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Abstract

The design and implementation of an On-chip Logic Analyzer for Field Programmable
Gate Arrays (FPGA) is described in this report. FPGA devices have grown larger and
larger and can contain very complex System on Chip (SoC) designs in a package with lim-
ited I/O resources. The On-chip Logic Analyzer IP core has been developed in VHDL dur-
ing this Master’s thesis to be able to debug such designs running in target hardware. It
enables the designer to trace arbitrary signals inside the FPGA fabric and to trig on com-
plex events. Samples are stored in a circular trace buffer implemented with synchronous
on-chip RAM. Trigger engine control and trace buffer readout is done over an AMBA
APB interface. The Logic Analyzer IP core will become a part of Gaisler Research’s
GRLIB IP library and integrated into their GRMON debug monitor software.

The work can be divided into three main parts: hardware design of the IP core, developing
a debug driver for GRMON and programming a GUI front end for easier configuration.

Sammanfattning

Konstruktionen och implementeringen av en On-chip logikanalysator för fältprogrammer-
bara grindmatriser (FPGA) beskrivs i denna rapport. FPGA-kretsar har blivit större och
större och kan innehålla väldigt komplexa “System på  kisel”-designer i ett chip med
begränsade I/O-resurser. Logikanalysator-IP-kärnan har utvecklats i VHDL under detta
exjobb för att kunna användas för att avlusa sådana konstruktioner medan de körs i hård-
vara. Den möjliggör spårning av valfria signaler, samt triggning på komplicerade hän-
delser hos dessa, inne i FPGA-kretsen. Samplingarna sparas i en cirkulär buffert
implementerad med synkront RAM i FPGA-kretsen. Konfigurering av trigger-modulen
samt utläsning av bufferten görs över ett AMBA APB-gränssnitt. Logikanalysatorn kom-
mer bli en del av Gaisler Researchs GRLIB IP-bibliotek och integreras i deras GRMON
programvara.

Arbetet kan delas in i tre huvuddelar: hårdvarudesign, utveckling av en drivrutin för
GRMON samt att programmera ett grafiskt gränssnitt som underlättar konfigurering.
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Abbreviations

TABLE 1.

Abbreviation Explanation

AHB Advanced High-performance Bus
AMBA Advanced Microcontroller Bus Architecture
APB Advanced Peripheral Bus
ASIC Application Specific Integrated Circuit
BAR Bank Address Register
DCL Debug Communication Link
DSU Debug Support Unit
EDA Electronic Design Automation
FPGA Field Programmable Gate Array
GDB Gnu Debugger
GPL Gnu Public License
GUI Graphical User Interface
HDL Hardware Description Language
IEEE Institute of Electrical and Electronics Engineers
IP Intellectual Property (in EDA context: reusable logic block)
ISA Instruction Set Architecture
JTAG Joint Test Action Group
MII Media Independent Interface
OLA On-chip Logic Analyzer
PCI Peripheral Component Interconnect
RAM Random Access M emory
SEU Single Event Upset
SOC System On Chip
SPARC V8 Scalable Processor ARChitecture Version 8
TCL Tool Command Language
TCP Transmission Control Protocol
UART Universal Asynchronous Receiver Transmitter
VHDL Very high speed integrated circuit Hardware Description Language
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1.0  Introduction

As the complexity of hardware designs grows it gets harder and harder to verify the func-
tionality of the circuit. Simulation has long been the only practical way of verifying ASIC
designs, but as it is now common with multi-million gate System on Chip designs this is
becoming an ever more time consuming task.

Luckily the FPGAs have grown in size and functionality as well, and are therefore com-
monly used for prototyping. With an FPGA you can run your system in real hardware
using live data for verification. This of course speeds up the development process.

Regardless of whether a design is prototyped using FPGAs or designed directly for FPGA
it is efficient to use their reprogrammability for debugging the hardware. Also some bugs
are very hard to find using simulation only. It might be that a very infrequent sequence of
data makes the design function incorrectly and that it is impossible to simulate the needed
amount of data for that sequence to occur. To find such errors the design must run in hard-
ware.

The problem is the lack of visibility of the signals inside the FPGA. When simulating the
designer decides which nodes that are of interest and gets a waveform for each. Designs
are often very pin limited so there is no way to route the signals of interest to the pins of
the FPGA for probing with an external logic analyzer. The object of this Master’s thesis
has been to develop an On-chip Logic Analyzer (OLA) IP core that would bring the
debugging functionality of a normal logic analyzer inside the FPGA fabric. This develop-
ment consisted of working out a specification and implementing it in VHDL. The OLA IP
core will be integrated into Gaisler Research’s GRLIB IP Library available under the GPL
license (also available under commercial licensing). A debug driver has also been written
for their proprietary GRMON debug monitor application so that the OLA can be con-
trolled and configured using GRMON commands supplied by the driver. For even easier
configuration of the OLA a GUI front end was developed in tcl/tk. The debug driver can
dump the trace buffer to VCD-format files that can be viewed in e.g. the open source
GTKWave waveform viewer.

The work is described in this report and it begins in chapter 2 with some information about
the GRLIB library giving the basics of the environment in which the OLA will be used
and be a part of. In chapter 3 the specification of the hardware is presented and the imple-
mentation is described. Chapter 4 describes the functionality provided by the GRMON
debug driver. Due to the proprietary nature of GRMON this discussion will be on a level
that does not go into detail of the application structure. The GUI will be described in chap-
ter 5 which is followed by some example traces in chapter 6 and then chapter 7 contains
conclusions and discussion. In the appendix the source code for the hardware and GUI can
be found.
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2.0  GRLIB

Since the On-chip Logic Analyzer will be integrated into the GRLIB library and used in
that environment this chapter is dedicated to giving a brief description of its most impor-
tant aspects and features.

GRLIB is a set of reusable IP cores for System On-Chip design that is designed with the
following main goals [1]:
• Common interfaces
• Unified synthesis and simulation scripts
• Built-in portability
• Multi vendor support
• CAD-tool independent
• Open and extensible format
• SEU tolerance for space applications

It is organized around VHDL-libraries and it provides automatic script generation for the
Modelsim, NCSim, and GHDL simulators and for the Synopsis, Synplify, Cadence, Xilinx
and Altera synthesis tools [2].

The IP library is bus-centric and is built around the AMBA 2.0 AHB/APB on-chip bus. It
includes numerous cores, for example the LEON3 SPARC V8 processor, IEEE 754 com-
pliant FPU, memory controllers, PCI bridge, UART, timer and many more. The library is
designed so that it is easy for other vendors to include their own libraries.
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2.1  LEON3

LEON3 is a 32 bit highly configurable SPARC V8 [3] compliant synthesisable CPU. It is
developed in VHDL and is a part of the GRLIB IP library. It uses Harvard architecture
with configurable multiset caches and it implements the full SPARC V8 ISA including the
MUL, MAC and DIV instructions. An optional single/double precision FPU is also avail-
able.

A more detailed description can be found in [4]. The figure below shows the different con-
figurations of the LEON3 CPU.

FIGURE 1.  LEON3 configuration blocks [4].
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2.2  AMBA

The Advanced Microcontroller Bus Architecture (AMBA) is a bus developed by the ARM
corporation. It is intended as an on-chip bus for high-performance embedded microcon-
trollers. It is used in GRLIB because of its market dominance, good documentation and
because it can be used for free without licensing restrictions [2]. Four key requirements of
the AMBA specification are [5]:
• Facilitate right-first-time development
• Technology independent
• Modular system design
• Minimize the silicon infrastructure

The AMBA specification has three different buses, the Advanced High-performance Bus
(AHB), the Advanced System Bus (ASB) and the Advanced Peripheral Bus (APB). In
GRLIB the AHB and APB are used. Adding IP cores to the AMBA buses are unfortu-
nately not as flexible as one would wish and therefore some slight changes has been made
for the implementation in GRLIB. A decentralized address decoding scheme, interrupt
steering and device identification have been added using additional “side band” signals.
This makes it easy to design SoCs with plug & play capabilities.

2.2.1  AHB

AHB is the system bus for high-performance, high clock frequency designs and it is has
the following features required in such systems:
• burst transfers
• split transactions
• single-cycle bus master hand over
• single-clock edge operation
• non-tristate implementation
• wider data bus configurations (64/128 bits)

Normally an AHB design contains the following components: masters, slaves, an arbiter
and a decoder. Masters can initiate data transfer whilst slaves can only respond to the
requests from the masters. The arbiter selects which of the available masters that gets
access to the bus and the address decoder decodes the select signal from the address pro-
vided by the master.
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Since there are no tristate drivers the bus is multiplexed which is illustrated in the figure
below.

FIGURE 2. AHB interconnection view [2]

As mentioned the implementation of AHB in GRLIB also provides plug & play capabili-
ties. Each AHB unit has a configuration record of eight 32-bit words. These words holds
information about the unit, its interrupt steering and address decoding of AHB slaves.
Since every slave provides its own address decoding information there is no need to mod-
ify the central decoder when a new slave is added. This configuration record is configured
by VHDL generics and is sent to the AHB controller which creates a table that is mapped
into the address space. A plug & play operation system can then read this table and deter-
mine which units that are attached and how they are configured. For a more detailed
description of this mechanism see [2].

2.2.2  APB

APB has been optimized for low power consumption and reduced interface complexity.
Components that should fill those requirements and that don’t need the high bandwidth of
AHB is suitable for APB. The APB is connected to the AHB through an AHB slave acting
as a bridge between the two buses as seen in figure 3.
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FIGURE 3. Typical AMBA bus configuration [5]

For the On-chip Logic Analyzer there is no need of high performance since only register
control and trace buffer read out is done over the bus. The trace buffer can be quite large
but the read out is not time critical, so the choice of bus is APB.

The APB is also multiplexed as shown in figure 4.

FIGURE 4.  APB interconnection view [2]
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An APB transfer always takes two bus cycles, called the setup and enable cycles. During
the setup cycle of a write operation the values of the address, pwrite, psel and data signals
are set. In the next bus cycle the enable signal goes high and the unit selected by psel shall
sample the data. The address, control and data are valid during the whole enable cycle. A
read operation has the same timing for all signals except the data. In the enable cycle of an
read operation the slave must provide the data which is then sampled by the master on the
rising edge of the clock that ends the enable cycle. This timing is illustrated in figure 5.

FIGURE 5. APB timing [5]

The GRLIB APB implementation provide plug & play information very much like previ-
ously described for AHB. Every APB slave has a two word configuration record. It con-
sists of the identification register and the Bank Address Register (BAR). The identification
register holds information that identifies the slave and configures the interrupt steering.
The BAR defines the address decoding of the slave. See figure 6 for the layout of these
registers. APB slaves are addressed through the AHB address space. The 12 most signifi-
cant bits of the AHB address decodes the AHB/APB bridge leaving 20 bits for all the APB
slaves on that bus. The 12 most significant bits that are left (i.e. bits 19-8) are compared
with the address field of the BAR only comparing the bits specified by the mask field of
the BAR. Thus a minimum address space of 256 bytes is occupied by each APB slave and
a maximum would use all the 20 bits, i.e. one MB of address space.

FIGURE 6.  Plug & play configuration layout [2]
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3.0  The On-chip Logic Analyzer

3.1  Logic Analyzer fundamentals

The fundamental function of a logic analyzer is to sample a set of traced signals and to
detect events or a sequence of events in these signals. Upon detection of a user specified
event the logic analyzer triggers. When the sampling stops relative to the trigger is speci-
fied by the user. The common trigger modes are post trig, pre trig and center. In pre trig the
stored data set will consist of data sampled after the trigger. Post trig is the opposite and in
this mode the logic analyzer stops the sampling immediately when the trigger is raised
thus only storing data from before the triggering event. Center is a combination putting the
triggering event in the middle of the sampled data set.

There is a wide variety of logic analyzers available with different capabilities. The most
advanced can have hundreds of channels and advanced triggers which allows looping and
branching between triggering events. The sampled data can be viewed either in list form as
a list of values or as graphical waveforms.

Several vendors provide different commercial on-chip logic analyzers. For example Xilinx
has its Chipscope pro product and Altera’s counterpart is called Signaltap II. These are
highly configurable and support many different triggering capabilities. The drawback
mainly is that they can only be used with the companies respective products and that they
are integrated into the companies design tools. Since GRLIB is vendor and CAD-tool
independent the object of this thesis is to design an on-chip logic analyzer which can be
used independently of the devices and tools currently in use.

An important difference between a typical on-chip logic analyzer and a normal external
logic analyzer is that the on-chip logic analyzer will sample with the rate of the system
clock while an external logic analyzer uses a higher frequency sample rate and can there-
fore detect events occurring during the clock cycles. Glitches and timing problems are not
possible to observe using this on-chip logic analyzer running at system clock frequency.

3.2  Specification

The first part of this thesis work was to define the desired functionality of the On-chip
Logic Analyzer. The functionality was discussed with my supervisor, other logic analyzers
on the market was studied and a specification was written. When the specification was
agreed on the implementation in VHDL began. The implementation will be discussed fur-
ther in the next chapter. At first the logic analyzer had only one clock domain, i.e. the trig-
ger engine as well as the APB interface used the same clock. In a later design stage it was
decided to let the trigger engine use a separate clock so that it is possible to sample using
other clocks than the system clock. Below the final specification is presented.
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3.2.1  Overview

The logic analyzer was designed as an AMBA APB slave. Both the trace buffer and the
control registers are accessed through the APB address space. It supports multiple trigger
levels where each level has flexible settings enabling it to capture complex events. The
trace buffer is a circular buffer with configurable width and depth. The number of trig lev-
els, the width and depth of the trace buffer as well as some other parameters described
below are configured with VHDL generics. See figure 7 for a block diagram of the On-
chip logic analyzer.

FIGURE 7. On-chip Logic Analyzer block diagram

3.2.2  Operation

Each level is associated with a pattern and a mask. The traced signals are compared with
the pattern, only comparing the bits set in the mask. This allows for triggering on any spe-
cific value or range. Furthermore each level has a match counter and a boolean equality
flag. The equality flag specifies whether a match means that the pattern should equal the
traced signals or that it should not be equal. Its possible to configure the trigger engine to
stay at a certain level while the traced signals have a certain value using this flag. The
match counter is a 6 bit counter which can be used to specify how many times a level

On-chip Logic Analyzer core

AMBA APB

Control unit with
APB slave interface

Trace buffer
On-chip RAM

Read port

Write port

Trigger engineTraced
signals
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should match before proceeding to the next. This is all run-time configurable through reg-
isters described in the register section of this specification.

To specify post-, center- or pre triggering mode the user can set a counter register that con-
trols when the sampling stops relative to the triggering event. It can be set to any value in
the range 0 to depth-1 thus giving total control of the trace buffer content.

When sampling slowly changing events like for example a uart it might be difficult to find
a bug since the trace buffer fills up with the rate of the system clock thus only giving a
short period of the uarts operation. To support tracing of such designs the logic analyzer
has a 16 bit sample frequency divider register that controls how often it will sample. This
register resets to 1 so the default is to sample every clock cycle.

Another configuration option has a similar purpose as the sample frequency divider. The
user can define one of the traced signals as a qualifier bit that has to have a specified value
for the current signals to be stored in the trace buffer. This makes sampling of larger time
periods possible if only some easily distinguished samples are interesting. This option has
to be enabled with the usequal generic and the qualifier bit and value are written to a regis-
ter.

When the user has configured the logic analyzer the next step is to arm it, i.e telling it to
start its operation. This is done through a write to the status register with the least signifi-
cant bit set to 1. A reset can be performed anytime by writing zero to the status register.
After the final triggering event the trigged flag will be raised and can be read out from the
status register. The logic analyzer remains armed and trigged until the trigger counter
reaches the configured value. When this happens the index of the oldest sample can be
read from the trace buffer index register.

3.2.3  Configuration options

The logic analyzer core has the following configuration options (VHDL generics):

TABLE 2. On-chip Logic Analyzer VHDL generics

Generic Function Allowed range Default

dbits Number of traced signals 1 - 256 32
depth Number of stored samples 256 - 16384 1024
trigl Number of trigger levels 1 - 63 1
usereg Use input register 0 - 1 1
usequal Use storage qualifier 0 - 1 0
pindex APB slave index 0 - NAPBSLV - 1 0
paddr The 12-bit MSB APB address 0 -16#FFF# 0
pmask The APB address mask 16#000 - 16#F00# F00
memtech Memory technology 0 - NTECH 0



Design and implementation of an On-chip Logic Analyzer The On-chip Logic Analyzer

17

The usereg generic specifies whether to use an input register to synchronize the traced sig-
nals and to minimize their fan out. If usereg=1 then all signals will be clocked into a regis-
ter on the positive edge of the supplied clock signal, otherwise they are sent directly to the
RAM.

3.2.4  Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x060. For description
of vendor and device ids see GRLIB IP Library User’s Manual [2].

3.2.5  Registers

Table 67 shows the logic analyzer registers. Runtime configurations is done through these
registers which are mapped into the APB address space.

Status register

[31:28] - These bits indicate whether an input register and/or storage qualifier is used and if
the Logic Analyzer is armed and/or trigged.

[27:20] - Number of traced signals.
[19:6] - Last index of trace buffer. Depth-1.
[5:0] - Number of trig levels.

TABLE 3. Available registers

Registers APB Address offset

Status register 0x00
Trace buffer index 0x04
Page register 0x08
Trig counter 0x0C
Sample freq. divider 0x10
Storage qualifier setting 0x14
Trig control settings 0x2000-0x203F
Pattern/mask configuration 0x6000-0x6FFF

FIGURE 8. Status register

031
usereg qualifier armed trigged dbits depth trig levels

6192027282930 5
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Trace buffer index

[31:abits] - Reserved.
[abits-1:0] - The index of the oldest sample in the buffer. abits is the number of bits needed

to represent the configured depth.

Note that this register is written by the trigger engine clock domain and thus needs to be
known stable when read out. Only when the ‘armed’ bit in the status register is zero is the
content of this register reliable.

Page register

[31:4] - Reserved.
[3:0] - This register selects what page that will be used when reading from the trace buffer.

The trace buffer is organized into pages of 1024 samples. Each sample can be between 1
and 256 bits. If the depth of the buffer is more than 1024 the page register has to be used to
access the other pages. To access the i:th page the register should be set i (where i=0..15).

Trig counter

[31:abits] - Reserved.
[nbits-1:0] - Trig counter value. A counter is incremented by one for each stored sample after

the final triggering event and when it reaches the value stored in this register the
sampling stops. 0 means posttrig and depth-1 is pretrig. Any value in between can
be used.

FIGURE 9. Trace buffer index register

0abits-1abits31

“000...0” the index of the oldest sample

FIGURE 10. Page register

031

“000...0” current page

34

FIGURE 11. Trig counter register

0abits-1abits31
“000...0” trig counter value
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Sample frequency divider

[31:16] - Reserved.
[15:0] - A sample is stored on every i:th clock cycle where i is specified through this register.

This resets to 1 thus sampling occurs every cycle if not changed.

Storage qualifier

[31:9] - Reserved.
[8:1] - Which bit to use as qualifier.
[0] - Qualify storage if bit is 1/0.

Trig control registers

This memory area contains the registers that control when the trigger engine shall proceed
to the next level, i.e the match counter and a one bit field that specifies if it should trig on
equality or inequality. There are trigl words where each word is used like in the figure
below.

[31:7] - Reserved.
[6:1] - Match counter. A counter is increased with one on each match on the current level and

when it reaches the value stored in this register the trigger engine proceeds to the

FIGURE 12. Sample freq. divider register

0151631
“000...0” divider value

FIGURE 13. Storage qualifier register

031
“000...0”

89
valqualifier bit

1

FIGURE 14. Trigger control register

031
“000...0”

67
eqmatch counter

1
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next level or if it is the last level it raises the trigged flag and starts the count of the
trigger counter.

[0] - Specifies if a match is that the pattern/mask combination is equal or inequal compared
to the traced signals.

Pattern/mask configuration

In these registers the pattern and mask for each trig level is configured. The pattern and
mask can contain up to 8 words (256 bits) each so a number of writes can be necessary to
specify just one pattern. They are stored with the LSB at the lowest address. The pattern of
the first trig level is at 0x6000 and the mask is located 8 words later at 0x6020. Then the
next trig levels starts at address 0x6040 and so on.

3.2.6  Trace buffer

The trace buffer is a circular buffer implemented with on-chip RAM. It uses the two-port
RAM generator core from GRLIB which generates a RAM with one read port and one
write port with independent clocks. The exact properties of the generated RAM depends
on the technology used but it will most likely be implemented in a dual-ported block
RAM. Circular means that after writing to the last address it wraps around and continues
writing to the first address. It keeps track of an index that specifies where the start/end of
the buffer is.

It is placed in the upper half of the allocated APB address range. If the configuration needs
more than the allocated 32 kB of the APB range the page register is used to page into the
trace buffer. Each stored word is dbits wide but 8 words of the memory range is always
allocated so the entries in the trace buffer are found at multiples of 0x20, i.e. 0x8000,
0x8020 and so on.

The index of the oldest sample is found in the trace buffer index register

31 0

Pattern
Mask

Pattern
Mask

0x6000

0x6020

0x6xxx

0x6xxx
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3.2.7  Signal description

The Logic Analyzer signals are described in table 4.

* See GRLIB IP Library users manual

3.2.8  Library dependencies

Table 5 shows libraries that should be used when instantiating a Logic Analyzer.

3.2.9  On-chip Logic Analyzer instantiation

This examples shows how a Logic Analyzer can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

entity logan_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

    ... -- other signals
    );
end;

TABLE 4. LOGAN signals

Signal name Type Function Active

RST Input Reset Low
CLK Input System clock -
TCLK Input Sample clock -
APBI* Input APB slave input signals -
APBO* Output APB slave output signals -
SIGNALS Input Vector of traced signals -

TABLE 5. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions
GAISLER MISC Component Component declaration
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architecture rtl of logan_ex is

  -- AMBA signals
signal apbi  : apb_slv_in_type;
signal apbo  : apb_slv_out_vector := (others => apb_none);
signal signals : std_logic_vector(64 downto 0);

begin

  -- AMBA Components are instantiated here
  ...

  -- Assign signals with the signals you want to trace
  ...

  -- Logic analyzer core
  logan0 : logan
  generic map (dbits=>64,depth=>4096,trigl=>2,usereg=>1,usequal=>0,

pindex => 3, paddr => 3, pmask => 16#F00#, memtech => memtech)
  port map (rstn, clk, clk, apbi, apbo(3), signals);

end;
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3.3  Implementation

When the specification was agreed on the next step was to implement it in VHDL. At
Gaisler Research they use a design style which they have worked out through long experi-
ence of hardware design and VHDL coding. It’s called the ‘two-process’ method and is
described below. A more thorough discussion of this method can be found in [6].

Some specific aspects of the implementation will be discussed as well in this chapter.

3.3.1  The two-process design method

The traditional VHDL design style is obviously influenced by the fact that before synthe-
sis tools were commonly used digital hardware designers did their work using schematics
consisting of many components from a target library. This design style can be called the
dataflow style. Such VHDL code typically have a lot of small interconnected processes
where each process has the functionality of some component in the old school schematic.
The dataflow style easily becomes difficult to read and maintain. Furthermore the code
will simulate slower and will not make the best out of today’s advanced synthesis tools.

The two-process design style has been developed with the following goals:
• Provide uniform algorithm encoding
• Increase abstraction level
• Improve readability
• Clearly identify sequential logic
• Simplify debugging
• Improve simulation speed
• Provide one model for both synthesis and simulation

It reaches these goals with a quite simple scheme. The VHDL code of an entity is struc-
tured into only two processes. One containing all the combinatorial logic and one with
only sequential logic, as in figure 15.
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FIGURE 15. Two-process circuit

This way the algorithm can be coded using non concurrent statements in the combinatorial
process and all the registers can be inferred in the sequential process. The two-process
style also promotes the use of records and other more advanced features of the VHDL lan-
guage. The r and rin signals from the figure above are the signals that ties the two pro-
cesses together. Typically they are of record type and contain all the registers that will be
inferred in the clocked process. See the VHDL code in the appendix for an example of
how the two-process method is used.

3.3.2  Clock domains

Since the Logic Analyzer has two clocks that might be totally independent care has to be
taken to avoid metastability problems when signals have to cross between these clock
domains. Each clock domain is structured with one combinatorial and one sequential pro-
cess according to the two-process method. The trace buffer is two-ported with the write
port being clocked by the sample clock and the read port by the system clock. All the con-
figuration registers are of course written from the APB domain and may not be written
after the logic analyzer has been armed since they are then being read by the sample clock
domain. Likewise the trace buffer index may not be read out until after the ‘armed’ signal
has been lowered. Only three signals crossing the clock domains need synchronization,
namely the ‘armed’, ‘trigged’ and ‘finished’ signals which controls the operation of the
trigger engine.

The ‘armed’ signal is raised by the user via APB and is sent to the trigger engine to start
operation. Then the ‘trigged’ signal goes high when the logic analyzer has triggered and it
is sent to the status register in the APB domain. When operation has finished the trigger
engine raises the ‘finished’ signal and the APB domain responds by lowering the ‘armed’
signal. These three signals are synchronized by passing through two synchronization reg-
isters before being used.
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FIGURE 16. Signals needing synchronization

3.3.3  APB address mapping

The implementation work of the logic analyzer began with the layout of the address space.
There was going to be quite a lot of registers, especially the pattern/mask configuration
would be pretty large. Since it should be possible to have a 16k deep trace buffer where
each trace possibly takes 32 bytes the buffer could possibly be as large as 512 kB. So to
get by with only using 16 of the available 20 bits a paging register was introduced for
accessing the trace buffer. If using 16 bits in total and bit 4 downto 2 is used for selecting a
word in the (possibly 8 word big) trace, and the upper most bit is used for selecting the
trace buffer there are 10 bits left for selecting a specific trace. Thus every page holds 1024
traces and a maximum of 16 pages are used to hold the largest configuration.

If the MSB is low the registers are selected. They are divided into three categories and bit
14-13 selects between the categories pattern/mask, trigger control and miscellaneous.

Pattern/mask: apbi.paddr(14 downto 13) = “11”

In pattern/mask bit 11 downto 6 selects which trig level, bit 5 selects pattern (0) or mask
(1) and bit 4 downto 2 which word in the pattern/mask that is to be written or read.

Trigger control: apbi.paddr(14 downto 13) = “01”

When trigger control is selected bits 7 downto 2 selects which of the possible 64 trig levels
that are to be configured.

Miscellaneous: apbi.paddr(14 downto 13) = “00”

Here bit 4 downto 2 select between a number of different registers.

APB interface

Trigger engine

System clock

Sample clock

clock domain

clock domain

armed
trigged

finished
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“000” - status register
“001” - trace buffer index (read only)
“010” - page register
“011” - trigger counter
“100” - sample freq. divider
“101” - sample qualifier

3.3.4  Registers

The memory mapped registers whose addressing was described above are simply inferred
in the clocked processes by the assignment of rin to r where rin and r are of the same
record type which describes all the registers inferred by that process. The code below
defines the record types used in the logic analyzer design. Registers with the postfix
“_demet” are the first synchronization registers.

This first record defines the registers that are clocked by the system clock.
type reg_type is record
       armed       : std_ulogic;
       trig_demet  : std_ulogic;
       trigged     : std_ulogic;
       fin_demet   : std_ulogic;
       finished    : std_ulogic;
       qualifier   : std_logic_vector(7 downto 0);
       qual_val    : std_ulogic;
       divcount    : std_logic_vector(15 downto 0);
       counter     : std_logic_vector(abits-1 downto 0);
       page        : std_logic_vector(3 downto 0);
       trig_conf   : trig_cfg_arr;
  end record;

The composite type trig_cfg_arr is an array of another record which is defined like this:
  type trig_cfg_type is record

pattern : std_logic_vector(dbits-1 downto 0);
mask : std_logic_vector(dbits-1 downto 0);
count : std_logic_vector(5 downto 0);
eq : std_ulogic;

  end record;

The array thus contains the pattern and mask as well as the trigger control for every trig
level. This coding style makes it up to the synthesis tool whether to infer dist-ram or flip-
flops although flips-flops will be chosen with very high probability. There is usually no
gain in forcing the use of distributed RAM here because the width (pattern, mask, count
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and eq all concatenated) is so much larger than the depth so bits will most likely be
wasted.

The last record contains the registers clocked by the sample clock. Of these only w_addr is
memory mapped. The others are only used internally by the trigger engine.
  type trace_reg_type is record
       armed       : std_ulogic;
       arm_demet   : std_ulogic;
       trigged     : std_ulogic;
       finished    : std_ulogic;
       sample      : std_ulogic;
       divcounter  : std_logic_vector(15 downto 0);
       match_count : std_logic_vector(5 downto 0);
       counter     : std_logic_vector(abits-1 downto 0);
       curr_tl     : integer range 0 to trigl-1;
       w_addr      : std_logic_vector(abits-1 downto 0);
  end record;

3.3.5  The trigger engine

When the logic analyzer has been armed it begins operation and starts to sample the traced
signals taking the configuration of qualifier and sample frequency divider into account.
The sample frequency divider is implemented as a counter that decreases by one every
clock cycle and when it reaches zero it is reloaded from the sample freq. divider register. If
the logic analyzer is configured to use a qualifier bit then every time this counter reaches
zero the qualifier bit is checked and if it has the configured value the ‘sample’ signal is
raised.

As long as the analyzer hasn’t been trigged the traced signals are compared with the pat-
tern configured on the current trig level only comparing the bits set in the mask for that
trig level. This is done by checking if:
signals XOR pattern AND mask

equals zero. If it does equal zero the signals and the pattern was “equal”. Depending on
whether the logic analyzer is configured to trig on equality or inequality this counts as a
match. If the match counter for this trig level has reached the specified number the trigger
engine proceeds to the next trig level or if this was the last trig level it raises the ‘trigged’
signal. If the match counter has not reached the specified number it is increased and the
logic analyzer keeps looking for more matches on this level.

When the logic analyzer has been trigged it starts to count up the trigger counter. It is
increased by one every time a sample is taken when the engine is in its ‘trigged’ state.
When it reaches the value written to the trigger counter register the ‘trigged’ signal is
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cleared thus ending the sampling and the ‘finished’ signal is raised. When the ‘finished’
signal has been synchronized in the system clock domain the ‘armed’ signal is cleared
which in turn pulls down the ‘finished’ signal so that the logic analyzer is left in an idle
state.

The last written index + 1, i.e. the index of the oldest sample can be read out of the trace
buffer index register.

3.3.6  The trace buffer

The trace buffer is implemented with on-chip ram using the two port synchronous RAM
generator available in GRLIB. The RAM is instantiated to be as wide as the number of
traced signals and as deep as the configured depth of the trace buffer.

The read port is addressed with the 10 bits from the APB address that specify a certain
trace. If more than 10 bits are needed the additional bits are concatenated from the 4-bit
page register. The number of bits needed to address the trace buffer is calculated using a
log2 look-up table (provided by GRLIB). For example if the trace buffer is 4096 deep 12
bits will be needed and only 2 bits of the page register will be used. The log2 look-up table
has 64 entries thus limiting the address range to cover 6 powers of 2. A range from 256 to
16384 was chosen. The read enable signal is set if an address belonging to the trace buffer
is being read. Which word in the trace delivered from the RAM that is to be sent out on the
bus is multiplexed using the APB address bits as described previously.

Every time a trace is to be written to the buffer the sample signal in the register is set. This
signal is used as write enable, so the current trace is always clocked into another register
holding the “old” trace which is the one written to the write port of the RAM when the
sample signal is high. The address used by the write port is a counter that is increased
every time a trace has been written to the buffer. This counter is memory mapped as
described previously.
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4.0  GRMON

GRMON is a general debug monitor for the systems developed by Gaisler Research. It has
the following back-ends defining its behavior:
• LEON2 simulator
• LEON2 Debug Support Unit (DSU)
• GRLIB DSU (for SOC designs based on GRLIB)
• GRLIB simulator

The user interface (front-end) is common for all back ends and it passes commands
entered by the user to the back-end which executes them. GRMON includes the features
listed below [7]
• Read/write access to all LEON registers and memory
• Built-in disassembler and trace buffer management
• Downloading and execution of LEON applications
• Breakpoint and watchpoint management
• Remote connection to GNU debugger (gdb)

Connection from GRMON to a design can be done through any on-chip AHB master with
a communication module. For the GRLIB back-end the currently available debug commu-
nication links (DCL) are serial port (UART), JTAG, ethernet, and PCI. The operation of
the different DCLs are the same but of course the bit rate varies.

The added plug & play capabilities of the GRLIB AMBA interface makes it possible for
GRMON to identify which IP cores that are configured in the design. For each core a
debug driver is loaded which provides initialisation and core specific commands. Such a
driver has been developed for the On-chip Logic Analyzer IP core and it will be integrated
into GRMON. Users can also create their own debug drivers for their cores using loadable
modules.

4.1  Logic Analyzer configuration file

To be able to identify the different signals that make up the pattern the user has to enter the
signal names and sizes in a text file named setup.logan. This file is read by the debug
driver so that it can interpret the pattern and display the correct values along with the name
for each signal. An entry in the file consists of a signal name followed by its size in bits
separated by whitespace. Rows not having these two entries as well as rows beginning
with an # are ignored.
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Example:
count31_16 16
count15_6 10
count5_0 6

This configuration has a total of 32 traced signals and they will be displayed as three dif-
ferent signals being 16, 10 and 6 bits wide. The first signal in the configuration file maps to
the most significant bits of the vector with the traced signals.

4.2  Logic Analyzer commands

This section describes the commands provided by logic analyzer debug driver. All logic
analyzer commands are prefixed with “la”. For example, to dump the trace buffer you
enter “la dump [file]” where [file] is an optional filename. Common for all commands that
sets a register is that if the value is not specified the current setting is displayed. If the trig
level is left out the command displays the current setting for all trig levels.

TABLE 6.

la status

Reports status of logan (equivalent with writing just la).
la arm

Arms the logan. Begins the operation of the analyzer and sampling starts.
la reset

Stop the operation of the logan. Logic Analyzer returns to idle state.
la pm [trig level] [pattern] [mask]
Sets/displays the complete pattern and mask of the specified trig level. If not fully
specified the input is zero-padded from the left. Note: Decimal notation only possi-
ble for widths less than or equal to 64 bits.
la pat [trig level] [bit] [0 | 1]
Sets/displays the specified bit in the pattern of the specified trig level to 0/1.
la mask [trig level] [bit] [0 | 1]
Sets/displays the specified bit in the mask of the specified trig level to 0/1.
la trigctrl [trig level] [match counter] [trig condition]
Sets/displays the match counter and the trigger condition (1 = trig on equal, 0 = trig
on inequal) for the specified trig level.
la count [value]
Set/displays the trigger counter. The value should be between zero and depth-1 and
specifies how many samples that should be taken after the triggering event.
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4.3  The Value Change Dump format

Value Change Dump (VCD) is a format defined by the Verilog IEEE 1364 standard. It is a
file format for waveforms and can be generated by many HDL simulators. Since it is an
open format and largely supported this is the format used by the Logic Analyzer debug
driver in GRMON when creating dump files. Most commercial waveform viewers can
import this format and there are at least two open source viewers, GTKWave and
Dinotrace. Both have been used for opening VCD-files generated by the driver with good
results.

The format is not described in detail in this report. For the complete specification the
reader is referred to the IEEE 1364-2001 standard [8]. Below is a description of the parts
of the format needed and used by the logic analyzer driver.

VCD files are text files and use whitespace to separate keywords. The file starts with
header information giving the date of the file, the version of the software that created it
and the time scale used. After the header information the variables are defined and the rest
of the file contains timestamps and information about which variables changed and to
what values.

A typical entry in the VCD file looks like this:

$keyword <keyword dependent data> $end

la div [value]
Sets/displays the sample frequency divider register. If you specify e.g. “la div 5” the
logic analyzer will only sample a value every 5th clock cycle.
la qual [bit] [value]
Sets/displays which bit in the sampled pattern that will be used as qualifier and what
value it shall have for a sample to be stored.
la dump [filename]
This dumps the trace buffer in VCD format to the file specified (default is log.vcd).
la view [start index] [stop index] [filename]
Prints the specified range of the trace buffer in list format. If no filename is specified
the commands prints to the screen.
la page [page]
Sets/prints the page register of the logan. Normally the user doesn’t have to be con-
cerned with this because dump and view sets the page automatically. Only useful if
accessing the trace buffer manually via the grmon mem command

TABLE 6.
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The date, version and timescale keywords gives the header information as in the example
below:
$date 2005-05-25 $end
$version
    On-chip Logic Analyzer waveform generator v1.0
$end
$timescale 1 ns $end

Variable definition is done using the var keyword. A variable definition follows this for-
mat: $var <width> <type> <identifier> <name>  $end where width is the number of bits,
type is the type of the variable, identifier is a string of printable ASCII characters that will
represent the variable in the VCD file and name is a string that will appear in the wave-
form viewer. The type may be one of several different types for example integer, real, reg
and wire. Only wire is used in the VCD-files generated by the driver.

Initial values for all the variables are given with the $dumpvars command. Then each time
a variable changes value a timestamp is used followed by all the variable changes that
occurred in that time. Timestamps are indicated with a # followed by the time. Below is an
example of three variable definitions followed by a few value changes.

$var 1 wire ! clk $end
$var 8 wire 1 addr $end
$var 8 wire 2 data $end

#0

$dumpvars
1!
b00000000 1
b00000000 2
$end

#5
0!

#10
1!
b00000001 1
b10101010 2

#15
0!

#20
1!
b00000010 1
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b11110000 2

#25
0!

Note that scalar variables can not have any space between their value and the identifier but
with vectors a space is required. The above example also shows how the sample clock
waveform is reconstructed. Since it is not possible to correctly sample any signal with a
higher frequency than half the sample frequency the clock signal obviously cannot be
sampled. Instead a sort of “virtual” clock signal is created which goes through a cycle with
every sample in the trace buffer. This equals the actual clock for traces where no qualifier
bit has been used and when the sampling frequency equals the clock frequency. If a quali-
fier is used then the time information goes away completely and therefore the user has to
connect a timer to the traced signals if time is of interest.
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5.0  Logic Analyzer GUI

It is quite easy to configure the logic analyzer using GRMON. But when there are many
traced signals keeping track of the patterns and masks can be a bit of a struggle. For mak-
ing the configuration even easier a graphical user interface (GUI) was developed. Several
approaches were contemplated. Previous GUI’s for GRMON had used redirection of the
stdin and stdout IO streams to communicate. This was deemed as an unsatisfactory solu-
tion since it doesn’t go well with changes to GRMON. The solution was to use the gdb
remote debugging interface built into GRMON. This interface allows amongst other
things reads and writes to memory and the execution of any GRMON command. To use it
one have to initiate the interface using the gdb command which sets up tcp port 2222 for
incoming connections. The GDB remote serial protocol is then used for communication.
Another question was how the graphical user interface should be built, i.e. whether for
example GTK, Eclipse or tcl/tk should be used. The final decision was in favor of tcl/tk
because of its simplicity and rapid GUI development capabilities.

Figure 17 shows the final look of the GUI.

FIGURE 17. The Logic Analyzer GUI
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The left side has the settings for the different trig levels, i.e. pattern, mask, match counter
and trigger condition. Which trig level the settings apply to is chosen from an option
menu. The “Download conf” button transfers the values to the on-chip logic analyzer. The
pattern and mask is padded with zeroes from the left if not fully specified. They can be
entered either in hexadecimal or decimal but there is a limitation that no signal can be
wider than 64 bits. This is simply because tcl can not handle larger numbers without
extensions. In the hexadecimal case it would be quite simple to parse arbitrarily large
numbers in the same way that is done in the GRMON driver but since this limitation is not
that severe this has not been implemented in the GUI.

On the right side the status is shown and beneath are the settings which control the trace
buffer. These settings are sent to the logic analyzer when the user presses enter. The
‘armed’ and ‘trigged’ fields of the status can be reread by pressing the “Update status”
button.

There are also buttons to arm and reset the logic analyzer as well as to dump the vcd-file
and launch GTKWave. Any GRMON command can be issued from the entry below these
buttons.

From the file menu the current configuration can be saved and a new one can be loaded.
The GUI defaults to the same configuration file as the GRMON debug driver. If the config-
uration is saved it adds information about the setup which is ignored by GRMON. When
saving/loading any filename may be specified but during startup the GUI reads the
“setup.logan” file. Only files previously saved by the GUI can be loaded from this menu
option because it expects the additional information added by the GUI.

5.1  The GDB Remote Serial Protocol

The Gnu Debugger (GDB) can be used to debug remote targets, such as processors run-
ning in embedded systems. The processor has to have a communication link through
which it can communicate with gdb and a small piece of code, called a gdb stub, that acts
as the intermediate between gdb and the debugged system. GDB and the stub communi-
cate with the GDB Remote Serial Protocol (RSP) which is an ASCII based protocol. For
debugging LEON systems GRMON can act as the remote end to which GDB connects,
and this way no stub has to be inserted into the code. GDB connects to tcp port 2222 on
the host running GRMON and then the commands issued are performed by GRMON
which communicates with the target hardware.

The On-Chip Logic Analyzer GUI uses this feature of GRMON to configure and check
the status of the logic analyzer hardware. Below is a description of the protocol.

Commands and responses are sent as packets where each packet looks like this:
$data#checksum
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The data part is either a command or a response. The checksum is a one byte checksum
calculated as the modulo 256 sum of all the characters between the leading $and the trail-
ing #. Each sent packet has to be acknowledged either with a ‘+’ if the packet was received
correctly or with a ‘-’ if it was incorrect.

In this section the GDB RSP commands used by the GUI are explained. There are many
more and for a full description the reader is referred to [9].

Read memory: the ‘m’ command has the following syntax:

maddr, length

and the response is either the read bytes or an error code.

General query: the ‘q’ commands has the following syntax:

qquery

The general query command can be used to query the target about many different things.
A number of predefined queries exist and one of them is used by the GUI, namely the
qRcmd command which syntax is as follows:

qRcmd,command

The command, which must be hex encoded, is passed to the local interpreter, in this case
GRMON which executes it as an internal command. The response can either be OK if the
command has no output, a hex encoded output string or an error code if the command was
badly formed. A number of intermediate console output responses of the form Ooutput
can be sent from the target before the final response.

Detach:

D

This notifies the remote system that GDB detaches (or in this case the GUI). When
detached GRMON stops listening for incoming connections and can be used as normal.

The read memory command is used for reading the status word. All configuration is done
with the qRmcd command using the logic analyzer commands implemented in GRMON.
Detaching is done upon exit but can also be issued anytime from the file menu. There is
also a reconnect option under the file menu for establishing the connection to GRMON
again. Note that the gdb command must be issued in GRMON before it is possible to con-
nect.
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6.0  Example traces

6.1  JTAG

During testing of the On-chip Logic Analyzer a Xilinx Spartan-3 board has been used.
This device has dedicated JTAG pins which are connected to a JTAG controller circuit.
Through this circuit the device can be configured and internal boundary scan chains can be
defined. The JTAG interface consists of four signals, TMS, TCK, TDI and TDO (and
sometimes an optional reset signal TRST is used). TCK is the JTAG clock signal. The
value of the Test Mode Select (TMS) signal at every rising edge of TCK determines the
state of the JTAG state machine. In the SHIFT state the TDI and TDO pins are used to
shift in and out bits to and from the data or instruction register. The following diagram
shows how the JTAG FSM works:

FIGURE 18. JTAG FSM
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To get access to the JTAG controller circuit from the HDL code the BSCAN_SPARTAN3
macro is instantiated. It has the following component declaration:
component BSCAN_SPARTAN3
   port (CAPTURE : out STD_ULOGIC;
         DRCK1  : out STD_ULOGIC;
         DRCK2  : out STD_ULOGIC;
         RESET  : out STD_ULOGIC;
         SEL1   : out STD_ULOGIC;
         SEL2   : out STD_ULOGIC;
         SHIFT  : out STD_ULOGIC;
         TDI    : out STD_ULOGIC;
         UPDATE : out STD_ULOGIC;
         TD01   : in STD_ULOGIC;
         TD02   : in STD_ULOGIC);
end component;

The CAPTURE, RESET, SHIFT and UPDATE pins shows in which state the JTAG state
machine currently is. Unfortunately the TMS and TCK pins can not be observed, only the
state and the indata is visible. The DRCK1/2, TDO1/2 and SEL1/2 are only used when
user defined instructions are active.

As an example the logic analyzer was instantiated with 5 traced signals (TDI, CAPTURE,
SHIFT, UPDATE and RESET) and a depth of 16384 samples. Only one trigger level was
used and the trigger was the first rising edge of the SHIFT state pin. Since the JTAG inter-
face is quite slow compared to the system clock a sample was taken every fifth clock
cycle. The logic analyzer was configured and armed using GRMON with the UART back-
end. Then another session of GRMON was started but with the JTAG communication
back-end. The waveforms below shows the initial sequence that was sampled.

FIGURE 19. JTAG interface trace
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6.2  Ethernet

To demonstrate sampling using another clock than the system clock a trace was taken of
the Ethernet Media Independent Interface (MII) with its transmitter clock as sample clock.
The traced signals are shown in table 7.

TX_CLK and RX_CLK are generated by the PHY. TX_EN, TX_ER, TXD and the man-
agement signals are driven by the Ethernet Media Access Controller (MAC).

Figure 18 shows the Ethernet MAC frame format. These are the actual bits sent on the
physical medium and consists of an Ethernet packet, the start of frame delimiter (SFD),
and the preamble. For detailed information on the Ethernet standard see [10]

FIGURE 20. Ethernet MAC frame

TABLE 7.  Sampled Ethernet signals

Signal Description

TX_EN Indicates that the data on TXD should be sampled by the PHY next cycle
TX_ER If TX_ER is asserted at the same time as TX_EN it forces the PHY to send invalid data
TXD(3:0) The nibble that shall be transmitted
RX_COL High if a collision has occurred
RX_CRS High if the medium is being used
RX_DV High when received data is valid
RX_ER High if an receive error has occurred and received data is invalid
RXD(3:0) Received nibble. Synchronous to the RX_CLK
MDC Clock for the management interface
MDIO_I Configuration input
MDIO_O Configuration output
MDIO_OE Output enable for the bidirectional configuration signal
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In this example the logic analyzer was set to trig on the first occurrence of TX_EN = ‘1’ so
the first transmission from the system is captured. Data is sent one nibble at a time starting
from the LSB of each octet. The preamble and the SFD are used for synchronizing the
receiver and the transmitter and they are seen in figure 19 below as the long sequence of
5’s followed by “D5” (although here in reverse order since LSB first). After that comes the
destination address which is 00:05:5D:96:07:62.

FIGURE 21. Ethernet MII trace, part 1

FIGURE 22. Ethernet MII trace, part 2

Next the source address 00:00:7A:CC:0:01 is sent as seen in figure 22 followed by the
type field, here “0x0608” specifying the ARP protocol. The rest of the data seen is from
the ARP packet but will not be described here.
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7.0  Conclusions and discussion

The object of this master’s thesis was to develop an On-Chip Logic Analyzer that could
trace arbitrary signals inside an FPGA and trig on complex events. The read out should be
done over the AMBA APB interface and functionality for the core was to be integrated
into the GRMON debug monitor.

An IP core that fulfills these requirements has been successfully implemented and tested.
The GRMON debug driver developed gives control of all configurability of the IP core
and can dump the trace buffer to VCD-format or list form. In addition to the original
requirements a GUI has been developed that makes configuration easier when many sig-
nals are to be traced.

Several test traces have been made and both the hardware and software functions as sup-
posed. During the development and testing some ideas of improvement has been thought
of. For example it should be fairly simple to add support in the software for using multiple
Logic Analyzer cores in a design. This would be very handy if one wants to sample differ-
ent clock domains.
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Appendix A -VHDL source code

-----------------------------------------------------------------------------
-- Entity: logan_core
-- File: logan_core.vhd
-- Author: Kristoffer Carlsson
-- Description: On-chip logic analyzer IP core
-----------------------------------------------------------------------------

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.stdlib.all;

library gaisler;
use gaisler.devices.all;
use gaisler.memory.all;

entity logan is
  generic (

dbits : integer range 0 to 256 := 32; -- Number of traced signals
    depth    : integer range 256 to 16384 := 1024;      -- Depth of trace buffer

trigl : integer range 1 to 63 := 1; -- Number of trigger levels
    usereg   : integer range 0 to 1 := 1;               -- Use input register
    usequal  : integer range 0 to 1 := 0;               -- Use qualifer bit

    pindex   : integer := 0;
    paddr    : integer := 0;
    pmask    : integer := 16#F00#;
    memtech  : integer := 0);
  port (
    rstn     : in  std_logic;                              -- Synchronous reset
    clk      : in  std_logic;                              -- System clock
    tclk     : in  std_logic;                              -- Trace clock
    apbi     : in  apb_slv_in_type;                        -- APB in record
    apbo     : out apb_slv_out_type;                       -- APB out record
    signals  : in  std_logic_vector(dbits - 1 downto 0));  -- Traced signals
end logan;

architecture rtl of logan is

  constant REVISION : amba_version_type := 0;
  constant pconfig : apb_config_type := (
    0 => ahb_device_reg ( VENDOR_GAISLER, GAISLER_LOGAN, 0, REVISION, 0),
    1 => apb_iobar(paddr, pmask));

  constant abits: integer := 8 + log2x(depth/256 - 1);
  constant az   : std_logic_vector(abits-1 downto 0) := (others => ‘0’);
  constant dz   : std_logic_vector(dbits-1 downto 0) := (others => ‘0’);
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  type trig_cfg_type is record
      pattern : std_logic_vector(dbits-1 downto 0);    -- Pattern to trig on
      mask    : std_logic_vector(dbits-1 downto 0);    -- trigger mask
      count   : std_logic_vector(5 downto 0);          -- match counter

eq : std_ulogic; -- Trig on match or no match?
  end record;

  type trig_cfg_arr is array (0 to trigl-1) of trig_cfg_type;

  type reg_type is record
       armed       : std_ulogic;
       trig_demet  : std_ulogic;
       trigged     : std_ulogic;
       fin_demet   : std_ulogic;
       finished    : std_ulogic;
       qualifier   : std_logic_vector(7 downto 0);
       qual_val    : std_ulogic;
       divcount    : std_logic_vector(15 downto 0);
       counter     : std_logic_vector(abits-1 downto 0);
       page        : std_logic_vector(3 downto 0);
       trig_conf   : trig_cfg_arr;
  end record;

  type trace_reg_type is record
       armed       : std_ulogic;
       arm_demet   : std_ulogic;
       trigged     : std_ulogic;
       finished    : std_ulogic;
       sample      : std_ulogic;
       divcounter  : std_logic_vector(15 downto 0);
       match_count : std_logic_vector(5 downto 0);
       counter     : std_logic_vector(abits-1 downto 0);
       curr_tl     : integer range 0 to trigl-1;
       w_addr      : std_logic_vector(abits-1 downto 0);
  end record;

  signal r_addr         : std_logic_vector(13 downto 0);
  signal bufout         : std_logic_vector(255 downto 0);
  signal r_en           : std_ulogic;
  signal r, rin         : reg_type;
  signal tr, trin       : trace_reg_type;
  signal sigreg         : std_logic_vector(dbits-1 downto 0);
  signal sigold         : std_logic_vector(dbits-1 downto 0);

begin

  bufout(255 downto dbits) <= (others => ‘0’);

  -- Combinatorial process for AMBA clock domain
  comb1: process(rstn, apbi, r, tr, bufout)

    variable v              : reg_type;
    variable rdata          : std_logic_vector(31 downto 0);
    variable tl             : integer range 0 to trigl-1;
    variable pattern, mask  : std_logic_vector(255 downto 0);
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  begin

    v := r;
    rdata := (others => ‘0’); tl := 0;
    pattern := (others => ‘0’); mask := (others => ‘0’);

    -- Two stage synch
    v.trig_demet := tr.trigged;
    v.trigged := r.trig_demet;
    v.fin_demet := tr.finished;
    v.finished := r.fin_demet;

    if r.finished = ‘1’ then
      v.armed := ‘0’;
    end if;

    r_en <= ‘0’;

    -- Read/Write --
    if apbi.penable = ‘1’  and apbi.psel(pindex) = ‘1’ then

      -- Write
      if apbi.pwrite = ‘1’ then

        -- Only conf area writeable
        if apbi.paddr(15) = ‘0’ then

          -- pattern/mask
          if apbi.paddr(14 downto 13) = “11” then

tl := conv_integer(apbi.paddr(11 downto 6));
            pattern(dbits-1 downto 0)     := v.trig_conf(tl).pattern;
            mask(dbits-1 downto 0)        := v.trig_conf(tl).mask;

            case apbi.paddr(5 downto 2) is

              when “0000” => pattern(31 downto 0)     := apbi.pwdata;
              when “0001” => pattern(63 downto 32)    := apbi.pwdata;
              when “0010” => pattern(95 downto 64)    := apbi.pwdata;
              when “0011” => pattern(127 downto 96)   := apbi.pwdata;
              when “0100” => pattern(159 downto 128)  := apbi.pwdata;
              when “0101” => pattern(191 downto 160)  := apbi.pwdata;
              when “0110” => pattern(223 downto 192)  := apbi.pwdata;
              when “0111” => pattern(255 downto 224)  := apbi.pwdata;

              when “1000” => mask(31 downto 0)        := apbi.pwdata;
              when “1001” => mask(63 downto 32)       := apbi.pwdata;
              when “1010” => mask(95 downto 64)       := apbi.pwdata;
              when “1011” => mask(127 downto 96)      := apbi.pwdata;
              when “1100” => mask(159 downto 128)     := apbi.pwdata;
              when “1101” => mask(191 downto 160)     := apbi.pwdata;
              when “1110” => mask(223 downto 192)     := apbi.pwdata;
              when “1111” => mask(255 downto 224)     := apbi.pwdata;

              when others => null;
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            end case;

            -- write back updated pattern/mask
            v.trig_conf(tl).pattern := pattern(dbits-1 downto 0);
            v.trig_conf(tl).mask    := mask(dbits-1 downto 0);

            -- count/eq
          elsif apbi.paddr(14 downto 13) = “01” then

tl := conv_integer(apbi.paddr(7 downto 2));
            v.trig_conf(tl).count         := apbi.pwdata(6 downto 1);
            v.trig_conf(tl).eq            := apbi.pwdata(0);

            -- arm/reset
          elsif apbi.paddr(14 downto 13)&apbi.paddr(4 downto 2) = “00000” then
            v.armed := apbi.pwdata(0);

            -- Page reg
          elsif apbi.paddr(14 downto 13)&apbi.paddr(4 downto 2) = “00010” then
            v.page := apbi.pwdata(3 downto 0);

            -- Trigger counter
          elsif apbi.paddr(14 downto 13)&apbi.paddr(4 downto 2) = “00011” then
            v.counter := apbi.pwdata(abits-1 downto 0);

            -- div count
          elsif apbi.paddr(14 downto 13)&apbi.paddr(4 downto 2) = “00100” then
            v.divcount := apbi.pwdata(15 downto 0);

           -- qualifier bit
          elsif apbi.paddr(14 downto 13)&apbi.paddr(4 downto 2) = “00101” then
            v.qualifier := apbi.pwdata(7 downto 0);
            v.qual_val  := apbi.pwdata(8);
          end if;
        end if;

        -- end write

        -- Read
      else

        -- Read config/status area
        if apbi.paddr(15) = ‘0’ then

          -- pattern/mask
          if apbi.paddr(14 downto 13) = “11” then

tl := conv_integer(apbi.paddr(11 downto 6));
            pattern(dbits-1 downto 0)   := v.trig_conf(tl).pattern;
            mask(dbits-1 downto 0)      := v.trig_conf(tl).mask;

            case apbi.paddr(5 downto 2) is
              when “0000” => rdata   := pattern(31 downto 0);
              when “0001” => rdata   := pattern(63 downto 32);
              when “0010” => rdata   := pattern(95 downto 64);
              when “0011” => rdata   := pattern(127 downto 96);
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              when “0100” => rdata   := pattern(159 downto 128);
              when “0101” => rdata   := pattern(191 downto 160);
              when “0110” => rdata   := pattern(223 downto 192);
              when “0111” => rdata   := pattern(255 downto 224);

              when “1000” => rdata   := mask(31 downto 0);
              when “1001” => rdata   := mask(63 downto 32);
              when “1010” => rdata   := mask(95 downto 64);
              when “1011” => rdata   := mask(127 downto 96);
              when “1100” => rdata   := mask(159 downto 128);
              when “1101” => rdata   := mask(191 downto 160);
              when “1110” => rdata   := mask(223 downto 192);
              when “1111” => rdata   := mask(255 downto 224);

              when others => rdata  := (others => ‘0’);
            end case;

            -- count/eq
          elsif apbi.paddr(14 downto 13) = “01” then
            tl                    := conv_integer(apbi.paddr(7 downto 2));
            rdata(6 downto 1)     := v.trig_conf(tl).count;
            rdata(0)              := v.trig_conf(tl).eq;

            -- status
          elsif apbi.paddr(14 downto 13)&apbi.paddr(4 downto 2) = “00000” then
            rdata := conv_std_logic_vector(usereg,1) &
                     conv_std_logic_vector(usequal,1) &
                     r.armed & r.trigged &
                     conv_std_logic_vector(dbits,8)&
                     conv_std_logic_vector(depth-1,14)&
                     conv_std_logic_vector(trigl,6);

            -- trace buffer index
          elsif apbi.paddr(14 downto 13)&apbi.paddr(4 downto 2) = “00001” then
            rdata(abits-1 downto 0) := tr.w_addr(abits-1 downto 0);

            -- page reg
          elsif apbi.paddr(14 downto 13)&apbi.paddr(4 downto 2) = “00010” then
            rdata(3 downto 0) := r.page;

            -- trigger counter
          elsif apbi.paddr(14 downto 13)&apbi.paddr(4 downto 2) = “00011” then
            rdata(abits-1 downto 0) := r.counter;

            -- divcount
          elsif apbi.paddr(14 downto 13)&apbi.paddr(4 downto 2) = “00100” then
            rdata(15 downto 0) := r.divcount;

            -- qualifier
          elsif apbi.paddr(14 downto 13)&apbi.paddr(4 downto 2) = “00101” then
            rdata(7 downto 0) := r.qualifier;
            rdata(8) := r.qual_val;
          end if;

          -- Read from trace buffer
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        else

          -- address always r.page & apbi.paddr(14 downto 5)

          r_en        <= ‘1’;

          -- Select word from pattern
          case apbi.paddr(4 downto 2) is
          when “000” => rdata   := bufout(31 downto 0);
          when “001” => rdata   := bufout(63 downto 32);
          when “010” => rdata   := bufout(95 downto 64);
          when “011” => rdata   := bufout(127 downto 96);
          when “100” => rdata   := bufout(159 downto 128);
          when “101” => rdata   := bufout(191 downto 160);
          when “110” => rdata   := bufout(223 downto 192);
          when “111” => rdata   := bufout(255 downto 224);
          when others => rdata := (others => ‘0’);
          end case;

        end if;

      end if; -- end read

    end if;

    if rstn = ‘0’ then
      v.armed := ‘0’; v.trigged := ‘0’; v.finished := ‘0’;
      v.trig_demet := ‘0’; v.fin_demet := ‘0’;
      v.counter := (others => ‘0’);
      v.divcount := X”0001”;
      v.qualifier := (others => ‘0’);
      v.qual_val := ‘0’;
      v.page := (others => ‘0’);
    end if;

    apbo.prdata <= rdata;
    rin <= v;
  end process;

  -- Combinatorial process for trace clock domain
  comb2 : process (rstn, tr, r, sigreg)

    variable v  : trace_reg_type;

  begin
    v := tr;

    v.sample := ‘0’;
    if tr.armed = ‘0’ then
       v.trigged := ‘0’;
       v.counter := (others => ‘0’);
    end if;

    -- Synch arm signal
    v.arm_demet := r.armed;
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    v.armed := tr.arm_demet;

    if tr.finished = ‘1’ then
      v.finished := tr.armed;
    end if;

    -- Trigger --
    if tr.armed = ‘1’ and tr.finished = ‘0’ then

      if tr.divcounter = X”0000” then
        v.divcounter := r.divcount-1;
        if usequal = 0 or sigreg(conv_integer(r.qualifier)) = r.qual_val then
          v.sample := ‘1’;
        end if;
      else
        v.divcounter := v.divcounter - 1;
      end if;

      if tr.sample = ‘1’ then v.w_addr := tr.w_addr + 1; end if;

      if tr.trigged = ‘1’ and tr.sample = ‘1’ then

        if tr.counter = r.counter then
          v.trigged := ‘0’;
          v.sample := ‘0’;
          v.finished := ‘1’;
        else v.counter := tr.counter + 1; end if;

      else

        -- match?
        if ((sigreg xor r.trig_conf(tr.curr_tl).pattern) and
             r.trig_conf(tr.curr_tl).mask) = dz then

          -- trig on equal
          if r.trig_conf(tr.curr_tl).eq = ‘1’ then

            if tr.match_count /= r.trig_conf(tr.curr_tl).count then
              v.match_count := tr.match_count + 1;
            else

              -- final match?
              if tr.curr_tl = trigl-1 then
                v.trigged := ‘1’;
              else
                v.curr_tl := tr.curr_tl + 1;
              end if;

            end if;

          end if;

        else -- not a match

          -- trig on inequal
          if r.trig_conf(tr.curr_tl).eq = ‘0’ then



50

Design and implementation of an On-chip Logic Analyzer

            if tr.match_count /= r.trig_conf(tr.curr_tl).count then
              v.match_count := tr.match_count + 1;
            else

              -- final match?
              if tr.curr_tl = trigl-1 then
                v.trigged := ‘1’;
              else
                v.curr_tl := tr.curr_tl + 1;
              end if;

            end if;
          end if;
        end if;
      end if;
    end if;

    -- end trigger

    if rstn = ‘0’ then
      v.armed := ‘0’; v.trigged := ‘0’; v.sample := ‘0’; v.finished := ‘0’;
      v.arm_demet := ‘0’;
      v.curr_tl := 0;
      v.counter := (others => ‘0’);
      v.divcounter := (others => ‘0’);
      v.match_count := (others => ‘0’);
      v.w_addr := (others => ‘0’);
    end if;

    trin <= v;

  end process;

  -- clk traced signals through register to minimize fan out
  inreg: if usereg = 1 generate
    process (tclk)
    begin
      if rising_edge(tclk) then
        sigold <= sigreg;
        sigreg <= signals;
      end if;
    end process;
  end generate;

  noinreg: if usereg = 0 generate
    sigreg <= signals;
    sigold <= signals;
  end generate;

  -- Update registers
  reg: process(clk)
  begin
    if rising_edge(clk) then r <= rin; end if;
  end process;
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  treg: process(tclk)
  begin
    if rising_edge(tclk) then tr <= trin; end if;
  end process;

  r_addr    <= r.page & apbi.paddr(14 downto 5);

  trace_buf : syncram_2p
   generic map (tech => memtech, abits => abits, dbits => dbits)

port map (clk, r_en, r_addr(abits-1 downto 0), bufout(dbits-1 downto 0),--read
tclk, tr.sample, tr.w_addr, sigold); -- write

  apbo.pconfig <= pconfig;
  apbo.pindex  <= pindex;
  apbo.pirq    <= (others => ‘0’);

end architecture;
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Appendix B - GUI source code

#!/usr/bin/wish

############################################
# On-chip Logic Analyzer GUI               #
#                                          #
# File:   logan.tcl                        #
# Author: Kristoffer Carlsson              #
############################################

# Sets the flag ready when any data is ready to be read from variable data
proc get_data {fd} {

    global data ready

    if [eof $fd] {
        catch {close $fd}
        return
    }
    set data [read $fd]
    set ready 1
}

# Calculates the RSP checksum
proc calc_checksum {data} {
    set sum 0
    for {set k 0} {$k < [string length $data]} {incr k} {
        binary scan [string index $data $k] c dd
        set sum [expr $dd + $sum]
    }
    set sum [expr $sum % 256]
    return [format %.2x $sum]
}

# Hex encodes a string
proc str2hex {str} {
    for {set k 0} {$k < [string length $str]} {incr k} {
        binary scan [string index $str $k] c dd
        append hex [format %.2x $dd ]
    }
    return $hex
}

# Decodes a hex encoded string
proc hex2str {hex} {
    for {set k 1} {$k < [string length $hex]} {incr k 2} {
        scan “0x[string range $hex $k [expr $k+1]]” %x byte
        append str [format %c $byte]
    }
    return $str
}

# Converts the integer <x> to a string with <bits> number of bits
proc toBin {x  bits} {
    set bitstr ““
    for {set i 0} {$i < $bits} {incr i} {
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        set bitstr “[expr ($x >> $i)&1]$bitstr”
    }
    return $bitstr
}

# Converts a string of bits to string with the hexadecimal value
proc binToHex {bitstr} {
    global nibbleToHex

    set hexstr ““

    set len [string length $bitstr]

    if {[expr $len % 4 != 0]} {
# zero pad so that the bitstr is a multiple of 4. Needed for nibbleToHex

for {set i 0} {$i < [expr 4-($len % 4)]} {incr i} {
    set bitstr “0$bitstr”
}

    }

    for {set i 0} {$i < [string length $bitstr]} {incr i 4} {
        set bits [string range $bitstr $i [expr $i+3]]
        set hex $nibbleToHex($bits)
        append hexstr $hex
    }
    return $hexstr
}

# Parses the data from the RSP packet
proc parse_packet {data format} {

    set output ““

    if {$data == “-”} {
return “-”;

    }
    while {[regexp -nocase -all {\$([A-Za-z0-9]*)\#([A-Za-z0-9]{2})(.*)} \
            $data -> val check data] == 1} {
        if {[calc_checksum $val] == $check}  {

    append output $val
        } else {

    return “-1”
        }
    }
    return $output
}

# Reads any memory address from GRMON
proc read_mem {addr len s} {

    global data ready

    set cmd “m$addr,$len”
    rsp_cmd $cmd $s

    while {1} {
       vwait ready
       set ready 0
       if {$data == “+”} {
           continue
       } elseif {$data == “-”} {
           puts “Checksum error in receiver. Resending .. “
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           rsp_cmd $rspcmd $s
       } else {
           set val [parse_packet $data “int”]

           if {$val == -1} {
       puts “Checksum error”
       puts $s “-”
   } else {
       puts $s “+”
       return [format %u “0x$val”]
       break
   }

       }
   }
}

# Sends any GRMON command
proc remote_cmd {cmd s} {

    global data ready

    set rspcmd “qRcmd,”
    append rspcmd [str2hex $cmd]
    rsp_cmd $rspcmd $s

    while {1} {
        vwait ready
        set ready 0

if {$data == “+”} {
    continue
} elseif {$data == “-”} {
    puts “Checksum error in receiver. Resending .. “
    rsp_cmd $rspcmd $s
} else {
    # packet received
    set val [parse_packet $data “int”]
    if {$val == -1} {

puts “Checksum error”
puts $s “-”

    } else {
if {$val == “OK”} {

        puts $s “+”
    break
} else {
    puts $s “+”
}

     }
}

    }
}

# Gets the logan base address
proc read_addr {s} {

    global data ready

    set addr “-1”

    set rspcmd “qRcmd,”
    append rspcmd [str2hex “la”]
    rsp_cmd $rspcmd $s
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    while {1} {
        vwait ready
        set ready 0

if {$data == “+”} {
    continue
} elseif {$data == “-”} {
    puts “Checksum error in receiver. Resending .. “
    rsp_cmd $rspcmd $s
} else {
    # packet received
    set val [parse_packet $data “int”]
    if {$val == -1} {

puts “Checksum error”
puts $s “-”

    } else {
set output [hex2str $val]

if { [regexp -nocase -all {[ |\t]*(0x[0-9A-Za-z]+)}
                        $output -> match] == 1 } {
                      set addr $match
                  }

               if {$val == “OK”} {
    puts $s “+”
    break
} else {
    puts $s “+”
}

    }
}

    }
    return $addr
}

# Send a GDB RSP command
proc rsp_cmd {cmd s} {
    append rspcmd “\$” $cmd “#”  [calc_checksum $cmd]
    puts $s $rspcmd
    flush $s
}

# Reads status word
proc read_status {addr} {
    global s usereg usequal armed trigged dbits depth trigl

    set status [read_mem “$addr” 4 $s]

    set usereg  [expr ($status & 0x80000000) ? “yes” : “no” ]
    set usequal [expr ($status & 0x40000000) ? “yes” : “no” ]
    set armed   [expr ($status & 0x20000000) ? “yes” : “no” ]
    set trigged [expr ($status & 0x10000000) ? “yes” : “no” ]
    set dbits   [expr ($status & 0x0ff00000) >> 20]
    set depth   [expr (($status & 0x000fffc0) >> 6)+1]
    set trigl   [expr ($status & 0x0000003f)]
}

# Reads the LOGAN setup file
proc read_config {filename} {

    global dbits

    set fd [open $filename r]
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    set bits 0

    while {[gets $fd line] >= 0} {
        if {[regexp -nocase -all {^[ |\t]*([^ |\t]+)[ |\t]+([0-9]+)}
             $line -> name size] == 1} {
            lappend signals $name $size
            set bits [expr $bits+$size]
            if {$bits == $dbits} {
                break
            }
        }
    }
    return $signals
}

# Send the patterns/masks to GRMON
proc download_conf {trigl siglist mcarr eqarr} {

    global s
    upvar $mcarr mc
    upvar $eqarr eq

    for {set tl 0} {$tl < $trigl} {incr tl} {
        upvar #0  “pm.$tl” pm
        set i 1
        set totpat ““
        set totmask ““
        foreach {pat mask} $pm {
            set size [lindex $siglist $i]
            append totpat [toBin $pat $size]
            append totmask [toBin $mask $size]
            incr i 2
        }
        set cmdstr “la pm $tl 0x[binToHex $totpat] 0x[binToHex $totmask]”
        remote_cmd $cmdstr $s
        set cmdstr “la trigctrl $tl $mc($tl) [expr $eq($tl) == “yes” ? 1:0]”
        remote_cmd $cmdstr $s
    }
}

# Load configuration from file
proc load_conf { } {

    global s sigs trigl cur_tl dbits mc eq tcount dcount qualbit qualval

    set file [tk_getOpenFile]
    if {$file == ““} { return }
    set fd [open $file “r”]

    set tl [gets $fd]
    set db [gets $fd]

    if {$tl != $trigl || $db != $dbits} {
        tk_messageBox -message \
    “Configuration file does not match current hardware.\nConfiguration not loaded.”\

    -type ok -icon error
        return
    }

    set bits 0
    while {[gets $fd line] >= 0} {
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        if {[regexp -nocase -all {^[ |\t]*([^ |\t]+)[ |\t]+([0-9]+)}
             $line -> name size] == 1} {
            lappend sigs $name $size
            set bits [expr $bits+$size]
            if {$bits == $dbits} {
                break
            }
        }
    }
    if {$bits != $dbits} {

tk_messageBox -message “Signal sizes don’t match dbits” \
        -type ok -icon error
        return
    }

    set tcount [gets $fd]
    set dcount [gets $fd]
    set qualbit [gets $fd]
    set qualval [gets $fd]

    remote_cmd “la count $tcount” $s
    remote_cmd “la div $dcount” $s
    remote_cmd “la qual $qualbit $qualval” $s

    for {set i 0} {$i < $tl} {incr i} {
        upvar pm.$i pm
        set pm [split [gets $fd] “ “]
    }

    array set mc [split [gets $fd] “ “]
    array set eq [split [gets $fd] “ “]

    download_conf $trigl $sigs mc eq

    updatePMentry pm.$cur_tl $cur_tl
    .t.tl.mc.entry delete 0 end
    .t.tl.eq.entry delete 0 end
    .t.tl.mc.entry insert 0 $mc($cur_tl)
    .t.tl.eq.entry insert 0 $eq($cur_tl)

    close $fd
}

# Save configuration to file
proc save_conf { } {
    global sigs trigl dbits mc eq tcount dcount qualbit qualval

    set file [tk_getSaveFile]
    if {$file == ““} { return }
    set fd [open $file “w+”]
    set nr [expr [llength $sigs]/2]

    puts $fd “$trigl\n$dbits”

    foreach {sig size} $sigs {
        puts $fd “$sig\t$size”
    }

    puts $fd “$tcount\n$dcount\n$qualbit\n$qualval”

    for {set i 0} {$i < $trigl} {incr i} {
        upvar pm.$i pm
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        puts $fd $pm
    }
    puts $fd [array get mc]
    puts $fd [array get eq]

    flush $fd
    close $fd
}

# Updates the pattern and mask entry
proc updatePMentry {pml sel} {

    upvar #0 $pml pm

    .t.tl.pm.cfg.pattern delete 0 end
    .t.tl.pm.cfg.mask delete 0 end
    set i [.t.tl.pm.slist.list curselection]
    if {$i == ““} {
        .t.tl.pm.slist.list selection set $sel
        set i $sel
    }
    set i [expr 2*$i]
    .t.tl.pm.cfg.pattern insert 0 [lindex $pm $i]
    .t.tl.pm.cfg.mask insert 0 [lindex $pm [expr 1 + $i]]
}

# Saves the pattern and mask entry
proc savePMentry {pml sel} {

    upvar $pml pm

    set i [.t.tl.pm.slist.list curselection]
    if {$i == ““} {
        .t.tl.pm.slist.list selection set $sel
        set i $sel
    }
    set i [expr 2*$i]

    set pm [lreplace $pm $i $i [.t.tl.pm.cfg.pattern get]]
    set pm [lreplace $pm [expr $i+1] [expr $i+1] [.t.tl.pm.cfg.mask get]]

}

# Called by trace when changing tl, saves and updates the entry boxes
proc changeTL {var index op} {
    upvar $var newtl
    global cur_tl selsig
    global pm.$cur_tl mc eq
    savePMentry pm.$cur_tl $selsig
    set mc($cur_tl) [.t.tl.mc.entry get]
    set eq($cur_tl) [.t.tl.eq.entry get]
    set cur_tl $newtl
    .t.tl.mc.entry delete 0 end
    .t.tl.mc.entry insert 0 $mc($cur_tl)
    .t.tl.eq.entry delete 0 end
    .t.tl.eq.entry insert 0 $eq($cur_tl)
    updatePMentry pm.$cur_tl $cur_tl
}

proc OptionMenu {name label width var init l} {
    global $var
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    frame $name
    label $name.label -text $label -width $width -anchor w
    pack $name.label -side left
    set optname [eval tk_optionMenu $name.menu $var $init]
    pack $name.menu -side right
    $optname delete 0
    set j [llength $l]
    for {set i 0} {$i < $j} {incr i} {
        set e [lindex $l $i]
        $optname insert $i radiobutton -label $e -variable $var
    }
    return $name
}

proc SettingEntry {name label width command args} {
    frame $name
    label $name.label -text $label -width $width -anchor w
    eval {entry $name.entry -relief sunken} $args
    pack $name.label -side left
    pack $name.entry -side right -fill x -expand true
    bind $name.entry <Return> $command
    return $name.entry
}

proc StatusMessage {name label value width args} {
    frame $name
    label $name.label -text $label -width $width -anchor w
    eval {label $name.val -text $value -width 6} $args -anchor w
    pack $name.label -side left
    pack $name.val -side right
    return $name
}

#########################################################
# Main code starts here                                 #
#########################################################

# init

if { [catch {set s [socket localhost 2222]}] != 0 } {
    puts “\nError connecting to localhost : 2222\nPut GRMON in GDB mode.\n”
    exit
} else {
    fconfigure $s -blocking 0 -buffering none
    fileevent $s readable {get_data $s}
    set conn 1
}

set data 0
set ready 0
set cur_tl 0
set selsig 0

for {set i 0} {$i < 16} {incr i} {
    set index [toBin $i 4]
    set nibbleToHex($index) [format %.1x $i]
}

vwait ready



60

Design and implementation of an On-chip Logic Analyzer

set addr [read_addr $s]

if {$addr == “-1”} {
    puts “\n No logic analyzer found! Exiting ...\n”
    exit
}

set tcount_addr [format %x [expr $addr + 0x0C]]
set dcount_addr [format %x [expr $addr + 0x10]]
set qual_addr   [format %x [expr $addr + 0x14]]
set addr [format %x $addr]

read_status $addr

set tcount [read_mem $tcount_addr 4 $s]
set dcount [read_mem $dcount_addr 4 $s]
set qual   [read_mem $qual_addr 4 $s]

set qualbit [expr $qual & 0xFF]
set qualval [expr ($qual & 256)>>8]

set sigs [read_config “setup.logan”]

# set up the pattern/mask, mc and eq lists
for {set i 0} {$i < $trigl} {incr i} {
    set mc($i) 0
    set eq($i) “yes”
    lappend tl $i
    for {set j 0} {$j < [llength $sigs]} {incr j} {
        lappend pm.$i 0
    }
}

# Create widgets and configure bindings

# top level frame and menubar
wm title . “Logic Analyzer GUI - connected”
frame .menubar
pack .menubar -fill x

menubutton .menubar.file -text File -menu .menubar.file.m
pack .menubar.file -side left

set m [menu .menubar.file.m]
$m add command -label “Load conf” -command {load_conf}
$m add command -label “Save conf” -command {save_conf}
$m add command -label “Detach” -command {
    if {$conn == 1} {
        rsp_cmd “D” $s
        vwait ready
        puts $s “+”
        close $s
        set conn 0
        wm title . “Logic Analyzer GUI - disconnected”
    }
}
$m add command -label “Reconnect” -command {
    if {$conn == 0} {
        set s [socket localhost 2222]
        fconfigure $s -blocking 0 -buffering none
        fileevent $s readable {get_data $s}
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        set conn 1
        wm title . “Logic Analyzer GUI - connected”
    }
}
$m add command -label “Exit” -command {
    if {$conn == 1} {
rsp_cmd “D” $s
vwait ready
puts $s “+”
    }
    exit
}

frame .t
pack .t -expand 1 -fill both

# .t.tl frame contains all trigger level specific config
frame .t.tl -relief ridge -bd 1
pack .t.tl  -side left -padx 15 -pady 15 -ipadx 5 -ipady 5

OptionMenu .t.tl.trigl “Config for trigl level: “ 25 new_tl 0 $tl
trace variable new_tl w changeTL

pack .t.tl.trigl -pady 10

# .t.tl.pm contains the signal listbox and p/m entry
frame .t.tl.pm
pack .t.tl.pm

set sl [frame .t.tl.pm.slist]
listbox $sl.list -yscrollcommand {$sl.scroll set} -setgrid true -background white
$sl.list selection set 0
scrollbar $sl.scroll -orient vertical -command {$sl.list yview}
pack $sl.scroll -side right -fill y
pack $sl.list -side left
pack $sl -padx 10 -pady 10 -side left

foreach {signal size} $sigs {
    $sl.list insert end  “$signal ($size bits)”

}

bind $sl.list <ButtonRelease-1> {updatePMentry pm.$cur_tl $selsig}
bind $sl.list <ButtonPress-1> {savePMentry pm.$cur_tl $selsig}
bind $sl.list <Key-Tab> {
    set newsig [$sl.list curselection]
    if {$newsig != ““} {
        set selsig $newsig
    }
}
bind $sl.list <Leave> {
    set newsig [$sl.list curselection]
    if {$newsig != ““} {
        set selsig $newsig
    }
}

# cfg frame contains the p/m entry boxes
set cfg [frame .t.tl.pm.cfg]
label $cfg.plab -text “Pattern:” -width 8 -anchor w
entry $cfg.pattern
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$cfg.pattern insert 0 0
label $cfg.mlab -text “Mask:” -width 8 -anchor w
entry $cfg.mask
$cfg.mask insert 0 0

pack $cfg -side right -pady 10 -anchor nw
pack $cfg.plab $cfg.pattern $cfg.mlab $cfg.mask -padx 10 -anchor w

SettingEntry .t.tl.mc “Match counter: “ 15 {}
SettingEntry .t.tl.eq “Trig on equal: “ 15 {}
.t.tl.mc.entry insert 0 0
.t.tl.eq.entry insert 0 “yes”
bind .t.tl.eq.entry <ButtonPress-1> {
    if {[.t.tl.eq.entry get] == “yes”} {
        set new “no”
    } else {
        set new “yes”
    }
    .t.tl.eq.entry del 0 end
    .t.tl.eq.entry insert 0 $new
}

pack .t.tl.mc .t.tl.eq -side top -padx 10 -pady 10

button .t.tl.down -text “Download conf” -command {
    savePMentry pm.$cur_tl $selsig
    set mc($cur_tl) [.t.tl.mc.entry get]
    set eq($cur_tl) [.t.tl.eq.entry get]
    download_conf $trigl $sigs mc eq
}
pack .t.tl.down -padx 10 -pady 20

# status & settings
frame .t.s

button .t.s.stat -text “Update status” -command {read_status $addr}
set d [frame .t.s.statd -relief ridge -bd 1]

StatusMessage $d.width “Width: “  $dbits 15 -textvar dbits
StatusMessage $d.depth “Depth: “  $depth 15 -textvar depth
StatusMessage $d.trigl “Trigl: “  $trigl 15 -textvar trigl
StatusMessage $d.usereg “Usereg: “  $usereg 15 -textvar usereg
StatusMessage $d.usequal “Qualifier: “  $usereg 15 -textvar usequal
StatusMessage $d.armed “Armed: “  $armed 15 -textvar armed
StatusMessage $d.trigged “Trigged: “  $trigged 15 -textvar trigged

pack .t.s.stat
pack $d.width $d.depth $d.trigl $d.usereg $d.usequal $d.armed $d.trigged -anchor w
pack .t.s.statd -padx 10 -pady 10 -expand 1 -fill x

set d [frame .t.s.setd -relief ridge -bd 1]

SettingEntry $d.tcount “Trig count: “ 15 {remote_cmd “la count [$d.tcount.entry get]” $s}
 -textvar tcount
SettingEntry $d.dcount “Sample divisor: “ 15 {remote_cmd “la div [$d.dcount.entry get]” $s}
 -textvar dcount
SettingEntry $d.qb “Qualifier bit: “ 15 {remote_cmd “la qual [$d.qb.entry get] \
 [$d.qv.entry get]” $s} -textvar qualbit
SettingEntry $d.qv “Qualifier val: “ 15 {remote_cmd “la qual [$d.qb.entry get] \
 [$d.qv.entry get]” $s} -textvar qualval

pack $d.tcount $d.dcount $d.qb $d.qv
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pack .t.s.setd -padx 10 -pady 10 -expand 1 -fill x

set b [frame .t.s.b]
pack $b -padx 10 -pady 10

button $b.arm -text Arm -width 15  -command {remote_cmd “la arm” $s}
button $b.reset -text Reset -width 15 -command {remote_cmd “la reset” $s}
button $b.dump -text Dump -width 15 -command {remote_cmd “la dump” $s}
button $b.wave -text GTKWave -width 15 -command {exec “gtkwave” “log.vcd”}

grid $b.arm $b.reset
grid $b.dump $b.wave

SettingEntry .t.s.cmd “GRMON command: “ 17 {remote_cmd [.t.s.cmd.entry get] $s} -bg white
pack .t.s.cmd

pack .t.s -side right -padx 15 -pady 15 -expand 1 -fill x
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