
Booting a LEON system over SpaceWire RMAP

Application note 2017-05-23

Doc. No GRLIB-AN-0002

Issue 2.1

Te
m

p
la

te
:

G
Q

M
S

-T
P

LT
-1

-1
-0

Doc. No: GRLIB-AN-0002

Issue: 2 Rev.: 1

Date: 2017-05-23 Page: 2 of 11

CHANGE RECORD

Issue Date Section / Page Description

1.0 2015-10-30 Conversion of GR-AN-102 (Feb. 18 2014) to this template.
Improve Introduction, add Prerequisites.

2.0 2017-04-12 Added examples, added GR740

2.1 2017-05-03 GR740 BREAK signal description
Clarified GR740 example flow
Fixed spwboot_rmap_GR740.h MUXCFG address (SW bundle)
Added troubleshooting section
Corrected bundle URL

TABLE OF CONTENTS

1 INTRODUCTION...3
1.1 Scope of the Document..3

2 ABBREVIATIONS...3
2.1 Methodology..3
2.2 Prerequisites...4
2.3 Creation of the master boot application...4
2.4 Boot process..6
2.5 SpaceWire link...7
2.6 Target memory layout..7

3 SPWBOOT BUNDLE...8

4 GR740 TARGET...8

5 TROUBLESHOOTING..10

© Cobham Gaisler AB

Doc. No: GRLIB-AN-0002

Issue: 2 Rev.: 1

Date: 2017-05-23 Page: 3 of 11

1 INTRODUCTION

1.1 Scope of the Document

The SpaceWire RMAP (Remote Memory Access Protocol) provides read and write access to a
target node directly by the SpaceWire interface, without any further active involvement of the target
hardware. On a LEON system which includes a SpaceWire interface supporting RMAP, the whole
AMBA address space visible from that SpaceWire core is accessible, including RAM, ROM, AHB
and APB configuration registers.

A target platform can be booted over SpaceWire RMAP, provided it features a RMAP enabled
SpaceWire link, and either a Debug Support Unit (DSU) or an interrupt controller supporting
processor execution control.

This application note describes the SpWBoot bundle, a collection of scripts, tools and example code
for the various steps needed to boot a system over SpaceWire RMAP.

2 ABBREVIATIONS

RMAP Remote Memory Access Protocol

AMBA Advanced Microcontroller Bus Architecture

2.1 Methodology

This application note and the associated software provide a simple way to demonstrate one LEON
processor development board booting another. The platform to be booted through RMAP is referred
to as “target”, while the platform that sends the initialization and program data over the SpaceWire
link is referred to as “master”. The scripts are designed to connect through the GRMON2 debugger
to both platforms and to automatically discover the relevant initialization data for the target
platform, as well as the hardware configuration of the master platform to generate a master boot
application. The master boot application “spwboot” encapsulates the initialization and program data
for the target, and composes and sends suitable RMAP packets over the specified SpaceWire link.

In an actual application, the initiator of the RMAP packets might be implemented in various forms.
In a lab environment, a PC workstation might be used with a suitable bridge to the SpaceWire
network, such as the GRESB Ethernet to SpaceWire bridge. For users in such kind of situations
where a second LEON system is not available or desired, the SpWBoot software bundle contains an
examples directory with the generated include files for different LEON master and target
platforms. The relevant files can be used to avoid having to connect to a master platform, and still
use the Makefile with the “target” and “spwboot” targets to generate appropriate data for
further use with the system. The README file contains the log of an exemplary run of a build of the
spwboot application. Example files with GR712RC as master were created with UT699 as target,
and vice versa.

© Cobham Gaisler AB

Doc. No: GRLIB-AN-0002

Issue: 2 Rev.: 1

Date: 2017-05-23 Page: 4 of 11

GRMON2 is used to discover and initialize the master and target platforms, and to automatically
generate appropriate C header files for the master boot application. This includes initialization
values for the target, as well as information on the SpaceWire interface of the master.

The target application is encapsulated in a standard MKPROM2 boot image. Using a standard boot
loader relies on a standard way to initialize the target, and provides features such as support for
compression. The target boot image binary is converted to static data and included in the master
boot application. The master boot application uploads the target boot image to the target platform
RAM over RMAP, into an area that is not allocated by the target application. The target system is
started by RMAP writes to the target DSU or interrupt controller, which disables the “break” status
of the target processor. The target boot image is executed and the target application is extracted to
the target RAM. Once control is transferred to the target application, the contents of the memory
area occupied by the boot image becomes irrelevant, and the whole memory is available for the
target application.

2.2 Prerequisites

The example Makefile and scripts rely on the GRMON2 tcl feature to discover all system properties
necessary to configure the master and target system. To create the data records necessary to
initialize the target, and to subsequently create the master application to send the data over
SpaceWire RMAP, two makefile targets are executed one by one while being connected via a debug
link to the master and target platform respectively.

This implies that both platforms must be in the state they are intended to be when the RMAP boot
takes place. The SpaceWire interfaces used must be connected and in run state, with the correct
startup clock divisor value set to provide for a 10 Mbps link during startup. Different devices use
different bootstrap signals to initialize the CLKDIVSTART register value. The run state clock
divisor should be set to result in the desired transfer rate.

GRMON2 probes and initializes a system automatically when connecting to a board. The
initialization that the tool performs is equivalent to the initialization done by a boot loader. Some
user dependent features are enabled by command line switches, for example to enable EDAC in the
memory controller by the -edac switch. Since the SpWBoot scripts rely on a properly configured
system to generate the initialization data transmitted over RMAP, GRMON2 must be invoked in a
way that results in the desired memory configuration. The proper command line options must be set
in the Makefile as explained below.

The GRMON2, MKPROM2 and sparc-elf-gcc executables must be in the search path.

2.3 Creation of the master boot application

Before the boot application can be created, the Makefile has to be configured to reflect target
and master platform properties. At least the following adjustments are necessary:

• GRMONOPT: Options to connect with GRMON2 to the master and target platforms. The
method relies on the system discovery and initialization performed by GRMON2 on the
target platform, and the memory configuration register values found on the hardware will

© Cobham Gaisler AB

Doc. No: GRLIB-AN-0002

Issue: 2 Rev.: 1

Date: 2017-05-23 Page: 5 of 11

be used in the boot process. Therefore, relevant switches should be included to obtain the
intended operation, e.g. -nosram if SDRAM is exclusively used, at address 0x40000000
(for LEON3 systems)

• SPWBOOT_TARGET_APP: The application binary to be uploaded by SpaceWire and started
on the target platform

• MKPROM_GEN_ARGS: Generic arguments to MKPROM2 for the boot image on the target
platform. In particular, -freq and -ramsize are essential, the latter to achieve a correct
stack setup. Further options concerning memory are irrelevant, since the memory controller
has already been initialized over RMAP at this stage, and MCTRL configuration registers
will not be rewritten.

• RAM_START, RAM_END: Information about the system RAM is necessary in order to
provide for a correct initialization of the whole EDAC memory. The -edac-clean option
to MKPROM2 is used to initialize the whole RAM area before and after the boot image.

• GRSPW_MASTER, GRSPW_TARGET: SpaceWire links through which the master platform
is connected to the target, and vice versa.

• TARGET_GR740: Set to 1 if GR740 is the target platform, 0 otherwise

• GR740_SPWPORT: Set to the number of the SpaceWire port used to connect to the master.
Ignore if the target is not GR740.

The master boot application is created by the following steps:

1. Connect the master platform connected via the debug link

2. make master

• Connects to the master platform and discovers address and CLKDIV settings of the
selected interface. Creates spwboot_master.h. If no master platform is
available or required, spwboot_master.h can be copied from the examples
folder

3. Connect the target platform connected via the debug link

4. make target

• Connects to the target platform and discovers address and CLKDIV settings of the
selected interface. Creates spwboot_target.h

• Discovers the address of the DSU and stores values for triggering a series of actions
and initializations on the target platform: Break CPU, clear error mode, disable
caches and MMU, memory controller registers, UART¸ IRQ controller and timer
addresses, PC, nPC, clear break CPU. Creates spwboot_rmap.h and
spwboot.mk.

• For the GR740, as a specific target, the corresponding target configuration
spwboot_target_GR740.h is not generated, but part of the source files. Since

© Cobham Gaisler AB

Doc. No: GRLIB-AN-0002

Issue: 2 Rev.: 1

Date: 2017-05-23 Page: 6 of 11

for a specific target generation of files is hardly necessary, the target-GR740
target can be invoked instead of target, which copies the remaining needed files
from the examples folder.

5. make spwboot

• Invokes mkprom2 twice to create the target boot image spw_bootprom. Creates
the master boot application binary spwboot. The obj2array tool, part of
SpWBoot, is invoked several times to convert the target application binary to C
structures (spwboot_rmap_img.h), and to extract various size and address
information from the target application.

The spwboot application can be loaded and run on the master platform. The MKPROM2 boot
message and the Target says hello! message should be printed on the serial console
connected to the first UART interface of the target platform. Initialize the PC serial console with
38400 baud, 8 data bit, no parity, 1 stop bit, no flow control.

Note: In order to debug the boot process, it can be helpful to connect with GRMON to the target
platform before running the master boot application. GRMON should be started with the -ni
switch and the board should have been reset or power cycled previously, in order to avoid
initialization prior to the boot process. Any PROM memory should not contain code at the default
start address. Before starting the boot process on the master, the detach command should be
issued to release the target processor from GRMON. After the boot process is initiated by the
master, the verify commands can be used with the spw_bootprom and hello binaries on the
target to check whether the data transfer from the master occurred correctly, and the target
application was correctly extracted to its entry point.

Note: Below is an example walk-through of the SpWBundle flow without physically connecting to
master (GR712RC) or target (UT699) platform. The example files in UT699-target were
created with the GR712RC as master:

~$ cp examples/UT699-target/Makefile .

~$ cp examples/UT699-target/spwboot_master.h .

~$ cp examples/UT699-target/spwboot_target.h examples/UT699-
target/spwboot_rmap.h examples/UT699-target/spwboot.mk .

~$ make spwboot

2.4 Boot process

The transfer of data over RMAP to launch the boot process consists of three stages:

1. Halt the processor and initialize the memory controller and some peripherals

2. transfer the boot image to target RAM

3. set the entry point and resume execution

Stage one and three are defined as C-arrays of 32-bit words as address and data in the file

© Cobham Gaisler AB

Doc. No: GRLIB-AN-0002

Issue: 2 Rev.: 1

Date: 2017-05-23 Page: 7 of 11

spwboot_rmap.h, which is created as a result of the target Makefile target. Stage two, the
boot image data derived from the spw_bootprom MKPROM2 image, is defined as C-arrays of
address, data and size in the file spwboot_rmap_img.h. Both the elf and header file of the boot
image are a result of the spwboot Makefile target. The spwboot application is built as an
example how to send the three stages over RMAP from a LEON based master platform.

2.5 SpaceWire link

The clock divisor register of the target platform's SpaceWire port must be set to the proper value
with respect to the core frequency for a functional SpaceWire link. This register is typically reset to
a value defined by external pull-ups on power-up. In our scenario, it may have been also set by
software running prior to the boot process over RMAP. Please refer to the target component or IP
core data sheet for details.

2.6 Target memory layout

The target application is transferred to the target memory encapsulated in a MKPROM2 boot image.
The actual target application will be extracted from the boot image and copied to the beginning of
RAM, typically at 0x40000000 for LEON3 systems.

The MKPROM2 image uploaded over SpaceWire is linked to the 4 kbyte boundary following the
last allocated address of the target application. In order to safely initialize (“wash”) the whole
memory, the RAM areas below and above the boot image are cleared by the boot image using the
MKPROM2 -edac-clean switch providing the start addresses and sizes of the two areas. The
MKPROM2 tool is invoked twice during the compilation process, since the size of the boot image
itself and thus the start address of the second area to initialize is only known after the first
MKPROM2 invocation.

© Cobham Gaisler AB

Figure 1: Memory layout of the target RAM

Target Application

-edac-clean

mkprom2 Boot Image

-edac-clean

4-kbyte boundary

Bottom of RAM

SPWBOOT_PROM_ENTRY

SPWBOOT_ENTRY

Top of RAM

Doc. No: GRLIB-AN-0002

Issue: 2 Rev.: 1

Date: 2017-05-23 Page: 8 of 11

Reconfiguration of the memory controller during execution of the boot image from RAM must be
avoided. The memory controller location is hence set to an arbitrary address by the MKPROM2
-mctrl switch in the boot image. The target application entry point is chosen to that end as a
defined memory address, unused at this stage of the boot process.

3 SPWBOOT BUNDLE

The SpWBoot bundle is a source file archive (SpWBoot-v2.1.tar.gz) that includes the following
items:

• spwboot.tcl: A set of Tcl procedures to inspect the master and target platform in order to
create C header files for the master boot application. The header files contain appropriate
values to set over SpaceWire on the target platform during the boot process, as well as
initialization values for the GRSPW driver

• master_gen.tcl, target_gen.tcl: Entry points for GRMON2 to the above Tcl
procedures

• spwboot.c: The master boot application, which includes the boot image to download on
the target platform

• spwapi.c, spwapi.h: Driver for the GRSPW core

• obj2array.c: Tool to convert the boot image to a C-Array for inclusion in the master
boot application, and to extract various address information from ELF object files

• bdinit.c: Initialization routine to be included to the MKPROM2 boot process. For our
purposes, it serves only to initialize the first word in the target memory following the boot
image, in case the size of the boot image is not 8-byte aligned. This alignment is required for
the routine to initialize EDAC memory (MKPROM2 -edac-clean option)

• Makefile: Contains Makefile targets to inspect the master and target platforms, generate
platform specific configuration header files, create a target MKPROM2 image, and create
the master boot application.

• The remaining files are specific to a target or generated. Examples of those are available in
the examples folder.

4 GR740 TARGET

For the GR740 quad-core LEON4FT device, several items in the boot process are different from
most LEON3FT devices, which typically share the properties addressed by the boot flow described
in the previous chapters:

• The IRQ(A)MP interrupt controller core implements processor execution control. In the first
stage of the boot process, the DSU does not need to be used to stop and start execution and
to set the entry point.

© Cobham Gaisler AB

http://gaisler.com/doc/antn/SpWBoot-v2.1.tar.gz

Doc. No: GRLIB-AN-0002

Issue: 2 Rev.: 1

Date: 2017-05-23 Page: 9 of 11

• The memory controller requires a disable-enable initialization sequence to enable 2T-
signalling. This is done in the first stage of the boot process.

• The level-2 cache must be turned off and invalidated before transferring the boot image.
This is done in the first stage of the boot process.

• The level-2 cache needs to be enabled and the I/O pin multiplexing must be initialized for
the first UART. This is implemented in the bdinit functions of MKPROM2.

• The GRSPW2 (AMBA) ports with the RMAP target are located behind the SpaceWire
router. An additional path address and return address must be added to the RMAP packets in
the spwboot application.

The necessary settings for correct generation of the master boot application and other files are
derived from the GR740 relevant settings to be edited in the Makefile. It is recommended to use
the target-GR740 target instead the target target to simply copy the relevant files from the
examples folder. Unlike with LEON3FT systems, where many different hardware configurations
are already available, the existence of only one or few LEON4FT devices today makes generation
of files unattractive.

Note: Below is an example walk-through of the SpWBundle flow without physically connecting to
master (GR712RC) or target (GR740) platform. In the listing, Makefile and the master
configuration are copied from the examples. The example files in the UT699-target folder were
created with the GR712RC as master. The target-GR740 target copies the target configuration
from examples and must not be omitted before creating the master boot application:

~$ cp examples/GR740-target/Makefile .

~$ cp examples/UT699-target/spwboot_master.h .

~$ make target-GR740

~$ make spwboot

The spwboot application can be loaded and run on the master platform. The MKPROM2 boot
message and the Target says hello! message should be printed on the serial console
connected to the first UART interface of the target platform. Initialize the PC serial console with
38400 baud, 8 data bit, no parity, 1 stop bit, no flow control.

Note: The processor must not be in debug mode when the remote boot takes place. Debug mode is
enabled either by GRMON or by an asserted BREAK signal during reset when the DSU_EN signal
is asserted (high).

During reset or power up with DSU_EN high, the BREAK signal of the GR740 must not be
asserted (the BREAK switch on the GR-CPCI-GR740 board must be set to the right position).
When DSU_EN is low during reset or power up, an asserted BREAK signal causes the first
processor to halt after reset, and disables the watchdog timer (but not the PLL watchdog). This is a
suitable configuration in a flight environment.

GRMON should not be connected to the target, or if connected detach from the CPUs with the

© Cobham Gaisler AB

Doc. No: GRLIB-AN-0002

Issue: 2 Rev.: 1

Date: 2017-05-23 Page: 10 of 11

detach command. In that case, GRMON should have been started with the -ni switch to avoid a
target in pre-initialized state. The processor remains in debug mode when GRMON is quit, unless
previously detached.

The clock gating unit setting for the SpaceWire router core is initialized by the GPIO[11] input at
reset. GPIO[11] must be bootstrapped low to enable the clock after reset.

No boot code should be in the PROM area to avoid a target in pre-initialized state.

MKPROM2 version 2.0.61 and earlier include the 0x40000000 offset of the classic LEON3
memory layout into the stack calculation from memory size, even if the -sparcleon0 option for
applications starting at address 0x0 is given. This stack pointer setting does not necessarily fail with
a BCC application because the memory area can wrap around. However, until the release of later
MKPROM2 versions with this bug corrected, the -stack option should be added to
MKPROM_GEN_ARGS in the Makefile. For example with 128MiB of SDRAM, use -stack
0x7ffffe0. The -ramsize setting is overridden by -stack and becomes irrelevant.

5 TROUBLESHOOTING

Typical sources of problems on the SpaceWire link include the following:

• Clock divisor settings at master (initialized by master application) and target (bootstrapped
with external signals)

• Target SpaceWire links support RMAP and are enabled at reset

• Path to target, target destination key

If data transfer to the target occurs but the boot process does not succeed, useful approaches to
debug include

• Connect to the target platform after a failed boot process, without initialization by GRMON:
$~ grmon -ni

• Verify registers initialized in stage 1, in particular memory configuration registers

• Check whether the target bootprom was transferred correctly: grmon2> verify
spw_bootprom

• Check whether the target application was extracted correctly: grmon2> verify hello.
If the application was executed, verification errors in the initialized data section are
expected.

• The target bootprom spw_bootprom must run when loaded directly to the target. Since
the target must be initialized by GRMON for that test, this is a necessary but not a sufficient
requirement. Typical errors in the bootprom include faulty memory controller configuration
register settings, wrong target frequency, and a wrong target memory size which leads to a
bad stack pointer.

If further debugging of the boot process with GRMON is required, the following approach can be

© Cobham Gaisler AB

Doc. No: GRLIB-AN-0002

Issue: 2 Rev.: 1

Date: 2017-05-23 Page: 11 of 11

suitable. All data that is normally transferred by RMAP to the target platform is written over the
debug link by GRMON:

• Connect to the uninitialized target, without initialization by GRMON: $~ grmon -ni

• Perform all writes of stage 1, as in the corresponding address and data arrays defined in the
spwboot_rmap header file, with the wmem command

• Load the target bootprom with avoiding memory controller initialization by GRMON:
grmon2> load -nmcr spw_bootprom

• Set a hardware breakpoint to the target application entry point: grmon2> bp hard 0

• When the breakpoint hits. load the application symbols with grmon2> symbols
hello. No errors should occur with grmon2> verify hello. Application debugging
can begin with setting breakpoints etc.

• Resume target application with grmon2> cont

Copyright © 2017 Cobham Gaisler.

Information furnished by Cobham Gaisler is believed to be accurate and reliable. However, no
responsibility is assumed by Cobham Gaisler for its use, or for any infringements of patents or other
rights of third parties which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Cobham Gaisler.

All information is provided as is. There is no warranty that it is correct or suitable for any purpose,
neither implicit nor explicit.

© Cobham Gaisler AB

	1 Introduction
	1.1 Scope of the Document

	2 Abbreviations
	2.1 Methodology
	2.2 Prerequisites
	2.3 Creation of the master boot application
	2.4 Boot process
	2.5 SpaceWire link
	2.6 Target memory layout

	3 Spwboot bundle
	4 GR740 Target
	5 Troubleshooting

