
SnapGear Linux for LEON

Manual: SnapGear Linux for LEON LINUX-SNAPGEAR
Version 1.36.0

Written by Daniel Hellström December 2007

Första Långgatan 19
413 27 Göteborg
Sweden

tel: +46 31 7758650
fax: +46 31 421407
www.gaisler.com

http://www.gaisler.com/
http://www.gaisler.com/

LINUX-SNAPGEAR 2

Table of Contents

1 INTRODUCTION..5
1.1 LEON Linux...5
1.2 SnapGear Linux..5
1.3 Boot loader for LEON Linux...5
1.4 LEON simulator to speed up the development process...6
1.5 Obtaining the software...6
1.6 Supported hardware..6
1.7 Support...6

2 INSTALLING GNU TOOLCHAIN AND LEON LINUX...7
2.1 Selecting Toolchain..7
2.2 Installing the toolchain...7
2.3 Installing SnapGear for LEON Linux 2.0..8
2.4 Installing SnapGear for LEON Linux 2.6..8

3 CONFIGURING LINUX...9
3.1 Processor type and MMU...9
3.2 C library..10
3.2.1 Static vs Dynamic linking..10
3.2.2 Toolchains for Linux 2.6..10
3.2.3 Toolchains for Linux 2.0..10
3.3 Kernel version..10
3.4 Configuring the boot loader...11
3.4.1 Symmetric multi-processing..13
3.5 Configuring the 2.6.x kernel..13
3.5.1 LEON processor type...13
3.5.2 Symmetric multi-processing support...13
3.5.3 Gaisler AMBA Plug&Play procfs support...14
3.5.4 GRLib APBUART (LEON3)...14
3.5.5 LEON Serial (LEON2)...14
3.5.6 GRLib GRETH 10/100/1000...14
3.5.7 GRLib OpenCores Ethernet MAC...14
3.5.8 SMC 91x Ethernet MAC..15
3.5.9 GRLib GRETH 10/100/1000 over PCI..15
3.5.10 GRLib OpenCores I2C-master...15
3.5.11 GRLib PCI support...15
3.5.12 GRLib GRPS2..15
3.5.13 GRLib SPICTRL..15
3.5.14 GRLib GRUSBHC...16
3.5.15 GRLib GRVGA..16
3.5.16 GRLib ATA Controller..17
3.6 Configuring the 2.0.x kernel..18
3.6.1 LEON processor type...18
3.6.2 GRLib APBUART (LEON3)...18
3.6.3 LEON Serial (LEON2)...19
3.6.4 GRLib GRETH 10/100 Ethernet MAC..19
3.6.5 GRLib OpenCores 10/100 Ethernet MAC...19
3.6.6 SMC 91C111 10/100 Ethernet MAC...19
3.6.7 GRLib VGA text frame buffer support..19
3.6.8 GRLib GRPS2 PS/2 interface/keyboard..20
3.7 Applications included in ROMFS..20
3.8 Template configurations...21

4 BUILDING SNAPGEAR..23

5 ADDING CUSTOM APPLICATIONS...24

LINUX-SNAPGEAR 3

5.1 Creating an application...24
5.2 Setting up compilation directives...24
5.3 Including application to file system...24

6 DEBUGGING LINUX-2.6 AND APPLICATIONS...25
6.1 Debugging symbols..25
6.2 Debugging the kernel...25
6.2.1 Configuring GRLIB for kernel debugging...26
6.2.2 Using GRMON...26
6.2.3 GRMON Example: debugging the Linux kernel...26
6.3 Debugging userspace applications...29
6.3.1 Setting up a debugging environment..30
6.3.2 GDB introduction...30
6.3.3 Starting GDB server on target..30
6.3.4 Connecting with GDB to gdbserver...31
6.3.5 GDB example usage...31
6.3.6 DDD and GDB...34
6.3.7 Insight...34
6.4 Using NFS to simplify application updates...34
6.5 Console output when debugging..35
6.5.1 Redirecting output to NFS share..35
6.5.2 TELNET over TCP/IP network..35

7 PS/2 KEYBOARD AND VGA CONSOLE..36
7.1 Hardware configuration..36
7.2 Configuring the boot loader and main SnapGear options..36
7.3 Configuring the Linux kernel...36
7.4 Configuring SnapGear Applications..37
7.5 Building the kernel and applications..37
7.6 Setting up /etc/inittab..37
7.7 Building again with inittab and rc.sh...38
7.8 Running on hardware...38

8 ROOT FILE SYSTEM OVER ETHERNET USING NFS...39
8.1 Setting up NFS server on PC..39
8.2 Configuring the boot loader and main SnapGear options..39
8.3 Configuring the Linux kernel...40
8.4 Building kernel and boot loader...40
8.5 Running on hardware...41

9 ROOT FILE SYSTEM OVER ETHERNET USING ATA OVER ETHERNET...........................42
9.1 Setting up ATAoE Server..42
9.2 Configuring the boot loader and main SnapGear options..42
9.3 Configuring the Linux kernel...43
9.4 Configuring the vendor/user applications ...44
9.5 Building kernel, boot loader, and kinit...44
9.6 Running on hardware...45

10 RUNNING GRLINUX/SPLACK FROM AN ATA HARD DISK...46
10.1 Installing the kernel onto flash...46
10.2 Preparing the hard drive...46
10.3 Running splack...47

11 INSTALLING DEBIAN 3.1 ON LEON LINUX..48

LINUX-SNAPGEAR 4

11.1 Preparing LEON target...48
11.2 Installing Debian installation utility to PC and LEON target..49
11.3 Downloading Debian binaries using PC..49
11.4 Installing Debain binaries from LEON target..50
11.5 Adding a serial console to Debian...50
11.6 Changing root directory and booting Debian...50
11.7 Adding a telnet server to Debian..50
11.8 Installing X.org X11 Server...51

12 SUPPORT...52

LINUX-SNAPGEAR 5

1 INTRODUCTION

LINUX support for LEON2 and LEON3 is provided through a special version of the SnapGear Embedded
Linux distribution. SnapGear Linux is a full source package, containing kernel, libraries and application code
for rapid development of embedded Linux systems. The LEON port of SnapGear supports both MMU and non-
MMU LEON configurations, as well as the optional V8 mul/div instructions and floating-point unit (FPU). A
single cross-compilation tool-chain is provided which is capable of compiling the kernel and applications for
any configuration.

LEON Linux has support for symmetric multi-processing (SMP), it has not been extensively tested yet, but
work is in progress.

1.1 LEON Linux

There are two different versions of the Linux kernel in the Gaisler SnapGear distribution, namely 2.6.x and
2.0.x. The 2.0 version is modified for use with MMU-less LEON systems, it is called micro controller Linux –
µCLinux. 2.6.x has support for MMU systems only, the kernel is from kernel.org with LEON specific patches
and additional drivers mainly for GRLib hardware.

The Linux kernel can be configured using a graphical interface. One can remove drivers and features to save
space. On LEON3 systems the AMBA plug&play information is used to detect devices and load their respective
software drivers. LEON2 uses hard coded addresses to find its devices. During configuration the processor type
is selected, LEON2 or LEON3, it is done from the Linux kernel configuration GUI and in the main SnapGear
GUI.

Multi processor LEON3 systems are supported by Linux 2.6.21.1, symmetric multi-processing support (SMP)
can be enabled through the Linux kernel configuration.

The Linux kernel can be used for other projects that need not be based on SnapGear. The boot loader will still
be needed but it is possible to create custom projects with custom file systems. Even though it is out of the
scope of this document, it is described how to set up Linux with other distributions via NFS.

1.2 SnapGear Linux

SnapGear Linux is a full source package, containing kernel, libraries and application code for rapid
development of embedded Linux systems. It is configured from a graphical interface similar to the Linux 2.4
kernel configuration utility.

1.3 Boot loader for LEON Linux

A small boot loader has been incorporated into the SnapGear Linux software distribution, it is designed
especially for the LEON processors, both SMP and uniprocessor systems. It is capable of passing arguments to
any of the Linux kernels and initialize low level hardware. The main purpose of the boot loader should be to
initialize basic hardware, such as memory controllers and console output for debugging, before launching
LEON Linux.

The SnapGear graphical interface as been extended to allow users to set boot loader parameters in an easy
fashion. The boot loader is stored in a non-volatile memory at the address where the LEON processor reads its
first instructions to be executed, usually stored in flash at address 0.

During the development process grmon may be used to load the resulting image into RAM directly, thus
bypassing the flash. This shortens the development time drastically. Using this method only the last part of the
boot loader is executed, it is often referred to as “stage 2”. Instead, grmon initializes the hardware before
running stage 2.

LINUX-SNAPGEAR 6

1.4 LEON simulator to speed up the development process

There are simulators available for LEON and most of its peripherals, TSIM and the multiprocessor simulator
GRSIM. See www.gaisler.com for more information about simulators.

1.5 Obtaining the software

The Software is free of charge and distributed under the GPL licence. The software bundle can be downloaded
from Gaisler's homepage: www.gaisler.com under the downloads section.

1.6 Supported hardware

Below is a list of supported hardware in addition to the standard kernel:
• LEON2, with or without MMU, FPU, MUL/DIV.
• LEON3, with or without MMU, FPU, MUL/DIV.
• LEON3 multi processor systems, SMP
• APBUART
• GPTIMER
• GRETH 10/100 and Gbit
• OpenCores 10/100 Ethernet MAC
• SMC91x 10/100 Ethernet MAC
• APBPS2
• APBVGA
• GRUSBHC
• GRVGA
• ATACTRL
• GRPCI
• GRETH over PCI
• GR/OpenCores I2CMST
• SPICTRL

Note that new hardware is being added constantly.

1.7 Support

For support, contact the Gaisler Research support team at support@gaisler.com

mailto:support@gaisler.com
mailto:support@gaisler.com
mailto:support@gaisler.com
http://www.gaisler.com/
http://www.gaisler.com/
http://www.gaisler.com/
http://www.gaisler.com/
http://www.gaisler.com/
http://www.gaisler.com/

LINUX-SNAPGEAR 7

2 INSTALLING GNU TOOLCHAIN AND LEON LINUX

SnapGear has been split up into two different distributions, one for Linux 2.6 development and one for Linux
2.0 development.

The toolchain is a composition of several utilities used in the compilation process. It is intended to be used with
Linux only, the most important utilities are the GNU GCC compiler and linker. The toolchain is a cross-
compiler toolchain making it possible to compile LEON SPARC Linux binaries on an ordinary PC running
Linux. The toolchains are distributed as a binary package freely available at www.gaisler.com.

2.1 Selecting Toolchain

For Linux 2.0 selecting toolchain is simple, as only one is available, the sparc-linux-3.2.2. For Linux 2.6
however, one select toolchain based on what C Library is going to be used, installing multiple toolchains cause
no harm. The two toolchains available for Linux 2.6 are sparc-linux-3.4.4 and sparc-uclinux as indicated by the
table below. The next chapter gives a short introduction to the two different C Libraries.

Name Description Location

sparc-linux-3.2.2 Linux 2.0 and 2.6 GNU LibC toolchain linux/linux-2.0/toolchains/sparc-linux-3.2.2

sparc-linux-3.4.4 Linux 2.6 GNU LibC toolchain linux/linux-2.6/toolchains/sparc-linux-3.4.4

sparc-uclinux-3.4.4 Linux 2.6 µClibC toolchain linux/linux-2.6/toolchains/sparc-uclinux-3.4.4

Table 2.1: Toolchain description

The locations described in table 2.1 are all relative to the Gaisler FTP site ftp://ftp.gaisler.com/gaisler.com.

2.2 Installing the toolchain

The installation process for the different toolchains is the same, it is only the names and paths that differ. All
toolchains must be installed to /opt and the path to the toolchain binary directory (/opt/sparc-[uc]-linux-
3.x.x/bin) added to the shell PATH variable. Below is an example of how to install the sparc-linux-3.2.2
toolchain.

Install by extracting the toolchain into /opt:

$ mkdir /opt
$ cd /opt
$ tar -jxf /path/to/toolchain/sparc-linux-1.0.0.tar.bz2

Add the toolchain to the PATH variable preferably in a shell start up script. For bash shells the following is
added to ~/.profile:

export PATH=$PATH:/opt/sparc-linux/bin

After installing the toolchain it is possible to cross compile applications for SPARC LEON Linux:

args.c:

int main(int argc, char *argv[]){
printf(“%s: you passed %d argument(s)\n”,argv[0],argc-1);
return 0;

}

Compile args by running:

http://www.gaisler.com/
http://www.gaisler.com/
ftp://gaisler.com/gaisler.com/linux/snapgear
ftp://gaisler.com/gaisler.com/linux/snapgear
ftp://gaisler.com/gaisler.com/linux/snapgear
ftp://gaisler.com/gaisler.com/linux/snapgear
http://www.gaisler.com/

LINUX-SNAPGEAR 8

$ sparc-linux-gcc -o args args.c

or

$ sparc-uclinux-gcc -o args args.c

From the ELF header it can be read that the output binary is a SPARC binary:

$ file args
args: ELF 32-bit MSB executable, SPARC, version 1 (SYSV), dynamically
linked (uses shared libs), not stripped

Running the binary on a SPARC Linux host results in:

$./args Gaisler
./args: you passed 1 argument(s)

2.3 Installing SnapGear for LEON Linux 2.0

Install the SnapGear distribution by extracting it:

$ mkdir ~/linux
$ cd ~/linux
$ tar -xjf /path/to/dist/snapgear-2.0-p36.tar.bz2
$ ls
 snapgear-2.0-p36

2.4 Installing SnapGear for LEON Linux 2.6

Install the SnapGear distribution by extracting it:

$ mkdir ~/linux
$ cd ~/linux
$ tar -xjf /path/to/dist/snapgear-2.6-p36.tar.bz2
$ ls
 snapgear-2.6-p36

LINUX-SNAPGEAR 9

3 CONFIGURING LINUX

SnapGear comes with an easy to use graphical interface similar to the Linux kernel's configuration utility. From
the GUI it is possible to select processor, Linux version, C library and what applications will be included into
the root file system (ROMFS image) accessed by Linux during runtime. It is also possible to configure the boot
loader parameters and configure the Linux kernel.

The GUI can be launched by doing a 'make xconfig'. The main configuration menu should appear:

3.1 Processor type and MMU

Selecting processor is mandatory, the boot loader needs to know how to initialize low level hardware, which in
some cases are processor dependant. It is also important to select MMU support if memory protection hardware
is available for use.

MMU provides memory protection between kernel and user space, and also in between user space processes.
With MMU a faulty process cannot affect another process memory in a destructive manner as may be the case
without MMU.

Linux 2.6 cannot run without MMU, whereas µCLinux runs without MMU, indicated in the table below.

Version / MMU MMU MMU-less

2.0.x N/A µCLinux 2.0.x

2.6.x Linux 2.6 N/A

Table 3.1: Linux and MMU

Illustration 3.2: Vendor/Product Selection

Illustration 3.1: SnapGear main configuration GUI

LINUX-SNAPGEAR 10

3.2 C library

Two different C libraries are available for selection from the graphical “xconfig” utility. The libraries differ in
binary size and one of them, µClibC, supports MMU-less systems. Table 3.2 outlines which C library is
available for which version of Linux. For configurations that supply their own root filesystem outside of
SnapGear (such as via NFS), a 'none' option is also provided to entirely omit the compilation of a C system
library.

Version / LibC LibC (GNU) µController LibC

µCLinux 2.0.x N/A Small footprint

Linux 2.6.x Normal footprint Small footprint

Table 3.2: LibC selection possibilities

3.2.1 Static vs Dynamic linking

When linking an application static, all code used from libraries are included into the output binary. This makes
the binary bigger. Linking all binaries static will make the same code appear in multiple locations (in each
binary that uses it) both in the file system and in main memory during execution.

Dynamic linking however, runs a dynamic linker during the start of the application on the target hardware, this
results in smaller main memory usage as code is shared between applications. Since the same code may appear
in different addresses in different applications, the code must be position independent. Generating position
independent machine code makes the code a bit slower and slightly bigger, it is done by passing the argument
-fPIC to the GNU compiler.

The more applications a file system has, the more space can be saved using dynamically linked binaries.
Depending on needs and resources, different embedded systems choose different linking strategies.

3.2.2 Toolchains for Linux 2.6

The available SPARC LEON toolchains for Linux 2.6 both contains a precompiled C Library. The library has
been built four times for CPUs with different combinations of FPU and mul/div hardware. Two different
toolchains are available the sparc-linux toolchain includes the GNU C library whereas the sparc-uclinux
toolchain has µClibC built in. The two toolchains are based on GCC 3.4.4. Installing both toolchains will not
conflict. See previous chapter for installation instructions.

3.2.3 Toolchains for Linux 2.0

For Linux 2.0 there are one toolchain available, based on GCC 3.2.2. For Linux 2.0 SnapGear projects the
toolchain's C Library isn't used, but the µClibC Library included in the SnapGear release. See installation
instructions in previous chapter.

3.3 Kernel version

Linux kernel version can be selected from the Kernel/Library sub menu. As described earlier in the introduction
there are two variants of the Linux kernel within the SnapGear LEON Linux distribution. One is intended to be
used with MMU-less systems and the other is based on an older version of the Linux kernel, 2.0. For MMU
based systems, Linux 2.6.x is available.

LINUX-SNAPGEAR 11

3.4 Configuring the boot loader

The boot loader sets up low level hardware before entering the Linux kernel. The parameters of the boot loader
can be set using the main SnapGear GUI. Below is a description of available boot loader parameters.

Illustration 3.3: Kernel, LibC and application selection menu

LINUX-SNAPGEAR 12

Name Description

SPARC v8, MUL/DIV When “Yes” the compiler emits hardware integer multiplier
instruction. If the LEON processor has been configured without
hardware multiplier select “No”, the compiler will then generate
SPARC v7 compatible code instead (without any MUL or DIV
instructions).

FPU support Select “Yes” if LEON has a Floating point unit (FPU).

Clock frequency The frequency is needed for the boot loader to calculate timing
values. Value is in kHz.

Baudrate The baud rate of the first serial terminal. Typically 38400 baud.
It is favourable to use the same baud rate for the Linux kernel.

UART Loopback on Enables the loopback mode of the UART, every character sent
will be recieved.

UART hardware flowctrl Hardware flow control will be used.

In memory root file system Romfs. Read only root file system. Created from snapgear-
pxx/romfs. This option is valid for Linux 2.0.x.

Initramfs. A read and write root file system put in main memory.
See linux-2.6.x/Documentation/filesystems/ ramfs-rootfs-
initramfs.txt for more information.

Custom, an initramfs is created, similar to initramfs. The
difference is that with this option one can make an file system
externally and provide a description how it is created. The
description is a text file as described in the Linux kernel
documentation at linux-2.6.x/ Documentation/filesystems/ramfs-
rootfs-initramfs.txt.

None. When specified the linker doesn't include the any root
file system. This means that Linux must read the root file
system from an alternative location, for example NFS or ATA-
disk.

Custom initramfs source The text file used to create an custom filesystem, not
necessarily based on SnapGear. See linux-2.6.x/
Documentation/filesystems/ramfs-rootfs-initramfs.txt for details.

Kernel command line The kernel parameters is specified by a string. The string is
interpreted by Linux during the boot sequence. See linux-
2.6.x/Documentation/kernel-parameters.txt for details.
Default: console=ttyS0,34800

Note: When using Linux 2.0.x the kernel command line is set
from within the kernel configuration tool under "General setup".

ROM bank size Bank size of flash

ROM rws Number of ROM/Flash read wait states

ROM wws Number of ROM/Flash write wait states

Enable write cycles to PROM Boot loader makes it possible to write to FLASH without
tampering with memory configuration registers.

RAM type RAM type to be used. SRAM or SDRAM

Alternative physical kernel address It is possible to manually select an address where the kernel
will be started from. The base address of the stack can be
changed as well.
One can this way make room for a custom data area, the Linux
kernel will only use the memory between the kernel base
address and the stack base.

Table 3.3: Boot loader parameters

LINUX-SNAPGEAR 13

3.4.1 Symmetric multi-processing

Multi LEON3 processor systems is supported by the boot loader. The multi processor support is controlled from
within the Linux 2.6.x kernel configuration GUI, once SMP is enabled the boot loader's SMP support is also
included when built the next time.

See 2.6.x configuration section.

3.5 Configuring the 2.6.x kernel

From the graphical interface it is possible to configure the selected kernel by selecting “y” at “Customize
Kernel Settings” and saving the new settings. After the main GUI has been closed and settings have been saved
a second GUI will appear that is specific for the kernel selected. The kernel configuration GUI for Linux 2.6 is
shown below. Details on how to configure the kernel can be found in the linux-2.6.x/Documentation directory.
In later chapters some common configurations will be presented.

The following sections will be used to describe some of the Linux kernel's settings specific to LEON Linux.

Features and drivers often depend on other features, the dependencies is sometimes not trivial. The
dependencies can be seen in a C programming similar syntax by enabling “Show debug info” from the Option
menu. The dependency can be seen down to the right by selecting the feature in question.

3.5.1 LEON processor type

The configuration of the processor type is done separately for the Linux boot loader and the kernel itself. This is
done to eliminate the kernel's dependency on SnapGear, LEON Linux can be used without SnapGear.

LEON must always be selected but LEON_3 is only selected for LEON3 targets. Selecting LEON_3 will result
in binary unable to run on LEON2 processors and vice versa.

Certain hardware is only available for LEON3, their drivers will be invisible when LEON2 is selected.

3.5.2 Symmetric multi-processing support

LEON Linux has support for multi processor systems, SMP can be enabled for LEON3 systems under “General
machine setup”. The LEON Linux boot loader is updated to initialize the SMP system correctly automatically
when enabling SMP from the Linux kernel configuration GUI.

SMP is only available for LEON3 processors.

Illustration 3.4: Linux 2.6.x GUI configuration utility

LINUX-SNAPGEAR 14

3.5.3 Gaisler AMBA Plug&Play procfs support

Procfs is a “pseudo file system” that is normally mounted onto /proc. The procfs is directly linked to the
kernel's internals and can display information relevant to the system's operation. Enabling AMBA_PROC
makes a directory /proc/bus/amba appear that can display information about devices on the AMBA bus.

3.5.4 GRLib APBUART (LEON3)

If a serial UART is to be used select GRLIB_GAISLER_APBUART, be sure to select
GRLIB_GAISLER_APBUART_CONSOLE if one of the serial controllers are interfaced to a console. One of
the serial terminals can be set up as the system console via the kernel boot parameter, ex: console=ttyS0,38400
selects the first serial channel to act as the system console. The serial terminals will be available under
/dev/ttySx.

3.5.5 LEON Serial (LEON2)

For LEON2 systems the serial driver can be found under “Character devices / Serial drivers”. Selecting
SERIAL_LEON enables the serial driver, the serial devices can be used to communicate over the serial line

with an arbitrary protocol. The serial lines can be accessed from /dev/ttySx.

3.5.6 GRLib GRETH 10/100/1000

Select GRLIB_GAISLER_GRETH to enable the 10/100 Ethernet MAC or for grlib professional users, the
10/100/1000 Ethernet MAC.

The Ethernet MAC address of the GRETH MAC can also be edited directly from the GUI. The address is made
out of an unique 6 byte sequence. One can edit the 24 most significant bits (MSB) and the 24 least significant
bits (LSB) from GRLIB_GAISLER_GRETH_MACXSB.

“Networking”, “Network devices” and “TCP/IP” must be selected for standard network communication to be
available.

3.5.7 GRLib OpenCores Ethernet MAC

In the same way as the GRETH is configured the OpenCores MAC can be selected and it's MAC address can be
edited. The OpenCores MAC is found under “General machine setup / .. / Vendor OpenCores”.

Illustration 3.5AMBA procfs support

Illustration 3.7: Serial support for LEON2

Illustration 3.6: APBUART and GRETH Linux configuration.

LINUX-SNAPGEAR 15

3.5.8 SMC 91x Ethernet MAC

The SMC91x driver can be found under “Network device support / Ethernet 10/100”. The Ethernet MAC
address must be configured to an unique address as previous MAC controllers.

The chip is not a Plug&Play AMBA device and can therefore not be automatically detected by the driver. Both
address and IRQ number must be given to the driver for it to operate correctly.

3.5.9 GRLib GRETH 10/100/1000 over PCI

Select GRETH_PCI from “Network device support / Ethernet 10/100” to include a driver for Gaisler Ethernet
MAC connected via PCI. Usually GRETH is connected via the AMBA interface and is included as previously
described.

PCI support must also be enabled, see the sub section GRLib PCI support below.

3.5.10 GRLib OpenCores I2C-master

Enable “I2C support” and “I2C support / I2C Hardware Bus support / OpenCores I2C Controller”. The driver
will use the GRLib wrapper's interface when the kernel is configured to run on a Leon SoC. To use the I2C bus,
selections should also be made under “I2C support / I2C Algorithms” and “I2C support / Miscellaneous I2C
Chip support”, depending on which peripherals that are present in the system.

3.5.11 GRLib PCI support

GRPCI is a bridge between the AMBA bus and the PCI bus. The GRPCI core is mainly used to connect off chip
controllers to the LEON system. It can be enabled by selecting “PCI support” under “General machine setup”.

Once the GRPCI driver detects the GRPCI core by probing the AMBA Plug&Play bus, it initializes the core
and starts scanning the PCI bus for additional controllers.

3.5.12 GRLib GRPS2

Keyboard and mouse drivers are available for the Gaisler PS/2 controller. One can enable GRPS2 under “input
device / Hardware I/O ports”. Input devices that use the PS/2 driver such as keyboard and mouse drivers are
enabled under “Input device support”, MOUSE_PS2 and INPUT_KEYBOARD.

To separate keyboard and mouse PS/2 devices from each other the IRQ number of the keyboard must be
specified. This is because the PS/2 controllers are identical to the kernel. PS/2 controllers found with an IRQ not
matching the keyboard IRQ number are assumed to be a PS/2 controller connected to a mouse.

The default keyboard IRQ number may be overridden by the kernel command line option:

grps2=kbdirq:irqno (irqno=0..15)

3.5.13 GRLib SPICTRL

The Gaisler SPI controller is enabled by selecting “SPI support” and “SPI support / Gaisler Research SPI
Controller”. The driver automatically detects the number of available slave select lines.

Adding support for specific SPI devices requires editing of the SPI initialization code found in linux-
2.6.21.1/arch/sparc/kernel/leon_spic.c. This is necessary since the available SPI devices are normally hard
coded in platform specific code, and GRLib is used in a wide range of systems.

The current initialization code contains an example where a M25P05 SPI Flash memory is connected to the first
slave select line on SPI bus 1. To enable support for this specific memory device, select “Memory Technology
Devices / Self-contained MTD device drivers / Support for M25 SPI Flash”. To add support for another type of

Illustration 3.8: Adding support for GRPS2 controller.

LINUX-SNAPGEAR 16

SPI device, modify the example and configure support for the SPI device in question.

3.5.14 GRLib GRUSBHC

Support for GRUSBHC is enabled under “USB support / Support for Host-side USB”. Depending on the core's
configuration, the applicable host controller drivers are “EHCI HCD (2.0) support” and “UHCI HCD (most
Intel and VIA) support”.

To enable support for USB storage devices, “SCSI / SCSI device support” and “SCSI / SCSI disk support” must
first be enabled. USB connected human interface devices such as mice and keyboards are also supported.
Enable “USB / USB Human Interface Device (full HID) support”, and INPUT_KEYBOARD and
INPUT_MOUSE under “Input device support”.

3.5.15 GRLib GRVGA

GRLib SVGA controller can be used in Linux using the frame buffer video driver written for GRVGA. X-
Windows and/or a frame buffer console can be run on top of the frame buffer driver. Normally one want mouse
or at least a keyboard together with the graphical interface, GRPS2 can be used to connect keyboard and mouse
devices.

One may need to consider bus bandwidth when selecting resolution and bit depth. The GRVGA controller will
cause heavy bus loads for high resolution on slower buses. Each word in the frame buffer will be read 60 times
on a system with 60 Hertz vertical refresh rate.

From the “Graphics support” menu one can enable the GRVGA frame buffer driver.

When using the SVGA controller to provide console interface to the system the resolution, bit depth and other
parameters can be set from the kernel parameters. Table 3.4 lists available arguments to the driver.

The Mem_size parameter can be calculated as resolution times bit depth in bytes. For example 614400 bytes
video buffer makes a resolution of 640x480 8-bit, 640x480 16-bit and 800x600 8-bit resolution possible,
however 800x600 16-bit would not fit into the memory as that would need 960000 bytes.

Illustration 3.10: Adding Frame Buffer driver.

Illustration 3.9: Adding support for USB 2.0 host controller.

LINUX-SNAPGEAR 17

Order Value Custom/All Description

0 video=grvga: All Needed to select frame buffer driver

1 Custom

1024x768@60

800x600@72

800x600@60

640x480@60

All Select one of the values to the left. When full control
is needed specify the custom mode.
When custom mode is selected arguments 2-10 are
needed in addition to 11 and 12.

2 Pixelclock Custom Pixelclock in ns.

3 xres Custom Horizontal resolution in pixels.

4 rmargin Custom Horizontal Front porch in pixels.

5 hsync_len Custom Horizontal Sync length in pixels.

6 lmargin Custom Horizontal Back porch in pixels.

7 yres Custom Vertical resolution in lines.

8 llmargin Custom Vertical Front porch in lines.

9 vsync_len Custom Vertical Sync length in lines.

10 umargin Custom Vertical Back porch in lines.

11 bit_per_pixel All Pixel depth in bits: 8,16,32-bits

12 Mem_size All Frame buffer memory size in bytes.

Table 3.4: GRVGA kernel parameter arguments

Below is an example how to configure the GRSVGA using 1024x768 resolution, 60Hz vertical refresh rate, 8-
bits pixel depth and 800kb video buffer. The system console will be displayed on virtual terminal zero /dev/tty0
which is connected to the framebuffer /dev/fb0 instead of a serial terminal.

console=tty0 video=grvga:1024x768@60,8,786432

1024x768@60 is a predefined mode by the driver, however a custom mode can be entered, see the table above
and kernel documentation for more details.

3.5.16 GRLib ATA Controller

Gaisler ATA controller can interface a hard disk or a compact flash card. Devices can be accessed from
/dev/hda. The ATACTRL can be selected from “ATA/.. support” menu.

The ATA controller depend upon the PCI subsystem to function correctly, PCI can be included from “General
Machine Setup”.

Once the ATA controller is enabled the IDE devices that needs to be supported are to be selected, most
commonly the IDE/ATA-2 DISK support is selected.

Illustration 3.11: Enabling ATACTRL.

mailto:1024x768@60
mailto:1024x768@60
mailto:1024x768@60

LINUX-SNAPGEAR 18

3.5.16.1 DMA Extension

The DMA extension of the GRLib ATA controller can be enabled by selecting BLK_DEV_IDEPCI,
BLK_DEV_IDEDMA_PCI in addition to the options described for the standard ATA controller.

Note that enabling the DMA extension does not disable the standard ATA controller driver.

3.6 Configuring the 2.0.x kernel

From the graphical interface it is possible to configure the selected kernel by selecting “y” at “Customize
Kernel Settings” and saving the new settings. After the main GUI has been closed and settings been saved a
second GUI will appear that is specific for the kernel selected. The kernel configuration GUI for Linux 2.0 is
shown below. Details on how to configure the kernel can be found in the linux-2.0.x/Documentation directory.

The following sections will be used to describe some of the Linux kernel's settings specific to LEON Linux.

3.6.1 LEON processor type

The configuration of the processor type is done separately for the Linux boot loader and the kernel itself. This is
done to eliminate the kernel's dependency on SnapGear, LEON Linux can be used without SnapGear.

Certain hardware is only available for LEON3, their drivers will be invisible when LEON2 is selected.

3.6.2 GRLib APBUART (LEON3)

Select GRLIB_GAISLER_APBUART to include a UART driver for APBUART. One of the serial terminals
can be set up as the system console via the kernel boot parameter, ex: console=ttyS0,38400 selects the first
serial channel to act as the system console.

Illustration 3.12: Linux 2.0.x kernel configuration utility

Illustration 3.14: Platform set up

Illustration 3.13: LEON3 AMBA device
configuration

LINUX-SNAPGEAR 19

The serial terminals will be available by accessing /dev/ttySx.

3.6.3 LEON Serial (LEON2)

From “Character devices” sub menu the LEON2 UART driver can be enabled. It allows user space to
communicate with an arbitrary protocol over the serial line terminal interface /dev/ttySx.

This driver uses hard coded addresses instead of probing the AMBA bus for Plug&Play information. This driver
is intended for use with LEON2 only, LEON3 uses the AMBA Plug&Play information.

3.6.4 GRLib GRETH 10/100 Ethernet MAC

Select GRLIB_GAISLER_GRETH to enable the 10/100 Ethernet MAC.

The Ethernet MAC address of the GRETH MAC can be edited directly from the GUI. The address is made out
of an unique 6 byte sequence. Byte 0 is the most significant byte. The Ethernet hardware address can be found
by running /sbin/ifconfig on a UNIX machine.

3.6.5 GRLib OpenCores 10/100 Ethernet MAC

OpenCores 10/100 Ethernet MAC modified for the AMBA bus included in GRLib can be used by enabling the
driver under “Leon3 AMBA / Vendor Opencores“.

The Ethernet address must be set to an unique 6-byte network identifier.

The driver can force the Ethernet MAC to operate on a 100MHz signalling frequency by setting “Set MII to
100mb”.

3.6.6 SMC 91C111 10/100 Ethernet MAC

After enabling “Networking support” from the “General setup” sub menu the SMC driver can be enabled under
“Network device support”. The base address, IRQ and Ethernet address is configurable. The Ethernet address
must be unique on the network.

The base address and the IRQ number can be found by examining the hardware set up of the target board,
typically found in the user manual or the schematics.

3.6.7 GRLib VGA text frame buffer support

The VGA text frame buffer make it possible to output text onto a standard monitor. The programming interface
used to access the AMBA VGA graphics controller is called frame buffer. The frame buffer has hardware
device drivers called frame buffer drivers, the Gaisler VGA controller has a frame buffer driver that can be
included into the kernel from the AMBA configuration menu, but first frame buffer support needs to be
enabled. Enable “Console support” and “Frame buffer” under “General setup”, this makes the “VGA support”
able to select.

LINUX-SNAPGEAR 20

3.6.8 GRLib GRPS2 PS/2 interface/keyboard

The PS/2 driver is dependent on the VGA driver, see the section above on how to include the VGA driver. The
main purpose of the PS/2 driver is to provide the ability to interface a keyboard. Both the PS/2 driver and the
PS/2 keyboard driver must be enabled to be able to use the keyboard. The keyboard supported is an AT
keyboard.

3.7 Applications included in ROMFS

Apart from the Linux kernel the SnapGear RAD environment consist of applications in the snapgear-pxx/user
directory that can be included into the root file system. The root file system is a read only file system that will
be copied and decompressed into RAM during the boot process.

Custom applications can be easily integrated into the directory structure and SnapGear. The steps involving
adding custom applications is described in a separate chapter.

From the main SnapGear GUI one can make a third GUI pop up after the main SnapGear GUI closes. This is
similar to what was earlier described for the Linux kernel. One simply selects “y” at “Customize Vendor/User
Settings” under “Kernel/Library/Defs Selection” and press “Quit and Save”.

BusyBox is a small footprint replacement for traditional UNIX core applications such as ls, find, mount etc.
BusyBox is highly configurable and can be configured from the BusyBox sub menu as shown below.

Illustration 3.15: General setup, console on frame
buffer

Illustration 3.16: AMBA PS/2 driver

LINUX-SNAPGEAR 21

Since SnapGear supports both the 2.0.x and the 2.6.x kernels and some of the applications needs certain kernel
interfaces, they may only be compiled for one of the kernels. A typical example of this is the flash support in
Linux, from Linux 2.4 and onwards a new interface called MTD (memory technology devices) has been
introduced. Linux 2.0 lacks the MTD interface and therefore cannot run applications that depend upon the MTD
interface. Flash utilities can be found under “Flash Tools”.

3.8 Template configurations

The “Template configurations” from the SnapGear main menu are provided as an source of examples. It
contains prepared Linux kernel, boot loader and SnapGear application configurations. However it does not
include setting and script files such as inittab and rcS.

Some of the prepared configuration files has been created for a certain template design. The template designs
can be found in the design directory in GRLIB. These configuration files has been used to generate the images
found in ftp://ftp.gaisler.com/gaisler.com/anonftp/linux/images.

It is also possible to add custom configurations easily by creating a directory under
vendor/gaisler/target/templates/config_dir and putting the snapgear-pxx/.config into the config_dir named
vendor.config and snapgear-pxx/linux-x.x.x/.config named linux.config. The configuration files will
automatically be copied into their respective directory upon selection. The template name config_dir may not

Illustration 3.17: SnapGear application configuration main menu

Illustration 3.18: BusyBox configurationIllustration 3.19: Flash Tools, MTD utilities

LINUX-SNAPGEAR 22

contain '-' characters.

LINUX-SNAPGEAR 23

4 BUILDING SNAPGEAR

After configuring the kernel and the applications it is possible to compile and build the SnapGear LEON Linux
distribution. There are two very important options passed to the build scripts, the FPU and SPARCV8 options
found in “Gaisler/Leon2/3/MMU options”.

Disabling the FPU makes the compiler replace the FPU instructions with software routines that calculates the
answer without needing a FPU. The compiler is run with the argument -msoft-float.

SPARC v8 processors have support for hardware integer multiplier/divider through the instructions MUL and
DIV instructions whereas SPARC v7 hasn't. LEON is a highly configurable processor, it can be compiled with
or without hardware integer multiplier support. To make the compiler generate code without MUL and DIV
instruction select “n” for the v8 option. The compiler will generate code compatible with SPARC v7 if started
with -mcpu=v7.

SnapGear is configured and compiled with:

make xconfig # config GUI
make dep # only Linux 2.0.x needs this
make # compile kernel, libraries, boot loader, applications
 # and make images.

The resulting image produced during the build stage is put in snapgear-pxx/images.

Image Function

image.dsu RAM image, with partial boot loader
$ grmon nb
grmon> load image.dsu
grmon> run

image.flashbz Compressed Flash/PROM Image, with complete boot loader.
$ grmon -nb
grmon> flash erase 0 0x00300000
grmon> flash load image.flashbz
grmon> run 0

image.tsim TSIM LEON simulator image, if MMU is used TSIM must also support MMU.
$ tsim-leon3
tsim> load image.tsim
tsim> run

Table 4.1: Images available

The images can be downloaded and run using grmon as shown in table 4.1. Be sure to invoke grmon with the
-nb option so that Linux can take care of traps instead of having grmon stop the execution.

LINUX-SNAPGEAR 24

5 ADDING CUSTOM APPLICATIONS

Custom applications can be added into the SnapGear projects in several ways, the simplest ways is to add the
source code to the already prepared custom directory, snapgear-pxx/user/custom. It is also rather easy to modify
the menu of the SnapGear Application menu and add a new application to the GUI. It also possible to copy a
binary compiled outside of the SnapGear distribution folders. This chapter shows the simplest possible
alternative, adding an application to the user/custom directory.

5.1 Creating an application

A simple application that print out the number of arguments it was invoked is saved to user/custom/args.c:

#include <stdio.h>

int main(int argc, char *argv[]){

 printf("%s: you passed %d arguments\n",argv[0],argc);

 return 0;

}

5.2 Setting up compilation directives

For the application to be compiled one must add it to user/custom/Makefile. The Makefile may be edited as
follows.

Add these 4 lines:

EXEC9 = args
OBJS9 = args.o

$(EXEC9): $(OBJS9)
$(CC) $(LDFLAGS) -o $@ $(OBJS9) $(LDLIBS$(LDLIBS_$@))

Add $(EXEC9) to the end of the all statement:

 all: $(EXEC1)...$(EXEC5) $(EXEC6) $(EXEC8) $(EXEC9) INSMODEXE

5.3 Including application to file system

From the “Core Applications” it is possible to enable custom applications, the make utilities will enter the
user/custom directory and compile it as described by user/custom/Makefile.

Illustration 5.1: Custom applications

LINUX-SNAPGEAR 25

6 DEBUGGING LINUX-2.6 AND APPLICATIONS

This section discusses different debugging methods used when debugging Linux 2.6.x userspace applications
and the kernel itself.

GRMON is documented in detail in the GRMON manual available at http://www.gaisler.com/doc/grmon.pdf.

When debugging with GRMON the SPARC v8 Architecture manual may come in handy for instruction
definition and the SPARC assembler conventions used by the C-compiler. The SPARC v8 manual is available
at http://gaisler.com/doc/sparcv8.pdf.

GRLIB IP core documentation is very use full when debugging the kernel and writing new drivers, it can be
found at http://gaisler.com/products/grlib/grip.pdf.

GDB documentation is available at http://sourceware.org/gdb/documentation.

6.1 Debugging symbols

In order to translate assembler instructions into C-code, debugging symbols and an application that can read
debugging symbols are needed. The application sparc-linux-objdump part of the binutils package provided with
the toolchain can provide us with information about compiled applications (ELF-binaries).

Debug symbols is made by GCC (sparc-linux-gcc) during compile time when at least one of the flags -g, -g3,
-ggdb, -gstabs are given. The debug symbols enlarges the output binary, but the debug symbols can be removed
- stripped - with the sparc-linux-strip utility prior to usage. An example of how the debugging information can
be created, viewed and removed:

$ sparc-linux-gcc -g3 userapp.c -o userapp # create app and syms
$ sparc-linux-objdump -S userapp > userapp.S # deasm binary
$ sparc-linux-objdump -x userapp > userapp.x # list sections
$ sparc-linux-strip -s userapp # remove syms
$ less userapp.S # view output

Debuggers can read the debug information directly from the binary making some of the steps above
unnecessary.

The GDB server run on the target, later discussed, does not need debug information, to save space the binary is
stripped with sparc-linux-strip.

Debugging information can be enabled in SnapGear from the "Application Configuration/Debug Builds/build
debugable applications".

6.2 Debugging the kernel

In practice, hardware debug support of some kind is needed when debugging the kernel. It is possible to debug
the kernel using various other methods such as inserting printk calls in the kernel code or using the /proc
filesystem. See the chapter "Debugging Techniques" in "Linux Device Drivers" for more information about
debugging techniques. However these methods are rather time consuming and may change the behaviour and
the execution path. Using a hardware controlling debugger gives the user a completely new way of controlling
and monitoring the execution. Hardware debuggers such as GRMON vastly accelerates the development
process. It is possible to read and manipulate both processor and core registers, walk the MMU page set up,
view cache content, list previous instructions (instruction trace) just to list a few.

The kernel's addresses are static and can be known on before hand whereas multiple user space
applications/threads may have the same virtual address making it impractical in many cases to use hardware
debuggers. Using a software debugger like GDB run natively or a GDB server acting as a server for remote
GDB connections is preferred when debugging userspace applications.

LINUX-SNAPGEAR 26

6.2.1 Configuring GRLIB for kernel debugging

It is assumed that hardware breakpoints/watchpoints and the instruction trace buffer have been enabled in the
GRLIB xconfig during system configuration. Depending on the complexity of the problem to be debugged the
number of breakpoints and the trace buffer length to select may vary. In the template design of the GRXC3S-
1500 board the trace buffer can be enabled from "Processor/Debug Support Unit/Instruction trace buffer" and
hardware breakpoints from "Processor/Integer Unit/Hardware watchpoints" in GRLIB xconfig (cd
designs/leon3-grxc3s-1500; make xconfig).

GRMON can verify the debugging support available by running the command 'info sys', below is a design with
2 hardware breakpoints (2 hwbp) and a 128 instruction deep trace buffer (itrace 128).

$ grmon -jtag
grmon> info sys
...
02.01:004 Gaisler Research LEON3 Debug Support Unit (ver 0x1)

 ahb: 90000000 - a0000000

 AHB trace 128 lines, stack pointer 0x43fffff0

 CPU#0 win 8, hwbp 2, itrace 128, V8 mul/div, srmmu, lddel 1,
GRFPU-lite

 icache 1 * 1 kbyte, 32 byte/line

 dcache 1 * 1 kbyte, 32 byte/line
...

6.2.2 Using GRMON

GRMON can be used to debug the Linux kernel, it is primarily an assembler debugger but it is C-symbol aware.
Symbols created by gcc when compiling C code with the -g flag are automatically loaded by GRMON after a
successful load file command, but is also possible to load symbols manually by issuing the command symbol
file. The symbols last loaded are matched first.

During the image creating process in SnapGear (make) the image/ directory is populated with various images:
image, image.dis, image.dsu. The image.dsu is to be loaded into RAM and run, image contain the debug
information of the Linux kernel's virtual addresses and image.dis is a plain text file containing the disassembly
of image.

Starting GRMON with the -nb flag is essential so that Linux can handle traps correctly. The trace buffer can be
enabled by the command 'tm both' and later listed by inst.

Breakpoints trigger when the processor fetches an instruction at the given breakpoint address. Hardware
breakpoints are inserted with 'hbreak address' or 'hbreak symbol' . Inserting breakpoints with break instead
hbreak causes GRMON to insert an instruction (ta 1). Hardware breakpoints is preferred when working with
virtual addresses or debugging non writeable areas. GRMON stop the processor from executing further when a
breakpoint is reached, the exact state can be observed and manipulated. Breakpoints triggers on addresses the
processor executes, in this case virtual addresses.

The watchpoints implemented in GRLIB have support for stopping the processor when an address is being
accessed by the software, all variants if the instructions ld or st are supported. As with hardware breakpoints
watchpoints trigger on the address the processor accesses before MMU translation, thus virtual addresses is to
be used when debugging the Linux kernel and its applications with GRMON. Watchpoints need hardware
assistance to work, this cannot be done in software.

The architecture independent starting point of the kernel is at start_kernel, at this point the kernel is executing
in virtual address space.

6.2.3 GRMON Example: debugging the Linux kernel

Below is an example of how the first call to printk can be debugged. By setting a hardware breakpoint on printk
the processor halts after the save instruction has been executed. Viewing the INS registers one can inspect the
arguments passed to the printk function. See SPARC v8 manual for SPARC calling conventions. From the
printk C-prototype we know that the first argument must hold a pointer to a format string, thus i0 register holds
a pointer to a string.

LINUX-SNAPGEAR 27

The register content can be viewed by the command reg. From the output of reg one can see that i0 is
0xF0227510. Listing the memory, with vmem, around the virtual address 0xF0227510 reveals that the argument
passed to printk was "PROMLIB: Sun Boot Prom Version %d Revision %d".

A virtual address can easily be translated to a physical address by doing a "MMU page table walk" with the
GRMON command walk. In the example below the virtual address 0xF0227510 is translated into 0x40227510
by the MMU. Listing the memory content, this time with mem instead of vmem, confirms that the memory
content is the same for the physical address as the virtual address.

By looking at the previous 20 instructions of the trace buffer it is easy to see that the instruction call is executed
two instructions before entering printk. As expected the call address is the address of printk. In the delay slot or
is executed. Searching for 0xf0031e18 in image.dis tells us that the caller is prom_init, from the string passed
to printk is seems reasonable.

As printk processes the string for output it must access the characters at some point or another, that point can be
found be setting a watchpoint at a character address. To demonstrate the watchpoint functionality the processor
is stopped when accessing the character S in the string. A watchpoint it set to 0xF0227519(S). As the execution
continues it can be observed that the processor is stopped at the space character, the character just before S, this
is because watchpoints must be aligned to a 32-bit boundary, GRMON does this for us.

The GRMON command bt, short for backtrace, show the current call history, from it one can see that prom_init
called printk which called vprintk and so on.

LINUX-SNAPGEAR 28

$ grmon -jtag

grlib> tm both
combined instruction/AHB tracing

grlib> lo image.dsu
section: .stage2 at 0x40000000, size 10240 bytes
section: .vmlinux at 0x40004000, size 3670272 bytes
total size: 3680512 bytes (226.5 kbit/s)
read 5814 symbols
entry point: 0x40000000

grlib> symbol image
read 5805 symbols
entry point: 0xf0004000

grlib> hbreak printk

grlib> run
breakpoint 1 printk (0xf0031e1c)

grlib> reg

 INS LOCALS OUTS GLOBALS
 0: F0227510 F0399000 F02275E0 00000000
 1: 00000000 40000400 00000000 00000002
 2: 00000000 00000000 00000000 F31010E3
 3: F0000C7C 00000000 00000140 F0000D94
 4: 00000000 00000000 00000000 F0237000
 5: 00000000 00000000 00000001 00000000
 6: F000FF38 00000000 F000FED0 F000E000
 7: F0266124 00000000 F02666BC F0000C7C

 psr: F3401FE6 wim: 00000001 tbr: F0004050 y: 00000000
 pc: f0031e1c mov %i0, %o0
 npc: f0031e20 st %i1, [%fp + 0x48]

grlib> dis 0xf0031e10
 f0031e10 81c3e008 retl
 f0031e14 01000000 nop
 f0031e18 9de3bf98 save %sp, -104, %sp
 f0031e1c 90100018 mov %i0, %o0
 f0031e20 f227a048 st %i1, [%fp + 0x48]
 f0031e24 f427a04c st %i2, [%fp + 0x4c]
 f0031e28 f627a050 st %i3, [%fp + 0x50]
 f0031e2c f827a054 st %i4, [%fp + 0x54]
 f0031e30 fa27a058 st %i5, [%fp + 0x58]
 f0031e34 40000004 call 0xf0031e44
 f0031e38 9207a048 add %fp, 72, %o1
 f0031e3c 81c7e008 ret
 f0031e40 91e80008 restore %o0, %o0
 f0031e44 9de3bf58 save %sp, -168, %sp
 f0031e48 113c0e2d sethi %hi(0xf038b400), %o0
 f0031e4c d2022000 ld [%o0], %o1

grlib> vmem 0xF0227510
 40227510 50524f4d 4c49423a 2053756e 20426f6f PROMLIB: Sun Boo
 40227520 74205072 6f6d2056 65727369 6f6e2025 t Prom Version %
 40227530 64205265 76697369 6f6e2025 640a0000 d Revision %d...
 40227540 61766169 6c61626c 65000000 00000000 available.......

grlib> walk 0xF0227510
Tablewalk: (f0)(8)(27)
+ctx(0):40002000 ctx->4000241
+region(f0):400027c0 region->400007e
 segment->400007e
 page->400007e
= 40227510(pte:400007e)

LINUX-SNAPGEAR 29

grlib> mem 0x40227510
 40227510 50524f4d 4c49423a 2053756e 20426f6f PROMLIB: Sun Boo
 40227520 74205072 6f6d2056 65727369 6f6e2025 t Prom Version %
 40227530 64205265 76697369 6f6e2025 640a0000 d Revision %d...
 40227540 61766169 6c61626c 65000000 00000000 available.......

grlib> inst 20
 time address instruction result
 9303794 f02666d4 cmp %o0 [00000000]
 9303806 f02666d8 bne 0xf0266700 [00000000]
 9303807 f02666dc mov 320, %o3 [00000140]
 9303808 f02666e0 sethi %hi(0xf0399000), %o0 [f0399000]
 9303819 f02666e4 ld [%o0 + 0x3c0], %o2 [00000000]
 9303820 f02666e8 sethi %hi(0xf0227400), %o0 [f0227400]
 9303833 f02666ec orcc %o2, %o1 [00000000]
 9303845 f02666f0 be 0xf0266724 [00000000]
 9303850 f02666f4 or %o0, 0x1e0, %o0 [f02275e0]
 9303851 f0266724 nop [00000000]
 9303861 f0266728 ret [f0266728]
 9303862 f026672c restore [00000000]
 9303900 f0266114 ld [%l0 + 0x34c], %o0 [f0000c7c]
 9303925 f0266118 ld [%o0 + 0x4], %o1 [00000000]
 9303944 f026611c ld [%l1 + 0x354], %o2 [00000000]
 9303955 f0266120 sethi %hi(0xf0227400), %o0 [f0227400]
 9303965 f0266124 call 0xf0031e18 [f0266124]
 9303973 f0266128 or %o0, 0x110, %o0 [f0227510]
 9303983 f0031e18 save %sp, -104, %sp [f000fed0]
 9303990 f0031e1c mov %i0, %o0 [trapped]

grlib> watch 0xF0227519

grlib> cont
watchpoint 1 vsnprintf + 0x68 (0xf010edb0)

grlib> reg
 INS LOCALS OUTS GLOBALS
 0: F038B000 00000000 0000003A 00000000
 1: 00000400 F038B3F8 0000003A 00000002
 2: F0227518 00000000 FFFFFFFF F3401FE5
 3: F000FF80 F038AFF8 F00001D4 F0000D94
 4: 00000000 00000000 00000000 F0237000
 5: 00000000 00000000 00000000 00000000
 6: F000FDC0 00000000 F000FD48 F000E000
 7: F010F348 00000000 F01109B8 F0000C7C

 psr: F3901FE3 wim: 00000001 tbr: F0004050 y: 00000000
 pc: f010edb0 ldub [%i2], %o1
 npc: f010edb4 sll %o1, 24, %o0

grlib> vmem 0xF0227518 0x10
 40227518 2053756e 20426f6f 74205072 6f6d2056 Sun Boot Prom V

6.3 Debugging userspace applications

Debugging user space applications is a lot different from kernel debugging. One can still use GRMON the same
way as for kernel debugging but is only effective in simpler debugging cases. When debugging userspace
applications a native GDB debugger, executing on the LEON target, may be used to debug applications using
the serial console for input. This is similar to debugging PC applications and not described here. The CPU may
be heavily loaded since GDB share the CPU with the application, also application sources and debug binaries
are required at the target when debugging natively.

For targets having a serial port or a network connection it is possible to debug Linux applications remote. The
debugging interface is presented on a PC unloading the target CPU. The most common solution is to use a GDB
TCP/IP server (gdbserver) exporting control to a remote PC running GDB (sparc-linux-gdb) compiled for target
binaries (SPARC).

LINUX-SNAPGEAR 30

GRMON must be started with the flag -nswb in order to instruct GRMON not to interfere with the debugging
process or else software breakpoints result in GRMON taking over CPU, beware this only needed when
debugging userspace applications not when debugging the kernel.

6.3.1 Setting up a debugging environment

Together with the sparc-linux toolchain (version 1.0.1 and onwards) comes bin/sparc-linux-gdb and bin/sparc-
linux-insight. sparc-linux-gdb is GDB built for PC Linux able to read/debug SPARC Linux binaries.

The Data Display Debugger (DDD) is normally available in for download for any distribution. DDD is optional
as GDB can be used effectively in text mode.

The GDB TCP/IP server can be built within SnapGear by enabling it from the Application Configuration Utility
under "Miscellaneous Applications/gdbserver".

With GRMON version 1.1.23 the flag -nswb was added, it clears bit 3 (BS) in the DSU control register so that
GRMON won't interfere with the software breakpoints (ta 0x1).

6.3.2 GDB introduction

GDB is a debugger able to debug multiple languages including C and SPARC assembly. In this text GDB is
used to access a GDB server running on the target board debugging. GDB needs

● Binaries of the application and optionally the used libraries

● Sources used to compile the binaries

● The IP number of the target, can be found with "target$ /sbin/ifconfig"

● gdbserver running on the target (part of SnapGear)

● The gdbserver also need the binary but with or without debug information. Debug information is not
needed by the GDB server.

depending on what to debug. The libraries and their source code may not be needed. When debugging LibC the
sources and libraries are of course needed.

See the previous section "Debugging symbols" on how to create binaries with debugging information.

6.3.2.1 Adding additional source search paths

Sometimes GDB can not list the C-code, that may be due to missing debug information (not even searching for
C-code) or it can not find the source files mentioned in the debug information. It is not recommended to change
the source files after the debug binary has been created.

If the binary is compiled on the same computer running sparc-linux-gdb one need not to add additional paths
normally. The path information is coded into the binary, however when running GDB on a different computer
than the build host the path information is invalid and it may be needed to add additional search paths. Search
paths can be added with the '-d dir1:dir2:dir3' flag passed to GDB.

6.3.3 Starting GDB server on target

Assuming that the compilation of gdbserver has been successful and that GRMON has been started with the
flag -nswb the GDB server can be started with the following command at the target:

LINUX-SNAPGEAR 31

target$ gdbserver :1234 app arg1 arg2

Where 1234 is the TCP/IP port, app is the application to be debugged and arg1 and arg2 are the arguments to
app.

Note: The debugged application does not have to include any debugging information. It can be stripped.

6.3.4 Connecting with GDB to gdbserver

Below is an example of how to start GDB on the PC and connecting to the target, the target board IP address is
assumed to be 192.168.0.52, the TCP port 1234.

pc$ cd sources
pc$ sparc-linux-gdb ./app_with_debug_info
(gdb) target remote 192.168.0.52:1234

6.3.5 GDB example usage

Configuring SnapGear with glibc-from-compiler, linux-2.6.21.1, with gdbserver,

pc$ make xconfig

Building SnapGear,

pc$ make

The binary application is recompiled manually with debugging symbols,

pc$ file romfs/bin/testsin
romfs/bin/testsin: ELF 32-bit MSB executable, SPARC, version 1 (SYSV),
dynamically linked (uses shared libs), stripped

pc$ cd user/custom
pc$ sparc-linux-gcc -lm -g3 testsin.c -o testsin-g
pc$ file testsin-g
testsin-g: ELF 32-bit MSB executable, SPARC, version 1 (SYSV),
dynamically linked (uses shared libs), not stripped

The serial console is connected to a terminal emulator such as minicom or hyper terminal with 38400baud 8N1.

Running the image images/image.dsu from RAM on target LEON board using GRMON,

pc$ grmon -jtag -nb -nswb
grmon> lo images/images.dsu
grmon> run

On the terminal emulator connected to LEON Linux target,

target$ gdbserver :1223 /bin/testsin
 Process /bin/testsin created; pid = 28

Starting GDB on the PC and testing that GDB finds the sources,

LINUX-SNAPGEAR 32

sparc-linux-gdb testsin-g
GNU gdb 6.4.0.20051202-cvs
Copyright 2005 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you
are welcome to change it and/or distribute copies of it under certain
conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for
details.

This GDB was configured as "--host=i686-pc-linux-gnu --target=sparc-
linux"...

(gdb) list
1 #include <math.h>
2 #include <stdlib.h>
3
4 int main(int argc,char **argv) {
5 double i = 0.00;
6 int j = 0;
7 printf("testsin:\n");
8 while (i < 100.0) {
9 double v = sin(i);
10 printf("float:sin(%f)=%f\n",i,v);

Connecting GDB to the remote gdbserver,

(gdb) tar rem 192.168.0.80:1223
Remote debugging using 192.168.0.80:1223
0x50001c20 in ?? ()

Setting breakpoints,

(gdb) break 7
 Breakpoint 1 at 0x10440: file testsin.c, line 7.

(gdb) break 10
 Breakpoint 2 at 0x10494: file testsin.c, line 10.

Running application with cont instead of run since application already has been started and paused on the target
side,

(gdb) cont
 Continuing.

 Breakpoint 1, main (argc=1, argv=0xefbd1ed4) at testsin.c:7
 7 printf("testsin:\n");

Stepping one C-line with next, as the printf call is executed the output appears on the target console,

(gdb) next
 8 while (i < 100.0) {

Running the loop four times,

LINUX-SNAPGEAR 33

(gdb) cont
Continuing.

Breakpoint 2, main (argc=1, argv=0xefbd1ed4) at testsin.c:10
10 printf("float:sin(%f)=%f\n",i,v);

(gdb) cont
Continuing.

Breakpoint 2, main (argc=1, argv=0xefbd1ed4) at testsin.c:10
10 printf("float:sin(%f)=%f\n",i,v);

(gdb) cont
Continuing.

Breakpoint 2, main (argc=1, argv=0xefbd1ed4) at testsin.c:10
10 printf("float:sin(%f)=%f\n",i,v);

(gdb) cont
Continuing.

Breakpoint 2, main (argc=1, argv=0xefbd1ed4) at testsin.c:10
10 printf("float:sin(%f)=%f\n",i,v);

(gdb) cont
Continuing.

Breakpoint 2, main (argc=1, argv=0xefbd1ed4) at testsin.c:10
10 printf("float:sin(%f)=%f\n",i,v);

(gdb) print i
$1 = 5

The output on the LEON target terminal is now,

Sash command shell (version 1.1.1)

/> gdbserver :1223 /bin/testsin
Process /bin/testsin created; pid = 26
Remote debugging using :1223
testsin:
float:sin(0.000000)=0.000000
float:sin(1.000000)=0.841471
float:sin(2.000000)=0.909297
float:sin(3.000000)=0.141120
float:sin(4.000000)=-0.756802

One can change the execution flow by manipulating variables within the loop. The integer i set to 90, the
breakpoints are removed and the application are continued to is endpoint,

(gdb) set variable i=90
(gdb) delete
Delete all breakpoints? (y or n) y
(gdb) cont
Continuing.

Program exited normally.

Finally the LEON target's console output was,

LINUX-SNAPGEAR 34

Sash command shell (version 1.1.1)
/> gdbserver :1223 /bin/testsin
Process /bin/testsin created; pid = 26
Remote debugging using :1223
testsin:
float:sin(0.000000)=0.000000
float:sin(1.000000)=0.841471
float:sin(2.000000)=0.909297
float:sin(3.000000)=0.141120
float:sin(4.000000)=-0.756802
float:sin(90.000000)=-0.958924
float:sin(91.000000)=0.105988
float:sin(92.000000)=-0.779466
float:sin(93.000000)=-0.948282
float:sin(94.000000)=-0.245252
float:sin(95.000000)=0.683262
float:sin(96.000000)=0.983588
float:sin(97.000000)=0.379608
float:sin(98.000000)=-0.573382
float:sin(99.000000)=-0.999207
exit testsin

Child exited with retcode = 0

Child exited with status 0
GDBserver exiting
/>

6.3.6 DDD and GDB

DDD is a graphical frontend run alongside with GDB. DDD launches GDB and provides us with direct access
to the GDB console and the ability to display information about the debugged application. DDD is compiled for
PC Linux and uses a socket protocol to connect to the local GDB (sparc-linux-gdb). GDB is responsible for
SPARC specific operations and therefore DDD needs not to be recompiled for SPARC binaries.

pc$ ddd --debugger sparc-linux-gdb app_debug
 (ddd-gdb) target remote target:port
 (ddd-gdb) b main
 (ddd-gdb) cont

Most Linux distributions distribute DDD as a precompiled binary package, in many cases it is installed by
default.

See http://www.gnu.org/software/ddd for more information about DDD.

6.3.7 Insight

Insight comes with version 1.0.1 or later of sparc-linux toolchains. Insight is a graphical debugging interface on
top of GDB. It is started by running sparc-linux-insight.

See http://sourceware.org/insight for more information on how to use insight.

6.4 Using NFS to simplify application updates

During development one i often needed to update the application and rerun it. Using the standard procedure is
very inefficient, rebuild the image, reprogram the flash and reboot. With GRMON the flash i not needed to be
updated, the image can be run directly from RAM saving a great deal of time. However, there are occasions
where even rebooting may be troublesome. Sharing the files over NFS may be a good alternative to rebooting
and rebuilding all SnapGear. Only the development files/binaries need to updated, not all SnapGear.

Perhaps the easiest way is to create a script file in the SnapGear image which mounts NFS after boot, yet
another way is to edit the rcS file in vendors/leon3mmu/rcS to mount automatically on start up.

LINUX-SNAPGEAR 35

See your distribution manual how to set up an NFS sharer, normally you edit /etc/exports and run 'exportfs -r' .
The same problem is faced in the chapter "Root Filesystem over Ethernet using NFS".

Good practice is to mount the exported directory on to the server PC to verify that the NFS share is set up
correctly (even if this works it may be wrong). After network and NFS server has been set up on the target one
can simply mount the NFS share into an empty local directory with:

target$ mkdir /nfs
target$ mount -t nfs -o rw,nolock workstation:/export/leonshare

6.5 Console output when debugging

The console is of great help when debugging applications, but often it limits the execution speed or put in
another way the console can not output enough information. There are ways to speed up the console output, two
techniques are discussed here.

6.5.1 Redirecting output to NFS share

The console output can be redirected to a file by the shell. The shell simply connects the application's stdout to a
file. For this to work the shell needs to support redirection, only tiny shells doesn't support redirection. It is also
possible to redirect stderr to file. See 'man stdin' and 'man bash' for more info. Embedded storage is often
limited in size and speed and would fill up the flash device rapidly. Instead a NFS server can be used to place
the execution log over the network.

$ mount -t nfs -rw logserver:/export/logs /nfslogs
$ app > 2>&1 /nfslogs/out_10sep2007.log

6.5.2 TELNET over TCP/IP network

Logging onto the target with telnet is an easier solution, all that has to be done is to set up a telnet server on the
target. A telnet server (telnetd) is available in SnapGear from the SnapGear Application configuration utility
under Network Applications.

pc$ telnet target
username: root
pass: *****

Welcome to SPARC LEON3 Linux

root@target# app

LINUX-SNAPGEAR 36

7 PS/2 KEYBOARD AND VGA CONSOLE

This is an example of how to configure the Linux 2.6.x kernel, set up init and it's settings file inittab, the boot
loader's parameters, and the kernel command line.

The software can be run on a GR-XC3S-1500 Spartan-1500 board available at www.gaisler.com.

7.1 Hardware configuration

The hardware set up is based on the template design of GR-XC3S-1500 and modified as in table 7.1.

Hardware / Controller Function

LEON3 with MMU, HW MUL/DIV and FPU SPARC v8 Processor with memory protection logic and
floating point unit.

GRVGA SVGA controller

GRPS2 PS/2 controller connected to keyboard

Table 7.1: Hardware in addition to GR-XC3S-1500 template design

7.2 Configuring the boot loader and main SnapGear options

Start SnapGear main GUI and configure as in table 7.2:

$ make xconfig

Name Value

Vendor / Product Selection

Vendor Gaisler

Gaisler Product Leon3mmu

Gaisler Leon2/3/mmu options

SPARC v8 Yes

FPU support Yes

Clock frequency 40MHz

Baudrate 38400

In memory root filesystem initramfs

Kernel command line console=tty0 video=grvga:640x480@60,8,307200

Kernel/Library/Defaults Section

Kernel Version Linux 2.6.x

Libc Version Glibc-from-compiler

Customize Kernel Settings Yes

Customize Vendor/User Settings Yes

Table 7.2: Boot loader configuration

7.3 Configuring the Linux kernel

Apart from the default configuration support for frame buffer on Gaisler VGA controller and input driver for
Gaisler PS/2 controller is enabled, as in table 7.3.

LINUX-SNAPGEAR 37

Name Function

Graphics Support

FB Frame buffer sub system

FB_GRVGA Frame buffer driver for GRVGA controller

FRAMEBUFFER_CONSOLE Frame buffer console support

FONTS Compiled in fonts

FONT_8x16 8x16 Font support

LOGO Add boot logo support

LOGO_LINUX_CLUT224 Include a coloured Linux logo

Input devices

SERIO_LEON3 Driver for Gaisler PS/2 controller

SERIO_LEON3_KEYB_IRQ The IRQ number of assigned to the PS/2
controller connected to the keyboard

INPUT_KEYBOARD Keyboard sub system

KEYBOARD_ATKBD AT-keyboard driver

Table 7.3: Kernel configuration

7.4 Configuring SnapGear Applications

Below is a description of how the SnapGear ROMFS can be configured:

Name Function

BusyBox

Init First application that gets started after boot

Init: use inittab Make init read /etc/inittab for settings

Table 7.4: SnapGear configuration

7.5 Building the kernel and applications

Building the kernel, libraries and applications can be done as follows:

$ make

7.6 Setting up /etc/inittab

Init reads the /etc/inittab, line after line at start up and launches the /etc/rc.sh system initialization script and
spawns applications on each console as set up. Inittab can be created by typing:

LINUX-SNAPGEAR 38

$ cat << EOM > romfs/etc/inittab

System initialization script
::sysinit:/etc/rc.sh

Make serial terminal have a console
ttyS0::respawn:/bin/sh

Make consoles appear via frame buffer
tty1::respawn:/bin/sh
tty2::respawn:-/bin/sh
tty3::askfirst:-/bin/sh

EOM

rc.sh can be typed in as follows:

$ cat << EOM > romfs/etc/rc.sh

#!/bin/sh
mount -t proc none /proc
mount -t sysfs none /sys
mount -t devpts devpts /dev/pts

hostname sparky
/sbin/ifconfig lo up 127.0.0.1 netmask 255.0.0.0
route add 127.0.0.1 dev lo

EOM

For the new script to be able to run one must add execution permission to it:

$ chmod +x romfs/etc/rc.sh

7.7 Building again with inittab and rc.sh

Since changes has been made only to the file system one can rebuild the images without having to recompile
kernel, libraries and applications.

$ make image

After building the images the image can be found at images/image.dsu. Note that image.flashbz does not
function correctly since the boot loader's SDRAM and flash settings hasn't been set up properly.

7.8 Running on hardware

The far most simplest method of testing the image is to run it using grmon as follows. Depending on what
debug interface is available the parameters to grmon may differ, see grmon documentation for details:

$ cd images
$ grmon -jtag -nb

grmon> load image.dsu
grmon> run

When everything is working as planned the connected monitor will first display a small penguin, kernel
messages and then launch a shell on tty1, tty2 and the serial terminal (ttyS0). It is possible to switch between
tty1-3 by pressing ALT+F1/F2/F3 at the connected PS/2 keyboard.

LINUX-SNAPGEAR 39

8 ROOT FILE SYSTEM OVER ETHERNET USING NFS

Often during development it is favourable to use NFS as root file system as it is a tedious process
reprogramming the flash each time a change is made, and also there is no need in rebuilding the romfs image.
Settings can be preserved after system reboot.

Setting up root over NFS involves two steps, installing the NFS server on the PC and configuring the LEON
Linux image. The NFS server is assumed to be installed and therefore not described other than with an example
entry applied to /etc/exports, it make the NFS server export the root file system to the LEON board.

8.1 Setting up NFS server on PC

As previously mentioned the NFS server is assumed already to be installed, however an entry to /etc/exports
sharing the root file system should be added similar to what described. Adding the following line to the
/etc/exports makes the server share the /export/rootfs directory. The NFS server is forced to reread the settings
file by invoking “exportfs -r”.

/export/rootfs 192.168.0.0/255.255.255.0 (rw,async,no_root_squash,insecure)

In this example we export /export/rootfs which is a SnapGear ROMFS file system. The directory is exported to
any computer using the IP address 192.168.0.X.

$ su
mkdir /export
cp -rpd ~daniel/snapgear-pxx/romfs /export/rootfs
echo “/export/rootfs 192.168.0.0/255.255.255.0
(rw,async,no_root_squash,insecure)” >>/tmp/exports
exportfs -r
exit
$

It is also possible to base the root file system on other distributions for example on splack or creating one from
scratch. A common source of failure is that the initialization scripts, run during boot, assumes that the file
system is of ext2 or ext3 type, but it's not. This can usually easily be removed.

8.2 Configuring the boot loader and main SnapGear options

The important thing when running the root file system over NFS is to set up the kernel boot parameter to point
to the NFS share to be used as root and the network settings such as IP address, netmask and gateway.

To avoid building the image with the unused ROMFS root file system the “In-memory root filesystem” option
from the “Gaisler Leon2/3/mmu options” is set to “none”. The settings in the SnapGear application GUI does
not effect the build process once “In-memory root filesystem” is set to “none”.

An example configuration is outlined in table 8.1, the PC NFS server has the IP address 192.168.0.20 and the
target LEON board is configured to 192.168.0.203.

LINUX-SNAPGEAR 40

Name Value

Vendor / Product Selection

Vendor Gaisler

Gaisler Product Leon3mmu

Gaisler Leon2/3/mmu options

SPARC v8 Yes

FPU support Yes

Clock frequency 40MHz

Baudrate 38400

In-memory root filesystem NONE

Kernel command line console=ttyS0,38400 root=/dev/nfs
nfsroot=192.168.0.20:/export/rootfs,nfsvers=3
ip=192.168.0.203:192.168.0.20:192.168.0.1:255.255.255.0:grx
c3s_daniel:eth0:

Kernel/Library/Defaults Section

Kernel Version Linux 2.6.x

Customize Kernel Settings Yes

Table 8.1: SnapGear main configuration

8.3 Configuring the Linux kernel

In addition to the default settings of the Linux 2.6.x kernel add the features described by table 8.2.

Name Function

Networking

NET Networking support

INET TCP/IP protocol

IP_PNP IP settings can be set from kernel command line

UNIX UNIX domain sockets, needed by Debian's logging facilities.

Device Drivers / Network device support

NETDEVICES Enables the network device driver interface

General machine setup / Grlib: AMBA / Gaisler

GRLIB_GAISLER_GRETH Add Gaisler Ethernet 10/100/1000 driver.
Select a unique Ethernet address in the MSB and LSB fields.

Device Drivers / Block Devices

BLK_DEV_INITRD Disable ROMFS RAM root file system

File systems / Network file systems

NFS_FS Network file system support

NFS_V3 Support for version 3 of the NFS protocol

ROOT_NFS Add support for root file system over NFS

Table 8.2: Kernel configuration for NFS root FS

8.4 Building kernel and boot loader

As previously described,

LINUX-SNAPGEAR 41

$ make

The image will be available for download to the target board from images/image.dsu.

8.5 Running on hardware

The far most simplest method of testing the image is to run it using grmon as follows. Depending on what
debug interface is available the parameters to grmon may differ, see grmon documentation for details:

$ cd images
$ grmon -jtag -nb

grmon> load image.dsu
grmon> run

The NFS share can be tested by changing or adding files at the PC side and watch as they appear on the LEON
Linux target.

LINUX-SNAPGEAR 42

9 ROOT FILE SYSTEM OVER ETHERNET USING ATA OVER ETHERNET

A network root filesystem can also be provided using ATA-Over-Ethernet on Linux 2.6. This setup requires two
steps: creating an ATAoE server that exports a block device containing the root filesystem, and configuring the
LEON to boot using the exported ATAoE root block device.

ATAoE block devices may be formatted with an arbitrary filesystem. For example, well-supported Linux
filesystems such as ext3 or xfs may be used. The ATAoE server must be on the same Ethernet Local Area
Network as the LEON.

9.1 Setting up ATAoE Server

The ATAoE server, vblade, can be run on any supported Unix system, including Linux and FreeBSD. Vblade
can be obtained at http://aoetools.sourceforge.net .Installation documentation is included with vblade, although
typing 'make' followed by 'make install' (as root) should be sufficient for Linux systems.

With vblade installed, the next step is to configure the block device that will be exported by vblade. The block
device may be in one of two formats: a flat file or an actual block device. We will first show how to configure a
block device for vblade, as this is the easier of the two options. This example formats the block device /dev/hdb
using ext3, and then copies a SnapGear root filesystem to /dev/hdb.

mke2fs -j /dev/hdb
mount /dev/hdb /mnt/tmp
cp -rpd ~daniel/snapgear-pxx/romfs /mnt/tmp
umount /mnt/tmp

Now we will show how to configure a flat file to be used as a vblade-exported block device. In this example, we
create a 4GB flat file /rootfs.img formatted with ext3 containing a SnapGear root filesystem.

dd if=/dev/zero of=/rootfs.img bs=1024 count=4000000
losetup /dev/loop0 /rootfs.img
mount /dev/loop0 /mnt/tmp
cp -rpd ~daniel/snapgear-pxx/romfs /mnt/tmp
umount /mnt/tmp
losetup -d /dev/loop0

Make sure that the vblade-exported root block device has been unmounted (and in the case of a flat file, that
losetup -d has detached the file from any loopback devices) before running vblade. Now run vblade:

vbladed eth0 0 0 eth0 /path/to/root-device

In this example, vblade is run with shelf 0 slot 0 over Ethernet network interface eth0, exporting the device at
/path/to/root-device. To use the devices set up by our examples, we could replace /path/to/root-device with
/dev/hdb or /rootfs.img, respectively. The shelf and slot numbers are used for naming purposes – they allow the
server to run multiple vblades. As long as each block device is exported with a different shelf or slot number,
the client can select which of the exported block devices it wishes to access. In our examples we will use shelf 0
slot 0 as we are not using multiple vblade servers.

The ATAoE server is now operational and its output will be sent via syslog to /var/log/messages. Note that
because vblade operates over Ethernet and not TCP/IP, it does not bind to a port, nor is it accessible from any
machine outside of the local LAN. For more information on ATA over Ethernet, see linux-
2.6.x/Documentation/aoe/aoe.txt.

9.2 Configuring the boot loader and main SnapGear options

To mount a root filesystem using ATAoE, we must use Linux 2.6.x with an initramfs initial root filesystem.
This filesystem should contain only the klibc utility, kinit. This utility will automatically parse the options we
pass to the Linux kernel, mount the ATAoE block device, and switch the root filesystem over to the filesystem
on the ATAoE mount.

LINUX-SNAPGEAR 43

An example configuration is outlined in the following table. The ATAoE server has slot and shelf number 0,
and the target LEON board is configured to 192.168.0.203. Note that the ip= option may be omitted, as ATAoE
requires only Ethernet and will function even if the LEON does not have a valid IP address. However, LEON
system using ATAoE typically enable TCP/IP.

Name Value

Vendor / Product Selection

Vendor Gaisler

Gaisler Product Leon3mmu

Gaisler Leon2/3/mmu options

SPARC v8 Yes

FPU support Yes

Clock frequency 40MHz

Baudrate 38400

In-memory root filesystem Initramfs

Init pathname /bin/kinit

Kernel command line console=ttyS0,38400 root=/dev/etherd/e0.0
ip=192.168.0.203:192.168.0.20:192.168.0.1:255.255.255.0:grx
c3s_daniel:eth0:

Kernel/Library/Defaults Section

Kernel Version Linux 2.6.x

Customize Kernel Settings Yes

Customize Vendor/User Settings Yes

Libc version None

9.3 Configuring the Linux kernel

In addition to the default settings of the Linux 2.6.x kernel add the features described by the following table.

LINUX-SNAPGEAR 44

Name Function

Networking

NET Networking support

INET TCP/IP protocol

IP_PNP Disable IP PnP – kinit will provide this functionality for us

Device Drivers / Network device support

NETDEVICES Enables the network device driver interface

General machine setup / Grlib: AMBA / Gaisler

GRLIB_GAISLER_GRETH Add Gaisler Ethernet 10/100/1000 driver.
Select a unique Ethernet address in the MSB and LSB fields.

Device Drivers / Block Devices

BLK_DEV_INITRD Disable INITRD support

ATA_OVER_ETH Add ATA Over Ethernet block device support

File systems / Network file systems

EXT3_FS Ext3 journalling filesystem support

9.4 Configuring the vendor/user applications

At a bare minimum, klibc/kinit support must be enabled for ATAoE root to work. Furthermore, we recommend
disabling all other applications, as there will be no need for them. This is because kinit immediately switches
the root filesystem to the ATAoE block device at startup, and does not invoke or require any other applications
or libraries. Configuring a root filesystem with only klibc/kinit, while not strictly required, will result in a much
shorter build time and a much smaller initial root filesystem.

Name Function

Core Applications

Custom tests app Disable custom tests app

Shell Program Other

Network Applications

arp Disable arp

portmap Disable portmap

tcpd Disable tcpd

Busybox

Busybox Disable Busybox

Miscellaneous Configuration

RAMFS Image None

klibc

build klibc Enable klibc support

kinit Enable kinit

Statically link all binaries (Optional) Should result in a slightly smaller size for kinit – there's only one
binary so static linking actually doesn't waste space in this case

9.5 Building kernel, boot loader, and kinit

As previously described,

LINUX-SNAPGEAR 45

$ make

The image will be available for download to the target board from images/image.dsu.

9.6 Running on hardware

The simplest method of testing the image is to run it using grmon as follows. Depending on what debug
interface is available the parameters to grmon may differ, see grmon documentation for details:

$ cd images
$ grmon -jtag -nb

grmon> load image.dsu
grmon> run

LINUX-SNAPGEAR 46

10 RUNNING GRLINUX/SPLACK FROM AN ATA HARD DISK

Splack is a distribution based on the SPARC version of slackware, it is prepared especially for demonstrating
the ATA interface. The GRLinux include tested bitfiles for various boards, a precompiled kernel with the
appropriate features to run the root file system from a hard drive, and a temporary image for preparing the hard
drive with splack. The splack distribution was compiled with support for FPU and integer multiplier.

The kernel needs support for Gaisler ATA controller when accessing the root file system from an ATA disk or
compact flash.

10.1 Installing the kernel onto flash

The precompiled kernel is loaded onto the boot PROM of the board, grmon can be used to program the
PROM/Flash.

$ grmon -jtag
grmon> flash erase all
grmon> flash load image.flashbz

The boot loader is the first to be executed, it copies the kernel into main memory and before it starts the
execution of the kernel, the kernel command line string is made available. The kernel needs to know what
partition on the disk to search for the file system, that can be provided through the kernel command line:

root=/dev/hda1

The example boot line above make the kernel search the first partition on the first disk for a valid file system. In
principle the configuration is similar to a NFS root file system as described earlier, instead of telling the kernel
the IP address of the server and the location of the share on that server, the kernel is fed with hard disk and
partition number.

10.2 Preparing the hard drive

The preparation of the hard drive can be made using a PC computer, or as described below by using the target
hardware. Another image besides the flash image has been create for a single purpose, preparing the hard drive
from the target hardware using NFS to access the splack distribution. This image is called image-nomount.dsu.

Booting the Linux kernel can be done as follows:

$ grmon -jtag -nb
grmon> load image-nomount.dsu
grmon> run

In order to copy the splack distribution onto the disk one must be able to access it. In this example NFS is used
to access the splack distribution:

mount -t nfs 192.168.0.32:/home/daniel /mnt/nfs

In order for the kernel to read from the hard disk one should create a partition table and a partition on the hard
drive with a file system which the kernel can read the root file system from, EXT2 typically (type 0x83). One
can edit the partition table and create new partitions with fdisk, it can be started as follows:

fdisk /dev/hda

n add a new partition
p print the partition table
o create a new empty DOS partition table
w write table to disk and exit

When a partition has been created it is possible to format it using the mke2fs utility, and copy the splack
distribution to the newly created file system:

LINUX-SNAPGEAR 47

mke2fs /dev/hda1

mount -t /dev/hda1 /mnt/hd

cd /mnt/hd

tar -zxpf /mnt/nfs/splack-1.0.tar.gz

cd ..

umount /mnt/hd

umount /mnt/nfs

10.3 Running splack

If not already connected, connect the hard drive to the target board. Make sure a terminal emulator is connected
to the serial port at 38400 baud. The first boot after power up will fail on the lattice board because the DDR
RAM needs to be manually reset. Push the reset button and the kernel should boot and mount the CF disk.

The root password is set to "qwerqwer".

One must always terminate the system using the 'shutdown -h' command before switching of the power. This
will sync the file systems, otherwise data can get corrupted or lost. Before it is okay to turn power off (or reset
it) a message will be printed at the console:

Shutdown: hda

Power down.

LINUX-SNAPGEAR 48

11 INSTALLING DEBIAN 3.1 ON LEON LINUX

Debian is a widely used Linux distribution freely available at www.debian.org. Debian is available platforms,
including SPARC. Debian binaries expect FPU and hardware integer multiplier to be available. For further
installation information refer to the installation manual at Debian's homepage.

Normally, when installing Debian, installation diskettes or compact discs are used to boot Debian Installation
program. However, installing Debian on LEON involves a different approach where it is installed from an
UNIX host directly onto a disk or a NFS share. The Installation procedure is split in two stages, first Debian
binaries are downloaded and verified from the internet the second stage involves running the binaries on a
LEON target board doing the “real” installation and configuration.

In this example Debian is installed onto a NFS share that will later become the root file system of the LEON
board. The LEON board is a low-cost GR-XC3S-1500 board from www.gaisler.com.

11.1 Preparing LEON target

Preparing the LEON target to run the installation binaries is done similar to a NFS root file system set up as
described previous, the important applications and kernel configuration is listed in two tables below. The LEON
system consist of a kernel that is using a NFS share with BusyBox as it's root file system.

The BusyBox root file system is exported from a PC as /export/busybox and the Debian root file system is
placed in /export/busybox/debian.

Name Function

Networking

NET Networking support

INET TCP/IP protocol

IP_PNP IP settings can be set from kernel command line

Device Drivers / Network device support

NETDEVICES Enables the network device driver interface

General machine setup / Grlib: AMBA / Gaisler

GRLIB_GAISLER_GRETH Add Gaisler Ethernet 10/100/1000 driver.
Select a unique Ethernet address in the MSB and LSB fields.

Device Drivers / Block Devices

BLK_DEV_INITRD Disable ROMFS RAM root file system

File systems / Network file systems

NFS_FS Network file system support

NFS_V3 Support for version 3 of the NFS protocol

ROOT_NFS Add support for root file system over NFS

Table 11.1: Kernel configuration for Debian and install program

http://www.gaisler.com/
http://www.gaisler.com/
http://www.gaisler.com/
http://www.debian.org/
http://www.debian.org/
http://www.debian.org/

LINUX-SNAPGEAR 49

Name Function

Core Applications

Bash Shell to parse Debian scripts

BusyBox

ar, cat, chmod, chown, chroot, find, grep, gunzip, head, init, ln, md5sum, mkdir, mv, printf, rm, sed, sleep, sort,
sync, tar, touch, tr, umount, wc

Table 11.2: Root file system mounted via NFS

11.2 Installing Debian installation utility to PC and LEON target

The utility that is able to download, extract and install Debian is called debootstrap. It can be downloaded from
Debian's homepage. Since debootstrap is run from the PC as well as the LEON target two versions are needed
to be downloaded, the SPARC version for the LEON and the i386 version for the PC. Unless of course running
on Solaris.

It is assumed that the Debian package manager is not available. Download and install debootstrap on a non-
debian machine as root:

$ BUSYBOXLINUX=/export/busybox_rootfs
$ DEBOOT=debootstrap_0.2.45-0.2_i386.deb
$ TMPDIR=/tmp/debinst
$ ARCH=sparc
$ INSTDIR=$BUSYBOXLINUX/debian
$ DISTNAME=sarge
$ MIRROR=ftp://ftp.se.debian.org/debian

$ mkdir -p $TMPDIR/work
$ cd $TMPDIR

$ wget http://ftp.se.debian.org/debian/pool/main/d/debootstrap/$DEBOOT
$ cd work
$ ar -xf $TMPDIR/$DEBOOT

$ cd /
$ tar -zxvf $TMPDIR/work/data.tar.gz

Download and install debootstrap to LEON BusyBox root file system:

$ DEBOOT=debootstrap_0.2.45-0.2_sparc.deb

$ mkdir -p $TMPDIR/work_sparc
$ cd $TMPDIR

$ wget http://ftp.se.debian.org/debian/pool/main/d/debootstrap/$DEBOOT
$ cd work_sparc
$ ar -xf $TMPDIR/$DEBOOT

$ cd $BUSYBOXLINUX
$ tar -zxvf $TMPDIR/work_sparc/data.tar.gz

The two debootstrap applications should now be working both for the LEON target and the PC.

11.3 Downloading Debian binaries using PC

Downloading Debian binaries to PC:

http://ftp.se.debian.org/debian/pool/main/d/debootstrap/$DEBOOT
http://ftp.se.debian.org/debian/pool/main/d/debootstrap/$DEBOOT
http://ftp.se.debian.org/debian/pool/main/d/debootstrap/$DEBOOT
http://ftp.se.debian.org/debian/pool/main/d/debootstrap/$DEBOOT
http://ftp.se.debian.org/debian/pool/main/d/debootstrap/$DEBOOT
http://ftp.se.debian.org/debian/pool/main/d/debootstrap/$DEBOOT
ftp://ftp.se.debian.org/debian
ftp://ftp.se.debian.org/debian
ftp://ftp.se.debian.org/debian

LINUX-SNAPGEAR 50

$ mkdir -p $INSTDIR

/usr/sbin/debootstrap --download-only --arch $ARCH $DISTNAME $INSTDIR
$MIRROR

11.4 Installing Debain binaries from LEON target

The LEON target is able to access the binaries downloaded by the PC in the previous step by entering the
/debian directory. Invoking the Debian installation utility debootstrap with the correct parameters makes it
continue the installation process, this step may take some time to complete:

/usr/sbin/debootstrap sarge /debian

11.5 Adding a serial console to Debian

Even though the system console may be the serial terminal no shell is given unless explicitly telling init to
launch one. This can be done as previously described by editing the /etc/inittab in the Debian root file system.
Add or uncomment:

T0:234:respawn:/sbin/getty -L ttyS0 38400 vt100

Getty will present us with a login prompt at serial channel 0. One must make sure there is a valid serial terminal
device node for getty to open in /dev/ttyS0. If the device is missing it can be created by mknod:

cd $INSTDIR/dev
mknod ttyS0 c 4 64

In case of trouble booting Debian it may be of good practice to change the run level to 1 or 2 in inittab before
booting:

The default runlevel.
id:2:initdefault:

11.6 Changing root directory and booting Debian

Before booting the kernel command line needs to be updated to reflect the new root file system. Enter the
“make xconfig” GUI and update the kernel command line to include the debian directory:

nfsroot=192.168.0.20:/export/busybox_rootfs/debian

Make the configuration, rebuild the image and run the image:

$ make xconfig
$ make image
$ grmon -jtag -nb
$ load images/image.dsu
$ run

11.7 Adding a telnet server to Debian

During the development process it often comes in handy with a telnet terminal. The telnet terminal isn't limited
by the bandwidth as the serial terminal, making it to an excellent choice when running or debugging new
applications.

The easiest way of installing applications in Debian is using the apt-get utility. The apt-get utility can be setup
to fetch binaries from close mirror servers by editing /etc/apt/sources.list. Setting it up on the LEON target:

LINUX-SNAPGEAR 51

echo deb ftp://ftp.se.debian.org/debian stable main contrib non-free >
/etc/apt/sources.list

apt-get update

Installing telnet server can be done as follows:

apt-get install telnetd

It is generally an good idea to have a look in the /etc/inetd.conf and verifying that telnetd is correctly
configured. To make the telnet server appear on the network inetd may need to be restarted to reread it's
configuration file, sometimes it is enough sending inetd it the SIGHUP signal.

11.8 Installing X.org X11 Server

The graphical X server is normally operated using keyboard and mouse. See the chapter "PS/2 and VGA" on
how to setup the monitor and PS/2 keyboard. The peripherals and monitor/GRVGA is setup in
/etc/X11/xorg.conf installed with apt-get.

Installing the graphical X server, fbset (a frame buffer utility), X fonts and xterm terminal emulator is similar to
installing the telnet server in the previous section:

apt-get install xserver-xorg
apt-get install xfonts-base
apt-get install fbset
apt-get install xterm

Configure the X server by editing /etc/X11/xorg.conf.

After setting up the X server properly it is possible to start the server with extra debug output by adding the
option -verbose [level]:

$ X -verbose 3

LINUX-SNAPGEAR 52

12 SUPPORT

For support, contact the Gaisler Research support team at support@gaisler.com.

mailto:support@gaisler.com
mailto:support@gaisler.com
mailto:support@gaisler.com

	1 INTRODUCTION
	1.1 LEON Linux
	1.2 SnapGear Linux
	1.3 Boot loader for LEON Linux
	1.4 LEON simulator to speed up the development process
	1.5 Obtaining the software
	1.6 Supported hardware
	1.7 Support

	2 Installing GNU toolchain and LEON linux
	2.1 Selecting Toolchain
	2.2 Installing the toolchain
	2.3 Installing SnapGear for LEON Linux 2.0
	2.4 Installing SnapGear for LEON Linux 2.6

	3 Configuring LINUX
	3.1 Processor type and MMU
	3.2 C library
	3.2.1 Static vs Dynamic linking
	3.2.2 Toolchains for Linux 2.6
	3.2.3 Toolchains for Linux 2.0

	3.3 Kernel version
	3.4 Configuring the boot loader
	3.4.1 Symmetric multi-processing

	3.5 Configuring the 2.6.x kernel
	3.5.1 LEON processor type
	3.5.2 Symmetric multi-processing support
	3.5.3 Gaisler AMBA Plug&Play procfs support
	3.5.4 GRLib APBUART (LEON3)
	3.5.5 LEON Serial (LEON2)
	3.5.6 GRLib GRETH 10/100/1000
	3.5.7 GRLib OpenCores Ethernet MAC
	3.5.8 SMC 91x Ethernet MAC
	3.5.9 GRLib GRETH 10/100/1000 over PCI
	3.5.10 GRLib OpenCores I2C-master
	3.5.11 GRLib PCI support
	3.5.12 GRLib GRPS2
	3.5.13 GRLib SPICTRL
	3.5.14 GRLib GRUSBHC
	3.5.15 GRLib GRVGA
	3.5.16 GRLib ATA Controller
	3.5.16.1 DMA Extension

	3.6 Configuring the 2.0.x kernel
	3.6.1 LEON processor type
	3.6.2 GRLib APBUART (LEON3)
	3.6.3 LEON Serial (LEON2)
	3.6.4 GRLib GRETH 10/100 Ethernet MAC
	3.6.5 GRLib OpenCores 10/100 Ethernet MAC
	3.6.6 SMC 91C111 10/100 Ethernet MAC
	3.6.7 GRLib VGA text frame buffer support
	3.6.8 GRLib GRPS2 PS/2 interface/keyboard

	3.7 Applications included in ROMFS
	3.8 Template configurations

	4 BUILDING SNAPgear
	5 Adding custom applicationS
	5.1 Creating an application
	5.2 Setting up compilation directives
	5.3 Including application to file system

	6 Debugging Linux-2.6 AND Applications
	6.1 Debugging symbols
	6.2 Debugging the kernel
	6.2.1 Configuring GRLIB for kernel debugging
	6.2.2 Using GRMON
	6.2.3 GRMON Example: debugging the Linux kernel

	6.3 Debugging userspace applications
	6.3.1 Setting up a debugging environment
	6.3.2 GDB introduction
	6.3.2.1 Adding additional source search paths

	6.3.3 Starting GDB server on target
	6.3.4 Connecting with GDB to gdbserver
	6.3.5 GDB example usage
	6.3.6 DDD and GDB
	6.3.7 Insight

	6.4 Using NFS to simplify application updates
	6.5 Console output when debugging
	6.5.1 Redirecting output to NFS share
	6.5.2 TELNET over TCP/IP network

	7 PS/2 keyboard and vga console
	7.1 Hardware configuration
	7.2 Configuring the boot loader and main SnapGear options
	7.3 Configuring the Linux kernel
	7.4 Configuring SnapGear Applications
	7.5 Building the kernel and applications
	7.6 Setting up /etc/inittab
	7.7 Building again with inittab and rc.sh
	7.8 Running on hardware

	8 root file system over Ethernet using Nfs
	8.1 Setting up NFS server on PC
	8.2 Configuring the boot loader and main SnapGear options
	8.3 Configuring the Linux kernel
	8.4 Building kernel and boot loader
	8.5 Running on hardware

	9 root file system over Ethernet using ATA OVER ETHERNET
	9.1 Setting up ATAoE Server
	9.2 Configuring the boot loader and main SnapGear options
	9.3 Configuring the Linux kernel
	9.4 Configuring the vendor/user applications
	9.5 Building kernel, boot loader, and kinit
	9.6 Running on hardware

	10 Running GRLinux/SPLACK from an ata hard disk
	10.1 Installing the kernel onto flash
	10.2 Preparing the hard drive
	10.3 Running splack

	11 Installing debian 3.1 on LEON Linux
	11.1 Preparing LEON target
	11.2 Installing Debian installation utility to PC and LEON target
	11.3 Downloading Debian binaries using PC
	11.4 Installing Debain binaries from LEON target
	11.5 Adding a serial console to Debian
	11.6 Changing root directory and booting Debian
	11.7 Adding a telnet server to Debian
	11.8 Installing X.org X11 Server

	12 Support

