialized with cache snoop routine */
struct io_interface *io; /* initialized by tsim */
void (*dprint)(char *p); /* initialized by tsim, prints out a debug string */
struct proc_interface *proc; /* initialized by tsim, access to proc_interface */

};
extern struct ahb_subsystem *ahbsystem; /* imported AHB emulation functions */

The elements of the structure have the following meanings:

void (*init)(struct sim_interface sif, struct io_interface iif);

Called once on simulator startup. Set to NULL if unused.

void (*exit)();

Called once on simulator exit. Set to NULL if unused.

void (*reset)();

Called every time the processor is reset (i.e. also startup). Set to NULL if unused.

void (*restart)();

Called every time the simulator is restarted (simtime set to zero). Set to NULL if unused.

int (*read)(struct ahb_access *ahbacc);

Processor AHB read. The processor always reads one or more 32-bit words from the AHB bus. The
ahb_access structure contains the access parameters: access.addr = read address; access.data = pointer to the
first read data; access.ws = should return the number of AHB waitstates used for the complete access;
access.rnum = number of words read (1 - 8); access.wsize = not used during read cycles; access.cache =

TSIM2 41

Copyright © Aeroflex Gaisler AB TSIM2

should return 1 if the access is cacheable, else 0. Return values: 0 = access succeeded; 1 = access failed, gen-
erate memory exception; -1 = undecoded area, continue to decode address (I/O module or LEON registers).

int (*write)(struct ahb_access *ahbacc);

Processor AHB write. The processor can write 1, 2, 4 or 8 bytes per access. The access parameters are as for
read() with the following changes: access.data = pointer to first write data; access.rnum = not used;
access.wsize = defines write size as follows: 0 = byte, 1 = half-word, 2 = word, 3 = double-word. Return val-
ues as for read()

char * (*get_io_ptr)(unsigned int addr, int size);

During file load operations and displaying of memory contents, TSIM will access emulated memory through
a memory pointer. get_io_ptr() is called with the target address and transfer size (in bytes), and should return
a character pointer to the emulated memory array if the address and size is within the range of the emulated
memory. If outside the range, -1 should be returned. Set to NULL if not used.

int (*command)(char * cmd);

The AHB module can optionally receive command-line commands. A command is first sent to the AHB and I/
O modules, and if not recognised, then to TSIM. command() is called with the full command string in *cmd.
Should return 1 if the command is recognized, otherwise 0. When TSIM commands are issued through the
gdb ‘monitor’ command, a return value of 0 or 1 will result in an ‘OK’ response to the gdb command. A return
value > 1 will send the value itself as the gdb response. A return value < 1 will truncate the lsb 8 bits and send
them back as a gdb error response: ‘Enn’.

void (*save)(char *fname);

The save() function is called when save command is issued in the simulator. The AHB module should save
any required state which is needed to completely restore the state at a later stage. *fname points to the base file
name which is used by TSIM. TSIM save its internal state to fname.tss. It is suggested that the AHB module
save its state to fname.ahs. Note that any events placed in the event queue by the AHB module will be saved
(and restored) by TSIM.

void (*restore)(char * fname);

The restore() function is called when restore command is issued in the simulator. The AHB module should
restore any required state to resume operation from a saved check-point. *fname points to the base file name
which is used by TSIM. TSIM restores its internal state from fname.tss.

int (*intack)(int level);

intack() is called when the processor takes an interrupt trap (tt = 0x11 - 0x1f). The level of the taken interrupt
is passed in level. This callback can be used to implement interrupt controllers. intack() should return 1 if the
interrupt acknowledgement was handled by the AHB module, otherwise 0. If 0 is returned, the default LEON
interrupt controller will receive the intack instead.

int (*plugandplay)(struct pp_amba **p);

Leon3/4 only: The plugandplay() function is called at startup. plugandplay() should return in p a static pointer
to an array of structs of type pp_amba and return the number of entries in the array. The callback plugand-
play() is used to add entries in the AHB and APB configuration space. Each struct pp_amba entry specifies an
entry: If is_apb is set to 1 the entry will apear in the APB configuration space and only member bars[0] will be
used. If is_apb is 0 then the entry will apear in the AHB slave configuration space and bars[0-3] will be used.
If is_apb is 2 then the entry will apear in the AHB master configuration space and bars[0-3] will be used. The
members of the struct resemble the fields in a configuration space entries. The entry is mapped to the first free
slot.

void (*intpend)(unsigned int pend);

TSIM2 42

Copyright © Aeroflex Gaisler AB TSIM2

Leon3/4 only: The intpend() function is called when the set of pending interrupts changes. The pend argument
is a bitmask with the bits of pending interrupts set to 1.

int meminit;

The AHB module should initialize meminit with 1 if tsim should initialize and emulate ram/sdram/rom mem-
ory. Calls to read and write should return -1 (undecoded area) for the memory regions in which case tsim will
handle them. If meminit is left 0 the AHB module itself should emulate the memory address regions.

struct sim_interface *simif;

Entry simif is initialized by tsim with the global struct sim_interface structure.

unsigned char *(*get_mem_ptr_ws) (unsigned int addr, int size, int *wws,
 int *rws)

If meminit was set to 1 tsim will initialize get_mem_ptr_ws with a callback that can be used to query a pointer
to the host memory emulating the LEON’s memory, along with waitstate information. Note that the host
memory pointer returned is in the hosts byte order (normally little endian on a PC). The size parameter should
be the length of the access (1 for byte, 2 for short, 4 for word and 8 for double word access). The wws and rws
parameters will return the calculated write and read waitstates for a possible access.

void (*snoop) (unsigned int addr)

The callback snoop is initialized by tsim and can be called to flush a cache line for address addr.

struct io_interface *io;

Initialized with the I/O interface structure pointer.

void (*dprint)(char *);

Initialized by tsim with a callback pointer to the debug output function.

struct proc_interface *proc;

Initialized with the procif structure pointer.

5.2.3 Big versus little endianess

SPARC conforms to the big endian byte ordering. This means that the most significant byte of a (half) word
has lowest address. To execute efficiently on little-endian hosts (such as intel x86 PCs), emulated memory is
organised on word basis with the bytes within a word arranged according the endianess of the host. Read
cycles can then be performed without any conversion since SPARC always reads a full 32-bit word. During
byte and half word writes, care must be taken to insert the written data properly into the emulated memory. On
a byte-write to address 0, the written byte should be inserted at address 3, since this is the most significant
byte according to little endian. Similarly, on a half-word write to bytes 0/1, bytes 2/3 should be written. For a
complete example, see the prom emulation function in io.c.

TSIM2 43

Copyright © Aeroflex Gaisler AB TSIM2

5.3 TSIM/LEON co-processor emulation

5.3.1 FPU/CP interface

The professional version of TSIM/LEON can emulate a user-defined floating-point unit (FPU) and co-proces-
sor (CP). The FPU and CP are included into the simulator using loadable modules. To access the module, use
the structure ‘cp_interface’ defined in io.h. The structure contains a number of functions and variables that
must be provided by the emulated FPU/CP:

/* structure of function to be provided by an external co-processor */
struct cp_interface {

void (*cp_init)(); /* called once on
start-up */
void (*cp_exit)(); /* called once on
exit */
void (*cp_reset)(); /* called on
processor reset */
void (*cp_restart)(); /* called on
simulator restart */
uint32 (*cp_reg)(int reg, uint32 data, int read);
int (*cp_load)(int reg, uint32 data, int *hold);
int (*cp_store)(int reg, uint32 *data, int *hold);
int (*cp_exec)(uint32 pc, uint32 inst, int *hold);
int (*cp_cc)(int *cc, int *hold); /* get condition codes */
int *cp_status; /* unit status */
void (*cp_print)(); /* print registers
*/
int (*command)(char * cmd); /* CP specific
commands */

 int set_fsr(uint32 fsr); /* initialized by tsim */
};
extern struct cp_interface *cp; /* imported co-processor emulation functions */

5.3.2 Structure elements

void (*cp_init)(struct sim_interface sif, struct io_interface iif);

Called once on simulator startup. Set to NULL if not used.

void (*cp_exit)();

Called once on simulator exit. Set to NULL if not used.

void (*cp_reset)();

Called every time the processor is reset. Set to NULL if not used.

void (*cp_restart)();

Called every time the simulator is restarted. Set to NULL if not used.

uint32 (*cp_reg)(int reg, uint32 data, int read);

Used by the simulator to perform diagnostics read and write to the FPU/CP registers. Calling cp_reg() should
not have any side-effects on the FPU/CP status. ‘reg’ indicates which register to access: 0-31 indicates %f0-
%f31/%c0- %31, 34 indicates %fsr/%csr. ‘read’ indicates read or write access: read==0 indicates write
access, read!=0 indicates read access. Written data is passed in ‘data’, the return value contains the read value
on read accesses.

int (*cp_load)(int reg, uint32 data, int *hold);

Used to perform FPU/CP load instructions. ‘reg’ indicates which register to access: 0-31 indicates %f0-%f31/
%c0- %31, 34 indicates %fsr/%csr. Loaded data is passed in ‘data’. If data dependency is emulated, the num-
ber of stall cycles should be return in *hold. The return value should be zero if no trap occurred or the trap

TSIM2 44

Copyright © Aeroflex Gaisler AB TSIM2

number if a trap did occur (0x8 for the FPU, 0x28 for CP). A trap can occur if the FPU/CP is in
exception_pending mode when the load is executed.

int (*cp_store)(int reg, uint32 *data, int *hold);

Used to perform FPU/CP store instructions. ‘reg’ indicates which register to access: 0-31 indicates %f0-%f31/
%c0- %31, 32 indicates %fq/%cq, 34 indicates %fsr/%csr. Stored should be assigned to *data. During a
STDFQ, the %pc should be assigned to data[0] while the instruction opcode to data[1]. If data dependency is
emulated, the number of stall cycles should be return in *hold. The return value should be zero if no trap
occurred or the trap number if a trap did occur (0x8 for the FPU, 0x28 for CP). A trap can occur if the FPU/CP
is in exception_pending mode when the store is executed.

int (*cp_exec)(uint32 pc, uint32 inst, int *hold);

Execute FPU/CP instruction. The %pc is passed in ‘pc’ and the instruction opcode in ‘inst’. If data depen-
dency is emulated, the number of stall cycles should be return in *hold. The return value should be zero if no
trap occurred or the trap number if a trap did occur (0x8 for the FPU, 0x28 for CP). A trap can occur if the
FPU/CP is in exception_pending mode when a new FPU/CP instruction is executed.

int (*cp_cc)(int *cc, int *hold); /* get condition codes */

Read condition codes. Used by FBCC/CBCC instructions. The condition codes (0 - 3) should be returned in
*cc. If data dependency is emulated, the number of stall cycles should be return in *hold. The return value
should be zero if no trap occurred or the trap number if a trap did occur (0x8 for the FPU, 0x28 for CP). A trap
can occur if the FPU/CP is in exception_pending mode when a FBCC/CBCC instruction is executed.

int *cp_status;/* unit status */

Should contain the FPU/CP execution status: 0 = execute_mode, 1 = exception_pending, 2 = exception_mode.

void (*cp_print)();/* print registers */

Should print the FPU/CP registers to stdio.

int (*command)(char * cmd); /* CP specific commands */

User defined FPU/CP control commands. NOT YET IMPLEMENTED.

int (*set_fsr)(char * cmd); /* initialized by tsim */

This callback is initialized by tsim and can be called to set the FPU status register.

5.3.3 Attaching the FPU and CP

At startup the simulator tries to load two dynamic link libraries containing an external FPU or CP. The simula-
tor looks for the file fp.so and cp.so in the current directory and in the search path defined by ldconfig. The
location of the modules can also be defined using -cpm and -fpm switches. The enviromental variable
TSIM_MODULE_PATH can be set to a ‘:’ separated (‘;’ in WIN32) list of search paths. Each library is
searched for a pointer ‘cp’ that points to a cp_interface structure describing the co-processor. Below is an
example from fp.c:

struct cp_interface test_fpu = {
cp_init, /* cp_init */
NULL, /* cp_exit */
cp_init, /* cp_reset */
cp_init, /* cp_restart */
cp_reg, /* cp_reg */
cp_load, /* cp_load */
cp_store, /* cp_store */
fpmeiko, /* cp_exec */
cp_cc, /* cp_cc */
&fpregs.fpstate,/* cp_status */

TSIM2 45

Copyright © Aeroflex Gaisler AB TSIM2

cp_print, /* cp_print */
NULL /* cp_command */

};
struct cp_interface *cp = &test_fpu; /* Attach pointer!! */

5.3.4 Big versus little endianess

SPARC is conforms to the big-endian byte ordering. This means that the most significant byte of a (half) word
has lowest address. To execute efficiently on little-endian hosts (such as intel x86 PCs), emulated register-file
is organised on word basis with the bytes within a word arranged according the endianess of the host. Double
words are also in host order, and the read/write register functions must therefore invert the lsb of the register
address when performing word access on little-endian hosts. Se the file fp.c for examples (cp_load(),
cp_store()).

5.3.5 Additional TSIM commands

float Shows the registers of the FPU

cp Shows the registers of the CP

5.3.6 Example FPU

The file fp.c contains a complete SPARC FPU using the co-processor interface. It can be used as a template
for implementation of other co-processors. Note that data-dependency checking for correct timing is not
implemented in this version (it is however implemented in the built-in version of TSIM).

TSIM2 46

Copyright © Aeroflex Gaisler AB TSIM2

6 TSIM library (TLIB)

6.1 Introduction

TSIM is also available as a library, allowing the simulator to be integrated in a larger simulation frame-work.
The various TSIM commands and options are accessible through a simple function interface. I/O functions
can be added, and use a similar interface to the loadable I/O modules described earlier.

6.2 Function interface

The following functions are provided to access TSIM features:

int tsim_init (char *option);/* initialise tsim with optional params. */

Initialize TSIM - must be called before any other TSIM function (except tsim_set_diag()) are used. The
options string can contain any valid TSIM startup option (as used for the standalone simulator), with the
exception that no filenames for files to be loaded into memory may be given. tsim_init() may only be called
once, use the TSIM reset command to reset the simulator without exiting. tsim_init() will return 1 on success
or 0 on failure.

int tsim_cmd (char *cmd);/* execute tsim command */

Execute TSIM command. Any valid TSIM command-line command may be given. The following return val-
ues are defined:

SIGINT Simulation stopped due to interrupt

SIGHUP Simulation stopped normally

SIGTRAP Simulation stopped due to breakpoint hit

SIGSEGV Simulation stopped due to processor in error mode

SIGTERM Simulation stopped due to program termination

void tsim_exit (int val);

Should be called to cleanup TSIM internal state before main program exits.

void tsim_get_regs (unsigned int *regs);

Get SPARC registers. regs is a pointer to an array of integers, see tsim.h for how the various registers are
indexed.

void tsim_set_regs (unsigned int *regs);

Set SPARC registers. *regs is a pointer to an array of integers, see tsim.h for how the various registers are
indexed.

void tsim_disas(unsigned int addr, int num);

Disassemble memory. addr indicates which address to disassemble, num indicates how many instructions.

void tsim_set_diag (void (*cfunc)(char *));

Set console output function. By default, TSIM writes all diagnostics and console messages on stdout.
tsim_set_diag() can be used to direct all output to a user defined routine. The user function is called with a sin-
gle string parameter containing the message to be written.

TSIM2 47

Copyright © Aeroflex Gaisler AB TSIM2

void tsim_set_callback (void (*cfunc)(void));

Set the debug callback function. Calling tsim_set_callback() with a function pointer will cause TSIM to call
the callback function after each executed instruction, when the history is enabled. History can be enabled
with the tsim_cmd() function.

void tsim_gdb (unsigned char (*inchar)(), void (*outchar)(unsigned char c));

Controls the simulator using the gdb ‘extended-remote’ protocol. The inchar parameter is a pointer to a func-
tion that when called, returns next character from the gdb link. The outchar parameter is a pointer to a function
that sends one character to the gdb link.

void tsim_read(unsigned int addr, unsigned int *data);

Performs a read from addr, returning the value in *data. Only for diagnostic use.

void tsim_write(unsigned int addr, unsigned int data);

Performs a write to addr, with value data. Only for diagnostic use.

void tsim_stop_event(void (*cfunc)(), int arg, int op);

tsim_stop_event() can remove certain event depending on the setting of arg and op. If op = 0, all instance of
the callback function cfunc will be removed. If op = 1, events with the argument = arg will be removed. If op
= 2, only the first (earliest) of the events with the argument = arg will be removed. NOTE: the stop_event()
function may NOT be called from a signal handler installed by the I/O module.

void tsim_inc_time(uint64);

tsim_inc_time() will increment the simulator time without executing any instructions. The event queue is
evaluated during the advancement of time and the event callbacks are properly called. Can not be called from
event handlers.

int tsim_trap(int (*trap)(int tt), void (*rett)());

tsim_trap() is used to install callback functions that are called every time the processor takes a trap or returns
from a trap (RETT instruction). The trap() function is called with one argument (tt) that contains the SPARC
trap number. If tsim_trap() returns with 0, execution will continue. A non-zero return value will stop simula-
tion with the program counter pointing to the instruction that will cause the trap. The rett() function is called
when the program counter points to the RETT instruction but before the instruction is executed. The callbacks
are removed by calling tsim_trap() with a NULL arguments.

int tsim_cov_get(int start, int end, char *ptr);

tsim_cov_get() will return the coverage data for the address range >= start and < end. The coverage data will
be written to a char array pointed to by *ptr, starting at ptr[0]. One character per 32-bit word in the address
range will be written. The user must assure that the char array is large enough to hold the coverage data.

int tsim_cov_set(int start, int end, char val);

tsim_cov_set() will fill the coverage data in the address range limited by start and end (see above for defini-
tion) with the value of val.

int tsim_ext_ins (int (*func) (struct ins_interface *r));

tsim_ext_ins() installs a handler for custom instructions. func is a pointer to an instruction emulation function
as described in “Custom instruction emulation” on page 23. Calling tsim_ext_ins() with a NULL pointer will
remove the handler.

TSIM2 48

Copyright © Aeroflex Gaisler AB TSIM2

int tsim_lastbp (int *addr)

When simulation stopped due to breakpoint or watchpoint hit (SIGTRAP), this function will return the
address of the break/watchpoint in *addr. The function return value indicates the break cause; 0 = breakpoint,
1 = watchpoint.

6.3 AHB modules

AHB modules can be loaded by adding the “-ahbm <name>” switch to the tsim_init() string when starting.
See the section on AHB modules for further information.

6.4 I/O interface

The TSIM library uses the same I/O interface as the standalone simulator. Instead of loading a shared library
containing the I/O module, the I/O module is linked with the main program. The I/O functions (and the main
program) has the same access to the exported simulator interface (simif and ioif) as described in the loadable
module interface. The TSIM library imports the I/O structure pointer, iosystem, which must be defined in the
main program.

An example I/O module is provided in tlib/<platform>/io.c, which shows how to add a prom.

A second example I/O module is provided in simple_io.c This module provides a simpler interface to attach I/
O functions. The following interface is provided:

void tsim_set_ioread (void (*cfunc)(int address, int *data, int *ws));

This function is used to pass a pointer to a user function which is to be called by TSIM when an I/O read
access is made. The user function is called with the address of the access, a pointer to where the read data
should be returned, and a pointer to a waitstate variable that should be set to the number of waitstates that the
access took.

void tsim_set_iowrite (void (*cfunc)(int address, int *data, int *ws, int size));

This function is used to pass a pointer to a user function which is to be called by TSIM when an I/O write
access is made. The user function is called with the address of the access, a pointer to the data to be written, a
pointer to a waitstate variable that should be set to the number of waitstates that the access took, and the size
of the access (0=byte, 1=half-word, 2=word, 3=double-word).

6.5 UART handling

By default, the library is using the same UART handling as the standalone simulator. This means that the
UARTs can be connected to the console, or any unix device (pseudo-ttys, pipes, fifos). If the UARTs are to be
handled by the user’s I/O emulation routines, tsim_init() should be called with ‘-nouart’, which will disable all
internal UART emulation. Any access to the UART register by an application will then be routed to the I/O
module read/write functions.

6.6 Linking a TLIB application

Three sample application are provided, one that uses the simplified I/O interface (app1.c), and two that uses
the standard loadable module interface (app2 and app3). They are built by doing a ‘make all’ in the tlib direc-
tory. The win32 version of TSIM provides the library as a DLL, for all other platform a static library is pro-
vided (.a). Support for dynamic libraries on linux or solaris is not availabe.

TSIM2 49

Copyright © Aeroflex Gaisler AB TSIM2

6.7 Limitations

On Windows/cygwin hosts TSIM is not capable of reading UART A/B from the console, only writing is pos-
sible. If reading of UART A/B is necessary, the simulator should be started with -nouart, and emulation of the
UARTs should be handled by the I/O module.

TSIM2 50

Copyright © Aeroflex Gaisler AB TSIM2

7 Aeroflex UT699/UT699e AHB module

7.1 Overview

This chapter describes the UT699 loadable AHB module for the TSIM2 simulator. The AHB module provides
simulation models for the Ethernet, SpaceWire, PCI, GPIO and CAN cores in the UT699 processor. For more
information about this chip see the Aeroflex UT699 user manual.

The interfaces are modelled at packet/transaction/message level and provides an easy way to connect the sim-
ulated UT699 to a larger simulation framework.

The following files are delivered with the UT699 TSIM module:

7.2 Loading the module

The module is loaded using the TSIM2 option -ahbm. All core specific options described in the following sec-
tions need to be surrounded by the options -designinput and -designinputend, e.g:

On Linux:

tsim-leon3 -ut699 -ahbm ./ut699/linux/ut699.so

File Description

ut699/linux/ut699.so UT699 AHB module for Linux

ut699/linux/ut699e.so UT699e AHB module for Linux

ut699/win32/ut699.dll UT699 AHB module for Windows

ut699/win32/ut699e.dll UT699e AHB module for Windows

Input The input directory contains two examples of PCI user modules

ut699/examples/input/README.txt Description of the user module examples

ut699/examples/input/Makefile Makefile for building the user modules

ut699/examples/input/pci.c PCI user module example that makes UT699 PCI initiator
accesses

ut699/examples/input/pci_target.c PCI user module example that makes UT699 PCI target accesses

ut699/examples/input/gpio.c GPIO user module example

ut699/examples/input/ut699inputprovider.h Interface between the UT699 module and the user defined PCI
module

ut699/examples/input/pci_input.h UT699 PCI input provider definitions

ut699/examples/input/input.h Generic input provider definitions

ut699/examples/input/tsim.h TSIM interface definitions

ut699/examples/input/end.h Defines the endian of the local machine

Test The test directory contains tests that can be executed in TSIM

ut699/examples/test/README.txt Description of the tests

ut699/examples/test/Makefile Makefile for building the tests

ut699/examples/test/cansend.c CAN transmission test

ut699/examples/test/canrec.c CAN reception test

ut699/examples/test/pci.c PCI interface test

ut699/examples/test/pcitest.h Header file for PCI test

Table 1: Files delivered with the UT699 TSIM module

TSIM2 51

Copyright © Aeroflex Gaisler AB TSIM2

 -designinput ./ut699/examples/input/pci.so -designinputend

On Windows:

tsim-leon3 -ut699 -ahbm ut699/win32/ut699.dll
 -designinput ./ut699/examples/input/pci.dll -designinputend

The option -ut699 needs to be given to TSIM to enable the UT699 processor config-
uration. Note that when -ut699 is given, snooping will be set as non-funcional.

7.3 UT699e

To enable the UT699e version of the UT699 replace ut699.[so|dll] with ut699e.[so|dll] and option -ut699
with -ut699e. This will set:

• Snooping is enabled opposed to non-functional snooping of the -ut699

• Set UT699e build-id

• Changed MMU status/ctrl registers layout

• Use GRSPW2 instead of GRSPW1

7.4 Debugging

To enable printout of debug information the

-ut699_dbgon <flag>

switch can be used. Alternatively one can issue the “ut699_dbgon <flag>” command on the TSIM2 command
line. The debug flags that are available are described for each core in the following sections.

TSIM2 52

Copyright © Aeroflex Gaisler AB TSIM2

7.5 10/100 Mbps Ethernet Media Access Controller interface

The Ethernet core simulation model is designed to accurately model the 10/100 Ethernet MAC available in the
UT699. For core details and register specification please see the UT699 manual.

The following features are supported:

• Direct Memory Access

• Interrupts

7.5.1 Start up options

7.5.2 Commands

7.5.3 Debug flags

The following debug flags are available for the Ethernet interface. Use the them in conjunction with the
ut699_dbgon command to enable different levels of debug information.

Switch Description

-grethconnect host[:port] Connect Ethernet core to packet server to specified
server and TCP port. Default port is 2224.

Table 2: Ethernet core start up options

Switch Description

greth_connect host[:port] Connect Ethernet core to packet server to specified server and TCP port.
Default port is 2224.

greth_status Print Ethernet register status

Table 3: Ethernet core TSIM commands

Flag Trace

GAISLER_GRETH_ACC GRETH accesses

GAISLER_GRETH_L1 GRETH accesses verbose

GAISLER_GRETH_TX GRETH transmissions

GAISLER_GRETH_RX GRETH reception

GAISLER_GRETH_RXPACKET GRETH received packets

GAISLER_GRETH_RXCTRL GRETH RX packet server protocol

GAISLER_GRETH_RXBDCTRL GRETH RX buffer descriptors DMA

GAISLER_GRETH_TXCTRL GRETH TX packet server protocol

Table 4: Ethernet debug flags

TSIM2 53

Copyright © Aeroflex Gaisler AB TSIM2

7.5.4 Ethernet packet server

The simulation model relies on a packet server to receive and transmit the Ethernet packets. The packet server
should open a TCP socket which the module can connect to. The Ethernet core is connected to a packet server
using the -grethconnect start-up parameter or using the greth_connect command. An example implementation
of the packet server is included in TSIM distribution. It uses the TUN/TAP interface in Linux, or the WinPcap
library on Windows, to connect the GRETH core to a physical Ethernet LAN. This makes it easy to connect
the simulated GRETH core to real hardware.

7.5.5 Ethernet packet server protocol

Ethernet data packets have the following format. Note that each packet is prepended with a one word length
field indicating the length of the packet to come (including its header).

GAISLER_GRETH_TXPACKET GRETH transmitted packets

GAISLER_GRETH_IRQ GRETH interrupts

31 0

0x0 LENGTH

31:0 LENGTH, specifies length of packet including the header

Header

31 16 15 8 7 5 4 0

0x4 RES IPID=1 TYPE=0 RES

31:16 RES, reserved for future use

15:8 IPID, IP core ID, must equal 1 for Ethernet

7:5 TYPE, packet type, 0 for data packets

4:0 RES, reserved for future use

Payload

0x8 - Ethernet frame

Table 5: Ethernet data packet

Flag Trace

Table 4: Ethernet debug flags

TSIM2 54

Copyright © Aeroflex Gaisler AB TSIM2

7.6 SpaceWire interface with RMAP support

The UT699 AHB module contains four SpaceWire cores which accurately model the four SpaceWire links
available in the UT699. For core details and register specification please see the UT699 manual.

The following features are supported:

• Transmission and reception of SpaceWire packets

• Interrupts

• Time codes

• RMAP

• Modifying the link state

7.6.1 Start up options

X in the above options has the range 1-4.

7.6.2 Commands

X in the above commands has the range 1-4.

7.6.3 Debug flags

The following debug flags are available for the SpaceWire interfaces. Use the them in conjunction with the
ut699_dbgon command to enable different levels of debug information.

Switch Description

-grspwXconnect host:port Connect GRPSW core X to packet server at specified server and port.

-grspwXserver port Open a packet server for core X on specified port.

-grspw_normap Disable the RMAP handler.
RMAP packets will be stored to the DMA channel.

-grspw_rmap Enable the RMAP handler. All RMAP packages will be simulated in hard-
ware. Includes support for RMAP CRC. (Default)

-grspw_rmapcrc Enable support for RMAP CRC. Performs RMAP CRC checks and calcula-
tions in hardware

-grspw_rxfreq freq Set the RX frequency which is used to calculate receive performance.

-grspw_txfreq freq Set the TX frequency which is used to calculate transmission performance.

Table 6: SpaceWire core start up options

Command Description

grspwX_connect host:port Connect GRSPW core X to packet server at specified
server and TCP port.

grspwX_server port Open a packet server for core X on specified TCP port.

grspw_status Print status for all GRSPW cores.

Table 7: SpaceWire core TSIM commands

TSIM2 55

Copyright © Aeroflex Gaisler AB TSIM2

7.6.4 SpaceWire packet server

Each SpaceWire core can be configured independently as a packet server or client using either -grspwXserver
or -grspwXconnect. TCP sockets are used for establishing the connections. When acting as a server the core
can only accept a single connection.

For more flexibility, such as custom routing, an external packet server can be implemented using the protocol
specified in the following sections. Each core should then be connected to that server.

7.6.5 SpaceWire packet server protocol

The protocol used to communicate with the packet server is described below. Three different types of packets
are defined according to the table below.

Note that all packets are prepended by a one word length field which specified the length of the coming packet
including the header.

Data packet format:

Flag Trace

GAISLER_GRSPW_ACC GRSPW accesses

GAISLER_GRSPW_RXPACKET GRSPW received packets

GAISLER_GRSPW_RXCTRL GRSPW rx protocol

GAISLER_GRSPW_TXPACKET GRETH transmitted packets

GAISLER_GRSPW_TXCTRL GRETH tx protocol

Table 8: SpaceWire debug flags

Type Value

Data 0

Time code 1

Modify link state 2

Table 9: Packet types

31 0

0x0 LENGTH

31:0 LENGTH, specifies length of packet including the header

Header

31 16 15 8 7 5 4 1 0

0x4 RES IPID=0 TYPE=0 RES EEP

Table 10: SpaceWire data packet

TSIM2 56

Copyright © Aeroflex Gaisler AB TSIM2

Time code packet format:

Link state packet format:

31:16 RES, reserved for future use

15:8 IPID, IP core ID, must equal 0 for SpaceWire

7:5 TYPE, packet type, 0 for data packets

4:1 RES, reserved for future use, must be set to 0

0 EEP, Error End of Packet.
Set when the packet is truncated and terminated by an EEP.

Payload

0x8 - SpaceWire packet

31 0

0x0 LENGTH

31:0 LENGTH, specifies length of packet including the header.

Header

31 16 15 8 7 5 4 0

0x4 RES IPID=0 TYPE=1 RES

31:16 RES, reserved for future use, must be set to 0

15:8 IPID, IP core ID, must equal 0 for SpaceWire

7:5 TYPE, packet type, 1 for time code packets

4:0 RES, reserved for future use, must be set to 0

Payload

31 8 7 6 5 0

0x8 CT CN

31:8 RES, reserved for future use, must be set to 0

7:6 CT, time control flags

5:0 CN, value of time counter

Table 11: SpaceWire time code packet

31 0

0x0 LENGTH

31:0 LENGTH, specifies length of packet including the header.

Header

31 15 8 7 5 4 3 2 0

0x4 RES IPID=0 TYPE=2 RES LS

31:16 RES, reserved for future use, must be set to 0

Table 12: SpaceWire link state packet

Table 10: SpaceWire data packet

TSIM2 57

Copyright © Aeroflex Gaisler AB TSIM2

15:8 IPID, IP core ID, must equal 0 for SpaceWire

7:5 TYPE, packet type, 2 for link state packets

4:3 RES, reserved for future use, must be set to 0

2:0 LS, Link State: 0 Error reset

1 Error wait

2 Ready

3 Started

4 Connecting

5 Run

Table 12: SpaceWire link state packet

TSIM2 58

Copyright © Aeroflex Gaisler AB TSIM2

7.7 PCI initiator/target and GPIO interface

The UT699 AHB module models the GPIO and PCI core available in the UT699 ASIC. For core details and
register specification please see the UT699 manual [UT699].

The GPIO/PCI emulation is implemented by a two stage model:

1. The TSIM AHB module ut699.dll implements the GPIO and PCI core itself
2. A user supplied dynamic library models the devices on the PCI bus and the GPIO pins.

To load a user supplied dynamic library use the following command line switch:

 -designinput <pciexample> <switches> -designinputend

This will load a user supplied dynamic library “pciexample”. In addition the switches between -designinput
and -designinputend are local switches only propagated to the user dynamic library “pciexample”.

7.7.1 Commands

pci_status Print status for the PCI core

7.7.2 Debug flags

The following debug flags are available for the PCI interface. Use the them in conjunction with the
ut699_dbgon command to enable different levels of debug information.

Flag Trace

GAISLER_GRPCI_ACC AHB accesses to/from PCI core

GAISLER_GRPCI_REGACC GRPCI APB regster accesses

GAISLER_GRPCI_DMA_REGACC PCIDMA APB register accesses

GAISLER_GRPCI_DMA GRPCI DMA accesses on the AHB bus

GAISLER_GRPCI_TARGET_ACC GRPCI target accesses

Table 13: PCI interface debug flags

A
P

I: stru
ct g

rp
ci_

in
p
u
t

LOAD: −designinput pci.dll −designinputendLOAD: −ahbm ut699.dll

pci.dllut699.dllTSIM

User supplied

PCI BUS

TSIM2 59

Copyright © Aeroflex Gaisler AB TSIM2

7.7.3 User supplied dynamic library

The user supplied dynamic library should expose a public symbol ut699inputsystem of type struct
ut699_subsystem *. The struct ut699_subsystem is defined as:

struct ut699_subsystem {
void (*ut699_inp_setup) (int id, struct ut699_inp_layout *l, char **argv, int

argc);
 void (*ut699_inp_restart) (int id, struct ut699_inp_layout *l);
 struct sim_interface *simif;

};

At initialization the callback ut699_inp_setup will be called once, supplied with a pointer to structure struct
ut699_inp_layout.

struct ut699_inp_layout {
 struct grpci_input grpci;
 struct gpio_input gpio;
};

The callback ut699_inp_restart will be called every time the simulator restarts and the PCI user module can
access the global TSIM sim_interface structure through the simif member. See chapter 5 for more details.

The user supplied dynamic library should claim the ut699_inp_layout.grpci member of the structure by using
the INPUT_CLAIM(l->grpci) macro (see the example below). struct grpci_input consists of callbacks that
model the PCI bus (see the chapter PCI bus model API).

A typical user supplied dynamic library would look like this:

#include "tsim.h"
#include "inputprovider.h"

int pci_acc(struct grpci_input *ctrl, int cmd, unsigned int addr, unsigned int wsize,
 unsigned int *data, unsigned int *abort, unsigned int *ws) {

 ... BUS access implementation ...

}

static void ut699_inp_setup (int id, struct ut699_inp_layout *l, char **argv, int argc)
{
 printf("Entered PCI setup\n");

 if (INPUT_ISCLAIMED(l->grpci)) {
 printf("module user for PCI already allocated \n");
 return;
 }

 for(i = 0; i < argc; i++) {
 ... do argument processing ...
 }

 l->grpci.acc = pci_acc;

 ... do module setup ...

 printf("ut699_inp_setup: Claiming %s\n", l->grpci._b.name);
 INPUT_CLAIM(l->grpci);

GAISLER_GRPCI_INIT Print summary on startup

Flag Trace

Table 13: PCI interface debug flags

TSIM2 60

Copyright © Aeroflex Gaisler AB TSIM2

 return;
}

static struct ut699_subsystem ut699_pci = {
 ut699_inp_setup,0,0
};

struct ut699_subsystem *ut699inputsystem = &ut699_pci;

A typical Makefile that would create a user supplied dynamic library pci.(dll|so) from pci.c would look like
this:

M_DLL_FIX = $(if $(strip $(shell uname | grep MINGW32)),dll,so)
M_LIB = $(if $(strip $(shell uname | grep MINGW32)),-lws2_32 -luser32 -lkernel32 -

lwinmm,)
all:pci.$(M_DLL_FIX)

pci.$(M_DLL_FIX) : pci.o
$(CC) -shared -g pci.o -o pci.$(M_DLL_FIX) $(M_LIB)

pci.o: pci.c \
inputprovider.h
$(CC) -fPIC -c -g -O0 pci.c -o pci.o
clean:
-rm -f *.o *.so

7.7.4 PCI bus model API

The structure struct grpci_input models the PCI bus. It is defined as:

/* ut699 pci input provider */

struct grpci_input {
 struct input_inp _b;

 int (*acc)(struct grpci_input *ctrl, int cmd, unsigned int addr,
 unsigned int *data, unsigned int *abort, unsigned int *ws);

 int (*target_acc)(struct grpci_input *ctrl, int cmd, unsigned int addr,
 unsigned int *data, unsigned int *mexc);
};

The acc callback should be set by the PCI user module at startup. It is called by the UT699 module whenever
it reads/writes as a PCI bus master.

The return value of acc determines if the transaction terminates successfully (1) or with master abort (0).

Parameter Description

cmd Command to execute, see the PCI command table for details

addr PCI address

data Data buffer, fill for read commands, read for write commands

wsize 0: 8-bit access 1: 16-bit access, 2: 32-bit access, 3: 64-bit access.
64 bit is only used to model STD instructions to the GRPCI AHB slave

ws Number of PCI clocks it shall to complete the transaction

abort Set to 1 to generate target abort, 0 otherwise

Table 14: acc callback parameters

TSIM2 61

Copyright © Aeroflex Gaisler AB TSIM2

The callback target_acc is installed by the UT699 AHB module. The PCI user dynamic library can call this
function to initiate an access to the UT699 PCI target.

If the address matched MEMBAR0, MEMBAR1 or CONFIG target_acc will return 1 otherwise 0.

7.7.5 GPIO model API

The structure struct gpio_input models the GPIO pins. It is defined as:

/* GPIO input provider */
struct gpio_input {
 struct input_inp _b;
 int (*gpioout)(struct gpio_input *ctrl, unsigned int out);
 int (*gpioin) (struct gpio_input *ctrl, unsigned int in);
};

The gpioout callback should be set by the user module at startup. The gpioin callback is set by the U699 AHB
module. The gpioout callback is called by the UT699 module whenever a GPIO output pin changes. The gpi-
oin callback is called by the user module when the input pins should change. Typically the usermodule would
register an event handler at a certain timeoffset and call gpioin from within the event handler.

The return value of gpioin/gpioout is ignored.

Parameter Description

cmd Command to execute, see the PCI command table for details.
I/O cycles not support by UT699 target.

addr PCI address

data Data buffer, returned data for read commands, supply data for write commands

wsize 0: 8-bit access 1: 16-bit access, 2: 32-bit access

mexc 0 if access is succesful, 1 in case of target abort

Table 15: target_acc parameters

Parameter Description

out The values of the output pins

Table 16: gpioout callback parameters

Parameter Description

in The input pin values

Table 17: gpioin callback parameters

TSIM2 62

Copyright © Aeroflex Gaisler AB TSIM2

7.8 CAN interface

The UT699 AHB module contains 2 CAN_OC cores which models the 2 CAN_OC cores available in the
UT699. For core details and register specification please see the UT699 manual.

7.8.1 Start up options

X in the above options is in the range 1 to 2.

7.8.2 Commands

X in the above commands is in the range 1 to 2.

7.8.3 Debug flags

The following debug flags are available for the CAN interfaces. Use the them in conjunction with the
ut699_dbgon command to enable different levels of debug information.

Switch Description

-can_ocXconnect host:port Connect CAN_OC core X to packet server to specified server and
TCP port.

-can_ocXserver port Open a packet server for CAN_OC core X on specified TCP port.

-can_ocXack [0|1] Specifies whether the CAN_OC core will wait for a acknowledg-
ment packet on transmission.
This option must be put after -can_ocXconnect.

Table 18: CAN core start up options

Command Description

can_ocXconnect host:port Connect CAN_OC core X to packet server to specified server and
TCP port.

can_ocXserver port Open a packet server for CAN_OC core X on specified TCP port.

can_ocXack [0|1] Specifies whether the CAN_OC core will wait for a acknowledg-
ment packet on transmission. This command should only be
issued after a connection has been established.

Table 19: CAN core TSIM commands

Flag Trace

GAISLER_CAN_OC_ACC CAN_OC register accesses

GAISLER_CAN_OC_RXPACKET CAN_OC received messages

GAISLER_CAN_OC_TXPACKET CAN_OC transmitted messages

GAISLER_CAN_OC_ACK CAN_OC acknowledgements

Table 20: CAN debug flags

TSIM2 63

Copyright © Aeroflex Gaisler AB TSIM2

7.8.4 Packet server

Each CAN_OC core can be configured independently as a packet server or client using either -can_ocXserver
or -can_ocXconnect. When acting as a server the core can only accept a single connection.

7.8.5 CAN packet server protocol

The protocol used to communicate with the packet server is described below. Four different types of packets
are defined according to the table below.

CAN message packet format
Used to send and receive CAN messages.

Error counter packet format
Used to write the RX and TX error counter of the modelled CAN interface.

Type Value

Message 0x00

Error counter 0xFD

Acknowledge 0xFE

Acknowledge config 0xFF

Table 21: CAN packet types

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

CAN message

Byte # Description

Bits (MSB-LSB)

7 6 5 4 3 2 1 0

4 Protocol ID = 0 Prot ID 7-0

5 Control FF RTR - - DLC (max 8 bytes)

6-9 ID (32 bit word in network

byte order)

ID 10-0 (bits 31 - 11 ignored for standard frame format)

ID 28-0 (bits 31-29 ignored for extended frame format)

10-17 Data byte 1 - DLC Data byte n 7-0

Table 22: CAN message packet format

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Error counter packet

Table 23: Error counter packet format

TSIM2 64

Copyright © Aeroflex Gaisler AB TSIM2

Acknowledge packet format
If the acknowledge function has been enabled through the start up option or command the CAN interface will
wait for an acknowledge packet each time it transmits a message. To enable the CAN receiver to send
acknowledge packets (either NAK or ACK) an acknowledge configuration packet must be sent. This is done
automatically by the CAN interface when can_ocXack is issued.

Acknowledge configuration packet format
This packet is used for enabling/disabling the transmission of acknowledge packets and their payload (ACK
or NAK) by the CAN receiver. The CAN transmitter will always wait for an acknowledge if started with -
can_ocXack or if the can_ocXack command has been issued.

Byte # Field Description

4 Packet type Type of packet, 0xFD for error counter packets

5 Register 0 - RX error counter, 1 - TX error counter

6 Value Value to write to error counter

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Acknowledge packet

Byte # Field Description

4 Packet type Type of packet, 0xFE for acknowledge packets

5 Ack payload 0 - No acknowledge, 1 - Acknowledge

Table 24: Acknowledge packet format

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Acknowledge configuration packet

Byte # Field Description

4 Packet type Type of packet, 0xFF for acknowledge configuration packets

5 Ack configuration bit 0 Unused

bit 1 Ack packet enable, 1 - enabled, 0 - disabled

bit 2 Set ack packet payload, 1 - ACK, 0 - NAK

Table 25: Acknowledge configuration packet format

Table 23: Error counter packet format

TSIM2 65

Copyright © Aeroflex Gaisler AB TSIM2

8 Aeroflex UT700 AHB module

8.1 Overview

The UT700 AHB module is based on the UT699 AHB module described in the previous chapter. For informa-
tion on the CAN/SPACEWIRE/PCI/GPIO interfaces of the UT700 module please reference the UT699 AHB

module documentation. The difference between the UT700 and the UT699 models is the added SPI model
that is only present in the UT700 AHB module.

The following files are delivered with the UT700 TSIM module:

8.2 Loading the module

The module is loaded using the TSIM2 option -ahbm. All core specific options described in the following sec-
tions need to be surrounded by the options -designinput and -designinputend, e.g:

On Linux:

tsim-leon3 -ut700 -ahbm ./ut700/linux/ut700.so
 -designinput ./ut700/examples/input/pci.so -designinputend

On Windows:

tsim-leon3 -ut700 -ahbm ut700/win32/ut700.dll

File Description

ut700/linux/ut700.so UT700 AHB module for Linux

ut700/win32/ut700.dll UT700 AHB module for Windows

Input The input directory contains two examples of PCI user modules

ut700/examples/input/README.txt Description of the user module examples

ut700/examples/input/Makefile Makefile for building the user modules

ut700/examples/input/pci.c PCI user module example that makes UT700 PCI initiator
accesses

ut700/examples/input/pci_target.c PCI user module example that makes UT700 PCI target accesses

ut700/examples/input/ut700inputprovider.h Interface between the UT700 module and the user defined PCI
module

ut700/examples/input/pci_input.h UT700 PCI input provider definitions

ut700/examples/input/input.h Generic input provider definitions

ut700/examples/input/tsim.h TSIM interface definitions

ut700/examples/input/end.h Defines the endian of the local machine

Test The test directory contains tests that can be executed in TSIM

ut700/examples/test/README.txt Description of the tests

ut700/examples/test/Makefile Makefile for building the tests

ut700/examples/test/cansend.c CAN transmission test

ut700/examples/test/canrec.c CAN reception test

ut700/examples/test/pci.c PCI interface test

ut700/examples/test/pcitest.h Header file for PCI test

Table 26: Files delivered with the UT700 TSIM module

TSIM2 66

Copyright © Aeroflex Gaisler AB TSIM2

 -designinput ./ut700/examples/input/pci.dll -designinputend

The option -ut700 needs to be given to TSIM to enable the UT700 processor config-
uration.

8.3 SPI bus model API

The UT700 user supplied dll differs from that of the UT699 in the addition of the SPI bus model API.
The structure struct spi_input models the SPI bus. It is defined as:

/* Spi input provider */

struct spi_input {
 struct input_inp _b;
 int (*spishift)(struct spi_input *ctrl, uint32 select, uint32 bitcnt,

 uint32 out, uint32 *in);
};

The spishift callback should be set by the SPI user module at startup. It is called by the GR712 module when-
ever it shifts a word through the SPI bus.

Parameter Description

select Slave select bits

bitcnt Number of bits set in the MODE register, if bitcnt is -1 then the operation is not
a shift and the call is to indicate a select change, i.e. if the core is disabled.

out Shift out (tx) data

in Shift in (rx) data

Table 27: spishift callback parameters

TSIM2 67

Copyright © Aeroflex Gaisler AB TSIM2

9 Aeroflex Gaisler GR712 AHB module

GR712 AHB module is a loadable AHB module that implemets the GR712 peripherals including: GPIO,
GRTIMER with latch, SPI, CAN, GRETH, SPACEWIRE, AHBRAM and extra UARTS.

The following files are delivered with the GR712 TSIM module:

9.1 Loading the module

The module is loaded using the TSIM2 option -ahbm. All core specific options described in the following sec-
tions need to be surrounded by the options -designinput and -designinputend, e.g:

On Linux:

tsim-leon -gr712rc -ahbm ./gr712/linux/gr712.so
 -designinput ./gr712/examples/input/spi.so -designinputend

On Windows:

tsim-leon -gr712rc -ahbm ./gr712/win32/gr712.dll
 -designinput ./gr712/examples/input/spi.dll -designinputend

The option -gr712rc needs to be given to TSIM to enable the GR712 processor con-
figuration.The above line loads the GR712 AHB module ./gr712.so which in turn loads the SPI user mod-
ule ./spi.so. The SPI user module ./spi.so communicates with ./gr712.so using the user module interface
described in gr712inputprovider.h,, while ./gr712.so communicates with TSIM via the AHB interface.

File Description

gr712/linux/gr712.so GR712 AHB module for Linux

gr712/win32/gr712.dll GR712 AHB module for Windows

Input The input directory contains two examples of user modules

gr712/examples/input/README.txt Description of the user module examples

gr712/examples/input/Makefile Makefile for building the user modules

gr712/examples/input/spi.c SPI user module example emulating a Intel SPI flash

gr712/examples/input/gpio.c GPIO user module emulating GPIO bit toggle

gr712/examples/input/gr712inputprovider.h Interface between the GR712 module and the user module

Table 28: Files delivered with the AT697 TSIM module

TSIM2 68

Copyright © Aeroflex Gaisler AB TSIM2

9.2 CAN interface

The GR712 AHB module contains 2 CAN cores which models the 2 CAN cores available in the GR712. For
core details and register specification please see the GR712 manual.

9.2.1 Start up options

X in the above options is in the range 0 to 1.

9.2.2 Commands

X in the above commands is in the range 0 to 1.

9.2.3 Debug flags

The following debug flags are available for the CAN interfaces. Use the them in conjunction with the
can_ocX_dbg command to enable different levels of debug information.

Switch Description

-can_ocX_connect host:port Connect CAN_OC core X to packet server to specified server and
TCP port.

-can_ocX_server port Open a packet server for CAN_OC core X on specified TCP port.

-can_ocX_ack [0|1] Specifies whether the CAN_OC core will wait for a acknowledg-
ment packet on transmission.
This option must be put after -can_ocXconnect.

Table 29: CAN core start up options

Command Description

can_ocX_connect host:port Connect CAN_OC core X to packet server to specified server and
TCP port.

can_ocX_server port Open a packet server for CAN_OC core X on specified TCP port.

can_ocX_ack [0|1] Specifies whether the CAN_OC core will wait for a acknowledg-
ment packet on transmission. This command should only be
issued after a connection has been established.

can_ocX_dbg [flag|help] Enable debugging ouput for core X

can_ocX_status Output status information about core X

Table 30: CAN core TSIM commands

Flag Trace

GAISLER_CAN_OC_ACC CAN_OC register accesses

GAISLER_CAN_OC_RXPACKET CAN_OC received messages

GAISLER_CAN_OC_TXPACKET CAN_OC transmitted messages

Table 31: CAN debug flags

TSIM2 69

Copyright © Aeroflex Gaisler AB TSIM2

9.2.4 Packet server

Each CAN_OC core can be configured independently as a packet server or client using either -
can_ocX_server or -can_ocX_connect. When acting as a server the core can only accept a single connection.

9.2.5 CAN packet server protocol

The protocol used to communicate with the packet server is described below. Four different types of packets
are defined according to the table below.

CAN message packet format
Used to send and receive CAN messages.

Error counter packet format

GAISLER_CAN_OC_ACK CAN_OC acknowledgements

Type Value

Message 0x00

Error counter 0xFD

Acknowledge 0xFE

Acknowledge config 0xFF

Table 32: CAN packet types

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

CAN message

Byte # Description

Bits (MSB-LSB)

7 6 5 4 3 2 1 0

4 Protocol ID = 0 Prot ID 7-0

5 Control FF RTR - - DLC (max 8 bytes)

6-9 ID (32 bit word in network

byte order)

ID 10-0 (bits 31 - 11 ignored for standard frame format)

ID 28-0 (bits 31-29 ignored for extended frame format)

10-17 Data byte 1 - DLC Data byte n 7-0

Table 33: CAN message packet format

Flag Trace

Table 31: CAN debug flags

TSIM2 70

Copyright © Aeroflex Gaisler AB TSIM2

Used to write the RX and TX error counter of the modelled CAN interface.

Acknowledge packet format
If the acknowledge function has been enabled through the start up option or command the CAN interface will
wait for an acknowledge packet each time it transmits a message. To enable the CAN receiver to send
acknowledge packets (either NAK or ACK) an acknowledge configuration packet must be sent. This is done
automatically by the CAN interface when can_ocX_ack is issued.

Acknowledge configuration packet format
This packet is used for enabling/disabling the transmission of acknowledge packets and their payload (ACK
or NAK) by the CAN receiver. The CAN transmitter will always wait for an acknowledge if started with -
can_ocX_ack or if the can_ocX_ack command has been issued.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Error counter packet

Byte # Field Description

4 Packet type Type of packet, 0xFD for error counter packets

5 Register 0 - RX error counter, 1 - TX error counter

6 Value Value to write to error counter

Table 34: Error counter packet format

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Acknowledge packet

Byte # Field Description

4 Packet type Type of packet, 0xFE for acknowledge packets

5 Ack payload 0 - No acknowledge, 1 - Acknowledge

Table 35: Acknowledge packet format

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Acknowledge configuration packet

Byte # Field Description

4 Packet type Type of packet, 0xFF for acknowledge configuration packets

Table 36: Acknowledge configuration packet format

TSIM2 71

Copyright © Aeroflex Gaisler AB TSIM2

5 Ack configuration bit 0 Unused

bit 1 Ack packet enable, 1 - enabled, 0 - disabled

bit 2 Set ack packet payload, 1 - ACK, 0 - NAK

Table 36: Acknowledge configuration packet format

TSIM2 72

Copyright © Aeroflex Gaisler AB TSIM2

9.3 10/100 Mbps Ethernet Media Access Controller interface

The Ethernet core simulation model is designed to accurately model the 10/100 Ethernet MAC available in the
GR712. For core details and register specification please see the GR712 manual.

The following features are supported:

• Direct Memory Access

• Interrupts

9.3.1 Start up options

9.3.2 Commands

9.3.3 Debug flags

The following debug flags are available for the Ethernet interface. Use the them in conjunction with the
gr712_dbgon command to enable different levels of debug information.

Switch Description

-grethconnect host[:port] Connect Ethernet core to packet server to specified
server and TCP port. Default port is 2224.

Table 37: Ethernet core start up options

Switch Description

greth_connect host[:port] Connect Ethernet core to packet server to specified server and TCP port.
Default port is 2224.

greth_status Print Ethernet register status

Table 38: Ethernet core TSIM commands

Flag Trace

GAISLER_GRETH_ACC GRETH accesses

GAISLER_GRETH_L1 GRETH accesses verbose

GAISLER_GRETH_TX GRETH transmissions

GAISLER_GRETH_RX GRETH reception

GAISLER_GRETH_RXPACKET GRETH received packets

GAISLER_GRETH_RXCTRL GRETH RX packet server protocol

GAISLER_GRETH_RXBDCTRL GRETH RX buffer descriptors DMA

GAISLER_GRETH_TXCTRL GRETH TX packet server protocol

Table 39: Ethernet debug flags

TSIM2 73

Copyright © Aeroflex Gaisler AB TSIM2

9.3.4 Ethernet packet server

The simulation model relies on a packet server to receive and transmit the Ethernet packets. The packet server
should open a TCP socket which the module can connect to. The Ethernet core is connected to a packet server
using the -grethconnect start-up parameter or using the greth_connect command. An example implementation
of the packet server is included in TSIM distribution. It uses the TUN/TAP interface in Linux, or the WinPcap
library on Windows, to connect the GRETH core to a physical Ethernet LAN. This makes it easy to connect
the simulated GRETH core to real hardware.

9.3.5 Ethernet packet server protocol

Ethernet data packets have the following format. Note that each packet is prepended with a one word length
field indicating the length of the packet to come (including its header).

GAISLER_GRETH_TXPACKET GRETH transmitted packets

GAISLER_GRETH_IRQ GRETH interrupts

31 0

0x0 LENGTH

31:0 LENGTH, specifies length of packet including the header

Header

31 16 15 8 7 5 4 0

0x4 RES IPID=1 TYPE=0 RES

31:16 RES, reserved for future use

15:8 IPID, IP core ID, must equal 1 for Ethernet

7:5 TYPE, packet type, 0 for data packets

4:0 RES, reserved for future use

Payload

0x8 - Ethernet frame

Table 40: Ethernet data packet

Flag Trace

Table 39: Ethernet debug flags

TSIM2 74

Copyright © Aeroflex Gaisler AB TSIM2

9.4 SpaceWire interface with RMAP support

The GR712 AHB module contains six SPW2 cores with four DMA channels each which accurately model the
links available in the GR712. For core details and register specification please see the GR712 manual.

The following features are supported:

• Transmission and reception of SpaceWire packets

• Interrupts

• RMAP

• Modifying the link state

9.4.1 Start up options

X in the above options has the range 1-4.

9.4.2 Commands

X in the above commands has the range 0-5.

9.4.3 Debug flags

The following debug flags are available for the SpaceWire interfaces. Use the them in conjunction with the
grspwX_dbg command to enable different levels of debug information.

Switch Description

-grspwXconnect host:port Connect GRPSW2 core X to packet server at specified server and port.

-grspwXserver port Open a packet server for core X on specified port.

-grspw_normap Disable the RMAP handler.
RMAP packets will be stored to the DMA channel.

-grspw_rmap Enable the RMAP handler. All RMAP packages will be simulated in hard-
ware. Includes support for RMAP CRC. (Default)

-grspw_rmapcrc Enable support for RMAP CRC. Performs RMAP CRC checks and calcula-
tions in hardware

-grspw_rxfreq freq Set the RX frequency which is used to calculate receive performance.

-grspw_txfreq freq Set the TX frequency which is used to calculate transmission performance.

Table 41: SpaceWire core start up options

Command Description

grspwX_connect host:port Connect GRSPW core X to packet server at specified
server and TCP port.

grspwX_server port Open a packet server for core X on specified TCP port.

grspw_status Print status for all GRSPW cores.

Table 42: SpaceWire core TSIM commands

TSIM2 75

Copyright © Aeroflex Gaisler AB TSIM2

9.4.4 SpaceWire packet server

Each SpaceWire core can be configured independently as a packet server or client using either -grspwXserver
or -grspwXconnect. TCP sockets are used for establishing the connections. When acting as a server the core
can only accept a single connection.

For more flexibility, such as custom routing, an external packet server can be implemented using the protocol
specified in the following sections. Each core should then be connected to that server.

9.4.5 SpaceWire packet server protocol

The protocol used to communicate with the packet server is described below. Three different types of packets
are defined according to the table below.

Note that all packets are prepended by a one word length field which specified the length of the coming packet
including the header.

Data packet format:

Flag Trace

GAISLER_GRSPW_ACC GRSPW accesses

GAISLER_GRSPW_RXPACKET GRSPW received packets

GAISLER_GRSPW_RXCTRL GRSPW rx protocol

GAISLER_GRSPW_TXPACKET GRETH transmitted packets

GAISLER_GRSPW_TXCTRL GRETH tx protocol

Table 43: SpaceWire debug flags

Type Value

Data 0

Time code 1

Modify link state 2

Table 44: Packet types

31 0

0x0 LENGTH

31:0 LENGTH, specifies length of packet including the header

Header

31 16 15 8 7 5 4 1 0

0x4 RES IPID=0 TYPE=0 RES EEP

Table 45: SpaceWire data packet

TSIM2 76

Copyright © Aeroflex Gaisler AB TSIM2

Time code packet format:

Link state packet format:

31:16 RES, reserved for future use

15:8 IPID, IP core ID, must equal 0 for SpaceWire

7:5 TYPE, packet type, 0 for data packets

4:1 RES, reserved for future use, must be set to 0

0 EEP, Error End of Packet.
Set when the packet is truncated and terminated by an EEP.

Payload

0x8 - SpaceWire packet

31 0

0x0 LENGTH

31:0 LENGTH, specifies length of packet including the header.

Header

31 16 15 8 7 5 4 0

0x4 RES IPID=0 TYPE=1 RES

31:16 RES, reserved for future use, must be set to 0

15:8 IPID, IP core ID, must equal 0 for SpaceWire

7:5 TYPE, packet type, 1 for time code packets

4:0 RES, reserved for future use, must be set to 0

Payload

31 8 7 6 5 0

0x8 CT CN

31:8 RES, reserved for future use, must be set to 0

7:6 CT, time control flags

5:0 CN, value of time counter

Table 46: SpaceWire time code packet

31 0

0x0 LENGTH

31:0 LENGTH, specifies length of packet including the header.

Header

31 15 8 7 5 4 3 2 0

0x4 RES IPID=0 TYPE=2 RES LS

31:16 RES, reserved for future use, must be set to 0

Table 47: SpaceWire link state packet

Table 45: SpaceWire data packet

TSIM2 77

Copyright © Aeroflex Gaisler AB TSIM2

9.5 SPI and GPIO user modules

The user supplied dynamic library should expose a public symbol gr712inputsystem of type struct
gr712_subsystem *. The struct gr712_subsystem is defined in gr712inputprovider.h as:

struct gr712_subsystem {
 void (*gr712_inp_setup) (int id,

 struct gr712_inp_layout * l,
 char **argv, int argc);

 void (*gr712_inp_restart) (int id,
 struct gr712_inp_layout * l);

 struct sim_interface *simif;
};

The callback gr712_inp_restart will be called every time the simulator restarts. At initialization the callback
gr712_inp_setup will be called once, supplied with a pointer to structure struct gr712_inp_layout defined in
gr712inputprovider.h (see the chapter SPI bus model API and GPIO model API for details):

struct gr712_inp_layout {
 struct gpio_input gpio[2];
 struct spi_input spi;
};

The user module can access the global TSIM sim_interface structure through the simif member. See chapter 5
for more details.

The user supplied dynamic library should claim the gr712_inp_layout.gpio or gr712_inp_layout.spi members
by using the INPUT_CLAIM macro, i.e. INPUT_CLAIM(l->gpio) (see the example below),

A typical user supplied dynamic library would look like this:

/* simple gpio user module that toggles all input bits */
#include <stdio.h>
#include <string.h>
#include "tsim.h"
#include "gr712inputprovider.h"
extern struct gr712_subsystem *gr712inputsystem;
static struct gr712_inp_layout *lay = 0;

static void Change(struct gpio_input *ctrl) {
 ...
}

int gpioout(struct gpio_input *ctrl, unsigned int out) {

}

static void gr712_inp_setup (int id,
 struct gr712_inp_layout * l,

15:8 IPID, IP core ID, must equal 0 for SpaceWire

7:5 TYPE, packet type, 2 for link state packets

4:3 RES, reserved for future use, must be set to 0

2:0 LS, Link State: 0 Error reset

1 Error wait

2 Ready

3 Started

4 Connecting

5 Run

Table 47: SpaceWire link state packet

TSIM2 78

Copyright © Aeroflex Gaisler AB TSIM2

 char **argv, int argc) {
 lay = l;
 printf("User-dll: gr712_inp_setup:Claiming %s\n", l->gpio[0]._b.name);
 INPUT_CLAIM(l->gpio[0]);
 l->gpio[0].gpioout = gpioout;
 gr712inputsystem->simif->event(Change,(unsigned long)&l->gpio[0],10000000);
}
static struct gr712_subsystem gr712_gpio = {
 gr712_inp_setup,0,0
};
struct gr712_subsystem *gr712inputsystem = &gr712_gpio;

A typical Makefile that would create a user supplied dynamic library gpio.(dll|so) would look like this:

M_DLL_FIX=$(if $(strip $(shell uname|grep MINGW32)),dll,so)
M_LIB=$(if $(strip $(shell uname|grep MINGW32)),-lws2_32 -luser32 -lkernel32 -lwinmm,)
all:gpio.$(M_DLL_FIX)

pci.$(M_DLL_FIX) : gpio.o
$(CC) -shared -g gpio.o -o gpio.$(M_DLL_FIX) $(M_LIB)

gpio.o: gpio.c
$(CC) -fPIC -c -g -O0 gpio.c -o gpio.o

clean:
-rm -f *.o *.so

The user can then specify the user module to be loaded by the gr712.so AHB module using the
-designinput and -designinputend command line options:

 -designinput ./gr712/examples/input/gpio.so -designinputend

These switches are interpreted by gr712.so.

9.5.1 SPI bus model API

The structure struct spi_input models the SPI bus. It is defined as:

/* Spi input provider */

struct spi_input {
 struct input_inp _b;
 int (*spishift)(struct spi_input *ctrl, uint32 select, uint32 bitcnt,

 uint32 out, uint32 *in);
};

The spishift callback should be set by the SPI user module at startup. It is called by the GR712 module when-
ever it shifts a word through the SPI bus.

The return value of spishift is ignored.

Parameter Description

select Slave select bits (in case of GR712 these should be ignored and GPIO used
instead)

bitcnt Number of bits set in the MODE register, if bitcnt is -1 then the operation is not
a shift and the call is to indicate a select change, i.e. if the core is disabled.

out Shift out (tx) data

in Shift in (rx) data

Table 48: spishift callback parameters

TSIM2 79

Copyright © Aeroflex Gaisler AB TSIM2

9.5.2 GPIO model API

The structure struct gpio_input models the GPIO pins. It is defined as:

/* GPIO input provider */
struct gpio_input {
 struct input_inp _b;
 int (*gpioout)(struct gpio_input *ctrl, unsigned int out);
 int (*gpioin) (struct gpio_input *ctrl, unsigned int in);
};

The gpioout callback should be set by the user module at startup. The gpioin callback is set by the GR712
AHB module. The gpioout callback is called by the GR712 module whenever a GPIO output pin changes. The
gpioin callback is called by the user module when the input pins should change. Typically the usermodule
would register an event handler at a certain timeoffset and call gpioin from within the event handler.

The return value of gpioin/gpioout is ignored.

Parameter Description

out The values of the output pins

Table 49: gpioout callback parameters

Parameter Description

in The input pin values

Table 50: gpioin callback parameters

TSIM2 80

Copyright © Aeroflex Gaisler AB TSIM2

10 Atmel AT697 PCI emulation

The PCI emulation is implemented as a AT697 AHB module that will process all accesses to memory region
0xa0000000 - 0xf0000000 (AHB slave mode) and the APB registers starting at 0x80000100.
The AT697 AHB module implements all registers of the PCI core. It will in turn load the PCI user modules
that will implement the devices. The AT697 AHB module is supposed to be the PCI host. Both PCI Initiator
and PCI Target mode are supported. The interface to the PCI user modules is implemented on bus level. Two
callbacks model the PCI bus.

The following files are delivered with the AT697 TSIM module:

10.1 Loading the module

The module is loaded using the TSIM2 option -ahbm. All core specific options described in the following sec-
tions need to be surrounded by the options -designinput and -designinputend, e.g:

On Linux:

tsim-leon -ahbm ./at697/linux/at697.so
 -designinput ./at697/examples/input/pci.so -designinputend

On Windows:

tsim-leon -ahbm ./at697/win32/at697.dll
 -designinput ./at697/examples/input/pci.dll -designinputend

This loads the AT697 AHB module ./at697.so which in turn loads the PCI user module ./pci.so. The PCI user
module ./pci.so communicates with ./at697.so using the PCI user module interface, while ./at697.so commu-
nicates with TSIM via the AHB interface.

File Description

at697/linux/at697.so AT697 AHB module for Linux

at697/win32/at697.dll AT697 AHB module for Windows

Input The input directory contains two examples of PCI user modules

at697/examples/input/README.txt Description of the user module examples

at697/examples/input/Makefile Makefile for building the user modules

at697/examples/input/pci.c PCI user module example that makes AT697 PCI initiator
accesses

at697/examples/input/pci_target.c PCI user module example that makes AT697 PCI target accesses

at697/examples/input/at697inputprovider.h Interface between the AT697 module and the user defined PCI
module

at697/examples/input/pci_input.h AT697 PCI input provider definitions

at697/examples/input/input.h Generic input provider definitions

at697/examples/input/tsim.h TSIM interface definitions

at697/examples/input/end.h Defines the endian of the local machine

Table 51: Files delivered with the AT697 TSIM module

TSIM2 81

Copyright © Aeroflex Gaisler AB TSIM2

10.2 AT697 initiator mode

The PCI user module should supply one callback function acc(). The AT697 AHB module will call this func-
tion to emulate AHB slave mode accesses or DMA accesses that are forwarded via acc(). The cmd parameter
determines which command to use. Configuration cycles have to be handled by the PCI user module.

10.3 AT697 target mode

The AT697 AHB module supplies one callback target_acc() to the PCI user modules to implement target
mode accesses from the PCI bus to the AHB bus. The PCI user module should trigger access events itself by
inserting itself into the event queue.

10.4 Definitions

#define ESA_PCI_SPACE_IO 0
#define ESA_PCI_SPACE_MEM 1
#define ESA_PCI_SPACE_CONFIG 2
#define ESA_PCI_SPACE_MEMLINE 3

/* atc697 pci input provider */
struct esa_pci_input {
 struct input_inp _b;

int (*acc)(struct esa_pci_input *ctrl, int cmd, unsigned int addr, unsigned int
*data, unsigned int *abort,unsigned int *ws);

int (*target_acc)(struct esa_pci_input *ctrl, int cmd, unsigned int addr, unsigned
int *data, unsigned int *mexc);

};

10.4.1 PCI command table

0000: "IRQ acknowledge",
0001: "Special cycle",
0010: "I/O Read",
0011: "I/O Write",
0100: "Reserved",
0101: "Reserved",
0110: "Memory Read",
0111: "Memory Write",
1000: "Reserved",
1001: "Reserved",
1010: "Configuration Read",
1011: "Configuration Write",
1100: "Memory Read Mutltiple",
1101: "Dual Address Cycle",
1110: "Memory Read Line",
1111: "Memory Write And Invalidate"

10.5 Read/write function installed by PCI module

This function should be set by the PCI user module:

int (*acc)(struct esa_pci_input *ctrl, int cmd, unsigned int addr, unsigned int *data,
unsigned int *abort, unsigned int *ws);

If set, the function is called by the AT697 AHB module whenever the PCI interface initiates a transaction. The
function is called for AHB-slave mapped accesses as well as AHB-Master/APB DMA. The parameter cmd

TSIM2 82

Copyright © Aeroflex Gaisler AB TSIM2

specifies the command to execute, see chapter 10.4.1. Parameter addr specifies the address. The user module
should return the read data in *data for a read command or write the *data on a write command and return the
time to completion in *ws as PCI clocks. A possible target abort should be returned in *abort. The return
value should be: 0: taken, 1: not taken (master abort)

10.6 Read/write function installed by AT697 module

The following function is installed by the AT697 AHB module:

int (*target_acc)(struct esa_pci_input *ctrl, int cmd, unsigned int addr, unsigned int
*data, unsigned int *mexc);

The PCI user module can call this function to emulate a PCI target mode access to the AT697 AHB module.
Parameter cmd specifies the command to execute, see chapter 10.4.1. The AT697 module is supposed to be the
host and accesses to the configuration space is not supported. Parameter addr specifies the address. Parameter
*data should point to a memory location where to return the read data on a read command or point to the write
data on a write command. Parameter *mexc should point to a memory location where to return a possible
error. If the call was hit by MEMBAR0, MEMBAR1 or IOBAR, target_read() will return 1 otherwise 0.

TSIM2 83

Copyright © Aeroflex Gaisler AB TSIM2

10.7 Registers

Table 52 contains a list of implemented and not implemented fields of the AT697F PCI Registers. Only regis-
ter fields that are relevant for the emulated PCI module is implemented.

Table 52: PCI register support

Register Implemented Not implemented

PCIID1 device id, vendor id

PCISC stat 13, stat 12, stat 11, stat 7, stat 6
stat 5, stat 4, com2, com 1, com1

stat15 stat14 stat10_9 stat8 com10 com9 com8
com7 com6 com5 com4 com3

PCIID2 class code, revision id

PCIBHDLC [bist, header type, latency timer,
cache size] config-space only

PCIMBAR1 base address, pref, type, msi

PCIMBAR2 base address, pref, type, msi

PCIIOBAR3 io base address, ms

PCISID subsystem id, svi

PCICP pointer

PCILI [max_lat min_gnt int_pin int_line]
config-space-only

PCIRT [retry trdy] config-space-only

PCICW ben

PCISA start address

PCIIW ben

PCIDMA wdcnt, com b2b

PCIIS act, xff, xfe, rfe dmas, ss

PCIIC mod, commsb dwr, dww, perr

PCITPA tpa1, tpa2

PCITSC errmem, xff, xfe, rfe, tms

PCIITE dmaer,imier, tier cmfer, imper, tbeer, tper, syser

PCIITP dmaer,imier, tier cmfer, imper, tbeer, tper, syser

PCIITF dmaer,imier, tier, cmfer, imper, tbeer,
tper, syser

PCID dat

PCIBE dat

PCIDMAA addr

PCIA p0, p1, p2, p3

TSIM2 84

Copyright © Aeroflex Gaisler AB TSIM2

10.8 Debug flags

The switch -designdbgon flags can be used to enable debug output. The possible values for flags are as fol-
lows:

Flag Description

ESAPCI_REGACC Trace accesses to the PCI registers

ESAPCI_ACC Trace accesses to the PCI AHB-slave address space

ESAPCI_DMA Trace DMA

ESAPCI_IRQ Trace PCI IRQ

10.9 Commands

pci Displays all PCI registers.

TSIM2 85

Copyright © Aeroflex Gaisler AB TSIM2

APPENDIX A: Installing HASP Device Driver

A.1 Installing HASP Device Driver

TSIM is licensed using a HASP USB hardware key. Before use, a device driver for the key must be installed.
The latest drivers can be found at www.aladdin.com or www.gaisler.com. The installation is described below.

A.1.1 On a Windows NT/2000/XP host

The HASP device driver is installed using the installer HASPUserSetup.exe located in hasp/windows/driver
directory on the GRMON CD. It will automatically install the required files.

Note: Administrator privileges are required yo install the HASP device driver under Windows NT/2000/XP.

A.1.2 On a Linux host

The linux HASP driver consists of aksusbd daemon. It is contained in the hasp/linux/driver on the TSIM CD.
The driver comes in form of RPM packages for Redhat and Suse linux distributions. The packages should be
installed as follows:

Suse systems:

rpm -i aksusbd-suse-1.8.1-2.i386.rpm

Redhat systems:

rpm -i aksusbd-redhat-1.8.1-2.i386.rpm

The driver daemon can then be started by re-booting the most, or executing

/etc/rc.d/init.d/aksusbd start

Note: All described action should be executed as root.

On other linux distributions, the driver daemon will have to be started manually. This can be done using the
HDD_Linux_dinst.tar.gz, which also contains instruction on how to install and start the daemon. Note that
you need to have usbfs or usbdevfs mounted on /proc/bus/usb before starting the daemon. This can be done in
rc.local or similar:

mount -t usbfs none /proc/bus/usb

Aeroflex Gaisler AB tel +46 31 7758650

Kungsgatan 12 fax +46 31 421407

411 19 Göteborg sales@gaisler.com

Sweden www.aeroflex.com/gaisler

Copyright © January 2014 Aeroflex Gaisler AB.

All information is provided as is. There is no warranty that it is correct or suitable for any purpose, neither

implicit nor explicit.

Information furnished by Aeroflex Gaisler AB is believed to be accurate and reliable.

However, no responsibility is assumed by Aeroflex Gaisler AB for its use, nor for any infringements of patents

or other rights of third parties which may result from its use.

No license is granted by implication or otherwise under any patent or patent rights of Aeroflex Gaisler AB.

GAISLER

Copyright © Aeroflex Gaisler AB TSIM2

TSIM2 86

http://www.gaisler.com

	1 Introduction
	1.1 General
	1.2 Supported platforms and system requirements
	1.3 Obtaining TSIM
	1.4 Problem reports

	2 Installation
	2.1 General
	2.2 License installation

	3 Operation
	3.1 Overview
	3.2 Starting TSIM
	3.3 Standalone mode commands
	3.4 Symbolic debug information
	3.5 Breakpoints and watchpoints
	3.6 Profiling
	3.7 Code coverage
	3.8 Check-pointing
	3.9 Performance
	3.10 Backtrace
	3.11 Connecting to gdb
	3.12 Thread support
	3.12.1 TSIM thread commands
	3.12.2 GDB thread commands

	4 Emulation characteristics
	4.1 Common behaviour
	4.1.1 Timing
	4.1.2 UARTs
	4.1.3 Floating point unit (FPU)
	4.1.4 Delayed write to special registers
	4.1.5 Idle-loop optimisation
	4.1.6 Custom instruction emulation

	4.2 ERC32 specific emulation
	4.2.1 Processor emulation
	4.2.2 MEC emulation
	4.2.3 Interrupt controller
	4.2.4 Watchdog
	4.2.5 Power-down mode
	4.2.6 Memory emulation
	4.2.7 EDAC operation
	4.2.8 Extended RAM and I/O areas
	4.2.9 SYSAV signal
	4.2.10 EXTINTACK signal
	4.2.11 IWDE signal

	4.3 LEON2 specific emulation
	4.3.1 Processor
	4.3.2 Cache memories
	4.3.3 LEON peripherals registers
	4.3.4 Interrupt controller
	4.3.5 Power-down mode
	4.3.6 Memory emulation
	4.3.7 SPARC V8 MUL/DIV/MAC instructions
	4.3.8 DSU and hardware breakpoints

	4.4 LEON3 specific emulation
	4.4.1 General
	4.4.2 Processor
	4.4.3 Cache memories
	4.4.4 Power-down mode
	4.4.5 LEON3 peripherals registers
	4.4.6 Interrupt controller
	4.4.7 Memory emulation
	4.4.8 CASA instruction
	4.4.9 SPARC V8 MUL/DIV/MAC instructions
	4.4.10 DSU and hardware breakpoints

	4.5 LEON4 specific emulation
	4.5.1 General
	4.5.2 Processor
	4.5.3 L1 Cache memories
	4.5.4 L2 Cache memory
	4.5.5 Power-down mode
	4.5.6 LEON4 peripherals registers
	4.5.7 Interrupt controller
	4.5.8 Memory emulation
	4.5.9 CASA instruction
	4.5.10 SPARC V8 MUL/DIV/MAC instructions
	4.5.11 GRFPU emulation
	4.5.12 DSU and hardware breakpoints

	5 Loadable modules
	5.1 TSIM I/O emulation interface
	5.1.1 simif structure
	5.1.2 ioif structure
	5.1.3 Structure to be provided by I/O device
	5.1.4 Cygwin specific io_init()

	5.2 LEON AHB emulation interface
	5.2.1 procif structure
	5.2.2 Structure to be provided by AHB module
	5.2.3 Big versus little endianess

	5.3 TSIM/LEON co-processor emulation
	5.3.1 FPU/CP interface
	5.3.2 Structure elements
	5.3.3 Attaching the FPU and CP
	5.3.4 Big versus little endianess
	5.3.5 Additional TSIM commands
	5.3.6 Example FPU

	6 TSIM library (TLIB)
	6.1 Introduction
	6.2 Function interface
	6.3 AHB modules
	6.4 I/O interface
	6.5 UART handling
	6.6 Linking a TLIB application
	6.7 Limitations

	7 Aeroflex UT699/UT699e AHB module
	7.1 Overview
	7.2 Loading the module
	7.3 UT699e
	7.4 Debugging
	7.5 10/100 Mbps Ethernet Media Access Controller interface
	7.5.1 Start up options
	7.5.2 Commands
	7.5.3 Debug flags
	7.5.4 Ethernet packet server
	7.5.5 Ethernet packet server protocol

	7.6 SpaceWire interface with RMAP support
	7.6.1 Start up options
	7.6.2 Commands
	7.6.3 Debug flags
	7.6.4 SpaceWire packet server
	7.6.5 SpaceWire packet server protocol

	7.7 PCI initiator/target and GPIO interface
	7.7.1 Commands
	7.7.2 Debug flags
	7.7.3 User supplied dynamic library
	7.7.4 PCI bus model API
	7.7.5 GPIO model API

	7.8 CAN interface
	7.8.1 Start up options
	7.8.2 Commands
	7.8.3 Debug flags
	7.8.4 Packet server
	7.8.5 CAN packet server protocol

	8 Aeroflex UT700 AHB module
	8.1 Overview
	8.2 Loading the module
	8.3 SPI bus model API

	9 Aeroflex Gaisler GR712 AHB module
	9.1 Loading the module
	9.2 CAN interface
	9.2.1 Start up options
	9.2.2 Commands
	9.2.3 Debug flags
	9.2.4 Packet server
	9.2.5 CAN packet server protocol

	9.3 10/100 Mbps Ethernet Media Access Controller interface
	9.3.1 Start up options
	9.3.2 Commands
	9.3.3 Debug flags
	9.3.4 Ethernet packet server
	9.3.5 Ethernet packet server protocol

	9.4 SpaceWire interface with RMAP support
	9.4.1 Start up options
	9.4.2 Commands
	9.4.3 Debug flags
	9.4.4 SpaceWire packet server
	9.4.5 SpaceWire packet server protocol

	9.5 SPI and GPIO user modules
	9.5.1 SPI bus model API
	9.5.2 GPIO model API

	10 Atmel AT697 PCI emulation
	10.1 Loading the module
	10.2 AT697 initiator mode
	10.3 AT697 target mode
	10.4 Definitions
	10.4.1 PCI command table

	10.5 Read/write function installed by PCI module
	10.6 Read/write function installed by AT697 module
	10.7 Registers
	10.8 Debug flags
	10.9 Commands

	APPENDIX A: Installing HASP Device Driver
	A.1 Installing HASP Device Driver
	A.1.1 On a Windows NT/2000/XP host
	A.1.2 On a Linux host

