
LEON-REX Instruction Set Extension

Technical note 2016-05-27

Doc. No GRLIB-TN-0001

Issue 1.1

Te
m

pl
a

te
: G

Q
M

S
-T

P
LT

-1
-1

-0

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 2 of 38

CHANGE RECORD

Issue Date Section / Page Description

1.0 2015-10-27 First issue of document

1.1 2016-05-26 6.3.4, 6.3.7, 6.3.8,
6.3.10, 6.3.11, 6.3.12,
6.3.13, 6.3.14, 6.3.15,
6.4.6, 6.5.1, 6.5.2

Correct typos in opcode binary values and formats

6.3.15 rta0 replaced with rta that takes argument 0-7

6.3.13 The immediate field in relative loads is unsigned

6.4.1, 6.4.2, 6.4.4 Show bit shuffling of immediate bits in format

6.5.2 Add note to clarify encoding

TABLE OF CONTENTS

1 INTRODUCTION...4
1.1 Scope of the Document..4
1.2 Reference Documents..4

2 ABBREVIATIONS...4

3 OVERVIEW..5
3.1 Background..5
3.2 Design goals..5
3.3 Key features...5

4 ADDITIONS TO V8 INSTRUCTION BEHAVIOR...6
4.1 Detecting and enabling REX functionality..6
4.2 SAVEREX...6
4.3 ADDREX...7
4.4 JMPL additions..7

5 EXECUTION FLOW IN REX MODE...7
5.1 General...7
5.2 Instruction alignment...8
5.3 Delay slot removal...8
5.4 Reduced register window fields..8
5.5 Subroutine calls...9
5.6 Traps..9

6 INSTRUCTION DEFINITIONS...10

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 3 of 38

6.1 Overview...10
6.2 Regular SPARC mode instructions..10
6.2.1 SAVEREX and ADDREX...10
6.3 REX instructions, 16-bit..11
6.3.1 Branch on Integer Condition Codes, Short..11
6.3.2 Branch on Floating-Point Condition Codes, Short..12
6.3.3 Arithmetic operations, accumulator with register...13
6.3.4 Arithmetic operations, accumulator with immediate..15
6.3.5 Comparison, with register..16
6.3.6 Comparison, with immediate...16
6.3.7 Constant assignment..17
6.3.8 Bit-mask operations...18
6.3.9 Register to register copy..19
6.3.10 Negation...20
6.3.11 Return instructions...21
6.3.12 Load/Store, 8/16/32/64 bits, one register...22
6.3.13 Load/Store, 32 bits, fixed register plus immediate..24
6.3.14 Load/Store, 8/16/32/32-bits, one register, auto-incrementing...26
6.3.15 Miscellaneous operations, no source operands..28
6.4 REX instructions, 32-bit..29
6.4.1 Branch on integer condition codes, long...29
6.4.2 Branch on floating-point condition codes, long..30
6.4.3 Call and Link...31
6.4.4 Constant assignment..32
6.4.5 Generic format 3 SPARC operation...33
6.4.6 Floating-point operations...34
6.5 REX instructions, 48-bit..36
6.5.1 Set 32-bit constant...36
6.5.2 Load from 32-bit address...37

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 4 of 38

1 INTRODUCTION

1.1 Scope of the Document

This document describes the opcode format and instruction set for LEON-REX extension to the
SPARC V8 instruction set, that has been developed as an optional add-on to some versions of the
LEON processor family.

Only the software visible parts of the extension is covered, other aspects such as implementation
details and exact instruction timing are outside the scope of this document. Also the exact details on
how to detect if the extension is implemented in the hardware and how to enable it is left to the
hardware and not in this document.

The architecture extension described in this document has been developed by Cobham Gaisler AB,
Göteborg, Sweden.

1.2 Reference Documents

[RD1] “The SPARC architecture manual, version 8”, SPARC International inc.
[RD2] “GRLIB IP Core User's Manual”, Cobham Gaisler AB

2 ABBREVIATIONS

ABI Application Binary Interface

RISC Reduced Instruction Set Computing

SPARC Scalable Processor ARChitecture, open processor architecture standard
maintained by SPARC International

TBC To Be Confirmed

TBD To Be Defined

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 5 of 38

3 OVERVIEW

3.1 Background

The SPARC architecture was designed according to a RISC philosophy, where the instruction set is
very regular and symmetric to allow fast hardware implementations and compilers with aggressive
optimization techniques. However, this leads to an instruction set where there are many redundant
instructions and the total code size per line of source code therefore can become quite large.

For embedded designs where very limited on-chip RAM is available, or in execute-from-ROM
environments where the amount of ROM is limited, the code density can limit the maximum
program size. Also, the low code density results in an increase in the amount of data needed to be
fetched by the instruction cache, both due to the initial fetch size and due to the increased miss rate
of the cache.

3.2 Design goals

The LEON-REX extension was developed with the main goal of reducing code size to allow larger
programs to fit into RAM and off-line storage, and improve instruction cache hit rate by fitting
more code into the same cache space. However, there were also additional constraints that needed to
be taken into consideration.

One additional design goal was to allow full interoperability between REX code and regular V8
code at procedure level. This was in part for practical reasons, to allow the REX extension to be
rolled out gradually while the software environment catches up, but also to allow keeping code in
uncompressed format where this is preferred for performance reasons, or where the code has been
extensively qualified/validated and it would be a major effort to re-do that work for the compressed
version.

In addition to the above, the extension needed to be defined so that it can be added to the existing
LEON3 processor pipeline without major redesign (for example to add additional pipeline stages)
and without significantly reducing the maximum frequency of the processor for a given technology.

3.3 Key features

The above design inputs have resulted in an extension with the following key features, described
further in the following sections of the document:

• Variable-length instruction set with 16/32/48 bits per instruction. Vast majority of SPARC
V8 32-bit instructions can still be encoded in 32 bits or less.

• Branch delay slots removed to reduce code size (as delay slots can not always be filled).
• REX procedures follows the standard SPARC calling convention on both entry and outgoing

calls, and REX and regular SPARC procedures can therefore call each other using the
normal SPARC C ABI. Bit 0 of the return address is used to track REX state in function

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 6 of 38

calls and trap handlers.
• Backward-compatible modification to SAVE and ADD instruction using previously unused

bits in opcode to enter REX mode in compressed function prologue.
• Backward-compatible modification to JMPL instruction to allow function return to REX

function and return from trap handler to work using existing calling convention.

4 ADDITIONS TO V8 INSTRUCTION BEHAVIOR

4.1 Detecting and enabling REX functionality

How to detect and/or enable REX support is not specified here but left to the specific
implementation. It is recommended to have three modes for enabling REX: enabled, illegal and
transparent. Enabled means that all the additions in this section are available to software, illegal
means that an attempt to use the features here will cause an exception, and transparent meaning that
the pipeline behaves as if the extension did not exist at all for maximum backward compatibility.

Also it is recommended to have a version field to allow detecting future revisions of the REX
extension. This document describes revision 1 of the REX extension.

4.2 SAVEREX

The SAVE instruction in SPARC is available in two forms:

• Immediate form, with one destination register, one source register and one signed 13-bit
immediate offset

• Register form, with one destination register, two source registers, and 8 unused bits that are
set to zero.

The REX extension adds a third form of SAVE called SAVEREX, which has the same function as
SAVE but additionally has the side effect of switching to REX mode. The switch is instant, so the
instruction following the SAVEREX is expected to be in REX encoding.

SAVEREX has one destination register, one source register and one 13-bit immediate offset,
however the offset must be negative. The encoding used for SAVEREX is the same as the
immediate form, except the immediate bit is inverted. Bit 12 of the opcode is used to distinguish
between the SAVEREX form and the regular three-register form of SAVE.

In theory there may be a compatibility issue if software uses the unused bits of the three-register
SAVE instruction for some other purpose, however no such usage is known to exist. The GNU
disassembler does not even recognize the save with unused bits set as a valid opcode which is
further evidence that such usage is very uncommon. In the unlikely event this causes an issue, it is

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 7 of 38

recommended to implement a transparent option as suggested in section 4.1.

4.3 ADDREX

Analogous to the SAVEREX, the ADD instruction adds a third form of the opcode
called ADDREX. The intent of this variant is to allow implementing leaf functions where save is
not desired.

4.4 JMPL additions

The JMPL instruction is extended to allow functions to return into the middle of a REX code block.
To indicate this the lowest bit of the target address is set to 1 when jumping to a REX instruction.

Table 1 JMPL behavior in REX enabled and disabled mode

Target
address

REX enabled REX disabled, illegal REX disabled,
transparent

4N+0 Jump to 4N, V8 mode Jump to 4N, V8 mode Jump to 4N, V8 mode

4N+1 Jump to 4N, REX mode Unaligned address or
illegal instruction exception

Unaligned address
exception

4N+2 Unaligned address
exception

Unaligned address
exception

Unaligned address
exception

4N+3 Jump to 4N+2, REX mode Unaligned address or
illegal instruction exception

Unaligned address
exception

When jumping to REX mode code, any control transfer instruction in the delay slot will not affect
the execution flow of the REX code. This in particular applies to the RETT instruction when
returning from a trap handler, the address supplied to RETT will be ignored however the other side
effects of RETT (to PSR bits) will be performed as usual.

5 EXECUTION FLOW IN REX MODE

5.1 General

After entering REX mode via any of the methods described in section 4, the processor will begin
decoding and executing REX instructions at the location pointed to by the program counter. After
each instruction, the PC is advanced 2, 4 or 6 bytes to the following instruction, or it is changed to
the target address in case of a taken branch or other control transfer instruction.

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 8 of 38

5.2 Instruction alignment

All REX instructions are aligned to halfword (two-byte) boundaries but there are otherwise no
requirements on alignment. This means that instructions are allowed to cross cache-line and MMU
page boundaries. The instructions are designed so the first two bytes are sufficient to decode the
instruction size, so it is always possible to determine whether more data needs to be fetched.

Note that for object file compatibility with existing linkers that have not been adapted for the REX
extensions, the call instruction may need to be aligned to a 4-byte rather than 2-byte boundary.
However this is not a restriction in the hardware so this may be lifted once the linker can be
modified to accept call instructions on odd addresses.

5.3 Delay slot removal

In REX mode, control transfer instructions have no delay slot, the next executed instruction after a
branch will be either the branch target in the case of a taken branch, or the following instruction in
case of a not taken branch.

This also means that the concept of an independent nPC register becomes meaningless in REX
mode as the next instruction address is always determined by the current instruction. Another,
equivalent, way to look at this is to say that nPC still exists but is locked down to always point to
the following instruction and all branches have their delay slot annulled in case of taken branch.

5.4 Reduced register window fields

Most of the 16-bit instructions use a four-bit field for the destination and source registers, in order
to increase the number of possible operations in the small 16-bit opcode space. This restricts these
opcodes to only be able to specify half of the possible registers in the register window.

To simplify the decoding logic, the REX opcodes that have 5 bits and can specify any of the 32
registers in some cases use the same reduced 4-bit encoding with an extra bit added to select
between the reduced and the “complementary” set of 16 registers. The mapping from reduced
register number to register in both the reduced and the complementary set is tabulated below.

For floating-point registers the same scheme is used just to allow common decoding logic to the
integer instructions, however the standard and complementary sets have been reversed to allow
accessing register %f0-1 with most load/store instructions.

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 9 of 38

Table 2 Mapping of 4-bit register field to SPARC window registers

r4 field value
(decimal)

Register Complementary
register

0-3 %o0-3 (%r8-11) %l0-3 (%r16-19)

4-7 %l4-7 (%r20-23) %o4-7 (%r12-15)

8-15 %i0-7 (%r24-31) %g0-7 (%r0-7)

Table 3 Mapping of 4-bit register field to SPARC floating-point registers

r4 field value
(decimal)

Register Complementary
register

0-3 %f16-19 %f8-11

4-7 %f12-15 %f20-23

8-15 %f0-7 %f24-31

5.5 Subroutine calls

Subroutines are called using the CALL instruction, that has the exact same opcode representation as
the regular SPARC counterpart. The CALL instructions sets up the return address so that the
standard SPARC return sequence will cause execution to return to the instruction after the CALL
and resume in REX mode.

5.6 Traps

In case of a taken trap, the behaviour is similar to the regular case. The CWP will be decremented
one step and the S and PS bits are updated as described in the SPARC manual. The execution jumps
to the trap handler address determined by the %tbr register and the trap type.

The %l0 register in the trap handler's window is updated to point to the REX instruction that caused
the trap, but with the least significant bit set to 1. The %l1 register is set to point to the following
instruction, also with the least significant bit set to 1 if the following instruction is a REX mode
instruction or 0 if it is not.

In the special case of a trap on the r_retrest instruction, %l1 is allowed to either point to the
following instruction (the return address) or have the same value as the %l0 register (in other words,
also point to the r_retrest instruction) in order to simplify the hardware implementation. This is
normally not a problem as the window_underflow handler returns to the %l0 instruction.

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 10 of 38

6 INSTRUCTION DEFINITIONS

6.1 Overview

This section lists the different instructions added by the LEON-REX extension and their opcode
representation. The instructions are arranged by mode (regular or REX) and size, and then
subdivided by category.

The suggested assembly language syntax uses a prefix of “r” on all mnemonics to distinguish them
from their regular SPARC counterpart. Another possibility could be to have an assembler directive
such as “.rex” to indicate that the following code should be represented with REX opcodes and then
use the ordinary SPARC syntax.

6.2 Regular SPARC mode instructions

6.2.1 SAVEREX and ADDREX

Opcode op3 Description

SAVEREX 111100 Save caller's window and enter REX mode

ADDREX 000000 Add and enter REX mode

Format:
10 rd op3 rs1 imm=0 simm13(12)=1 Simm13(11:0)

31 29 24 18 13 12 11 0

Suggested assembly language syntax:
saverex regrs1, imm, regrd

addrex regrs1, imm, regrd

Description:
Same behavior as SAVE and ADD instructions but with the added side effect of entering
REX mode. The most significant bit of the immediate must be 1, in other words the
immediate must be negative.

Traps:
window_overflow (SAVE only)

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 11 of 38

6.3 REX instructions, 16-bit

6.3.1 Branch on Integer Condition Codes, Short

Format:
00 cond bsz=0 btype=0 disp8

15 13 9 8 7 0

Suggested assembly language syntax:
rba label
rbn label
rbne label
rbe label
rbg label
rble label
rbge label
rbl label
rbgu label
rbleu label
rbcc label
rbcs label
rbpos label
rbneg label
rbvc label
rbvs label

Description:
Branch to “PC + (2 x sign_ext(disp8))” if the condition is met. Value of cond has same
format as for SPARC V8 Bicc instructions.

Traps:
(none)

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 12 of 38

6.3.2 Branch on Floating-Point Condition Codes, Short

Format:
00 cond bsz=0 btype=1 disp8

15 13 9 8 7 0

Suggested assembly language syntax:
rfba label
rfbn label
rfbu label
rfbg label
rfbug label
rfbl label
rfbul label
rfblg label
rfbne label
rfbe label
rfbue label
rfbge label
rfbuge label
rfble label
rfbule label
rfbo label

Description:
Branch to “PC + (2 x sign_ext(disp8))” if the floating-point condition is met. Value of cond
has same format as for SPARC V8 FBfcc instructions.

Traps:
fp_disabled
fp_exception

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 13 of 38

6.3.3 Arithmetic operations, accumulator with register

Opcode rop3(r) rop3l Description

Radd 0000 0 Add

Raddcc 0000 1 Add and modify icc

Rsub 0001 0 Subtract

Rsubcc 0001 1 Subtract and modify icc

Rand 0010 0 And

Randcc 0010 1 And and modify icc

Randn 1010 0 And-not

Randncc 1010 1 And-not and modify icc

Ror 0100 0 Or

Rorcc 0100 1 Or and modify icc

Rorn 1100 0 Or-not

Rorncc 1100 1 Or-not and modify icc

Rxor 0110 0 Exclusive-or

Rxorcc 0110 1 Exclusive-or and modify icc

Rsll 1011 0 Shift left logical

Rsrl 1101 0 Shift right logical

Format:
10 r4d rimm=0 rop3 rop3l r4s

15 13 9 8 4 3 0

Suggested assembly language syntax:
radd regrs, regrd

raddcc regrs, regrd

rsub regrs, regrd

rsubcc regrs, regrd

rand regrs, regrd

randcc regrs, regrd

randn regrs, regrd

randncc regrs, regrd

ror regrs, regrd

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 14 of 38

rorcc regrs, regrd

rorn regrs, regrd

rorncc regrs, regrd

rxor regrs, regrd

rxorcc regrs, regrd

rsll regrs, regrd

rsrl regrs, regrd

Description:
Perform arithmetic/logical operation on %rd and %rs, then store the result in %rd. Since
%rd is both source and destination, it acts as an accumulator in these instructions. %rd is
used as %rs1 and %rs is used as %rs2 in the equivalent SPARC instructions, so for example
“rsub %r1, %r2” is equivalent to “sub %r2, %r1, %r2”.

Traps:
(none)

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 15 of 38

6.3.4 Arithmetic operations, accumulator with immediate

Opcode rop3(i) Description

Raddcc 0000 Add and modify icc

Rsll 1011 Shift left logical

Rsrl 1101 Shift right logical

Format:
10 r4d rimm=1 rop3 simm5 / imm5

15 13 9 8 4 0

Suggested assembly language syntax:
raddcc imm, regrd

rsll imm, regrd

rsrl imm, regrd

Description:
Raddcc adds the simm5 sign-extended 5-bit constant to the register %rd and updates the
condition codes.

SLL/SRL performs logical left/right shift of the destination register by the number of bits
indicated in the constant. In this case the constant is treated as an unsigned number.

Traps:
(none)

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 16 of 38

6.3.5 Comparison, with register

Opcode rop3(r) rop3l Description

Rcmp 1011 1 Compare registers and modify icc

Format:
10 r4s1 rimm=0 rop3 rop3l r4s2

15 13 9 8 4 3 0

Suggested assembly language syntax:
rcmp regrs1, regrs2

Description:
Perform the equivalent of “subcc %rs1, %rs2, %g0”

Traps:
(none)

6.3.6 Comparison, with immediate

Opcode rop3(i) Description

Rcmp 1000 Compare and modify icc

Format:
10 r4s1 rimm=1 rop3 simm5

15 13 9 8 4 0

Suggested assembly language syntax:
rcmp regrs1, imm

Description:
Perfoms the equivalent of “subcc %rs1, imm, %g0”. The 5-bit constant is sign-extended.

Traps:
(none)

NOTE: rop3 field value is different for immediate and register version of rcmp opcode.

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 17 of 38

6.3.7 Constant assignment

Opcode rop3(i) Description

Rset5 0001 Assign constant value to register

Rone 0101 Create value with one bit set and assign to register

Format:
10 r4d rimm=1 rop3 simm5 / imm5

15 13 9 8 4 0

Suggested assembly language syntax:
rset5 imm, regrd

rone imm, regrd

Description:
RSET5 sets the destination register to the 5-bit sign-extended constant value.
RONE sets the destination register to (1 << imm5), a mask with one bit set. The value in this
case is not sign-extended.

Traps:
(none)

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 18 of 38

6.3.8 Bit-mask operations

Opcode rop3(i) Description

Rsetbit 0100 Modify register to set selected bit

Rclrbit 1010 Modify register to clear selected bit

Rinvbit 0110 Modify register to invert selected bit

Rtstbit 0011 Test selected bit in register and modify icc

Rmasklo 0010 Mask away upper bits in register

Format:
10 r4d rimm=1 rop3 imm5

15 13 9 8 4 0

Suggested assembly language syntax:
rsetbit imm, regrd

rclrbit imm, regrd

rinvbit imm, regrd

rtstbit imm, regrd

rmasklo imm, regrd

Description:
RSETBIT, RCLRBIT and RINVBIT modifies the selected bit in a register without affecting
the remaining bits. The bit is provided as an unsigned 5-bit constant.

RTSTBIT updates the icc flags depending on whether the selected bit is set or not. The Z
flag is set if the bit was zero and not set if the bit was one. Other bits in icc are undefined
(implementation dependent).

RMASKLO keeps the bits up to and including the bit selected by the constant, and
remaining bits get cleared. For example, if the immedate is 3, only the lowest four bits (bits
3:0) are kept and the remaining 28 bits (31:4) are cleared. If the immediate is 31 all bits are
kept and the opcode has no effect.

Traps:
(none)

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 19 of 38

6.3.9 Register to register copy

Opcode rop3(r) rop3l Description

Rmov 100x x Copy data from register to register

Format:
10 r4d rimm=0 Rop3(3:1) rdalt rsalt r4s

15 13 9 8 5 4 3 0

Suggested assembly language syntax:
rmov regrs, regrd

Description:
Copies the contents of one register into another register. This opcode can access any register
in the register window, the rdalt bit selects whether the r4d field refers to 0) the reduced or
1) the complementary reduced register set, and rsalt in the same way selects for the r4s field.

Traps:
(none)

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 20 of 38

6.3.10 Negation

Opcode rop3(i) rop4 Description

Rneg 1110 00100 Negate register

Rnot 1110 00101 Invert register

Format:
10 r4d rimm=1 rop3 rop4

15 13 9 8 4 0

Suggested assembly language syntax:
rneg regrd

rnot regrd

Description:
The RNEG and RNOT instructions perform simple 2-complements negation or bit-wise
inversion of the selected register.

Traps:
(none)

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 21 of 38

6.3.11 Return instructions

Opcode rop3(i) rop4 Description

Rretrest 1110 00000 Return to caller and restore

Rretl 1110 00001 Return from leaf function

Format:
10 r4d rimm=1 rop3 rop4

15 13 9 8 4 0

Suggested assembly language syntax:
rretrest
rretl

Description:
The RRETREST instruction performs the “jmpl %i7+8, %g0; restore” sequence normally
used in the SPARC ABI when returning from a subroutine to the calling procedure. It is
possible to get a window underflow trap if the window restore results in pointing to an
invalid window.

The RRETL instruction performs the “jmpl %o7+8; nop” sequence normally used in the
SPARC ABI when returning from a leaf function.

Traps:
window_underflow (RRETREST only)
mem_address_not_aligned (due to the jmpl if i7/o7 are not aligned correctly, see section 4.4)

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 22 of 38

6.3.12 Load/Store, 8/16/32/64 bits, one register

Opcode rop3(r) rop3l Description

Rld 0000 0 Load 32-bit value

Rldub 0010 0 Load 8-bit unsigned value

Rlduh 0100 0 Load 16-bit unsigned value

Rldd 0110 0 Load 64-bit value

Rldf 0001 0 Load 32-bit floating-point value

Rlddf 0101 0 Load 64-bit floating-point value

Rst 1000 0 Store 32-bit value

Rstb 1010 0 Store 8-bit unsigned value

Rsth 1100 0 Store 16-bit unsigned value

Rstd 1110 0 Store 64-bit value

Rstf 1001 0 Store 32-bit floating-point value

Rstdf 1101 0 Store 64-bit floating-point value

Format:
11 r4d rimm=0 rop3 rop3l r4s

15 13 9 8 4 3 0

Suggested assembly language syntax:
rld [regrs], regrd

rldub [regrs], regrd

rlduh [regrs], regrd

rldd [regrs], regrd

rldf [regrs], regrd

rlddf [regrs], regrd

rst regrd, [regrs]
rstb regrd, [regrs]
rsth regrd, [regrs]
rstd regrd, [regrs]
rstf regrd, [regrs]
rstdf regrd, [regrs]

Description:
Stores or load data to the address given in the %rs register and the transferred data source or
destination in the %rd register.

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 23 of 38

Traps:
illegal_instruction (rldd/rstd with odd rd)
mem_address_not_aligned
data_access_exception
data_access_error

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 24 of 38

6.3.13 Load/Store, 32 bits, fixed register plus immediate

Opcode rop3(i) Description

Rldi0 0100 Load 32-bit value from address relative to i0

Rldo0 0110 Load 32-bit value from address relative to o0

Rldfp 0000 Load 32-bit value from address relative to fp

Rldsp 0010 Load 32-bit value from address relative to sp

Rldfi0 0101 Load 32-bit floating-point value from address relative to i0

Rldffp 0001 Load 32-bit floating-point value from address relative to fp

Rldfsp 0011 Load 32-bit floating-point value from address relative to sp

Rsti0 1100 Store 32-bit value to address relative to i0

Rsto0 1110 Store 32-bit value to address relative to o0

Rstfp 1000 Store 32-bit value to address relative to fp

Rstsp 1010 Store 32-bit value to address relative to sp

Rstfi0 1101 Store 32-bit floating-point value to address relative to i0

Rstffp 1001 Store 32-bit floating-point value to address relative to fp

Rstfsp 1011 Store 32-bit floating-point value to address relative to sp

Format:
11 r4d rimm=1 rop3 imm5

15 13 9 8 4 0

Suggested assembly language syntax:
rld [%i0+imm], regrd

rld [%o0+imm], regrd

rld [%fp+imm], regrd

rld [%sp+imm], regrd

rldf [%i0+imm], regrd

rldf [%fp+imm], regrd

rldf [%sp+imm], regrd

rst regrd, [%i0+imm]
rst regrd, [%o0+imm]
rst regrd, [%fp+imm]
rst regrd, [%sp+imm]
rstf regrd, [%i0+imm]
rstf regrd, [%fp+imm]
rstf regrd, [%sp+imm]

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 25 of 38

Description:
Stores or load data to the address given by adding the fixed register selected by the opcode
and 4 x imm. The immediate is treated as an unsigned 5-bit offset.

Note: This is intended to support several common scenarios, for example accessing elements
in a struct passed as the first argument of a subroutine and loading/storing temporary values
from the stack.

Traps:
mem_address_not_aligned
data_access_exception
data_access_error

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 26 of 38

6.3.14 Load/Store, 8/16/32/32-bits, one register, auto-incrementing

Opcode rop3(r) rop3l Description

Rldinc 0000 1 Load 32-bit value and increment address register by 4

Rldubinc 0010 1 Load 8-bit unsigned value and increment address register by 1

Rlduhinc 0100 1 Load 16-bit unsigned value and increment address register by
2

Rlddinc 0110 1 Load 64-bit value and increment address register by 8

Rldfinc 0001 1 Load 32-bit floating-point value and increment address
register by 4

Rlddfinc 0101 1 Load 64-bit floating-point value and increment address
register by 8

Rstinc 1000 1 Store 32-bit value and increment address register by 4

Rstbinc 1010 1 Store 8-bit unsigned value and increment address register by 1

Rsthinc 1100 1 Store 16-bit unsigned value and increment address register by
2

Rstdinc 1110 1 Store 64-bit value and increment address register by 8

Rstfinc 1001 1 Store 32-bit floating-point value and increment address
register by 4

Rstdfinc 1101 1 Store 64-bit floating-point value

Format:
11 r4d rimm=0 rop3 rop3l r4s

15 13 9 8 4 3 0

Suggested assembly language syntax:
rldinc [regrs], regrd

rldubinc [regrs], regrd

rlduhinc [regrs], regrd

rlddinc [regrs], regrd

rldfinc [regrs], regrd

rlddfinc [regrs], regrd

rstinc regrd, [regrs]
rstbinc regrd, [regrs]
rsthinc regrd, [regrs]
rstdinc regrd, [regrs]
rstfinc regrd, [regrs]

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 27 of 38

rstdfinc regrd, [regrs]

Description:
Just as the regular non-incrementing load/store, the instruction stores or loads data to the
address given in the %rs register and the transferred data source or destination in the %rd
register. As a side effect, the register holding the address is incremented by the size of the
data element loaded or stored. This instruction is equivalent to first performing a regular
load/store and then an addition, for example “lduh [%rs], %rd; add %rs, 2, %rs”, except that
you can not get an interrupt between the load/store and the add.

Note that the floating-point load/store instructions also use the reduced 4-bit register format
and the register field is interpreted in the same way (for example if the field would decode to
integer register %r5, for the floating-point load/store it decodes to %f5).

Traps:
illegal_instruction (rlddinc/rstdinc with odd rd)
mem_address_not_aligned
data_access_exception
data_access_error

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 28 of 38

6.3.15 Miscellaneous operations, no source operands

Opcode rop3(i) rop4 Description

Rpush 1110 00010 Store value to sp and decrement sp

Rpop 1110 00011 Load value from sp and increment sp

Rta 1110 00110 Software trap

Rleave 1110 00111 Leave REX mode

Rgetpc 1110 01001 Get current value of program counter

Format:
10 r4d rimm=1 rop3 rop4

15 13 9 8 4 0

Suggested assembly language syntax:
rpush regrd

rpop regrd

rta software_trap#
rleave
rgetpc regrd

Description:
The RPUSH and RPOP intstructions are included to support implementing alternative
calling conventions. They load/store the value pointed to by %sp and then
increment/decrements %sp.

The RTA instruction can be used to generate software trap 0-7.

The RLEAVE instruction can be used to immediately leave REX mode for the next
instruction. However note that normally RRETREST/RRETL should be used.

The RGETPC instruction stores the current PC (in other words, the address of the GETPC
opcode itself) into the destination register.

Traps:
mem_address_not_aligned (RPUSH/RPOP only)
data_access_exception (RPUSH/RPOP only)
data_access_error (RPUSH/RPOP only)
trap_instruction (RTA only)

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 29 of 38

6.4 REX instructions, 32-bit

6.4.1 Branch on integer condition codes, long

Format:
00 cond bsz=1 btype=0 disp24(7:0) disp24(23:16)

31 29 25 24 23 15 0

Suggested assembly language syntax:
rba,l label
rbn,l label
rbne,l label
rbe,l label
rbg,l label
rble,l label
rbge,l label
rbl,l label
rbgu,l label
rbleu,l label
rbcc,l label
rbcs,l label
rbpos,l label
rbneg,l label
rbvc,l label
rbvs,l label

Description:
Branch to “PC + (2 x sign_ext(disp24))” if the condition is met. Value of cond has same
format as for SPARC V8 Bicc instructions.

Traps:
(none)

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 30 of 38

6.4.2 Branch on floating-point condition codes, long

Format:
00 cond bsz=1 btype=1 disp24(7:0) disp24(23:16)

31 29 25 24 23 15 0

Suggested assembly language syntax:
rfba,l label
rfbn,l label
rfbu,l label
rfbg,l label
rfbug,l label
rfbl,l label
rfbul,l label
rfblg,l label
rfbne,l label
rfbe,l label
rfbue,l label
rfbge,l label
rfbuge,l label
rfble,l label
rfbule,l label
rfbo,l label

Description:
Branch to “PC + (2 x sign_ext(disp24))” if the floating-point condition is met. Value of cond
has same format as for SPARC V8 FBfcc instructions.

Traps:
fp_disabled
fp_exception

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 31 of 38

6.4.3 Call and Link

Format:
01 disp30

31 29 0

Suggested assembly language syntax:
call label

Description:
Performs an unconditional PC-relative control transfer to address “PC + (4 x disp30)” and at
the same time leaves REX mode. The next instruction executed after the CALL will be the
regular instruction located at the target address with the nPC pointing to the instruction
following it. If the CALL instruction is not on aligned on a word boundary, the target
address will be rounded down to the nearest lower word address (the two lowest bits of the
computed target address become zeroed).

The CALL instruction stores the value of (PC-3) into register %o7.

Note:
The value of (PC-3) is chosen so that the regular ret/retl instructions (jmpl %i7/%o7+8) will
return to the instruction following the CALL and re-enable REX mode.

Traps:
(none)

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 32 of 38

6.4.4 Constant assignment

Opcode rop3(i) Description

Rset21 0111 Assign constant value to register

Format:
10 r4d rimm=1 rop3 simm21(4:0) simm21(20:5)

31 29 25 24 20 15 0

Suggested assembly language syntax:
rset21 imm, regrd

Description:
RSET21 sets the destination register to the 21-bit sign-extended constant value.

Traps:
(none)

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 33 of 38

6.4.5 Generic format 3 SPARC operation

Opcode rop3(r) rop3l Description

Rgop 0111 0 Generic SPARC integer operation

Format:
1x r4d rimm

=0
rop3 rop3l r4s1 ximm

=0
xop3 rdalt rs1alt (zero) rs2

31 29 25 24 20 19 15 14 8 7 6 4 0

1x r4d rimm
=0

rop3 rop3l r4s1 ximm
=1

xop3 rdalt rs1alt simm7

31 29 25 24 20 19 15 14 8 7 6 0

Suggested assembly language syntax:
rgop sparc_insn, regrs1, reg_or_imm, regrd

Description:
This opcode allows any regular SPARC “format 3” (memory, arithmetic, logical, shift, and
remaining) to be represented also with 32 bits in the REX encoding, with the restriction that
SPARC opcode bits 12:7 can not be controlled. This limits immediate constants to 7 bits
instead of the full 13.

The 32-bit SPARC opcode is composed based on the rgop opcode as below:
Bits 31:30 (op type) are copied over directly from the same position.
Bits 29:25 (rd) is taken from the r4d / rdalt fields (converted from reduced/alternate format)
Bits 24:19 (op3) is taken from xop3 field
Bits 18:14 (rs1) is taken from the r4s1 / rs1alt fields (converted from reduced/alternate
format)
Bit 13 (imm) is taken from the ximm bit
Bit 12:7 (simm13 high bits) is set to same value as the highest bit of simm7 if ximm=1
Bit 12:7 (unused) is always set to 0 if ximm=0
Bit 6:0 (simm13 low bits or unused+rs1) is copied over directly from the same position.

Traps:
any trap the corresponding SPARC opcode can generate.

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 34 of 38

6.4.6 Floating-point operations

Opcode rop3(r) rop3l rfpop Description

FiTos 0111 1 1100100

FiTod 0111 1 1101000

FiToq 0111 1 1101100

FsToi 0111 1 1010001

FdToi 0111 1 1010010

FqToi 0111 1 1010011

FMOVs 0111 1 0000001

FNEGs 0111 1 0000101

FABSs 0111 1 0001001

FSQRTs 0111 1 0011001

FSQRTd 0111 1 0011010

FSQRTq 0111 1 0011011

FADDs 0111 1 0100001

FADDd 0111 1 0100010

FADDq 0111 1 0100011

FSUBs 0111 1 0100101

FSUBd 0111 1 0100110

FSUBq 0111 1 0100111

FMULs 0111 1 0101001

FMULd 0111 1 0101010

FMULq 0111 1 0101011

FSMULD 0111 1 0111001

FSMULQ 0111 1 0111010

FDIVs 0111 1 0101101

FDIVd 0111 1 0101110

FDIVq 0111 1 0101111

FCMPs 0111 1 1000001

FCMPd 0111 1 1000010

FCMPq 0111 1 1000011

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 35 of 38

Opcode rop3(r) rop3l rfpop Description

FCMPEs 0111 1 1000101

FCMPEd 0111 1 1000110

FCMPEq 0111 1 1000111

Format:
10 r4d rimm

=0
rop3 rop3l r4s1 xfpop rdalt rs1alt (zero) rs2

31 29 25 24 20 19 15 8 7 6 4 0

Suggested assembly language syntax:
rflop sparc_insn, regrs1, reg_or_imm, regrd

Description:
This opcode allows any of the floating-point operations (FPOps) defined in the SPARC
standard to be represented also with 32 bits in the REX encoding, without any additional
restrictions. The same restrictions as would have applied in uncompressed code on the same
system should be expected.

The %rd and %rs1 registers are represented using the 4+1-bit reduced/alternate
representation, but %rs2 is represented directly as the SPARC register number.

Traps:
any trap the corresponding SPARC opcode can generate.

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 36 of 38

6.5 REX instructions, 48-bit

6.5.1 Set 32-bit constant

Opcode rop3(i) rop4 Description

Rset32 1111 01000 Set 32-bit constant

Rset32pc 1111 01001 Set 32-bit constant, plus PC

Format:
10 r4d rimm=1 rop3 rop3l rop4 imm32

47 45 41 40 36 35 31 0

Suggested assembly language syntax:
rset32 imm, regrd

rset32pc imm, regrd

Description:
RSET32 assigns a 32-bit constant into the destination register. RSET32PC also adds the
address of the instruction to the immediate to allow relative address calculations.

Traps:
(none)

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 37 of 38

6.5.2 Load from 32-bit address

Opcode rop3(i) rop4 Description

Rld32 1111 01010 Load from 32-bit absolute address

Rld32pc 1111 01011 Load from 32-bit relative address

Format:
10 r4d rimm=1 rop3 rop3l rop4 imm32

47 45 41 40 36 35 31 0

Suggested assembly language syntax:
rld32 [imm], regrd

rld32pc [imm], regrd

Description:
RLD32 loads a 32-bit word from the address given by the immediate into the destination
register. RSET32PC also adds the address of the instruction to the immediate to allow
relative addresses.

NOTE: These instructions have the op field assigned as 10 despite being load instructions.

Traps:
(none)

© Cobham Gaisler AB

Doc. No: GRLIB-TN-0001

Issue: 1 Rev.: 1

Date: 2016-05-27 Page: 38 of 38

Copyright © 2016 Cobham Gaisler.

Information furnished by Cobham Gaisler is believed to be accurate and reliable. However, no
responsibility is assumed by Cobham Gaisler for its use, or for any infringements of patents or other
rights of third parties which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Cobham Gaisler.

All information is provided as is. There is no warranty that it is correct or suitable for any purpose,
neither implicit nor explicit.

© Cobham Gaisler AB

	1 Introduction
	1.1 Scope of the Document
	1.2 Reference Documents

	2 Abbreviations
	3 Overview
	3.1 Background
	3.2 Design goals
	3.3 Key features

	4 Additions to V8 instruction behavior
	4.1 Detecting and enabling REX functionality
	4.2 SAVEREX
	4.3 ADDREX
	4.4 JMPL additions

	5 Execution flow in REX mode
	5.1 General
	5.2 Instruction alignment
	5.3 Delay slot removal
	5.4 Reduced register window fields
	5.5 Subroutine calls
	5.6 Traps

	6 Instruction definitions
	6.1 Overview
	6.2 Regular SPARC mode instructions
	6.2.1 SAVEREX and ADDREX

	6.3 REX instructions, 16-bit
	6.3.1 Branch on Integer Condition Codes, Short
	6.3.2 Branch on Floating-Point Condition Codes, Short
	6.3.3 Arithmetic operations, accumulator with register
	6.3.4 Arithmetic operations, accumulator with immediate
	6.3.5 Comparison, with register
	6.3.6 Comparison, with immediate
	6.3.7 Constant assignment
	6.3.8 Bit-mask operations
	6.3.9 Register to register copy
	6.3.10 Negation
	6.3.11 Return instructions
	6.3.12 Load/Store, 8/16/32/64 bits, one register
	6.3.13 Load/Store, 32 bits, fixed register plus immediate
	6.3.14 Load/Store, 8/16/32/32-bits, one register, auto-incrementing
	6.3.15 Miscellaneous operations, no source operands

	6.4 REX instructions, 32-bit
	6.4.1 Branch on integer condition codes, long
	6.4.2 Branch on floating-point condition codes, long
	6.4.3 Call and Link
	6.4.4 Constant assignment
	6.4.5 Generic format 3 SPARC operation
	6.4.6 Floating-point operations

	6.5 REX instructions, 48-bit
	6.5.1 Set 32-bit constant
	6.5.2 Load from 32-bit address

